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Real null coframes in general relativity and GPS type coordinates
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Some time ago, Finkelstein defined a “symmetric” null frame withir real null vectors We discuss this
Finkelstein frame and show that a similarly defined real null coframe is closely related to the GPS type
coordinates recently introduced by Rovelli.
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[. INTRODUCTION Finkelstein null framef , can be constructed from an ortho-
normal frame by a suitable nondegenerate linear transforma-
In the pseudo Riemannian spacetime of general relativityion. Since this construction is not widely known, we will
theory, we can introduce at each point of spacetime a locgiresent it in Sec. Il in a hopefully easily accessible way. We
vector basis or frame,(x), with «,, ...=0,1,2,3. As al- will study some of the properties of that frame and will vi-
ready indicated by the notation, the zeroth &gjs conven- sualize it by means of a tetrahedron in 3-dimensional space.

tionally chosen to be timelike whereas, e, ,e; are chosen [N Sec. lll we will introduce a new real nutoframe &
to be spacelike. Specifically, the frame ipseudo- which turns outnot to be dual to the Finkelstein franfe,.

orthonormal i.e., g(e, ,e5) =diag(+ 1, 1,1, 1)=:0,. Recently, Rovell[5], in a framework related to the Global

Hereg(u,v)=u-v denotes the scalar product of two vectors Piosmonlng SysteniGPS [6], constructed four coordinates

uandv defined by the Riemannian metric angj, are the s' in terms of which the components of the metric look null

. symmetric, see Ref5], Eqg. (1). In Sec. IV, we follow up

components of the Lorentz metfic. ; 5 e i
Three spacelike legs are not particularly practical if onethese ideas and show that Rovellis cofradhe is closely

. . : ..~ related to our new real coframe®.
wants to investigate, say, electromagnetic or gravitational
wave propagation. Then, on the coordinate level, one intro-
duces null coordinatest=x (advanced and retarded ohes
Similarly, on the level of the frame, one has two null legs
~ep*e;. The two remaining legs are untouched and stay At each point of 4-dimensional spacetime with coordi-
spacelike. Such &alf-null frame leads immediately to the natesx', herei,j ...=0,1,2,3, we have the 4-dimensional
idea to transform also the spacelike legs to null legs. If ondangent vector space. Four linearly independent veagrs
wants to uphold orthonormality, this is only possible if one constitute a basis or, alternatively expressefdame Dual to

defines the new complex legs,m~e,*ies, with 2= —1. this frame is thecoframe®# which consists of 4 covectors
This Newman-Penroseull frame consists of two real and (0ne-forms. One can decompose frame and coframe with
two complex null vectorg1]. It turned out to be extremely Téspect to the local coordinate frame according to
useful for studying the properties of gravitational waves and e.=€,0, 9F=¢fdx, (1)
of exact solutions of Einstein’s field equation.

If one relaxes the constraint of orthonormality, one couldwith the duality relations
also hope that one is able to define a frame consisting of four ani _ s i ca
real null vectors. In fact, such a frame was found by Finkel- e“e,=di, &"€5=0p. 2
stein[2], see alsd 3] and[4]. Finkelstein called the corre- i
sponding metric components a “null symmetric metr{@]. Th_e}ﬁe“ tgLe gﬁltl?/Céég:nséoarlgst::z?ri?sm;%]enig"hereb we
The word “symmetric” refers to the fact that all off-diagonal ) P o y

components of the metric carry the value 1; that is, none OI"?Q ssg;ltrg?sa:g?g:ji%mldﬁfg cl:}c))r? uézér:\tlgi)rftlﬁlgnrggtr?éewith
the four legs of the frame has a preferred meaning. Th : gy, P
respect to the frame, are determined by,z:=9(e,,€p).

Conversely, the metric can be reconstructed from its compo-
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Il. FRAMES CONSISTING OF FOUR REAL NULL
VECTORS
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like if g(u,u)<0, andnull (or light-like) if g(u,u)=0. The faz(\/§e0+ e, te,+es)l2,
components of the metric tensor with respect to the orthonor-
mal framee, are then f1=( \/§ ete—e,—e3)/2,
10 f3=(V3ep—e +e,—ey)/2,
* 0 -1
gaﬁzoa'B:= 0 0 -1 :OaB (4) f§=(\/§e0—el—ez+e3)/2 (9)
0O O 0o -1 This can also be written as
The star equal sign indicates that the corresponding equation J3 1 1 1
is only valid for specific frames, namely for orthonormal 1l 3 1 -1 -1
2l 3 -1 1 -1
A. Null frames J3 -1 -1 1
Starting from an orthonormal frame, with respect to (10

which the metric has the standard fok#), we can build a

new framee,. = (I,n,e, ,e5/) by the linear transformation ~ Sinceg(f7,f3)=0 for all «, the null frame consists solely
of real non-orthogonal null vectors. The metric with respect

1 1 to this frame reads
II_(e0+e1)1 n:_(eo_el)1 (5)
\/E \/E 0 1 1 1
ande,, =e,,e3 =ej3. In the kernel index method that we are ok 1 0 1 1 o
using, see Schoutei8], the framese,, ande, are distin- 9ap=fap=| 1 1 o 1|7 11
guished by the different type of indices. The first two vectors 111 0

of the new frame are nullg(l,1)=g(n,n)=0. Correspond-

ingly, the metric with respect to thiwalf-null framee,, reads . . .
gy P “ This inequality means that the coframe dual to the Finkel-

01 0 0 stein framef?, is not null.
* 10 0 O o
Uorpr=Ngr pri= 00 -1 0 =h*#. (6 B. Properties of real null frames

The metric (11) looks completely symmetric in all its
components: seemingly the time coordinate is not preferred

Following Newman and Penro§], we can further con- in any sense. Nevertheless, E(l1) represents a truly
struct two morenull vectors as theomp|ex"near combina- Lorentzian metric. Its determinant i{s3 and the eigenvalues

0 0 0 -1

tions ofe, andej: are readily computed to be
1 1 3, -1, -1, -1, (12
m=—(e,+iey)), m=—(e,—iej). (7)
\/5 2 ’ \/5 2 s which shows that the metri¢ll) has, indeed, the correct

o . ) ] signature. The Finkelstein franfg, by the linear transfor-
Here i is the imaginary unit and overbar means complex %

o ; . “matione,= f3 F #, can be transform k to the orthonor-
conjugation. This transformation leads to the Lorentz metric atione, =1z F," ca t_)et a _S(_) ed back tot eqt ono
. —. mal framee, . The matrixF ? is inverse to the matrig-”?

in a Newman-Penrosaull framee,»= (I,n,m,m):

in Eq. (10), i.e., Fngz 57,

01 0 0 Provided the original orthonormal franee, is a coordi-
* 1 0 O 0 o nate ornatural frame, i.e.,e,= 4", 9/9x', then, because of
Yarpr=Narp=| 6 o o _q =n“?. (8  Eq.(10 andF-#=const, the frame, is also natural. Ac-
cordingly, we can introduce coordinaté's=(7,£,7,{) such
00 -1 0 that (we drop now the tildg
Such a frame is convenient for investigating the properties of f,= 5; alog or fe=4" dé'. (13

gravitational and electromagnetic waves.
In the Newman-Penrose frame, we have two real nullunder those circumstances, the metric reads

legs, namely andn, and two complex ones; andm. It may
be surprising to learn that it is also possible to define the

*
— ag fB—F.. igél
special nullframe of Finkelstein which consists of foral 9=Top f@ =1 df'dg

null vectors. We start from an orthonormal frarag, with =2(drd¢é+drdy+drds+déedy
g(e,.ez) =0,5, and define, with Saller, the new franfig
according to +déd{+dnd?). (14
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B

FIG. 1. A tetrahedron which defines the Finkelstein frame in

3-dimensional space. At timte=0, light is emitted inO. It reaches Eq. (16) with the contravariant metric componentss). The

the pointsA,B,C, andD att=3/2. The event (@), together with  «jnner” Finkelstein tetrahedron is that of Fig. 1. Note that the

;huell ?I\éirtl;SrS@/ZA), (\3/2B), etc., determine the four Finkelstein 3-vectorsOA, OB, etc. are perpendicular to the plarg8D, CDA,

etc.

FIG. 2. The “outer” tetrahedron represents the real null coframe

There is a beautiful geometrical interpretation of the four o’ 0. a1, a2 <3
null legs of the Finkelstein framg, . In aMinkowski space- DO = (3 90+ 0+ 92+ 9%)/2,
time, let us consider the three-dimensional spacelike hyper- )
surface which is spanned byes(,e,,e3). The four points ®! :(\/5190+191_02_63)/2’
which are defined by the spatial parts of the frame vectors ,

(9), with coordinatesA=1%(1,1,1), B=%(1,-1,—1), C O = (V3 90— 01+ 92=9%)/2,
=1(-1,1-1), andD=3%(—1,—1,1), form a regular tetra- 3 0 ol a2, a3

hedron in the 3-dimensional subspace, see Fig. 1. The verti- ® _(\/519 — =T+ 99/2, (16
cesA, B, C, andD have the same distance of magnitu&/2
from the origin O=(0,0,0). Correspondingly, all sides of
this tetrahedron have equal length, nameB. If we now <I>“'=BB”" 9P,
send, at the moment=0, a light pulse from the origi, it

reaches all four vertices of the tetrahedron-at/3/2. Thus V3 3 V3 3
four light rays provide the operational definition for Finkel- ) 1 1 -1 -1
stein’s light-like framef , in Eq. (9). In a Riemannian space- With Bsg” =5 1 -1 1 -1
time, we can choose Riemannian normal coordinates. Then,

provided the tetrahedron is sufficiently small, we will have 1 -1 -1 1
an analogous interpretation.

In the specialreal null frame(9), all legs are equivalent. WhereB is the transpose df in Eq. (10: B=F'. Then, we
However, it is possible to apply a linear transformation thatobtain
keeps the zeros in the diagonal of Edl) but changes the
off diagonal matrix elements such that the matrix remains
symmetric and non-degenerate. In this way, we fingea-
eral real null frame. Under such circumstances, the four real
null vectorsf , are no longer “indistinguishable.”

or

: 17

ga,B,:B a/BVB/ OIU‘V:(BTO B)Q,IB,:(I)“/B/

x

(18

B P Rk O

1
0
1
1

B O Kk
O R Kk

Ill. COFRAMES CONSISTING OF FOUR REAL NULL
COVECTORS

The inverse of the matrixl1) is not the same matrix, in Thus, ®*' is a specialnull coframe with the contravariant
contrast to the analogous casds, (6), and (8). We rather ~Metric components as given by H39).

find The visualization of the new null coframe leads also to a
tetrahedron in 3-space which is “dual” to the one of Fig. 1.
-2 1 1 1 We depicted that in Fig. 2. The vertices of the coframe tet-
s T o211 rahedron areA=—3(1,1,1), B=—$(1,-1,-1), C=-%

f 3| 1 1 -2 1| (19 (-1,1-1), andD=—3(—1,—1,1). Its sides have a length
1 1 1 -2 of 3y2. The barycenters of the four Friangle; of the tetrahe-

dron are the verticed,B,C,D of the Finkelstein tetrahedron

In other wordsf,,=0, butf**#0 (no summation over). ~ Of Fig. 1.

However, we are able to find a new real null coframe by According to the construction, the 3-vect®#,0B,0C,
following the Finkelstein procedure. In analogy to Bg), —and OD, representing light rays, are perpendicular the tri-
we define anglesBCD, CDA, DAB, and ABC, respectively. There-
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fore, at the points etc., the plane8CD etc. represent the P(X)
wave fronts of the light. Together with the parallel planes
throughO= (0,0,0), the planeBCD etc. symbolize covec-
tors that are dual to the vecto@sA etc. The interior product
of the vectors with the corresponding covectors is always 1.
In this sense, the outer tetrahedron is dual to the inner one.
The most general null coframe has the form

Qg a; «ap asg

i _ _ | Bo B1 B> B3
PU=B4"9", with Bg®= Yo Y1 Y2 V3|’

6 061 0O O3
19

O(x)

FIG. 3. This is a(1+2)-dimensional spacetime diagram, i.e.,
where «? =a,a, 0= B?=79?=5°=0 and deB+0. The one spatial coordinate is suppressed. The diagram represents Rov-

correspondmg contravarlant components of the metric readelli's satellites which supply the “distance” coordinate’ss®,s® for
the eventP(X) In 1+ 3 dimensions, we have, of cours@ur

0O afB ay ad observers.
— [ Ba O By B9
af — _ _ 2__y2
g voa vB 0 yol| (20) s=W-X—J(W-X)2—X2. (24)

S-a 6B 6v O . . . .
The minus sign given in front of the square root refers to the

x_p a ; B past light cone, whereas the plus sign is suppressed since it
ch(;r Epﬁedal??o”,ﬂt?se).general expression fgr*” reduces to refers to the future light cone. We should note that the result
in Eq. (24) is correct forany choice of the unit vecton in W.
If we consider a set of four particles, see Fig. 3, in which
one space dimension is suppressed and thus only three par-
ticles are visible, then Eqg21) and (24) are replaced by

Let us eventually turn to Rovelli's papei5] which ~ €quations of the same type,
prompted our remarks in the first place. The 4-velocity of a

IV. ROVELLI'S CONSTRUCTION AND REAL NULL
COFRAMES

massive particle moving in #&lat) Minkowski spaceM,, 1
expressed in the standardertial coordinatesx', has the W, =——(1p''n})
form “ N i"y2 ol
1-(v'")
o dx 1 L —
Wn:E:l_(l,va), (21) s =W - X— V(W - X)?— X2 (25)
U

wherev®:=dx?/dt=v n? represents the 3-velocity amf a HereWi'~X::WL' XX andi’=0,1,2,3 is a label for different
unit 3-vector. We assume to be constant. The i‘"VECtW particles. Note that the four 3-velocitied” are in general
is normalized, i.e. W*:=W-W=1. For constantV', the par-  different from each other, in contrast to the original Rovelli

ticle's trajectory is of the simple form construction where they are all equal. This generalization is
: . physically quite natural, and it will be important in our con-
X(s)=sW. (22 siderations. In the next step, following Rovelli, we introduce

Suppose there is an observer at some pBimtith coor- s’ as new coordinates on tiv,. The Jacobian matrix of the

dinatesx'=X' who is able to detect light signals emitted transformationx* —s'" at the observer's poir(X) is given
from the moving particle. The observer’s light cone is de- by
scribed by the equation

i

2 o8 as’ WL (W LX) = X,
o . . . . X X VW . X)2 - %2
The condition that the particle’s trajectory intersects this (WH-X)"=X

light cone is obtained by solving the system of equations (26

(22) and(23). Substituting Eq(22) into Eqg.(23), we obtain
a quadratic equation fos, namely s°—2s W-X+X2=0, The contravariant components of the metric in the new co-
which yields ordinates are
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i e [WE WO W) (W)
gl =EE) oM=w Wi (i =])

VW' X)2— X2

(W' W) (W X) (W) = (W X% — (W X) 2+ X2
" : 27)
VW - X)2— X2\ (Wi X)2— X2

A direct calculation forj'=i’, by using (v )2=1, leads to (WL X) = (WL X)2—= X2= ({3T+ X)[2:=b?,
L, as’ as 2. v\ 22— W/ = b?
gl I :FFOHZO (i',j'=0,1,2,3. (28) (W X) (W X) X (\/§T X)/z b ’
X< Ox
(W3- X) = V(WB- X) 2= X?= (\[3T— X)12: =13
Note that this result is valid fcmnychoice of the unit vectors (32

i’ i’ i’ '
n'" in W' . The come’nen'gg ,fori’#j’, depend only (?n Sinceb®=b! andb?
the scalar productsV' -Wi' and W' - X. The surfacess
=const are null hypersurfaces. We now drop the primes for WO X=WL X, W2 X=WS3.X. (33
simplicity.
In Finkelstein'sframe we haveg,,=0, butg®®#0, in  This result combined with Eq$30) leads to
contrast to Eq(28). However, for the general real null cof-

=b3, it follows that

rame of Eq(19), we have the desiregi**=0. Therefore it is Wo=W5, We=Wi, Wo=-W;, Wi=-W;,
evident that the Rovelli coordinates are closely related to this , 5 5 5 5 . , 5
general real null coframe. Wi=Wg5, Wi=W;, W;=-W;, Wi=-W;.
Rovelli's coframe E*=E,* 9¥ belongs to the class of (34)
general null coframe$19), hence it can be reduced to our ) ) ) N ]
special null coframé17) by demanding A simple form of W/, consistent with these conditions, is
given by
Ex“=By" (29)
1
or, more explicitly, W= \/—2 1,—vn%),
W2(WP- X) —
0 - (\3,1,1,212, 1
JOWO-X)2=X2 Wi= _ 1,—vn'?),
Wi(WE. X)— X
&_kl—k:(\/g, 11_1!_1)/21 2 2
JWE X)Z=Xx2 W= \/_(1 ,—un?d),
W2(W2- X) — X
ﬁ—kz—zsz(\/g,—l, 1,-1)/2, 5 1
VW2 X)% =X W= —=(1,—un*), (35)
1-u
3\W3. X)) —
S w:(\/—, —1,-1,1)/2. wherev andu are undetermined velocities and thé& are
V(WB.X)2— X2 Finkelstein’s 3-dimensional unit vectors:

(30

_ , _ , n%=(1,1,1/3, n'®=(1-1,-1)/V3,
We shall now find a particular solution of these equations
for Wi, for a given observer’s positioK. Without loss of n%=(-1,1— 1)/\/5, n3a=(—1,—1,1)/\/§.
generality, we can choose the inertial coordinateis such a (36)
way that the position of the observer is
We now use Eqg32) in order to expressV*- X in terms

=(7,X,0,0), 7>0, X+#0. (31 of Xi:
In that case, by multiplying Eq$30) with X*, we find (b%)24 X2
W X= ——:=h* (37
(WO X) — (WO X) 2= X2= ({3T+ X)/2:=b°, 2b®
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TABLE I. Numerical values ofA (w).

w 0.0 0.1 0.2 0.3

0.4

0.5 0.6 0.7 0.8 0.9

A(w) 115 043 -065 —1.92

—-3.14

—4.00 —-4.02 -—-244 2.15 13.18

Then we substitutéV* from Egs. (35) into Eg. (37), and
obtain (only) two independent equations:

1 1 )=h°

Tvz(T‘ﬁM

1
1-u

(38)

1
T+ —u X) =h2

V3

Taking into account the explicit expressions fot and h?,
these equations can be written in the simple form

a(v) T?+b(v) TX+c(v) X?=0,

a(u) 72—b(u) Tx+c(u) x2=0, (39)
with
a(w):=4y3-7\1-w?,
b(w):=4(1-w)—2y3\1-w?,
c(w):=3y1—w2—4w/ 3, (40)

for w=v or u. Demanding that Eq$39) have real solutions
for 7, X implies the following conditions on the velocities:

A(w) :=b?(w)—4a(w) c(w)=0. (41)

The calculations presented in Table | show us which numeri-
cal values are acceptable for the velocities

A particular example of an acceptable set of parameters is
given by{7=1/\/3,X=4,0=0.77,u=0.83. In general, for
all sets of parameters7Z, X,v,u} which satisfy the require-
ments above, Rovelli's null coframe reduces to our special
null coframe(17).

In conclusion, in this paper we introduced and discussed
the special real null cofram@.7), which makes the meaning
of Rovelli's coordinates in Minkowski spacetime clearer. In
the Riemannian space of general relativity, Rovelli's coordi-
nates are related to the class of general null cofrafh@s

Note added in proofin the meantime we learned that
symmetric real null frames had already been usg@jnand
the corresponding coordinates even earligllig]. Coll also
recognized the role of such frames in the GPS framework,
see[11].
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