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Real null coframes in general relativity and GPS type coordinates

M. Blagojević,* J. Garecki,† F. W. Hehl,‡ and Yu. N. Obukhov§

Institute for Theoretical Physics, University of Cologne, 50923 Ko¨ln, Germany
~Received 17 October 2001; published 22 January 2002!

Some time ago, Finkelstein defined a ‘‘symmetric’’ null frame withfour real null vectors. We discuss this
Finkelstein frame and show that a similarly defined real null coframe is closely related to the GPS type
coordinates recently introduced by Rovelli.
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I. INTRODUCTION

In the pseudo Riemannian spacetime of general relati
theory, we can introduce at each point of spacetime a lo
vector basis or frameea(x), with a,b, . . . 50,1,2,3. As al-
ready indicated by the notation, the zeroth lege0 is conven-
tionally chosen to be timelike wherease1 ,e2 ,e3 are chosen
to be spacelike. Specifically, the frame ispseudo-
orthonormal, i.e., g(ea ,eb)5diag(11,21,21,21)5:oab .
Hereg(u,v)[u•v denotes the scalar product of two vecto
u and v defined by the Riemannian metric andoab are the
components of the Lorentz metric.1

Three spacelike legs are not particularly practical if o
wants to investigate, say, electromagnetic or gravitatio
wave propagation. Then, on the coordinate level, one in
duces null coordinates;t6x ~advanced and retarded ones!.
Similarly, on the level of the frame, one has two null le
;e06e1. The two remaining legs are untouched and s
spacelike. Such ahalf-null frame leads immediately to th
idea to transform also the spacelike legs to null legs. If o
wants to uphold orthonormality, this is only possible if o
defines the new complex legsm,m̄;e26 ie3, with i 2521.
This Newman-Penrosenull frame consists of two real an
two complex null vectors@1#. It turned out to be extremely
useful for studying the properties of gravitational waves a
of exact solutions of Einstein’s field equation.

If one relaxes the constraint of orthonormality, one cou
also hope that one is able to define a frame consisting of
real null vectors. In fact, such a frame was found by Fink
stein @2#, see also@3# and @4#. Finkelstein called the corre
sponding metric components a ‘‘null symmetric metric’’@2#.
The word ‘‘symmetric’’ refers to the fact that all off-diagona
components of the metric carry the value 1; that is, none
the four legs of the frame has a preferred meaning. T
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1 . . . or, historically correct, the Minkowski metric.
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Finkelstein null framef a can be constructed from an ortho
normal frame by a suitable nondegenerate linear transfor
tion. Since this construction is not widely known, we w
present it in Sec. II in a hopefully easily accessible way. W
will study some of the properties of that frame and will v
sualize it by means of a tetrahedron in 3-dimensional spa
In Sec. III we will introduce a new real nullcoframe Fa

which turns outnot to be dual to the Finkelstein framef a .
Recently, Rovelli@5#, in a framework related to the Globa

Positioning System~GPS! @6#, constructed four coordinate
si in terms of which the components of the metric look n
symmetric, see Ref.@5#, Eq. ~1!. In Sec. IV, we follow up
these ideas and show that Rovelli’s coframedsi is closely
related to our new real coframeFa.

II. FRAMES CONSISTING OF FOUR REAL NULL
VECTORS

At each point of 4-dimensional spacetime with coord
natesxi , here i , j . . . 50,1,2,3, we have the 4-dimension
tangent vector space. Four linearly independent vectorsea
constitute a basis or, alternatively expressed, aframe. Dual to
this frame is thecoframeqb which consists of 4 covector
~one-forms!. One can decompose frame and coframe w
respect to the local coordinate frame according to

ea5ei
a ] i , qb5ej

b dxj , ~1!

with the duality relations

ei
a ej

a5d i
j , ei

a ei
b5db

a . ~2!

The ei
a are called frame~or tetrad! components.

The tangent vector space carries a metricg. Thereby we
can define a scalar productg(u,v)[u•v, whereu andv are
two vectors. Accordingly, the components of the metric w
respect to the frameea are determined bygabªg(ea ,eb).
Conversely, the metric can be reconstructed from its com
nents via

g5gabqa
^ qb, ~3!

see Frankel@7#, for instance.
Traditionally, in relativity theory the vectors of anortho-

normal frame are labeled by 0,1,2,3, thus underlining t
fundamental difference betweene0, which has positive
lengthg005g(e0 ,e0)51, and theea , a51,2,3, which have
negative lengthsgaa5g(ea ,ea)521 ~no summation!. In
general, a vectoru is called time-like if g(u,u).0, space-
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like if g(u,u),0, andnull ~or light-like! if g(u,u)50. The
components of the metric tensor with respect to the orthon
mal frameea are then

gab5
*

oabªS 1 0 0 0

0 21 0 0

0 0 21 0

0 0 0 21

D 5oab. ~4!

The star equal sign indicates that the corresponding equa
is only valid for specific frames, namely for orthonorm
ones.

A. Null frames

Starting from an orthonormal frameea with respect to
which the metric has the standard form~4!, we can build a
new frameea85( l ,n,e28 ,e38) by the linear transformation

l 5
1

A2
~e01e1!, n5

1

A2
~e02e1!, ~5!

ande285e2 ,e385e3. In the kernel index method that we a
using, see Schouten@8#, the framesea8 and ea are distin-
guished by the different type of indices. The first two vecto
of the new frame are null:g( l ,l )5g(n,n)50. Correspond-
ingly, the metric with respect to thishalf-null frameea8 reads

ga8b85
*

ha8b8ªS 0 1 0 0

1 0 0 0

0 0 21 0

0 0 0 21

D 5ha8b8. ~6!

Following Newman and Penrose@1#, we can further con-
struct two morenull vectors as thecomplexlinear combina-
tions of e2 ande3:

m5
1

A2
~e21 i e3!, m̄5

1

A2
~e22 i e3!. ~7!

Here i is the imaginary unit and overbar means comp
conjugation. This transformation leads to the Lorentz me
in a Newman-Penrosenull frameea95( l ,n,m,m̄):

ga9b95
*

na9b9ªS 0 1 0 0

1 0 0 0

0 0 0 21

0 0 21 0

D 5na9b9. ~8!

Such a frame is convenient for investigating the propertie
gravitational and electromagnetic waves.

In the Newman-Penrose frame, we have two real n
legs, namelyl andn, and two complex ones,m andm̄. It may
be surprising to learn that it is also possible to define
special nullframe of Finkelstein which consists of fourreal
null vectors. We start from an orthonormal frameea , with
g(ea ,eb)5oab , and define, with Saller, the new framef ã
according to
04401
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f 0̃5~A3 e01e11e21e3!/2,

f 1̃5~A3 e01e12e22e3!/2,

f 2̃5~A3 e02e11e22e3!/2,

f 3̃5~A3 e02e12e21e3!/2. ~9!

This can also be written as

f ã5eb F ã
b, with F ã

b5
1

2 S A3 1 1 1

A3 1 21 21

A3 21 1 21

A3 21 21 1

D .

~10!

Sinceg( f ã , f ã)50 for all ã, the null frame consists solely
of real non-orthogonal null vectors. The metric with respe
to this frame reads

gãb̃5
*

f ãb̃ªS 0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

D Þ f ãb̃. ~11!

This inequality means that the coframe dual to the Fink
stein framef ã is not null.

B. Properties of real null frames

The metric ~11! looks completely symmetric in all its
components: seemingly the time coordinate is not prefer
in any sense. Nevertheless, Eq.~11! represents a truly
Lorentzian metric. Its determinant is23 and the eigenvalue
are readily computed to be

3, 21, 21, 21, ~12!

which shows that the metric~11! has, indeed, the correc
signature. The Finkelstein framef b̃ , by the linear transfor-
mationea5 f b̃ Fa

b̃, can be transformed back to the orthono
mal frameea . The matrixFa

b̃ is inverse to the matrixF ã
b

in Eq. ~10!, i.e., Fa
b̃F b̃

g
5da

g .
Provided the original orthonormal frameea is a coordi-

nate ornatural frame, i.e.,ea5d a
i ]/]xi , then, because o

Eq. ~10! and F ã
b5const, the framef ã is also natural. Ac-

cordingly, we can introduce coordinatesj i5(t,j,h,z) such
that ~we drop now the tilde!

f a5d a
i ]/]j i or f a5d i

a dj i . ~13!

Under those circumstances, the metric reads

g5 f ab f a
^ f b5

*
f i j dj idj j

52~dt dj1dt dh1dt dz1dj dh

1dj dz1dh dz!. ~14!
8-2
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There is a beautiful geometrical interpretation of the fo
null legs of the Finkelstein framef a . In a Minkowski space-
time, let us consider the three-dimensional spacelike hyp
surface which is spanned by (e1 ,e2 ,e3). The four points
which are defined by the spatial parts of the frame vec
~9!, with coordinatesA5 1

2 (1,1,1), B5 1
2 (1,21,21), C

5 1
2 (21,1,21), andD5 1

2 (21,21,1), form a regular tetra
hedron in the 3-dimensional subspace, see Fig. 1. The v
cesA, B, C, andD have the same distance of magnitudeA3/2
from the origin O5(0,0,0). Correspondingly, all sides o
this tetrahedron have equal length, namelyA2. If we now
send, at the momentt50, a light pulse from the originO, it
reaches all four vertices of the tetrahedron att5A3/2. Thus
four light rays provide the operational definition for Finke
stein’s light-like framef a in Eq. ~9!. In a Riemannian space
time, we can choose Riemannian normal coordinates. T
provided the tetrahedron is sufficiently small, we will ha
an analogous interpretation.

In the specialreal null frame~9!, all legs are equivalent
However, it is possible to apply a linear transformation th
keeps the zeros in the diagonal of Eq.~11! but changes the
off diagonal matrix elements such that the matrix rema
symmetric and non-degenerate. In this way, we find agen-
eral real null frame. Under such circumstances, the four r
null vectorsf a are no longer ‘‘indistinguishable.’’

III. COFRAMES CONSISTING OF FOUR REAL NULL
COVECTORS

The inverse of the matrix~11! is not the same matrix, in
contrast to the analogous cases~4!, ~6!, and ~8!. We rather
find

f ab5
1

3 S 22 1 1 1

1 22 1 1

1 1 22 1

1 1 1 22

D . ~15!

In other words,f aa50, but f aaÞ0 ~no summation overa).
However, we are able to find a new real null coframe
following the Finkelstein procedure. In analogy to Eq.~9!,
we define

FIG. 1. A tetrahedron which defines the Finkelstein frame
3-dimensional space. At timet50, light is emitted inO. It reaches
the pointsA,B,C, andD at t5A3/2. The event (0,O), together with
the events (A3/2,A), (A3/2,B), etc., determine the four Finkelstei
null vectors.
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F085~A3 q01q11q21q3!/2,

F185~A3 q01q12q22q3!/2,

F285~A3 q02q11q22q3!/2,

F385~A3 q02q12q21q3!/2, ~16!

or

Fa85Bb
a8 qb,

with Bb
a85

1

2 S A3 A3 A3 A3

1 1 21 21

1 21 1 21

1 21 21 1

D , ~17!

whereB is the transpose ofF in Eq. ~10!: B5FT. Then, we
obtain

ga8b85Bm
a8Bn

b8 omn5~BT o B!a8b85Fa8b8

ªS 0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

D . ~18!

Thus, Fa8 is a specialnull coframe with the contravarian
metric components as given by Eq.~18!.

The visualization of the new null coframe leads also to
tetrahedron in 3-space which is ‘‘dual’’ to the one of Fig.
We depicted that in Fig. 2. The vertices of the coframe t
rahedron areÃ52 3

2 (1,1,1), B̃52 3
2 (1,21,21), C̃52 3

2

(21,1,21), andD̃52 3
2 (21,21,1). Its sides have a lengt

of 3A2. The barycenters of the four triangles of the tetrah
dron are the verticesA,B,C,D of the Finkelstein tetrahedron
of Fig. 1.

According to the construction, the 3-vectorsOA,OB,OC,
and OD, representing light rays, are perpendicular the
anglesB̃C̃D̃, C̃D̃Ã, D̃ÃB̃, and ÃB̃C̃, respectively. There-

FIG. 2. The ‘‘outer’’ tetrahedron represents the real null cofra
of Eq. ~16! with the contravariant metric components~18!. The
‘‘inner’’ Finkelstein tetrahedron is that of Fig. 1. Note that th

3-vectorsOA,OB, etc. are perpendicular to the planesB̃C̃D̃, C̃D̃Ã,
etc.
8-3
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fore, at the pointsA etc., the planesB̃C̃D̃ etc. represent the
wave fronts of the light. Together with the parallel plan
throughO5(0,0,0), the planesB̃C̃D̃ etc. symbolize covec-
tors that are dual to the vectorsOA etc. The interior product
of the vectors with the corresponding covectors is alway
In this sense, the outer tetrahedron is dual to the inner o

The most general null coframe has the form

Fā5Bb
āqb, with Bb

ā5S a0 a1 a2 a3

b0 b1 b2 b3

g0 g1 g2 g3

d0 d1 d2 d3

D ,

~19!

where a2
ªaman omn5b25g25d250 and detBÞ0. The

corresponding contravariant components of the metric re

gāb̄5S 0 a•b a•g a•d

b•a 0 b•g b•d

g•a g•b 0 g•d

d•a d•b d•g 0

D . ~20!

For Bb
ā5Bb

a8, the general expression forgāb̄ reduces to
the special form~18!.

IV. ROVELLI’S CONSTRUCTION AND REAL NULL
COFRAMES

Let us eventually turn to Rovelli’s paper@5# which
prompted our remarks in the first place. The 4-velocity o
massive particle moving in a~flat! Minkowski spaceM4,
expressed in the standardinertial coordinatesxi , has the
form

Wi
ª

dxi

ds
5

1

A12v2
~1,va!, ~21!

whereva
ªdxa/dt5v na represents the 3-velocity andna a

unit 3-vector. We assumev to be constant. The 4-vectorWi

is normalized, i.e.,W2
ªW•W51. For constantWi , the par-

ticle’s trajectory is of the simple form

xi~s!5s Wi . ~22!

Suppose there is an observer at some pointP with coor-
dinatesxi5Xi who is able to detect light signals emitte
from the moving particle. The observer’s light cone is d
scribed by the equation

~x2X!250. ~23!

The condition that the particle’s trajectory intersects t
light cone is obtained by solving the system of equatio
~22! and~23!. Substituting Eq.~22! into Eq. ~23!, we obtain
a quadratic equation fors, namely s222s W•X1X250,
which yields
04401
1.
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s5W•X2A~W•X!22X2. ~24!

The minus sign given in front of the square root refers to
past light cone, whereas the plus sign is suppressed sin
refers to the future light cone. We should note that the re
in Eq. ~24! is correct foranychoice of the unit vectorn in W.

If we consider a set of four particles, see Fig. 3, in whi
one space dimension is suppressed and thus only three
ticles are visible, then Eqs.~21! and ~24! are replaced by
equations of the same type,

Wk
i 85

1

A12~v i 8!2
~1,v i 8na

i 8!,

si 85Wi 8
•X2A~Wi 8

•X!22X2. ~25!

HereWi 8
•XªWk

i 8 Xk and i 850,1,2,3 is a label for different

particles. Note that the four 3-velocitiesv i 8 are in general
different from each other, in contrast to the original Rove
construction where they are all equal. This generalization
physically quite natural, and it will be important in our con
siderations. In the next step, following Rovelli, we introdu
si 8 as new coordinates on theM4. The Jacobian matrix of the
transformationxk→si 8 at the observer’s pointP(X) is given
by

Ek
i 85

]si 8

]xk
~x5X!5

]si 8

]Xk
5Wk

i 82
Wk

i 8~Wi 8
•X!2Xk

A~Wi 8
•X!22X2

.

~26!

The contravariant components of the metric in the new
ordinates are

FIG. 3. This is a~112!-dimensional spacetime diagram, i.e
one spatial coordinate is suppressed. The diagram represents
elli’s satellites which supply the ‘‘distance’’ coordinatess1,s2,s3 for
the eventP(Xi). In 113 dimensions, we have, of course,four
observers.
8-4
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gi 8 j 85Ek
i 8 El

j 8 okl5Wi 8
•Wj 82F ~Wi 8

•Wj 8!~Wj 8
•X!2~Wi 8

•X!

A~Wj 8
•X!22X2

1~ i 8↔ j 8!G
1

~Wi 8
•Wj 8!~Wi 8

•X!~Wj 8
•X!2~Wi 8

•X!22~Wj 8
•X!21X2

A~Wi 8
•X!22X2A~Wj 8

•X!22X2
. ~27!
fo
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A direct calculation forj 85 i 8, by using (Wi 8)251, leads to

gi 8 i 85
]si 8

]xk

]si 8

]xl
okl50 ~ i 8, j 850,1,2,3!. ~28!

Note that this result is valid foranychoice of the unit vectors
ni 8 in Wi 8. The componentsgi 8 j 8, for i 8Þ j 8, depend only on
the scalar productsWi 8

•Wj 8 and Wi 8
•X. The surfacessi 8

5const are null hypersurfaces. We now drop the primes
simplicity.

In Finkelstein’sframe, we havegaa50, but gaaÞ0, in
contrast to Eq.~28!. However, for the general real null co
rame of Eq.~19!, we have the desiredgaa50. Therefore it is
evident that the Rovelli coordinates are closely related to
general real null coframe.

Rovelli’s coframeEa5Ek
a qk belongs to the class o

general null coframes~19!, hence it can be reduced to ou
special null coframe~17! by demanding

Ek
a5Bk

a ~29!

or, more explicitly,

Wk
02

Wk
0~W0

•X!2Xk

A~W0
•X!22X2

5~A3, 1, 1, 1!/2,

Wk
12

Wk
1~W1

•X!2Xk

A~W1
•X!22X2

5~A3, 1,21,21!/2,

Wk
22

Wk
2~W2

•X!2Xk

A~W2
•X!22X2

5~A3, 21, 1,21!/2,

Wk
32

Wk
3~W3

•X!2Xk

A~W3
•X!22X2

5~A3, 21,21, 1!/2.

~30!

We shall now find a particular solution of these equatio
for Wk

a , for a given observer’s positionX. Without loss of
generality, we can choose the inertial coordinatesxi in such a
way that the position of the observer is

Xi5~T,X,0,0!, T .0, XÞ0. ~31!

In that case, by multiplying Eqs.~30! with Xk, we find

~W0
•X!2A~W0

•X!22X25~A3T1X!/2:5b0,
04401
r
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s

~W1
•X!2A~W1

•X!22X25~A3T1X!/2:5b1,

~W2
•X!2A~W2

•X!22X25~A3T2X!/2:5b2,

~W3
•X!2A~W3

•X!22X25~A3T2X!/2:5b3.
~32!

Sinceb05b1 andb25b3, it follows that

W0
•X5W1

•X, W2
•X5W3

•X. ~33!

This result combined with Eqs.~30! leads to

W0
05W0

1 , W1
05W1

1 , W2
052W2

1 , W3
052W3

1 ,

W0
25W0

3 , W1
25W1

3 , W2
252W2

3 , W3
252W3

3 .
~34!

A simple form of Wk
a , consistent with these conditions,

given by

Wk
05

1

A12v2
~1,2v n0a!,

Wk
15

1

A12v2
~1,2v n1a!,

Wk
25

1

A12u2
~1,2u n2a!,

Wk
35

1

A12u2
~1,2u n3a!, ~35!

wherev and u are undetermined velocities and thena are
Finkelstein’s 3-dimensional unit vectors:

n0a5~1,1,1!/A3, n1a5~1,21,21!/A3,

n2a5~21,1,21!/A3, n3a5~21,21,1!/A3.
~36!

We now use Eqs.~32! in order to expressWa
•X in terms

of Xi :

Wa
•X5

~ba!21X2

2ba
:5ha. ~37!
8-5
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TABLE I. Numerical values ofD(w).

w 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D(w) 1.15 0.43 20.65 21.92 23.14 24.00 24.02 22.44 2.15 13.18
eri-
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Then we substituteWa from Eqs. ~35! into Eq. ~37!, and
obtain ~only! two independent equations:

1

A12v2 S T2
1

A3
v XD 5h0,

1

A12u2 S T1
1

A3
u XD 5h2. ~38!

Taking into account the explicit expressions forh0 and h2,
these equations can be written in the simple form

a~v ! T 21b~v ! TX1c~v ! X 250,

a~u! T 22b~u! TX1c~u! X 250, ~39!

with

a~w!ª4A327A12w2,

b~w!ª4~12w!22A3A12w2,

c~w!ª3A12w224w/A3, ~40!

for w5v or u. Demanding that Eqs.~39! have real solutions
for T,X implies the following conditions on the velocities:

D~w!ªb2~w!24a~w! c~w!>0. ~41!
-

04401
The calculations presented in Table I show us which num
cal values are acceptable for the velocitiesw.

A particular example of an acceptable set of parameter
given by $T51/A3,X54,v50.77,u50.83%. In general, for
all sets of parameters$T,X,v,u% which satisfy the require-
ments above, Rovelli’s null coframe reduces to our spe
null coframe~17!.

In conclusion, in this paper we introduced and discus
the special real null coframe~17!, which makes the meaning
of Rovelli’s coordinates in Minkowski spacetime clearer.
the Riemannian space of general relativity, Rovelli’s coor
nates are related to the class of general null coframes~19!.

Note added in proof. In the meantime we learned tha
symmetric real null frames had already been used in@9#, and
the corresponding coordinates even earlier in@10#. Coll also
recognized the role of such frames in the GPS framewo
see@11#.
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