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Abelian Higgs hair for an AdS-Schwarzschild black hole

M. H. Dehghani,* A. M. Ghezelbash,† and R. B. Mann‡

Department of Physics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
~Received 31 August 2001; published 18 January 2002!

We show that the Abelian Higgs field equations in the background of the four dimensional AdS-
Schwarzschild black hole have a vortex line solution. This solution, which has axial symmetry, is a generali-
zation of the AdS spacetime Nielsen-Olesen string. From a numerical study of the field equations, we show that
black hole could support an Abelian Higgs field as its Abelian hair. Also, we consider the self-gravity of the
Abelian Higgs field both in pure AdS spacetime and the AdS-Schwarzschild black hole background and show
that the effect of a string as black hole hair is to induce a deficit angle in the AdS-Schwarzschild black hole.
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I. INTRODUCTION

The classical no-hair conjecture first proposed by Ruf
and Wheeler@1# states that after a given distribution of ma
ter collapses to form a black hole, the only long range inf
mation of a black hole is its electromagnetic charge, m
and angular momentum. In certain special cases the con
ture has been verified. For example a scalar field minim
coupled to gravity in asymptotically flat or de Sitter spac
times cannot provide hair for the black hole@2,3#.

While it is tempting to extend the no-hair theorem cla
to all forms of matter, it is known that some long ran
Yang-Mills and/or quantum hair could be painted on t
black holes@4#. Explicit calculations have been carried o
which verify the existence of a long range Nielsen-Oles
vortex solution as a stable hair for a Schwarzchild black h
in four dimensions@5#, although it might be argued that th
situation falls outside the scope of the classical no-hair th
rem due to the nontrivial topology of the string configur
tion. More recently it has been shown that an asymptotic
flat black hole could be pierced by several infinitely th
cosmic strings in a polyhedral configuration@6#. There is
much current interest in extending these consideration
anti–de Sitter spacetime, mainly due to the efforts of M
dacena@7# and Witten@8# concerning the relation of som
largeN gauge theories in AdS spacetime and conformal fi
theories.

Insofar as the no-hair theorem is concerned it has b
shown that there exists a solution to theSU(2) Einstein-
Yang-Mills equations which describes a stable Yang-M
hairy black hole that is asymptotically AdS@4#. More re-
cently we have shown that theU(1) Higgs field equations
have a vortex solution in four dimensional AdS spaceti
@9#. It has also been shown that in asymptotically AdS spa
time, a black hole can have scalar hair@10#.

Motivated by these considerations, in this article we
vestigate possible solutions of the Abelian-Higgs field eq
tions in a four dimensional AdS-Schwarzschild black ho
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background. While an analytical solution to these equati
appears to be intractable, we confirm by numerical calcu
tion that an AdS-Schwarzschild black hole could suppor
long range cosmic string as its stable hair. The generaliza
to the multi-string configurations as black hole hairs a
could be done.

In Sec. II, we solve the first-order Einstein equations
pure AdS4 spacetime in the presence of a vortex solution.
Sec. III, we solve numerically the Abelian-Higgs equatio
in the AdS-Schwarzschild background for different values
the cosmological constant and string winding numbers.
Sec. IV, by studying the behavior of the string energ
momentum tensor, we find the effect of the vortex se
gravity on the AdS-Schwarzschild background metric. W
argue in Sec. V, that an AdS-Schwarzschild black hole co
support a multistring configuration. We give some closi
remarks in the final section.

II. VORTEX SELF-GRAVITY ON AdS 4

We consider first the effect of the vortex on the AdS4
spacetime. This entails finding the solutions of the coup
Einstein-Abelian Higgs differential equations in AdS4. This
is a formidable problem even for flat spacetime, and no ex
solutions have been found as yet.

However some physical results can be obtained by m
ing some approximations. First, we assume that the thickn
of the vortex is much smaller than all the other releva
length scales. Second, we assume that the gravitationa
fects of the string are weak enough so that the lineari
Einstein-Abelian Higgs differential equations are applicab
For convenience, in this section we use the following form
the metric of AdS4:

ds252Ã~r ,u!2dt21B̃~r ,u!2df21C̃~r ,u!

3S dr2

11
r 2

l 2

1r 2du2D . ~1!

This metric in spherical coordinates is suitable for genera
ing the vortex self-gravity in the presence of the Ad
Schwarzschild black hole. In the absence of the vortex,

i-
a
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must haveA0(r ,u)5A11r 2/ l 2,B0(r ,u)5r sinu,C0(r,u)51,
yielding the well known metric of pure AdS4. Employing the
two assumptions concerning the thickness of the vortex c
and its weak gravitational field, we solve numerically t
Einstein field equations

Gmn2
3

l 2
gmn528pGTmn ~2!

to the first order in«58pG, where Tmn is the energy-
momentum tensor of the Abelian Higgs field in the Ad
background. To first order of approximation by takinggmn

.gmn
(0)1gmn

(1) , wheregmn
(0) is the usual AdS4 metric,gmn

(1) is the
first order correction to the metric and writing

Ã~r ,u!5A0~r ,u!@11«A~r ,u!#

B̃~r ,u!5B0~r ,u!@11«B~r ,u!#

C̃~r ,u!5C0~r ,u!@11«C~r ,u!# ~3!

we obtain corrections to the three functionsA0(r ,u),B0(r ,u)
andC0(r ,u) in Eq. ~3!. Hence in the first approximation th
equations~2! become

Gmn
(1)2

3

l 2
gmn

(1)52T mn
(0) ~4!

whereT mn
(0) is the energy momentum tensor of string field

AdS4 background metric, andGmn
(1) is the correction to the

Einstein tensor due togmn
(1) . The rescaled components of th

energy momentum tensor of string in the background
AdS4, are given by

Tt
t(0)~r!52

1

2 S dX

dr D 2S 11
r2

l 2 D 2
1

2

1

r2 S dP

dr D 2S 11
r2

l 2 D
2

1

2

P2X2

r2
2~X221!2

Tw
w(0)~r!52

1

2 S dX

dr D 2S 11
r2

l 2 D 1
1

2

1

r2 S dP

dr D 2S 11
r2

l 2 D
1

1

2

P2X2

r2
2~X221!2 ~5!

~Tr
r (0)1Tu

u(0)!~r!

52
P2X2

r2
22~X221!2

whereX andP are the solutions of the string fields@9# and
r5r sinu. The Einstein equations~4! are
04401
re

f

S 11
r2

l 2 D d2B

dr2
12

dB

dr S 1

r
1

2r

l 2 D 1
1

2 S 11
r2

l 2 D d2C

dr2
1

r

l 2

dC

dr

2
3C

l 2
5Tt

t(0)

S 11
r2

l 2 D d2A

dr2
1

4r

l 2

dA

dr
1

1

2 S 11
r2

l 2 D d2C

dr2
1

r

l 2

dC

dr
2

3C

l 2

5Tw
w(0) ~6!

S 11
r2

l 2 D S d2A

dr2
1

d2B

dr2 D 1
2

r S dA

dr
1

dB

dr D S 113
r2

l 2 D 2
6C

l 2

5Tr
r (0)1Tu

u(0) .

Solving equations of motion of the Abelian Higgs fields@9#
numerically gives the following graphs forX and P fields
~Fig. 1! By using Eqs.~5!, one could obtain the diagram~Fig.
2! showing the behavior of the stress tensor compone
Then solving the coupled differential equations~6! gives the
behavior of functionsA(r),B(r) andC(r) versusr ~Fig. 3!.

Hence by a redefinition of the time coordinate in Eq.~1!
the metric can be rewritten as

FIG. 1. X(r) ~solid! andP(r) ~dotted! for l 51.

FIG. 2. Tt
t(0) ~solid!, Tw

w(0) ~dashed!, and Tr
r (0)1Tu

u(0) ~dash-
dotted! curves forl 51.
0-2
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ds252S 11
r 2

l 2 D dt21
dr2

11
r 2

l 2

1r 2~du21a2 sin2udf2!

~7!

which is the metric of AdS space with deficit angle.

III. ABELIAN HIGGS VORTEX IN ADS-SCHWARZSCHILD
BLACK HOLE

We take the Abelian Higgs Lagrangian in AdS
Schwarzschild as follows:

L~F,Am!52
1

2
~DmF!†D mF2

1

16p
FmnF mn

2j~F†F2h2!2 ~8!

whereF is a complex scalar Klein-Gordon field,Fmn is the
field strength of the electromagnetic fieldAm and Dm5¹m
1 ieAm in which ¹m is the covariant derivative. We emplo
Planck unitsG5\5c51 which implies that the Planck
mass is equal to unity, and write the AdS-Schwarzsch
black hole metric in the form

ds252S 12
2m

r
1

r 2

l 2 D dt21
1

S 12
2m

r
1

r 2

l 2 D dr2

1r 2~du21sin2udw2! ~9!

wherem is the black hole mass and the cosmological c
stant L is equal to 23/l 2. Defining the real fields
X(xm),v(xm),Pm(xn) by the following equations:

F~xm!5hX~xm!eiv(xm)

Am~xn!5
1

e
„Pm~xn!2¹mv~xm!… ~10!

and employing a suitable choice of gauge, one could rew
the Lagrangian~8! and the equations of motion in terms
these fields as

FIG. 3. A ~solid!; B ~dotted!; C touches the horizontal axis.
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L~X,Pm!52
h2

2
~¹mX¹mX1X2PmPm!

2
1

16pe2
FmnFmn2jh4~X221!2 ~11!

¹m¹mX2XPmPm24jh2X~X221!50

¹mFmn24pe2h2PnX250 ~12!

whereFmn5¹mPn2¹nPm is the field strength of the corre
sponding gauge fieldPm. Note that the real fieldv is not
itself a physical quantity. Superficially it appears not to co
tain any physical information. However ifv is not single
valued this is no longer the case, and the resultant solut
are referred to as vortex solutions@11#. In this case the re-
quirement thatF field be single-valued implies that the lin
integral ofv over any closed loop is62pn wheren is an
integer. In this case the flux of electromagnetic fieldFH
passing through such a closed loop is quantized with qua
2p/e.

We seek a vortex solution for the Abelian Higgs Lagran
ian ~11! in the background of AdS-Schwarzschild black ho
This solution can be interpreted as a string piercing to
black hole~9!. Considering the static case of winding num
ber N with the gauge choice,

Pm~r ,u!5„0;0,0,NP~r ,u!… ~13!

and rescaling

¸→ ¸

Ajh
~14!

where¸5r ,l ,m, the equations of motion~12! are

S 12
2m

r
1

r 2

l 2 D ]2X~r ,u!

]r 2
1

2

r S 12
m

r
1

2r 2

l 2 D ]X~r ,u!

]r

1
1

r 2

]2X~r ,u!

]u2
1

1

r 2

]X~r ,u!

]u
cotu2

1

2
„X3~r ,u!

2X~r ,u!…2N2
X~r ,u!P2~r ,u!

r 2 sin2u
50 ~15!

S 12
2m

r
1

r 2

l 2 D ]2P~r ,u!

]r 2
1

2

r S m

r
1

r 2

l 2 D ]P~r ,u!

]r

1
1

r 2

]2P~r ,u!

]u2
2

cotu

r 2

]P~r ,u!

]u
2aP~r ,u!X2~r ,u!

50. ~16!

In the above relation~16!, a54pe2/j. It must be noted that
even in the case ofm50, no exact analytic solutions ar
known for Eqs.~16! and~15!. So, in the rest of this section
we seek the existence of vortex solutions for the abo
0-3
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FIG. 4. X andP contours (X andP increase from 0.1 to 0.9 upward and downward respectively! for l 51 andN51. The black hole
horizon is located atr H52.59.
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coupled nonlinear partial differential equations. First,
consider thethin string with winding number one, in which
one can assumem@1. Thicker vortices and larger windin
numbers will be discussed later in this section. Employ
the ansatz

P~r ,u!5P~r!,X~r ,u!5X~r! ~17!

wherer5r sinu, we get the following equations:

S 11
r2

l 2 D d2X

dr2
1S 1

r
1

4r

l 2 D dX

dr
2

1

2
X~X221!2

N2

r2
XP2

22
mr2

r 3 S d2X

dr2
1

1

r

dX

dr D 50 ~18!

S 11
r2

l 2 D d2P

dr2
1

dP

dr S 2
1

r
1

2r

l 2 D 2aPX2

22
mr2

r 3 S d2P

dr2
2

1

r

dP

dr D 50. ~19!

As expected, in the limitl→` Eqs.~18! and ~19! reduce to
the asymptotically flat case discussed in@5#. In this instance
the vortex solutions of the Abelian Higgs equations in fl
04401
g

t

spacetime~without a black hole! satisfy thel→` limit of
Eqs.~19! and~18! up to errors which are proportional to th
mr2/r 3'm/r 3. These errors are very tiny far from the blac
hole horizon, whereas near the horizonr'r H52m, they are
of the order of 1/m2, which is negligible for large mass blac
holes. This observation suggested that a string vortex s
tion could be painted to the horizon of a Schwarzschild bla
hole. This conjecture has been further supported by num
cal calculations@5# which show the existence of vortex so
lutions of the Abelian Higgs equations in the background
the Schwarzschild black hole. These calculations explic
demonstrate that a cosmic string can pierce a black hole f
variety of black hole masses and vortex winding number

For finite l, we showed in our previous paper@9# that the
Abelian Higgs equations of motion in the background
anti–de Sitter spacetime@Eqs. ~18! and ~19! in the limit of
m50# have vortex solutions~denoted byX0 and P0) with
core radiusr'O(1). ThefunctionsX0 and P0 satisfy Eqs.
~18! and ~19! up to errors which are proportional t
mr2/r 3'm/r 3. These errors go to zero far from the blac
hole. However near the horizon of a large mass black h
r'r H'm1/3, the termm/r 3 is at least of the order of unity
and so the possibility of painting a string vortex solution
the horizon for finitel remains unclear. Then we should go
perform the numerical calculations to show the existence
vortex solution on, near and far from the horizon.
FIG. 5. X andP contours (X andP increase from 0.1 to 0.9 upward and downward respectively! for l 51 andN510. The black hole
horizon is located atr H52.59.
0-4
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FIG. 6. X andP contours (X andP increase from 0.1 to 0.9 upward and downward respectively! for l 51 andN5100. The black hole
horizon is located atr H52.59.
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A. Numerical solutions

We pay attention now to the numerical solutions of E
~16! and ~15! outside the black hole horizon. First, we mu
take appropriate boundary conditions. At large distan
from the horizon, we demand that our solutions go to
solutions of the vortex equations in AdS spacetime given
@9#. This means that we demandX→1 andP→0 asr goes
to infinity. On the symmetry axis of the string and beyond t
radius of horizonr H , i.e., u50 andu5p, we takeX→0
and P→1. Finally, on the horizon, we initially takeX50
andP51.

We employ a polar grid of points (r i ,u j ), wherer goes
from r H to some large value ofr (r `) which is much greater
thanr H andu runs from 0 top. We use the finite difference
method and rewrite the nonlinear partial differential equat
~15! as

Ai j Xi 11,j1Bi j Xi 21,j1Ci j Xi , j 111Di j Xi , j 211Ei j Xi , j5Fi j
~20!

whereXi j 5X(r i ,u j ). For the interior grid points, the coeffi
cientsAi j , . . . ,Fi j are given by

Ai j 52
1

r iDr S 12
m

r i
12

r i
2

l 2 D 2
1

~Dr !2 S 12
2m

r i
1

r i
2

l 2 D
Bi j 5

1

r iDr S 12
m

r i
12

r i
2

l 2 D 2
1

~Dr !2 S 12
2m

r i
1

r i
2

l 2 D
Ci j 52

1

2r i
2Du

cotu j2
1

~r iDu!2

Di j 5
1

2r i
2Du

cotu j2
1

~r iDu!2

Ei j 5
2

~Dr !2 S 12
2m

r i
1

r i
2

l 2 D 1
2

~r iDu!2
1S NPi j

r i sinu D 2

Fi j 52
1

2
Xi j ~Xi j

2 21!, ~21!
04401
.

s
e
n

e

n

and for the points on the horizon (i 51), the coefficients are
given by

A1 j5B1 j50

C1 j52
1

4Du
cotu j2

1

2Du2

D1 j5
1

4Du
cotu j2

1

2Du2

E1 j5
1

Du2
1

1

2 S NP1 j

sinu D 2

F1 j5
X2 j2X1 j

Dr
r HS 12

m

r H
1

2r H
2

l 2 D 2
r H

2

4
~X1 j

2 21!.

~22!

Equation~16! could be rewritten the same as the finite d
ference equation~20! by replacingXi j to Pi j and taking the
following form for the coefficients inside the grid:

Ai j8 52
1

~Dr !2 S 12
2m

r i
1

r i
2

l 2 D 2
1

Dr S m

r i
2

1
r

l 2D
Bi j8 52

1

~Dr !2 S 12
2m

r i
1

r i
2

l 2 D 1
1

Dr S m

r i
2

1
r

l 2D
Ci j8 5

1

2r i
2Du

cotu j2
1

~r iDu!2

Di j8 52
1

2r i
2Du

cotu j2
1

~r iDu!2

Ei j8 5
2

~Dr !2 S 12
2m

r i
1

r i
2

l 2 D 1
2

~r iDu!2
12Xi j

2

Fi j8 50. ~23!
0-5
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FIG. 7. X andP contours (X andP increase from 0.1 to 0.9 upward and downward respectively! for l 51 andN5400. The black hole
horizon is located atr H52.59.
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On the horizon, the coefficients of the finite difference eq
tion of theP field are

A1 j8 5B1 j8 50

C1 j8 5
1

4Du
cotu j2

1

2Du2

D1 j8 52
1

4Du
cotu j2

1

2Du2

E1 j8 5
1

Du2
1r H

2 X1 j
2

F1 j8 52
P2 j2P1 j

Dr
r HS m

r H
1

r H
2

l 2 D . ~24!

Now, by using the well known successive overrelaxat
method@12# for the above mentioned finite difference equ
tions, we obtain the values ofX andP fields inside the grid,
which we denote byX(1) andP(1). Then by calculating ther
gradients ofX andP just outside the horizon and iterating th
finite difference equations on the horizon, we get the n
values ofX and P fields on the horizon points. Then thes
04401
-

n
-

w

new values ofX andP fields are used as the new bounda
condition on the horizon for the next step in obtaining t
values ofX andP fields inside the grid which could be de
noted by X(2) and P(2). In the successive overrelaxatio
method, the value of each field in the (n11)th iteration is
related to thenth iteration by

Xi j
(n11)5Xi j

(n)2v
z i j

(n)

Ei j
(n)

~25!

where residual matrixz i j
(n) is the difference between the lef

and right-hand sides of Eq.~20!, evaluated in thenth itera-
tion andv is the over-relaxation parameter. The iteration
performed many times to some valuen5K, such that
( i , j uXi j

K2Xi j
K21u,« for a given error«. It is a matter of trial

and error to find the value ofv that yields rapid conver-
gence.

The results of this calculation are displayed in Figs. 4
for l 51 and winding numbersN51,10,100,400. In all of
these figures, the black hole mass is taken to have the
stant valuem510. Also the results of our calculation in th
special case ofl→` with different winding numbers are th
same as results introduced in@5# for the Abelian-Higgs
model in flat spacetime. In Figs. 8–11 the contoursX50.9
and P50.1 are plotted for different values ofl 51,5 andl
FIG. 8. X50.9 andP50.1 contours forl 51 ~solid!, 5 ~dotted! andl→` ~dashed! with winding numberN51. The black hole horizons
are located atr H52.59, 6.89, and 20 respectively.
0-6



ABELIAN HIGGS HAIR FOR AN AdS-SCHWARZSCHILD . . . PHYSICAL REVIEW D65 044010
FIG. 9. X50.9 andP50.1 contours forl 51 ~solid!, 5 ~dotted! andl→` ~dashed! with winding numberN510. The black hole horizons
are located atr H52.59, 6.89, and 20 respectively.
ck
.
d
at

gl

a

te
g
e

ei
gl

S
s

i
t

the
re

m-

nsor
→` respectively with different winding numbers. The bla
hole horizons are located atr H52.59,6.89,20 respectively
As Figs. 8 to 11 show, like the flat spacetime case, in A
spacetime increasing the winding number yields a gre
vortex thickness. Also we observe that asl decreases the
black hole is completely covered by a vortex of decreasin
large winding number. For example, forl 51 the black hole
horizon is completely inside the core of a vortex with
winding number of less than one hundred, but forl→`, this
occurs for winding number about four hundred.

Also, as Figs. 8 to 11 show, for a string with defini
winding number, the string core increases with increasinl,
but the ratio of string core to the black hole horizon d
creases. Alternatively from Fig. 12 we see theX andP fields
for a definite winding number more rapidly approach th
respective maximum and minimum values in smaller an
as l increases.

IV. VORTEX SELF-GRAVITY ON THE
ADS-SCHWARZSCHILD BLACK HOLE

We now consider the effect of the vortex on the Ad
Schwarzschild black hole. As we have seen in Sec. II, thi
a formidable problem even for flat or AdS spacetimes.

As in Sec. II, we assume that the thickness of string
much smaller that all the other relevant length scales and
04401
S
er

y

-

r
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-
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s
he

gravitational effects of the string are weak enough so that
linearized Einstein-Abelian Higgs differential equations a
applicable. So we consider thin string with the winding nu
ber N51 in the AdS-Schwarzschild background withl 51.
The rescaled components of the energy-momentum te
are

Ttt5S 12
2m

r
1

r 2

l 2 D H 1

2 S 12
2m

r
1

r 2

l 2 D
3F S ]X

]r D 2

1
1

ar 2 sin2u
S ]P

]r D 2G1
1

2r 2 S ]X

]u D 2

1
1

2ar 4 sin2u
S ]P

]u D 2

1~X221!21
1

2r 2 sin2u
X2P2J

Trr 5
1

2 S ]X

]r D 2

2
1

2r 2 S 12
2m

r
1

r 2

l 2 D 21

3F S ]X

]u D 2

1
1

ar 2 sin2u
S ]P

]u D 2G1
1

2ar 2 sin2u
S ]P

]r D 2

2S 12
2m

r
1

r 2

l 2 D 21F ~X221!21
1

2r 2 sin2u
X2P2G
FIG. 10. X50.9 andP50.1 contours forl 51 ~solid!, 5 ~dotted! and l→` ~dashed! with winding numberN5100. The black hole
horizons are located atr H52.59, 6.89, and 20 respectively.
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FIG. 11. X50.9 andP50.1 contours forl 51 ~solid!, 5 ~dotted! and l→` ~dashed! with winding numberN5400. The black hole
horizons are located atr H52.59, 6.89, and 20 respectively.
so
e
is
gy
in
m
im

of
t of

tric
sed
mic

S-
ge
ext
a

hild
s-

tion
on
Tuu52
1

2 S 12
2m

r
1

r 2

l 2 D F r 2S ]X

]r D 2

1
1

a sin2u
S ]P

]r D 2G
1

1

2 S ]X

]u D 2

1
1

2ar 2 sin2u
S ]P

]u D 2

2r 2~X221!2

2
1

2 sin2u
X2P2

Tww52
1

2 S 12
2m

r
1

r 2

l 2 D F r 2 sin2uS ]X

]r D 2

2
1

a S ]P

]r D 2G
2

1

2
sin2uS ]X

]u D 2

1
1

2ar 2 S ]P

]u D 2

2r 2 sin2u~X221!2

1
1

2
X2P2. ~26!

In Fig. 13, the behavior of the energy-momentum ten
components for a fixedz are shown. The behavior of th
components for otherz is the same as these figures. As
clear from the figures, the components of the ener
momentum tensor rapidly go to zero outside the core str
so the situation is like what happened in pure AdS spaceti
Performing the same calculation as in pure AdS spacet
04401
r

-
g,
e.
e

described in detail in Sec. II gives us the following metric
the AdS-Schwarzschild spacetime incorporating the effec
the vortex on it:

ds252S 12
2m

r
1

r 2

l 2 D dt21
dr2

12
2m

r
1

r 2

l 2

1r 2~du21b2 sin2udf2!. ~27!

The above metric describes an AdS-Schwarzschild me
with a deficit angle. So, using a physical Lagrangian ba
model, we have established that the presence of a cos
string induces a deficit angle in the black hole metric.

V. POLYSTRING CONFIGURATION

From the previous sections we know that an Ad
Schwarzschild black hole could support a long ran
Nielsen-Olesen vortex string as stable hair. The natural n
question ishow many strings could be supported by such
black hole?

Such a question was considered for the Schwarzsc
black hole. In@13#, a three string configuration in Schwarz
child black hole was studied. Also, in@6#, all possible mul-
tistring configurations were presented. Since the intersec
of strings with the AdS-Schwarzschild black hole occurs
FIG. 12. X andP fields on the horizon versusu for l 51 ~solid!, 5 ~dotted! and l→` ~dashed! with winding numberN51.
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FIG. 13. Ttt ~solid!, Tuu ~dashed!, Tww ~dotted! andTrr ~dot-dashed! curves versusr in z55 for the AdS-Schwarzschild black hole wit
l 51 and winding numberN51.
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nd
some points on the horizon which is topologicallyS2, and
such a situation also holds for the Schwarzschild black h
whose horizon has spherical topology, we could use the s
procedure as was presented in@6#. So, we give an argumen
in brief to show the different possible multistring AdS
Schwarzschild black hole systems. We assume strings e
the horizon along radii. The different polystring configur
tions are obtained by demanding that the black ho
multistring system must be invariant under any rotat
about any axis which coincides with the strings. This con
tion is necessary since the black hole–multistring sys
must be in force-free equilibrium. The intersection of strin
with the black hole occurs on some points on the horiz
which is topologicallyS2, and these points are the vertex
of a spherical tessellation. The spherical tessellation is
tained by projection of the edges of a polyhedron from
geometrical center onto a concentric sphere. Every edge
vertex of the polyhedron is mapped to an arc of a great ci
on the sphere and a vertex of spherical tessellation res
tively. The spherical tessellation is invariant under a discr
rotation group. The elements of this discrete group are
rotations around every axis which passes through the ce
of the sphere and vertices, mid-arc points and centers
faces of spherical tessellation, respectively. This discrete
tation group of the spherical tessellation is in corresponde
with the rotational symmetry group of the polyhedron. So
black hole-polystring system with radial strings is invaria
under discrete rotations and hence is in an equilibrium st

By knowing the properties of spherical tessellation, in@6#,
the different multistring configurations are introduced. T
first configuration is 14 strings which are pierced to the bla
hole on the symmetry axis of a tetrahedron. The second
third configurations are 26 and 62 strings which are pier
to the black hole on the symmetry axis of an octahedron
04401
le
e

ter

–

i-
m
s
n

b-
s
nd
le
c-

te
st
ter
of
o-
ce
e
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k
nd
d
d

icosahedron respectively. The fourth configuration isN
strings~N is any arbitrary number! which corresponds to the
symmetry axis of a double pyramid.

VI. CONCLUSION

The effect of a vortex on pure AdS spacetime is to cre
a deficit angle in the metric in the thin vortex approximatio
We have extended this result, establishing numerically t
Abelian Higgs vortices of finite thickness can pierce an Ad
Schwarzschild black hole horizon. These solutions co
thus be interpreted as stable Abelian hair for the black h
We have obtained numerical solutions for various cosm
logical constants and string winding numbers. Our solutio
in the limit of l→` coincide with the known solutions in th
asymptotically flat spacetime.

We found that by increasing the winding number, t
string core increases. Also, the generalization to inclu
piercing of more strings to the black hole has been con
ered and it is shown that there are four different polystr
configurations. Finally, inclusion of the self-gravity of th
vortex in the AdS-Schwarzschild background metric w
shown to induce a deficit angle in the AdS-Schwarzsch
metric.

Other related problems such as study of the vortex in
charged or rotating black hole backgrounds and non-Abe
vortex solution in asymptotically AdS spacetime remain
be carried out. Another issue is the holographic descript
of a vortex solution in these asymptotically AdS spacetim
Work on these problems is in progress.
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