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Abelian Higgs hair for an AdS-Schwarzschild black hole
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We show that the Abelian Higgs field equations in the background of the four dimensional AdS-
Schwarzschild black hole have a vortex line solution. This solution, which has axial symmetry, is a generali-
zation of the AdS spacetime Nielsen-Olesen string. From a numerical study of the field equations, we show that
black hole could support an Abelian Higgs field as its Abelian hair. Also, we consider the self-gravity of the
Abelian Higgs field both in pure AdS spacetime and the AdS-Schwarzschild black hole background and show
that the effect of a string as black hole hair is to induce a deficit angle in the AdS-Schwarzschild black hole.
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[. INTRODUCTION background. While an analytical solution to these equations
appears to be intractable, we confirm by numerical calcula-
The classical no-hair conjecture first proposed by Ruffinition that an AdS-Schwarzschild black hole could support a
and Wheelef1] states that after a given distribution of mat- long range cosmic string as its stable hair. The generalization
ter collapses to form a black hole, the only long range inforto the multi-string configurations as black hole hairs also
mation of a black hole is its electromagnetic charge, massould be done.
and angular momentum. In certain special cases the conjec- In Sec. Il, we solve the first-order Einstein equations in
ture has been verified. For example a scalar field minimallypure AdS spacetime in the presence of a vortex solution. In
coupled to gravity in asymptotically flat or de Sitter space-Sec. lll, we solve numerically the Abelian-Higgs equations
times cannot provide hair for the black hg®&3]. in the AdS-Schwarzschild background for different values of
While it is tempting to extend the no-hair theorem claim the cosmological constant and string winding numbers. In
to all forms of matter, it is known that some long range Sec. IV, by studying the behavior of the string energy-
Yang-Mills and/or quantum hair could be painted on themomentum tensor, we find the effect of the vortex self-
black holes[4]. Explicit calculations have been carried out gravity on the AdS-Schwarzschild background metric. We
which verify the existence of a long range Nielsen-Olesergrgue in Sec. V, that an AdS-Schwarzschild black hole could
vortex solution as a stable hair for a Schwarzchild black holegupport a multistring configuration. We give some closing
in four dimensiong5], although it might be argued that this remarks in the final section.
situation falls outside the scope of the classical no-hair theo-
rem due to the nontrivial topology of the string configyra— IIl. VORTEX SELF-GRAVITY ON AdS ,
tion. More recently it has been shown that an asymptotically
flat black hole could be pierced by several infinitely thin ~We consider first the effect of the vortex on the AdS
cosmic strings in a polyhedral configuratif]. There is  spacetime. This entails finding the solutions of the coupled
much current interest in extending these considerations t&instein-Abelian Higgs differential equations in AdShis
anti—de Sitter spacetime, mainly due to the efforts of Mal-is a formidable problem even for flat spacetime, and no exact
daceng[7] and Witten[8] concerning the relation of some solutions have been found as yet.
large N gauge theories in AdS spacetime and conformal field However some physical results can be obtained by mak-
theories. ing some approximations. First, we assume that the thickness
Insofar as the no-hair theorem is concerned it has beeff the vortex is much smaller than all the other relevant
shown that there exists a solution to tB&J(2) Einstein- length scales. Second, we assume that the gravitational ef-
Yang-Mills equations which describes a stable Yang-Millsfects of the string are weak enough so that the linearized
hairy black hole that is asymptotically Ad@]. More re-  Einstein-Abelian Higgs differential equations are applicable.
cently we have shown that tHé(1) Higgs field equations For convenience, in this section we use the following form of
have a vortex solution in four dimensional AdS spacetimethe metric of AdS:
[9]. It has also been shown that in asymptotically AdS space-
time, a black hole can have scalar hdif]. ds?=—A(r, 0)2dt?+B(r, 0)2d p%+ C(r, 6)
Motivated by these considerations, in this article we in-
vestigate possible solutions of the Abelian-Higgs field equa- 5o
tions in a four dimensional AdS-Schwarzschild black hole X r2+r deo” | . ey

1+

dr?
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must haveAq(r, 6) = V1 +r%/12,By(r,6) =r sin6,Cy(r,6)=1,
yielding the well known metric of pure AGSEmploying the

two assumptions concerning the thickness of the vortex core
and its weak gravitational field, we solve numerically the

Einstein field equations

3
- I—zg#,,= —-8wG7,,

G (2

nv

to the first order ine=8wG, where 7, is the energy-
momentum tensor of the Abelian Higgs field in the AdS
background. To first order of approximation by takigg,
~g{7)+9'), whereg(?) is the usual Adgmetric,g'}) is the
first order correction to the metric and writing

A(r,0)=Ay(r,0)[1+eA(r,0)]
B(r,0)=By(r,0)[1+&B(r,6)]

C(r,0)=Co(r,0)[1+£C(r,0)] (3
we obtain corrections to the three functiohg(r, 6),By(r, 0)
andCy(r, 6) in Eqg. (3). Hence in the first approximation the
equationg2) become

1 _
G

0)
ya%

3
P &)
129

3%

(4)

Where’]‘ﬂo,} is the energy momentum tensor of string field in
AdS, background metric, an&(") is the correction to the
Einstein tensor due tg{}). The rescaled components of the
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FIG. 1. X(p) (solid) andP(p) (dotted for |=1.
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=T+ 70,

energy momentum tensor of string in the background OfSoIving equations of motion of the Abelian Higgs field

AdS,, are given by

1
T{(p) =~ E(

dX\?
dp

whereX and P are the solutions of the string field8] and
p=r siné. The Einstein equationg) are

numerically gives the following graphs fof and P fields

(Fig. 1) By using Egs(5), one could obtain the diagraf®ig.

2) showing the behavior of the stress tensor components.

Then solving the coupled differential equatidits gives the

behavior of function®\(p),B(p) andC(p) versusp (Fig. 3).
Hence by a redefinition of the time coordinate in Ef.

the metric can be rewritten as

FIG. 2. T{? (solid), T&® (dashed, and T;@+ T (dash-
dotted curves forl =1.
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FIG. 3. A (solid); B (dotted; C touches the horizontal axis.
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ds’=— dt>+ +r2(d6?+ a? sirfod ¢?)

r2
1+

()

which is the metric of AdS space with deficit angle.

Ill. ABELIAN HIGGS VORTEX IN ADS-SCHWARZSCHILD
BLACK HOLE

We take the Abelian Higgs Lagrangian in AdS-

Schwarzschild as follows:

1 1
L(PAL)= = 5(D0) DI — = F,  FH

—{@TD—7)? tS)
where® is a complex scalar Klein-Gordon field,, is the
field strength of the electromagnetic fiekd, and D,=V,
+ieA, in which'V, is the covariant derivative. We employ
Planck unitsG=#%#=c=1 which implies that the Planck

mass is equal to unity, and write the AdS-Schwarzschild

black hole metric in the form

2m r?
dSZZ—(l—T‘f’ dt2+

12

+r2(d6?+ sirfod¢?) 9

wherem is the black hole mass and the cosmological con-

stant A is equal to —3/2 Defining the real fields
X(x*),w(x*),P ,(x") by the following equations:

D(x) = pX(x+)el D

1
Au(X")= 2 (PL(X") =V, 0(x)) (10

PHYSICAL REVIEW D65 044010

2

L(X,P,)= = - (V,XVAX+X?P, PH)
—;F FE =gt (XP-1)7 (1)
16me?
V, VEX—XP, P#—4£n*X(X?~1)=0
V FH'—4me?n? P X?=0 (12)

whereF#"=V#pP?"—V"P*# is the field strength of the corre-
sponding gauge fieldP*. Note that the real fieldo is not
itself a physical quantity. Superficially it appears not to con-
tain any physical information. However i is not single
valued this is no longer the case, and the resultant solutions
are referred to as vortex solutioh®l]. In this case the re-
quirement thatb field be single-valued implies that the line
integral of @ over any closed loop is=27rn wheren is an
integer. In this case the flux of electromagnetic fidb,
passing through such a closed loop is quantized with quanta
2mwle.

We seek a vortex solution for the Abelian Higgs Lagrang-
ian (11) in the background of AdS-Schwarzschild black hole.
This solution can be interpreted as a string piercing to the
black hole(9). Considering the static case of winding num-
ber N with the gauge choice,

P,(r,0)=(0;0,0NP(r,0)) (13
and rescaling
2 (14
H—r ——
Vén
wherex=r,l,m, the equations of motiofil2) are
2m  r?\?X(r,0) 2 m 2r2| aX(r,6)
1-—+ =] —+—-|1-—+—
r |2 or? r r |2 ar
. 1 aZX(r,0)+ 1 9X(r,6) » 1 N
r2 962 r2 d0 c0 2( (r.6)
X(r,0)P(r,0)
—X(r,0))—-N?>——————=0 15
(r.60 r2sirfg 1
L 2m  r2\&?P(r,0) 2(m r?\ gP(r,6)
Ty TRl T
. 1 6°P(r,0) cotd JP(r,0) B At 6
FERy 2 a0 ¢ (r,0)X=(r,0)
=0. (16)

In the above relatiolil6), a=4me?/ . It must be noted that

and employing a suitable choice of gauge, one could rewriteven in the case om=0, no exact analytic solutions are

the Lagrangian(8) and the equations of motion in terms of
these fields as

known for Eqgs.(16) and(15). So, in the rest of this section,
we seek the existence of vortex solutions for the above
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FIG. 4. X and P contours K andP increase from 0.1 to 0.9 upward and downward respectivielyl =1 andN=1. The black hole
horizon is located at,,=2.59.

coupled nonlinear partial differential equations. First, wespacetime(without a black holg satisfy thel —o limit of
consider thethin string with winding number one, in which Eqgs.(19) and(18) up to errors which are proportional to the
one can assumm>1. Thicker vortices and larger winding mp?/r3~m/r3. These errors are very tiny far from the black
numbers will be discussed later in this section. Employinghole horizon, whereas near the horizoar,=2m, they are
the ansatz of the order of Ith?, which is negligible for large mass black
holes. This observation suggested that a string vortex solu-
P(r,6)=P(p).X(r,0)=X(p) 17 tion could be painted to the horizon of a Schwarzschild black
hole. This conjecture has been further supported by numeri-
cal calculationg5] which show the existence of vortex so-
lutions of the Abelian Higgs equations in the background of

wherep=r sinf, we get the following equations:

2 2 2
(1+ P d_X+ E+ 4_p d_X_ Ex(x2—1)— N—xp2 the Schwarzschild black hole. These calculations explicitly
12)dp? \p 12)dp 2 p° demonstrate that a cosmic string can pierce a black hole for a
2/ 42 variety of black hole masses and vortex winding numbers.
L d_X E d_X -0 (18) For finitel, we showed in our previous pape] that the
r3 \dp? pdp Abelian Higgs equations of motion in the background of
anti—de Sitter spacetimEgs. (18) and (19) in the limit of
p2\d?P dP[ 1 2p m= 0] have vortex solutiongdenoted byX, and P,) with
( 1+ —2)—2 + d—( ——+ —2) —aPX? core radiusp~0O(1). ThefunctionsX, and P, satisfy Eqgs.
1</ dp AN (18 and (19) up to errors which are proportional to

mp?/r3~m/r3. These errors go to zero far from the black
mp?(d’P 1dP :
2 —0. (19) hole. However near the horizon of a large mass black hole,
r~ry~m¥3, the termm/r? is at least of the order of unity,
and so the possibility of painting a string vortex solution to
As expected, in the limit—«~ Egs.(18) and(19) reduce to  the horizon for finitd remains unclear. Then we should go to
the asymptotically flat case discussed ®j. In this instance perform the numerical calculations to show the existence of
the vortex solutions of the Abelian Higgs equations in flatvortex solution on, near and far from the horizon.

20 20

10 10

0 : w y 0 : w w
-20 -10 0 10 20 —20 -10 0 10 20

FIG. 5. X andP contours K andP increase from 0.1 to 0.9 upward and downward respectiielyl =1 andN=10. The black hole
horizon is located at,,=2.59.
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FIG. 6. X andP contours K andP increase from 0.1 to 0.9 upward and downward respectiielyl =1 andN=100. The black hole
horizon is located at,,=2.59.

A. Numerical solutions and for the points on the horizom= 1), the coefficients are

We pay attention now to the numerical solutions of Eqs.91VeNn by
(16) and (15) outside the black hole horizon. First, we must A=B. =0
take appropriate boundary conditions. At large distances LR
from the horizon, we demand that our solutions go to the

solutions of the vortex equations in AdS spacetime givenin ¢ .— icotaj o
[9]. This means that we demattd—1 andP—0 asp goes I 4Ae 2A 62
to infinity. On the symmetry axis of the string and beyond the
radius of horizonry, i.e., =0 and 6=, we takeX—0 1 1
and P—1. Finally, on the horizon, we initially tak&X=0 D1j=7a 5000~ 2762
andP=1.
We employ a polar grid of pointsr{, ¢;), wherer goes 1 1/NP..\2
from r, to some large value af(r.,) which is much greater = _( : 11)
thanry and 6 runs from 0 torr. We use the finite difference A2 2\sing
method and rewrite the nonlinear partial differential equation
(19 as e XXy m 2ri| rf w2 1
W= "ar Tt — 7 (X~ D).
AijXit1j T BijXi— 1+ Cij Xi j+ 1+ Dij X j- 1+ Eij X ;= Fj;

20) (22
whereX;;=X(r;, ;). For the interior grid points, the coeffi- Equation(16) could be rewritten the same as the finite dif-
cientsA;j, ... Fj; are given by ference equatiori20) by replacingX;; to P;; and taking the

following form for the coefficients inside the grid:
A 1 L 2ri2 1 ) 2m r? ,
T rAT [T (Ar)? e Al=— ! _m oy tfmor
(A2 roo12) Arirez 2
5 1 LM 2ri2 1 2m r? ,
AT T2 a2l T T Bl [ L m
bo(an)? rioo12) Ariez 2
C ! to !
V2P0 (1A6)? Clj=—y—cotf— ——
2reA 0 (riAg)?
i = cot,— ———
. 2r|2A9 ) (riA0)2 Di’j:_z—cotgj_—
2reA 6 (riAg)?
c_ 2, 2m+ri2)+ 2 +( NP;, )2 ,
Tan2\ T T2 T(rae?  \risine E_,:i(l_z_m+ r_i)+_+zxg
U (Ar)? i 12)  (r;A6)2 :
1
— 2
Fij=— 5 X;(Xjj—1), (21 F/=0. (23
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FIG. 7. X andP contours K andP increase from 0.1 to 0.9 upward and downward respectiielyl =1 andN=400. The black hole
horizon is located at,,=2.59.

On the horizon, the coefficients of the finite difference equanew values ofX and P fields are used as the new boundary

tion of theP field are condition on the horizon for the next step in obtaining the
values ofX and P fields inside the grid which could be de-
A}j=B;;=0 noted by X®® and P®). In the successive overrelaxation
method, the value of each field in tha 1)th iteration is
, 1 1 related to thenth iteration by
Cyj 4A0C0wl oA G
(n+1) _ y(n) gi(Jn)
1 1 X =X —w@ (25
Di] = m cot 0j 2 1
2A0

where residual matrig” is the difference between the left-
, v and right-hand sides of Eq420), evaluated in thanth itera-
Elj:A_62+rHle tion andw is the over-relaxation parameter. The iteration is
performed many times to some value=K, such that
) 3 jIXS = X[t <e for a given errote. It is a matter of trial
/= Paj— Py r (EJF r_H) (24) and error to find the value ob that yields rapid conver-
u- Ar Mg 2 gence.
H
The results of this calculation are displayed in Figs. 4-7
Now, by using the well known successive overrelaxationfor =1 and winding number&\=1,10,100,400. In all of
method[12] for the above mentioned finite difference equa-these figures, the black hole mass is taken to have the con-
tions, we obtain the values of andP fields inside the grid, stant valuenm=10. Also the results of our calculation in the
which we denote bX™) andP(). Then by calculating the  special case df—« with different winding numbers are the
gradients ofX andP just outside the horizon and iterating the same as results introduced [®] for the Abelian-Higgs
finite difference equations on the horizon, we get the newmodel in flat spacetime. In Figs. 8—11 the contoXrs0.9
values ofX and P fields on the horizon points. Then these and P=0.1 are plotted for different values 6&1,5 andl

30 30
N=1 N=1

20 e

10+

%0 20 o 0 10 20 30 230 20 -0 0 10 20 30

FIG. 8. X=0.9 andP=0.1 contours fol =1 (solid), 5 (dotted andl — (dashedwith winding numbemN= 1. The black hole horizons
are located at;=2.59, 6.89, and 20 respectively.
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20- e
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------- T R
%0 20 =0 0 10 20 30

FIG. 9. X=0.9 andP=0.1 contours fot =1 (solid), 5 (dotted andl — oo (dashedwith winding numbeiN=10. The black hole horizons
are located at;=2.59, 6.89, and 20 respectively.

—oo respectively with different winding numbers. The black gravitational effects of the string are weak enough so that the
hole horizons are located af;=2.59,6.89,20 respectively. linearized Einstein-Abelian Higgs differential equations are
As Figs. 8 to 11 show, like the flat spacetime case, in AdSapplicable. So we consider thin string with the winding num-
spacetime increasing the winding number yields a greatdbper N=1 in the AdS-Schwarzschild background wits 1.
vortex thickness. Also we observe that laslecreases the The rescaled components of the energy-momentum tensor
black hole is completely covered by a vortex of decreasinglyare
large winding number. For example, fbr1 the black hole

horizon is completely inside the core of a vortex with a 2m r?\[ 1 2m r?
winding number of less than one hundred, butlferx, this w=|1- o " 12/ 2 1- T+|_2
occurs for winding number about four hundred.

Also, as Figs. 8 to 11 show, for a string with definite ax 2 1 oP\?l 1 [ax\?
winding number, the string core increases with increaging X ar 5 ar t 50
but the ratio of string core to the black hole horizon de- ar? sirt g 2r
creases. Alternatively from Fig. 12 we see thandP fields 1 op\2
for a definite winding number more rapidly approach their + —(_ +(X2—1)24 ————X?2P?
respective maximum and minimum values in smaller angle 2ar*sirfg )\ 99 2r2sirt 6
asl increases.

; 1(ax)2 1 ( 2m rz) !
IV. VORTEX SELF-GRAVITY ON THE To2lar] 22 roo2

ADS-SCHWARZSCHILD BLACK HOLE

_ ax\? 1 [oP\? 1 aP\?
We now consider the effect of the vortex on the AdS- X 50 + 2—n2 50 + 2—n2 o
Schwarzschild black hole. As we have seen in Sec. Il, this is arssine 2ar”sime
a formidable problem even for flat or AdS spacetimes. om 2|1
As in Sec. Ill, we assume that the thickness of string is 1-==4 (X2—1)24+ ————X2p?2
much smaller that all the other relevant length scales and the r2 2r2sirfg
30 30
N=100 N=100
20 e
T 4 N _I=infinity [
10 =1/ B A
%0 =20 -0 0 10 20 30 20 =0 0 10 20 30

FIG. 10. X=0.9 andP=0.1 contours foil =1 (solid), 5 (dotted and|—« (dashed with winding numberN=100. The black hole
horizons are located at;=2.59, 6.89, and 20 respectively.
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30

I=infinity~.__ 30

N=400
I=infinity~.__

20 el h

s )(
i / \/ x\“
g S0 0 10

10

30 —20 0

20 30 -30 20 -10 0

10 20 30

FIG. 11. X=0.9 andP=0.1 contours fol =1 (solid), 5 (dotted and|—« (dashed with winding numberN=400. The black hole
horizons are located at;=2.59, 6.89, and 20 respectively.

. 1 . 2m+r2 [ X 2+ 1 9P\ 2 described in detail in Sec. Il gives us the following metric of
o= 2\ )| T ar ] T e ar

the AdS-Schwarzschild spacetime incorporating the effect of
the vortex on it:

1 (ax)Z 1 (0P)2 2 2
o =) y— [ _rZ(XZ_l)Z 2m r 5 dr
2\ 960 2 a0 ds?=—| 1— —+ —|dt
2ar?sirf 2 om 12
T2
_ 1 XZPZ r |
2 sirfe +r2(d6?+ B2 sirfod¢?). 27
1 om  r? _ aX\2 1/({gpP\? The above metric describes an AdS-Schwarzschild metric
Teo=— 2\ T T+ - rzsng( W) - E(E) with a deficit angle. So, using a physical Lagrangian based
model, we have established that the presence of a cosmic
1 IX\2 1 (9p\2 string induces a deficit angle in the black hole metric.
_ESin20<a_6) + 2(5_6) —r2sifg(X?—1)>2
2ar V. POLYSTRING CONFIGURATION
+1X2P2 (26) From the previous sections we know that an AdS-
5 .

Schwarzschild black hole could support a long range

Nielsen-Olesen vortex string as stable hair. The natural next
In Fig. 13, the behavior of the energy-momentum tensoiquestion ishow many strings could be supported by such a
components for a fixed are shown. The behavior of the black hole?

components for othez is the same as these figures. As is

Such a question was considered for the Schwarzschild
clear from the figures, the components of the energyblack hole. In[13], a three string configuration in Schwarzs-

momentum tensor rapidly go to zero outside the core stringghild black hole was studied. Also, {i6], all possible mul-
so the situation is like what happened in pure AdS spacetimédistring configurations were presented. Since the intersection
Performing the same calculation as in pure AdS spacetimef strings with the AdS-Schwarzschild black hole occurs on

1,

1 7
]
\

|
i /
\ | !

0

‘ 0~ ‘ —
0 % 180 0 9% 180

FIG. 12. X andP fields on the horizon versug for | =1 (solid), 5 (dotted andl—c<> (dashed with winding numbemMN=1.
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FIG. 13. Ty, (solid), T, (dashed, T, (dotted andT,, (dot-dasheficurves versup in z=5 for the AdS-Schwarzschild black hole with
I=1 and winding numbeN=1.

some points on the horizon which is topologicay, and icosahedron respectively. The fourth configuration N 2
such a situation also holds for the Schwarzschild black holstrings(N is any arbitrary numbgmwhich corresponds to the
whose horizon has spherical topology, we could use the sangymmetry axis of a double pyramid.

procedure as was presented @. So, we give an argument

in brief to show the different possible multistring AdS- VI. CONCLUSION

Schwarzschild black hole systems. We assume strings enter The effect of a vortex on pure AdS spacetime is to create

the horizon along radii. The different polystring configura- gy : L . S
. , . a deficit angle in the metric in the thin vortex approximation.
tions are obtained by demanding that the black hole= . S )
o . ; .~ We have extended this result, establishing numerically that
multistring system must be invariant under any rotation : . X - : .
4 : oo : . . . Abelian Higgs vortices of finite thickness can pierce an AdS-
about any axis which coincides with the strings. This condi- ; . .
Schwarzschild black hole horizon. These solutions could

tion is necessary since the black hole—multistring system . . .
must be in force-free equilibrium. The intersection of stringsthus be interpreted as stable Abelian hair for the black hole.

. . ._2“We have obtained numerical solutions for various cosmo-
with the black hole occurs on some points on the hor|zor] . - o ;
S . > : ogical constants and string winding numbers. Our solutions
which is topologicallyS”, and these points are the vertexesin the limit of | — coincide with the known solutions in the
of a spherical tessellation. The spherical tessellation is ob-

. Lo - ~asymptotically flat spacetime.
tained by projection of the edges of a polyhedron from its )\/Nep foundythat b?/ increasing the winding number, the
geometrical center onto a concentric sphere. Every edge anscgr '

; X ing core increases. Also, the generalization to include
vertex of the polyhedron is mapped to an arc of a great circle. '~ . )
. ; iercing of more strings to the black hole has been consid-
on the sphere and a vertex of spherical tessellation respeC- o . ;
éred and it is shown that there are four different polystring

tively. The spherical tessellation is invariant under a discrete onfigurations. Finally, inclusion of the self-gravity of the

rotation group. The elements of this discrete group are Jus\(iortex in the AdS-Schwarzschild background metric was

rotations around every axis which passes through the Centehown to induce a deficit angle in the AdS-Schwarzschild

of the sphere and vertices, mid-arc points and centers ar__ .
metric.

faces of spherical tessellation, respectively. This discrete ro- Other related problems such as study of the vortex in the

tation group of the spherical tessellation is in correspondence . .
with th% rotgtional sypmmetry group of the polyhedror?. So thecharged or r_otat_lng black ho_Ie backgrounds a_nd non-At_)ehan
black hole-polystring system with radial strings is invariantvOrteX solution in asymptotically AdS spacetime remain to

under discrete rotations and hence is in an equilibrium statebe carried out. Another issue is the holographic description

By knowing the properties of spherical tessellation,Gh 3\]; alzlortet}(] solutlonb:n the_se_asymptotlcally AdS spacetimes.
the different multistring configurations are introduced. The ork on Iese probiems IS I progress.
first configuration is 14 strings which are pierced to the black
hole on the symmetry axis of a tetrahedron. The second and
third configurations are 26 and 62 strings which are pierced This work was supported by the Natural Sciences and
to the black hole on the symmetry axis of an octahedron ané&ngineering Research Council of Canada.
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