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Comments on conformal stability of brane-world models
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The stability of five-dimensional~5D! brane-world models under conformal perturbations is investigated.
The analysis is carried out in the general case and then it is applied to particular solutions. It is shown that
models with the Poincare´ and de Sitter branes are unstable because they have a negative mass squared of
gravexcitons whereas models with the anti–de Sitter branes have a positive gravexciton mass squared and are
stable. It is also shown that 4D effective cosmological and gravitational constants on branes as well as
gravexciton masses undergo a hierarchy: they have different values on different branes.
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I. INTRODUCTION

It is well known that part of any realistic multidimen
sional model should be a mechanism for extra dimens
stabilization. This problem was the subject of numerous
vestigations. In the standard Kaluza-Klein approach, cos
logical models are taken in the form of a warped product
Einstein spaces as internal spaces. The corresponding
~scale! factors are assumed to be functions of external~our!
space-time. If these scale factors are dynamical functio
then it results in a variation of the fundamental physical c
stants. To be in agreement with observations, internal sp
should be compact, static~or nearly static!, and less or of the
order of the electroweak scale~the Fermi length!. The stabil-
ity problem of these models with respect to conformal p
turbations of the internal spaces was considered in deta
our paper@1#. It was shown that stability can be achieve
with the help of an effective potential of a dimensiona
reduced effective four-dimensional~4D! theory. Small con-
formal excitations of the internal spaces near the minima
the effective potential have the form of massive minim
scalar fields developing in the external space-time. Th
particles were called gravitational excitons~gravexcitons!.
Their physical meaning can be easily explained with the h
of a simple 3D model where the 2D spatial part has
cylindrical topology:S13R1. Here,S1 plays the role of the
compact internal space andR1 describes 1D external spac
Let us suppose that the size ofS1 is stabilized near some
value by an effective potential. Then, conformal excitation
S1 near its equilibrium position results in waves runni
along the cylinder~alongR1!. Thus, any 1D observer living
on the cylinder~on R1! will detect these oscillations as ma
sive scalar fields. Obviously, this effect takes place for a
multidimensional cosmological model with compact intern
spaces. In general, it does not depend on the presenc
absence of branes in models. Masses of gravexcitons
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equilibrium positions for the internal spaces depend on
form of the effective potential~on concrete topology and
matter content of the model!.

Recently@2–4#, it was realized that it is not necessary f
extra dimensions to be very small. They can be enlarged
to submillimeter scales in such a way that the standard mo
fields are localized on a 3-brane with thickness of the el
troweak~or less! length in the extra dimensions, whereas t
gravitational field can propagate in all multidimension
~bulk! space. This gives the possibility for lowering of th
multidimensional fundamental gravitational constant do
to the TeV scales~therefore this approach is often called th
TeV gravity approach!. Cosmological models in this ap
proach are topologically equivalent to the standard Kalu
Klein one. Problems of their stability against conformal p
turbations of additional dimensions were considered in@4,5#.
A comparison of old and new approaches from the point
view of conformal stability was given in@6#. In @4,5#, con-
formal excitations of additional dimensions near the mi
mum position of the effective potential were called radio
~to our knowledge, the first time that the term radion a
peared was in@4#!. However, we prefer to call such particle
gravexcitons first from the point of priority, and second, a
most importantly, the term radion is widely used now in t
brane-world models in different contexts.

The brane-world models are motivated by the stron
coupled regime ofE83E8 heterotic string theory, which is
interpreted as M theory on an orbifoldR103S1/Z2 with a set
of E8 gauge fields at each ten-dimensional orbifold fix
plane. After compactification on a Calabi-Yau threefold a
dimensional reduction, one arrives at effective fiv
dimensional solutions which describe a pair of para
3-branes with opposite tension, and located at the orbif
planes @7#. For these models, the five-dimensional met
contains a four-dimensional metric component multiplied
a warp factor which is a function of the additional dime
sion. A cosmological solution of this type with flat 4D bran
~which we shall refer to as Poincare´ branes! was obtained in
@8#. This model was generalized in numerous publications
the cases of bent branes in models with five or more dim
©2002 The American Physical Society09-1
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MARIAM BOUHMADI-LÓ PEZ AND ALEXANDER ZHUK PHYSICAL REVIEW D 65 044009
sions and with single or many branes. In@9#, the necessity of
stabilization in the distance between branes to get conv
tional cosmology on branes was stressed. Here, the ra
~scale factor! of the extra dimension was called a radion. B
this definition is not very precise. We should note that th
is a confusion in the literature concerning the term radi
quite different forms of the metric perturbations of the bran
world models were called radions. However, in@10# it was
clearly shown and strictly emphasized that radions desc
the relative distance between branes~see also@11,12#!. It
demonstrates the main difference between gravexcitons
radions: gravexcitons describe conformal excitations of
ometry~in particular, conformal excitations of the addition
dimensions!, whereas radions describe relative motion
branes. Obviously, gravexcitons can exist in a model wh
branes are absent at all or in models with a single brane,
conversely, radions can exist in the absence of gravexcit
The latter situation can be realized, for example, in the T
scale approach where branes can move relatively with
spect to each other due to interaction between them ‘‘s
ing’’ on the background fixed geometry~gravexcitons are
absent!. Branes are considered here as ‘‘probe bodies’’ m
ing in the background geometry. Nevertheless, in the bra
world models, gravexcitons and radions are closely c
nected with each other~and this is the main reason for th
confusion between them!. Here, branes are 4D surfaces alo
which different 5D bulk solutions are gluing with each oth
In this case, the positions of branes fix the shape and siz
the geometry,1 and the relative motion of branes results
conformal changes of the geometry. Thus, it is natural
such models to expect that solutions stable against rad
are stable against gravexcitons and vice versa. Obviou
direct comparison of stability against gravexcitons and ra
ons only makes sense in models with two~and more! branes
where radions exist.

The radion stabilization problem was investigated in
number of papers devoted to the brane-world models. It
shown, in particular, that in the case of solutions with two
Sitter branes~bent branes with 4D effective positive cosm
logical constants! and two anti–de Sitter branes~bent branes
with 4D effective negative cosmological constants!, radions
have negative and positive mass squared, respectively. T
the former solution is unstable but the latter one is sta
against radions. In our paper, we find, first, that the mo
with one de Sitter brane is unstable against gravexcitons
second, that the model with one or a number of para
anti–de Sitter branes~connected with each other via worm
hole throats! is stable under conformal excitations. In th
case of the Randall-Sundrum solution@8# with two Poincare´
branes, radions have zero mass@11,12#. From the particle
physics point of view, such particles do not lead to instab
ity. However, as is well known, such ultralight scalar field
originating from the extra dimensions, produce a numbe
cosmological problems connected with the flatness of th
effective potential. For example, in the homogeneous c

1In our paper, we shall consider the case of compact with res
to additional dimension brane-world models.
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any small excitations near an equilibrium position~which
can be chosen arbitrary for the flat potential! have a runaway
behavior if we do not take into account the friction term d
to the cosmological expansion. However, such dynam
stabilization is a very delicate problem~see, e.g.,@13#! and
needs a separate investigation for each case. Exactly
kind of instability for radions in the model with two Poincar´
branes was found in@11#. It was shown here that a sma
departure from the equilibrium position results in either
colliding of the two branes or a runaway behavior. In o
paper, we show that models with two as well as one Poinc´
brane are also unstable under conformal perturbations.
necessary to stress that in@11,12#, the analysis was per
formed in the Brans-Dicke frame. In our paper, the probl
of stability is investigated in the Einstein frame. Obvious
if models are stable in one frame, they are stable in ano
one because both frames coincide in the equilibrium po
tion. However, the exact form of the dynamical behav
~time dependence! near the equilibrium position can depen
on the frame. In paper@14#, the role of conformal transfor-
mations is explicitly discussed, and it is shown that so
solutions of the brane-world models exist in one frame
are absent in the other one. Therefore, the equivalence
tween these two frames depends on the concrete discu
problem and in some cases is a matter of delicate invest
tion.

In papers@11,12#, mentioned above, the authors’ concl
sions concerning the radion stability or instability were o
tained for the brane-world models where matter in bulk
well as on branes is absent~more precisely, it is considere
there in its simplest form as a bulk cosmological const
and ‘‘vacuum energies’’ on branes!. In this case, only the pai
of anti–de Sitter branes are really stable. However, it w
observed that inclusion of matter can stabilize radions
different types of branes. This can be done with the help
bulk scalar field@9,15–17#, perfect fluid on branes@18#, and
the Casimir effect between branes@19,20#.

Some specific forms of instability in the brane-world s
lutions were observed in papers@21,22#. It was shown that a
single Poincare´ brane is unstable under small perturbatio
of the brane tension2 @21# and a single de Sitter brane
unstable against thermal radiation@22#.

The main goal of our present comments consists in
investigation of 5D brane-world stability against conform
perturbations. First, we elaborate a method to study the
bility for a large class of solutions and obtain general expr
sions for 4D effective cosmological constants on branes
masses of gravitational excitons. Then we apply this met
to a number of well-known solutions. In particular, we fin
that models with the Poincare´ and the de Sitter branes ar
unstable because they have negative mass squared of gr
citons, whereas models with the anti–de Sitter branes h
positive gravexciton mass squared and are stable under

ct

2Here it was mentioned about instability of the single bra
Randall-Sundrum solution under homogeneous gravitational pe
bations. In our paper, we show that this model is unstable also u
conformal excitations.
9-2
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COMMENTS ON CONFORMAL STABILITY OF BRANE- . . . PHYSICAL REVIEW D 65 044009
formal perturbations. We show also that 4D effective cosm
logical and gravitational constants on branes as well
gravexciton masses undergo a hierarchy: they have diffe
values on different branes~if different branes have differen
warp factors!.

The paper is organized as follows. In Sec. II, we expl
the general setup of our model, perform dimensional red
tion of the brane-world models to an effective 4D theory in
general case, and apply this procedure to a number of w
known solutions. In Sec. III, we elaborate on a method of
investigation of the brane-world solution stability again
conformal perturbations and apply it to particular solutio
considered in Sec. II. Here we show also that phys
masses of gravexcitons undergo hierarchy on differ
branes. The brief conclusions of the paper are followed
three Appendixes. In Appendix A, we present useful expr
sions for the Ricci tensor components and scalar curvatur
the case of block-diagonal metrics. Some useful formula
the conformal transformation are summarized in Appen
B. In Appendix C, we show that the results of the paper
not change if only an additional dimension undergoes c
formal perturbations: we arrive here at the same 4D effec
theory and the same gravexciton masses as in the cas
total geometry conformal perturbations. This provides an
teresting analogy between gravity and an elastic me
where the eigenfrequencies of elastic body oscillations
not depend on the manner of excitation.

II. MODEL AND GENERAL SETUP: DIMENSIONAL
REDUCTION OF BRANE-WORLD MODELS

We consider 5D cosmological models on a manifoldM (5)

which is divided on n pieces by n21 branes: M (5)

5ø i 51
n Mi

(5) . Branes are 4D hypersurfacesr 5r i5const, i
51, . . . ,n21, wherer is an extra dimension. Each brane
characterized by its own tensionTi(r i), i 51, . . . ,n21. We
suppose that a boundary]M (5) also corresponds to two hy
persurfacesr 5const,r 5r 0 andr 5r n , and either 4D geom-
etry on ]M (5) is closed~induced 4D metric vanishes there!
or opposite pointsr 0 andr n are identified with each other. In
the first case, boundary terms corresponding to]M (5) are
equal to zero. In the second case, the boundary]M (5) is
absent, however if the geometry is not smoothly match
here, it results in the appearance of an additional brane
a tensionT0(r 0). For simplicity, bulk matter is considered i
the form of a cosmological constant, in general different
each ofMi

(5) . Thus, our model is described by the followin
action:

S~5!5
1

2k5
2 E

M ~5!
d5XAug~5!u„R@g~5!#22L5~r !…1SYGH

2 (
i 50

n21

Ti~r i !E d4xAug~4!uU
r i

, ~2.1!

whereSYGH52k5
21*]M (5)d4xAug(4)u K is the standard York-
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Gibbons-Hawking ~YGH! boundary term.3 The Einstein
equation corresponding to action~2.1! reads

RMN@g~5!#2 1
2 gMN

~5! R@g~5!#

52L5~r !gMN
~5! 2

k5
2

Aug~5!u

3 (
i 50

n21

Ti~r i !Aug~4!~x,r i !ugmn
~4!~x,r i !dM

m dN
n d~r 2r i !.

~2.2!

In Eqs.~2.1! and ~2.2!,

L5~r !ª(
i 51

n

L iu i~r !, L i5const, ~2.3!

with piecewise discontinuous functions

u i~r !5h~r 2r i 21!2h~r 2r i !5H 0, r ,r i 21 ,

1, r i 21<r ,r i ,

0, r>r i ,
~2.4!

where step functionsh(r 2r i) are equal to zero forr ,r i and
unity for r>r i .

Now, we suppose that a metric4

g~5!~X!5gMN
~5! dXM

^ dXN

5dr ^ dr1a2~r !gmn
~4!~x!dxm

^ dxn, ~2.5!

a~r !5(
i 51

n

ai~r !u i~r !

is the solution of the Einstein equation~2.2! and has the fol-
lowing matching conditions: ai(r i)5ai 11(r i), i 51, . . . ,
n21 anda1(r 0)5an(r n). Scale factorsai(r ) are supposed
to be non-negative smooth functions in intervals@r i 21 ,r i #.
Boundary pointsr 0 and r n are either identified with each
other,r 0↔r n , or they are not identified and the geometry
the latter case is closed,a1(r 0)5an(r n)50, i.e., the induced
metric gmn

(4)(x,r )5a2(r )gmn
(4)(x) vanishes in these points.

Having at hand solution~2.5!, we can perform a dimen
sional reduction of action~2.1!. Here, the dimensional reduc
tion means an integration over extra dimensions in the

3In compact brane-world models, it is worth while to include th
term even if the boundary]M (5) is absent because it is convenie
here~as well as for all models with branes! to split manifoldM (5)

by branes inton submanifolds:M (5)5ø i 51
n Mi

(5) . Each of them has
boundaries]Mi

(5) defined by positions of the branes. Such boun
ary terms at]Mi

(5) take into account the presence of the branes
are needed in order to satisfy the variational principle and the ju
tion conditions on the branes@23#. These junction conditions coin
cide with the ones following directly from the Einstein equatio
~2.2!.

4Different parts of the manifoldM (5) can be covered by differen
coordinates charts. We show an explicit example below.
9-3
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MARIAM BOUHMADI-LÓ PEZ AND ALEXANDER ZHUK PHYSICAL REVIEW D 65 044009
part of action~2.1! to get 4D effective action. To do that, le
us perform first some preliminary calculations.

Applying Eq. ~A3! to our case, we obtain

R@g~5!#5a22~r !R@g~4!#2 f 1~r !, ~2.6!

where

f 1~r !ª8
a9

a
112S a8

a D 2

. ~2.7!

Using properties of theu function—u i
p5u i , p.0; u iu j

50, iÞ j ⇒ap5( i 51
n ai

pu i , ;p, and u i85d(r 2r i 21)2d(r
2r i)—the function f 1(r ) can be written in the following
form:

f 1~r !512(
i 51

n
~ai8!2

ai
2 u i18 (

i 51

n ai9

ai
u i22FK~r 0

1!d~r 2r 0!

2K~r n
2!d~r 2r n!1 (

i 51

n21

K̂~r i !d~r 2r i !G , ~2.8!

where K̂(r i)5K(r i
1)2K(r i

2), K(r i
1)524ai 118 /ai 11ur

i
1,

and K(r i
2)524ai8/ai ur

i
2 in accordance with Eq.~B6!. As

we can see, the functionf 1 contains all the information abou
boundary terms, and for correct dimensional reduction
action ~2.1!, it is not necessary to include additional boun
ary term SYGH because it will lead in this case to doub
counting.5 It can be easily seen also that the integral

E
r 0

r n
dr a4~r ! f 1~r !5212(

i 51

n E
r i 21

r i
dr ai

2~ai8!2, ~2.9!

where we used integration by parts. Thus, dimensional
duction of action~2.1! will result in the following effective
4D action:

Seff
~4!5

1

2k4
2 E

M ~4!
d4xAug~4!u$R@g~4!#22Leff

~4!%, ~2.10!

where the effective 4D cosmological constant is

5There are two equivalent ways of the dimensional reducti
First, we can divide action integral~2.1! into n integrals in accor-
dance with the splitting procedure described in footnote 3 and
into account the boundary terms at]Mi

(5) arising due to the pres
ence of branes. In this case, the scale factorsai(r ) for each of the
submanifoldsMi

(5) are smooth functions and their derivatives
not result ind functions. Here, the brane boundary terms are ta
into account directly in the action functional. In the second a
proach, we consider full nonsplit action~2.1! without the brane
boundary terms but take into account that the scale factora(r ) is
not a smooth function in points corresponding to the brane locat
Thus, its second derivative hasd-function terms which are com
pletely equivalent to the brane boundary terms@see Eq.~2.8!#. It can
be easily checked that integration over extra dimensions in bot
these approaches results in the same 4D effective action. In
present paper, we applied the second approach.
04400
f
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e-

Leff
~4!5

1

B0
@B11B21B3# ~2.11!

and

B05(
i 51

n E
r i 21

r i
dr ai

2, ~2.12!

B1526 (
i 51

n E
r i 21

r i
dr ai

2~ai8!2, ~2.13!

B25(
i 51

n

L iE
r i 21

r i
dr ai

4, ~2.14!

B35k5
2 (

i 50

n21

ai
4~r i !Ti~r i !. ~2.15!

An effective 4D gravitational constant is defined
follows:6 k4

25k5
2/B0 . Equation~2.10! shows that solution

~2.5! of Eq. ~2.2! takes place only if the 4D metricg (4) is the
Einstein space metric.

A. Examples

In this subsection, we apply the above-considered pro
dure of the dimension reduction to some well known so
tions ~see, e.g.,@8,12,17,24,25#!.

1. Poincarébranes

In this model,7 r 052L, r 150, r 25L,

a1~r !5exp~r / l !, 2L<r<0,
~2.16!

a2~r !5exp~2r / l !, 0<r<L,

and bulk cosmological constantsL15L2526/l 2, wherel is
the AdS radius. The pointsr 0 andr 2 are identified with each
other. A free parameterL defines the size of the models in th
additional dimension. The geometry is not smooth at poi
r 50 and r 5r 0[r 2 , thus we have two branes with ten
sions: 2T0(r 0)5T1(r 1)56/(k5

2l ). Substituting concrete
expressions into formulas~2.12!–~2.15!, we obtain, respec-
tively,.

e

n
-

n.

of
he

6In this paper, we focus on the problem of the stability of t
considered models and we do not discuss cosmology on branes
clear that from the point of an observer on a brane, the phys
metric is the induced metric on this brane~let it be thei th brane!:
g(ph)mn

(4) 5ai
2(r i)gmn

(4) . It means we should perform evident substit
tions aj (r )→aj (r )/ai(r i) in corresponding formulas. For exampl
for this observer, physically effective 4D cosmological and gravi
tional constants read as follows:Leff

(4)→L(ph)eff
(4) 5Leff

(4) /ai
2(ri) and k4

2

→k (ph)4
2 5k4

2ai
2(r i). The proportionality of the effective 4D New

ton’s constant on the brane toa2(r )ubrane was pointed out, e.g., in
@10#.

7Here, we follow the original solution@8#, where scale factors are
dimensionless.
9-4
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B05 l ~12e22L/ l !.0, ~2.17!

B15
3

l
~e24L/ l21!, ~2.18!

B25
3

l
~e24L/ l21!, ~2.19!

B35
6

l
~12e24L/ l !. ~2.20!

Thus, in this model

Leff
~4![0 ~2.21!

and gmn
(4) is a flat space-time metric. The Randall-Sundru

one-brane solution@24# corresponds to the trivial limitL→
1` and also results in Eq.~2.21!. In this case, the extra
coordinater runs overR, but all integrals of the type~2.12!–
~2.15! are convergent due to an exponential decrease of
warp factorsa1,2 when ur u→`. Effectively, this model is
compact with respect to the extra dimension.

2. de Sitter brane (symmetric solution)

In this model,r 050, r 15L, r 252L,

a1~r !5 l sinh
r

l
, 0<r<L,

~2.22!

a2~r !5 l sinh
2L2r

l
, L<r<2L,

and bulk cosmological constantsL15L2526/l 2. In the
points r 0 and r 2 , the geometry is closed:a1(r 0)5a2(r 2)
50 ~r 0 and r 2 are horizons of AdS5!. The geometry is not
smooth inr 1 . Therefore, in this model we have one bra
with tensions:T1(r 1)5@6/(k5

2l )#coth(L/l). Substituting these
expressions into formulas~2.12!–~2.15!, we obtain, respec
tively,

B05 l 3S 1

2
sinh

2L

l
2

L

l D.0, ~2.23!

B1523l 3S sinh3
L

l
cosh

L

l
1

1

4
sinh 2

L

l
2

1

2

L

l D , ~2.24!

B2523l 3S sinh3
L

l
cosh

L

l
2

3

4
sinh 2

L

l
1

3

2

L

l D , ~2.25!

B356l 3 sinh3
L

l
cosh

L

l
. ~2.26!

So, in this model,

Leff
~4!53 ~2.27!

andgmn
(4) describes either a Riemannian 4-sphere with sc

curvatureR@g (4)#5D0(D021)512 or 4D de Sitter space
04400
he

ar

time with cosmological constantL53 and scalar curvature
R@g (4)#5@2D0 /(D022)#L512.

3. de Sitter brane (nonsymmetric solution)

We obtain this solution gluing together two submanifol
covered by different charts. The first submanifold describ
the truncated Garriga-Sasaki instanton@25# and the second
one describes flat 5D space:

a1~r !5 l sinh
r

l
, 0<r<L,

~2.28!
a2~R!5R02R, 0<R<R0 ,

where R05 l sinh(L/l). Bulk cosmological constantsL15
26/l 2 andL2[0. In the pointsr 50 andR5R0 , the geom-
etry is closed:a1(0)5a2(R0)50. The geometry is not
smooth on the hypersurfaces of gluingr 5L andR50. That
is why we have one brane with tensions:T1ur 5L,R50

53/k5
2@1/R01(1/l )coth(L/l)#. Substituting these expression

into formulas~2.12!–~2.15!, we obtain, respectively,

B05
1

2
l 3S 1

2
sinh

2L

l
2

L

l D1
1

3
R0

3.0, ~2.29!

B152
3

2
l 3S sinh3

L

l
cosh

L

l
1

1

4
sinh 2

L

l
2

1

2

L

l D22R0
3,

~2.30!

B252
3

2
l 3S sinh3

L

l
cosh

L

l
2

3

4
sinh 2

L

l
1

3

2

L

l D , ~2.31!

B353l 3 sinh3
L

l
cosh

L

l
13R0

3. ~2.32!

Therefore, as in the symmetric case, in this model

Leff
~4!53 ~2.33!

andgmn
(4) describes either 4-sphere or the de Sitter space w

cosmological constantL53.

4. Anti–de Sitter brane

In this model,r 052L, r 150, r 25L,

a1~r !5 l cosh
L1r

l
, 2L<r<0,

~2.34!

a2~r !5 l cosh
L2r

l
, 0<r<L,

and bulk cosmological constantsL15L2526/l 2. The
pointsr 0 andr 2 are identified with each other. The geomet
is not closed here and can be smoothly glued in these po
The points r 0,2 correspond to wormhole throats in th
Riemannien space. The geometry is not smooth inr 1 . There-
9-5
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fore, in this model we have only one brane8 with tension:
T1(r 1)5@6/(k5

2l )#tanh(L/l). Substituting these expression
into formulas~2.12!–~2.15!, we obtain, respectively,

B05 l 3S 1

2
sinh

2L

l
1

L

l D.0, ~2.35!

B1523l 3S sinh3
L

l
cosh

L

l
1

1

4
sinh 2

L

l
2

1

2

L

l D , ~2.36!

B2523l 3S sinh3
L

l
cosh

L

l
1

5

4
sinh 2

L

l
1

3

2

L

l D , ~2.37!

B356l 3S sinh3
L

l
cosh

L

l
1

1

2
sinh 2

L

l D . ~2.38!

Thus, in this model,

Leff
~4!523 ~2.39!

and gmn
(4) describes either a Riemannian 4-hyperboloid w

scalar curvatureR@g (4)#52D0(D021)5212 or 4D Anti
de Sitter space-time with cosmological constantL523 and
scalar curvatureR@g (4)#5@2D0 /(D022)#L5212.

To conclude this section, we consider in more detail
Einstein equation~2.2! with the help of formulas~A1!–~A3!.
In addition to Eq.~2.6!, we obtain

Rrr @g~5!#524
a9

a
,

Rmr@g~5!#5Rrm@g~5!#50, ~2.40!

Rmn@g~5!#5Rmn@g~4!#2a2gmn
~4!Fa9

a
13S a8

a D 2G .
Then,rr andmn components of Eq.~2.2! are reduced corre
spondingly to

R@g~4!#52 (
i 51

n

ai
2~r !L iu i~r !112(

i 51

n

~ai8!2u i~r ![ f 2~r !

~2.41!

and

Rmn@g~4!#2 1
2 gmn

~4!R@g~4!#52gmn
~4!H 3 (

i 51

n

~ai8!2u i

1(
i 51

n

L iai
2u i13(

i 51

n

aiai9u iJ
[2gmn

~4! f 3~r !. ~2.42!

8This model can be easily generalized to the case of an arbit
number of parallel branes by gluing one-brane manifolds at thr
and identifying the two final opposite throats.
04400
e

In the latter equation, thed-function terms originated from
a9 and tension terms cancel each other. It can be easily s
that for the Poincare´ brane model, we obtainf 2(r )[ f 3(r )
[0 in accordance with Eq.~2.21!. For the symmetric de
Sitter brane model,f 2(r )[12 and f 3(r )[3, which corre-
sponds to Eq.~2.27!. In the nonsymmetric de Sitter bran
model, f 2(r )[ f 2(R)[12 and f 3(r )[ f 3(R)[3, in accor-
dance with Eq.~2.33!. For the anti–de Sitter brane mode
f 2(r )[212 and f 3(r )[23, which corresponds to Eq
~2.39!.

III. STABILITY UNDER CONFORMAL EXCITATIONS

Let us investigate now the stability of metricg(5)(X) de-
fined in Eq.~2.5! with respect to conformal excitations. I
other words, we want to investigate the dynamical behav
of the conformal metric excitations developing on the fix
backgroundg(5)(X). To do this, we consider a perturbe
metric of the form of Eq.~B1!, ḡ(5)5V2g(5)[e2bg(5),
whereV51 corresponds to the background solution andb
!1 describes the small perturbation limit. Obviously, t
background solution is stable against such perturbationsV
oscillates with time near the valueV51 and is unstable ifV
has a runaway behavior from this value. According to t
perturbation theory, full analysis should consist of two ste
The first one is the investigation of the dynamical behav
of perturbations on the fixed background, and the second
is the study of the backreaction of perturbations on the ba
ground solution. In the present paper, we are concentra
on the first problem, namely to find which brane-world so
tions are stable against the conformal perturbations, and
postpone the second problem to our future investigation.

According to the standard approach, the equation of m
tion for perturbations~in our case forV or b!, developing on
the fixed backgroundg(5), can be obtained substitutingḡ(5)

in Eq. ~2.2! and taking into account the background soluti
g(5) ~e.g., solutions from Sec. II A!. However, it is possible
to investigate this problem in a different way, namely starti
from action~2.1!, putting in the perturbed metricḡ(5), and,
after that, taking into account the background solutionsg(5).
Then, the resulting effective action will describe the dynam
cal behavior of the perturbations on the fixed backgrou
From this action, we can obtain the energy momentum ten
of the perturbations to study the backreaction of them on
background metric.

In our paper, we follow the second approach and put
perturbed metricḡ(5) into action~2.1!, which yields9

S̄~5!5
1

2k5
2 E

M ~5!
d5XAuḡ~5!u„R@ ḡ~5!#22L5~r !…

2 (
i 50

n21

Ti~r i !E d4xAuḡ~4!uU
r i

. ~3.1!

ry
ts

9It is clear that for a conformally transformed metric the Lanczo
Israel junction conditions will change@see, e.g., Eq.~B8!#. But, at
the moment, we do not consider a backreaction of the confor
excitations on the metric, i.e., on the behavior ofa(r ) and on the
junction condition.
9-6
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With the help of Eqs.~B3! and ~2.6!, the first term in this
action reads

Auḡ~5!uR@ ḡ~5!#5V5a4Aug~4!u$V22@a22R@g~4!#2 f 1~r !#

28V23V ;M ;Ng~5!MN

24V24V ,MV ,Ng~5!MN%. ~3.2!

For generality, we do not assume the small perturbation li
b!1 keeping in action all nonlinear perturbation term
Transition to this limit can be easily performed in the fin
expression@see Eq.~3.12! below#. In what follows, we shall
consider a particular case when the conformal prefa
is a function of 4D space-time coordinates:V5V(x)
[exp„b(x)…. It is well known that conformal excitations o
this form behave as scalar fields in 4D space-time~e.g., on
branes!. Because of the prefactorV3(x) in front of the 4D
scalar curvatureR@g (4)# in action, the 4D metricg (4) is writ-
ten in the Brans-Dicke frame. However, it is more easy
investigate the conformal perturbation stability in the E
stein frame~in the Introduction we mentioned the equiv
lence of these frames with respect to the stability analys!:

gmn
~4!~x!⇒g̃mn

~4!~x!5V3~x!gmn
~4!~x!. ~3.3!

In this frame, the dimensionally reduced action~3.1! reads

S̄eff
~4!5

1

2k4
2 E

M ~4!
d4xAug̃~4!uR@ g̃~4!#1

1

2 EM ~4!
d4xAug̃~4!u

3~2g̃~4!mnb̃ ,mb̃ ,n22Ũeff!, ~3.4!

whereb̃[A3/2(1/k4)b and

Ũeff~V![
1

k4
2 Ueff~V!

5
1

k4
2B0

@B1V231B2V211B3V22#. ~3.5!

Here, parametersBi ( i 50, . . . ,3) are defined by Eqs.
~2.12!–~2.15!.

Now, the problem of the background solution~2.5! stabil-
ity against the conformal excitations is reduced to the e
tence of a minimum of the effective potentialUeff at point
V51⇔b50, which corresponds to the absence of the p
turbations. In Appendix B, we show additionally that a
other values for the minimum lead to metrics which in ze
order do not satisfy the same Einstein equation as the b
ground solution~2.5!. It is clear also that the effective cos
mological constant~2.11! should coincide withUeff at V
51: Leff

(4)5Ueff(V51), which we explicitly obtain from Eq.
~3.5!. The extremum existence condition reads

]Ueff

]V U
V51

50⇒3B11B212B350. ~3.6!
04400
it
.
l

r

o
-

-

r-

k-

Small excitations near a minimum position can be obser
on branes as massive scalar field–gravitational excitons
mass squared:

m25
]2Ũeff

]b̃2
U

b̃50

5
2

3
V2

]2Ueff

]V2 U
V51

5
2

3B0
~12B112B216B3!. ~3.7!

Obviously, the original solution~2.5! is stable under these
conformal excitations ifm2.0, which prevents their run-
away behavior from the background solution. As can be e
ily seen, all four models considered in the previous sect
satisfy Eq.~3.6!. This means that all these solutions are s
tionary points ofUeff if the effective potential is considere
as a functional ofa(r ). For masses squared in the case of
Poincare´, the de Sitter~symmetric solution!, the de Sitter
~nonsymmetric solution!, and the anti–de Sitter branes, w
obtain, respectively,

m25
4

lB0
~e24L/ l21!,0, ~3.8!

m25
4l 3

B0
S 2sinh3

L

l
cosh

L

l
2

3

4
sinh 2

L

l
1

3

2

L

l D,0,

~3.9!

m25
2l 3

B0
S 2sinh3

L

l
cosh

L

l
2

3

4
sinh 2

L

l
1

3

2

L

l
22

R0
3

l 3 D ,0,

~3.10!

m25
4l 3

B0
S 2sinh3

L

l
cosh

L

l
1

1

4
sinh 2

L

l
1

3

2

L

l D,
5
.

0.

~3.11!

Thus, the first three solutions are unstable under the con
ered conformal excitations:V51 corresponds to the maxi
mum but not to the minimum of the potential~3.5!. However,
in the AdS brane case, mass squared is positive and
creases from10 4 for L/ l→0 to zero forL/ l→1 ~more pre-
cisely, numerical calculations show thatm2→0 for L/ l
→0,988!. So, the AdS brane solution is stable with respec
the conformal excitations if the distance between brane
throats of wormholes is less than the AdS radius. As w
mentioned in footnote 8, this case can be easily general
to a number of AdS branes connected with each other via
wormhole throats. Then, in the case ofn branes, for the
gravexciton mass squared we obtain an expression whic
simply an algebraic sum of the type~3.11! ~with an evident
substitution L→Li , i 51, . . . ,n for each member of the
sum! and overall prefactorB0

21. Here,B0 is also a generali-

10Masses squared of gravexcitons~3.8!–~3.11! are written in di-
mensionless units. If we take into account footnote 6, then phys
gravexciton mass for an observer on thei th brane ism→m(ph)

5m/ai(r i).
9-7
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zation of Eq.~2.35! to an evident sum. This mass squared
positive, e.g., ifLi / l &1, i 51, . . . ,n.

For small fluctuations near the minimum ofUeff , action
~3.4! reads

S̄eff
~4!5

1

2k4
2 E

M ~4!
d4xAug̃~4!u$R@ g̃~4!#22Leff

~4!%

1
1

2 EM ~4!
d4xAug̃~4!u~2g̃~4!mnb̃ ,mb̃ ,n2m2b̃2!,

~3.12!

where the first integral corresponds to zero-order the
~2.10! ~background solution! and the second one describ
gravitational excitons. This effective action can be used
investigation of the gravexciton backreaction on the ba
ground metric.

If we put in action~3.1! conformally transformed bran
tensionsT̄(r i)5(1/V)T(r i) @see Eqs.~B7! and~B8!# instead
of T(r i), the effective potential reads

Ueff~V!5
1

B0
@B1V231B2V211B3V23#. ~3.13!

In this case,V51 is not the extremum of the effective po
tential~3.13! for all of the four considered solutions: they a
not stationary points of this potential.

IV. CONCLUSIONS

In the present paper, we investigated the stability of
brane-world solutions against conformal perturbations.
these models, the five-dimensional metric contains a fo
dimensional metric component multiplied by a warp~scale!
factor a(r ) which is a function of the additional dimension
Models containn parallel branes ‘‘transversal’’ to the add
tional coordinate. As a point of interest we consider bu
cosmological constants between branes and tens
~‘‘vacuum energies’’! on the branes. The scale factor is
continuous piecewise function while its derivative has jum
on the branes. There are a number of well-known exact
lutions which belong to this class of model~e.g.,
@8,12,17,24–28#!. We investigated the stability of some o
these models under the conformal excitations, which
functions of 4D space-time. Such excitations are of spe
interest because they behave as massive minimal scalar
in 4D space-time, for example they can be observed as m
sive scalar particle–gravitational excitons on branes, suc
takes place in the Kaluza-Klein approach@1,6#.

To perform the stability analysis, we put the perturb
metric in the original 5D action, took into account the bac
ground metric solution, and integrated the action over
extra dimension~the dimension reduction!. The obtained 4D
effective action describes the dynamical behavior of the p
turbations on the fixed background. The extremum of
effective potential in this action corresponds to the ba
ground solution. If this extremum is a minimum, the confo
mal perturbations oscillate around the background solu
providing its stability. In this case, small excitations arou
04400
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this minimum are observed as gravitational excitons
branes. However, if this extremum is a maximum, the co
formal perturbations have the runaway behavior, and
background solution is unstable against such excitations

We have shown that in the case of one and two Poinc´
branes, one de Sitter brane~symmetric solution!, and one de
Sitter brane~nonsymmetric solution!, all these solutions are
unstable with respect to these excitations because the e
tive potential has a maximum but not a minimum at the po
corresponding to the original~background! solutions. In
these models, the 4D effective cosmological constant is n
negative@see Eqs.~2.21!, ~2.27!, and~2.33!#. However, one
AdS brane solution is stable if the distance between br
and throats of wormholes is less than the AdS radius. T
effective 4D cosmological constant is negative in this mo
@see Eq.~2.39!#. The latter case is easily generalized to
stable model with a number of parallel AdS branes connec
with each other via the wormhole throats. It is necessary
note that we found stability or instability against gravex
tons for models with the same kind of branes, which a
correspondingly stable or unstable against radions con
ered in @11,12#, although a direct comparison between t
models can only be made for cases with two or more bran

Another remark involves the analogy between the sta
ity under conformal perturbations in the brane-world mod
considered here and the standard Kaluza-Klein models.
situation with these four solutions is similar to one we ha
in the pure geometrical case in the standard Kaluza-K
approach@1#. Here, the stability also takes place when the
effective cosmological constant is negative. If the effect
cosmological constant is positive, we have maximum of
effective potential instead of the minimum. To shift the min
mum of the effective potential to positive values, we shou
include matter in the model.

We found also that 4D effective cosmological and gra
tational constants on branes as well as gravexciton ma
undergo a hierarchy. It was shown that for observers on
ferent branes with different warp factors, these parame
have different values. A similar result with respect to t
effective 4D Newton constant was obtained in@10#.

There are a number of possible generalizations that
worth investigating. First, it is of interest to include rich
types of matter in the model, e.g., perfect fluid in bulk
well as on branes, which simulates different forms of mat
in the Universe. The presence of matter can stabilize rad
in the brane-world models with non-negative 4D effecti
cosmological constant on branes, as was shown in@9,15–20#.
As we mentioned above, stabilization of gravexcitons
models with the 4D positive effective cosmological consta
takes place also in the standard Kaluza-Klein approach if
include matter here@1#. Thus, we expect a similar stabiliza
tion effect for gravexcitons in the brane-world models. T
second possibility consists in a generalization of the mode
a multidimensional case withD.5. It will give us the op-
portunity to include into consideration already obtained ex
brane-world solutions withD56 and more dimensions. Ad
ditionally, as we wrote in Sec. III, the investigation of th
background solution stability against the conformal pertur
tions is only the first problem. When we found the stab
9-8
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solutions, the second problem consists in the investigatio
the perturbation backreaction on the background solut
We leave these issues for future work.
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APPENDIX A: BLOCK-DIAGONAL METRICS

In this appendix, we present some useful formulas~see
also @29#! for curvature tensors in the case of a bloc
diagonal metric of the form

„gMN
~D01D1!

~x,y!…5S e2s~y!gmn
~D0!

~x! 0

0 gmn
~D1!

~y!
D . ~A1!

For this metric, the Ricci tensor~everywhere in this paper w
use the Misner-Thorne-Wheeler book conventions@30#!
reads

Rmn@g~D !#5Rmn@g~D0!#2e2sgmn
~D0!

@D0g~D1!mn~]ms!~]ns!

1g~D1!mn
“m

~D1!
~]ns!#,

Rmn@g~D !#5Rnm@g~D !#50, ~A2!

Rmn@g~D !#5Rmn@g~D1!#2D0@~]ms!~]ns!1¹m
~D1!

~]ns!#,

whereD5D01D1 and“m
(D1) is a covariant derivative with

respect to the metricg(D1). The scalar curvature reads, co
respondingly,

R@g~D !#5e22sR@g~D0!#1R@g~D1!#2D0@~D011!g~D1!mn

3~]ms!~]ns!12g~D1!mn
“m

~D1!
~]ns!#. ~A3!

APPENDIX B: CONFORMAL TRANSFORMATION

For a conformally transformed metric,

ḡMN
~D ! ~X!5V2~X!gMN

~D ! ~X![e2b~X!gMN
~D ! ~X!, ~B1!

the Ricci tensor and the scalar curvature read, corresp
ingly,
04400
of
n.

f

.
y
o.

d-

RMN@ ḡ~D !#5RMN@g~D !#2~D22!b ;M ;N2gMN
~D !g~D !KLb ;K;L

1~D22!b ;Mb ;N2~D22!gMN
~D !g~D !KLb ;Kb ;L

~B2!

and

R@ ḡ~D !#5V22R@g~D !#22~D21!V23V ;M ;Ng~D !MN

2~D21!~D24!V24V ;MV ;Ng~D !MN, ~B3!

where in Eqs.~B2! and~B3!, covariant derivatives are take
with respect to the metricg(D).

We suppose now that the metricḡ(D) is a solution of the
Einstein equation

RMN@ ḡ~D !#2 1
2 ḡMN

~D !R@ ḡ~D !#

52L̄DḡMN
~D !2

kD
2

Auḡ~D !u
(
i 50

n21

T̄i~yi !Auḡ~D0!~x,yi !u

3ḡmn
~D0!

~x,yi !dM
m dN

n d~y2yi !, ~B4!

which describes a model with the bulk cosmological const
L̄D andn branes of tensionT̄i(yi). Let us consider a particu
lar case of the constant conformal transformation~B1!: V
[const. Then, with the help of Eqs.~B2! and ~B3! for the
conformally transformed metricg(D), we obtain

RMN@g~D !#2 1
2 gMN

~D !R@g~D !#

52L̄DV2gMN
~D !2

kD
2

Aug~D !u
(
i 50

n21

T̄i~yi !

3V2D1D012Aug~D0!~x,yi !ugmn
~D0!

~x,yi !

3dM
m dN

n d~y2yi !. ~B5!

This equation shows that the conformally transformed me
g(D) is the solution for the model with the cosmological co
stant LD[V2L̄D and the brane tensionsTi(yi)
[V (2D1D012)T̄i(yi). The latter one is invariant forD
5D012, which certainly is not the case forD55 if D0
54. Thus, if we want the solution to correspond to a mi
mum of the effective potential for the conformal excitatio
describing the model with the original cosmological const
and the brane tensions, this minimum should take plac
V51.

Let us consider transformation of the trace of the extrin
curvature evoked by conformal transformation of the met
In the case of 5D metric~2.5! written in Gaussian norma
coordinates, the trace of the extrinsic curvature of the hyp
surfaceS: r 5r i5const reads

K~r i !52“MnMur i
52

1

2
g~4!mn

]gmn
~4!

]r
U

r i

524
1

a

da

drU
r i

,

~B6!
9-9
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wherenM5d r
M is the unit vector field orthogonal toS. If the

extrinsic curvature has a jump at this hypersurface,K̂(r i)
[K(r i

1)2K(r i
2)Þ0, then it results in the Lanczos-Isra

junction condition,

T~r i !5
1

kD
2

3

4
K̂~r i !, ~B7!

where T(r i) is the tension of the brane which causes
jump of the extrinsic curvature.

For the metricḡ(D), obtained with the help of the confor
mal transformation~B1! of the metric~2.5!, the unit vector
field orthogonal toS is n̄M5V21d r

M⇒n̄M5VdM
r . Here, we

consider the case whenV5V(x) does not depend on th
extra dimensionr. Then, we obtain for the trace of the e
trinsic curvature of the conformal space-time

K̄~r i !52“̄Mn̄Mur i
52

4

V

1

a

da

drU
r i

. ~B8!

Correspondingly, the tensions of the brane in conformal
original space-times are connected with each other as
lows: T̄(r i)5V21T(r i) in accordance with Eq.~B5!.

APPENDIX C: TRUNCATED CONFORMAL
TRANSFORMATION

In this appendix, we shall show that our results do n
change if only additional dimension undergoes conform
perturbations in metric~2.5!:
B

li,

ys

h-

ev

. D

s

04400
e

d
l-

t
l

g~5!~X!⇒ḡ~5!~X!5V2~x!dr ^ dr1a2~r !gmn
~4!~x!dxm

^ dxn.
~C1!

Subsequent application of appropriate formulas from App
dixes A and B yields

Auḡ~5!uR@ ḡ~5!#

5Va4Aug~4!u3$a22
†R@g~4!#22V21V ;m;ng~4!mn

‡

2V22f 1~r !%, ~C2!

wheref 1(r ) is defined in Eq.~2.7!. To get this expression, i
is useful to go first to a new coordinateR:dR5a21(r )dr
and then, after using conformal transformation formul
come back tor again. It can be easily seen that after conf
mal transformation to the Einstein frame,

gmn
~4!~x!⇒g̃mn

~4!~x!5V~x!gmn
~4!~x!, ~C3!

and the dimensional reduction, action~3.1!, is exactly re-
duced to the effective action~3.4!. Thus, gravexcitons have
exactly the same masses~3.7!–~3.11!. This result shows tha
geometry~gravitational field! under conformal transforma
tions behaves as an elastic media. For an elastic body,
eigenfrequencies of its oscillations do not depend on
manner of excitation.
y
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@7# P. Hořava and E. Witten, Nucl. Phys.B460, 506 ~1996!; E.

Witten, ibid. B471, 135 ~1996!; P. Hořava and E. Witten,ibid.
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