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Comments on conformal stability of brane-world models
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The stability of five-dimensional5D) brane-world models under conformal perturbations is investigated.
The analysis is carried out in the general case and then it is applied to particular solutions. It is shown that
models with the Poincarand de Sitter branes are unstable because they have a negative mass squared of
gravexcitons whereas models with the anti—de Sitter branes have a positive gravexciton mass squared and are
stable. It is also shown that 4D effective cosmological and gravitational constants on branes as well as
gravexciton masses undergo a hierarchy: they have different values on different branes.
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I. INTRODUCTION equilibrium positions for the internal spaces depend on the
form of the effective potentialon concrete topology and
It is well known that part of any realistic multidimen- matter content of the model
sional model should be a mechanism for extra dimension Recently{2—4], it was realized that it is not necessary for
stabilization. This problem was the subject of numerous inextra dimensions to be very small. They can be enlarged up
vestigations. In the standard Kaluza-Klein approach, cosmao submillimeter scales in such a way that the standard model
logical models are taken in the form of a warped product offields are localized on a 3-brane with thickness of the elec-
Einstein spaces as internal spaces. The corresponding watipweak(or less length in the extra dimensions, whereas the
(scale factors are assumed to be functions of extefoal)  gravitational field can propagate in all multidimensional
space-time. If these scale factors are dynamical functiongbulk) space. This gives the possibility for lowering of the
then it results in a variation of the fundamental physical conmultidimensional fundamental gravitational constant down
stants. To be in agreement with observations, internal spaces the TeV scaleétherefore this approach is often called the
should be compact, statior nearly statig, and less or of the TeV gravity approach Cosmological models in this ap-
order of the electroweak scalthe Fermi length The stabil-  proach are topologically equivalent to the standard Kaluza-
ity problem of these models with respect to conformal per-Klein one. Problems of their stability against conformal per-
turbations of the internal spaces was considered in detail iturbations of additional dimensions were considereis].
our paper[1]. It was shown that stability can be achieved A comparison of old and new approaches from the point of
with the help of an effective potential of a dimensionally view of conformal stability was given if6]. In [4,5], con-
reduced effective four-dimension&4D) theory. Small con- formal excitations of additional dimensions near the mini-
formal excitations of the internal spaces near the minima ofnum position of the effective potential were called radions
the effective potential have the form of massive minimal(to our knowledge, the first time that the term radion ap-
scalar fields developing in the external space-time. Thespeared was ifi4]). However, we prefer to call such particles
particles were called gravitational excitofgravexcitons  gravexcitons first from the point of priority, and second, and
Their physical meaning can be easily explained with the helgnost importantly, the term radion is widely used now in the
of a simple 3D model where the 2D spatial part has thebrane-world models in different contexts.
cylindrical topology:S*x RY. Here,S! plays the role of the The brane-world models are motivated by the strongly
compact internal space al describes 1D external space. coupled regime oEgX Eg heterotic string theory, which is
Let us suppose that the size 8f is stabilized near some interpreted as M theory on an orbifoRi®x SY/Z, with a set
value by an effective potential. Then, conformal excitation ofof Eg gauge fields at each ten-dimensional orbifold fixed
S' near its equilibrium position results in waves running plane. After compactification on a Calabi-Yau threefold and
along the cylindealongR?Y). Thus, any 1D observer living dimensional reduction, one arrives at effective five-
on the cylinderfon R') will detect these oscillations as mas- dimensional solutions which describe a pair of parallel
sive scalar fields. Obviously, this effect takes place for any3-branes with opposite tension, and located at the orbifold
multidimensional cosmological model with compact internalplanes[7]. For these models, the five-dimensional metric
spaces. In general, it does not depend on the presence aontains a four-dimensional metric component multiplied by
absence of branes in models. Masses of gravexcitons ar@lwarp factor which is a function of the additional dimen-
sion. A cosmological solution of this type with flat 4D branes
(which we shall refer to as Poincabeane$ was obtained in
*Electronic address: mbouhmadi@imaff.cfmac.csic.es [8]. This model was generalized in numerous publications to
TElectronic address: azhuk@imaff.cfmac.csic.es the cases of bent branes in models with five or more dimen-
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sions and with single or many branes[#], the necessity of any small excitations near an equilibrium positimhich
stabilization in the distance between branes to get convercan be chosen arbitrary for the flat potentizve a runaway
tional cosmology on branes was stressed. Here, the radidshavior if we do not take into account the friction term due
(scale factorof the extra dimension was called a radion. Butto the cosmological expansion. However, such dynamical
this definition is not very precise. We should note that therestabilization is a very delicate proble(see, e.g.[13]) and
is a confusion in the literature concerning the term radionneeds a separate investigation for each case. Exactly this
quite different forms of the metric perturbations of the branekind of instability for radions in the model with two Poincare
world models were called radions. However,[i0] it was  branes was found ifill]. It was shown here that a small
clearly shown and strictly emphasized that radions describdeparture from the equilibrium position results in either a
the relative distance between bransge also[11,17)). It colliding of the two branes or a runaway behavior. In our
demonstrates the main difference between gravexcitons arnghper, we show that models with two as well as one Poincare
radions: gravexcitons describe conformal excitations of gebrane are also unstable under conformal perturbations. It is
ometry (in particular, conformal excitations of the additional necessary to stress that ji1,12, the analysis was per-
dimensiony whereas radions describe relative motion offormed in the Brans-Dicke frame. In our paper, the problem
branes. Obviously, gravexcitons can exist in a model wheref stability is investigated in the Einstein frame. Obviously,
branes are absent at all or in models with a single brane, arifimodels are stable in one frame, they are stable in another
conversely, radions can exist in the absence of gravexcitonsne because both frames coincide in the equilibrium posi-
The latter situation can be realized, for example, in the TeMion. However, the exact form of the dynamical behavior
scale approach where branes can move relatively with retime dependengenear the equilibrium position can depend
spect to each other due to interaction between them “slidon the frame. In papdr4], the role of conformal transfor-
ing” on the background fixed geometrigravexcitons are mations is explicitly discussed, and it is shown that some
absent Branes are considered here as “probe bodies” mov-solutions of the brane-world models exist in one frame but
ing in the background geometry. Nevertheless, in the braneare absent in the other one. Therefore, the equivalence be-
world models, gravexcitons and radions are closely contween these two frames depends on the concrete discussed
nected with each othend this is the main reason for the problem and in some cases is a matter of delicate investiga-
confusion between thexrmHere, branes are 4D surfaces alongtion.
which different 5D bulk solutions are gluing with each other.  In paperg[11,12, mentioned above, the authors’ conclu-
In this case, the positions of branes fix the shape and size gions concerning the radion stability or instability were ob-
the geometry, and the relative motion of branes results in tained for the brane-world models where matter in bulk as
conformal changes of the geometry. Thus, it is natural forwell as on branes is absefmhore precisely, it is considered
such models to expect that solutions stable against radionkere in its simplest form as a bulk cosmological constant
are stable against gravexcitons and vice versa. Obviousland “vacuum energies” on branesn this case, only the pair
direct comparison of stability against gravexcitons and radiof anti—de Sitter branes are really stable. However, it was
ons only makes sense in models with tiemd more branes  observed that inclusion of matter can stabilize radions for
where radions exist. different types of branes. This can be done with the help of
The radion stabilization problem was investigated in abulk scalar field9,15—-17, perfect fluid on branegl8], and
number of papers devoted to the brane-world models. It wathe Casimir effect between brangd,2qd.
shown, in particular, that in the case of solutions with two de  Some specific forms of instability in the brane-world so-
Sitter branegbent branes with 4D effective positive cosmo- lutions were observed in papdi&l,27. It was shown that a
logical constantsand two anti—de Sitter branéisent branes  single Poincareorane is unstable under small perturbations
with 4D effective negative cosmological constantadions  of the brane tensidn[21] and a single de Sitter brane is
have negative and positive mass squared, respectively. Thusnstable against thermal radiatifi2?].
the former solution is unstable but the latter one is stable The main goal of our present comments consists in the
against radions. In our paper, we find, first, that the modeinvestigation of 5D brane-world stability against conformal
with one de Sitter brane is unstable against gravexcitons ang@erturbations. First, we elaborate a method to study the sta-
second, that the model with one or a number of parallebility for a large class of solutions and obtain general expres-
anti—de Sitter brane&onnected with each other via worm- sjons for 4D effective cosmological constants on branes and
hole throaty is stable under conformal excitations. In the masses of gravitational excitons. Then we apply this method
case of the Randall-Sundrum solutif8i with two Poincare to a number of well-known solutions. In particular, we find
branes, radions have zero mdd44,12. From the particle that models with the Poincar@nd the de Sitter branes are
physics point of view, such particles do not lead to instabil-unstable because they have negative mass squared of gravex-
ity. However, as is well known, such ultralight scalar fields, citons, whereas models with the anti—de Sitter branes have
originating from the extra dimensions, produce a number opositive gravexciton mass squared and are stable under con-
cosmological problems connected with the flatness of their
effective potential. For example, in the homogeneous case;,——
2Here it was mentioned about instability of the single brane
Randall-Sundrum solution under homogeneous gravitational pertur-
In our paper, we shall consider the case of compact with respediations. In our paper, we show that this model is unstable also under
to additional dimension brane-world models. conformal excitations.
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formal perturbations. We show also that 4D effective cosmoGibbons-Hawking (YGH) boundary ternf. The Einstein
logical and gravitational constants on branes as well agquation corresponding to actid®.1) reads
gravexciton masses undergo a hierarchy: they have different 51 1(5) )
values on different brane different branes have different Run[9'1—79unRIG™]
warp factors. 2
The paper is organized as follows. In Sec. II, we explain ~ _ _ (NgS),— Ks
the general setup of our model, perform dimensional reduc- > MN V|g®)|
tion of the brane-world models to an effective 4D theory in a

-1
general case, and apply this procedure to a number of well- " ,
X 2 TirNIg 06 lg () 84 6k a(r —ri).

known solutions. In Sec. Ill, we elaborate on a method of the

investigation of the brane-world solution stability against

conformal perturbations and apply it to particular solutions (2.2
considered in Sec. Il. Here we show also that physica|n Egs.(2.1) and(2.2)

masses of gravexcitons undergo hierarchy on different ’

branes. The brief conclusions of the paper are followed by n

three Appendixes. In Appendix A, we present useful expres- A5(r)==z A;0(r), A;=const, (2.3
sions for the Ricci tensor components and scalar curvature in =1

the case of block-diagonal metrics. Some useful formulas ofyith piecewise discontinuous functions

the conformal transformation are summarized in Appendix

B. In Appendix C, we show that the results of the paper do 0, r<ry_q,

not change if only an additional dimension undergoes con- _ _ _ N = _
formal perturbations: we arrive here at the same 4D effective O =n(r=ri-)=nr=r)=) L. Mia=r<ri
theory and the same gravexciton masses as in the case of 0, r=ry,

total geometry conformal perturbations. This provides an in- 2.4
teresting analogy between gravity and an elastic medig nere step functiong(r —r,) are equal to zero far<r; and
where the eigenfrequencies of elastic body oscillations d%nity forr=r, .

not depend on the manner of excitation. Now, we suppose that a mettic

g®(X)=gdxMedxN
Il. MODEL AND GENERAL SETUP: DIMENSIONAL

REDUCTION OF BRANE-WORLD MODELS =dr®dr+a2(r)yif3(x)dx"® dx”, (2.5
We consider 5D cosmological models on a manifilé n
which is divided onn pieces byn—1 branes: M® a(r)=_2 a;(r)6;(r)
=UM ;M® Branes are 4D hypersurfaces-r;=const,i ot o ,
—1 .. n—1 wherer is an extra dimension. Each brane is IS the solution of the Einstein equati¢é®.2) and has the fol-
characterized by its own tensian(r;), i=1, ... n—1. We 10Wing matching conditions: a;(r;) =a;4(r;), i=1,...,

n—1 anda;(rg)=a,(r,). Scale factors;(r) are supposed

to be non-negative smooth functions in intervals {,r;].
Boundary pointsry andr, are either identified with each
other,ro<r,, or they are not identified and the geometry in
the latter case is closed,;(ry)=a,(r,) =0, i.e., the induced
metric g{)(x,r)=a2(r)»})(x) vanishes in these points.

d Having at hand solutioif2.5), we can perform a dimen-
ﬁional reduction of actiof2.1). Here, the dimensional reduc-
tion means an integration over extra dimensions in the 5D

suppose that a boundas () also corresponds to two hy-
persurfaces = const,r =ry andr=r,,, and either 4D geom-
etry ondM® is closed(induced 4D metric vanishes there
or opposite points, andr , are identified with each other. In
the first case, boundary terms corresponding/b(® are
equal to zero. In the second case, the bounddnf® is
absent, however if the geometry is not smoothly matche
here, it results in the appearance of an additional brane wit
a tensionTy(rg). For simplicity, bulk matter is considered in
the form of a cosmological constant, in general different for
each ofMi(S). Thus, our model is described by the following

action: 3In compact brane-world models, it is worth while to include this

term even if the boundaryM ® is absent because it is convenient
here(as well as for all models with branes split manifoldM ®
1 by branes int; submanifoldsM )= U"_,M{® . Each of them has
(5)—_—_ 5%/[a® (Rl a5 71— _ : A,
S 2k2 Jys d*XVIg™ | (RIG™] = 2A5(r))+ Syan boundariessM(® defined by positions of the branes. Such bound-
ary terms at?Mi(5) take into account the presence of the branes and
n-1 4 1 are needed in order to satisfy the variational principle and the junc-
- Z Ti(ri)f d X\/|9( >| (2.1 tion conditions on the brang&3]. These junction conditions coin-
=0 i cide with the ones following directly from the Einstein equation
(2.2.
“Different parts of the manifold1® can be covered by different
whereSygu= — x5 [ smed*xy[g@)] K is the standard York-  coordinates charts. We show an explicit example below.
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part of action(2.1) to get 4D effective action. To do that, let o 1
us perform first some preliminary calculations. Af;ﬂ)=B—[Bl+ By + B3] (211
Applying Eq. (A3) to our case, we obtain 0

and
R[g®]=a"2(NR[ ¥ fy(r), (2.6
n
fi
where Bo= 21 dra?, (2.12
i= ri—
ar/ ar 2 1
fi(r):=8—+12 —| . (2.7 n
a a fi
B;=—6>, dra?(a/)?, (2.13
Using properties of thef function—¢°=6,, p>0; 0; 6; =1 Jri_,
=0, i#j=aP=3",aPe;, Vp, and 6/ =68(r—r;_,)— (r .
—r;)—the functionf(r) can be written in the followin i
forrlr)u a g Bz=i_21 Aifr draj, (2.14
- i—1
n "2 n n
(@) a { —1
fi(r)=12 6,+8 >, —6,—2|K(rd)s(r—r "
(D=1 T 082 5 A2 KA By= kg 2 al(r)Ti(r). (219
=

n—-1
—K(r;)é(r—rn)Jrz k(ri)ﬁ(r—ri)}, (2.8 An effective 4D gravitational constant is defined as
=1 follows:® k3= «2/B,. Equation(2.10 shows that solution

where K(r)=K(r)—K(r), K(r)=—4al, /ai,,|,+, (2.5 of Eq.(2.2 takes place only if the 4D metrig®) is the
, . , ;

and K(r; )= —4ai’/ai|,i— in accordance with Eq(B6). As Einstein space metric.

we can see, the function contains all the information about

boundary terms, and for correct dimensional reduction of ) . .

action (2.1), it is not necessary to include additional bound- !N this subsection, we apply the above-considered proce-

ary term Syey because it will lead in this case to double dure of the dimension reduction to some well known solu-

A. Examples

counting® It can be easily seen also that the integral tions (see, .9.[8,12,17,24,25.

, nooL 1. Poincarebranes

fr dfaA(f)fl(r)=—12i21 fr dral(a/)?, (2.9 In this model’ ro=—L, r;=0,r,=L,
0 - i—-1
] ) ] ) a(ry=expr/l), —L<r=<0,

where we used integration by parts. Thus, dimensional re- (2.16
duction of action(2.1) will result in the following effective a(r)=exp —r/l), o<rs<L, '
4D action:

and bulk cosmological constants = A ,= — 612, wherel is
1 the AdS radius. The pointg, andr, are identified with each
4h__— Ay 144 (CONp (4 2
St 2k5 fM<4>d XV[YPHRIY V] =204}, (210 other. A free parametér defines the size of the models in the
additional dimension. The geometry is not smooth at points
where the effective 4D cosmological constant is r=0 andr=ro=r,, thus we have two branes with ten-
sions: —Tq(ro)=T(r;)=6/(xsl). Substituting concrete
expressions into formula®.12—(2.15, we obtain, respec-

SThere are two equivalent ways of the dimensional reductionfiVely;
First, we can divide action integré2.1) into n integrals in accor-
dance with the splitting procedure described in footnote 3 and take
into account the boundary terms @ (® arising due to the pres-  ®n this paper, we focus on the problem of the stability of the
ence of branes. In this case, the scale facip(s) for each of the  considered models and we do not discuss cosmology on branes. It is
submanifoldsM(® are smooth functions and their derivatives do clear that from the point of an observer on a brane, the physical
not result ind functions. Here, the brane boundary terms are takerimetric is the induced metric on this brafiet it be theith brang:
into account directly in the action functional. In the second ap-gﬁﬁ’h)w=a?(ri)y§f3. It means we should perform evident substitu-
proach, we consider full nonsplit actiof2.1) without the brane tionsa;(r)—a;(r)/a;(r;) in corresponding formulas. For example,
boundary terms but take into account that the scale famtoy is  for this observer, physically effective 4D cosmological and gravita-
not a smooth function in points corresponding to the brane locatiortional constants read as followaS)— A, .« =A%) /a?(r)) and x5
Thus, its second derivative hasfunction terms which are com- —»K(th)4= Kiaiz(ri). The proportionality of the effective 4D New-
pletely equivalent to the brane boundary tefsse Eq(2.8)]. Itcan  ton’s constant on the brane 85(r)|p.ne Was pointed out, e.g., in
be easily checked that integration over extra dimensions in both df10].
these approaches results in the same 4D effective action. In the’Here, we follow the original solutiof8], where scale factors are
present paper, we applied the second approach. dimensionless.
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Bo=I(1—e 2>0, (2.17  time with cosmological constant =3 and scalar curvature
R[y*]=[2Dy/(Do—2)]A=12.

3
Bi=+ | (e”-1), (2.18 3. de Sitter brane (nonsymmetric solution)
We obtain this solution gluing together two submanifolds

B.— 3 oLl (2.19 covered by different charts. The first submanifold describes
270 (e ), ' the truncated Garriga-Sasaki instan{@5] and the second
one describes flat 5D space:
6
By= I—(l—e*“”'). (2.20 or
a (r)=I smhl—, osr=<L,
Thus, in this model (2.28
=Ry— <R<
Af;flf)EO 2.21) a(R)=Rpy—R, 0=Rs=Rq,

where Ry=1 sinh(L/I). Bulk cosmological constantd ;=

—6/12 andA,=0. In the points =0 andR=R,, the geom-

etry is closed:a;(0)=a,(Ry)=0. The geometry is not

smooth on the hypersurfaces of gluing L andR=0. That

iS why we have one brane with tension¥y|,_ r—o
3/K5[1/R0+(1/I)cothq_ll)] Substituting these expressions

into formulas(2.12—(2.15, we obtain, respectively,

and 'y(4) is a flat space-time metric. The Randall-Sundrum
one- brane solutiof24] corresponds to the trivial limit —

+o and also results in Eq2.2]). In this case, the extra
coordinater runs overR, but all integrals of the typ&2.12)—
(2.15 are convergent due to an exponential decrease of the
warp factorsa; , when |r|—o. Effectively, this model is
compact with respect to the extra dimension.

: ) . 1./1 2L L) 1
2. de Sitter brane (symmetric solution) Bo= E|3 ESinhl__ T + 3 R8>O, (2.29
In this model,ry=0,r,=L, r,=2L,
r 34 . 5L L 1. L 1L 3
al(r)zlsinhl—, o<r<L, Bl=—§l sml’?l—cosh|—+zsmh2|——§|— — 2Ry,
2L
a,(r)=Isinh , L=sr=2L, 3 L L 3 . L 3L
| B,=— =13 smh”l— coshy—Zsinh2-+5 |, (2.3)

and bulk cosmological constants;=A,=—6/2. In the

pointsry andr,, the geometry is closeda(rg) =a,(r,) L L

=0 (r, andr, are horizons of Adg. The geometry is not 33:3|35'”r?|—005h|—+3Rg- (2.32
smooth ihr1 Therefore in this model we have one brane

expressions |nto formula@ 12—(2. 15 we obtain, respec-

tively, AW= (2.33
Bo= I3( ;sinhzl—l_— IE) >0, (2.23  andy!}) describes either 4-sphere or the de Sitter space with
cosmological constank = 3.
1 L 1L . .
=— 3|3( smf?— COShI— + Zsinh2= 5 I_) . (2.24 4. Anti—de Sitter brane

In this model,ro=—L, r{=0,r,=L,

=-313 r? h— > h2L Sk 2.2 L+r
= sintP-coshy— 7 sin 5T 229 ay(r)=1 cosh——, —L=r=0,
L (2.34
B;=613sin*— cosh-. (2.26 L—r
| | ay(r)=I cosh——, 0=<r=<L,

So, in this model,
and bulk cosmological constantd;=A,=—6/2 The
A =3 (.27 pointsr, andr, are identified with each other. The geometry
is not closed here and can be smoothly glued in these points.
and 7(4) describes either a Riemannian 4-sphere with scalaThe points g, correspond to wormhole throats in the
curvatureR[ Y*®]=Do(Do—1)=12 or 4D de Sitter space- Riemannien space. The geometry is not smooth irThere-
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fore, in this model we have only one br&neith tension:
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In the latter equation, thé-function terms originated from

T.(r,) =[6/(x2l)]tanh(/l). Substituting these expressions a" and tension terms cancel each other. It can be easily seen

into formulas(2.12—(2.15), we obtain, respectively,

Bo=13 >0, (2.35

L
I—) (2.36

N| =

L L 1 L
B;=— 3I3( sinf?l—coshl— + Zsinh 27~

5 L 3L
B,=—3I3 S|nr?—cosh|—+ smh2I 5T (2.37

B;=6I3 sinrﬁkcoshEJrEsinh 2E (2.39
3 [ ) | '

Thus, in this model,

A =-3 (2.39

that for the Poincarérane model, we obtaifi,(r)="f(r)
=0 in accordance with Eq(2.21). For the symmetric de
Sitter brane modelf,(r)=12 andf;(r)=3, which corre-
sponds to Eq(2.27). In the nonsymmetric de Sitter brane
model, fo(r)=f,(R)=12 and f;3(r)=f3(R)=3, in accor-
dance with Eq(2.33. For the anti—de Sitter brane model,
fo(r)=—12 and f3(r)=-3, which corresponds to Eq.
(2.39.

[ll. STABILITY UNDER CONFORMAL EXCITATIONS

Let us investigate now the stability of met@g¢>(X) de-
fined in Eq.(2.5 with respect to conformal excitations. In
other words, we want to investigate the dynamical behavior
of the conformal metric excitations developing on the fixed
backgroundg®(X). To do this, we consider a perturbed
metric of the form of Eq.(B1), g®®=02%g®)=e?fg®),
whereQ)=1 corresponds to the background solution ghd
<1 describes the small perturbation limit. Obviously, the
background solution is stable against such perturbatioﬁs if

scalar curvatureR[ 7(4)]— —Do(Dg—1)=—12 or 4D Anti
de Sitter space-time with cosmological constAnt —3 and
scalar curvatur®[ y*]=[2Dy/(Dy—2)]A = —12.

To conclude this section, we consider in more detail th

Einstein equatiori2.2) with the help of formulagA1)—(A3).
In addition to Eq.(2.6), we obtain

n

Rrr[g(s)] =—4—

R, [9®¥]1=R[9"]= (2.40

2

n

a
R.L9]=R,.[y]-a%y,) —

!

+3

a

Then,rr and uv components of Eq.2.2) are reduced corre-
spondingly to
n n
RIy®1=2 2, af(nAi6i(r) +122, (a))26i(r)=f(r)
(2.41

and
n
Ru LY *1=370R0Y Y=~ yiz‘z{ 32, (a)%
=1

n n
+> AjaZ6+3>, aia{’ei]
=1 =1

(4)

=— Y fa(r). (2.42)

has a runaway behavior from th|s value. According to the
perturbation theory, full analysis should consist of two steps.
The first one is the investigation of the dynamical behavior
of perturbations on the fixed background, and the second one

8s the study of the backreaction of perturbations on the back-

ground solution. In the present paper, we are concentrating
on the first problem, namely to find which brane-world solu-
tions are stable against the conformal perturbations, and we
postpone the second problem to our future investigation.
According to the standard approach, the equation of mo-
tion for perturbationsin our case fox) or g), developing on
the fixed backgroung®, can be obtained substitutirgg®
in Eqg. (2.2) and taking into account the background solution
g® (e.g., solutions from Sec. II)A However, it is possible
to investigate this problem in a different way, namely starting
from action(2.1), putting in the perturbed metrigt®, and,
after that, taking into account the background solutigf?s.
Then, the resulting effective action will describe the dynami-
cal behavior of the perturbations on the fixed background.
From this action, we can obtain the energy momentum tensor
of the perturbations to study the backreaction of them on the
background metric.
In our paper, we follow the second approach and put the
perturbed metrig® into action(2.1), which yields

— 1 =
S(5):Zz fM(S) d®x |§(5)|(R[§(5)]_2A5(r))
5

(3.9

n-1
-2 moj d*x\[g™]

9t is clear that for a conformally transformed metric the Lanczos-
Israel junction conditions will changesee, e.g., Eq(B8)]. But, at

8This model can be easily generalized to the case of an arbitrarthe moment, we do not consider a backreaction of the conformal
number of parallel branes by gluing one-brane manifolds at throatexcitations on the metric, i.e., on the behavioragf) and on the

and identifying the two final opposite throats.

junction condition.
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With the help of Egs(B3) and (2.6), the first term in this
action reads

VIg®IRIG® 1= 0%y {Q 2 [a 2RIy W ]-f1(1)]
—80730., g ®MN

_4974Q'MQYN9(5)MN}. (32)

For generality, we do not assume the small perturbation limit
B<1 keeping in action all nonlinear perturbation terms.
Transition to this limit can be easily performed in the final

expressiorjsee Eq(3.12 below]. In what follows, we shall

consider a particular case when the conformal prefacto

is a function of 4D space-time coordinates) = (x)

=exp(B(x)). It is well known that conformal excitations of

this form behave as scalar fields in 4D space-tieg., on
branes. Because of the prefact@@3(x) in front of the 4D
scalar curvatur®[ ¥*] in action, the 4D metrig/(*) is writ-

ten in the Brans-Dicke frame. However, it is more easy to(nonsymmetric solution and the anti—
investigate the conformal perturbation stability in the Ein-
stein frame(in the Introduction we mentioned the equiva-
lence of these frames with respect to the stability analysis

(%) (4

YO =T 00 =03(x) ¥ (). (3.3

In this frame, the dimensionally reduced acti@?l) reads

1 1
Sy | TR [ T
2k7 Jm@® 2 Jm®
X(_?(‘l)MV’B,ﬂ’B,V_ZOEﬁ)! (34)
where B=\/3/2(1lk,) 3 and
~ 1
Ueff(Q)E _2Ueff(Q)
Kq
[B1Q 3+B,0 '+B;072%]. (3.5

KéleO

Here, parameterd; (i=0,...,3) aredefined by Egs.
(2.12—-(2.15.
Now, the problem of the background soluti¢h5) stabil-

PHYSICAL REVIEW D 65 044009

Small excitations near a minimum position can be observed
on branes as massive scalar field—gravitational excitons with
mass squared:

o=
2 d Ueff

aB?

EQZ azueff

m
3 902

B-0 0-1

=i(1281+282+683). (3.7
3By
Obviously, the original solutior{2.5) is stable under these
conformal excitations ifm?>0, which prevents their run-
5way behavior from the background solution. As can be eas-
ily seen, all four models considered in the previous section
satisfy Eq.(3.6). This means that all these solutions are sta-
tionary points ofU . if the effective potential is considered
as a functional o&(r). For masses squared in the case of the
Poincare the de Sitter(symmetric solution the de Sitter
de Sitter branes, we
obtain, respectively,

4

m?’= — (e *''-1)<0, (3.9
By
2—4|3 'r?L hE 3'h2L+3L<O
m —B—O —SIin l—COS I—ZSIH I— EI— s
(3.9
2—2|3 'I"FL hE 3'h2L+3L ZRS <0
m—B—O —SIin l—COS I—ZSIH |_ ET_ |—3 ,
(3.10
413 L L 1 L 3L\<
2:_ —cl o —qj — —_—] =
m Bo( smf?l cosh|—+4smh2| +3 |)>0.
(3.1)

Thus, the first three solutions are unstable under the consid-
ered conformal excitations:Q =1 corresponds to the maxi-
mum but not to the minimum of the potenti@.5). However,

in the AdS brane case, mass squared is positive and de-
creases frof? 4 for L/l —0 to zero forL/I—1 (more pre-
cisely, numerical calculations show that?>—0 for L/I
—0,988. So, the AdS brane solution is stable with respect to
the conformal excitations if the distance between brane and

ity against the conformal excitations is reduced to the existhroats of wormholes is less than the AdS radius. As was

tence of a minimum of the effective potentidly at point

mentioned in footnote 8, this case can be easily generalized

Q=1 =0, which corresponds to the absence of the perto a number of AdS branes connected with each other via the
turbations. In Appendix B, we show additionally that all wormhole throats. Then, in the case wfbranes, for the
other values for the minimum lead to metrics which in zerogravexciton mass squared we obtain an expression which is
order do not satisfy the same Einstein equation as the backgimply an algebraic sum of the tyi§8.11) (with an evident

ground solution(2.5). It is clear also that the effective cos- substitutionL—L;, i=

mological constan{2.11) should coincide withU.4 at ()

=1: AY=U.4(Q=1), which we explicitly obtain from Eq.

(3.5). The extremum existence condition reads

Ve
o |,

=1

(3.6)

1,...n for each member of the
sum) and overall prefactoBal. Here,By is also a generali-

10Masses squared of gravexcito(&8—(3.11) are written in di-
mensionless units. If we take into account footnote 6, then physical
gravexciton mass for an observer on tith brane ism—my
=m/a(r;).

044009-7



MARIAM BOUHMADI-LO PEZ AND ALEXANDER ZHUK PHYSICAL REVIEW D 65 044009

zation of Eq.(2.35 to an evident sum. This mass squared isthis minimum are observed as gravitational excitons on

positive, e.g., ifL;/I<1,i=1,... n. branes. However, if this extremum is a maximum, the con-
For small fluctuations near the minimum bfy, action  formal perturbations have the runaway behavior, and the
(3.4) reads background solution is unstable against such excitations.
We have shown that in the case of one and two Poincare
ge?zz_lzf d4X\/|~7(_4)|{R[3’(4)]—2A(elflr)} branes, one de Sitter brg(wmmgtric solutioh and one de
Ky Jm® Sitter brane(nonsymmetric solution all these solutions are

1 unstable with respect to these excitations because the effec-
+ _f d*x[3P[(-5 DB B ,—m?B?), tive potential has a maximum but not a minimum at the point
2 Jm@® s corresponding to the originalbackgroung solutions. In
(3.12  these models, the 4D effective cosmological constant is non-
negative[see Eqs(2.21), (2.27), and(2.33]. However, one
where the first integral corresponds to zero-order theorAdS brane solution is stable if the distance between brane
(2.10 (background solutionand the second one describesand throats of wormholes is less than the AdS radius. The
gravitational excitons. This effective action can be used foreffective 4D cosmological constant is negative in this model
investigation of the gravexciton backreaction on the backf{see Eq.(2.39]. The latter case is easily generalized to a
ground metric. stable model with a number of parallel AdS branes connected
If we put in action(3.1) conformally transformed brane with each other via the wormhole throats. It is necessary to
tensionsT(r;) = (1/Q)T(r;) [see Eqs(B7) and(B8)] instead  note that we found stability or instability against gravexci-
of T(r;), the effective potential reads tons for models with the same kind of branes, which are
correspondingly stable or unstable against radions consid-
1 3 . 3 ered in[11,12], although a direct comparison between the
Uer(2)= B_[BlQ +B07 "+ B3 "] (313 models can only be made for cases with two or more branes.
0 Another remark involves the analogy between the stabil-
In this casef)=1 is not the extremum of the effective po- ity under conformal perturbations in the brane-world models
tential (3.13 for all of the four considered solutions: they are considered here and the standard Kaluza-Klein models. The

not stationary points of this potential. situation with these four solutions is similar to one we have
in the pure geometrical case in the standard Kaluza-Klein
IV. CONCLUSIONS approach1]. Here, the stability also takes place when the 4D

effective cosmological constant is negative. If the effective

In the present paper, we investigated the stability of 5Dcosmological constant is positive, we have maximum of the
brane-world solutions against conformal perturbations. Foeffective potential instead of the minimum. To shift the mini-
these models, the five-dimensional metric contains a fourmum of the effective potential to positive values, we should
dimensional metric component multiplied by a wdgeale include matter in the model.
factora(r) which is a function of the additional dimension.  We found also that 4D effective cosmological and gravi-
Models containn parallel branes “transversal” to the addi- tational constants on branes as well as gravexciton masses
tional coordinate. As a point of interest we consider bulkundergo a hierarchy. It was shown that for observers on dif-
cosmological constants between branes and tensiorferent branes with different warp factors, these parameters
(“vacuum energiesj on the branes. The scale factor is a have different values. A similar result with respect to the
continuous piecewise function while its derivative has jumpseffective 4D Newton constant was obtained 1]
on the branes. There are a number of well-known exact so- There are a number of possible generalizations that are
lutions which belong to this class of modele.g., worth investigating. First, it is of interest to include richer
[8,12,17,24—-28. We investigated the stability of some of types of matter in the model, e.g., perfect fluid in bulk as
these models under the conformal excitations, which arevell as on branes, which simulates different forms of matter
functions of 4D space-time. Such excitations are of speciain the Universe. The presence of matter can stabilize radions
interest because they behave as massive minimal scalar fields the brane-world models with non-negative 4D effective
in 4D space-time, for example they can be observed as masesmological constant on branes, as was shov8,itb—2Q.
sive scalar particle—gravitational excitons on branes, such a&s we mentioned above, stabilization of gravexcitons in
takes place in the Kaluza-Klein approgdh6]. models with the 4D positive effective cosmological constant

To perform the stability analysis, we put the perturbedtakes place also in the standard Kaluza-Klein approach if we
metric in the original 5D action, took into account the back-include matter hergl]. Thus, we expect a similar stabiliza-
ground metric solution, and integrated the action over theion effect for gravexcitons in the brane-world models. The
extra dimensior{the dimension reductionThe obtained 4D second possibility consists in a generalization of the model to
effective action describes the dynamical behavior of the pera multidimensional case witb>5. It will give us the op-
turbations on the fixed background. The extremum of theportunity to include into consideration already obtained exact
effective potential in this action corresponds to the back-brane-world solutions witld =6 and more dimensions. Ad-
ground solution. If this extremum is a minimum, the confor- ditionally, as we wrote in Sec. lll, the investigation of the
mal perturbations oscillate around the background solutioackground solution stability against the conformal perturba-
providing its stability. In this case, small excitations aroundtions is only the first problem. When we found the stable
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solutions, the second problem consists in the investigation ofg \ [g®]=Ry,\[g®)]— (D —2) B.p.n— 9ig DKL Bk

. . . L
the perturbation backreaction on the background solution.

We leave these issues for future work. +(D—=2)B.mB:n—(D—2)giNg P " BB

(B2)
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APPENDIX A: BLOCK-DIAGONAL METRICS ApGun el ;0 TiyNIgPo 0y

In this appendix, we present some useful formulsee <P (x v:) S 8 S(V— v B4
also [29]) for curvature tensors in the case of a block- G (x,Yi) S ooy —Yi), B4

diagonal metric of the form which describes a model with the bulk cosmological constant

e20(y) y(DO)(X) 0 /TD andn branes of tensioﬁi(yi). Let us consider a particu-
(g(DO+D1>(X y)= v (A1) lar case of the constant conformal transformati&d): )
MN ’ 0 gEnDnﬂ(y) ' =const. Then, with the help of EqéB2) and (B3) for the

conformally transformed metrig®), we obtain
For this metric, the Ricci tens@everywhere in this paper we

use the Misner-Thorne-Wheeler book conventidi®9]) Run[9®' 1 3giRIg™]
reads 2 n-1
=~ Ro0%R - == Ty
R [0 1=R,,[ 701~ €27y 0D og PV ™ 3ner) (9 07) Vg™ =0
+gPumy (g ], X QPP 2[gPal(x,y,) g, 0 (x,y)
X Sy N Oy —Yi). (B5)
Runl9®'1=Rn,[9>]=0, (A2) |

This equation shows that the conformally transformed metric
Rl 0]= Rl 621~ Dol (9mo) (3y0) + VP (3,01, g(® is the solution for the model with the cosmological con-
stant Ap=0°Ap and the brane tensionsT;(y;)

whereD=D,+D; and V"7 is a covariant derivative with =0P Pt 2T (y,). The latter one is invariant foD

respect to the metrig®?. The scalar curvature reads, cor- — Dot 2, which certainly is not the case f@=5 if Do
respondingly, =4. Thus, if we want the solution to correspond to a mini-

mum of the effective potential for the conformal excitations
describing the model with the original cosmological constant
and the brane tensions, this minimum should take place at
(Dy)mny (D1) O=1.
X (o) (dnr)+ 20 Vo (0n)] (A3) Let us consider transformation of the trace of the extrinsic
curvature evoked by conformal transformation of the metric.
APPENDIX B: CONFORMAL TRANSFORMATION In the case of 5D metri€2.5 written in Gaussian normal
coordinates, the trace of the extrinsic curvature of the hyper-
surfaceX: r =r;=const reads

RIg"®]= e 2"R[y®9] + Rg®¥] = Dol (Do +1)gP0™

For a conformally transformed metric,

Gn(X) = Q) g (X)=e*Mgi(X),  (BY) g%

Y 1da
K(ri):_anM|ri:_§g(4)MVa_:L P
the Ricci tensor and the scalar curvature read, correspond- i g
ingly, (B6)
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wherenM= sM is the unit vector field orthogonal . If the g®(X)=g®(X)=02(x)dredr+a’(r)yh(x)dx @ dx".
extrinsic curvature has a jump at this hypersurfa€ér;) (Cy

=K(r;")—K(r;)#0, then it results in the Lanczos-Israel

junction condition, Subsequent application of appropriate formulas from Appen-

1 3. dixes A and B yields
T(ri):_ZZK(ri)y (B7)
Kp
JIa®|RIg®
where T(r;) is the tension of the brane which causes the I9™IRG™]
jump of the extrinsic curvature. =0a*\|y?|x{a qR[ },(4)]_29719;#;”(4);w]
For the metriogt®), obtained with the help of the confor- .,

mal transformatior(B1) of the metric(2.5), the unit vector —Q75f ()}, (C2

field orthogonal t&® is ™ =0 ~16)=ny, =04}, . Here, we
consider the case whefl=()(x) does not depend on the
extra dimensiorr. Then, we obtain for the trace of the ex-
trinsic curvature of the conformal space-time

wheref(r) is defined in Eq(2.7). To get this expression, it
is useful to go first to a new coordinaRdR=a"(r)dr
and then, after using conformal transformation formulas,

_ _ 4 1da come back ta again. It can be easily seen that after confor-
K(ry)= —VMﬁ""|,i= “aadrl (B8) mal transformation to the Einstein frame,
i
Correspondingly, the tensions of the brane in conformal and YEX)=F0)=Q(X) ¥(x), (C3)

original space-times are connected with each other as fol-
lows: T(r;))=Q 1T(r;) in accordance with Eq(B5). ) ] ) ) )
and the dimensional reduction, acti¢8.1), is exactly re-
APPENDIX C: TRUNCATED CONFORMAL duced to the effective actiof8.4). Thus_, gravexcitons have
TRANSEORMATION exactly the same massék7)—(3.11). This result shows that
geometry(gravitational field under conformal transforma-
In this appendix, we shall show that our results do nottions behaves as an elastic media. For an elastic body, the
change if only additional dimension undergoes conformakigenfrequencies of its oscillations do not depend on the

perturbations in metri¢2.5): manner of excitation.
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