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Dirichlet boundary value problems of the Ernst equation
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We demonstrate how the solution to an exterior Dirichlet boundary value problem of the axisymmetric,
stationary Einstein equations can be found in terms of generalized solutions of ¢kleifigatype. The proof
that this generalization procedure is valid is given, which also proves conjectures about earlier representations
of the gravitational field corresponding to rotating disks of dust in terms @kBad-type solutions. As a
further result, we find that, in contrast with the Laplace equation, arbitrary boundary values may not be

prescribed.
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[. INTRODUCTION Backlund type solutionssuffice to approximate the exterior

gravitational field of an arbitrary differentially rotating disk
Extraordinaril | t astrophysical objects’ St
xtraorcinarily massive, compact astrophysical objectS ), ;g paper we investigate the question as to whether the

such as neutron stars require a fully relativistic treatment, . tment of the boundary value problem of an arbitrary dif-
This motivates the study of the relativistic gravitational fi9|dferentially rotating disk of dust by means of @und type
of axisymmetric, stationary rotating bodies. _ solutions can also be applied to extended boundaBies
The investigation of the exterior field, i.e. of arbitrary \hich can potentially form the shape of a rotating body. We
exterior boundary value problems of the axisymmetric stagenote byB a smooth spatial curve, at which regular bound-
tionary Einstein equations, can only be a first step in thisary values are prescribed. The solubility of such Dirichlet
direction, for neither the shape of the bo@ye. the bound- boundary value problems for sufficiently weak relativistic
ary) nor particular boundary values may be prescribed. For &oundary values has been proven by Rd@d], see also
given equation of state characterizing the matter of the rota{25,26. In illustrative examples we will take spherical
ing body, the boundary and the values there result from tranboundaries in order to make the formulas more transparent
sition conditions since the metric along with its first normal and therefore get better insight into the underlying math-
derivative behave continuously at the boundé@nyappropri-  ematical structure. However, the general statements are valid
ate coordinates Therefore, a subsequent step must be thdor arbitrary extended.

combination of a procedure to compute the interior solution The paper is organized as follows. At first, the metric
with the method to treat the exterior field in order to realizeténsor and the Ernst equation are introduced. Then, solution

the transition conditions. technigques to solve boundary value problems of the real axi-

Our aim is to show a way to handle the exterior field. InSymmetric three-dimensional Laplace equation with the

particular, we want to make use of the variety of exact anaPoundaryB are discussed in order to prepare the relativistic

lytic solutions that are available in the exterior region.tre.atment: These splut!ons V.V'” be given in te_rms of an ana-
Thanks to the facts thdfl) the exterior vacuum field equa- lytic function H, which is defined on a curvE in the com-
tions can be summarized in a single nonlinear complex difPlex plane and satisfig$(X) =H(X) (with Xe C and the bar
ferential equation—the so-called Ernst equatfdr2], and denoting complex conjugatu))nHere,' the curvd“' is closely
(2) the Ernst equation has been found to be the integrabiligfonnected with the bounda. In this formulation, the so-
condition of a corresponding linear matrix problem, it is pos- utions describe both a regular interior and exterior field,

sible to apply various soliton metho¢see[3—13)) to create which (_in general assumes (_jifferent valu_es on the inner e_md
explicit exterior solutions, among them thé dkund trans- outer side oB. The prescription of these interior and exterior

formations and the Riemann-Hilbert techniques. By exten-bound"’“.y values gnlquely determines the fqnchbn.e. Fh's .
formulation permits the simultaneous solution of an interior

S|ved|n&/es_t|gat|o|n. of trlﬁ Iattt()er, N:ugebauler and I\t/l)lemel tshucténd exterior boundary value problem.
ceeded In solving theé boundary value problem thalt rpg gecond section treats the hyperelliptic solutions of the
corresponds to an infinitesimal thin rigidly rotating disk of g« equation and their generalization by means of a suit-

dust[14-18. In particular, they found their solution to be- gpe |imiting process. Similar to the formulation of solutions
long to a “hyperelliptic class” of solutiong17], see also

[18-21]. Further investigations as to whether this class of

solutions can be used to solve more general boundary valueithe Bickiund type solutions can be obtained by applyirigiBa
problems corresponding to differentially rotating disks ofjund transformations to purely real “seed” solutions of the Weyl
dust have been carried out by Ansorg and Mej@e] and by  class. These solutions form a subclass of the hyperelliptic class; see
Ansorg[23]. In the latter paper it was demonstrated that the 23].
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of the real Laplace equation, we find these generalized solu- (1) The boundanB is given by a smooth spatial curve
tions (1) to depend on an analytic functiop defined onI’ which can be described by some positive analytic function
(and, in general, not subject to further requiremeatd (2)  rg:[—1,1]—R,:
to permit the simultaneous solution of an interior and exte-
rior Dirichlet boundary value problem of the Ernst equation. B={(p,{):p=rg(cosd)sin,{=rg(cosd)cosy,
In the case of a flat interior field we find an explicit relation
of the functiony and the values of the Ernst potential at the de[0m]}.
exterior part of the symmetry axis. .
In Secrz). A, we ini//estigati/a the solutions of the dkéund (2)_ _Along the bqqndaryB we require regular boundary
type. Apart from regularity properties we discuss the generconditions of the Dirichlet type, i.d.is given for (p,{) € B.
alization of these solutions which can be performed since (3 Regularity at the rotation axis=0 is guaranteed by
they form a subclass of the hyperelliptic solutions. As a re-
sult we prove conjectures formulated [ia3], in particular ﬁ(o =0
that the Neugebauer-Meinel solution can be written as a well p '
defined limit of Baklund type solutions.
Because of their mathematical simplicityompared with (4) At infinity, asymptotic flatness is realized by 1.
the much more complicated hyperelliptic solutipnshe The treatment in Sec. Il will provide us a formulatidn
Backlund type solutions play the fundamental role in our=f(y) which is sufficiently general to satisfy interior and
treatment for approximating solutions of an exterior bound-exterior boundary conditions of the Ernst equatidp, i.e.
ary value problem by analytic solutions. This is carried out infor an appropriate prescriptidrof (not necessarily coincid-
Sec. llIA. As a result, we find that in contrast to the Laplaceing) interior and exterior boundary values, there is a uniquely
equation, arbitrary boundary values of the Dirichlet type maydetermined functiony:I'—C [with T'={Xe C:(]JX|,9/X)
not be prescribed. e B}] such that the Ernst potentiél=f(y) is both regular
In what follows, units are used in which the velocity of within and withoutB and assumes the above boundary val-
light as well as Newton’s constant of gravitation are equalues at the inner and outer side Bf Since for physical rea-

to 1. sons we are only interested in an exterior solution, the free-
dom in the choice of the interior boundary values will be
A. Metric tensor, Ernst equation, and boundary conditions used to restrict the functiory such that the solutiorf

h ric t ‘ . tric stati q =1f(v) can be represented by &dund type solutions. This
€ Metric tensor for axisymmetric stationary and asympsg qtjined in the third section. Furthermore, for the exterior

totically flat vacug.m space—timclas reads as follows in Vveyl'solution we will impose the additional physical requirement
Papapetrou-coordinatep, ¢, ¢,t): of reflectional symmetry with respect to the plage0 (see
ds?=e~2Y[e(dp2+d?) + p2de?]— eV (dt+a de)>. [27]) which leads to

The field equations are equivalent to a single complex rg(r)=rg(—7) forall re[-1,1],
equation—the so-called Ernst equation

(ROAF= (V)2 f(p,—{)="f(p,¢) forall (p,{) outside B.

B. Boundary value problems of the Laplace equation

#? 19 & J 9
:ﬁ ;%Jra_gz - %3_5 ' 1) In this section we prepare the general formulatibn
p =f(y) by considering the corresponding non-relativistic
where the Ernst potentidlis given by gravitational boundary value problem—i.e. the general
boundary value problem of the axisymmetric three-
_ . 4U eV dimensional Laplace equation
f=e?V+ib with b,(=7a,p, b,p=—7a,§.
@) AU=0.
The remaining functiork can be calculated from the Ernst Any real solutionU which is both regular inside and outside
potentialf by a line integral: the boundaryB can be written in the form
k 1 1 H(X)dX
S 2_ 2, 44U 2_ 2 o
p (U,p) (U,g) + 4e [(b,p) (b,g) ]1 U(plgiH) 2 ri §F WZ (3)
with

k 1
d_ —4u
p—ZU’pU1{+§e b’pb’g.

In this paper we treat the following boundary value problem 2As already mentioned above, the Dirichlet boundary values can-
of the Ernst equatiofil): not be chosen arbitrarily.

044006-2



DIRICHLET BOUNDARY VALUE PROBLEMS OF THE . .. PHYSICAL REVIEW D 65 044006

I'={XeC:(|3X|,%X) e B}, IIl. THE HYPERELLIPTIC CLASS OF SOLUTIONS
AND ITS GENERALIZATION BY A SUITABLE
LIMITING PROCESS

H:I'—C is an analytic function withH(X)=H(X),
@) Meinel and Neugebauéi7] as well as Korotkirf18,19,
(see alsd20,21), were able to construct the hyperelliptic
W= \/m class of solutions con'gaining a finite ljumber of co_mplex pa-
z ' rameters and one arbitrary real solution to the axisymmetric
) three-dimensional Laplace equation. By investigation of cor-
<0 for (p,{) outside B or R(X)<{, responding Riemann-Hilbert problems one finds that this
>0 for (p,{) inside B and R(X)>{. class can be generalized in an appropriate manner. The gen-
eralized class turns out to contain all Ernst potentials which
The functionH is uniquely determined by the interior and are both regular within and without the bounddywhich
exterior boundary values of the potentidl For a spherical assume(in general different boundary values at the inner
boundary(with radiusrg=1) we may writeH in the form and outer side oB, and are sufficiently weakly relativistic,
i.e. close to the flat space solutide=1. In this section we
0 discuss these generalized solutions which allow us to ap-
HX)= 2 (H{OXI71+HOX),  HPeR. proximate the solution to a simultaneous interior and exterior
=1 boundary value problem.

R(W,) =

Then the coefficientsi (™) can be read from an expansion of

] : A. The hyperelliptic class of solutions
the boundary values in Legendre polynomials s P

We adapt the hyperelliptic class of solutions as given in
[17] to our purposes by writing: For a given integee1, a

n
P.(X)= d_[(XZ_l)n] sef (X4, ... Xpt=1X,}p of complex parameters, and an
n n -
2"n! dx analytic functionH:T'—C, H(X)=H(X), the following ex-
) ) . pression:
of the cosine of the angular coordinaté with p
=rsind, {=rcosyv: i xMXPd X
m gt =e 3, [
IrirT11U(p,§;H)=JZl H{*)P;_,(cos®) 1 [ HX)XPAX .
b w, | ©
imU(p,;H)=— 2, HIIP;_y(cosd). with
ri1 =1
JE— p JE—
Discussion W= \/(X+iz)(x—iz) 1:[l (X=X, )(X=X,), z=p+i,

(1) Reflectional symmetry

P rxmxidx 1 [ HX)XIdX
v=1 JX, w ﬁ r Wz '

«U(p,;H)  for (p,¢) within B,
—«kU(p,{;H)  for (p,{) without B,

) satisfies the Ernst equation. Thedependentvalues for the
o, . . X" as well as the integration paths on a two-sheeted Rie-
with «“=1 is obtained ifrg(r)=rg(—7) and H(—=X)  mann surface have to be taken from the solution to the Jaco-
=kH(X), i.e. an odd(even function H produces an even pjan inversion problen(?).
(odd exterior potentialJ in the coordinatel. The Ernst potentidl f=f({X,},,H) is regular at p,{)

(2) The freedom of the choice of the interior field can be :(l’J[XV]LiR[XV]) as can be deduced from an appropriate
used to restrict the functioH in an appropriate manner. FOI’ combination of the equation@) and Corresponding rear-
example we may choogB(H) =const forXeI', where this  rangements of the terms occurring in E@). In general,
constant can be arbitrarily prescribed. For the above spherg({x,},H) assumes different values at the inner and outer
cal case, this results iH{1) = —H{"). Then the functiorH  sides of the boundar, i.e. it possesses a jump aloByg
is uniquely determined only by the exterior boundary values.

Analogously, in the relativistic treatmefgee Sec. Il Bwe
may choose the corresponding functignsuch that3(y) 3In the following, the notatioXy, ... X,} will be abbreviated
=const=0 for XeI', which ensures that the corresponding by {X,},.

Ernst potentiaf can be approximated very well by solutions  “For simplicity, we suppress the coordinate dependence and write
of the Backlund type. only f=1({X,}p,H).

osj<p (7
U(p!_ng):
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B. The generalization of the hyperelliptic class of solutions by X—iz
a suitable limiting process AMX)= iz
+iz

This section contains a theorem which ensures that the

above hyperelliptic solutions can be generalized in an appraone explicit way to create solutions to the Ernst equation
priate manner such that simultaneous interior and exteriofhat are regular within and withoBand possess a jump &t
boundary value problems become soluble by means of thesg to use the Riemann-Hilbert-techniques, by which we force

solutions. The theorem consists of three parts, the proofs ahe corresponding matri® to possess a multiplicative jump
which are outlined. Moreover, we illustrate certain propertiesgt 1

of the generalized class.

b, =d_C(X)
Theorem
Given the analytic functiony:T—C which can be ex- and moreover to be regular V\{ithin. and withd“ut_The.indi-
tended to some compact neighborhdbgaboutT’, then ces “+” ar_1d ‘= ref_er to the interior anq exterior sides of
(1) for sufficiently smalls, the Ernst potential I, respectively. The jump-matri® = C(X) is independent of

the coordinatesz(?) and can be cast into the form
f(ey)=lim F({XP}, e Hp)

p—

a(X)

X
exists and is independent of the particular choice of the se- AX)

quences{{X(P},}5 and{H}; which serve to represent  If the functionsa and are prescribed, the Ernst potential at
by an arbitrary point f,{) can be determined by the solution of
a linear integral equation; s¢28].

0 — - _
C(X)=< 1). a(X)=a(X), B(X)=-B(X).

P As outlined in[29], the linear system can be integrated
yX)=limH,(X) [T (X=xP) for XeG,. along the rotation axis, which yields in agreement with the
p—oe vl above Rieman-Hilbert problefip=0, ¢>—rg(—1)]:
(2) The Ernst potentiaf =f(evy) is both regular inside <f_ 1\[F(X) 0
and outside the boundaB and assume6én general differ- t= ( )
ent boundary values at the inner and outer sidé8.offhe f —1/1B(X) 1

exterior and interior Ernst potentials can be extended beyond o

the boundanyB to the regionB,={(p,{):{*ipeC,}. (1 f {1 B(X)
(3) Any sufficiently weak relativistic Ernst potentidl = 1 —f]\o FX))

which is both regular within and without the boundaBy

with (in general different boundary values at the inner and The notation® = refers to the two sheets on which is

outer side ofB, can be written in the above manner BS gefined: “+” means the sheet in which=+1 for p=0.

=f(7). The functiony is uniquely determined by the Di- The function§ F=F(X) and B=B(X) are defined in the

richlet boundary values dfat B. complex plane and are regular within and without the con-

tourI' (F—1 andB—0 as|X|—®) but possess a jump at

I'. This jump can be taken from the above Riemann-Hilbert
(1) In order to prove the first one of the above statementgroblem:

we establish a relation between the functipiand holomor-

9

Proof

phic functionsa and 8 defined onG., from which the Ernst Fi=aF_, B,=aB_+8. (10
potentialf can be calculated via the solution of a Riemann- ) . L
Hilbert problem. (b) We establish a connection be.tween the relativistic pa-
(a) To introducea and B, we follow the treatments of 'a@meters as well asy and the functions=.. andB.., now
[14,28 and[29]: additionally depending on. Thus, by virtue of Eq(10), we
The Ernst equation is the integrability condition of the 98t@=a(X;e;7) and 8= B(X;e;7). o
linear problem Given the functiony which is holomorphic or,,, we
denote byB, the Banach space of all holomorphic functions
o T T on G, with the norm
CD,Z=[f+f]1( ‘ Z)cp
A, f, ||o]|= sup|a(X)| for oeB,.
XEI;,}/
A , ,
O =[f+f]? )\;lfi f*‘ ® (8y  We now define functions
Z ,Z

where®=®d(X,p,{) is a 2Xx2-matrix and the spectral pa- °The functionB=B(X) is not to be confused with the boundary
rametera is given by B.
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F.:[0e,]—B,, B.+:0g,]—B,

that satisfy the following system of differential equations:

d " "
SEF::Fi(Lrsl)"‘Bi(L:SZ)
d B2-1
28@ == TEL (L+sz)+F (L+53) (11

Here, thes; as well as thed ., are introduced as follows:
(i) Thes;, s;:[0e,]—B,, follow from F. ,B. by

G
[(F++F_)sl+(B++B_)sz]tanh§=G(F -F,)
-1 B?-1 G
(By+B_)s;+ = +? S, [tan 5
=G(B_—-B,)

s3=F.’[2F . B.s;+(B ~1)s;]
G?=s?+s,s;.

(if) Any function o € B, can uniquely be written as the
sum

o=0,+to_

with o, and o_ only possessing singularities without and
within the curvel’, respectively, and-_ —0 as| X|—c. The

linear operatorslit L. :B,—B,, extract these functions

oL
I:to:io't
Explicitly:
1 [ o(Y)dY
27 Jr X=Y

for X within T,
for X without TI',

(Lya)(X)=—0(X)
(L o) (X)=a_(X)

z[

and these functions can be extended-tosinceo € 3, .
By means of the substitutions

F.=1+gF*%

B.=¢B%,

s;=e(F* —F*)+¢?s}
s,=&(B* —B*)+&%sh

S;=&(B* —B*)+¢?s}

the differential systenill) reads

PHYSICAL REVIEW D 65 044006

F* h,(e;F* F* ,B* ,B*)
d | F* hy(e;F* F* ,B* ,B*)
de| B* | | ha(e;F* F* ,B* ,B*)
B* ha(e;F* F* ,B* ,B*)

with the functions
h;:[0e,]1XB}—B,

satisfying a Lipschitz condition with respect to all arguments
in a sufficiently small interval 0, ,]; the upper limite, is
defined in this manner. Note that for the continuity of the

linear operators. . it is necessary to define them ¢, and
not on the Banach space of functions analyti¢ at

As a consequence of the theorem by Picard and Liiflelo
the above system of differential equations has a solution
which depends uniquely and continuously on the given ini-
tial conditions. This is the point at which we bring in the
function y:
BX(e=0)=—L.(y—»*),

FX(e=0)=L.(y+v%),

where the functiony* e B, results fromy by

Y*(X)=y¢(X) for XeG,.
These initial conditions together with the differential equa-
tions (11) yield F.. andB.. which only possess singularities
without (+) or within (=) the curvel'. Thus, the function&
andB obey a Riemann-Hilbert probleii0), and the associ-
ated functionsyr= a(X;e; y) andB= B(X;e;y) are uniquely
determined. Consequently, we find a formulatioaf(e;vy)
by solving the linear integral equation that has been men-
tioned in(a) for® a=a(X;e;y) and B=B(X;e;v).

(¢) If we prescribey, in the form

Yp(X) = ><>H (X=X

then it can be shown that the Ernst potential following from
the above reads

f(e;yp) =T({XP},,eHp).

The proof of this uses many of the solution methods that
were developed by Neugebauer and Meinel when they
solved the boundary value problem of the rigidly rotating
disk of dust. These methods are partially giveh28]; in full
they will be treated in a subsequent paper.

For any series{yp};o of the above functiong,, with vy,

—vy asp— and y,e B,, the corresponding Ernst poten-
tials f="f(e;y,) converge for sufficiently smak since the

5The solubility of this integral equation is ensured for sufficiently
small e, see point(2) of the proof.
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functionalf=f(g;y) depends continuously op Because of tion . But since the weakly relativistic Dirichlet boundary
the above equality, this implies the convergence ofvalue problem is uniquely solublg24], the global interior
f({X(Vp)}p,sHp) asp—o. and exterior Ernst potentidland hence the above deriva-

Remark The differential system(11) can be explicitly tives) are determined by the boundary valdesone, which
solved if y is regular withouf” with y—0 as| X|—. Then  therefore determineg as well.

one obtains
inhG Properties of the generalized hyperelliptic solutions
sin
a=coshG+ (y+ y*)f, (1) For re R one finds
sinhG . f(ey)cosy+isin
B=—(y—7") . GP=yy*, f(e®ey)= (o7)co8) d (12)

2G ~ cosy+if(ey)sing

from which the Ernst potential along the rotation axis can b

taken directly; see Eq13) below. .
(2) The proof of the second statement uses the relation\é'Ith

a=a(X;e;y) and B=pB(X;e;vy). In particular, we have

SThis can be seen by investigatifig{X,},.1,Hg) asR—

a,BeB, for e €[0,e,] and moreoveiw=1+0O(e) and 8 P
=((g). This means that for sufficiently smail the linear ¥p(X)=H(X) Hl (X=X,),
integral equation that yields the Ernst potential from the .
functionsa and B8 can be solved for arbitrary coordinates _
(p,{) € B; see[28]." Moreover, the Ernst potential can be ex- ey o(X)= lim yp. g
tended to the regionﬂ%y sincea,,BeBy. The different boundary R—
values at the inner and outer sidesBofollow from the construc- HX) P
tion. ; i
. _ _ = lim | — ——(X—Ré&" X=X
(3) Finally, the proof of the third statement uses the linear R0 R ( )VUl ( 2

system(8). For X e I' with RX=0, we establish the matrices

d*[X,p=0,=rg(1)*0] by integrating the linear system i

along the inner and outer side Bf with the initial values :FL'TW HR(X)(X_XPH)VHl (X=X,) |-
. 11 . .
D= (X, RX,IX)= 1 1) Note that in the integral terms of Eq&),(7) for v=p+1
- the substitutionX= X, 1(1+1t?) is useful.

The property(12) describes the general invariance trans-

The coordinatel=rg(1)=0 stands for the inner and outer
& =rs(1) formation of f(ey) which retains the asymptotic flatness (

side of B at p=0, respectively. The integration of the linear 2y . :

system can be performed since for a sufficiently weak rela— 1 @sr—=). f(e""ey) is obtained fromf(sy) as one

tivistic regular Ernst potential again the theorem by Picaro‘:’erfo_”ﬁzS the transformatiof21) of [30] with the parameters

and Lindeldf applies. Atp=0 and{=rg(1)*0, we then ¥~ SN #,8=y=—coty of that paper. ,

establishd from ® by & =®M ., where the regular matrices (2) A given functiony:I'—(: can be representeq in many
. - ways by sequence§{X{P} 1* and{H,}” . Consider the

M. (defined onI') are chosen such thab assumes the ] PIPo PIPo i

structure(9), i.e. we calculate the functiors. andB... In  following example for a spherical boundarg=1. Sincey

order to determine we choose some,>0 (says,=1) and IS @nalytic onl’, it can be written as

integrate the differential systeffil) backwards, starting at

go (here the initial conditions are just the established < _ _

F.,B.), until we reache=0, and ready from the weak y(X)=>, (AIXITE4 X)), XeT

field expansion: =1

1 where
Y= I|m2_[(F—_F+)+(B+_B—)]-
s 0%€
. . (=) 2j -1 .
So we have proven that the interior and exterior boundary T E S . Q. (cos?)P;_y(cosd)sind dd,

dataf andf ,,f; (the derivatives also enter the linear system
of a sufficiently weak relativistic Ernst potential, which is

regular within and withouB, uniquely determine the func- _
Q.(cos¥)= lim

r—1+0

1 [ y(X)dX
2_77i§1“ Wz .

"Note that the linear integral equation might globally only be
soluble fore<e} <e, . For eachne N we find a representation
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n
M(X)= 2 (3 XX )
=1
_ Pn
=R,e2nx™ [ (X—xM).
v=1
Thus we can write

f(ey)=Ilimf(ey,)

n—o

FEXMY,  eHy) cosysy +isin g,
= lim
n—s| cosy +if (XM}, eHp)sing,

with H,(X) =R X™.

(3) If the analytic functiony:I"—C is regular outsidd"
andy—0 as|X|—c, then one find$(p,;ey) =1 within B

and
G—s_sinhG
f(p:o,g>rB(1);eY)ZGCOShg+s+sinhG
X=¢
GcoshG +s, sinhG
f(p=0L<-rg(—1);ey)= G—s_sinhG

with

5.00= 2[00 £ ¥(X)],

G3(X)=s%(X)—s?(X), X without T.

PHYSICAL REVIEW D 65 044006

The expansion(15) follows since, in the weak relativistic
region, Eq.(7) yields X=X+ O(&?).
(6) Another interesting property is

fey*)=T(ey) for ¥*(X)=x(X).

If, in particular, y=y* thenf=1f(ev) is real and belongs
to the Weyl class.

IIl. APPROXIMATION OF ARBITRARY EXTERIOR
BOUNDARY VALUE PROBLEMS
BY BACKLUND TYPE SOLUTIONS

Although the generalized hyperelliptic class permits the
simultaneous solution of a sufficiently weak relativistic exte-
rior and interior boundary value problem of the Ernst equa-
tion, its mathematical complexity makes it inconvenient for
usage in a procedure to approximate the solution of the
boundary value problem in question. Therefore one is led to
investigate whether the much simpler ddaund type solu-
tions suffice for our approximation scheme of owmlyterior
boundary value problems. As we will demonstrate in this
section, the freedom of the choice of the interior field allows
us to sety#0 for X e I', which ensures that the correspond-
ing Ernst potentiaf can be very well approximated by the

(13) Backlund type solutions.

A. The class of the Baklund type solutions and its
generalization
Definition

The Baklund type solutionsg({Y,},,G) depend on the
set{Y,}4 of complex parameters and on the analytic function

G:I'—C with G(X)=G(X) and are defined by

Hence, in the case of a flat interior field there is an explicit

relation of the functiony and the values of the Ernst poten- D,
tial along the exterior part of the symmetry axis. fe(p,&i{Y0tq,G)=fog— (16)
(4) The Ernst potentiaf =f(sy) possesses a reflectional B
symmetry where
f(p,{iey) for (p,d) within B,
f(p,—§;87)=[—__K _ 1 1 1 1
f(p.iiey) for (p,{) without I?Z,M) 1 any s taehag
_ 1 A2 A3 Ao
if rB(T)_=rB(—T) _and y(—X)=Ky(X),K2=1._ We obtain D - +1 al)\i az?\g azq)\gq
the desired reflectional symmetry of the exterior Ernst poten- N . . . '
tial for k=—1. : :
(5) There is a weak field expansion b f(e7y): +1 a\¥t gt a5l
2 2 2
e [ y(X)dX , 1 A A5 \og
+0(e%). (15

In{f(e7)]= 5=

By differentiating Eqs(6),(7) with respect ta:, whereH and

{X,}p are fixed, one deduces that

X _Y,-iz
: Aoy 1= Y 5z

d 1 P d
ga N Xogp eH) )= 5— 3QFH(X)V1:[l (X=X ))W

. 1 3€G(X)dX
o~ 2w $w, )
)\'ZVYZV*lzll
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The generalization of the Beklund type solutions

o Aema(Yuti) £ GOOOX
@2v-1= AN i (X—Y,)W,

The functiony, which belongs to the Ernst potentiél
=fg({Y,}q.G) can be taken from Eq17):

a0, 1=1.

4 xX-v,
The Ernst potentiafg({Y,}4,G) is only then regular inside 7q(x)_G(X)VE[1 X—Y '
and outside the boundaByif we additionally require that for
eachY,eT there isG(Y,)=0.2 For the desired procedure It is therefore a consequence of the above theorem that for
for approximating the solutions of exterior boundary valuegiven analytic function<G:I'—C and Z:I'—C with G(X)
problems we will restrict ourselves to potentials =G(Y) andm= _:(Y)’ as well as sufficiently smad,
fe({Y,}q,G) with all Y, &T". the Ernst potential

14

Backlund type solutions as special hyperelliptic solutions fa(2,6G)= lim fB({Y(Q)}q ,eG)

The Baklund type solutions form a subclass of the hy- a-=e

perelliptic solutions. In particular: exists and is independent of the particular choice of the se-

fa([Y}q.G) = f({Y1, Ve, ... Yo Y H) (17 quence{{Y!P} }; which serves to represe by

with . ﬁ X-Y0
Z(X)=limIn or XeGsNGxz.
1 ( ) s P X_vsjq) G =4

q
HX)=6(X)| [T (X=Y,)(X-Y,) .
v=1 In particular we have

and f({X,}p,H) as defined in Eq(6). The proof of this fg(E,eG)=f(ey) with y(X)=G(X)exdZ=E(X)].
works in the same manner as demonstratef2B] for the 18
solutions corresponding to disk-like sources. The regularity . .
of the solutionsf ({X,},,H) at (p,£)=(|3[X,]],R[X,]) ap- From Eq.(18) we may conclude that any analytic funqt@n
plies in this specialization and is exhibited by the fact thatVhich possesses a single zetpe I' and does not vanish at
aj\; is an even function in\;. This means that does not X, cannot be represented by two analytic functiénand=.
behave like a square root function near the critical pointsTherefore, in the following we will restrict the discussion to
(p,0)=(3[Y,1,R[Y,]) but rather like a rational function. y#0 for XeT".
RemarkAs a particular consequence we now can confirm
Backlund transformations the conjectures formulated {23], Secs. 2 and 5. The first
The Ernst potential$16) are special Beklund transfor- one of these conjectures treats the generalization okiBad

mations as described [28] [see formul&76)] with complex type solutions that describe disk-like sources of the gravita-
. NG tional field. In order to map the treatment of that place to our
conjugate parameteks,, =Y, ,K,,=Y, and the real seed

. g extendedB here, we consider for given functiohg and g
solutionfo=exqU(G)]. The a; in formula (76) of [28] sat-  5q an arbitrary pointgd,{) without the disk, a boundar
isfy the Riccati equations

which encompasses the disk but leaves the pqing)( out-
fo 1 for side B as well as all singularities oig(—lep(z)) and
al-’zz)\j(l—ajz)z—f’z, aj,;zr(l—af)z—f'z. £(—X?1p?) outsidel’ (pg is the radius of the disk If we
0 ] 0 now take any sequendgY?},}o which serves to represent
With constantsC; of integration, the general solution of & by
these equations reads o )
£(x%) = lim £4(x),
"= —tan \j(Kj+iz) G(X)dX e q—e
J 4rri r(X—Kpw, = 1)’

1| iviD—x
. o _ £q(x®)=In 1 — for xe[—1,1]
By the particular choice in Eq(16) [i.e. Cp,_1=0C,, X v=1 i YO 4 x

=iw/2], the a; become odd functions in; which ensures

the regularity of the resulting Ernst potential ap,{) with all (pOYSf‘)) being outsidel’, then the resulting Ernst

=(|30Y,1,,LY,]). potential f(p,{;£4,9) in [23] at the chosen pointp({) co-
incides with the abovég(p,{;E,,G,) when

8More precisely, il G(Y,)|> 6>0 always holds, then the interior
(exteriop Ernst potential encounters a square-root-like behavior at °In [23], £ andg were assumed to be real analytic functions de-
(p,)=(|3[Y,]],33[Y,]) whenY, tends to a point at the outéin- fined on the interval 0,1]. g describes the seed solution whife
nen side ofI". comprises the Bzlund parameters.
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Gy(ipex) =2(—1)9" tarccotix)g(x?),
exp E4(ipex)]=(—1)%exi —x&q(x*)].
As g—, the corresponding functiong, with
Ya(ipoX) = Gq(ipex)exd Eq(ipoX) ]
converge towards the functiop,

y(ipox) = — 2 arccotix)g(x2) exd —x&(x?)]. (19

PHYSICAL REVIEW D 65 044006

type solutions. We find in particular that in contrast to the
Laplace equation, arbitrary boundary values of the Dirichlet
type are not possible.

The approximation scheme

(1) At first we restrict the functiony in an appropriate
manner. Because of the desired reflectional symmitdy

we taker g(7) =rg(— 1) and y(—X)=— y(X). To avoid ze-
ros atI” we demandJ(y)=const y,#0 for XeI'. This
leads to

Y(X)=iyo+A1(X) +Ax(X)

So, due to the above theorem, the Ernst potentials

f(p,L;&4,9) in [23] tend tof(p,{;y). Hence we can con-
clude, that the exterior gravitational field of a disk-like
source is determined only by the local functiapand ¢, and
does not depend on a particular global representatighiof
terms of the parametebs,. This is just the statement of the
assumption in Sec. 2 ¢23]. Note that the condition that,
be outside the imaginary intervalki,i] is always realized
for sufficiently weak relativistic differentially rotating disks

with

Al[X=rB<cose>e”’]=k§1 Yok 1€09 (2k—1) 6],

A [X=rg(cosh)e'?]= kz Yor SIN 2K A7,
=1

of dust since this is ensured by the positivity of the surface

mass density, (see Appendix C.1.2 ¢23]; the functiongg
is strictly positive and therefore the functigg is analytio.

vjeR, 6¢€[0,27].

As one moves to more relativistic disks one might encountefl he real constany,#0 may be chosen arbitrarily; the coef-

a situation in whichg and ¢ are not analytidcorresponding
to the situation discussed abgvelowever, for the examples
investigated, this situation did not occur.

In Sec. 5 of[23], conjectures were given regarding the
functionsg and ¢ for the disk-like hyperelliptic class of so-
lutions. These conjectures are also proven by the above co
siderations. A specially chosen disk-like hyperelliptic solu-
tion as presented in Appendix A ¢23] with an analytic
functionh and parametersX, },, coincides withf(p,{;y) at
a given point p,¢) outside the disk, whery reads

¥(ipoX) = — 2 arccotix) yp(ipoX),

p
¥olipX) =h(A) [T (ix=X,)

and a corresponding boundaByis taken in the above man-
ner with the singularities ofyy being outside™. The com-
parison with Eq.(19) yields exactly the conjectured func-
tions g and ¢ in terms ofh and {X,},. It is of particular
interest that thus the Neugebauer-Meinel-solution can b
written as a well defined limit of Beklund type solutions.

B. The approximation scheme and results

ficientsy; for j=1 are then determined uniquely by the ex-
terior boundary conditions.

(2) It is now possible to find analytic functior® and 2
with

n- y(X) =i Y(X)=i G(X)ex{ Z(X)],

G(X) = VAZ(X)—[Ax(X) +iy0]%,

G[X=irg(0)]= yo,
rﬁAl(x)"‘Az(X)
arctag —————
Yo
A1<X>—A2<X>)
Yo
[AL(X)+Ay(X) 1%+ 73
[AL(X) = Ax(X)]?+ 7}

- i
EX)=—-3
2

(X)

|

+ arcta76

+1I
ZI’I

e ~
E[X=irg(0)]=0.

With Eq. (12), the Ernst potential reads then as follows:

In this section we describe our procedure to approximate
the solution to an exterior boundary value problem of the
Ernst equation. Due to the preceding formulations, we seek
an appropriate functiory such that the corresponding Ernst ~
potentialf = f(y) assumes prescribed exterior boundary val- (3) For a given analytic functio&® of the above kind we
ues atB. As outlined above, we only consider functiogs  determine corresponding Bidund parameter$Y,}, in the
that do not vanish at’, and for which the corresponding same manner as outlined j&3]. This means that we solve
Ernst potentials can be well approximated by thelBand the linear system:

 fa(5,6)+i

V===
1+ifg(E,G)

044006-9
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= 7 \—(_1\q _ within which the solution exists and can be well approxi-
U E(2)IP(=2,)=(=1P(Z,), v=1...q, mated by the Beklund type solutions. In particular, the ex-
q q-1 terior solution proves to be independent of the choice of the
P(X)= H (X—Y,)=XI+ 2 iji parametery,, only the accuracy of the results is affected.
v=1 j=o

As one moves further to more relativistic boundary val-
ues, there might be however a limit beyond which the solu-
tions cannot be extended. For example, take the exterior
boundary values

to determine the coefficients; and from these the zeros,
of P. The q arbitrary different supporting pointg,eI" are
chosen to possess positive real and imaginary parts.

(4) By virtue of formula(16) we are now able to approxi-
mate the Ernst potentidi(y) if the parameterqy;}, are fl(p.{)eB]=1+e
given. For the approximate numerical evaluation{ f i”
from the given exterior boundary values we set=0 for j ~ With the spherical boundar characterized byg=1. One
>2n and demand that the resulting exterior Ernst potentiafinds a limiting parameters,~0.68 beyond which the
f() coincide with the prescribed boundary valuesiatif- ~ boundary value problem does not seem to be soluble. This
ferent points p;,¢;) € B with ¢;=0. This gives a compli- has been verified not only by various choices of the above
cated nonlinear set of 2 real equations to determine the Parametery, but also by a two-dimensional numerical
unknown coefficient§y;}3". As in the analogous treatment Method, which solves the exterior Ernst equation directly
to solve boundary value problems for arbitrary differentially Without using analytic solutionS. All these routines yield
rotating disks of dust, we solve this system by means of dhe samelimiting parameterg, wh!ch is a strong |nd|cat|on
Newton-Raphson method. Again we provide good initialthat for e>¢, the Ernst potentials corresponding to the
guesses by solving a sequence of boundary value problen@ove boundary values do not exist.
with initially weak relativistic and finally the desired bound-
ary values, and where the initial guess comes from the weak ACKNOWLEDGMENTS
relativistic expansior15).

+igl,

3
_ 2
2 te

The support from the DFG is gratefully acknowledged.
Results

The above approximation scheme has been executed fof%or this method, we insert a two-dimensional Chebyshev expan-

various Dirichlet boundary value problems. As expectedsion of the exterior Ernst potential into the Ernst equation and find
from the above, there is always a weak relativistic regionthe Chebyshev coefficients.
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