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Dirichlet boundary value problems of the Ernst equation

Marcus Ansorg, Andreas Kleinwa¨chter, Reinhard Meinel, and Gernot Neugebauer
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~Received 28 September 2001; published 11 January 2002!

We demonstrate how the solution to an exterior Dirichlet boundary value problem of the axisymmetric,
stationary Einstein equations can be found in terms of generalized solutions of the Ba¨cklund type. The proof
that this generalization procedure is valid is given, which also proves conjectures about earlier representations
of the gravitational field corresponding to rotating disks of dust in terms of Ba¨cklund-type solutions. As a
further result, we find that, in contrast with the Laplace equation, arbitrary boundary values may not be
prescribed.
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I. INTRODUCTION

Extraordinarily massive, compact astrophysical obje
such as neutron stars require a fully relativistic treatme
This motivates the study of the relativistic gravitational fie
of axisymmetric, stationary rotating bodies.

The investigation of the exterior field, i.e. of arbitra
exterior boundary value problems of the axisymmetric s
tionary Einstein equations, can only be a first step in t
direction, for neither the shape of the body~i.e. the bound-
ary! nor particular boundary values may be prescribed. Fo
given equation of state characterizing the matter of the ro
ing body, the boundary and the values there result from tr
sition conditions since the metric along with its first norm
derivative behave continuously at the boundary~in appropri-
ate coordinates!. Therefore, a subsequent step must be
combination of a procedure to compute the interior solut
with the method to treat the exterior field in order to real
the transition conditions.

Our aim is to show a way to handle the exterior field.
particular, we want to make use of the variety of exact a
lytic solutions that are available in the exterior regio
Thanks to the facts that~1! the exterior vacuum field equa
tions can be summarized in a single nonlinear complex
ferential equation—the so-called Ernst equation@1,2#, and
~2! the Ernst equation has been found to be the integrab
condition of a corresponding linear matrix problem, it is po
sible to apply various soliton methods~see@3–13#! to create
explicit exterior solutions, among them the Ba¨cklund trans-
formations and the Riemann-Hilbert techniques. By ext
sive investigation of the latter, Neugebauer and Meinel s
ceeded in solving the boundary value problem t
corresponds to an infinitesimal thin rigidly rotating disk
dust @14–16#. In particular, they found their solution to be
long to a ‘‘hyperelliptic class’’ of solutions@17#, see also
@18–21#. Further investigations as to whether this class
solutions can be used to solve more general boundary v
problems corresponding to differentially rotating disks
dust have been carried out by Ansorg and Meinel@22# and by
Ansorg@23#. In the latter paper it was demonstrated that
0556-2821/2002/65~4!/044006~10!/$20.00 65 0440
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Bäcklund type solutions1 suffice to approximate the exterio
gravitational field of an arbitrary differentially rotating dis
of dust.

In this paper we investigate the question as to whether
treatment of the boundary value problem of an arbitrary d
ferentially rotating disk of dust by means of Ba¨cklund type
solutions can also be applied to extended boundariesB,
which can potentially form the shape of a rotating body. W
denote byB a smooth spatial curve, at which regular boun
ary values are prescribed. The solubility of such Dirich
boundary value problems for sufficiently weak relativis
boundary values has been proven by Reula@24#, see also
@25,26#. In illustrative examples we will take spherica
boundaries in order to make the formulas more transpa
and therefore get better insight into the underlying ma
ematical structure. However, the general statements are v
for arbitrary extendedB.

The paper is organized as follows. At first, the met
tensor and the Ernst equation are introduced. Then, solu
techniques to solve boundary value problems of the real
symmetric three-dimensional Laplace equation with
boundaryB are discussed in order to prepare the relativis
treatment. These solutions will be given in terms of an a
lytic function H, which is defined on a curveG in the com-
plex plane and satisfiesH(X̄)5H(X) ~with XPC and the bar
denoting complex conjugation!. Here, the curveG is closely
connected with the boundaryB. In this formulation, the so-
lutions describe both a regular interior and exterior fie
which ~in general! assumes different values on the inner a
outer side ofB. The prescription of these interior and exteri
boundary values uniquely determines the functionH, i.e. this
formulation permits the simultaneous solution of an inter
and exterior boundary value problem.

The second section treats the hyperelliptic solutions of
Ernst equation and their generalization by means of a s
able limiting process. Similar to the formulation of solution

1The Bäcklund type solutions can be obtained by applying Ba¨ck-
lund transformations to purely real ‘‘seed’’ solutions of the We
class. These solutions form a subclass of the hyperelliptic class
@23#.
©2002 The American Physical Society06-1
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of the real Laplace equation, we find these generalized s
tions ~1! to depend on an analytic functiong defined onG
~and, in general, not subject to further requirements! and~2!
to permit the simultaneous solution of an interior and ex
rior Dirichlet boundary value problem of the Ernst equatio
In the case of a flat interior field we find an explicit relatio
of the functiong and the values of the Ernst potential at t
exterior part of the symmetry axis.

In Sec. III A, we investigate the solutions of the Ba¨cklund
type. Apart from regularity properties we discuss the gen
alization of these solutions which can be performed si
they form a subclass of the hyperelliptic solutions. As a
sult we prove conjectures formulated in@23#, in particular
that the Neugebauer-Meinel solution can be written as a w
defined limit of Bäcklund type solutions.

Because of their mathematical simplicity~compared with
the much more complicated hyperelliptic solutions!, the
Bäcklund type solutions play the fundamental role in o
treatment for approximating solutions of an exterior boun
ary value problem by analytic solutions. This is carried ou
Sec. III A. As a result, we find that in contrast to the Lapla
equation, arbitrary boundary values of the Dirichlet type m
not be prescribed.

In what follows, units are used in which the velocity
light as well as Newton’s constant of gravitation are eq
to 1.

A. Metric tensor, Ernst equation, and boundary conditions

The metric tensor for axisymmetric stationary and asym
totically flat vacuum space-times reads as follows in We
Papapetrou-coordinates (r,z,w,t):

ds25e22U@e2k~dr21dz2!1r2dw2#2e2U~dt1a dw!2.

The field equations are equivalent to a single comp
equation—the so-called Ernst equation

~Rf !D f 5~¹ f !2,

D5
]2

]r2
1

1

r

]

]r
1

]2

]z2
, ¹5S ]

]r
,

]

]z D , ~1!

where the Ernst potentialf is given by

f 5e2U1 i b with b,z5
e4U

r
a,r , b,r52

e4U

r
a,z .

~2!

The remaining functionk can be calculated from the Ern
potentialf by a line integral:

k,r

r
5~U ,r!22~U ,z!

21
1

4
e24U@~b,r!22~b,z!

2#,

k,z

r
52U ,rU ,z1

1

2
e24Ub,rb,z .

In this paper we treat the following boundary value proble
of the Ernst equation~1!:
04400
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~1! The boundaryB is given by a smooth spatial curv
which can be described by some positive analytic funct
r B :@21,1#→R1 :

B5$~r,z!:r5r B~cosq!sinq,z5r B~cosq!cosq,

qP@0,p#%.

~2! Along the boundaryB we require regular boundar
conditions of the Dirichlet type, i.e.f is given for (r,z)PB.

~3! Regularity at the rotation axisr50 is guaranteed by

] f

]r
~0,z!50.

~4! At infinity, asymptotic flatness is realized byf→1.
The treatment in Sec. II will provide us a formulationf

5 f (g) which is sufficiently general to satisfy interior an
exterior boundary conditions of the Ernst equation~1!, i.e.
for an appropriate prescription2 of ~not necessarily coincid-
ing! interior and exterior boundary values, there is a uniqu
determined functiong:G→C @with G5$XPC:(uIXu,RX)
PB%# such that the Ernst potentialf 5 f (g) is both regular
within and withoutB and assumes the above boundary v
ues at the inner and outer side ofB. Since for physical rea-
sons we are only interested in an exterior solution, the fr
dom in the choice of the interior boundary values will b
used to restrict the functiong such that the solutionf
5 f (g) can be represented by Ba¨cklund type solutions. This
is outlined in the third section. Furthermore, for the exter
solution we will impose the additional physical requireme
of reflectional symmetry with respect to the planez50 ~see
@27#! which leads to

r B~t!5r B~2t! for all tP@21,1#,

f ~r,2z!5 f ~r,z! for all ~r,z! outside B.

B. Boundary value problems of the Laplace equation

In this section we prepare the general formulationf
5 f (g) by considering the corresponding non-relativis
gravitational boundary value problem—i.e. the gene
boundary value problem of the axisymmetric thre
dimensional Laplace equation

DU50.

Any real solutionU which is both regular inside and outsid
the boundaryB can be written in the form

U~r,z;H !5
1

2p i RG

H~X!dX

Wz
~3!

with

2As already mentioned above, the Dirichlet boundary values c
not be chosen arbitrarily.
6-2
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DIRICHLET BOUNDARY VALUE PROBLEMS OF THE . . . PHYSICAL REVIEW D 65 044006
G5$XPC:~ uIXu,RX!PB%,

H:G→C is an analytic function withH~X̄!5H~X!,

~4!

Wz5A~X2z!21r2,

R~Wz!5H ,0 for ~r,z! outside B or R~X!,z,

.0 for ~r,z! inside B and R~X!.z.

The functionH is uniquely determined by the interior an
exterior boundary values of the potentialU. For a spherical
boundary~with radiusr B[1) we may writeH in the form

H~X!5(
j 51

`

~H j
(1)Xj 211H j

(2)X2 j !, H j
(6)PR.

Then the coefficientsH j
(6) can be read from an expansion

the boundary values in Legendre polynomials

Pn~x!5
1

2nn!

dn

dxn
@~x221!n#

of the cosine of the angular coordinateq with r
5r sinq, z5rcosq:

lim
r↑1

U~r,z;H !5(
j 51

`

H j
(1)Pj 21~cosq!

lim
r↓1

U~r,z;H !52(
j 51

`

H j
(2)Pj 21~cosq!.

Discussion

~1! Reflectional symmetry

U~r,2z;H !5H kU~r,z;H ! for ~r,z! within B,

2kU~r,z;H ! for ~r,z! without B,
~5!

with k251 is obtained if r B(t)5r B(2t) and H(2X)
5kH(X), i.e. an odd~even! function H produces an even
~odd! exterior potentialU in the coordinatez.

~2! The freedom of the choice of the interior field can
used to restrict the functionH in an appropriate manner. Fo
example we may chooseR(H)5const forXPG, where this
constant can be arbitrarily prescribed. For the above sph
cal case, this results inH j 11

(1) 52H j
(2) . Then the functionH

is uniquely determined only by the exterior boundary valu
Analogously, in the relativistic treatment~see Sec. III B! we
may choose the corresponding functiong such thatI(g)
5constÞ0 for XPG, which ensures that the correspondi
Ernst potentialf can be approximated very well by solution
of the Bäcklund type.
04400
ri-
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II. THE HYPERELLIPTIC CLASS OF SOLUTIONS
AND ITS GENERALIZATION BY A SUITABLE

LIMITING PROCESS

Meinel and Neugebauer@17# as well as Korotkin@18,19#,
~see also@20,21#!, were able to construct the hyperellipt
class of solutions containing a finite number of complex p
rameters and one arbitrary real solution to the axisymme
three-dimensional Laplace equation. By investigation of c
responding Riemann-Hilbert problems one finds that t
class can be generalized in an appropriate manner. The
eralized class turns out to contain all Ernst potentials wh
are both regular within and without the boundaryB, which
assume~in general! different boundary values at the inne
and outer side ofB, and are sufficiently weakly relativistic
i.e. close to the flat space solutionf [1. In this section we
discuss these generalized solutions which allow us to
proximate the solution to a simultaneous interior and exte
boundary value problem.

A. The hyperelliptic class of solutions

We adapt the hyperelliptic class of solutions as given
@17# to our purposes by writing: For a given integerp>1, a
set3 $X1 , . . . ,Xp%5$Xn%p of complex parameters, and a
analytic functionH:G→C, H(X̄)5H(X), the following ex-
pression:

f ~r,z;$Xn%p ,H !5expS (
n51

p E
Xn

X(n)XpdX

W

1
1

2p i RG

H~X!XpdX

Wz
D ~6!

with

W5A~X1 iz!~X2 iz̄!)
n51

p

~X2Xn!~X2X̄n!, z5r1 iz,

(
n51

p E
Xn

X(n)XjdX

W
52

1

2p i RG

H~X!XjdX

Wz
, 0< j ,p ~7!

satisfies the Ernst equation. The (z-dependent! values for the
X(n) as well as the integration paths on a two-sheeted R
mann surface have to be taken from the solution to the Ja
bian inversion problem~7!.

The Ernst potential4 f 5 f ($Xn%p ,H) is regular at (r,z)
5(uI@Xn#u,R@Xn#) as can be deduced from an appropria
combination of the equations~7! and corresponding rear
rangements of the terms occurring in Eq.~6!. In general,
f ($Xn%p ,H) assumes different values at the inner and ou
sides of the boundaryB, i.e. it possesses a jump alongB.

3In the following, the notation$X1 , . . . ,Xp% will be abbreviated
by $Xn%p .

4For simplicity, we suppress the coordinate dependence and w
only f 5 f ($Xn%p ,H).
6-3
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B. The generalization of the hyperelliptic class of solutions by
a suitable limiting process

This section contains a theorem which ensures that
above hyperelliptic solutions can be generalized in an ap
priate manner such that simultaneous interior and exte
boundary value problems become soluble by means of th
solutions. The theorem consists of three parts, the proof
which are outlined. Moreover, we illustrate certain propert
of the generalized class.

Theorem

Given the analytic functiong:G→C which can be ex-
tended to some compact neighborhoodGg aboutG, then

~1! for sufficiently small«, the Ernst potential

f ~«g!5 lim
p→`

f ~$Xn
(p)%p ,«Hp!

exists and is independent of the particular choice of the
quences$$Xn

(p)%p%p0

` and $Hp%p0

` which serve to representg

by

g~X!5 lim
p→`

Hp~X!)
n51

p

~X2Xn
(p)! for XPGg .

~2! The Ernst potentialf 5 f («g) is both regular inside
and outside the boundaryB and assumes~in general! differ-
ent boundary values at the inner and outer side ofB. The
exterior and interior Ernst potentials can be extended bey
the boundaryB to the regionBg5$(r,z):z6 irPGg%.

~3! Any sufficiently weak relativistic Ernst potentialf
which is both regular within and without the boundaryB
with ~in general! different boundary values at the inner an
outer side ofB, can be written in the above manner asf
5 f (g). The functiong is uniquely determined by the Di
richlet boundary values off at B.

Proof

~1! In order to prove the first one of the above stateme
we establish a relation between the functiong and holomor-
phic functionsa andb defined onGg from which the Ernst
potentialf can be calculated via the solution of a Rieman
Hilbert problem.

~a! To introducea and b, we follow the treatments o
@14,28# and @29#:

The Ernst equation is the integrability condition of th
linear problem

F ,z5@ f 1 f̄ #21S f̄ ,z l f̄ ,z

l f ,z f ,z
D F

F ,z̄5@ f 1 f̄ #21S f̄ ,z̄ l21 f̄ ,z̄

l21f ,z̄ f ,z̄
D F ~8!

whereF5F(X,r,z) is a 232-matrix and the spectral pa
rameterl is given by
04400
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X1 iz
.

One explicit way to create solutions to the Ernst equat
that are regular within and withoutB and possess a jump atB
is to use the Riemann-Hilbert-techniques, by which we fo
the corresponding matrixF to possess a multiplicative jum
at G:

F15F2C~X!

and moreover to be regular within and withoutG. The indi-
ces ‘‘1 ’’ and ‘‘ 2 ’’ refer to the interior and exterior sides o
G, respectively. The jump-matrixC5C(X) is independent of
the coordinates (z,z̄) and can be cast into the form

C~X!5S a~X! 0

b~X! 1D , a~X!5a~X̄!, b~X!52b~X̄!.

If the functionsa andb are prescribed, the Ernst potential
an arbitrary point (r,z) can be determined by the solution o
a linear integral equation; see@28#.

As outlined in @29#, the linear system can be integrate
along the rotation axis, which yields in agreement with t
above Rieman-Hilbert problem@r50, z.2r B(21)#:

F15S f̄ 1

f 21
D S F~X! 0

B~X! 1D
F25S 1 f̄

1 2 f
D S 1 B~X!

0 F~X!
D . ~9!

The notationF6 refers to the two sheets on whichF is
defined; ‘‘6 ’’ means the sheet in whichl561 for r50.
The functions5 F5F(X) and B5B(X) are defined in the
complex plane and are regular within and without the co
tour G (F→1 andB→0 asuXu→`) but possess a jump a
G. This jump can be taken from the above Riemann-Hilb
problem:

F15aF2 , B15aB21b. ~10!

~b! We establish a connection between the relativistic
rameter« as well asg and the functionsF6 andB6 , now
additionally depending on«. Thus, by virtue of Eq.~10!, we
get a5a(X;«;g) andb5b(X;«;g).

Given the functiong which is holomorphic onGg , we
denote byBg the Banach space of all holomorphic functio
on Gg with the norm

uusuu5 sup
XPGg

us~X!u for sPBg .

We now define functions

5The functionB5B(X) is not to be confused with the boundar
B.
6-4
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F6 :@0,«g#→Bg , B6 :@0,«g#→Bg

that satisfy the following system of differential equations:

«
d

d«
F65F6~ L̂6s1!1B6~ L̂6s2!

2«
d

d«
B65

B6
2 21

F6
~ L̂6s2!1F6~ L̂6s3!. ~11!

Here, thesj as well as theL̂6 are introduced as follows:
~i! The sj , sj :@0,«g#→Bg , follow from F6 ,B6 by

@~F11F2!s11~B11B2!s2#tanh
G

2
5G~F22F1!

F ~B11B2!s11S B1
2 21

F1
1

B2
2 21

F2
D s2G tanh

G

2

5G~B22B1!

s35F1
22@2F1B1s11~B1

2 21!s2#

G25s1
21s2s3 .

~ii ! Any function sPBg can uniquely be written as th
sum

s5s11s2

with s1 and s2 only possessing singularities without an
within the curveG, respectively, ands2→0 asu Xu→`. The
linear operatorsL̂6 ,L̂6 :Bg→Bg , extract these functions
s6 :

L̂6s57s6 .

Explicitly:

1

2p i RG

s~Y!dY

X2Y

5H ~ L̂1s!~X!52s1~X! for X within G,

~ L̂2s!~X!5s2~X! for X without G,

and these functions can be extended toGg sincesPBg .
By means of the substitutions

F6511«F6*

B65«B6* ,

s15«~F2* 2F1* !1«2s1*

s25«~B1* 2B2* !1«2s2*

s35«~B2* 2B1* !1«2s3*

the differential system~11! reads
04400
d

d« S F1*

F2*

B1*

B2*
D 5S h1~«;F1* ,F2* ,B1* ,B2* !

h2~«;F1* ,F2* ,B1* ,B2* !

h3~«;F1* ,F2* ,B1* ,B2* !

h4~«;F1* ,F2* ,B1* ,B2* !

D
with the functions

hj :@0,«g#3B g
4→Bg

satisfying a Lipschitz condition with respect to all argumen
in a sufficiently small interval@0,«g#; the upper limit«g is
defined in this manner. Note that for the continuity of t
linear operatorsL̂6 it is necessary to define them onBg and
not on the Banach space of functions analytic atG.

As a consequence of the theorem by Picard and Linde¨ff,
the above system of differential equations has a solu
which depends uniquely and continuously on the given
tial conditions. This is the point at which we bring in th
function g:

F6* ~«50!5L̂6~g1g* !, B6* ~«50!52L̂6~g2g* !,

where the functiong* PBg results fromg by

g* ~X!5g~X̄! for XPGg .

These initial conditions together with the differential equ
tions ~11! yield F6 andB6 which only possess singularitie
without ~1! or within ~2! the curveG. Thus, the functionsF
andB obey a Riemann-Hilbert problem~10!, and the associ-
ated functionsa5a(X;«;g) andb5b(X;«;g) are uniquely
determined. Consequently, we find a formulationf 5 f («;g)
by solving the linear integral equation that has been m
tioned in ~a! for6 a5a(X;«;g) andb5b(X;«;g).

~c! If we prescribegp in the form

gp~X!5Hp~X!)
n51

p

~X2Xn
(p)!

then it can be shown that the Ernst potential following fro
the above reads

f ~«;gp!5 f ~$Xn
(p)%p ,«Hp!.

The proof of this uses many of the solution methods t
were developed by Neugebauer and Meinel when t
solved the boundary value problem of the rigidly rotati
disk of dust. These methods are partially given in@29#; in full
they will be treated in a subsequent paper.

For any series$gp%p0

` of the above functionsgp with gp

→g as p→` and gpPBg , the corresponding Ernst poten
tials f 5 f («;gp) converge for sufficiently small« since the

6The solubility of this integral equation is ensured for sufficien
small «, see point~2! of the proof.
6-5
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functional f 5 f («;g) depends continuously ong. Because of
the above equality, this implies the convergence
f ($Xn

(p)%p ,«Hp) asp→`.
Remark. The differential system~11! can be explicitly

solved ifg is regular withoutG with g→0 asu Xu→`. Then
one obtains

a5coshG1~g1g* !
sinhG

2G
,

b52~g2g* !
sinhG

2G
, G25gg* ,

from which the Ernst potential along the rotation axis can
taken directly; see Eq.~13! below.

~2! The proof of the second statement uses the relat
a5a(X;«;g) and b5b(X;«;g). In particular, we have
a,bPBg for «P@0,«g# and moreovera511O(«) and b
5O(«). This means that for sufficiently small«, the linear
integral equation that yields the Ernst potential from t
functions a and b can be solved for arbitrary coordinate
(r,z)¹B; see@28#.

7
Moreover, the Ernst potential can be e

tended to the regionBg sincea,bPBg . The different boundary
values at the inner and outer sides ofB follow from the construc-
tion.

~3! Finally, the proof of the third statement uses the line
system~8!. ForXPG with RX>0, we establish the matrice
F̃6@X,r50,z5r B(1)60# by integrating the linear system
along the inner and outer side ofB, with the initial values

F̃6~X,RX,IX!5S 1 1

1 21D .

The coordinatez5r B(1)60 stands for the inner and oute
side ofB at r50, respectively. The integration of the line
system can be performed since for a sufficiently weak re
tivistic regular Ernst potential again the theorem by Pic
and Lindelöff applies. At r50 and z5r B(1)60, we then
establishF from F̃ by F5F̃M 6 where the regular matrice
M 6 ~defined onG) are chosen such thatF assumes the
structure~9!, i.e. we calculate the functionsF6 andB6 . In
order to determineg we choose some«0.0 ~say«051) and
integrate the differential system~11! backwards, starting a
«0 ~here the initial conditions are just the establish
F6 ,B6), until we reach«50, and readg from the weak
field expansion:

g5 lim
«→0

1

2«
@~F22F1!1~B12B2!#.

So we have proven that the interior and exterior bound
dataf and f ,z , f ,z̄ ~the derivatives also enter the linear syste!
of a sufficiently weak relativistic Ernst potential, which
regular within and withoutB, uniquely determine the func

7Note that the linear integral equation might globally only
soluble for«,«g* ,«g .
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tion g. But since the weakly relativistic Dirichlet boundar
value problem is uniquely soluble@24#, the global interior
and exterior Ernst potential~and hence the above deriva
tives! are determined by the boundary valuesf alone, which
therefore determinesg as well.

Properties of the generalized hyperelliptic solutions

~1! For cPR one finds

f ~e2ic«g!5
f ~«g!cosc1 i sinc

cosc1 i f ~«g!sinc
. ~12!

This can be seen by investigatingf ($Xn%p11 ,HR) asR→`
with

gp~X!5H~X!)
n51

p

~X2Xn!,

e2icgp~X!5 lim
R→`

gp11

5 lim
R→`

F2
H~X!

R
~X2Re2ic!)

n51

p

~X2Xn!G
5 lim

R→`
FHR~X!~X2Xp11!)

n51

p

~X2Xn!G .

Note that in the integral terms of Eqs.~6!,~7! for n5p11
the substitutionX5Xp11(11t2) is useful.

The property~12! describes the general invariance tran
formation of f («g) which retains the asymptotic flatnessf
→1 as r→`). f (e2ic«g) is obtained fromf («g) as one
performs the transformation~21! of @30# with the parameters
a5sin22 c,b5g52cotc of that paper.

~2! A given functiong:G→C can be represented in man
ways by sequences$$Xn

(p)%p%p0

` and $Hp%p0

` . Consider the

following example for a spherical boundary,r B[1. Sinceg
is analytic onG, it can be written as

g~X!5(
j 51

`

~g j
(1)Xj 211g j

(2)X2 j !, XPG

where

g j
(6)56

2 j 21

2 E
0

p

Q6~cosq!Pj 21~cosq!sinq dq,

Q6~cosq!5 lim
r→170

F 1

2p i RG

g~X!dX

Wz
G .

For eachnPN we find a representation
6-6
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gn~X!5(
j 51

n

~g j
(1)Xj 211g j

(2)X2 j !

5Rne2icnXmn)
n51

pn

~X2Xn
(n)!.

Thus we can write

f ~«g!5 lim
n→`

f ~«gn!

5 lim
n→`

F f ~$Xn
(n)%pn

,«Hn!coscn1 i sincn

coscn1 i f ~$Xn
(n)%pn

,«Hn!sincn
G

with Hn(X)5RnXmn.
~3! If the analytic functiong:G→C is regular outsideG

andg→0 asuXu→`, then one findsf (r,z;«g)51 within B
and

f „r50,z.r B~1!;«g…5
G2s2sinhG

GcoshG1s1sinhG U
X5z

f „r50,z,2r B~21!;«g…5
GcoshG1s1sinhG

G2s2sinhG U
X5z

~13!

with

s6~X!5
«

2
@g~X!6g~X̄!#,

G2~X!5s1
2 ~X!2s2

2 ~X!, X without G.

Hence, in the case of a flat interior field there is an expl
relation of the functiong and the values of the Ernst pote
tial along the exterior part of the symmetry axis.

~4! The Ernst potentialf 5 f («g) possesses a reflection
symmetry

f ~r,2z;«g!5H f ~r,z;«g!k for ~r,z! within B,

f ~r,z;«g!2k for ~r,z! without B,
~14!

if r B(t)5r B(2t) and g(2X̄)5kg(X),k251. We obtain
the desired reflectional symmetry of the exterior Ernst pot
tial for k521.

~5! There is a weak field expansion off 5 f («g):

ln@ f ~«g!#5
«

2p i RG

g~X!dX

Wz
1O~«3!. ~15!

By differentiating Eqs.~6!,~7! with respect to«, whereH and
$Xn%p are fixed, one deduces that

d

d«
ln@ f ~$Xn%p ,«H !#5

1

2p i RG
H~X!)

n51

p

~X2X(n)!
dX

Wz
.

04400
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The expansion~15! follows since, in the weak relativistic
region, Eq.~7! yields X(n)5Xn1O(«2).

~6! Another interesting property is

f ~«g* !5 f ~«g! for g* ~X!5g~X̄!.

If, in particular,g5g* then f 5 f («g) is real and belongs
to the Weyl class.

III. APPROXIMATION OF ARBITRARY EXTERIOR
BOUNDARY VALUE PROBLEMS

BY BÄCKLUND TYPE SOLUTIONS

Although the generalized hyperelliptic class permits t
simultaneous solution of a sufficiently weak relativistic ex
rior and interior boundary value problem of the Ernst equ
tion, its mathematical complexity makes it inconvenient f
usage in a procedure to approximate the solution of
boundary value problem in question. Therefore one is led
investigate whether the much simpler Ba¨cklund type solu-
tions suffice for our approximation scheme of onlyexterior
boundary value problems. As we will demonstrate in th
section, the freedom of the choice of the interior field allo
us to setgÞ0 for XPG, which ensures that the correspon
ing Ernst potentialf can be very well approximated by th
Bäcklund type solutions.

A. The class of the Ba¨cklund type solutions and its
generalization

Definition

The Bäcklund type solutionsf B($Yn%q ,G) depend on the
set$Yn%q of complex parameters and on the analytic functi
G:G→C with G(X)5G(X̄) and are defined by

f B~r,z;$Yn%q ,G!5 f 0

D1

D2
~16!

where

D65U 1 1 1 ••• 1

61 a1l1 a2l2 ••• a2ql2q

1 l1
2 l2

2
••• l2q

2

61 a1l1
3 a2l2

3
••• a2ql2q

3

] ] ] � ]

61 a1l1
2q21 a2l2

2q21
••• a2ql2q

2q21

1 l1
2q l2

2q
••• l2q

2q

U ,

f 05expS 1

2p i RG

G~X!dX

Wz
D ,

l2n215AYn2 iz̄

Yn1 iz
, l2nl̄2n2151,
6-7
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a2n2152tanhS l2n21~Yn1 iz!

4p i R
G

G~X!dX

~X2Yn!Wz
D ,

a2nā2n2151.

The Ernst potentialf B($Yn%q ,G) is only then regular inside
and outside the boundaryB if we additionally require that for
eachYnPG there isG(Yn)50.8 For the desired procedur
for approximating the solutions of exterior boundary val
problems we will restrict ourselves to potentia
f B($Yn%q ,G) with all Yn¹G.

Bäcklund type solutions as special hyperelliptic solutions

The Bäcklund type solutions form a subclass of the h
perelliptic solutions. In particular:

f B~$Yn%q ,G!5 f ~$Y1 ,Y1 , . . . ,Yq ,Yq%,H ! ~17!

with

H~X!5G~X!F )
n51

q

~X2Yn!~X2Ȳn!G21

and f ($Xn%p ,H) as defined in Eq.~6!. The proof of this
works in the same manner as demonstrated in@23# for the
solutions corresponding to disk-like sources. The regula
of the solutionsf ($Xn%p ,H) at (r,z)5(uI@Xn#u,R@Xn#) ap-
plies in this specialization and is exhibited by the fact th
a jl j is an even function inl j . This means thatf does not
behave like a square root function near the critical poi
(r,z)5(uI@Yn#u,R@Yn#) but rather like a rational function.

Bäcklund transformations

The Ernst potentials~16! are special Ba¨cklund transfor-
mations as described in@28# @see formula~76!# with complex
conjugate parametersK2n215Yn ,K2n5Ȳn and the real seed
solution f 05exp@U(G)#. The a j in formula ~76! of @28# sat-
isfy the Riccati equations

a j ,z5l j~12a j
2!

f 0,z

2 f 0
, a j ,z̄5

1

l j
~12a j

2!
f 0,z̄

2 f 0
.

With constantsCj of integration, the general solution o
these equations reads

a j52tanhS l j~K j1 iz!

4p i R
G

G~X!dX

~X2K j !Wz
1Cj D .

By the particular choice in Eq.~16! @i.e. C2n2150,C2n

5 ip/2#, the a j become odd functions inl j which ensures
the regularity of the resulting Ernst potential at (r,z)
5(uI@Yn#u,R@Yn#).

8More precisely, ifuG(Yn)u.d.0 always holds, then the interio
~exterior! Ernst potential encounters a square-root-like behavio
(r,z)5(uI@Yn#u,R@Yn#) whenYn tends to a point at the outer~in-
ner! side ofG.
04400
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The generalization of the Ba¨cklund type solutions

The functiongq which belongs to the Ernst potentialf
5 f B($Yn%q ,G) can be taken from Eq.~17!:

gq~X!5G~X!)
n51

q
X2Yn

X2Ȳn

.

It is therefore a consequence of the above theorem tha
given analytic functionsG:G→C and J:G→C with G(X)
5G(X̄) andJ(X)52J(X̄), as well as sufficiently small«,
the Ernst potential

f B~J,«G!5 lim
q→`

f B~$Yn
(q)%q ,«G!

exists and is independent of the particular choice of the
quence$$Yn

(q)%q%q0

` which serves to representJ by

J~X!5 lim
q→`

lnF )
n51

q X2Yn
(q)

X2Ȳn
(q)G for XPGGùGJ .

In particular we have

f B~J,«G!5 f ~«g! with g~X!5G~X!exp@J~X!#.
~18!

From Eq.~18! we may conclude that any analytic functiong
which possesses a single zeroXnPG and does not vanish a
X̄n cannot be represented by two analytic functionsG andJ.
Therefore, in the following we will restrict the discussion
gÞ0 for XPG.

Remark. As a particular consequence we now can confi
the conjectures formulated in@23#, Secs. 2 and 5. The firs
one of these conjectures treats the generalization of Ba¨cklund
type solutions that describe disk-like sources of the grav
tional field. In order to map the treatment of that place to o
extendedB here, we consider for given functions9 j and g
and an arbitrary point (r,z) without the disk, a boundaryB
which encompasses the disk but leaves the point (r,z) out-
side B as well as all singularities ofg(2X2/r0

2) and
j(2X2/r0

2) outsideG (r0 is the radius of the disk!. If we
now take any sequence$$Yn

(q)%q%q0

` which serves to represen

j by

j~x2!5 lim
q→`

jq~x2!,

jq~x2!5
1

x
lnF )

n51

q i Yn
(q)2x

i Yn
(q)1x

G for xP@21,1#

with all (r0Yn
(q)) being outsideG, then the resulting Erns

potential f (r,z;jq ,g) in @23# at the chosen point (r,z) co-
incides with the abovef B(r,z;Jq ,Gq) when

t 9In @23#, j andg were assumed to be real analytic functions d
fined on the interval@0,1#. g describes the seed solution whilej
comprises the Ba¨cklund parameters.
6-8
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Gq~ ir0x!52~21!q11arccot~ ix!g~x2!,

exp@Jq~ ir0x!#5~21!qexp@2xjq~x2!#.

As q→`, the corresponding functionsgq with

gq~ ir0x!5Gq~ ir0x!exp@Jq~ ir0x!#

converge towards the functiong,

g~ ir0x!522 arccot~ ix!g~x2!exp@2xj~x2!#. ~19!

So, due to the above theorem, the Ernst potent
f (r,z;jq ,g) in @23# tend to f (r,z;g). Hence we can con
clude, that the exterior gravitational field of a disk-lik
source is determined only by the local functionsg andj, and
does not depend on a particular global representation ofj in
terms of the parametersYn . This is just the statement of th
assumption in Sec. 2 of@23#. Note that the condition thatYn

be outside the imaginary interval@2 i, i# is always realized
for sufficiently weak relativistic differentially rotating disk
of dust since this is ensured by the positivity of the surfa
mass densitysp ~see Appendix C.1.2 of@23#; the functiong0
is strictly positive and therefore the functionj0 is analytic!.
As one moves to more relativistic disks one might encoun
a situation in whichg andj are not analytic~corresponding
to the situation discussed above!. However, for the example
investigated, this situation did not occur.

In Sec. 5 of@23#, conjectures were given regarding th
functionsg andj for the disk-like hyperelliptic class of so
lutions. These conjectures are also proven by the above
siderations. A specially chosen disk-like hyperelliptic so
tion as presented in Appendix A of@23# with an analytic
functionh and parameters$Xn%p , coincides withf (r,z;g) at
a given point (r,z) outside the disk, wheng reads

g~ ir0x!522 arccot~ ix!gD~ ir0x!,

gD~ ir0x!5h~x2!)
n51

p

~ ix2Xn!

and a corresponding boundaryB is taken in the above man
ner with the singularities ofgD being outsideG. The com-
parison with Eq.~19! yields exactly the conjectured func
tions g and j in terms of h and $Xn%p . It is of particular
interest that thus the Neugebauer-Meinel-solution can
written as a well defined limit of Ba¨cklund type solutions.

B. The approximation scheme and results

In this section we describe our procedure to approxim
the solution to an exterior boundary value problem of
Ernst equation. Due to the preceding formulations, we s
an appropriate functiong such that the corresponding Ern
potential f 5 f (g) assumes prescribed exterior boundary v
ues atB. As outlined above, we only consider functionsg
that do not vanish atG, and for which the correspondin
Ernst potentials can be well approximated by the Ba¨cklund
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type solutions. We find in particular that in contrast to t
Laplace equation, arbitrary boundary values of the Dirich
type are not possible.

The approximation scheme

~1! At first we restrict the functiong in an appropriate
manner. Because of the desired reflectional symmetry~14!

we taker B(t)5r B(2t) andg(2X̄)52g(X). To avoid ze-
ros at G we demandI(g)5const5g0Þ0 for XPG. This
leads to

g~X!5 ig01A1~X!1A2~X!

with

A1@X5r B~cosu!eiu#5 (
k51

`

g2k21cos@~2k21!u#,

A2@X5r B~cosu!eiu#5 (
k51

`

g2k sin@2ku#,

g jPR, uP@0,2p#.

The real constantg0Þ0 may be chosen arbitrarily; the coe
ficientsg j for j >1 are then determined uniquely by the e
terior boundary conditions.

~2! It is now possible to find analytic functionsĜ andĴ
with

g~X!5 i ĝ~X!5 i Ĝ~X!exp@Ĵ~X!#,

Ĝ~X!5AA1
2~X!2@A2~X!1 ig0#2,

Ĝ@X5 i r B~0!#5g0 ,

Ĵ~X!52
i

2 FarctanS A1~X!1A2~X!

g0
D

1arctanS A1~X!2A2~X!

g0
D G

1
1

4
lnF @A1~X!1A2~X!#21g0

2

@A1~X!2A2~X!#21g0
2G ,

Ĵ@X5 i r B~0!#50.

With Eq. ~12!, the Ernst potential reads then as follows

f ~g!5
f B~Ĵ,Ĝ!1 i

11 i f B~Ĵ,Ĝ!
.

~3! For a given analytic functionĴ of the above kind we
determine corresponding Ba¨cklund parameters$Yn%q in the
same manner as outlined in@23#. This means that we solve
the linear system:
6-9
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exp@Ĵ~Zn!#P~2Zn!5~21!qP~Zn!, n51 . . .q,

P~X!5 )
n51

q

~X2Yn!5Xq1 (
j 50

q21

bjX
j

to determine the coefficientsbj and from these the zerosYn

of P. The q arbitrary different supporting pointsZnPG are
chosen to possess positive real and imaginary parts.

~4! By virtue of formula~16! we are now able to approxi
mate the Ernst potentialf (g) if the parameters$g j%0

` are
given. For the approximate numerical evaluation of$g j%1

2n

from the given exterior boundary values we setg j50 for j
.2n and demand that the resulting exterior Ernst poten
f (g) coincide with the prescribed boundary values atn dif-
ferent points (r j ,z j )PB with z j>0. This gives a compli-
cated nonlinear set of 2n real equations to determine th
unknown coefficients$g j%1

2n. As in the analogous treatmen
to solve boundary value problems for arbitrary differentia
rotating disks of dust, we solve this system by means o
Newton-Raphson method. Again we provide good init
guesses by solving a sequence of boundary value prob
with initially weak relativistic and finally the desired bound
ary values, and where the initial guess comes from the w
relativistic expansion~15!.

Results

The above approximation scheme has been executed
various Dirichlet boundary value problems. As expec
from the above, there is always a weak relativistic reg
y

.
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within which the solution exists and can be well appro
mated by the Ba¨cklund type solutions. In particular, the ex
terior solution proves to be independent of the choice of
parameterg0, only the accuracy of the results is affected.

As one moves further to more relativistic boundary v
ues, there might be however a limit beyond which the so
tions cannot be extended. For example, take the exte
boundary values

f @~r,z!PB#511«F2
3

2
1z2G1 i«z,

with the spherical boundaryB characterized byr B[1. One
finds a limiting parameter«0'0.68 beyond which the
boundary value problem does not seem to be soluble. T
has been verified not only by various choices of the ab
parameterg0 but also by a two-dimensional numeric
method, which solves the exterior Ernst equation direc
without using analytic solutions.10 All these routines yield
the samelimiting parameter«0 which is a strong indication
that for «.«0 the Ernst potentials corresponding to th
above boundary values do not exist.
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