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Static axially symmetric solutions of Einstein-Yang-Mills equations with a negative cosmological
constant: The regular case

Eugen Radu
Albert-Ludwigs-Universita Fakulta fur Physik, Hermann-Herder-StraRe 3, Freiburg D-79104, Germany
(Received 21 August 2001; published 11 January 2002

Numerical solutions of the Einstein-Yang-Mills equations with a negative cosmological constant are con-
structed. These axially symmetric solutions approach asymptotically the anti—-de Sitter spacetime and are
regular everywhere. They are characterized by the winding numbek, the mass, and the non-Abelian
magnetic charge. The main properties of the solutions and the differences with respect to the asymptotically flat
case are discussed. The existence of axially symmetric monopole and dyon solutions in fixed anti—de Sitter
spacetime is also discussed.

DOI: 10.1103/PhysRevD.65.044005 PACS nuni®er04.20.Jb, 11.15.Kc, 14.80.Hv

I. INTRODUCTION Misner (ADM) mass. When the parametér approaches
zero, an already existing branch of monopoles and dyon so-

After the discovery by Bartnik and McKinnofBK) of a  lutions collapses to a single point in the moduli space. At the
nontrivial particlelike solution of the Einstein-Yang-Mills same time, new branches of solutions emerge. A fractal
(EYM) equationd 1], there has been a great deal of numeri-structure in the moduli space has been notic&d].
cal and analytical work on various aspects of EYM theory. A As observed in7], these solutions may have profound
large number of self-gravitating structures with non-Abelianconsequences in the evolution of the early universe. In Refs.
fields have been foundor a review, se¢2]). These include [10,11], regular gravitating monopole and dyon solutions in
black holes with nontrivial hair, thereby leading to the pos-Einstein-Yang-Mills-Higgs(EYMH) theory with a Higgs
sibility of evading the no-hair conjecture. field in the adjoint representation were shown to exist in

Most of these investigations have been carried out on thasymptotically AdS spacetime. As happens in asymptotically
assumption that spacetime is asymptotically flat. Less iflat space, a critical value for the Newton constant exists
known when the theory is modified to include a cosmologi-above which no regular solution can be found. The presence
cal constantA which greatly changes the asymptotic struc-of a cosmological constant enhances this effect, the critical
ture of spacetim¢3]. value being smaller than the value found for=0.

For a positive cosmological constant, the behavior of the The global existence of a solution of the Cauchy problem
solutions is similar in many respects to that of asymptoticallyfor the YMH equations in AdS spacetime is discussed in
flat geometrieg4]. In particular, the configurations are un- [12].
stable in both cas€$]. However, so far only spherically symmetric solutions

If we allow for a negative cosmological constant, the so-have been found.
lution of the matter-free Einstein equations possessing the For A=0, a SU2) YM theory coupled to a scalar Higgs
maximal number of symmetries is the anti—de Sit&dS)  field [13,14] dilaton[15], or gravity[16] is known to possess
spacetime. Being a maximally symmetric spacetime, it is aralso axially symmetric finite-energy solutions. In the 1990s,
excellent model to investigate questions of principle relatedhe numerical calculation of these configurations was one of
to the quantization of fields propagating on a curved backthe most important developments in the domain.
ground, the interaction with the gravitational field, and issues A natural question arises: do non-Abelian axially symmet-
related to the lack of global hyperbolicity. Also, lately there ric solutions also exist for a nonzero cosmological constant?
has been a lot of interest in asymptotically AdS spacetimesind if this is the case, how does the nonasymptotically flat
connected with string theory and related topics. structure of spacetime affect these configurations?

Recently, some authors have discussed the properties of The aim of this paper is to address the above questions for
soliton and black hole solutions of the EYM system for  the SU2) gauge group, under the assumption of axial sym-
<0 (i.e., an asymptotically AdS spacetif@—-8]). They ob-  metry, for an asymptotically AdS geometry.
tained some surprising results, which are strikingly different The corresponding problem for a vanishing cosmological
from the BK-type solutions. First, there is a continuum of constant and a purely magnetic gauge field has been exhaus-
solutions in terms of the adjustable shooting parameter thdively discussed if16]. Representing generalizations of the
specifies the initial conditions at the origin or at the eventBK solutions [2], the solutions obtained by Kleihaus and
horizon, rather than discrete points. The spectrum has a finitéunz in[16] have no non-Abelian charges but are character-
number of continuous branches. Secondly, there are norized by two integers. These are the node nunibef the
trivial solutions stable against spherically symmetric lineargauge field functions and the winding numipewith respect
perturbations, corresponding to stable monopole and dyoto the azimuthal angle. The spherically symmetric BK so-
configurations. The solutions are classified by non-Abeliardutions have winding numben=1. A winding numbern
electric and magnetic charges and the Arnowitt-Deser=>1 leads to axially symmetric solutions. As discussed in
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[16], these regular axially symmetric solutions have a torus- T =2 THF ,oF ,59°P = $0,,,F o gF 7). (5)
like shape. With thez axis (#=0) as symmetry axis, the
energy density has a strong peak along ghexis (¢=m/2)  Variation with respect to the gauge fiehl, leads to the

and decreases monotonically along haxis. matter field equations
The solutions we are looking for are the asymptotically ]

AdS analogues of these configurations. Vu.F#r+ielA, F#]=0. (6)
Although some common features are present, the results

we find are rather different from those valid in tide=0 B. Static axially symmetric ansatz and gauge condition

case. A different behavior is noticeable especially for the Wi i he | . . ic i |
lower branch of axially symmetric solutions. These distinc- e generalize the isotropic axisymmetric line element
tions arise from differences that already exist in the spherif:OnSIdered by Kleihaus and Kunz 6] for a nonzeraA,
cally symmetric case. A dr

A negative A implies a continuum of axially symmetric ds?= —f( 1— —r?|dt?+ ¥ —A+r2d02
solutions. For a fixed winding number, they can be classified 3 1——r2
in a finite number of branches and have continuous values of 3
mass and non-Abelian magnetic charge. The radial and an- |
gular dependence of the metric and gauge functions can also +-r?sir? 6de?, (7)
be different from the case discussed i6]. f

The paper is structured as follows: in the next section we . . .
explain the model and derive the basic equations, while if/nere the metric function§ m, andl are only functions of
Sec. Il we discuss solutions of YM equations in a fixed Adsthe coordinates and¢. .
background. These solutions were found to be important .A sunable.par.ametrlzatlon of a purely magnetic Yang-
when discussing the scaling properties of the mass spectruMills connection in terms of spherical coordinates is
[9] and have no flat space couterparts. Some features of the 1
axially symmetric solutions possessing a net YM electric A,==—H(r,6) T;,
charge in a fixed AdS background are also presented in this 2er
section. The general properties of the axially symmetric

m 2

gravitating solutions are presented in Sec. IV, where we A= i[l— Hy(r,0)]7 ®)
show results obtained by numerical calculations. We give our o 2e 2 ¢
conclusions and remarks in the final section.
n
. TI‘
Il. GENERAL FRAMEWORK AND EQUATIONS OF Ay=—nsing Hs(r,0) 5
MOTION N
r
A. Einstein-Yang-Mills action +[1—Hy(r,0)] 2—0}
e

The basic equations for a static, axially symmetric(3U
gauge field coupled to Einstein gravitwithout cosmologi-  Here the symbols ], 7§, and !, denote the dot products of
cal term are well known(for details see, e.gl16]). Here we  the Cartesian vector of Pauli matriceiss (7;,7,,73), with
derive them for a nonzerd, without going into detail. We  the spatial unit vectors
will follow most of the conventions and notations used by

Kleihaus and KunzKK) in their papers. e"=(sin 6 cosng,sind sinng,coss),
The starting point is the Einstein-Yang-Mills action

1 é';=(cosecosn¢,cosesinn¢,—sina), (9)
S=fd“xv—g(mm—zz\)—%Tr(FWF“”) )
=(—sinng¢,cosn¢,0),

where the field strength tensor is . . . . .
respectively. This ansatz is axially symmetric in the sense

F,=d,A,—d,A, +ie[A, A,] (2)  that a rotation around the axis can be compensated by a
proomm v s pe gauge rotation. It satisfies also some additional discrete sym-
and the gauge field metries[16,17]. To fix the residual Abelian gauge invariance,
. we choose the usual gauge condit[d®]
A, =357A%. 3
mer © ra;Hy— d,H,=0. (10)
Variation of the action(1) with respect to the metrig”” _ ) ) ) o
number with respect to the azimutal angleWhile ¢ covers
R~ %gMRﬁL Ag,,=87GT,,, (4) the trigonometric circle once, the fields windimes around.
Note that the spherically symmetric ansatz corresponds to
where the YM stress-energy tensor is n=1,H;=H3=0, andH,=H,=w(r).
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C. Field equations 2

1 2 H2
From Eqgs.(4) and(6), we obtain a set of seven nonlinear 0= r®Hyp NH4M—H1 Hi+ N/ HiH3— N
elliptical partial differential equations which can be solved
numerically. Hap
Within this specific ansatz and the gauge conditib6), (=1+2Hg0)+2rHg Hy+Hs| rHy — =~ }

we derive the matter equations
1
X sir? 9+ N (T HzHs=HINFTH  N=Ho+Hyp)

0= 12Hy, 1+ Hi g g+ Hag— NP [FH gy Ha—rH g, H

PR 1,07 H2e™ N7 [rH4H3—TH3 Hy
_H4

N

. Hy 1
X sin 6 cosf+ + Nsmz 0[Hap—HsH,

+(H5+ Hﬁ—l)Hl])sinZeJr rHo +Hyy

f
—(H2—H4)cot0]ln(—) +Sin? [rH,+HiH3
W,

2m ; Zm
-n I—(2H1H3+rH4yr) sindcosf—n |—H1

fN
NI —
+sinz¢9[Hl(,+rH2r]In( \f) +cot0H1]rIn( \ﬂ) , (14
' ' m T
. NI
+sir? a[rHlvf_HZ"’]rln( m )r’ (11) whereN=1—(A/3)?. The resulting equations for the metric
' functions are
_|,2 2 M 2
0={rHarr+Hap o= Hiptn5g[HsHa s~ HaHgy L 1 (Nrof 4+ f 4o+ 2Nrf,
e (m2= 0 f
_ m
—(H§+H§—1)HZ])sm2 O+ Hap—rH o+ f |2 [rf,\2 fy
—|l=+] *N{—| [+coto—
f f f
_ m
><(—2H2H3+H4,0))sm0cose+n2m(H4—H2) 1 rf ol ful,
+ o[ N——+——
2 fol fol
fo
—sin? O[rH —Hplin| —— Ar(le fe) o (m
Jﬂ BT A
NI
+sin20[H1,€+rH2’r]rln( - ) , (12 (15
o
1 2 m 1 Nr2 m”+Nrm al LIPP
0=[r2H3vr]r+ﬁH3,oﬂ—H3 Hi+ SWGT(THT?Z)——Z( [
2
Hap (M) MM I’ﬂ
+H1(H4—2rH4,r)—H4(rH1J—W) (m) N( m 1727
2 2
2H,H 1 f'e |’9 I’|'r rm,
+ 2 4'a}sinzaJrN(H3,9+H2H4—NH,2—H§) +2 T) _(T) 2N =+ )
H 1 rmrl myly
xsinecosa—W3+Nsin29[H3,0—1+H2H4 PN——
f my g
+cothH3]In| —| +sir? _Z(W_ T)COIG}
\a
Ar [l r m
N ~ 5|7 2—|+2A T_l ,
XO[rHz,—HiH4Jr In W , (13

T (16)
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m r [%
SWG_(Tr_l_TG):P 2 | |

1( N2l 41 g, (|,9)2
. o nrthee (Lo

rl,\2 ] I
—N |_ +6N|—'+4|'—C0t9

Arl
2l

f

In the above relations, the components of the energy-

momentum tensor are
N _, 1 N

1/ f
r— | - 2
Tr Z(m 2Pt S i Zsing g v
1 f2
2 mir*sirf 6

2
F0¢,

2\m) 2R 2 mizsie e
+1—f2 F2
2 mirésirt g’ o

2 2
0:1(f>N2 1 N
4

- 1f2NF2 1 f2N =2
¢~ 72\ m| 12T I miZsi g e
1 f2

+ - ——F———F?2
2 mlr?sir? 0':"‘/”

C1f 2NF2+1 f2N e2
T 2lm/ r27 T 2 mirZsind g "¢
o1 ~ F3
2 mirtsirf 6 ¢

where, similar tg16], we define

|

F2y= 2 [(HygTrHo )2+ (rtH,—Hyp)%],

N

r

, h’sife )
Fro= 2z [(rHg; —HiHa) "+ (rH,, +H,Hg

+cotoH,)?],
F2,=n2sir 0{[Hy,y—HoHg—cotd(Ho—Hy) 12

+(Hgp— 1+ HyH,+ cotoH5)?}

D. Boundary conditions

To obtain asymptotically AdS regular solutions with
finite-energy density, the metric functions have to satisfy th

boundary conditions

arf|r:0:‘9rm|r:02ar||r:O:0a (18

f|r:w:m|r:oc:||r:oo:1- (19

m
+2A(——1). (17)

€
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We assume also the flatness conditi@8]
m|g—0=1g=0- (20)
The boundary conditions satisfied by the matter functions are
Halr—o=Halr=0=1, Hil=o=Hsl;=0=0, (2
at the origin and
Holr—w=Hulr—=wo, Hi|i—=H3|,—..=0, (22

at infinity, wherew, is an undetermined constant. For a so-
lution with parity reflection symmetry, the boundary condi-
tions along the axes are

H1l9=0.m2=H3l g=0.72=0,
(23
dgH 2l g=0,m2= IgH 4l p=02=0,

3f] 9=0.m12= M| g= 0 ;2= 94l | p= 0 m2=0. (24

Therefore, we need to consider the solutions only in the re-
gion 0< < /2. Regularity on the axis requires

Holg—0=Halp=0- (25

Dimensionless partial differential equations are obtain-
ed by the following rescaling:r—(y4nGle)r, A
—(e?/47G)A. In Bjoraker-Hosotani conventions, this cor-
responds to taking a unit value for the parameter
=47G/e? [7].

E. The mass and the Yang-Mills charges of the solution

At spatial infinity, the line elemen(7) can be written as
ds’=dsj+h,,,dx*”, (26)

whereh,,, are deviations from the background AdS metric
dsﬁ. Similar to the asymptotically flat case, one expects the
values of conserved quantities to be encoded in the functions
h,,. The construction of these quantities for an asymptoti-
cally AdS spacetime was addressed for the first time in the
1980s(see, for instance, Refl9,20). However, the gener-
alization of Komar’s formula in this case is not straightfor-
ward and requires further subtraction of a background con-
figuration in order to render a finite result.

Using the Hamiltonian formalism, Henneaux and Teitel-
boim[20] have computed the mass of an asymptotically AdS
spacetime in the following way. They showed that the
Hamiltonian must be supplemented by surface terms in order
to be consistent with the equations of motion. These surface
terms yield conserved charges associated with the Killing
vectors of an asymptotic AdS geometry. The general expres-
sion of a conserved quantity is

1 .o o o .
e § PSIGM(ETau—haTi6x) + 268m,

(27)
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where G'K = 2(—g) g g+ §' gk — 281§y, &5 is the A. Spherically symmetric solutions
component of the Killing vectog, in the direction of the We start by briefly discussing the solutions obtained for

unit normal to the hypersurfade= const, hj is the deviation  n=1 within the ansatz8). In this case, the equation of mo-
three-metricg;, . The total energy is the charge associated
energy, the Brown-York energj21], and the Einstein and where the prime denotes derivative with respect.tdhe

from the AdS metricar is the canonical momentum, arf\ql tion has the simple form
is the covariant derivative with respect to the background
(4 AV o(w?—1) 30
with the Killing vector d/dt. @ 3V T T (30
It has also been checked that the Henneaux-Teitelboim
Landau-Lifshitz energy[19] all agree for the Kerr-AdS numerical results show the existence of a one-parameter fam-
spacetime. However, for the same spacetime, the generalizéig of solutions regular at =0 with behavior familiar from

Komar mass has a different val{22]. the gravitating case,
In this work, we use the Henneaux-Teitelboim formalism
to compute numerically the mass energy of a gravitating w(r)=1-br2+0(r%), (31)
EYM configuration. Substituting the ansaf?) in Eq. (27)
yields the following expression for the total mass: whereb is an arbitrary constant. The asymptotic expansion at
larger is
M= Afw/Zda_t9 m—I+a(m+I 4 1
=lim—— sing| ———+ —| — .
rﬂmlz 0 rf ar f W:W0+W1T+"‘ y (32)

(28)

wherewg,w, are constants to be determined by numerical
The dimensionless mass is obtained by using the rescalingalculations. These boundary conditions permit a nonvanish-
M—(eG/J47G)M. ing magnetic charg®, .

Solutions of the field equations are also classified by the The overall picture we find is rather similar to the one
non-Abelian electric and magnetic charg@s andQy . The  described i 7] where gravity is taken into account. By vary-
non-Abelian charges defined by ing the parameteb, a continuum of monopole solutions is

obtained. As a new feature, we notice the existence of zero-
. FK0 ?nddonel-nodﬁAmonopgle_sofl_ut_iodem(o,l) onlly._AIso],c for aI
_ — ixed value ofA, we obtain finite-energy solutions for only
_EJ ds‘\/_gTr(T:ko)T’ (29 one interval in parameter spacey<b<bm.x (With byin
<0). The energy of the solutions is an increasing function of
the absolute value df and diverges at the extremities of the
are conserved because the Gausés flux the¢rgm interval. The allowed values df correspond approximately

Within our ansatzQy =n(1- wg), Qe=0. to the lower branch found ifi7] when coupling to gravity.
This is not an unexpected feature. We recall that, given a flat
spacetime soliton solution, one can expect that it will have
(asymptotically flat gravitating generalizations. Apart from

Because the asymptotic structure of geometry is differentthe fundamental gravitating solutions, a sequence of radial
in an AdS spacetime one does not have to couple the YMgXCitations is likely to exis{2,23|. For example, in flat
system to scalar fields or gravity in order to obtain finite-SPacetime the YMH systertwith a doublet scalar fieldhas
energy solutions. Here the cosmological constant breaks tHehly one-node solutions; when gravity is included, the solu-

scale invariance of pure YM theory to give finite-energy so-tions exist for allk [24]. _ . .
lutions. For large enough, it is possible to write an approximate

It is the purpose of this section to present both analyticapXPression ofv(r) in terms of elliptic functions. A nontrivial
and numerical arguments for the existence of nontriviaeXact solution of the YM equations is
monopoles and dyon solutions of pure YM equations in a

Qe
Qm

Ill. YANG-MILLS FIELDS IN FIXED AdS BACKGROUND

four-dimensional AdS spacetime, gravity being regarded as a w=1/[(1-A/3r?)"?, (33
fixed field (i.e., f=1=m=1; also, in this section we do not
use the above-discussed rescaling describing a monopole in AdS spacetime with unit magnetic

Although extremely simple, nevertheless this model ap-charge and masg(—3A)w/8€?. It should be mentioned that
pears to contain all the essential features of the Bjorakerthis is not a new result. The existence of this exact solution
Hosotani solutions. In this way, what might seem surprisinghas been noticed for the first time [ia5] for a positive cos-
(e.g., the existence of stable solutipfinds a natural expla- mological constant and a different coordinate system.
nation. The arguments presented[ir] for the (linearn stability of

The existence of these nongravitating solutions has rethe nodeles®i=1 monopole solutions apply directly to the
cently been noticed if9] when discussing the scaling be- nongravitating case. In Bjoraker-Hosotani analy&ef.[7],
havior of the EYM monopoles and dyons. Sec. VI, this corresponds to taking=0, H=1—Ar?/3,
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and p=1, while sH=6p=m=0. We start with the most LA 1caca 5
general expression of a spherically symmetric YM connec- E=f {Z FiiFij +§FnFit}V—9d X
tion,

1 =277f0 rzdrf0 singdo{;F| F5+3FiFa. (35
A= Z—e{u(r,t)r3dt+ v(r,t)rdr+[w(r,t) 7 +W(r,t)r,]de

+Lcotfrs+w(r,t) = W(r,t)7,]sin 6 de}. (34 The energy and the magnetic charge of solutions are propor-

) . ) . _tional to their winding numben.
librium solution whose stability we are investigating and agijyen value of parametds) we have obtained higher wind-
time-dependent perturbation. In examining time-dependent,y nymper generalizations. Moreover, the branch structure
fluctuations around finite-energy solutions, it is convenient 1% oticed forn=1 is retained for higher winding number so-
work in the du(r,t)=0 gauge. By following the stand- lutions. These solutions have very similar properties with the

g%j r”lethor?g’a W? tder_;_\;1e Il'i?fa:'éeg equattilorr]ls fg\"\srr'tz’ corresponding EYM counterparts. Therefore, the general pic-
(r,t), anddw(r,t). The linearized equations (r.t) ture we present here applies also in the next section.

and Sv(r,t) are obtained if7] for the more general gravi- . .
tating caséas usualsW(r,t) is determined bywv(r,t)]. For In Fig. 1 we present the gauge fqnctldﬁ$ ?”d the en-
a harmonic time dependenet?., the linearized system im- ergy densitye as a function of the ra_dlal coordlnqtéor the
plies two standard Schdinger equations. The analysis of the angles¢=0, m/4, and/2 for three different solutions. Here
potential’s properties in these Schinger equations can be e winding pumber2|ﬂ:3 andA = —0.01; also the mass is
done following Ref[7]. The standard arguments presenteddiven in units 4r/e”. The configuration with Qy=3M
by Bjoraker and Hosotani are still valid and imply that for =0.332) represents a higher winding generalization of the
nodeless solutions there are no negative eigenvalueQ%or exact solutior(33) (i.e.,b=0.001 66 andv,= 0); we suspect
and thus no unstable modes. the existence of a general analytic form of this solution
(valid for n=1).

The configurations withwy# 0 have been arbitrarily se-
N ) _ ) lected; the solution with@y,=2.391M =0.576) is obtained
In addition to these spherically symmetric solutions, Westarting with a spherically symmetric solution with

study their axially symmetric generalizations. Subject to the_ 0.003, while for Q= —13.284M =1.118) we havér=
boundary condition$18)—(24), we solve the YM equations _0_001j

numerically.

Our methods are similar to those used by the authors of The functionsH, and H, have a smallg deper_1dence,
[16] in their works. The KK scheme solves the field equa_although the angular dependence of matter functions gener-

tions following an iteration procedure. One starts with aally increases wittQy . We notice also that the gauge field

known spherically symmetric configuration and increases théunction Ha remains nodeless and for every solution with
winding number in small steps. The field equations are firsfYo™1 it takes only negative valugsi, andHj are zero on
discretized on a nonequidistant grid and the resulting systeffi€ axes in Figs. @& and Xc)]. _

is solved iteratively until convergence is achieved. In this N Fig. 2, we show the energy densigyand the gauge
scheme, a new radial variable is introduced which maps théinctionsH; for a nodeless solution with=3, k=0, total
semi-infinite region[0, =) to the closed regiofi0, 1]. Thus ~MassM=5.481(in units 4r/€?), and magnetic charg@y
the region of integration is not truncated and the model con=—37.185 as a function of the compactified coordingies
verges to a higher accuracy. There are various possibilities x sin# and z=xcos# (for A=-0.0) [here x=r/(50
for this transformation, but a choice which is flexible enough+r)]. The parameteb for the corresponding spherically
was x=r/(c+r), wherec is a properly chosen constant. symmetric solution iso=—0.0015. In this case, the func-
Typical grids have sizes 1%030, covering the integration tionsH, andH, are almost spherical. The functidty, does

region Osx<1 and Os 6= m/2. not possess a nontrivial node and takes only negative values.
The numerical calculations are performed by using the

program FIDISOL, based on the iterative Newton-Raphson

method. Details on theiDISoOL code are presented i@6]. To C. Nongravitating dyon solutions

obtain axially symmetric solutions, we start with the=1

solution discussed above as an initial guess and increase the The existence of dyon solutions without a Higgs field is a

value ofn slowly. The iterations converge, and repeating thenew feature for AdS spacetinié&]. If A=0, the electric part

procedure one obtains in this way solutions for arbitrary of the gauge fields is forbiddefi7,27]. In order for the

The physical values af are integers. The numerical error for boundary conditions at infinity to permit the electric fields

the functions is estimated to be lower thar 0 and maintain a finite ADM mass, we have to add scalar fields
The energy density of these nongravitating solutions igo the theory.

given by thett component of the energy momentum tensor The YM ansatZ8) can be generalized to include an elec-

T, integration over all space yields their mass energy tric part(see, e.g.[14]),

B. Axially symmetric solutions
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03 T T . 03 i . :
\Qy= 2,391 \ Qe 18204
02| / S=m2. ] e
f A _O=mi4 02 / |
/ 0= /4
=0 1
6=0
T otf } :E,
o1} // ____ |
/ Qu= 2.391
0 =23 — o
Qu=-13.284 0 D - .
Qy= 3
-0.1 L g . ) . .
) 1 2 3 4 0 1 > 3 .
logso{r) logegl)
(a) ©
2F
<h
ol
0
logso(r) -
(b) (d)
6x10°° . .

4x10°°

210

logsofn)

(e)
FIG. 1. The gauge functiorts; and the energy density(in units 4s/e?) are shown as a function of the radial coordinater the angles
0=0, /4, and @/2 for three nongravitating solutions withQg=2.391M=0.576), Qu=3M=0.332), and Qy=—13.284M
=1.118). Here the winding humber is=3 andA = —0.01.

n n
T To H5|r:0:H6|r:O:0: H5|r:x:u01 H6|r:oc:0v
A=Hs(r,6) 5+ Ho(r,6) 5. (36 (37)

A possible set of boundary conditions for the electric poten-
tials Hs, Hg is and
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FIG. 2. The gauge functiond; and the energy density (in units 4x/e?) for a monopole solution witm=3, M=5.481, andQ, =
—37.185 are shown as a function of the compactified coordirates

dHel p—o -—ro=Hglp—o.1»=0 38 n?
0 5|970,7T/2 6|(970,7T/2 ( ) O: r2H2,r'r+H2,(),(}_Hlﬁ+N[H3H4,(9—H4H3,0

for a solution with parity reflection symmetry. The equations

of motion in this case are s i _ '
—(H3+HZ—1)H,]|sir? 64| Hyp—rH

0={r’Hy,  +Hygp+Hop—N[rH,Hz—rH3H,

2 \ 2
n _ n

+(H3+H3—1)H J}sir? 6+[rH,, +Hyyp + (7 2H2HstHyp) sinfcost o (Ha—Ho)
—n?(2H,H3+rH,,)]sin @ cosd—n?H,

i sir? or?

sir? 6r? :
+S|n2 B[rHl,r_ Hz,g]r |I’1(N)’r+ T +S|n2 0[H1'5+I’H2’r:|l’ |I’1(N)’r+ 7N2
2, 2

X[rHsHe—rHgHs+Hi(H5+Hg)], (39 *[HsHeg y— HeHs o+ Ha(H2+ H2) 1, (40)
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1 2
0=(r2H3,r‘r+NH3,o,e—H3 Hi+ | +Hi(Ha=2rH,)
Hag|  2HoHa|

_H4(rH11r_T>+T SII’]ZG

1 2 20ai Hs
+ 1 (Haot HoHa—= NHi—H3)sin 6 cos—

_ Sir? Or?Hg
+ir? O[rH 3, —HiH4Jr In(N)  + —Z

X[H4Hs5+Hg(H3+coth)], (47

H2
24 2
Hi+

1
0=|r?H,,  + N Hao.0~Ha —HiHg

H2,t9
rH 1~ W”

H
n W2(1—2H3,3)+2rH3,rH1+ Hs

, 1
X sir? 0+ 5 (—HzHs=NH,

+I’H 1’rN_H2’0+ H4’0)

H2_H4

X sin +
sin @ cosé N

+Sin? O[rH 4, +HiH3

Sir? 0r2Hg

+cotdH Jr In(N) .+ N2

X[H4H5+H(Hz+coth)], (42
) 1
0: r H5,r,r+ NH5’9'9+2I‘H6JH1+I‘H1IH6
1 2
- N[2H6,0H2+ He(Ho g+ n“H3zHy)

+Hg(NHI+H3+n2H3)] | sir? 0

1
+ 5 [Hso—He(Hz+n?H,)Isin 6 cose, (43

1
0=|r?He,  + NHG,H,(?_rH 1eHs=2r5,Hy

1
+ 5 [2Hs0Ha+ Hs(Hzp~n?HaHy) — He(NH]

2H6

N

n 1
+H§+n2H§—1)])sin2 60— +[Heo
+H,yHs+n%(2H3Hg+ H4Hs)]sin 6 cosé. (44)

Similar to the asymptotically flat cag@8], a vanishingug

PHYSICAL REVIEW D 65 044005

Ee=%f FiiFfiV—gd (45)

as a surface integral at infinity. We use also the existence of
the Killing vectord/dt, which implies

Fii=DiA (46)

and the YM equation§6). Thus we obtain the general result

—EeZTr(f{Di(AtF“J—_g)—AtDi(F“J—_g)dsx}

(47)
and, for a regular configuration,
Ee=Tr< %AtF”dSr). (49
Therefore, for our ansatz
mUqg 2 ) )
Ef?llmf r<d,Hssing de. (49
0

r—oo

This result provides also a useful test to verify the accuracy
of the numerical calculations.

When takingn=1, Hs=u(r), andHg=0, we find spheri-
cally symmetric nongravitating dyon solutions. In this case,
we have

a
u(ry=ar+ g(—2b+%A)r3+O(r5), (50)

at the origin(wherea andb are arbitrary constantand

1
U=UgpFuy+-- (51)

at larger, whereug, u;, Wy, Wy are constants to be deter-
mined by numerical calculations. The expansionvdr) is

still valid. These boundary conditions permit nonvanishing
chargesQ,, and Qg. In order to obtain the value of these
charges at some distance, we have calculated the integrand in
Eq. (29) in the numerical code.

If the shooting parametex is nonzero, we find dyon so-
lutions. Solutions are found for a continuous set of param-
etersa andb; for some limiting values of these parameters,
solutions blow up. Givend,b), the general behavior of the
gauge functionsv,u is similar to the gravitating case; there
are also solutions witlQ,,=0 but Qg#0. The surprising
numerical properties noticed for the gravitating ciBeare
found also for our solution&or example,Qy=— 1/\/47 at
b=0.0061 independent of the valueaf In fact, we suspect
that these properties reside in the nongravitating sector of the
theory.

When studying dyon solutions, we notice the existence of

implies a purely magnetic solution. To prove this, we expresdiigher-node k> 1) configurations. Also, there are solutions

the electric part in Eq(35),

wherew does not cross theaxis. For a fixed value d, the
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number of nodes is determined by the value of the parameter
a. Typical spherically symmetric solutions are displayed in d
Fig. 3.

The same numerical method described above is used to
obtain higher winding number dyon solutions.

Axially symmetric dyon solutions are also known to exist
in a SU2) Yang-Mills-Higgs (when working in flat space-
time backgroung In the Prasad-Sommerfeld limit, they are
known analytically, while for finite Higgs self-coupling they
have been recently constructed numericflig]. To the au-

where

PHYSICAL REVIEW D 65 044005

FIG. 3. Typical nongravitating spherically
symmetric solutions foA = —0.01, a fixed value
of the parameter b=0.001, and a
=0.0,0.01,0.02. The figure fa=0 corresponds
to a magnetic monopole. The energy density)
is given in units 4r/e?.

H(T) 1 - .
p(T)zdterWdfz+r2(d02+sm20d¢2),
(52
2m(™) A
HT)=1— n;(r)_gTZ' (53

thor's knowledge, there are no known regular axially Sym_Slnce we want to use the spherically symmetric solution as

metric dyon solutionganalytical or numericalin a nonflat

geometry. The toroidal shape of the energy density of thgonfigurations, it _ , ,
Bjoraker-Hosotani solution to the coordinates which appear

in our general metri¢7).

Given the presence of a cosmological constant, this coor-
dinate transformation is more complicated than the transfor-
mation in[16].

monopole solutions is retained for tine=1 dyon solutions,
as is illustrated in Fig. @). As a typical axially symmetrical
configuration, we show in this three-dimensional plot the
gauge function$d; and the energy densityfor the solution
with n=2, k=1, total energyE=1.046 (in units 4m/e?),
non-Abelian charge®y=—4.124, andQg=—4.362 as a
function of the compactified coordinatgs=xsiné and z
=xcosf [for a better visualization, we define here
=r/(100+r)]. The value of the cosmological constantAis
=—0.01. This solution has been obtained starting from P

the starting point for the calculation of axially symmetric

it is appropriate to transform the known

A. Coordinate transformation

By requiringl =m and the metric functionsandm to be
nly functions of the coordinate the axially symmetric iso-

spherically symmetric configuration with the shooting pa-fOPIC metric(7) reduces to the form

rametersb=0.01 anda=0.005. As seen in Figs.(d—4(f),
gauge function$l,, H,, Hs do not exhibit a strong angular
dependence. Thel,, Hj functions remain nodeless, while
the second electric potentiélg always presents a compli-
cated nodal structure and angular dependence.

The effect of the presence of the YM electric charge is
seen in Fig. 5, where the energy density is shown as a func-

tion of the radial coordinate for several values of the agle The relationg52)—(54) yield

both for an axially symmetric dyon solution and a monopole
solution with the same values of magnetic charge and wind-
ing number A =—0.01).

IV. AXIALLY SYMMETRIC SOLUTIONS IN THE
PRESENCE OF GRAVITY

and

In their paper[7], Bjoraker and Hosotani have used
Schwarzschild-like coordinates with a line element

044005-10

A m dr?
dszz_f(l_?z S A VT
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5x10

3x107

1x10°*

FIG. 5. The energy density (in units 4/ €?)
for a dyon solution with E=1.116, Qy=
—2.272,Q¢=6.43, and for a monopole solution
with E=0.607, and the same value @J,, is
shown for several values of the angldn=2).

logyr)

Since the mass functiom(T) is only known numerically,
we have to numerically integrate E(6) to obtainr(T).
Therefore, we find

v
B = T Amrewe (57)
with
vi-oq - [ 3 Eoafor] s
T\ VH '

The integration constant is adjusted such that at infigity
=1, i.e.,r=T. The integrand in Eq(58) is well behaved at
the origin, sincem(T)~T? [7].

For a first branch solution, the values of the metric func-

tions are close to 1. Figurd® demonstrates the coordinate

transformation for higher branch spherically symmetric solu-
tions withk=1-3 and different magnetic charges. The met-

ric functionsf, m, and the gauge field function are shown
in Fig. 6(b). These solutions resemble those obtained/Afor

=0, with quantitative differences only. For example, a

smaller value of metric functiom at the origin has to be
noticed.

B. Numerical method

We employ the same numerical algorithm as for the YM
solutions in the fixed AdS background presented above. To

obtain axially symmetric solutions, we start with ar=1
EYM solution as an initial guess and increase the value of
slowly (for a fixed wg). A second procedure, also employed
for the first branch solutions, is to start with a known axially
symmetric YM solutionwith n=2,3, .. .) as an initial guess
for the full system.

alizations of then=1 solutions with a large mass are diffi-
cult to obtain.

A set of A=0 test runs was carried out, primarily de-
signed to evaluate the code’s ability to reproduce the KK
results. In this case, we have obtained an excellent agreement
with the results of16].

4

logyoi)

logyofr)

(b)

FIG. 6. (&) The coordinate transformation between the isotropic

logyol)

The numerical error for the functions is estimated to be orcoordinater and the Schwarzschild-like coordindtés shown for

the order of 10° or lower for first branch solutions and

spherically symmetric solutions witk=1— 3. (b) The metric func-

102 in the rest. This error depends also on the magnetigionsf,| and the gauge field functiow are shown as a function of
charge and mass of the solutions. Axially symmetric generihe isotropic coordinate for the solutions presented {ia).
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FIG. 7. The metric function§l,m, the gauge functionkl;, and the mass density are shown as a function of the radial coordifate
the angle®¥=0, #/4, and#/2. Heren=1, 2, and 3k=1, Q) /n=-8, M(n=1)=0.955,M(n=2)=2.351, andM(n=3)=4.179.
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C. Properties of the solutions 12 T T T T T

For all the solutions we present, we take a cosmological
constantA = —0.01, also the main value considered in Ref. ' ____________

[7]. However, a similar general behavior has been found for =2
other negative values of. °#p . Monopole spectrum . n=l
Starting from a spherically symmetric configuration, we e A=001

obtain higher winding number generalizations with many = osf
similar properties. For a fixed winding number, the solutions
can also be indexed in a finite number of branches classifiec o4}
by the mass and the non-Abelian magnetic charge. This is ir
sharp contrast to th& =0 case, where only a discrete set of o2}

solutions is found16].

The metric functionsf,m,| are completely regular and 0
show no sign of an apparent horizon. ’

We begin with a description of the lowest branch axially
symmetric regular solutions. In this case, the winding num- FIG. 8. MassM is plotted as a function of magnetic chaiQg,
ber isn>1 and nodeless or one-node solutions are allowed©r first branch gravitating monopole solutions /&t=—0.01. The
These solutions are of particular interest because they at¥nding numbem is also marked.
likely to be stable against linear perturbatidfer k=0). As  tions have their peaks and nodes shifted inwards, as com-
expected, the gauge functiohy look very similar to those pared to the first branch solutions. The energy density of the
of the correspondingpure YM solutions. The general pic- matter fields has higher peaks, which are shifted inwards,
ture presented in Fig. 2 is valid in this case, too. The typicacompared to the fundamental gravitating configurations. Oth-
values of the metric functionms,f,l are closed to 1. These erwise, many properties of the branch axially symmetric so-
functions do not exhibit a strong angular dependence, whiléutions are similar to those of their asymptotically flat coun-
m and| have a rather similar shape. terparts.

To see the change of the functions for an increasinge To see the change of the functions for a second branch
exhibit in Fig. 7 first branch solutions witk=1, wy=—3,  solution, we exhibit in Fig9 a three-dimensional plot for a
andn=1, 2, and 3. In Figs. ®-7(d), the gauge field func- configuration with winding numben=2, node numbeik
tions are shown, in Figs.(&-7(g), the metric functions, and =1, magnetic charg®,,=1.18, and total mask§l =1.498.
in Fig. 7(h) the energy density of the matter fields. TheseFigure 9h) presents the energy density of the matter fields
two-dimensional plots exhibit the dependence for three showing a pronounced peak along {hexis and decreasing
fixed angles#=0, #/4, and=n/2. Note that theH;, H; func-  monotonically along thez axis [here x=r/(1+r)]. Equal
tions remain nodelesdd; andH; are zero on the axes in density contours presented here reveal a toruslike shape of
Figs. 1@ and 7c) as required by the boundary conditions the solutions.

(23)]. As expected, the angular dependence of the metric and The same general behavior is obtained for two-node solu-
matter functions increases with However, the location of tions.

the nodes of the gauge field functiofs, H, does not move We do not address in this paper the problem of limiting
farther outward with increasing At the same time, the peak solutions, which is still unclear even in the spherically sym-
of the energy density along theaxis slightly shifts outward metric case. Using the metric for(62), Bjoraker and Hoso-
with increasingn and increases in height. At the origin, the tani have observed that, as the parameétéin Eq. (31)] is

values of the metric functions decrease with increased, the functiokl (T) hits zero from above for some
This behavior contrasts with the picture obtained in anvalues off. Also, whenb=b,, k has a finite valuew(T)
asymptotically flat spacetime. =p(T,)=H'(T,) =0, and the space endsratT, . There is a

In Fig. 8, the mass of the first branch solutidviss plot-  universality in the behavior of the critical solutiofig]. The
ted as a function of the non-Abelian magnetic chagggefor =~ meaning of the critical spacetime is yet to be clarified.
various winding numbers. For the studied configurations, we This behavior strongly contrast with the asymptotically
find that the total mass of a gravitating solution has a smalleflat case. There are no restrictions on the node nutkbed,
value than the mass of the corresponding solution in a fixedsk— oo, the BK solutions tend to a configuration that is the
AdS backgroundfor fixed Qy, A). This inequality is of union of two parts. A nontrivial part fofF <1 represents an
course in accord with our intuition that gravity tends to re-oscillating solution, and a simple part for- 1 represents the
duce the mass. A similar property has been noticed for moncexterior of an extremal Reissner-NordstrdRN) solution
pole solutions in a spontaneously broken gauge théeith-  with massM =1 and charge&y, =1 [30]. The limiting axi-
out cosmological constanf29]. ally symmetric configuration represents the exterior of an

Beside these fundamental gravitating solutions, EYMextremal RN solution with mass and chargeQ,,=n [16].
theory possesses also excited solutions not presented in aWe have found it difficult to obtain axially symmetric
fixed AdS background. generalizations of the spherically symmetric solutions near

In this case, the metric functions of this EYM solution are the critical spacetime, with large errors for the functions. A
considerably smaller at the origin, and the gauge field funceifferent metric parametrization appears to be necessary.
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V. CONCLUDING REMARKS on a branch collapse to a point; the BK solution and the

In this paper. we have presented numerical arguments thnodeless solutions disappear as their ADM mass vanishes.

paper, pr ; 9 %e did not investigate this point in the present work, restrict-
EYM theory with a negatlve cosmo'loglcal .constant pos'ing ourselves to\ = — 0.01. However, it is very probable that
SESSES regu_lar static a>_<|ally symmetric solutions. The_y 9€Mhis general picture remains valid for the axially symmetric
eralize to higher winding number the known spherically

) ; configurations and the continuum of solutions becomes a dis-
symmetric solutions.

. —
We started by presenting arguments that (BYM crete set as\ _0. Here also, in th_|s I|m|t, the BK solutions
) . o . are replaced with the KK generalizations.
theory possesses solutions with nonvanishing magnetic an . i
4 . o Actually, due to conformal invariance of the YM equa-
electric charges and arbitrary winding number when AdS. o
. . . ions and the fact that the AdS metric is reduced to the flat
spacetime replaces the Minkowski space as the ground state

. . . metric by a conformal transformation, any solution on AdS
of the theory. The spherically symmetric solutions we foundback round corresponds to some solution in the flat space. In
have properties similar to the lower branch of their known 9 P pace.

ravitating counterparts Minkowski coordinates, these are nonstationary solutions.
9 9 parts. For example, the monopole solutiéd3) corresponds to the

When including gravity, we have presented results SUGY oll-known flat-space meron solutigB2]

gesting the existence of axially symmetric solutions. These . L S
. . : Analogous solutions with higher winding number should
configurations have continuous values of mass and non- ; : . g : ; )
Iso exist when including a Higgs or a dilaton field in a

Abelian magnetic charges and present a branch structure. fReory with A<0. We conjecture the existence of axially

seen from the figures, the distributions of the mass-energgymmetric gravitating YM black hole solutions with a non-

de_nsny—_ T can be d|ﬁergnt frOT” thosg of spherical Comclgu'vanishing cosmological constant. These would be the AdS
rations (!.e.., almost toroidal d'St”bUt'ODSAS a result of ._spacetime generalizations of the asymptotically flat solutions
these distributions Of mass-energy d?”s'ty’ the Spacet.'mg}i)scussed in33]. The axially symmetric nodeless solutions
structure of our SOIUt'OnfS can be cons@erably nonsphenq re of particular interest, because they are likely to be stable
and strongly axisymmetric. We have noticed a somewhat d'fégainst linear perturbations. Fox>0, axially symmetric
ferent behavciiotr Oﬁj[h::l fléndam'einsal gravitating solutions EYM solutions generalizing .the sphe,rically symmetric con-
as compared to higher-node excitations. - : . .

We have not considered the question of stability forf|gurat|ons found ir{4] should exist also.

high indi b luti H t th Finally, this is not the complete story: the investigations
Igher winding number solutions. However, we expect that,, \ o eytended to the gravitating axially symmetric dyon
the nodeless, lower branch of axially symmetric solutions i

table. A fis h desirabl | tssolutions. This can be an important issue, since in the asymp-
stable. A rlgorous proof IS, NOWEVer, desirable, analogous ?otically flat case this problem has not been solved yet. For
the proof given for the spherically symmetric case.

In Ref.[9], a scaling law is derived for the mass spectrumAZO’ thgre are no-go theor_ems forbidding the spherically
of the shher}cally symmetric solutions with respect to theirsymmetnc dyon regular solutioi@7,7. Also, the authors of

. [28] conjectured the absence of charged regular EYM solu-
non-Abelian charge®e andQu, A, and the parametar tjions. However, as shown if84], the BK solutions admit

— 2 i
._47TG/e . The mass of moqopoles and dyons IS Expresse lowly rotating charged generalizations. The total angular
in terms of a universal functiof(Qu , Qe) mdepe_ndem of momentum of these solutions is proportional to the non-
v, A, and alsok. The monopole and dyon solutions in thé spajian electric charge. Therefore, it is natural to look for

lowest branch K=0) are essentially the solutions in the ( ot ; : : ;

. ) : gravitating axially symmetric dyon solutions, which, how-
f!xed AdS ba_ckground metric and will be.stable. The S,Olu'ever, have not been found so far within a nonperturbative
tions in the higher branche&$ 0) are obtained by dressing proach.

- . ) p
monopole and dyon solutions in the fixed AdS backgrounda In a theory with a negative cosmological constant, the

metric around the BK solutions in the asymptotically flataoundary conditions at infinity allow for spherically symmet-
space. As all BK solutions are unstable, the monopole angi 4vonsolutions. Starting from the spherically symmetric
dyon solutions in the higher branches are also unstable. n=1 solutions, we have obtained nongravitating axially

.We suspect j[he existence of a S|m|I.ar behav!or fqr thesymmetric dyon YM configurations. We suppose that these
axially symmetric monopole solutions discussed in this pa‘configurations will survive when coupling to gravity.
per. We have found already that for-1, the lowest branch

monopole solutions are essentially solutions in a pure YM

thgory. Here th_e BK solutions are replaced with the KK so- ACKNOWLEDGMENTS
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