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Static axially symmetric solutions of Einstein-Yang-Mills equations with a negative cosmologica
constant: The regular case

Eugen Radu
Albert-Ludwigs-Universita¨t, Fakultät für Physik, Hermann-Herder-Straße 3, Freiburg D-79104, Germany
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Numerical solutions of the Einstein-Yang-Mills equations with a negative cosmological constant are con-
structed. These axially symmetric solutions approach asymptotically the anti–de Sitter spacetime and are
regular everywhere. They are characterized by the winding numbern.1, the mass, and the non-Abelian
magnetic charge. The main properties of the solutions and the differences with respect to the asymptotically flat
case are discussed. The existence of axially symmetric monopole and dyon solutions in fixed anti–de Sitter
spacetime is also discussed.
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I. INTRODUCTION

After the discovery by Bartnik and McKinnon~BK! of a
nontrivial particlelike solution of the Einstein-Yang-Mill
~EYM! equations@1#, there has been a great deal of nume
cal and analytical work on various aspects of EYM theory
large number of self-gravitating structures with non-Abeli
fields have been found~for a review, see@2#!. These include
black holes with nontrivial hair, thereby leading to the po
sibility of evading the no-hair conjecture.

Most of these investigations have been carried out on
assumption that spacetime is asymptotically flat. Less
known when the theory is modified to include a cosmolo
cal constantL which greatly changes the asymptotic stru
ture of spacetime@3#.

For a positive cosmological constant, the behavior of
solutions is similar in many respects to that of asymptotica
flat geometries@4#. In particular, the configurations are un
stable in both cases@5#.

If we allow for a negative cosmological constant, the s
lution of the matter-free Einstein equations possessing
maximal number of symmetries is the anti–de Sitter~AdS!
spacetime. Being a maximally symmetric spacetime, it is
excellent model to investigate questions of principle rela
to the quantization of fields propagating on a curved ba
ground, the interaction with the gravitational field, and issu
related to the lack of global hyperbolicity. Also, lately the
has been a lot of interest in asymptotically AdS spacetim
connected with string theory and related topics.

Recently, some authors have discussed the propertie
soliton and black hole solutions of the EYM system forL
,0 ~i.e., an asymptotically AdS spacetime@6–8#!. They ob-
tained some surprising results, which are strikingly differe
from the BK-type solutions. First, there is a continuum
solutions in terms of the adjustable shooting parameter
specifies the initial conditions at the origin or at the eve
horizon, rather than discrete points. The spectrum has a fi
number of continuous branches. Secondly, there are n
trivial solutions stable against spherically symmetric line
perturbations, corresponding to stable monopole and d
configurations. The solutions are classified by non-Abel
electric and magnetic charges and the Arnowitt-Des
0556-2821/2002/65~4!/044005~17!/$20.00 65 0440
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Misner ~ADM ! mass. When the parameterL approaches
zero, an already existing branch of monopoles and dyon
lutions collapses to a single point in the moduli space. At
same time, new branches of solutions emerge. A fra
structure in the moduli space has been noticed@7,9#.

As observed in@7#, these solutions may have profoun
consequences in the evolution of the early universe. In R
@10,11#, regular gravitating monopole and dyon solutions
Einstein-Yang-Mills-Higgs~EYMH! theory with a Higgs
field in the adjoint representation were shown to exist
asymptotically AdS spacetime. As happens in asymptotic
flat space, a critical value for the Newton constant exi
above which no regular solution can be found. The prese
of a cosmological constant enhances this effect, the crit
value being smaller than the value found forL50.

The global existence of a solution of the Cauchy probl
for the YMH equations in AdS spacetime is discussed
@12#.

However, so far only spherically symmetric solution
have been found.

For L50, a SU~2! YM theory coupled to a scalar Higg
field @13,14# dilaton @15#, or gravity@16# is known to possess
also axially symmetric finite-energy solutions. In the 199
the numerical calculation of these configurations was one
the most important developments in the domain.

A natural question arises: do non-Abelian axially symm
ric solutions also exist for a nonzero cosmological consta
And if this is the case, how does the nonasymptotically
structure of spacetime affect these configurations?

The aim of this paper is to address the above questions
the SU~2! gauge group, under the assumption of axial sy
metry, for an asymptotically AdS geometry.

The corresponding problem for a vanishing cosmologi
constant and a purely magnetic gauge field has been exh
tively discussed in@16#. Representing generalizations of th
BK solutions @2#, the solutions obtained by Kleihaus an
Kunz in @16# have no non-Abelian charges but are charac
ized by two integers. These are the node numberk of the
gauge field functions and the winding numbern with respect
to the azimuthal anglew. The spherically symmetric BK so
lutions have winding numbern51. A winding numbern
.1 leads to axially symmetric solutions. As discussed
©2002 The American Physical Society05-1
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EUGEN RADU PHYSICAL REVIEW D 65 044005
@16#, these regular axially symmetric solutions have a tor
like shape. With thez axis (u50) as symmetry axis, the
energy density has a strong peak along ther axis (u5p/2)
and decreases monotonically along thez axis.

The solutions we are looking for are the asymptotica
AdS analogues of these configurations.

Although some common features are present, the res
we find are rather different from those valid in theL50
case. A different behavior is noticeable especially for
lower branch of axially symmetric solutions. These distin
tions arise from differences that already exist in the sph
cally symmetric case.

A negativeL implies a continuum of axially symmetri
solutions. For a fixed winding number, they can be classi
in a finite number of branches and have continuous value
mass and non-Abelian magnetic charge. The radial and
gular dependence of the metric and gauge functions can
be different from the case discussed in@16#.

The paper is structured as follows: in the next section
explain the model and derive the basic equations, while
Sec. III we discuss solutions of YM equations in a fixed A
background. These solutions were found to be import
when discussing the scaling properties of the mass spec
@9# and have no flat space couterparts. Some features o
axially symmetric solutions possessing a net YM elec
charge in a fixed AdS background are also presented in
section. The general properties of the axially symme
gravitating solutions are presented in Sec. IV, where
show results obtained by numerical calculations. We give
conclusions and remarks in the final section.

II. GENERAL FRAMEWORK AND EQUATIONS OF
MOTION

A. Einstein-Yang-Mills action

The basic equations for a static, axially symmetric SU~2!
gauge field coupled to Einstein gravity~without cosmologi-
cal term! are well known~for details see, e.g.,@16#!. Here we
derive them for a nonzeroL, without going into detail. We
will follow most of the conventions and notations used
Kleihaus and Kunz~KK ! in their papers.

The starting point is the Einstein-Yang-Mills action

S5E d4xA2gS 1

16pG
~R22L!2 1

2 Tr~FmnFmn! D , ~1!

where the field strength tensor is

Fmn5]mAn2]n Am1 ie@Am ,An# ~2!

and the gauge field

Am5 1
2 taAm

a . ~3!

Variation of the action~1! with respect to the metricgmn

leads to the Einstein equations

Rmn2 1
2 gmnR1Lgmn58pGTmn , ~4!

where the YM stress-energy tensor is
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Tmn52 Tr~FmaFnbgab2 1
4 gmnFabFab!. ~5!

Variation with respect to the gauge fieldAm leads to the
matter field equations

¹mFmn1 ie@Am ,Fmn#50. ~6!

B. Static axially symmetric ansatz and gauge condition

We generalize the isotropic axisymmetric line eleme
considered by Kleihaus and Kunz in@16# for a nonzeroL,

ds252 f S 12
L

3
r 2Ddt21

m

f S dr2

12
L

3
r 2

1r 2du2D
1

l

f
r 2 sin2 u df2, ~7!

where the metric functionsf, m, and l are only functions of
the coordinatesr andu.

A suitable parametrization of a purely magnetic Yan
Mills connection in terms of spherical coordinates is

Ar5
1

2er
H1~r ,u!tf

n ,

Au5
1

2e
@12H2~r ,u!#tf

n , ~8!

Af52n sinuFH3~r ,u!
t r

n

2e

1@12H4~r ,u!#
t u

n

2eG .
Here the symbolst r

n, t u
n , andt f

n denote the dot products o
the Cartesian vector of Pauli matrices,tW5(t1 ,t2 ,t3), with
the spatial unit vectors

eW r
n5~sinu cosnf,sinu sinnf,cosu!,

eW u
n5~cosu cosnf,cosu sinnf,2sinu!, ~9!

eW w
n5~2sinnf,cosnf,0!,

respectively. This ansatz is axially symmetric in the sen
that a rotation around thez axis can be compensated by
gauge rotation. It satisfies also some additional discrete s
metries@16,17#. To fix the residual Abelian gauge invarianc
we choose the usual gauge condition@16#

r ] rH12]uH250. ~10!

This ansatz contains an integern, representing the winding
number with respect to the azimutal anglew. While w covers
the trigonometric circle once, the fields windn times around.
Note that the spherically symmetric ansatz corresponds
n51, H15H350, andH25H45w(r ).
5-2
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C. Field equations

From Eqs.~4! and~6!, we obtain a set of seven nonline
elliptical partial differential equations which can be solv
numerically.

Within this specific ansatz and the gauge condition~10!,
we derive the matter equations

05S r 2H1,r ,r1H1,u,u1H2,u2n2
m

l
@rH 4,rH32rH 3,rH4

1~H3
21H4

221!H1# D sin2u1S rH 2,r1H1,u

2n2
m

l
~2H1H31rH 4,r ! D sinu cosu2n2

m

l
H1

1sin2 u@H1,u1rH 2,r # lnS f NAl

m D
1sin2 u@rH 1,r2H2,u#r lnS f NAl

m D
,r

, ~11!

05S r 2H2,r ,r1H2,u,u2H1,u1n2
m

lN
@H3H4,u2H4H3,u

2~H3
21H4

221!H2# D sin2 u1S H2,u2rH 1,r1n2
m

lN

3~22H2H31H4,u! D sinu cosu1n2
m

lN
~H42H2!

2sin2 u@rH 1,r2H2,u# lnS f NAl

m D
,u

1sin2 u@H1,u1rH 2,r #r lnS f NAl

m D
,r

, ~12!

05F r 2H3,r ,r1
1

N
H3,0,u2H3S H1

21
H2

2

N D
1H1~H422rH 4,r !2H4S rH 1,r2

H2,u

N D
1

2H2H4,u

N Gsin2 u1
1

N
~H3,u1H2H42NHl

22H2
2!

3sinu cosu2
H3

N
1

1

N
sin2 u@H3,u211H2H4

1cotuH3# lnS f

Al
D

,u

1sin2

3u@rH 3,r2H1H4#r lnS f N

Al
D

,r

, ~13!
04400
05F r 2H4,r ,r1
1

N
H4,u,u2H1S H1

21
H2

2

N D 2H1H32
H2

N

~2112H3,u!12rH 3,rH11H3S rH 1,r2
H2,u

N D G
3sin2 u1

1

N
~2H2H32H1N1rH 1,rN2H2u1H4,u!

3sinu cosu1
H22H4

N
1

1

N
sin2 u@H4,u2H3H2

2~H22H4!cotu# lnS f

Al
D

,u

1sin2 u@rH 1,r1H1H3

1cotuH1#r lnS f N

Al
D

,r

, ~14!

whereN512(L/3)2. The resulting equations for the metr
functions are

8pG
m

f
~22Tt

t!5
1

r 2 H Nr2f ,r ,r1 f ,u,u12Nr f ,r

f

2F S f ,u

f D 2

1NS r f ,r

f D 2G1cotu
f ,u

f

1
1

2 S N
r f ,r

f

r l ,r

l
1

f ,u

f

l ,u

l D J
2

Lr

3 S l ,r

l
12

f ,r

f D12LS m

f
21D ,

~15!

8pG
m

f
~Tr

r1Tf
f!5

1

4r 2 H 2FNr2m,r ,r1Nrm,r1m,u,u

m

2S m,u

m D 2

2NS rm,r

m D 2G12
l ,u,u

l

12S f ,u

f D 2

2S l ,u

l D 2

12NS rl ,r

l
1

rm,r

m D
1N

rm,r r l ,r

l
2

m,u

m

l ,u

l

22S m,u

m
22

l ,u

l D cotuJ
2

Lr

6 S l ,r

l
12

m,r

m D12LS m

f
21D ,

~16!
5-3
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8pG
m

f
~Tr

r1Tu
u!5

1

4r 2 S 2
Nr2l ,r ,r1 l ,u,u

l
2S l ,u

l D 2

2NS rl ,r

l D 2

16N
rl ,r

l
14

l ,u

l
cotu D

2
Lrl ,r

2l
12LS m

f
21D . ~17!

In the above relations, the components of the ener
momentum tensor are

Tr
r5

1

2 S f

mD 2 N

r 2 Fru
2 1

1

2

f 2N

mlr2 sin2 u
Frf

2

2
1

2

f 2

mlr4 sin2 u
Fuf

2 ,

Tu
u5

1

2 S f

mD 2 N

r 2 Fru
2 2

1

2

f 2N

mlr2 sin2 u
Frf

2

1
1

2

f 2

mlr4 sin2 u
Fuf

2 ,

Tf
f52

1

2 S f

mD 2 N

r 2 Fru
2 1

1

2

f 2N

mlr2 sin2 u
Frf

2

1
1

2

f 2

mlr4 sin2 u
Fuf

2 ,

2Tt
t5

1

2 S f

mD 2 N

r 2 Fru
2 1

1

2

f 2N

mlr2 sin2 u
Frf

2

1
1

2

f 2

mlr4 sin2 u
Fuf

2 ,

where, similar to@16#, we define

Fru
2 5

1

r 2 @~H1,u1rH 2,r !
21~rH 1,r2H2,u!2#,

Frf
2 5

n2 sin2 u

r 2 @~rH 3,r2H1H4!21~rH 4,r1H1H3

1cotuH1!2#,

Fuf
2 5n2 sin2 u$@H4,u2H2H32cotu~H22H4!#2

1~H3,u211H2H41cotuH3!2%.

D. Boundary conditions

To obtain asymptotically AdS regular solutions wi
finite-energy density, the metric functions have to satisfy
boundary conditions

] r f ur 505] rmur 505] r l ur 5050, ~18!

f ur 5`5mur 5`5 l ur 5`51. ~19!
04400
y-

e

We assume also the flatness condition@18#

muu505 l uu50 . ~20!

The boundary conditions satisfied by the matter functions

H2ur 505H4ur 5051, H1ur 505H3ur 5050, ~21!

at the origin and

H2ur 5`5H4ur 5`5v0 , H1ur 5`5H3ur 5`50, ~22!

at infinity, wherew0 is an undetermined constant. For a s
lution with parity reflection symmetry, the boundary cond
tions along the axes are

H1uu50,p/25H3uu50,p/250,
~23!

]uH2uu50,p/25]uH4uu50,p/250,

]u f uu50,p/25]umuu50,p/25]ul uu50,p/250. ~24!

Therefore, we need to consider the solutions only in the
gion 0<u<p/2. Regularity on thez axis requires

H2uu505H4uu50 . ~25!

Dimensionless partial differential equations are obta
ed by the following rescaling: r→(A4pG/e)r , L
→(e2/4pG)L. In Bjoraker-Hosotani conventions, this co
responds to taking a unit value for the parameterv
54pG/e2 @7#.

E. The mass and the Yang-Mills charges of the solution

At spatial infinity, the line element~7! can be written as

ds25ds0
21hmndxmn, ~26!

wherehmn are deviations from the background AdS met
ds0

2. Similar to the asymptotically flat case, one expects
values of conserved quantities to be encoded in the funct
hmn . The construction of these quantities for an asympto
cally AdS spacetime was addressed for the first time in
1980s~see, for instance, Refs.@19,20#!. However, the gener-
alization of Komar’s formula in this case is not straightfo
ward and requires further subtraction of a background c
figuration in order to render a finite result.

Using the Hamiltonian formalism, Henneaux and Teit
boim @20# have computed the mass of an asymptotically A
spacetime in the following way. They showed that t
Hamiltonian must be supplemented by surface terms in o
to be consistent with the equations of motion. These surf
terms yield conserved charges associated with the Kill
vectors of an asymptotic AdS geometry. The general exp
sion of a conserved quantity is

JA5
1

16p R d2Si@Gi jkl ~jA
'¹̊jgkl2hkl¹̊jjA

'!12jA
k pk

i #,

~27!
5-4
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where Gi jkl 5 1
2 (2g̊)1/2(g̊ikg̊ j l 1g̊i l g̊ jk22g̊i j g̊kl), jA

' is the
component of the Killing vectorjA in the direction of the
unit normal to the hypersurfacet5const,hik is the deviation
from the AdS metric,pk

i is the canonical momentum, andD̊ j

is the covariant derivative with respect to the backgrou
three-metricg̊ik . The total energy is the charge associa
with the Killing vector]/]t.

It has also been checked that the Henneaux-Teitelb
energy, the Brown-York energy@21#, and the Einstein and
Landau-Lifshitz energy@19# all agree for the Kerr-AdS
spacetime. However, for the same spacetime, the genera
Komar mass has a different value@22#.

In this work, we use the Henneaux-Teitelboim formalis
to compute numerically the mass energy of a gravitat
EYM configuration. Substituting the ansatz~7! in Eq. ~27!
yields the following expression for the total mass:

M5 lim
r→`

L

12E0

p/2

du sinuF2
m2 l

r f
1

]

]r S m1 l

f D G r 4.

~28!

The dimensionless mass is obtained by using the resca
M→(eG/A4pG)M .

Solutions of the field equations are also classified by
non-Abelian electric and magnetic chargesQE andQM . The
non-Abelian charges defined by

S QE

QM
D5

e

4p E dSkA2g TrS Fk0

F̃k0D t r ~29!

are conserved because the Gauss flux theorem@7#.
Within our ansatz,QM5n(12v0

2), QE50.

III. YANG-MILLS FIELDS IN FIXED AdS BACKGROUND

Because the asymptotic structure of geometry is differe
in an AdS spacetime one does not have to couple the
system to scalar fields or gravity in order to obtain fini
energy solutions. Here the cosmological constant breaks
scale invariance of pure YM theory to give finite-energy s
lutions.

It is the purpose of this section to present both analyt
and numerical arguments for the existence of nontriv
monopoles and dyon solutions of pure YM equations in
four-dimensional AdS spacetime, gravity being regarded a
fixed field ~i.e., f 5 l 5m51; also, in this section we do no
use the above-discussed rescaling!.

Although extremely simple, nevertheless this model
pears to contain all the essential features of the Bjora
Hosotani solutions. In this way, what might seem surpris
~e.g., the existence of stable solutions! finds a natural expla-
nation.

The existence of these nongravitating solutions has
cently been noticed in@9# when discussing the scaling be
havior of the EYM monopoles and dyons.
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A. Spherically symmetric solutions

We start by briefly discussing the solutions obtained
n51 within the ansatz~8!. In this case, the equation of mo
tion has the simple form

Fv8S 12
L

3
r 2D G85

v~v221!

r 2 , ~30!

where the prime denotes derivative with respect tor. The
numerical results show the existence of a one-parameter
ily of solutions regular atr 50 with behavior familiar from
the gravitating case,

w~r !512br21O~r 4!, ~31!

whereb is an arbitrary constant. The asymptotic expansion
large r is

w5w01w1

1

r
1¯ , ~32!

wherew0 ,w1 are constants to be determined by numeri
calculations. These boundary conditions permit a nonvan
ing magnetic chargeQM .

The overall picture we find is rather similar to the on
described in@7# where gravity is taken into account. By vary
ing the parameterb, a continuum of monopole solutions i
obtained. As a new feature, we notice the existence of z
and one-node monopole solutions (k50,1) only. Also, for a
fixed value ofL, we obtain finite-energy solutions for onl
one interval in parameter space,bmin,b,bmax ~with bmin
,0!. The energy of the solutions is an increasing function
the absolute value ofb and diverges at the extremities of th
interval. The allowed values ofb correspond approximately
to the lower branch found in@7# when coupling to gravity.
This is not an unexpected feature. We recall that, given a
spacetime soliton solution, one can expect that it will ha
~asymptotically flat! gravitating generalizations. Apart from
the fundamental gravitating solutions, a sequence of ra
excitations is likely to exist@2,23#. For example, in flat
spacetime the YMH system~with a doublet scalar field! has
only one-node solutions; when gravity is included, the so
tions exist for allk @24#.

For large enoughr, it is possible to write an approximat
expression ofw(r ) in terms of elliptic functions. A nontrivial
exact solution of the YM equations is

v51/~12L/3r 2!1/2, ~33!

describing a monopole in AdS spacetime with unit magne
charge and massA(23L)p/8e2. It should be mentioned tha
this is not a new result. The existence of this exact solut
has been noticed for the first time in@25# for a positive cos-
mological constant and a different coordinate system.

The arguments presented in@7# for the ~linear! stability of
the nodelessn51 monopole solutions apply directly to th
nongravitating case. In Bjoraker-Hosotani analysis~Ref. @7#,
Sec. VII!, this corresponds to takingv50, H512Lr 2/3,
5-5
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EUGEN RADU PHYSICAL REVIEW D 65 044005
and p51, while dH5dp5dm50. We start with the mos
general expression of a spherically symmetric YM conn
tion,

A5
1

2e
$u~r ,t !t3dt1n~r ,t !t3dr1@w~r ,t !t11w̃~r ,t !t2#du

1@cotut31w~r ,t !t22w̃~r ,t !t1#sinu df%. ~34!

All field variables are written as the sum of the static eq
librium solution whose stability we are investigating and
time-dependent perturbation. In examining time-depend
fluctuations around finite-energy solutions, it is convenien
work in the du(r ,t)50 gauge. By following the stand
ard methods, we derive linearized equations fordw(r ,t),
dw̃(r ,t), anddn(r ,t). The linearized equations fordw(r ,t)
anddn(r ,t) are obtained in@7# for the more general gravi
tating case@as usual,dw̃(r ,t) is determined bydn(r ,t)#. For
a harmonic time dependenceeiVt, the linearized system im
plies two standard Schro¨dinger equations. The analysis of th
potential’s properties in these Schro¨dinger equations can b
done following Ref.@7#. The standard arguments present
by Bjoraker and Hosotani are still valid and imply that f
nodeless solutions there are no negative eigenvalues foV2

and thus no unstable modes.

B. Axially symmetric solutions

In addition to these spherically symmetric solutions,
study their axially symmetric generalizations. Subject to
boundary conditions~18!–~24!, we solve the YM equations
numerically.

Our methods are similar to those used by the author
@16# in their works. The KK scheme solves the field equ
tions following an iteration procedure. One starts with
known spherically symmetric configuration and increases
winding number in small steps. The field equations are fi
discretized on a nonequidistant grid and the resulting sys
is solved iteratively until convergence is achieved. In t
scheme, a new radial variable is introduced which maps
semi-infinite region@0, `! to the closed region@0, 1#. Thus
the region of integration is not truncated and the model c
verges to a higher accuracy. There are various possibil
for this transformation, but a choice which is flexible enou
was x5r /(c1r ), where c is a properly chosen constan
Typical grids have sizes 170330, covering the integration
region 0<x<1 and 0<u<p/2.

The numerical calculations are performed by using
program FIDISOL, based on the iterative Newton-Raphs
method. Details on theFIDISOL code are presented in@26#. To
obtain axially symmetric solutions, we start with then51
solution discussed above as an initial guess and increas
value ofn slowly. The iterations converge, and repeating
procedure one obtains in this way solutions for arbitraryn.
The physical values ofn are integers. The numerical error fo
the functions is estimated to be lower than 1023.

The energy density of these nongravitating solutions
given by thett component of the energy momentum tens
Tm

n ; integration over all space yields their mass energy
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E5E $ 1
4 Fi j

i Fi j
a 1 1

2 Fit
aFit

a%A2gd3x

52pE
0

`

r 2drE
0

p

sinu du$ 1
4 Fi j

i Fi j
a 1 1

2 Fit
aFit

a %. ~35!

The energy and the magnetic charge of solutions are pro
tional to their winding numbern.

For every spherically symmetric configuration~i.e., a
given value of parameterb! we have obtained higher wind
ing number generalizations. Moreover, the branch struc
noticed forn51 is retained for higher winding number so
lutions. These solutions have very similar properties with
corresponding EYM counterparts. Therefore, the general
ture we present here applies also in the next section.

In Fig. 1, we present the gauge functionsHi and the en-
ergy densitye as a function of the radial coordinater for the
anglesu50, p/4, andp/2 for three different solutions. Here
the winding number isn53 andL520.01; also the mass is
given in units 4p/e2. The configuration with (QM53,M
50.332) represents a higher winding generalization of
exact solution~33! ~i.e.,b50.001 66 andw050!; we suspect
the existence of a general analytic form of this soluti
~valid for n>1!.

The configurations withv0Þ0 have been arbitrarily se
lected; the solution with (QM52.391,M50.576) is obtained
starting with a spherically symmetric solution withb
50.003, while for (QM5213.284,M51.118) we haveb5
20.001.

The functionsH2 and H4 have a smallu dependence,
although the angular dependence of matter functions ge
ally increases withQM . We notice also that the gauge fie
function H1 remains nodeless and for every solution w
w0.1 it takes only negative values@H1 andH3 are zero on
the axes in Figs. 1~a! and 1~c!#.

In Fig. 2, we show the energy densitye and the gauge
functionsHi for a nodeless solution withn53, k50, total
massM55.481 ~in units 4p/e2!, and magnetic chargeQM

5237.185 as a function of the compactified coordinatesr
5x sinu and z5x cosu ~for L520.01! @here x5r /(50
1r )#. The parameterb for the corresponding sphericall
symmetric solution isb520.0015. In this case, the func
tions H2 andH4 are almost spherical. The functionH1 does
not possess a nontrivial node and takes only negative val

C. Nongravitating dyon solutions

The existence of dyon solutions without a Higgs field is
new feature for AdS spacetime@7#. If L>0, the electric part
of the gauge fields is forbidden@7,27#. In order for the
boundary conditions at infinity to permit the electric field
and maintain a finite ADM mass, we have to add scalar fie
to the theory.

The YM ansatz~8! can be generalized to include an ele
tric part ~see, e.g.,@14#!,
5-6
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FIG. 1. The gauge functionsHi and the energy densitye ~in units 4p/e2! are shown as a function of the radial coordinater for the angles
u50, p/4, and p/2 for three nongravitating solutions with (QM52.391,M50.576), (QM53,M50.332), and (QM5213.284,M
51.118). Here the winding number isn53 andL520.01.
n

At5H5~r ,u!
t r

n

2e
1H6~r ,u!

t u
n

2e
. ~36!

A possible set of boundary conditions for the electric pote
tials H5 , H6 is
04400
-

H5ur 505H6ur 5050, H5ur 5`5u0 , H6ur 5`50,
~37!

and
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FIG. 2. The gauge functionsHi and the energy densitye ~in units 4p/e2! for a monopole solution withn53, M55.481, andQM5
237.185 are shown as a function of the compactified coordinatesz, r.
ns
]uH5uu50,p/25H6uu50,p/250 ~38!

for a solution with parity reflection symmetry. The equatio
of motion in this case are

05$r 2H1,r ,r1H1,u,u1H2,u2n2@rH 4,rH32rH 3,rH4

1~H3
21H4

221!H1#%sin2 u1@rH 2,r1H1,u

2n2~2H1H31rH 4,r !#sinu cosu2n2H1

1sin2 u@rH 1,r2H2,u#r ln~N! ,r1
sin2 ur 2

N

3@rH 5,rH62rH 6,rH51H1~H5
21H6

2!#, ~39!
04400
05S r 2H2,r ,r1H2,u,u2H1,u1
n2

N
@H3H4,u2H4H3,u

2~H3
21H4

221!H2# D sin2 u1S H2,u2rH 1,r

1
n2

N
~22H2H31H4,u! D sinucos1

n2

N
~H42H2!

1sin2 u@H1,u1rH 2,r #r ln~N! ,r1
sin2 ur 2

N2

3@H5H6,u2H6H5,u1H2~H5
21H6

2!#, ~40!
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05S r 2H3,r ,r1
1

N
H3,u,u2H3S H1

21
H2

2

N D 1H1~H422rH 4,r !

2H4S rH 1,r2
H2,u

N D1
2H2H4,u

N D sin2 u

1
1

N
~H3,u1H2H42NH1

22H2
2!sinu cosu2

H3

N

1sin2 u@rH 3,r2H1H4#r ln~N! ,r1
sin2 ur 2H6

N2

3@H4H51H6~H31cotu!#, ~41!

05F r 2H4,r ,r1
1

N
H4,u,u2H4S H1

21
H2

2

N D 2H1H3

1
H2

N
~122H3,u!12rH 3,rH11H3S rH 1,r2

H2,u

N D G
3sin2 u1

1

N
~2H2H32NH1

1rH 1,rN2H2,u1H4,u!

3sinu cosu1
H22H4

N
1sin2 u@rH 4,r1H1H3

1cotuH1#r ln~N! ,r1
sin2 ur 2H5

N2

3@H4H51H0~H31cotu!#, ~42!

05S r 2H5,r ,r1
1

N
H5,u,u12rH 6,rH11rH 1,rH6

2
1

N
@2H6,uH21H6~H2,u1n2H3H4!

1H5~NH1
21H2

21n2H4
2!# D sin2 u

1
1

N
@H5,u2H6~H21n2H4!#sinu cosu, ~43!

05S r 2H6,r ,r1
1

N
H6,u,u2rH 1,rH522r 5,rH1

1
1

N
@2H5,uH21H5~H2,u2n2H3H4!2H6~NH1

2

1H2
21n2H3

221!# D sin2 u2
n2H6

N
1

1

N
@H6,u

1H2H51n2~2H3H61H4H5!#sinu cosu. ~44!

Similar to the asymptotically flat case@28#, a vanishingu0
implies a purely magnetic solution. To prove this, we expr
the electric part in Eq.~35!,
04400
s

Ee5 1
2 E Fit

aFit
aA2gd3x ~45!

as a surface integral at infinity. We use also the existenc
the Killing vector]/]t, which implies

Fit5DiAt ~46!

and the YM equations~6!. Thus we obtain the general resu

2Ee5TrS E $Di~AtF
itA2g!2AtDi~FitA2g!d3x% D

~47!

and, for a regular configuration,

Ee5TrS R̀ AtF
rtdSr D . ~48!

Therefore, for our ansatz

Ee5
pu0

e2 lim
r→`

E
0

p/2

r 2] rH5 sinu du. ~49!

This result provides also a useful test to verify the accur
of the numerical calculations.

When takingn51, H55u(r ), andH650, we find spheri-
cally symmetric nongravitating dyon solutions. In this ca
we have

u~r !5ar1
a

5
~22b1 1

3 L!r 31O~r 5!, ~50!

at the origin~wherea andb are arbitrary constants! and

u5u01u1

1

r
1¯ ~51!

at larger, whereu0 , u1 , w0 , w1 are constants to be dete
mined by numerical calculations. The expansion forw(r ) is
still valid. These boundary conditions permit nonvanishi
chargesQM and QE . In order to obtain the value of thes
charges at some distance, we have calculated the integra
Eq. ~29! in the numerical code.

If the shooting parametera is nonzero, we find dyon so
lutions. Solutions are found for a continuous set of para
etersa andb; for some limiting values of these paramete
solutions blow up. Given (a,b), the general behavior of the
gauge functionsw,u is similar to the gravitating case; ther
are also solutions withQM50 but QEÞ0. The surprising
numerical properties noticed for the gravitating case@7# are
found also for our solutions~for example,QM.21/A4p at
b50.0061 independent of the value ofa!. In fact, we suspect
that these properties reside in the nongravitating sector of
theory.

When studying dyon solutions, we notice the existence
higher-node (k.1) configurations. Also, there are solution
wherew does not cross ther axis. For a fixed value ofb, the
5-9
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FIG. 3. Typical nongravitating spherically
symmetric solutions forL520.01, a fixed value
of the parameter b50.001, and a
50.0,0.01,0.02. The figure fora50 corresponds
to a magnetic monopole. The energy densitye(r )
is given in units 4p/e2.
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number of nodes is determined by the value of the param
a. Typical spherically symmetric solutions are displayed
Fig. 3.

The same numerical method described above is use
obtain higher winding number dyon solutions.

Axially symmetric dyon solutions are also known to ex
in a SU~2! Yang-Mills-Higgs ~when working in flat space
time background!. In the Prasad-Sommerfeld limit, they a
known analytically, while for finite Higgs self-coupling the
have been recently constructed numerically@14#. To the au-
thor’s knowledge, there are no known regular axially sy
metric dyon solutions~analytical or numerical! in a nonflat
geometry. The toroidal shape of the energy density of
monopole solutions is retained for then.1 dyon solutions,
as is illustrated in Fig. 4~g!. As a typical axially symmetrica
configuration, we show in this three-dimensional plot t
gauge functionsHi and the energy densitye for the solution
with n52, k51, total energyE51.046 ~in units 4p/e2!,
non-Abelian chargesQM524.124, andQE524.362 as a
function of the compactified coordinatesr5x sinu and z
5x cosu @for a better visualization, we define herex
5r /(1001r )#. The value of the cosmological constant isL
520.01. This solution has been obtained starting from
spherically symmetric configuration with the shooting p
rametersb50.01 anda50.005. As seen in Figs. 4~a!–4~f!,
gauge functionsH2 , H4 , H5 do not exhibit a strong angula
dependence. TheH1 , H3 functions remain nodeless, whil
the second electric potentialH6 always presents a compl
cated nodal structure and angular dependence.

The effect of the presence of the YM electric charge
seen in Fig. 5, where the energy density is shown as a fu
tion of the radial coordinate for several values of the angleu,
both for an axially symmetric dyon solution and a monop
solution with the same values of magnetic charge and w
ing number (L520.01).

IV. AXIALLY SYMMETRIC SOLUTIONS IN THE
PRESENCE OF GRAVITY

In their paper @7#, Bjoraker and Hosotani have use
Schwarzschild-like coordinates with a line element
04400
er

to

-

e
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ds252
H~ r̃ !

p~ r̃ !2 dt21
1

H~ r̃ !
dr̃21 r̃ 2~du21sin2 u df2!,

~52!

where

H~ r̃ !512
2m̃~ r̃ !

r̃
2

L

3
r̃ 2. ~53!

Since we want to use the spherically symmetric solution
the starting point for the calculation of axially symmetr
configurations, it is appropriate to transform the know
Bjoraker-Hosotani solution to the coordinates which app
in our general metric~7!.

Given the presence of a cosmological constant, this co
dinate transformation is more complicated than the trans
mation in @16#.

A. Coordinate transformation

By requiring l 5m and the metric functionsf andm to be
only functions of the coordinater, the axially symmetric iso-
tropic metric~7! reduces to the form

ds252 f S 12
L

3
r 2Ddt21

m

f S dr2

12~L/3!r 2

1r 2~du21sin2 u df2! D . ~54!

The relations~52!–~54! yield

f ~r !

m~r !
5

r 2

r̃ 2 5b2 ~55!

and

dr

rA12~L/3!r 2
5

1

AH~ r̃ !

dr̃

r̃
. ~56!
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STATIC AXIALLY SYMMETRIC SOLUTIONS OF . . . PHYSICAL REVIEW D 65 044005
FIG. 4. The gauge functionsHi and the energy densitye ~in units 4p/e2! for a nongravitating dyon solution withn52, k51, E
51.046,QM524.124, andQE524.36 are shown as a function of the compactified coordinatesz, r.
044005-11
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FIG. 5. The energy densitye ~in units 4p/e2!
for a dyon solution with E51.116, QM5
22.272,QE56.43, and for a monopole solutio
with E50.607, and the same value ofQM is
shown for several values of the angleu (n52).
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Since the mass functionm̃( r̃ ) is only known numerically,
we have to numerically integrate Eq.~56! to obtain r ( r̃ ).
Therefore, we find

b~ r̃ !5
2C

11~L/3! r̃ 2C2 , ~57!

with

C~ r̃ !5expF2E
r̃

` 1

r̃ 8 S 1

AH
21D dr̃8G . ~58!

The integration constant is adjusted such that at infinityb
51, i.e., r 5 r̃ . The integrand in Eq.~58! is well behaved at
the origin, sincem( r̃ ); r̃ 3 @7#.

For a first branch solution, the values of the metric fun
tions are close to 1. Figure 6~a! demonstrates the coordina
transformation for higher branch spherically symmetric so
tions withk51 – 3 and different magnetic charges. The m
ric functionsf, m, and the gauge field functionw are shown
in Fig. 6~b!. These solutions resemble those obtained forL
50, with quantitative differences only. For example,
smaller value of metric functionm at the origin has to be
noticed.

B. Numerical method

We employ the same numerical algorithm as for the Y
solutions in the fixed AdS background presented above
obtain axially symmetric solutions, we start with ann51
EYM solution as an initial guess and increase the value on
slowly ~for a fixedv0!. A second procedure, also employe
for the first branch solutions, is to start with a known axia
symmetric YM solution~with n52,3, . . .! as an initial guess
for the full system.

The numerical error for the functions is estimated to be
the order of 1023 or lower for first branch solutions an
1022 in the rest. This error depends also on the magn
charge and mass of the solutions. Axially symmetric gen
04400
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alizations of then51 solutions with a large mass are diffi
cult to obtain.

A set of L50 test runs was carried out, primarily de
signed to evaluate the code’s ability to reproduce the
results. In this case, we have obtained an excellent agree
with the results of@16#.

FIG. 6. ~a! The coordinate transformation between the isotro
coordinater and the Schwarzschild-like coordinater̃ is shown for
spherically symmetric solutions withk5123. ~b! The metric func-
tions f,l and the gauge field functionw are shown as a function o
the isotropic coordinater for the solutions presented in~a!.
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STATIC AXIALLY SYMMETRIC SOLUTIONS OF . . . PHYSICAL REVIEW D 65 044005
FIG. 7. The metric functionsf,l,m, the gauge functionsHi , and the mass density are shown as a function of the radial coordinater for
the anglesu50, p/4, andp/2. Heren51, 2, and 3,k51, QM /n528, M (n51)50.955,M (n52)52.351, andM (n53)54.179.
044005-13
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C. Properties of the solutions

For all the solutions we present, we take a cosmolog
constantL520.01, also the main value considered in R
@7#. However, a similar general behavior has been found
other negative values ofL.

Starting from a spherically symmetric configuration, w
obtain higher winding number generalizations with ma
similar properties. For a fixed winding number, the solutio
can also be indexed in a finite number of branches class
by the mass and the non-Abelian magnetic charge. This
sharp contrast to theL50 case, where only a discrete set
solutions is found@16#.

The metric functionsf,m,l are completely regular an
show no sign of an apparent horizon.

We begin with a description of the lowest branch axia
symmetric regular solutions. In this case, the winding nu
ber isn.1 and nodeless or one-node solutions are allow
These solutions are of particular interest because they
likely to be stable against linear perturbations~for k50!. As
expected, the gauge functionsHi look very similar to those
of the corresponding~pure! YM solutions. The general pic
ture presented in Fig. 2 is valid in this case, too. The typi
values of the metric functionsm,f,l are closed to 1. Thes
functions do not exhibit a strong angular dependence, w
m and l have a rather similar shape.

To see the change of the functions for an increasingn, we
exhibit in Fig. 7 first branch solutions withk51, v0523,
andn51, 2, and 3. In Figs. 7~a!–7~d!, the gauge field func-
tions are shown, in Figs. 7~e!–7~g!, the metric functions, and
in Fig. 7~h! the energy density of the matter fields. The
two-dimensional plots exhibit ther dependence for thre
fixed anglesu50, p/4, andp/2. Note that theH1 , H3 func-
tions remain nodeless@H1 and H3 are zero on the axes i
Figs. 7~a! and 7~c! as required by the boundary condition
~23!#. As expected, the angular dependence of the metric
matter functions increases withn. However, the location of
the nodes of the gauge field functionsH2 , H4 does not move
farther outward with increasingn. At the same time, the pea
of the energy density along ther axis slightly shifts outward
with increasingn and increases in height. At the origin, th
values of the metric functions decrease withn.

This behavior contrasts with the picture obtained in
asymptotically flat spacetime.

In Fig. 8, the mass of the first branch solutionsM is plot-
ted as a function of the non-Abelian magnetic chargeQM for
various winding numbers. For the studied configurations,
find that the total mass of a gravitating solution has a sma
value than the mass of the corresponding solution in a fi
AdS background~for fixed QM , L!. This inequality is of
course in accord with our intuition that gravity tends to r
duce the mass. A similar property has been noticed for mo
pole solutions in a spontaneously broken gauge theory~with-
out cosmological constant! @29#.

Beside these fundamental gravitating solutions, EY
theory possesses also excited solutions not presented
fixed AdS background.

In this case, the metric functions of this EYM solution a
considerably smaller at the origin, and the gauge field fu
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tions have their peaks and nodes shifted inwards, as c
pared to the first branch solutions. The energy density of
matter fields has higher peaks, which are shifted inwa
compared to the fundamental gravitating configurations. O
erwise, many properties of the branch axially symmetric
lutions are similar to those of their asymptotically flat cou
terparts.

To see the change of the functions for a second bra
solution, we exhibit in Fig. 9 a three-dimensional plot for a
configuration with winding numbern52, node numberk
51, magnetic chargeQM51.18, and total massM51.498.
Figure 9~h! presents the energy density of the matter fieldse,
showing a pronounced peak along ther axis and decreasing
monotonically along thez axis @here x5r /(11r )#. Equal
density contours presented here reveal a toruslike shap
the solutions.

The same general behavior is obtained for two-node s
tions.

We do not address in this paper the problem of limiti
solutions, which is still unclear even in the spherically sy
metric case. Using the metric form~52!, Bjoraker and Hoso-
tani have observed that, as the parameterb @in Eq. ~31!# is
increased, the functionH( r̃ ) hits zero from above for some
values ofr̃ . Also, whenb5bc , k has a finite value,v( r̃ h)
5p( r̃ h)5H8( r̃ h)50, and the space ends atr 5 r̃ h . There is a
universality in the behavior of the critical solutions@7#. The
meaning of the critical spacetime is yet to be clarified.

This behavior strongly contrast with the asymptotica
flat case. There are no restrictions on the node numberk and,
ask→`, the BK solutions tend to a configuration that is th
union of two parts. A nontrivial part forr̃ ,1 represents an
oscillating solution, and a simple part forr̃ .1 represents the
exterior of an extremal Reissner-Nordstro”m ~RN! solution
with massM51 and chargeQM51 @30#. The limiting axi-
ally symmetric configuration represents the exterior of
extremal RN solution with massn and chargeQM5n @16#.

We have found it difficult to obtain axially symmetri
generalizations of the spherically symmetric solutions n
the critical spacetime, with large errors for the functions.
different metric parametrization appears to be necess

FIG. 8. MassM is plotted as a function of magnetic chargeQM

for first branch gravitating monopole solutions atL520.01. The
winding numbern is also marked.
5-14
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FIG. 9. The metric functionsf,l,m, the gauge functionsHi , and the mass densitye for a monopole solution withn52, M51.498, and
QM51.18, are shown as a function of the compactified coordinatesz, r.
044005-15
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V. CONCLUDING REMARKS

In this paper, we have presented numerical arguments
EYM theory with a negative cosmological constant po
sesses regular static axially symmetric solutions. They g
eralize to higher winding number the known spherica
symmetric solutions.

We started by presenting arguments that SU~2!-YM
theory possesses solutions with nonvanishing magnetic
electric charges and arbitrary winding number when A
spacetime replaces the Minkowski space as the ground
of the theory. The spherically symmetric solutions we fou
have properties similar to the lower branch of their kno
gravitating counterparts.

When including gravity, we have presented results s
gesting the existence of axially symmetric solutions. Th
configurations have continuous values of mass and n
Abelian magnetic charges and present a branch structure
seen from the figures, the distributions of the mass-ene
density2Tt

t can be different from those of spherical config
rations ~i.e., almost toroidal distributions!. As a result of
these distributions of mass-energy density, the space
structure of our solutions can be considerably nonspher
and strongly axisymmetric. We have noticed a somewhat
ferent behavior of thek51 fundamental gravitating solution
as compared to higher-node excitations.

We have not considered the question of stability
higher winding number solutions. However, we expect t
the nodeless, lower branch of axially symmetric solutions
stable. A rigorous proof is, however, desirable, analogou
the proof given for the spherically symmetric case.

In Ref. @9#, a scaling law is derived for the mass spectru
of the spherically symmetric solutions with respect to th
non-Abelian chargesQE and QM , L, and the parameterv
54pG/e2. The mass of monopoles and dyons is expres
in terms of a universal functionf (QM , QE) independent of
v, L, and alsok. The monopole and dyon solutions in th
lowest branch (k50) are essentially the solutions in th
fixed AdS background metric and will be stable. The so
tions in the higher branches (k.0) are obtained by dressin
monopole and dyon solutions in the fixed AdS backgrou
metric around the BK solutions in the asymptotically fl
space. As all BK solutions are unstable, the monopole
dyon solutions in the higher branches are also unstable.

We suspect the existence of a similar behavior for
axially symmetric monopole solutions discussed in this
per. We have found already that forn.1, the lowest branch
monopole solutions are essentially solutions in a pure Y
theory. Here the BK solutions are replaced with the KK s
lutions. The axial symmetry will introduce a new parame
to the universal scaling function, namely the winding numb
n.

As discussed in@7,9#, the soliton solutions depend non
trivially on the value ofL. A fractal structure in the modul
space of the solutions has been observed@7,31#. New
branches emerge asuLu becomes smaller and the shape of t
branches has approximate self-similarity. AsL→0, solutions
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on a branch collapse to a point; the BK solution and
nodeless solutions disappear as their ADM mass vanis
We did not investigate this point in the present work, restri
ing ourselves toL520.01. However, it is very probable tha
this general picture remains valid for the axially symmet
configurations and the continuum of solutions becomes a
crete set asL→0. Here also, in this limit, the BK solutions
are replaced with the KK generalizations.

Actually, due to conformal invariance of the YM equa
tions and the fact that the AdS metric is reduced to the
metric by a conformal transformation, any solution on Ad
background corresponds to some solution in the flat spac
Minkowski coordinates, these are nonstationary solutio
For example, the monopole solution~33! corresponds to the
well-known flat-space meron solution@32#.

Analogous solutions with higher winding number shou
also exist when including a Higgs or a dilaton field in
theory with L,0. We conjecture the existence of axial
symmetric gravitating YM black hole solutions with a no
vanishing cosmological constant. These would be the A
spacetime generalizations of the asymptotically flat soluti
discussed in@33#. The axially symmetric nodeless solution
are of particular interest, because they are likely to be sta
against linear perturbations. ForL.0, axially symmetric
EYM solutions generalizing the spherically symmetric co
figurations found in@4# should exist also.

Finally, this is not the complete story: the investigatio
can be extended to the gravitating axially symmetric dy
solutions. This can be an important issue, since in the asy
totically flat case this problem has not been solved yet.
L>0, there are no-go theorems forbidding the spherica
symmetric dyon regular solutions@27,7#. Also, the authors of
@28# conjectured the absence of charged regular EYM so
tions. However, as shown in@34#, the BK solutions admit
slowly rotating charged generalizations. The total angu
momentum of these solutions is proportional to the no
Abelian electric charge. Therefore, it is natural to look f
~gravitating! axially symmetric dyon solutions, which, how
ever, have not been found so far within a nonperturbat
approach.

In a theory with a negative cosmological constant, t
boundary conditions at infinity allow for spherically symme
ric dyon solutions. Starting from the spherically symmet
n51 solutions, we have obtained nongravitating axia
symmetric dyon YM configurations. We suppose that the
configurations will survive when coupling to gravity.
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