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Extending the velocity-dependent one-scale string evolution model
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We provide a general overview of the velocity-dependent one-scale model for cosmic string evolution and
discuss two further extensions to it. We introduce and justify a new ansatz for the momentum parameterk, and
also incorporate the effect of radiation back reaction. We thus discuss the evolution of the basic large-scale
features of cosmic string networks in all relevant cosmological scenarios, concentrating in particular on the
‘‘scaling’’ solutions relevant for each case. In a companion paper, we show, by comparing with numerical
simulations, that this model provides an accurate description of the large-scale features of cosmic string
networks.
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I. INTRODUCTION

The velocity-dependent one-scale~VOS! model provides
the most convenient and reliable method by which to cal
late the large-scale quantitative properties of a string netw
in cosmological and other contexts@1–3#. It is widely used
for making quantitative predictions of the potential obser
tional implications of cosmic strings@4#. Given its simplicity,
it is remarkable how well the VOS model performs wh
tested against high resolution numerical simulations of str
networks @5,6#. It is well known that string evolution is a
complex physical process with a build-up of small-sc
structure on the strings, which is very computationally d
manding to model accurately@7–9#. Analytic approaches
such as the VOS model abandon the possibility of describ
the statistical physics of the string network accurately a
concentrate instead on its thermodynamics. In other word
small number of macroscopic quantities are selected and
microscopic string equations of motion are used to der
evolution equations for these averaged quantities. The p
to be paid in this approach is that the averaging proc
introduces phenomenological parameters whose values
not specified by the model itself. Instead, one must still
these parameters by direct comparison with numerical si
lations.

The VOS model is a generalization of the ‘‘one-scal
model pioneered by Kibble@10# ~see also Ref.@11#! which
describes string motion in terms of a single characteri
length scale, denotedL. In particular, it is assumed that th
lengthscale coincides with the string ‘‘correlation length’’j
and the string ‘‘curvature radius’’R. Hence in this paper we
will use these terms interchangeably. We point out, howe
that this is an approximation~which can be tested numer
cally @5,6,12,13#!. As we briefly discuss below, more elab
rate ‘‘multi-scale’’ models can treat these different leng
scales separately. By incorporating a variable rms velocityv,
the VOS model extends its validity into early regimes w
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frictional damping and across the important matter-radiat
transition, thus giving a quantitative picture of the comple
history of a cosmic string network. Other analytic a
proaches to string evolution have attempted to incorpo
the additional small-scale structure seen in numerical sim
lations. This includes a ‘‘kink-counting’’ model@14#, a func-
tional approach@15#, a ‘‘three-scale’’ model@16# and a ‘‘wig-
gly’’ model @17#. While these are important fo
characterizing detailed network features, they introduc
significant number of further phenomenological paramet
which must be fixed by simulations~and which remain rathe
uncertain!. Nevertheless, for describing the large-scale pr
erties of a long-string network, the VOS model has proved
be sufficient for a good quantitative fit using only a sing
parameter, the loop chopping efficiencyc̃.

The purpose of the present paper is, first, to provid
concise exposition of the VOS string evolution model. W
summarize how it can be applied to describe cosmolog
string evolution, including late times with a cosmologic
constant, and we present the very different histories of b
grand unified theory~GUT! and electroweak-scale string
Secondly, we propose an improvement of the VOS mode
presenting a new ansatz for the momentum parametek,
which we justify both analytically and numerically. Thirdly
we present a further extension incorporating radiation b
reaction, which provides small corrections to the cosmolo
cal scaling laws and which also compares favorably w
published results of global string simulations. Finally, w
review generalizations in a curved Friedmann-Roberts
Walker ~FRW! spacetime, giving some further asymptot
scaling solutions. We report on detailed comparisons
tween numerical string simulations and the VOS model e
where@5,12,13#.

II. THE VOS STRING NETWORK MODEL

The velocity-dependent one-scale model has been
scribed in considerable detail elsewhere@1–3,18–20#, so
here we limit ourselves to a brief summary which highligh
the features that will be important for what follows. Also fo
simplicity, we will only discuss the evolution of the lon
string network, even though this formalism is also applica

l.
©2002 The American Physical Society14-1
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to the loop population,mutatis mutandis. We will discuss this
case in detail elsewhere@13#.

A. The averaged evolution equations

Averaged quantities which we could use to describe
string network are its energyE and rms velocityv defined by

E5ma~t!E eds, v25

E ẋ2eds

E eds

, ~2.1!

where the string trajectoryx(s,t) is parametrized by the
world-sheet coordinatess and t and the ‘‘energy density’’
e(s,t) gives the string length per units along the string.

Any string network divides fairly neatly into two distinc
populations, long~or ‘‘infinite’’ ! strings and small closed
loops with corresponding quantities denoted by a subscrip`
and l respectively. The long string network is a Brownia
random walk on large scales and can be characterized
correlation lengthL. This can be used to replace the ener
E`5r`V in long strings in our averaged description: that

r`[
m

L2 .

A phenomenological term must then be included to acco
for the loss of energy from long strings by the production
loops, which are much smaller thanL. A ‘‘loop chopping
efficiency’’ parameterc̃ is introduced to characterize th
loop production as

S dr`

dt D
to loops

5 c̃v`

r`

L
. ~2.2!

In this approximation, we would expect the loop parametec̃
to remain constant irrespective of the cosmic regime,
cause it is multiplied by factors which determine the stri
network self-interaction rate. In fact, in our approximationc̃
should be seen as a ‘‘statistical’’ factor, related to the evo
tion of left and right moving modes on the Kibble-Turo
sphere@16#. On the other hand, in the context of ‘‘mult
scale’’ models, it is conceivable that there are further sm
scale effects affecting it.

From the microscopic string equations of motion, one c
then average to derive the evolution equation for the co
lation lengthL,

2
dL

dt
52HL~11v`

2 !1
L

l f
v`

2 1 c̃v` , ~2.3!

whereH is the Hubble parameter andl f is a friction damping
length scale. The first term in Eq.~2.3! is due to the stretch
ing of the network by the Hubble expansion which is mod
lated by the redshifting of the string velocity. The seco
term is due to frictional interactions by a high density
background particles scattering off the strings. The frict
length scalel f ~defined in Ref.@1#! typically depends on the
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background temperature asl f' o(1)mT23, so that it grows
with the scale factor asa3. It usually becomes irrelevant afte
a time t* '(Gm)21tc ~with tc being the epoch at which th
network was formed! which is a very short time for GUT-
scale strings but can be as late ast0 for electroweak strings.
Note also that Eq.~2.3! is valid for an arbitrary flat FRW
model withH given by the Friedmann equation

H2[S ȧ

a
D 2

5H0
2~VR0a

241VM0a23!1
1

3
L, ~2.4!

whereVR0 andVM0 are the fractional radiation and matte
densities today att0 , L is the cosmological constant and w
takea(t0)51.

One can also derive an evolution equation for the lo
string velocity with only a little more than Newton’s secon
law

dv`

dt
5~12v`

2 !F k

L
2S 2H1

1

l f
D v`G , ~2.5!

wherek is called the ‘‘momentum parameter.’’ The first ter
is the acceleration due to the curvature of the strings and
second damping term is from both the expansion and ba
ground friction. Note that strictly speaking it is the curvatu
radiusR which appears in the denominator of the first ter
In the present context we are identifyingR5L, but one
should keep this distinction in mind in more general situ
tions @6#. The parameterk is defined by

k[
^~12 ẋ2!~ ẋ•u!&

v~12v2!
, ~2.6!

with ẋ the microscopic string velocity andu a unit vector
parallel to the curvature radius vector. In previous wo
@1,2,19,3#, we left k as a second phenomenological para
eter, while pointing out that it is related to small-scale stru
ture and also demonstrating specified asymptotic depen
cies on the velocity. In the next section, however, we just
an accurate ansatz fork which removes this additional free
dom. For most relativistic regimes relevant to cosmic strin
it is sufficient to define it as follows:

krel~v !5
2A2

p

128v6

118v6
. ~2.7!

In the extreme friction-dominated case (v→0), we have the
nonrelativistic limit

knr52A2/p, ~2.8!

with a more complicated ansatz than Eq.~2.7! interpolating
between these limits for intermediate regimes.

Finally, we end this summary by noting that the VO
model has been extensively compared with the results
numerical simulations@8,9,5,13# and shown to provide a
good fit to the large-scale properties of a string network.
particular, it matches well the evolution between asympto
regimes as a network passes through the matter-radia
4-2



rm
in

st

r

ra
s-
im
t o
is
to
a

a-
g

e

th
re

e
im

lly
ti

le

le
co
on
o
s

le

t is
s, a
ts
or-
the

it is
nu-
ic
os-

al-
e-
of

a-
r

ng
the

wo

r
ly
se
la-
nd
e

or
et-
pt
he

h,

he
on
the
ich

EXTENDING THE VELOCITY-DEPENDENT ONE-SCALE . . . PHYSICAL REVIEW D 65 043514
transition. Comparisons with numerical simulations confi
the constancy of the only free parameter, the loop chopp
efficiency c̃, and fix its value to be@5#

c̃50.2360.04. ~2.9!

The VOS model for any flat FRW cosmology, then, consi
of the evolution Eqs.~2.3! and ~2.5! with the parametersc
specified in Eq.~2.9! and k given by Eq.~2.7! ~or a more
accurate general expression given below! and the scale facto
a satisfying the Friedmann equation~2.4!.

B. Scale-invariant solutions

We now start to use the VOS model to provide a gene
overview of the evolution of string networks in various co
mological scenarios. First we analyze some basic late-t
properties of cosmic string networks, neglecting the effec
friction due to particle scattering. A crucial question
whether or not they can reach a ‘‘scale invariant’’ attrac
solution which is required, among other things, for
Harrison-Zel’dovich spectrum of primordial density fluctu
tions to be generated. This can be discussed by analysin
VOS equations~2.3! and ~2.5!.

Scale-invariant solutions of the formL}t, L}H21 or L
}dH , together withv`5const, only appear to exist when th
scale factor is a power law of the form

a~ t !}tb, b5const, 0,b,1. ~2.10!

This condition implies that

L}t}H21}dH , ~2.11!

with the proportionality factors dependent onb. It is useful
to introduce the following useful parameters to describe
relative correlation length and densities, defining them
spectively as

L5gt, z[g225r`t2/m. ~2.12!

By looking for stable fixed points in the VOS equations, w
can express the actual scaling solutions in the following
plicit form:

g25
k~k1 c̃!

4b~12b!
, v25

k~12b!

b~k1 c̃!
, ~2.13!

wherek is the constant value ofk(v) given by solving the
second~implicit! equation for the velocity. Although it may
not be obvious by inspection, it is easy to verify numerica
that this solution is well-behaved and stable for all realis
parameter values.

If the scale factor is not a power law, then simple sca
invariant solutions such as Eq.~2.13! do not exist. Physically
this happens because the network dynamics are unab
adapt rapidly enough to the changes in the background
mology. A prime example of this is, of course, the transiti
between the radiation and matter-dominated eras. The ev
tion of a GUT-scale network shown in Fig. 1 illustrate
asymptotic regimes in which string evolution is sca
04351
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invariant, as well as the matter-radiation transition where i
not. Note that for realistic cosmological parameter choice
string network today is still only slowly approaching i
asymptotic matter density. Since, the cosmological imp
tance of the changes in the network properties during
matter-radiation transition cannot be over-emphasized,
important to calculate these accurately either with direct
merical simulations or with the VOS or similar analyt
model. The same is also true for late time curvature or c
mological constant domination.

C. Friction-dominated scaling solutions

During friction-dominated epochs one has different ‘‘sc
ing’’ solutions. However, these are no longer ‘‘scal
invariant,’’ since in this case the network retains a memory
its initial conditions, and in particular of the epoch of form
tion. This can be conveniently expressed by a paramete

u;S tc

tPl
D 1/2

, ~2.14!

which is essentially the value of the ratio of the dampi
terms due to friction and Hubble damping, measured at
epoch of string formation.

Thus in realistic cosmological contexts one can have t
different regimes@1–3#. The first is a ‘‘stretching’’ regime,

L

Lc
5S t

tc
D 1/2

, v5
t

uLc
, ~2.15!

which is an early-time, transient period which will occu
when the initial string density and velocity are sufficient
low—for example, as a result of a slow first-order pha
transition. In this case the network starts out with a corre
tion length significantly larger than the damping length a
so is ‘‘frozen,’’ and is conformally stretched. However th
damping length is growing asl f}t3/2, so it quickly catches
up with it, ending this regime. However, this can last f
many orders of magnitude in time for electroweak-scale n
works. Although this is not cosmologically relevant exce
for extremely light strings, the analogous regime in t
matter-dominated case would be

L}t2/3, v}t4/3. ~2.16!

The true attractor solution for a friction-dominated epoc
which follows the stretching regime~if this exists! is the
Kibble regime, which in the radiation era has the form

L

Lc
5F2knr~ c̃1knr!

3u
G1/2S t

tc
D 5/4

, v5F 3knr

2u~ c̃1knr!
G 1/2S t

tc
D 1/4

,

~2.17!

where knr is the value of the momentum parameter in t
nonrelativistic limit given above. In this case the correlati
length stays halfway between the damping length and
horizon length. Again there is a matter era analogue, wh
has the form
4-3
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FIG. 1. The complete cosmological history o
a GUT-scale cosmic string network. The evol
tion of g[L/t is shown in the top panel, while
the bottom one shows the network’s rms veloc
v` . Time is plotted relative to the epoch of equ
matter and radiation densities; the plots start
the epoch of string formation and end at th
present day. At early times, the solid curve corr
sponds to initial conditions typical of a first-orde
phase transition, while the dashed one cor
sponds to a second-order transition. At late tim
the solid curve corresponds to a model withVm

51, while the dashed one is for the observatio
ally preferred caseVm50.2,VL50.8 ~to be dis-
cussed below!. Note the deviations to the scalin
behavior.
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L}t3/2, v}t1/2, ~2.18!

but this is rarely relevant cosmologically. In the extreme c
of an electroweak scale network, friction domination en
after radiation-matter equality, but not far enough away fr
it for this regime to be reached.

These points are illustrated in Fig. 2 where we see
evolution of an electroweak-scale string network. It is int
esting to note the scaling behavior for two cases with v
different initial conditions from extreme first- and secon
order transitions. The high density strings from a seco
order transition quickly approach the Kibble scaling regim
~2.17! discussed above. However, the low density strin
from a first-order transition begin in a distinct stretching
gime ~2.15! and persist in it with their density falling slowly
until it matches that for the attractor Kibble regime. In th
case, the string network retains a ‘‘memory’’ of its initia
density for about ten orders of magnitude in cosmic tim
However, even during the friction-dominated regime the n
work is able to erase this memory once the Kibble regime
reached. On the other hand, the memory of the epoch
formation is not erased—one could in principle recover it
04351
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measuring the parameteru. This can also be seen for GU
strings in Fig. 1, although the network does not have time
relax into a definite scaling regime before friction
domination ends. For electroweak strings, there are also
teresting departures from scaling behavior at the mat
radiation transition and the network remains frictio
dominated until about three orders of magnitude in tim
afterwards. Also note that in theVm51 case the strings only
reach the relativistic regime at about the present time, an
the observationally preferred caseVm50.2,VL50.8 they
are always non-relativistic. This point is crucial, among oth
things, for a quantitative analysis of the evolution of sup
conducting strings and vortons@21,22#.

D. A cosmological constant

We can also use the VOS model in a flat background
discuss the domination at late times by a cosmological c
stantL @23,20#, a model for which there appears to be gro
ing observational evidence. In the extreme asymptotic c
when the universe is inflating we havea}exp(Ht) with H
5AL/3. The network will ‘‘freeze out’’ and will simply be
conformally stretched, that is,
4-4
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FIG. 2. Same as Fig. 1, but for a
electroweak-scale cosmic string network.
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L}a, v`}a21, ~2.19!

where, as soon as the strings become nonrelativisticknr

52A2/p, their product satisfies

Lv`5
2A2

p
H. ~2.20!

Of course, this solution will only apply at early times act
ally during inflation. At the present time we will only b
slowly approaching a new stretching regime, so we have
solve the VOS model explicitly. This is shown for a model
which VL50.8, as a dashed line at late times in Figs. 1, 2
well as in detail for GUT-scale strings in Fig. 3. It is cle
that there is a significant fall in the string density and velo
ity, an effect which, for example, would affect the larg
angle anisotropies in the cosmic microwave sky. The evo
tion of the string network is clearly not scale-invariant duri
any period afterteq.
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III. THE MOMENTUM PARAMETER

Having introduced the VOS model and some of its k
cosmological implications, we now turn to a more detail
discussion of the so-called ‘‘momentum parameter’’k de-
fined in Eq. ~2.6! and which is important for solving Eq
~2.5!. String velocities are determined by the current acc
eration to which they are subjected from the local string c
vature, as well as their ‘‘bulk’’ momentum left-over from
previous accelerations. Heuristically, we can imagine se
rating the velocity into these the curvature ‘‘c’’ and bulk ‘‘p
contributions as ẋ5 ẋc1 ẋp . In the extreme friction-
dominated limit, the velocity is entirely due to the curvatu
and reaches a limiting average velocity set by the frict
length scale,vc[^ẋc

2&1/25 l f /L. However, as the velocity in-
creases towards relativistic values we can expect the mom
tum contribution to become larger. Let us suppose that th
relative contribution is proportional to some power law
the total velocityv, that is, vp /vc}va where a is clearly
greater than unity. In this case, one can find after so
straightforward~although tedious! manipulations that the fol-
lowing approximate relation holds for the momentum para
eterk:
4-5
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FIG. 3. A close-up of Fig. 1, showing the re
cent evolution of the GUT-scale string networ
Also shown is parameterz, a measure of the
long-string density. Notice the dramatic chang
once the cosmological constant dominates.
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122av2a

112av2a
. ~3.1!

In this we have also used the fact that flat spacetime ana
calculations@2,3# have shown that

k~1/A2!50, ~3.2!

which holds exactly. Note that the above expression me
that Eq.~3.1! can also be approximately written as

k;
12~vp /vc!

2

11~vp /vc!
2

. ~3.3!

We can determinea by studying the well-known@24#
helicoidal string solution in flat space but perturbed by
frictional force. This solution is

x5„A sins~cost1h!,A coss~cost 1h!,A12A2s…,
~3.4!

where 0<A<1 andh is a small perturbation, which van
ishes if there is no friction. Here,A51 corresponds to a
circular loop, whileA50 is a static straight string. The evo
lution equation for the perturbationh has the form

ḧ12ḣ
sint cost

12A2 sin2 t
1h

~12A2!sin2 t2cos2 t

12A2 sin2 t

5
sint

l f
~12A2 sin2 t !, ~3.5!

wherel f is the friction length scale. This can then be solv
numerically, and from this solution one can calculatek. By
changing parametersA and l f one can do this for a wide
range of velocities, and hence obtain a plot ofk5k(v). This
is plotted in Fig. 4 and compared with casesa52 and a
04351
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53 of ourAnsatz~3.1!. It can be seen thata53 provides an
excellent approximation in this regime.

There is, however, one problem with this simpleansatz,
namely that it would givek(0)51. Even though one migh
naively expect this to be the correct limit, it is not so. Th
can be seen easily as follows. Assume that the velocity of
a loop is determined only by curvature, that is, neglect
momentum contribution.~This should be valid in the non
relativistic case.! Thenk will be approximately given by

k'
^uẋ2u~12 ẋ2!&

v~12v2!
. ~3.6!

This quantity can be easily calculated for the analytic he
coidal solution, yielding

k5
2A2

p

122A2/3

12A2/2
. ~3.7!

Hence we find in the small amplitude limitA→0 that

knr5
2A2

p
'0.9. ~3.8!

We also note in passing that in the relativistic limitA→1 this
same calculation would givek'4A2(3/p)'0.6 instead of
the true valuek50, which clearly demonstrates the impo
tance of momentum in the relativistic case.

The final issue to be considered is the transition betw
the two regimes. The only reliable way of studying this iss
is through direct measurement in a string network simu
tions with ultra-high resolution. We shall report on the deta
of this elsewhere@13#. Here we simply point out that we do
confirm the valueknr as the non-relativistic limit. It is then
4-6
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FIG. 4. Testing theAnsatz~3.1! for k(v) in
the relativistic limit. The solid line corresponds t
our numerical calculation of k for the helicoida
string solution, while the dashed and dotted lin
correspond to theAnsatz~3.1! with a52 anda
53 respectively.
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easy to find a fitting function for the transition between t
regimes which has the correct asymptotic limits describ
previously, that is,

k~v !5
2A2

p
~12v2!~112A2v3!

128v6

118v6
. ~3.9!

The additional factors are required to reproduce both
relativistic and non-relativistic limits accurately. Note that
one is only interested in the relativistic regime~say for GUT-
scale cosmic strings, as in the present paper! then the simpler
expression~2.7!, that is

krel~v !5
2A2

p

128v6

118v6
, ~3.10!

should be sufficiently accurate to provide reliable results.
the other hand, a reliable approximation for small no
relativistic velocities in the friction-dominated limit extend
Eq. ~3.8! as

knr~v !5
2A2

p
~12v2!. ~3.11!

We plot these threeAnsätze in Fig. 5, and also confirm the
validity of krel andknr in the appropriate limits.

Before we end this section, however, it is wise to disc
the interpretation of parameterk in this model. It should be
kept in mind that this is,ab initio, a phenomenologicalpa-
rameter, which accounts for a number of highly non-triv
effects related to the presence of small-scale structures o
strings. By construction, our model does not explicitly a
count for these small-scale effects, and hence they end
somehow encoded ink. Note that the fact that it is a functio
of the string velocity alone does not mean that it is tota
insensitive, for example, to small-scale structure and/or b
reaction effects. These effects will affect the string veloc
04351
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which in turn will modify k—this can be seen explicitly
below for the case of the radiation back reaction. One sho
not therefore infer too much from the aesthetic qualities
the functionk(v) we find—it no more than a phenomeno
logical parameter that does a good job. Presumably this
rameter will have a much clearer interpretation in the cont
of a proper wiggly string evolution model@25,17#.

IV. THE EFFECT OF RADIATION BACK REACTION

We now turn to some further extensions of the VO
model. Even though radiation backreaction is closely rela
to small-scale structure, its effect on the long-string netw
@14,16# can be included in the evolution equation for th

FIG. 5. Comparing our full ansatz for the momentum parame
~3.9! ~solid line!, and the simpler expressions for the relativistic a
friction dominated regimes, Eqs.~3.10! and~3.11! ~dashed and dot-
ted, respectively!, for relativistic ~left panel! and non-relativistic
~right panel! velocities.
4-7
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correlation length~2.3! in the same way as previousl
achieved for the evolution of the length of a string loop@2#.
For gravitational radiation the following term can be add
to the right-hand side of Eq.~2.3!:

2S dL

dt D
gr

[8Sgrv`
6 58G̃Gmv`

6 . ~4.1!

Here,G̃ is a constant which is a long-string analogue of t
G'65 found for the radiative decay of strings. Of courseG̃
will be affected by a number of physical factors such as
presence of small-scale structure, but we can expect
satisfyG̃&G and it would be surprising if it were very muc
smaller. Clearly, due to the high velocity power (v6) in-
volved in radiative back reaction, this term will not be im
portant in any regime where string motion is strong
friction-dominated~and hence non-relativistic!. We note also
that there is an interesting coincidence in theAnsatz~2.7! for
the momentum parameterk which too has av6 power, but
we are unsure as yet whether this has any deeper sig
cance.

For global string radiation into Goldstone bosons or a
ions, the corresponding radiative decay term at a timet will
be

2S dL

dt D
ax

[8Saxv`
6 5

8G̃v`
6

2p ln~ t/d!
, ~4.2!

where the logarithmic term arises because of the long-ra
fields of the global string andd is the string width. For cos-
mological GUT-scale strings, the back reaction term for lo
strings isGGm;1024 whereas for global strings it is abou
three orders of magnitude larger.

Note that the velocity equation has no correction at t
order due to the gravitational back-reaction effects. Such
fects are already included through the string curvature, wh
acts as a source for the velocity equation~i.e., the 1/L term!,
which will be different in this case.

Remarkably, the inclusion of the back reaction term do
not affect the existence of a scale-invariant attractor solut
However, it does of course influence the quantitative val
of the scaling parameters, as well as the time scale neces
for this solution to be reached. For example, the inclusion
back reaction can make the approach to scaling much fa

If the gravitational back reaction is non-zero, one can d
tinguish two asymptotic cases. First, ifS is small ~of order
unity at most! then the effect of back reaction on the scali
solution will also be small. This will be the case, for e
ample, for most local or global string networks in a cosm
logical context. We can express this as

g2'g0
2~11D!, v2'v0

2~12D!, ~4.3!

whereg0 andv0 are the ‘‘unperturbed’’ scaling values, give
by Eqs.~2.13!, and the back reaction correction has the fo
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D58bv0
5S58bFk~12b!

b~k1 c̃!
G 5/2

S. ~4.4!

On the other hand, for large enough values ofS, the back
reaction term will dominate the evolution equation for t
string length scaleL, and the attractor scale-invariant sol
tion has a different form altogether. It is not possible to wr
this solution in closed form, even expressingk implicitly as
above. However, it is possible to write it as a series. T
dominant term and the first correction take the form

g5
k

2b F 8bS

k~12b!G
1/7

~11D11••• !, ~4.5!

v5Fk~12b!

8bS G1/7

~12D11••• !, ~4.6!

with

D15
1

26/77
~k1 c̃!F b

k~12b!G
5/7

S22/7. ~4.7!

In Fig. 6 we plot the approach to scaling of some relev
string networks in the radiation and matter eras. The differ
time scales for convergence towards the attractor solution
clearly noticeable. Here, we have chosen initial conditio
that would correspond to somewhat extreme first and sec
order phase transitions. Also note that for the radiation
we have neglected the effect of friction due to particle sc
tering, in order to reproduce the initial conditions often us
in numerical simulations of string networks. For each of t
cases above, three curves are plotted, corresponding to
valuesS50 ~no back-reaction!, S51.25@close to the maxi-
mum value that can be accurately described by the sca
solution ~4.3!, ~4.4!# andS55.5 @beyond which the scaling
solution ~4.5!–~4.7! becomes accurate#.

For largeS, the effects of back reaction seen in Fig. 6
could be quite dramatic for the string network density, b
note that they are much less drastic for the string velocit
In particular, we emphasize that gravitational back react
alone does not slow down a string network to non-relativis
speeds—only a friction-dominated regime can achieve th

Interestingly, there has been recent work on numer
simulations of global string networks@26# which explore the
strong back reaction regime described by Eqs.~4.5!–~4.7!.
These authors report a surprisingly low string density re
tive to the gauged case. For their expanding universe si
lations in the realistic case with periodic boundary con
tions, they find the following radiation and matter e
densities respectively:

z rad50.960.1, zmat50.560.1. ~4.8!

These results are perfectly consistent~within the estimated
error bars! with our extended VOS model if we adopt a ba
reaction parameter

Sax-sim'3. ~4.9!
4-8
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Indeed, this corresponds to the approximate average v
for Sax that one would estimate for simulations of this res
lution. Present limitations on numerical dynamic range g
the upper bound ln(t/d)&4 ~at the end of the simulation!,
implying Sax-sim*2 throughout.

It is important to note, however, that the immediate e
trapolation of these results~4.8! to a cosmological contex
would be erroneous. For example, for GUT-scale glo
strings, at the present time we can expect ln(t/d)*100, which
implies the appropriate back reaction parameter in this c
will be Sax&0.1. Such cosmic global strings are firmly in th
regime~4.3!, ~4.4! where back reaction effects are small an
in this case, these would reduce the local string density
less than 10%. More recently, we have carried out our o
global string network simulations@6# and provided a more
detailed comparison with@26#, which confirms the above in
terpretation.

FIG. 6. The effect of gravitational back reaction on the appro
to scaling of a GUT-scale cosmic string network. Left-side pan
correspond to the radiation era, while right-side ones are for

matter era. All plots havec̃50.23; the back reaction parameter
respectivelyS50 ~solid curves!, S51.25 ~dashed! and S55.5
~dotted!. For each case two curves are plotted, correspondin
initial conditions typical of a first-order~low density and velocity!
or second-order~high density and velocity! phase transition. The
effect of friction due to particle scattering has been neglected
order to mimic currently existing numerical simulations.
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V. STRING NETWORKS IN GENERAL FRW SPACETIMES

In this section we discuss the behavior of our model
more general FRW universes, and in particular in open u
verses@18,3,19,23#.

The evolution equations will obviously be affected by t
different behavior of the scale factor, as given by the Frie
mann equation

H2[S ȧ

a
D

5H0
2~VR0a

241VM0a231VQ0a
2m!1

1

3
L2Ka22.

~5.1!

Note that we are allowing for curvature, and also for an ex
fluid whose energy density decays asa2m. It should be kept
in mind that the Friedman equation should, in general, c
tain a contribution for the string density, since it is possib
that this becomes cosmologically important.

However, apart from these effects, one must also incl
an additional correction due to the curvature@19,3#. One
should note that this is essentially the curvature radius of
strings, which as previously said we assume to coincide w
L, divided by the radius of spatial curvature of the univer

R5
H21

u12Vu1/2
. ~5.2!

Indeed, after a certain amount of algebra, one finds cor
tion terms that are of the form

w512~12V!~HL !2. ~5.3!

Note thatV denotes the total density of the universe. Fo
universe with a critical density,V51, we havew51.

The evolution equation for the correlation lengthL now
takes the form

2
dL

dt
52HL1

L

l d

v`
2

w2
1 c̃v` . ~5.4!

For simplicity wa have also defined a damping length,
cluding both the effects of Hubble damping and friction,

1

l d
52H1

1

l f
, ~5.5!

with the friction length scalel f being defined in@1–3#.
Similarly, the velocity equation becomes

dv`

dt
5S 12

v`
2

w2D S w2
k

L
2

v`

l d
D . ~5.6!
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Note that these are valid for anycosmologicalscenario.1

We do expectthe loop chopping efficiencyc̃ to be a constant
regardless of the cosmological model, since it is suppose
be reflecting a rather deep and fundamental property of
evolution of a network. Indeed, we think that whether or n
one finds a constant chopping efficiency can in some se
be seen as a measure of how accurately the analytic mo
ling is reproducing the true dynamics of the network.

We can now re-examine the question of the existence
‘‘scale invariant’’ attractor solutions. Again, scaling solutio
of the form L}t, L}H21 or L}dH , together with v`

5const will only exist provided one has

a~ t !}tb, b5const, 0,b,1, ~5.7!

but now we also require

V5const. ~5.8!

The simplest example of the second condition is of cours
flat, VM051 universe, but there are examples of cosmolo
cal models which have attractors other thanV51 @27#. In
any case, note that there can be additional relations betw
the values ofb andV for specific models. WritingL5gt as
before, the scaling solution is now given in the implicit for

g25w2
k~k1 c̃!

4b~12b!
, v25w2

k~12b!

b~k1 c̃!
, ~5.9!

where k is ~implicitly ! the constant value ofk(v) for the
appropriate value of velocity, and

w5
2~12b!

~12V!bk~k1 c̃!
F S 11

~12V!bk~k1 c̃!

~12b!
D 1/2

21G .

~5.10!

Again, although it may not be immediately obvious, it can
checked numerically that this solution is well-behaved for
sensible values of the parameters. If the two conditio
above do not hold, then a scaling solution will not exist.

We should also mention another cosmologically import
solution: in an open universe withV→0, a}t, the
asymptotic solution is

L5At~ ln t !1/2, A5F knrc̃

2~12knr!
G1/2

;2.13c̃1/2,

~5.11!

v`5B~ ln t !21/2, B5Fknr~12knr!

2c̃
G 1/2

;0.21c̃21/2,

~5.12!

1There are some additional subtleties involved when discus
the mechanism of loop production in the case of Minkowski sp
string networks, which make it quite different from any cosmolo
cal scenario. We shall discuss this important point elsewhere@13#.
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with knr given by Eq.~3.8!. Note that thisis not a scale-
invariant solution, sinceH215t and dH5t ln t. In other
words, by looking at the network one would be able to d
termine when the curvature-dominated period had starte

VI. DISCUSSION AND CONCLUSIONS

In this paper we have presented a modified version of
velocity-dependent one-scale~VOS! model @1,2,19,3# which
depends on a single free parameter, the loop chopping

ciency c̃. We have tested it against the largest and most
curate numerical simulations to date@12,13#, and we find that
it provides a good fit to the large-scale scaling properties
the string network in both the radiation and matter epochs
well as in the transition between the two eras—we will d
scribe these tests elsewhere@5#. These facts and its intrinsic
simplicity make this model particularly suited for any an
lytic or semi-analytic study of cosmic strings where one
only interested in the large-scale features of the network

We have re-analyzed some simple evolutionary proper
of cosmic string networks in the light of the VOS model a
corresponding numerical simulations. An important conc
sion to note is that any realistic cosmic string network isnot
scaling at any time from just before the epoch of equal m
ter and radiation through to the present day. This is som
thing that must be properly taken into account particula
when discussing string-seeded structure formation scena
with GUT-scale strings. The extended VOS model is a
valid when deviations from scaling are even larger at l
times in a universe which becomes dominated by curva
or a cosmological constant.

Finally, we considered the effects of radiation back re
tion on the scaling properties of the long string network, a
we have shown that although the existence~or otherwise! of
a scale-invariant attractor solution will not be affected, t
quantitative scaling properties can be. In some cases,
suppression of string density can be quite dramatic~as we
saw for small-scale global string simulations!, although the
string velocities always remain relativistic. For the most pa
however, the density of a cosmic string network, wheth
local or global is only affected slightly by radiation bac
reaction effects.

Despite the many virtues of the VOS model, we a
aware, of course, that the small number of available deg
of freedom means that this model is unable to provide
proper description of the small-scale properties of the n
work; these are important in a number of cosmological s
narios ~and sometimes even crucial!. Nevertheless, we be
lieve that the phenomenological parameterk does encode
some important small-scale structure effects, though clear
more detailed analytic and numerical study is still require
A number of possible approaches to the problem of str
small-scale structure have been suggested in the litera
@15,16#, and our own analysis using Carter’s elastic stri
model @25# will be discussed in a forthcoming publicatio
@17#.
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