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Extending the velocity-dependent one-scale string evolution model
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We provide a general overview of the velocity-dependent one-scale model for cosmic string evolution and
discuss two further extensions to it. We introduce and justify a new ansatz for the momentum pakaereter
also incorporate the effect of radiation back reaction. We thus discuss the evolution of the basic large-scale
features of cosmic string networks in all relevant cosmological scenarios, concentrating in particular on the
“scaling” solutions relevant for each case. In a companion paper, we show, by comparing with numerical
simulations, that this model provides an accurate description of the large-scale features of cosmic string
networks.
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I. INTRODUCTION frictional damping and across the important matter-radiation
transition, thus giving a quantitative picture of the complete
The velocity-dependent one-scdOS) model provides history of a cosmic string network. Other analytic ap-
the most convenient and reliable method by which to calcuproaches to string evolution have attempted to incorporate
late the large-scale quantitative properties of a string networkhe additional small-scale structure seen in numerical simu-
in cosmological and other contexXts—3]. It is widely used lations. This includes a “kink-counting” mod¢lL4], a func-
for making quantitative predictions of the potential observa-tional approacli15], a “three-scale” mode[16] and a “wig-
tional implications of cosmic strindgl]. Given its simplicity, ~ 9ly” model [17]. While these are important for
it is remarkable how well the VOS model performs whencharacterizing detailed network features, they introduce a
tested against high resolution numerical simulations of stringignificant number of further phenomenological parameters
networks[5,6]. It is well known that string evolution is a which must be fixed by simulatioiand which remain rather
complex physical process with a build-up of small-scaleuncertain. Nevertheless, for describing the large-scale prop-
structure on the strings, which is very computationally de-erties of a long-string network, the VOS model has proved to
manding to model accuratelf7—9]. Analytic approaches be sufficient for a good quantitative fit using only a single
such as the VOS model abandon the possibility of describinparameter, the loop chopping efficiency
the statistical physics of the string network accurately and The purpose of the present paper is, first, to provide a
concentrate instead on its thermodynamics. In other words, éoncise exposition of the VOS string evolution model. We
small number of macroscopic quantities are selected and th@immarize how it can be applied to describe cosmological
microscopic string equations of motion are used to derivestring evolution, including late times with a cosmological
evolution equations for these averaged quantities. The priceonstant, and we present the very different histories of both
to be paid in this approach is that the averaging procesgrand unified theoryGUT) and electroweak-scale strings.
introduces phenomenological parameters whose values agzcondly, we propose an improvement of the VOS model by
not specified by the model itself. Instead, one must still fixpresenting a new ansatz for the momentum paramiter
these parameters by direct comparison with numerical simuwhich we justify both analytically and numerically. Thirdly,
lations. we present a further extension incorporating radiation back
The VOS model is a generalization of the “one-scale” reaction, which provides small corrections to the cosmologi-
model pioneered by Kibbl§10] (see also Ref[11]) which  cal scaling laws and which also compares favorably with
describes string motion in terms of a single characteristipublished results of global string simulations. Finally, we
length scale, denoteld. In particular, it is assumed that this review generalizations in a curved Friedmann-Robertson-
lengthscale coincides with the string “correlation lengh” Walker (FRW) spacetime, giving some further asymptotic
and the string “curvature radiusR. Hence in this paper we scaling solutions. We report on detailed comparisons be-
will use these terms interchangeably. We point out, howeverween numerical string simulations and the VOS model else-
that this is an approximatiotwhich can be tested numeri- where[5,12,13.
cally [5,6,12,13). As we briefly discuss below, more elabo-
rate “multi-scale” models can treat these different length
scales separately. By incorporating a variable rms velagity
the VOS model extends its validity into early regimes with  The velocity-dependent one-scale model has been de-
scribed in considerable detail elsewhdie-3,18—-20, so
here we limit ourselves to a brief summary which highlights
*Also at C. A. U. P., Rua das Estrelas s/n, 4150 Porto, Portugalthe features that will be important for what follows. Also for
Electronic address: C.J.A.P.Martins@damtp.cam.ac.uk simplicity, we will only discuss the evolution of the long
"Electronic address: E.P.S.Shellard@damtp.cam.ac.uk string network, even though this formalism is also applicable
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to the loop populatiommutatis mutandisWe will discuss this  background temperature &s=)(1)uT 3, so that it grows

case in detail elsewhefé3]. with the scale factor aa®. It usually becomes irrelevant after
a timet, ~(Gu) ~t, (with t. being the epoch at which the
A. The averaged evolution equations network was formedwhich is a very short time for GUT-

cale strings but can be as latetggor electroweak strings.
ote also that Eq(2.3 is valid for an arbitrary flat FRW
model withH given by the Friedmann equation

Averaged quantities which we could use to describe th
string network are its enerdy and rms velocity defined by

kaEdU 2 a|’ 2 —4 3y, L
E=Ma(r)fed(r, = (2.1 H= a =Hg(Qrea "+ Qo2 )+§A, (2.9

edo
f where(Q o and Qo are the fractional radiation and matter
densities today dt,, A is the cosmological constant and we
takea(tg)=1.

One can also derive an evolution equation for the long
string velocity with only a little more than Newton’s second

where the string trajectorx(o,t) is parametrized by the

world-sheet coordinates andt and the “energy density”

e(o,t) gives the string length per unit along the string.
Any string network divides fairly neatly into two distinct

. PP . law
populations, long(or “infinite” ) strings and small closed
loops with corresponding quantities denoted by a subseript dv., 1
and | respectively. The long string network is a Brownian W:(l_vi) L 2H+I_)Uoo ) (2.5
f

random walk on large scales and can be characterized by a

correlation length.. This can be used to replace the energyherek is called the “momentum parameter.” The first term
E..=p=V in long strings in our averaged description: that is, s the acceleration due to the curvature of the strings and the
second damping term is from both the expansion and back-

p.= ﬂz ground friction. Note that strictly speaking it is the curvature

L radiusR which appears in the denominator of the first term.

h logical hen be included In the present context we are identifyirig=L, but one
A phenomenological term must then be included to accounty,q, keep this distinction in mind in more general situa-

for the loss of energy from long strings by the production Oftions [6]. The parametek is defined by
loops, which are much smaller thdn A “loop chopping '

efficiency” parameterc is introduced to characterize this ((1—5(2)($<-u)>
loop production as ks ————, (2.6)
v(l—v°)
dp.. ~ P - . : . . :
a0 =Cvs (2.2 with x the microscopic string velocity and a unit vector
to loops parallel to the curvature radius vector. In previous work

) o ~ [1,2,19,3, we left k as a second phenomenological param-

In this approximation, we would expect the loop parameter gter, while pointing out that it is related to small-scale struc-
to remain constant irrespective of the cosmic regime, begyre and also demonstrating specified asymptotic dependen-
cause it is multiplied by factors which determine the ftringcies on the velocity. In the next section, however, we justify
network self-interaction rate. In fact, in our approximatmon an accurate ansatz f&rwhich removes this additional free-
should be seen as a “statistical” factor, related to the evoludom. For most relativistic regimes relevant to cosmic strings
tion of left and right moving modes on the Kibble-Turok it is sufficient to define it as follows:
sphere[16]. On the other hand, in the context of “multi-
scale” models, it is conceivable that there are further small- 2\/5 1—8v®
scale effects affecting it. Krel(v) ==~ 1+8v8

From the microscopic string equations of motion, one can v

then average to derive the evolution equation for the correy, the extreme friction-dominated case0), we have the
lation lengthL, nonrelativistic limit

(2.7

dL L ~ —
2 - =2HL(1+02)+ fv2+Co., 2.3 kn= 22/, 28
f

with a more complicated ansatz than Eg.7) interpolating
whereH is the Hubble parameter amdis a friction damping  between these limits for intermediate regimes.
length scale. The first term in E¢R.3) is due to the stretch- Finally, we end this summary by noting that the VOS
ing of the network by the Hubble expansion which is modu-model has been extensively compared with the results of
lated by the redshifting of the string velocity. The secondnumerical simulationg8,9,5,13 and shown to provide a
term is due to frictional interactions by a high density of good fit to the large-scale properties of a string network. In
background particles scattering off the strings. The frictionparticular, it matches well the evolution between asymptotic
length scald; (defined in Ref[1]) typically depends on the regimes as a network passes through the matter-radiation

043514-2



EXTENDING THE VELOCITY-DEPENDENT ONE-SCAE . .. PHYSICAL REVIEW D 65 043514

transition. Comparisons with numerical simulations confirminvariant, as well as the matter-radiation transition where it is
the constancy of the only free parameter, the loop choppingot. Note that for realistic cosmological parameter choices, a

efficiencyc, and fix its value to bg5] string network today is still only slowly approaching its
asymptotic matter density. Since, the cosmological impor-
C=0.23+0.04. (2.9 tance of the changes in the network properties during the

matter-radiation transition cannot be over-emphasized, it is
The VOS model for any flat FRW cosmology, then, consistsmportant to calculate these accurately either with direct nu-
of the evolution Egs(2.3) and (2.5 with the parameters  merical simulations or with the VOS or similar analytic
specified in Eq(2.9) andk given by Eqg.(2.7) (or a more model. The same is also true for late time curvature or cos-
accurate general expression given bglawd the scale factor mological constant domination.
a satisfying the Friedmann equati@¢®.4).

C. Friction-dominated scaling solutions

B. Scale-invariant solutions . . . .
During friction-dominated epochs one has different “scal-

We now start to use the VOS model to provide a generajng” solutions. However, these are no longer “scale-
overview of the evolution of string networks in various cos-jnvariant,” since in this case the network retains a memory of
mological scenarios. First we analyze some basic late-timgs initial conditions, and in particular of the epoch of forma-
properties of cosmic string networks, neglecting the effect otion. This can be conveniently expressed by a parameter
friction due to particle scattering. A crucial question is
whether or not they can reach a “scale invariant” attractor te |2
solution which is required, among other things, for a to]

Harrison-Zel'dovich spectrum of primordial density fluctua-
tions to be generated. This can be discussed by analysing thghich is essentially the value of the ratio of the damping
VOS equationg2.3) and(2.5). terms due to friction and Hubble damping, measured at the

Scale-invariant solutions of the forinct, L«H " or L epoch of string formation.

«dy, together withv.,=const, only appear to exist whenthe  Thus in realistic cosmological contexts one can have two

0~ (2.14

tp

scale factor is a power law of the form different regimeg 1—3]. The first is a “stretching” regime,
a(t)«t?, B=const, 0O<B<L. (2.10 L £ 12 t
This condition implies that [ (i) T 219
LoctoeH ™ Yocdy, (2.1))  which is an early-time, transient period which will occur

_ _ _ _ when the initial string density and velocity are sufficiently
with the proportionality factors dependent gn It is useful  |ow—for example, as a result of a slow first-order phase
to introduce the following useful parameters to describe thgransition. In this case the network starts out with a correla-
relatl\(e correlation length and densities, defining them regjgn length significantly larger than the damping length and
spectively as so is “frozen,” and is conformally stretched. However the

Leot, £=y 2= pt¥lu (2.12 damping length is grpwing'als,oct:*’z, so it quickly catches
' * ' ' up with it, ending this regime. However, this can last for
By looking for stable fixed points in the VOS equations, we Many orders of magnitude in time for electroweak-scale net-

can express the actual scaling solutions in the following imWorks. Although this is not cosmologically relevant except
plicit form: for extremely light strings, the analogous regime in the

matter-dominated case would be
,  k(k+¢) , k(1-p)

= oct213 o t413

The true attractor solution for a friction-dominated epoch,

wherek is the constant value di(v) given by solving the which follows the stretching regiméf this existg is the

second(implicit) equation for the velocity. Although it may . : o g
not be obvious by inspection, it is easy to verify numerically Kibble regime, which in the radiation era has the form
that this solution is well-behaved and stable for all realistic ~ 12, , s 112 14
parameter values. = 2knr(c+knr)} (l) _ 3Knr (l)

If the scale factor is not a power law, then simple scaled 36 te) 20(E+ Kn) te)
invariant solutions such as E@.13 do not exist. Physically (2.19
this happens because the network dynamics are unable to
adapt rapidly enough to the changes in the background cosvherek,, is the value of the momentum parameter in the
mology. A prime example of this is, of course, the transitionnonrelativistic limit given above. In this case the correlation
between the radiation and matter-dominated eras. The evollength stays halfway between the damping length and the
tion of a GUT-scale network shown in Fig. 1 illustrates horizon length. Again there is a matter era analogue, which
asymptotic regimes in which string evolution is scale-has the form
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ol | ] FIG. 1. The complete cosmological history of
/ a GUT-scale cosmic string network. The evolu-
02r ,‘ 7 tion of y=L/t is shown in the top panel, while
o1k | 1 the bottom one shows the network’s rms velocity
1 v . Time is plotted relative to the epoch of equal
ol L L L L L matter and radiation densities; the plots start at
10° 107 107 107 107° 10° ; ;
logtt ) the epoch of string formation and end at the
ed present day. At early times, the solid curve corre-
. . , , . , sponds to initial conditions typical of a first-order
phase transition, while the dashed one corre-
o6l ] sponds to a second-order transition. At late times
’ “ the solid curve corresponds to a model wédh,
| i =1, while the dashed one is for the observation-
081 | ] ally preferred casé€),,=0.20,=0.8 (to be dis-
: cussed beloy Note the deviations to the scaling
045 | . behavior.
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Loct32 poctl2 (2.18 measuring the parametér This can also be seen for GUT

strings in Fig. 1, although the network does not have time to

but this is rarely relevant cosmologically. In the extreme caséelax. Into - a definite scaling regime before fI‘IC'[IOﬂ-.
domination ends. For electroweak strings, there are also in-

of an electroweak scale network, friction domination endsterestin departures from scaling behavior at the matter-
after radiation-matter equality, but not far enough away fromradiatiog trzfnsition and the ngtwork remains friction-
it for this regime to be reached.

These points are illustrated in Fig. 2 where we see thgominated until about three orders of magnitude in time
evolution of an electroweak-scale string network. It is inter_afterwards. Also note that in ttér,=1 case the strings only

esting to note the scaling behavior for two cases with ver each the relativistic regime at about the present time, and in

different initial conditions from extreme first- and second- the observationally preferred case,=0.202,=0.8 they

order transitions. The high density strings from a second@'® always non-relativistic. This point is crucial, among other

" . . : - _things, for a quantitative analysis of the evolution of super-
order transition quickly approach the Kibble scaling reglmeconducting strings and vortofig1, 27,

(2.17 discussed above. However, the low density strings
from a first-order transition begin in a distinct stretching re-
gime (2.15 and persist in it with their density falling slowly
until it matches that for the attractor Kibble regime. In this We can also use the VOS model in a flat background to
case, the string network retains a “memory” of its initial discuss the domination at late times by a cosmological con-
density for about ten orders of magnitude in cosmic timestantA [23,20], a model for which there appears to be grow-
However, even during the friction-dominated regime the neting observational evidence. In the extreme asymptotic case
work is able to erase this memory once the Kibble regime isvhen the universe is inflating we haee<expHt) with H
reached. On the other hand, the memory of the epoch of \/A/3. The network will “freeze out” and will simply be
formation is not erased—one could in principle recover it byconformally stretched, that is,

D. A cosmological constant
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FIG. 2. Same as Fig. 1, but for an
electroweak-scale cosmic string network.

Lca, vooa (2.19 Ill. THE MOMENTUM PARAMETER

Having introduced the VOS model and some of its key
. .. cosmological implications, we now turn to a more detailed
where, as soon as the strings become nonrelativigic  jisession of the so-called “momentum parametérte-
=2.2/m, their product satisfies fined in Eq.(2.6) and which is important for solving Eq.
(2.5). String velocities are determined by the current accel-
eration to which they are subjected from the local string cur-
(2.20 vature, as well as their “bulk” momentum left-over from
: previous accelerations. Heuristically, we can imagine sepa-

rating the velocity into these the curvature “c” and bulk “p

contributions  as x=X;+X,. In the extreme friction-
Of course, this solution will only apply at early times actu- dominated limit, the velocity is entirely due to the curvature
ally during inflation. At the present time we will only be and reaches a limiting average velocity set by the friction
slowly approaching a new stretching regime, so we have t@ength ScaIeUCE<).(§>l/2:|f/L- However, as the velocity in-
solve the VOS model explicitly. This is shown for a model in creases towards relativistic values we can expect the momen-
which Q,=0.8, as a dashed line at late times in Figs. 1, 2, asum contribution to become larger. Let us suppose that their
well as in detail for GUT-scale strings in Fig. 3. It is clear relative contribution is proportional to some power law of
that there is a significant fall in the string density and veloc-the total velocityv, that is,v,/v*<v® where a is clearly
ity, an effect which, for example, would affect the large- greater than unity. In this case, one can find after some
angle anisotropies in the cosmic microwave sky. The evolustraightforwardalthough tediousmanipulations that the fol-
tion of the string network is clearly not scale-invariant during lowing approximate relation holds for the momentum param-
any period aftet. eterk:

242
Lvm=£H.
T
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FIG. 3. A close-up of Fig. 1, showing the re-

- cent evolution of the GUT-scale string network.
Also shown is parametef, a measure of the

. long-string density. Notice the dramatic changes
once the cosmological constant dominates.
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12,2 =3 of ourAnsatz(3.1). It can be seen that=3 provides an
(3.1 excellent approximation in this regime.

~ a, 2a’
1+2% There is, however, one problem with this simplesatz
In this we have also used the fact that flat spacetime analytigamely that it would givek(0)=1. Even though one might
calculationg2,3] have shown that naively expect this to be the correct limit, it is not so. This
can be seen easily as follows. Assume that the velocity of say
k(l/\/§)=0, (3.2 a loop is determined only by curvature, that is, neglect the

. . momentum contribution(This should be valid in the non-
which holds exactly. Note that the above expression meanglativistic case. Thenk will be approximately given by
that Eq.(3.1) can also be approximately written as

Nl_(vplvc)2 k%M_

(33) v(l—vz) (36)

1+ (vplve)?

We can determinex by studying the well-knowr{24] This quantity can be easily calculated for the analytic heli-
helicoidal string solution in flat space but perturbed by acoidal solution, yielding
frictional force. This solution is
. 2.2 1-2A%/3
x= (A sina(cost+ 5),Acoso(cost + 5),V1—A%a), kzi—_ (3.7
(3.9 T 1-A%2

where 0<A<1 and # is a small perturbation, which van-
ishes if there is no friction. HereA=1 corresponds to a
circular loop, whileA=0 is a static straight string. The evo-

Hence we find in the small amplitude limk— 0 that

. . . 2\/5
lution equation for the perturbation has the form K= - ~0.0. (3.9
__ sintcost (1-A?)sirPt—cos t
7+27 1 AZsiret t7 1— A2 sirP t We also note in passing that in the relativistic liit- 1 this
. same calculation would give~4+/2(3/7)~0.6 instead of
sint the true valuek=0, which clearly demonstrates the impor-

— _ A2 o
P (1-AZsirt), (3.5 tance of momentum in the relativistic case.

The final issue to be considered is the transition between
wherel; is the friction length scale. This can then be solvedthe two regimes. The only reliable way of studying this issue
numerically, and from this solution one can calculktdBy is through direct measurement in a string network simula-
changing parameter& and|; one can do this for a wide tions with ultra-high resolution. We shall report on the details
range of velocities, and hence obtain a plokefk(v). This  of this elsewherg¢13]. Here we simply point out that we do
is plotted in Fig. 4 and compared with cases-2 and « confirm the valuek,,, as the non-relativistic limit. It is then

043514-6
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FIG. 4. Testing theAnsatz(3.1) for k(v) in
the relativistic limit. The solid line corresponds to
our numerical calculation of k for the helicoidal
string solution, while the dashed and dotted lines
correspond to thénsatz(3.1) with a=2 and«
=3 respectively.

1/2-v2

easy to find a fitting function for the transition between thewhich in turn will modify k—this can be seen explicitly

regimes which has the correct asymptotic limits describedelow for the case of the radiation back reaction. One should

previously, that is, not therefore infer too much from the aesthetic qualities of
the functionk(v) we find—it no more than a phenomeno-
logical parameter that does a good job. Presumably this pa-

3.9 rameter will have a much clearer interpretation in the context
of a proper wiggly string evolution modgk5,17].

The additional factors are required to reproduce both the

relativistic and non-relativistic limits accurately. Note that if  IV. THE EFFECT OF RADIATION BACK REACTION
one is only interested in the relativistic regirtsay for GUT-
scale cosmic strings, as in the present ppftem the simpler
expression2.7), that is

6

2.2 1-
=22 (1011 24209 -y
™ 1+8v

We now turn to some further extensions of the VOS
model. Even though radiation backreaction is closely related
to small-scale structure, its effect on the long-string network

22 1-8v° [14,16 can be included in the evolution equation for the
Krel(v0) = —— : (3.10
rel T 1+8U6 ,
should be sufficiently accurate to provide reliable results. On ** ===z~

the other hand, a reliable approximation for small non-
relativistic velocities in the friction-dominated limit extends
Eq. (3.8 as orr

08

06

knr(v):%z(l_vz)- (3.1

~ 05

We plot these threénsadzein Fig. 5, and also confirm the .l

validity of k¢ andk,, in the appropriate limits. o3l
Before we end this section, however, it is wise to discuss
the interpretation of parameté&rin this model. It should be
kept in mind that this isab initio, a phenomenologicapa- o1l
rameter, which accounts for a number of highly non-trivial
effects related to the presence of small-scale structures onth % 0z 04 0s
strings. By construction, our model does not explicitly ac- '
count for these small-scale effects, and hence they end up FiG. 5. Comparing our full ansatz for the momentum parameter
somehow encoded i Note that the fact that it is a function (3.9) (solid line), and the simpler expressions for the relativistic and
of the string velocity alone does not mean that it is totallyfriction dominated regimes, Eqé3.10 and(3.11) (dashed and dot-
insensitive, for example, to small-scale structure and/or backed, respectively for relativistic (left pane) and non-relativistic
reaction effects. These effects will affect the string velocity,(right pane) velocities.

02
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correlation length(2.3) in the same way as previously 5/2

achieved for the evolution of the length of a string Id@p. A=8Bv33 =88
For gravitational radiation the following term can be added
to the right-hand side of Eq2.3):

k(1-B)

BK+T) (4.9

On the other hand, for large enough value&.othe back
reaction term will dominate the evolution equation for the
string length scald., and the attractor scale-invariant solu-
tion has a different form altogether. It is not possible to write
this solution in closed form, even expressikgmplicitly as

- o ) above. However, it is possible to write it as a series. The
Here,I" is a constant which is a long-string analogue of thegominant term and the first correction take the form

I"'~65 found for the radiative decay of strings. Of course,

dL 6 T 6
2 ot =824v,.=8I'Guu... 4.9
gr

will be affected by a number of physical factors such as the k[ 8z Y7

presence of small-scale structure, but we can expect it to 72@ k(1-p8) (I+Ag+--), (4.9
satisfyI'<I" and it would be surprising if it were very much

smaller. Clearly, due to the high velocity powes®} in- k(1—pB)]Y7

volved in radiative back reaction, this term will not be im- v= &CT} (I-Agt--), (4.9
portant in any regime where string motion is strongly

friction-dominatedand hence non-relativisticWe note also  ith

that there is an interesting coincidence in Aesatz(2.7) for

the momentum paramet&rwhich too has a® power, but g 1%

we are unsure as yet whether this has any deeper signifi- Aj=——(k+C)| | 3777, 4.7
cance. 2877 k(1=-5)

For global string radiation into Goldstone bosons or ax- . .
ions, the corresponding radiative decay term at a tiwl In Fig. 6 we plot the approach to scaling of some relevant
be string networks in the radiation and matter eras. The different

time scales for convergence towards the attractor solution are
clearly noticeable. Here, we have chosen initial conditions
dL 8Tv8 that would correspond to somewhat extreme first and second
Z(E) ESEava:m, (4.2 order phase transitions. Also note that for the radiation era
ax we have neglected the effect of friction due to particle scat-
tering, in order to reproduce the initial conditions often used
where the logarithmic term arises because of the long-rangdig numerical simulations of string networks. For each of the
fields of the global string and is the string width. For cos- cases above, three curves are plotted, corresponding to the
mological GUT-scale strings, the back reaction term for localaluesS, =0 (no back-reaction 3 = 1.25[close to the maxi-
strings isI'Gu~10~* whereas for global strings it is about mum value that can be accurately described by the scaling

three orders of magnitude larger. solution (4.3), (4.4)] and> =5.5[beyond which the scaling
Note that the velocity equation has no correction at thissolution (4.5)—(4.7) becomes accurate

order due to the gravitational back-reaction effects. Such ef- For |argeS,, the effects of back reaction seen in Fig. 6 on

fects are already included through the string curvature, whiclgould be quite dramatic for the string network density, but
acts as a source for the velocity equatioe., the 1L term),  note that they are much less drastic for the string velocities.
which will be different in this case. In particular, we emphasize that gravitational back reaction
Remarkably, the inclusion of the back reaction term doegjone does not slow down a string network to non-relativistic
not affect the existence of a scale-invariant attractor solutionspeeds—only a friction-dominated regime can achieve this.
However, it does of course influence the quantitative values |nterestingly, there has been recent work on numerical
of the scaling parameters, as well as the time scale necessagiynulations of global string networ&6] which explore the
for this solution to be reached. For example, the inclusion oktrong back reaction regime described by E@s5)—(4.7).
back reaction can make the approach to scaling much fasterhese authors report a surprisingly low string density rela-
If the gravitational back reaction is non-zero, one can diStive to the gauged case. For their expanding universe simu-
tinguish two asymptotic cases. First,3fis small (of order  |ations in the realistic case with periodic boundary condi-

unity at most then the effect of back reaction on the scalingtions, they find the following radiation and matter era
solution will also be small. This will be the case, for ex- densities respectively:

ample, for most local or global string networks in a cosmo-
logical context. We can express this as {a=0.9%0.1, {pma=0.5+0.1. 4.9

s o 5 2 These results are perfectly consisténithin the estimated
Y =v(1+4), vi=vs(1-A), (4.3 error barg with our extended VOS model if we adopt a back
reaction parameter
wherey, andv are the “unperturbed” scaling values, given
by Egs.(2.13, and the back reaction correction has the form S axsint 3. (4.9
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V. STRING NETWORKS IN GENERAL FRW SPACETIMES

In this section we discuss the behavior of our model in
more general FRW universes, and in particular in open uni-
verseg18,3,19,23.

The evolution equations will obviously be affected by the
different behavior of the scale factor, as given by the Fried-
mann equation

ot

2 -4 -3 -m 1 -2
:HO(QROa +QM0a +QQOa )+§A_Ka .

(5.9

Note that we are allowing for curvature, and also for an extra
fluid whose energy density decaysas™. It should be kept

in mind that the Friedman equation should, in general, con-
tain a contribution for the string density, since it is possible
that this becomes cosmologically important.

However, apart from these effects, one must also include
an additional correction due to the curvatutEd,3]. One
should note that this is essentially the curvature radius of the
strings, which as previously said we assume to coincide with
L, divided by the radius of spatial curvature of the universe,

H- 1
0.1 04

R=—.
thi i |1_Q|1/2

(5.2

FIG. 6. The effect of gravitational back reaction on the approachndeed, after a certain amount of algebra, one finds correc-
to scaling of a GUT-scale cosmic string network. Left-side panelsijon terms that are of the form

correspond to the radiation era, while right-side ones are for the

matter era. All plots have=0.23; the back reaction parameter is 2

respectively> =0 (solid curve$, 3=1.25 (dashedl and X =5.5 w=1-(1-Q)(HL)". 53
(dotted. For each case two curves are plotted, corresponding to . .

initial conditions typical of a first-ordefiow density and velocity Ot thatQ) denotes the total density of the universe. For a
or second-ordethigh density and velocityphase transition. The Universe with a critical density) =1, we havew=1.

effect of friction due to particle scattering has been neglected, in 1he evolution equation for the correlation lengttnow

order to mimic currently existing numerical simulations. takes the form
Indeed, this corresponds to the approximate average value 2
; ; ; ; dL Lv, ~
for 3 4, that one would estimate for simulations of this reso- 2" —HL+ — — +Cuv.. . (5.4)
lution. Present limitations on numerical dynamic range give dt lg w2 ”
the upper bound Ims)=<4 (at the end of the simulation
implying X ,.i=2 throughout. For simplicity wa have also defined a damping length, in-

It is important to note, however, that the immediate ex-cluding both the effects of Hubble damping and friction,
trapolation of these resuli@.8) to a cosmological context
would be erroneous. For example, for GUT-scale global 1 1
strings, at the present time we can exped fijc100, which Z=2H+ -, (5.5)
implies the appropriate back reaction parameter in this case lq l¢
will be 3 ,,=0.1. Such cosmic global strings are firmly in the o ) _ )
regime(4.3), (4.4) where back reaction effects are small and,With the friction length scalé; being defined if1-3].
in this case, these would reduce the local string density by Similarly, the velocity equation becomes
less than 10%. More recently, we have carried out our own

global string network simulationgs] and provided a more d b2 K
detailed comparison witf26], which confirms the above in- 2V _ ( 1— _“) (WZ_ — U_°°> (5.6)
terpretation. dt W2 L g4
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Note that these are valid for ampsmologicalscenarict  with k,,, given by Eq.(3.8). Note that thisis not a scale-
We do expecthe loop chopping efficiency to be a constant, invariant solution, sinceH *=t and dy=tInt. In other
regardless of the cosmological model, since it is supposed t@ords, by looking at the network one would be able to de-

be reflecting a rather deep and fundamental property of thearmine when the curvature-dominated period had started.
evolution of a network. Indeed, we think that whether or not

one finds a constant chopping efficiency can in some sense
be seen as a measure of how accurately the analytic model- VI. DISCUSSION AND CONCLUSIONS
ling is reproducing the true dynamics of the network.
We can now re-examine the question of the existence of In this paper we have presented a modified version of the
“scale invariant” attractor solutions. Again, scaling solutions velocity-dependent one-scal¢0S) model[1,2,19,3 which
of the form Lot, LcH ! or Lxdy, together withv,, depends on a single free parameter, the loop chopping effi-

=const will only exist provided one has ciencyc. We have tested it against the largest and most ac-
curate numerical simulations to dat?,13, and we find that
a(=th,  p=const, 0<p<1, (5.7 it provides a good fit to the large-scale scaling properties of
the string network in both the radiation and matter epochs, as
well as in the transition between the two eras—we will de-
Q= const. (5.8 scribe these tests elsewhé¢bd. These facts and its intrinsic
simplicity make this model particularly suited for any ana-

The simplest example of the second condition is of course ¥tiC Or semi-analytic study of cosmic strings where one is
flat, Qyo=1 universe, but there are examples of cosmologi-Only interested in the large-scale features of the network.
cal models which have attractors other th@ar=1 [27]. In We have re-analyzed some simple evolutionary properties
any case, note that there can be additional relations betwe&h cosmic string networks in the light of the VOS model and
the values of3 and{) for specific models. Writing.= yt as ~ corresponding numerical simulations. An important conclu-
before, the scaling solution is now given in the implicit form sion to note is that any realistic cosmic string networkas
scaling at any time from just before the epoch of equal mat-

Zk(l—ﬂ) ter and radiation through to the present day. This is some-

— = (5.9  thing that must be properly taken into account particularly

Blk+c) when discussing string-seeded structure formation scenarios
with GUT-scale strings. The extended VOS model is also
valid when deviations from scaling are even larger at late
times in a universe which becomes dominated by curvature
12 } or a cosmological constant.

but now we also require

k(k+c

4B(1-p)’

wherek is (implicitly) the constant value ok(v) for the
appropriate value of velocity, and

(1—Q)Bk(k+¢c)
(1-p)

2(1-p)
(1—Q)Bk(k+¢c)

Finally, we considered the effects of radiation back reac-
tion on the scaling properties of the long string network, and
(5.10 we have shown that although the existef@eotherwise of
a scale-invariant attractor solution will not be affected, the
Again, although it may not be immediately obvious, it can bequantitative scaling properties can be. In some cases, the
checked numerically that this solution is well-behaved fq( a”suppression of string density can be quite draméic we
sensible values of the parameters. If_ the .two cond|t|on§aw for small-scale global string simulatiopalthough the
above do not hold, then a scaling solution will not exist.  gying velocities always remain relativistic. For the most part,
We should also mention another cosmologically important, o\ ever. the density of a cosmic string network, whether

solution: In an_open universe wit)—0, a=t, the local or global is only affected slightly by radiation back
asymptotic solution is reaction effects.
U2 Despite the many virtues of the VOS model, we are
} ~2.1%12 aware, of course, that the small number of available degrees
of freedom means that this model is unable to provide a
(5.1 proper description of the small-scale properties of the net-
work; these are important in a number of cosmological sce-
- narios (and sometimes even crugiaNevertheless, we be-
~0.2c712 i !
ieve that the phenomenological paramekedoes encode
(5.12 some important small-scale structure effects, though clearly a
more detailed analytic and numerical study is still required.
A number of possible approaches to the problem of string
There are some additional subtleties involved when discussing™Mall-Scale structure have been suggested in the literature
the mechanism of loop production in the case of Minkowski spaca 19,18, and our own analysis using Carter’s elastic string
string networks, which make it quite different from any cosmologi- model [25] will be discussed in a forthcoming publication
cal scenario. We shall discuss this important point elsewfiske [17].

k,rC
2(1- knr)

L=At(Int)2 A:[
knr(l_ knr) 12

v,=B(Int)"¥2, B=
2c
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