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Cosmology of the Planck era from a renormalization group for quantum gravity
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Homogeneous and isotropic cosmologies of the Planck era before the classical Einstein equations become
valid are studied taking quantum gravitational effects into account. The cosmological evolution equations are
renormalization group improved by including the scale dependence of Newton’s constant and of the cosmo-
logical constant as it is given by the flow equation of the effective average action for gravity. It is argued that
the Planck regime can be treated reliably in this framework because gravity is found to become asymptotically
free at short distances. The epoch immediately after the initial singularity of the Universe is described by an
attractor solution of the improved equations which is a direct manifestation of an ultraviolet attractive renor-
malization group fixed point. It is shown that quantum gravity effects in the very early Universe might provide
a resolution to the horizon and flatness problems of standard cosmology, and could generate a scale-free
spectrum of primordial density fluctuations.
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I. INTRODUCTION

Two of the most frequently discussed limitations of t
cosmological standard model are the flatness and the hor
problem, respectively. These so-called ‘‘problems’’ actua
do not endanger the internal consistency of the stand
model in the domain where it is applicable but rather expr
the fact that in order to describe the Universe as we obs
it today the standard Friedmann-Robertson-Walker evolu
has to start from a set of highly nongeneric initial condition
Typically these conditions are imposed at some time after
Planck era where the classical Friedmann equations are
posed to become valid. The matter densityr of the present
Universe is very close to the critical densityrcrit . According
to the evolution equations of the standard model this imp
that the initial value forr must have been fine-tuned to th
critical density with the enormous precision of about 60 de
mal places if the initial conditions are imposed at the Plan
time. This phenomenon is referred to as the flatness prob
because a generic initial value for the density would ne
have led to the large and almost flat Universe we obse
today. More generally, if one allows for a cosmological co
stantL, it is the total densityr tot5r1rL with the vacuum
energy densityrL[L/8pG that should be equal torcrit .

A similar naturalness problem is posed by the high deg
of isotropy of the cosmic microwave background radiatio
From the observations we know that even those points on
last scattering hypersurface which, according to the metri
the cosmological standard model, have never been in ca
contact emit radiation at a temperature that is constant wi
precision of about 1024. Again, when equipped with suffi
ciently symmetric initial conditions the cosmological sta
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dard model can describe the later evolution of such a hig
isotropic universe, but clearly it would be very desirable
identify some causal mechanism that explains why one m
start the classical evolution with these very special init
conditions. This is usually called the horizon problem b
cause those Robertson-Walker spacetimes that solve
Friedmann equations have a particle horizon. Because of
horizon, there are points on the last scattering surface wh
backward light cones never intersect and which are there
causally disconnected.

However, strictly speaking this is a ‘‘problem’’ only if one
applies the standard model in a domain where it is actu
believed not to be valid any more. Whether or not
Robertson-Walker spacetime has a particle horizon depe
only on the behavior of its scale factora(t) in the limit t
→0. In the ordinary radiation dominated Universe we ha
a}t1/2 which does lead to a horizon. However, we expe
that for the cosmological timet very close to the big bang
(t50) this behavior ofa(t) will get modified by some sort
of ‘‘new physics.’’ If, say,a}ta with a>1 during the very
early evolution of the Universe then there is no particle h
rizon. It might be that a causal mechanism which is opera
during this early epoch, before the standard model beco
valid can explain the observed isotropy of the Universe.

It is well known that the above naturalness problems c
be addressed and, in a sense, solved within the framewo
inflationary cosmology@1#, for instance. In the present pap
we are going to propose a different physical mechan
which also could lead to a solution of the horizon and t
flatness problem. Using renormalization group techniques
determine the leading quantum gravity corrections t
modify the standard Friedmann-Robertson-Walker~FRW!
cosmology during the first few Planck times after the b
bang. Within a certain approximation, which we shall d
scribe in detail below, we find that immediately after the b
bang there is a period during which the scale factor increa
©2002 The American Physical Society08-1
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linearly with time,a;t. This means that the spacetime h
no particle horizon. We shall set up a system of quant
corrected cosmological evolution equations fora(t), r(t),
p(t), and for the now time dependent Newton constant a
cosmological constant. We shall argue that, because of a
cific form of asymptotic freedom enjoyed by quantum gra
ity, those equations are reliable even for times infinitesima
close to the big bang where the gravitational coupling c
stant goes to zero. During the epoch directly after the
bang the quantum corrected equations are uniquely solve
an essentially universal attractor-type solution. For a s
tially flat geometry the attractor satisfiesr5rL5r tot/2 and
r tot5rcrit . For t much larger than the Planck time, the qua
tum corrected solutions approach those of classical F
cosmology. Since the quantum solutions are valid for at
.0, they automatically prepare the initial conditionr tot
5rcrit for the classical regime if one decides for a spatia
flat Universe. Hence no fine-tuning is necessary.

In this paper we employ the exact renormalization gro
approach to quantum gravity which was developed in R
@2#. Its basic ingredient is the effective average act
Gk@gmn#, a Wilsonian coarse grained free energy which d
pends on a momentum scalek. Loosely speaking,Gk de-
scribes the dynamics of metrics that have been averaged
spacetime volumes of linear dimensionk21; i.e., k is a mea-
sure for the resolution of the ‘‘microscope’’ with which
system is observed. The functionalGk@gmn# defines an effec-
tive field theory appropriate for the scalek. This means that
when evaluated attree level,Gk correctly describes all gravi
tational phenomena,including all loop effects, if the typical
momenta involved are all of the order ofk. The actionGk is
constructed in a similar way to the ordinary effective acti
G, to which it reduces in the limitk→0. It has the additiona
feature of a built-in infrared~IR! cutoff at the momentumk.
Quantum fluctuations with momentap2.k2 are integrated
out in the usual way, while the contributions coming fro
large-distance metric fluctuations withp2,k2 are not in-
cluded inGk . When regarded as a function ofk, Gk describes
a renormalization group~RG! trajectory in the space of al
action functionals. This trajectory can be determined by so
ing an exact functional renormalization group equation
‘‘flow equation.’’ The trajectory interpolates between th
classical actionS5Gk→` and the ordinary effective actio
G5Gk→0. More precisely, in order to quantize a renormal
able fundamental theory with actionSone integrates the RG
equation from an initial pointG k̂5S down to G0[G. After
appropriate renormalizations one then letsk̂→`. The RG
equation can also be used in order to further evolve~coarse-
grain! effective field theory actions from one scale to a
other. In this case no UV limitk̂→` needs to be taken. Th
evolution of the effective average action fromk1 down to
k2,k1 is always well defined even if~as in the case at hand!
the model defined byGk1

is not perturbatively renormaliz
able.

Approximate yet nonperturbative solutions to the R
equation that do not require an expansion in a small coup
constant can be obtained by the method of ‘‘truncation.’’ T
idea is to project the RG flow from the infinite dimension
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space of all action functionals onto some finite dimensio
subspace which is particularly relevant. In this manner
functional RG equation becomes a system of ordinary diff
ential equations for a finite set of generalized coupling c
stants which serve as coordinates on this subspace. In
@2# the flow was projected on the 2-dimensional spa
spanned by the operators*AgR and*Ag ~‘‘Einstein-Hilbert
truncation’’!. The corresponding generalized couplings a
the scale dependent~‘‘running’’ ! Newton constantG(k) and
the cosmological constantL(k). In the original paper@2# the
differential equations governing thek dependence ofG(k)
and L(k) were derived, and in@3,4# their solutions were
discussed further. In particular one finds that if one increa
k from small values~large distances! to higher values~small
distances! the value ofG(k) decreases, i.e. gravity is asymp
totically free, as in non-Abelian gauge theories. Fork→`
the dimensionless Newton constantg(k)[k2G(k) ap-
proaches a non-Gaussian UV attractive fixed pointg

*
UV . This

means thatG(k) vanishes proportionally to 1/k2 for k→`.
The non-Gaussian fixed point of 4-dimensional quant
gravity is similar to the Weinberg fixed point in 21e dimen-
sions@5#.

In the following we shall use the known results about t
running of G(k) and L(k) in order to ‘‘renormalization
group improve’’ the Einstein equations that govern the e
lution of the Universe. They contain Newton’s constantG
and the cosmological constantL. The improvement is done
by substitutingG→G(k), L→L(k), and by expressingk in
terms of the geometrically relevant IR cutoff. Consideri
only homogeneous and isotropic cosmologies we shall ar
that the correct identification of the cutoff isk}1/t wheret is
the cosmological time.

Similar RG improvements are standard tools in parti
physics. A first gravitational RG improvement based up
the effective average action was described in Refs.@10,4#
where quantum effects in black hole spacetimes were s
ied.

The applicability of the Wilsonian RG equations is n
restricted to renormalizable models. Already, before it w
introduced, gravitational RG flows were studied using t
familiar RG equations of perturbative renormalization theo
which refers to the relevant and marginal couplings on
This framework applies toR2 gravity @6,7#, for instance, but
not to ordinary general relativity. The running ofG(k) in R2

gravity was used in@8,9# to explore possible cosmologica
manifestations of quantum gravity at the kiloparsec scale~ro-
tation curves of galaxies, density perturbations, etc.!. Since
we are interested in much smaller length scales we shall h
nothing to say about such effects.

In the present paper we shall set up a system of differ
tial equations which consists of the RG equations forG and
L, the improved Einstein equations, an additional cons
tency condition dictated by the Bianchi identities, and t
equation of state of the matter sector. This system determ
the evolution ofG, L, a, r andp as a function of the cos
mological timet. We shall see that fort↘0 all solutions to
this system have a simple power law structure. This attrac
type solution fixesr tot5rcrit without any fine-tuning. If the
8-2
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COSMOLOGY OF THE PLANCK ERA FROM A . . . PHYSICAL REVIEW D65 043508
matter system is assumed to obey the equation of stat
ordinary radiation, the scale factor expands linearly,a(t)}t,
so that the RG-improved spacetime has no particle horiz
For t much larger than the Planck time the solutions of
RG-improved system approach those of standard FRW
mology.

The remaining sections of this paper are organized as
lows. In Sec. II we review the essential properties of
effective average action for gravity and the solutions of
RG equation which we need in the present context. In S
III we describe the derivation of the RG improved Einste
equations and in Sec. IV we obtain solutions to it that
valid for t→0 andt→`, respectively. In Sec. V we investi
gate the physical properties of solutions that are valid dur
the entire Planck era. In Sec. VI we discuss the generatio
primordial density perturbations and Sec. VII contains
conclusions.

In the main body of this paper we use a specific ident
cation of the cutoffk in terms of the cosmological time (k
}1/t). In Appendix A we compare the results to those o
tained with a different cutoff@k}1/a(t)#. In the main part of
the paper we improve the basicequationsfor the cosmologi-
cal evolution. In Appendix B we describe the alternati
strategy of improving thesolutionsto the classical equations

II. THE EFFECTIVE AVERAGE ACTION FOR GRAVITY

In this section we review some properties of the effect
average actionGk@gmn# and collect various results that w
shall need in the present investigation. The average action
gravity was constructed in@2# using an approach which in
earlier work@11–14# had already been tested for Yang-Mil
theory.

The definition ofGk@gmn# is based upon a modified gaug
fixed path integral ofd-dimensional Euclidean gravity in th
background gauge. The crucial new ingredient is an IR cu
which suppresses the contributions from long-wavelen
metric fluctuations with momenta smaller thank. In a second
step, the functionalGk defined by the modified path integra
is shown to satisfy an exact functional differential equatio
the flow equation, from whichGk , for all values ofk, can be

computed if it is known at some initial pointk̂. In order to
obtain an actionGk@g# that is invariant under general coo
dinate transformations the standard background gauge
mulation has been employed. This leads to the complica

that we actually have to RG-evolve an actionGk@g,ḡ# that
depends on both the ‘‘ordinary’’ metricgmn and on the back-
ground metricḡmn . The standard action with one argume
is recovered by settingḡ5g, i.e. Gk@g#[Gk@g,g#. The flow
equation forGk@g,ḡ# reads1

1This is already a simplified form of the flow equation appropria
for truncations that neglect the running of the ghost term. For
most general form, see@2#.
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k]kGk@g,ḡ#5
1

2
Tr$k22~Gk

(2)@g,ḡ#

1R k
grav@ ḡ# !21k]kR k

grav@ ḡ#%2Tr$~2M@g,ḡ#

1R k
gh@ ḡ# !21k]kR k

gh@ ḡ#% ~2.1!

whereGk
(2) stands for the Hessian ofGk with respect togmn

andM is the Faddeev-Popov ghost operator. The opera
R k

grav andR k
gh implement the IR cutoff in the graviton an

the ghost sector. They are defined in terms of a to so
extent arbitrary smooth functionRk(p2)}k2R(0)(p2/k2) by
replacing the squared momentump2 with the graviton and
the ghost kinetic operators, respectively. Inside loops, t
suppress the contribution of infrared modes with covari
momentap,k. The functionR(0)(z), z[p2/k2, has to sat-
isfy the conditionsR(0)(0)51 and R(0)(z)→0 for z→`.
For explicit computations the exponential cutoff

R(0)~z!5z@exp~z!21#21 ~2.2!

is particularly convenient.
In order to find approximate but nonperturbative solutio

to the flow equation the Einstein-Hilbert truncation w
adopted in@2#. This means that the RG flow in the space
all actions is projected onto the two-dimensional subsp
spanned by*Ag and *AgR. This truncation of the ‘‘theory
space’’ amounts to considering only actions of the form2

Gk@g,ḡ#5@16pG~k!#21E ddxAg$2R~g!12L~k!%

1classical gauge fixing ~2.3!

whereG(k) andL(k) denote the running Newton consta
and cosmological constant, respectively. More general~and,
therefore, more precise! truncations would include highe
powers of the curvature tensor as well as nonlocal te
@15#, for instance. By inserting Eq.~2.3! into Eq. ~2.1! and
performing the projection we obtain a coupled system
equations forG(k) andL(k). It is most conveniently written
down in terms of the dimensionless Newton constant

g~k![kd22G~k! ~2.4!

and the dimensionless cosmological constant

l~k![L~k!/k2. ~2.5!

One finds

k]kg5@d221hN#g ~2.6!

and

s
2In @2# the notationGk[G(k) and l̄k[L(k) was used.
8-3
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k]kl52~22hN!l1
1

2
g~4p!12d/2@2d~d11!Fd/2

1

3~22l!28dFd/2
1 ~0!2d~d11!

3hNF̃d/2
1 ~22l!#. ~2.7!

Here

hN~g,l!5
gB1~l!

12gB2~l!
~2.8!

is the anomalous dimension of the operatorAgR, and the
functionsB1(l) andB2(l) are given by

B1~l![
1

3
~4p!12d/2@d~d11!Fd/221

1 ~22l!

26d~d21!Fd/2
2 ~22l!24dFd/221

1 ~0!

224Fd/2
2 ~0!#, ~2.9!

B2~l![2
1

6
~4p!12d/2@d~d11!F̃d/221

1 ~22l!

26d~d21!F̃d/2
2 ~22l!#

with the threshold functions (p51,2, . . . )

Fn
p~w!5

1

G~n!
E

0

`

dz zn21
R(0)~z!2zR(0) 8~z!

@z1R(0)~z!1w#p
,

~2.10!

F̃n
p~w!5

1

G~n!
E

0

`

dz zn21
R(0)~z!

@z1R(0)~z!1w#p
.

These equations are valid for an arbitrary spacetime dim
sion d. In the following we shall focus on the cased54.

Clearly it is not possible to find solutions to the syste
~2.6!, ~2.7! in closed form; for a numerical determination
the phase diagram we refer to@16#. However, for our pur-
poses it will be sufficient to know the behavior of the so
tions in the limiting casesk→0 andk→`. For small values
of the cutoff the solutions are power series ink. For the
dimensionful quantities one obtains@2#

G~k!5G0@12vG0k21O~G0
2k4!#, ~2.11!

L~k!5L01nG0k4@11O~G0k2!# ~2.12!

with the constants

v5
1

6p
@24F2

2~0!2F1
1~0!#, ~2.13!

n5
1

4p
F2

1~0!. ~2.14!

As it stands, Eq.~2.12! for L(k) is correct only if one either
neglects the back reaction of the runningL via theF func-
04350
n-

tions, or choosesL050. ForL0.0 and with the back reac
tion due to the argument ofF2

1(22L/k2) included, the RG
trajectory runs into a singularity and cannot be continu
below a certain critical value ofk. This is probably due to the
fact that the Einstein-Hilbert truncation is too simple to d
scribe the IR behavior of quantum gravity with a positi
cosmological constant. Since in this paper we are mo
interested in UV physics we avoid this problem by restricti
ourselves to the caseL050.

The precise values ofv andn depend on the choice of th
cutoff function R(0). For every admissibleR(0) both con-
stants are positive, however. In Eqs.~2.11! and ~2.12! we
wrote G0[G(k50) andL0[L(k50) for the infrared val-
ues ofG andL. At least within the Einstein-Hilbert trunca
tion, G(k) does not run any more between scales wh
Newton’s constant has been determined experiment
~laboratory scale, scale of the solar system, etc.!, and the
cosmological scale wherek'0. Therefore we may identify
G0 with the experimentally observed value of Newton’s co
stant. We useG0 in order to define the~conventional! Planck
massmPl , Planck lengthl Pl , and Planck timetPl :

mPl5G0
21/2, l Pl5tPl5G0

1/2. ~2.15!

The solutions~2.11! and~2.12! are expansions in the dimen
sionless ratio (k/mPl)

2. Obviously the renormalization ef
fects become strong only ifk is about as large asmPl . We see
thatG(k) decreases when we increasek, which is a first hint
at the asymptotic freedom of pure quantum gravity@2#.

In the following we shall say thatk is in theperturbative
regimeif the approximations~2.11! and~2.12! are valid, i.e.
if k&mPl , so that the first order in the (k/mPl) expansion is
sufficient to describe the running ofG andL.

Next let us look at the opposite limiting case whenk
@mPl . It turns out@3,4,16,17# that for k→` the physically
relevant RG trajectories in (g,l) space run into a UV-
attractive fixed point (g

*
UV ,l

*
UV). For the exponential cutoff

~2.2! the numerical analysis@3,16,17# of Eqs. ~2.6!, ~2.7!
yields the valuesg

*
UV'0.27 andl

*
UV'0.36.~If one neglects

the running ofl there is still a fixed point forg at g
*
UV

'0.71.! The existence of this fixed point implies that fork
@mPl the dimensionful quantities run according to

G~k!5
g
*
UV

k2
, ~2.16!

L~k!5l
*
UVk2. ~2.17!

We shall say thatk is in thefixed point regimeif k@mPl so
that the asymptotic solutions~2.16!, ~2.17! apply.

For intermediate values ofk the RG equations can b
solved numerically only. However, if one neglects the infl
ence ofL on the running ofG @and omits a tiny correction
coming fromB2(0)# one obtains the following simple for
mula which is valid for allk @4#:

G~k!5
G0

11v G0k2 . ~2.18!
8-4
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For k small we recover Eq.~2.11!, and fork2@G0
21 the fixed

point behavior sets in,G(k)'1/vk2, so thatG(k) becomes
independent of its IR valueG0.

We observe that fork→` Newton’s constant, and henc
the strength of the gravitational interaction, decreases v
rapidly so that gravity is ‘‘asymptotically free.’’ In fact,G
runs much faster than the gauge coupling constant in Ya
Mills theory, which depends onk only logarithmically. An
asymptotic running of the form~2.16! was conjectured by
Polyakov@19#. A similar powerlike running ofG was already
known to occur in (21e)-dimensional gravity@5,2#. In fact,
the fixed point (g

*
UV ,l

*
UV) is the 4-dimensional counterpa

of Weinberg’s fixed point in 21e dimensions@3#. If the ex-
istence of the fixed point can be confirmed by more gen
truncations this means that Einstein gravity in 4 dimensi
is ‘‘asymptotically safe’’ and as well behaved and predicti
as a perturbatively renormalizable theory@5#.

Newton’s constant being an asymptotically free coupl
means that the gravitational interaction is ‘‘switched of
when we go to very large momenta or small distances. T
‘‘tames’’ the notorious UV divergences one finds in pertu
bation theory@19#. In principle the running ofG could be
tested in scattering processes with a large momentum tr
fer, in complete analogy with deep inelastic scattering
QCD, for instance. Very much like QCD deep inside a p
ton, say, gravity is very weakly coupled at sub-Planck
length scales. We describe this situation in a formali
where spacetime is still a smooth manifold at short distan
still equipped with a tensor fieldgmn , but since the coupling
constant vanishes the graviton no longer mediates any m
or self-interaction.~As for the absence of local gauge inte
actions, this ‘‘phase’’ of gravity is reminiscent of a topolog
cal field theory, although free propagating gravitons do e
in the present case.!

Recently considerable new evidence has been found
suggests that the UV fixed point is not an artifact of t
Einstein-Hilbert truncation but should actually exist in t
exact theory. In@17# and @18# a comprehensive analysis o
the quality of the Einstein-Hilbert truncation was performe
In @17# the scheme~cutoff! dependence of its predictions wa
investigated in detail by using two types of cutoff actionDkS
of a rather different structure along with different families
shape functionR(0). In an exact treatment universal quan
ties such as critical exponents or, in our case, the prod
g* l* are scheme independent by definition. Approximatio
spoil this scheme independence though. As a conseque
by looking at the response of universal quantities to a va
tion of the cutoff function we can judge the quality of th
approximation. The Einstein-Hilbert truncation successfu
passed these highly nontrivial tests, partly even at a ra
surprising level of accuracy@17#.

Furthermore, in@18# the truncation was generalized b
including anR2 term. Quite remarkably, it turned out tha
within the residual scheme dependence, the results of
Einstein-Hilbert truncation are not changed at all. The fix
point value of theR2 coefficient was found to be about tw
orders of magnitude smaller thang* andl* , and one is led
to speculate that it might turn out to be zero in an ex
treatment. By linearizing the RG flow near the UV fixe
04350
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point one finds that two of the eigenvalues~critical expo-
nents! of the stability matrix are essentially the same as
the pure Einstein-Hilbert truncation; the plane spanned
the corresponding eigenvectors coincides quite precis
with the g-l plane. The fixed point is UV attractive in all 3
directions of parameter space. The new, third eigenvalu
such that when a RG trajectory approaches the fixed p
from below (k→`) it is pushed onto theg-l plane long
before the fixed point is reached. Hence the vicinity of t
fixed point is well described by the Einstein-Hilbert trunc
tion alone.

Conversely, whenk is lowered, it is not beforek ap-
proaches the Planck scalefrom abovethat higher operators
such asR2 are generated.~By approaching the Planck sca
from belowperturbation theory also suggests that higher
erators are importantnear the Planck scale, but it fails to
discover that they are unimportant again far beyond it.! It
appears that both QCD and gravity can be described
simple local actions fork→`. Only for sufficiently small
values ofk, when one leaves the asymptotic scaling regi
does the description become very involved because m
new operators are generated by the RG flow. In QCD a
gravity the scales that mark the lower boundary of the sc
ing region areLQCD andmPl , respectively.

The fixed point is a typical effect of quantumfield theory,
i.e. it arises due to the presence ofinfinitely manydegrees of
freedom. It is clear, therefore, that all approximations such
the familiar minisuperspace models which retain only finite
many degrees of freedom cannot see the asymptotic free
and lead to a different picture.

Up to now we have discussed pure gravity without mat
fields. But of course any matter field leads to an additio
renormalization ofG and L @20,21#. In @20# the average
action approach was generalized and an arbitrary numbe
free scalars, spinors, vector fields, and Rarita-Schwin
fields was added.~See also@22,23#.! In particular in@22# the
connection with the approach based on the scaling of
metric introduced by@24# was discussed and it was show
that, as far as perturbation theory is concerned, the RG e
lution of the UV relevant couplings of a scalar field is esse
tially the same in the two approaches. Depending on
nature and number of the matter fields, either gravity con
ues to be antiscreening and asymptotically free, or the qu
tum effects of the matter fields overwhelm those of the m
ric and destroy asymptotic freedom.~The same happens i
QCD with too many quark flavors.! In this paper we assum
that the matter system is such that the resulting RG flow
G and L is qualitatively the same as in pure gravity.
particular, we assume that there is a non-Gaussian fixed p
which is UV attractive forg andl, but we allow the numeri-
cal values ofg

*
UV andl

*
UV to differ from their pure gravity

values. In fact, none of our conclusions will depend on
valuesg

*
UV , l

*
UV , v, andn provided all those parameters a

strictly positive.
In the following we shall writeg* and l* for g

*
UV and

l
*
UV , respectively.

III. THE RG IMPROVED EINSTEIN EQUATIONS

We consider homogeneous, isotropic cosmologies
scribed by Robertson-Walker metrics of the form
8-5
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ds252dt21a~ t !2F dr2

12Kr 2 1r 2~du21sin2udf2!G .
~3.1!

For K50 the 3-spaces of constant cosmological timet are
flat, and forK511 and21 they are spheres and pseud
spheres, respectively. In standard FRW cosmology the
namics of the scale factora(t) is determined by Einstein’s
equations

Rmn2
1

2
gmnR52Lgmn18pG Tmn ~3.2!

whereG andL are constant parameters. In order to take
leading quantum corrections into account we now ‘‘im
prove’’ Eq. ~3.2! by replacingG andL with the scale depen
dent quantitiesG(k) andL(k).

In general it is a difficult task to identify the actual phys
cal cutoff mechanism which, in a concrete situation, sto
the running in the infrared. Typically this involves expressi
k in terms of all scales that are relevant to the problem un
consideration, such as the momenta of particles, fi
strengths, or the curvature of the spacetime, for instance
the case at hand the situation simplifies because the co
tions of homogeneity and isotropy imply thatk can be a
function of the cosmological time only:k5k(t). Provided
we know howk depends ont we can turn the solutions of th
RG equation,G(k) andL(k), into functions of time:

G~ t ![G„k5k~ t !…, L~ t ![L„k5k~ t !…. ~3.3!

There are two plausible scales that could determine the id
tification of k in terms oft. The first one isk}1/t. In fact, the
temporal proper distance of some pointP(t,r ,u,f) to the
big bang~which will still be present in the improved spac
time! is directly given byt itself. If we want to construct an
effective field theoryGk that is valid nearP we may not
integrate out quantum fluctuations with momenta sma
than 1/t because, by the time the age of the Universe it,
fluctuations with frequencies smaller than 1/t cannot have
played any role yet. By this argument we are indeed led
the identification

k~ t !5
j

t
~3.4!

wherej is a positive constant.~Note thatt anda have mass
dimension21, while r ,u,f,K andj are dimensionless.! As
it stands, Eq.~3.4! refers to thet,r ,u,f coordinate system
but it has an invariant meaning. At any pointP we set

k~P!5
j

d~P!
~3.5!

where d(P)[*C(P)Ads2 is the proper length of the curv
C(P) as given by the metric~3.1!. With respect to the
t,r ,u,f system,C(P) is defined byl°(l,r ,u,f) with l
P@0,t# where (t,r ,u,f) are the coordinates ofP. Both the
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metric and the curve can be reexpressed in a generic co
nate systemxm, so that the cutoff is actually a scalar functio
k(xm).

Another momentum scale which appears natural at fi
sight is

k~ t !5
j

a~ t !
, ~3.6!

but in particular for the most important case ofK50 it is not
obvious why the RG flow should be stopped at this point.
fact, it will turn out that for the perturbative regime the im
proved system of equations has no consistent solution if
uses Eq.~3.6!. On the other hand, for the fixed point regim
of a radiation-dominated Universe Eqs.~3.4! and ~3.6! lead
to exactly the same answers so that our predictions are
ticularly robust in this case. A third scale one might invoke
the Hubble parameter

H~ t !5
ȧ~ t !

a~ t !
. ~3.7!

However, in the present context only power lawsa}ta are of
interest. For themH is proportional to 1/t and does not define
an independent scale.

While we believe that the leading effects are correc
described by the 1/t cutoff, the more subtle subleading e
fects most probably require more complicated cutoffs whi
apart from anexplicit time dependence, also have animplicit
time dependence viaa(t) and its derivatives:

k5k„t,a~ t !,ȧ~ t !,ä~ t !, . . . …. ~3.8!

In this paper we discard those subleading effects. From n
on we assume thatk}1/t is indeed the correct first orde
approximation and we shall use Eq.~3.4! in the main body of
the paper. For comparison we also investigate the con
quences of the 1/a cutoff ~3.6! in Appendix A.

Upon inserting Eq.~3.4! into Eqs. ~2.11! and ~2.12! we
obtain for the time dependent Newton constant and cos
logical constant in the perturbative regime

G~ t !5G0F12ṽS tPl

t D 2

1OS tPl
4

t4 D G , ~3.9!

L~ t !5L01 ñmPl
2 S tPl

t D 4F11OS tPl
2

t2 D G ~3.10!

with the positive constants

ṽ[v j2, ñ[n j4. ~3.11!

In the fixed point regime we get from Eqs.~2.16!, ~2.17!

G~ t !5g̃* t2, ~3.12!

L~ t !5l̃* t22 ~3.13!

with
8-6
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g̃* [g* j22, l̃* [l* j2. ~3.14!

In order to find the functionsG(t) andL(t) that interpolate
between the behaviors~3.9!, ~3.10! and ~3.12!, ~3.13! one
must solve the RG equation numerically.

At this point several comments might be in order. The fi
one concerns the logical status of the improved Eins
equation~3.2!. We emphasize that, conceptually, it is a co
pletely quantum mechanical equation which happens to l
like its classical counterpart only because of the specific
proximations made~Einstein-Hilbert truncation!. Quite gen-
erally, if G@w# is the effective action for an arbitrary set o
fields w, the equation of motion for the expectation val
w[^ŵ& is given bydG/dw50. This is a quantum mechan
cally exact equation, the analogue of the classicaldS/dw
50 with all modifications due to the quantum fluctuatio
included. The exact quantum mechanical amplitudes are
tained by evaluatingG at tree level. The same remarks app
to Gk with the only difference thatdGk /dw50 does not yet
contain the effects of fluctuations with momenta smaller th
k. Now, if there is a physical cutoff mechanism that stops
RG running at some value ofk so thatGk at this value ofk
already coincides with the ordinary effective actionG
[Gk50, the functionalGk with k identified appropriately
takes all quantum effects into account@14#.

Up to now we have assumed that we know the exactGk .
We argued already that fork→` the only important invari-
ants in Gk are *Ag and *AgR, albeit with strongly
k-dependent coefficients. Thus, in the domain where
Einstein-Hilbert truncation of theory space is reliable, t
classical equationdS/dhmn50, and the quantum on
dGk /dhmn50 have the same structure formally. The lat
equation is precisely Eq.~3.2! with the k-dependent con-
stantsL andG. It is clear, therefore, that the RG-improve
Einstein equation for the expectation value fieldgmn(x) has
the status of a fully quantum mechanical equation in a
regime where the Einstein-Hilbert truncation applies, in p
ticular close to the fixed point. The familiar appearance
the equation of motion does not mean that gravity or
geometry of spacetime is treated classically in any sense
that there are classes of quantum effects which are not
counted for.

We need the running couplings on Lorentzian spacetim
A priori the RG equations are derived within a covaria
Euclidean formalism so that the problems typical of t
Hamiltonian approach~notion of time, choice of spacetim
foliation, etc.! are not encountered. In contrast to the Eucl
ean path integral, the flow equation allows for a rather sim
‘‘Wick rotation’’ to the Lorentzian signature.3 While the RG
flows in the Euclidean and Lorentzian cases might be dif
ent for k→0 where topological issues play a role, the larg
k behavior is the same in both cases, and this is all we n
for the present investigation.

3This is due to the fact that the functional traces on the right-h
side ~RHS! of the flow equation are always convergent and w
defined@2#.
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The next issue is the energy momentum tensorTmn to be
used on the RHS of the improved Einstein equations.
cause of the imposed homogeneity and isotropy it can alw
be transformed to the form

Tm
n 5diag~2r,p,p,p! ~3.15!

where the densityr and the pressurep depend ont only. As
in standard cosmology we assume that the ener
momentum tensor is covariantly conserved,4

DnTm
n 50, ~3.16!

so that for the Robertson-Walker metric

ṙ13
ȧ

a
~r1p!50. ~3.17!

The physical picture behindTmn is not necessarily that of a
perfect classical fluid as in the familiar FRW case. We rat
interpret it as the functional derivative of someeffectiveac-
tion GM@gmn# for the matter system in the background of t
metricgmn . For the equation of state relatingp to r we shall
use the linear ansatz

p~ t !5w r~ t ! ~3.18!

where w is an arbitrary constant. It includes the case o
perfect fluid consisting of classical dust (w50) or radiation
(w51/3), but we emphasize thatGM is by no means re-
stricted to describing classical matter. In particular,w may be
different from its classical value.

The energy-momentum tensor for a quantum field in
curved spacetime is a very complicated object, contain
information about vacuum polarization, particle creation,
the trace anomaly. In general this can give rise to a com
cated equation of state. Even leaving calculational proble
aside, we are facing a problem of principle here. Unless
know all the matter fields in the the Universe~which we do
not! we cannot determineGM@gmn# and the resulting equa
tion of state from first principles. However, it is almost ce
tain that the matter content influences the RG improved c
mology even at the qualitative level. We mentioned alrea
that certain matter systems destroy the antiscreening cha
ter of pure gravity. They can also destroy the UV fixed po
and lead to completely different cosmologies. Thus, in
absence of a complete matter theory, the best thing one
do is to work out the cosmology resulting from a specific
of assumptions about the matter system. In the present p
the assumptions are the equation of state~3.18!, and that the
fixed point of pure gravity is not destroyed by the mat
system. The form~3.18! is motivated by its mathematica
simplicity and the absence of explicit dimensionful para
eters, which seems natural at very high energies.

d
l 4See for instance Ref.@25# for a class of cosmologies with a tim
dependentL whereTmn as defined here is not conserved.
8-7
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Let us return to the Einstein equation~3.2! now. By virtue
of Bianchi’s identity its LHS is covariantly conserved, so f
consistency the RHS must be conserved too:

Dn@2Lgm
n 18pGTm

n #50. ~3.19!

BecauseL andG depend ont, this equation is not automati
cally satisfied if Tmn is conserved. Instead we obtain th
following consistency condition which relates the time d
pendencies ofL, G andr:

L̇18pr Ġ50. ~3.20!

Sometimes it is convenient to rewrite Eq.~3.20! in the form

d

dt
~L18pG r!58pG ṙ. ~3.21!

When we insert the Robertson-Walker metric~3.1! into Ein-
stein’s equation~3.2! we obtain two independent equation

S ȧ

a
D 2

1
K

a2 5
1

3
L1

8p

3
G r ~3.22!

from the 00 component, and

2
ä

a
1S ȧ

a
D 2

1
K

a2 5L28pG r ~3.23!

from the i i components. As in the classical case, these
field equations are consistent only ifTmn is conserved. After
multiplying Eq. ~3.22! by a2, taking its time derivative, and
combining it with Eq.~3.23! one obtains the conservatio
law ~3.17! as an integrability condition for the improved Ein
stein equations. In this calculation essential use is mad
the new consistency condition~3.21!. We see that its role is
completely analogous to that of the conservation equation
Tmn : both of them constrain the sources to which gravity c
be coupled consistently. Thus only 2 of the 3 equatio
~3.17!, ~3.22! and ~3.23! are independent; in the following
we shall use the conservation law~3.17! and the improved
Friedmann equation~3.22! as independent equations.

To summarize: We would like to write down a set
~differential! equations that determinea,r,p,G and L as a
function of time. This set includes Friedmann’s equation,
conservation law forTmn , the equation of state, the ne
consistency condition, and the RG equations forG and L.
More precisely, we shall always assume that the RG eq
tions are already solved so that we can simply replace
constantk by k(t) in the solution. Eliminating the pressur
by virtue of the equation of state, this system of equatio
reads

S ȧ

a
D 2

1
K

a25
1

3
L1

8p

3
Gr, ~3.24a!

ṙ13~11w!
ȧ

a
r50, ~3.24b!
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L̇18pr Ġ50, ~3.24c!

G~ t !5G„k~ t !…, L~ t !5L„k~ t !…. ~3.24d!

These are 5 equations for the 4 functionsa(t),r(t),G(t) and
L(t). @Of course we could immediately insert Eq.~3.24d!
into the first 3 equations. Then Eqs.~3.24a,b,c! are 3 equa-
tions for the 2 unknownsa and r. For the time being we
shall not adopt this point of view.#

The system~3.24a!, ~3.24b!, ~3.24c! without the last equa-
tions coming from the renormalization group has alrea
been studied in the literature@26,27#. It consists of only 3
equations for 4 unknowns and is underdetermined theref
As a way out, the authors made anad hocassumption abou
one of the functions, typicallyG(t), and checked if there are
interesting cosmologies consistent with, but not uniquely
termined by, Eqs.~3.24a!, ~3.24b!, ~3.24c!.

In our case with Eq.~3.24d! included we seem to be in th
opposite situation because the 5 equations might overde
mine the 4 unknowns and no consistent solution might ex
In order to see that this is not actually the case we m
return to the RG equation from which Eq.~3.24d! is derived.
The flow equation contains the functionR(0) which is com-
pletely arbitrary up to the two conditionsR(0)(0)51 and
R(0)(z→`)50. This function describes the details of th
cutoff mechanism, i.e. how quickly the modes with differe
momentap get suppressed whenp approachesk. Only if one
uses the flow equation in order to compute quantities that
‘‘universal’’ in the sense of statistical mechanics are the
swers independent of the shape ofR(0). In generalGk , for
intermediate values ofk, does depend onR(0). ~Only the
limit k→0 is R(0) independent because the cutoff drops ou!
Therefore the RG trajectoryk°„G(k),L(k)… is also R(0)

dependent. This is obvious from Eqs.~2.13!,~2.14!, for in-
stance: the coefficientsv and n depend onR(0) via the
F-integrals. This means that, if we want to give a physi
meaning toG(k) andL(k) at intermediate values ofk, the
function R(0) should be chosen in such a way that it mod
the actualphysicalcutoff mechanism as accurately as po
sible.

Similarly, the identification of the scalek in terms of the
actual physical parameters of the system also depends o
system under consideration. In our case we havek5j/t with
an unknown constantj. If we changeR(0) the optimal value
for j also changes. Typically combinations of parameters
the RG equation (v,n, . . . ) and in thecutoff identification
(j) such asṽ5vj2, for instance, are much lessR(0) depen-
dent, i.e. more ‘‘physical,’’ than those parameters separat
~For the RG improved Newton potential it can be check
that theR(0) dependences ofv and an analogously define
j2 mutually cancel, and thatṽ is a physical, i.e. observable
quantity@4#.! However, even measurable combinations sim
lar to ṽ cannot be calculated by RG techniques alone.

In this situation it is a virtue of the system~3.24! rather
than a disadvantage that it is seemingly overdetermined
cause in this manner it also places restrictions onR(0) and on
the cutoff identification. In fact, we may regard it as a syst
of 5 integro-differential equations for the 5 function
8-8
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COSMOLOGY OF THE PLANCK ERA FROM A . . . PHYSICAL REVIEW D65 043508
a,r,G,L and R(0). In the next section we shall solve th
system in the perturbative and in the fixed point regimes,
we shall see that solutions exist only if certain relatio
among the parametersṽ, g̃* , etc. are satisfied. They ar
implicit conditions onR(0) and/or j. This shows that the
system ~3.24! is quite powerful in the sense that it als
teaches us something about how to consistently model th
cutoff for the concrete system ‘‘expanding Universe.’’

This enhanced degree of predictability is also one of
reasons why we are RG improvingequationsrather thanso-
lutions. Improving solutions means that we take some fix
solutiona(t),r(t) of standard cosmology that depends pa
metrically on the constantsG and L and then substituteG
→G(t), L→L(t). In general this simple approach is re
able only if the improved solution is close to the classi
one.~See@4# for a detailed discussion in the context of bla
holes.! The main advantage of improving the underlyin
equations is that their solutions may well be quite differe
from the classical ones without necessarily lying in a dom
where the entire approach has become unreliable. In App
dix B we describe the improvement of the classical FR
solutions. Where they are valid, the results are consis
with the approach of improving equations. They are less p
dictive, however, in particular because they do not reprod
the relations amongṽ, g̃* , etc. mentioned above.

It is important to understand how many constants of in
gration occur in the process of solving the system~3.24!. Let
us pick someR(0) and a functionk5k(t) with an explicit t
dependence only. ThenG(k) and L(k) can be obtained by
solving 2 coupled RG equations which are of first order a
therefore lead to 2 constants of integration. We choose th
to be thek50 valuesG0 and L0. As a consequence, th
functionsG(t) and L(t) in Eq. ~3.24d! depend parametri
cally on G0 andL0, i.e. on the RG trajectory selected. In
first step we may insert Eq.~3.24d! into Eq. ~3.24c! and
obtain the energy density as

r~ t !52
1

8p

L̇

Ġ
. ~3.25!

The time dependence ofr is completely determined onc
L(t) andG(t) are fixed, and no new constant of integrati
arises. In a second step we insertr of Eq. ~3.25! into Eq.
~3.24b! and solve the resulting differential equation fora(t).
Equation~3.24b! is easily integrated:

r~ t !@a~ t !#313w5M/8p5const. ~3.26!

Here we encounter a further constant of integration,M. Its
mass dimension is 123w. For a radiation dominated Uni
verseM is dimensionless, while it has the dimension of
mass in the matter dominated case. Combining Eqs.~3.25!
and ~3.26! we obtain the scale factor

a~ t !5F2
M Ġ

L̇
G 1/(313w)

. ~3.27!
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Already at this point all 4 functionsG, L, r anda are com-
pletely determined. They depend on 3 constants of integ
tion: G0 , L0 , andM. The last and crucial step is to inse
the solution we found into Eq.~3.24a! and check if this equa-
tion is satisfied too. In general it will be satisfied only fo
appropriately chosen cutoff functionsR(0) andk(t), and for
special values of the constants of integration and of the
rameterw.

We note that the Hubble parameter also has a simple
resentation directly in terms ofG andL:

H5
ȧ

a
5

1

313w S G̈

Ġ
2

L̈

L̇
D . ~3.28!

It is clear that the system~3.24! can be solved in this simple
manner only in the special case whenk(t) has no implicit
time dependence viaa(t). For a generick5k„t,a(t), . . . …
the situation is much more involved; see for instance App
dix A for the ansatzk5j/a.

Before closing this section let us introduce a few conv
nient definitions. We define the vacuum energy densityrL ,
the total energy densityr tot and the critical energy densit
rcrit according to

rL~ t ![
L~ t !

8pG~ t !
, ~3.29!

r tot~ t ![r1rL , ~3.30!

rcrit~ t ![
3

8pG~ t !
S ȧ

a
D 2

. ~3.31!

The definitions~3.29! and ~3.31! are the same as usual e
cept thatG(t) andL(t) appear in place ofG0 andL0. This
means in particular that, for very late times when the runn
Newton constant assumes its IR valueG0, the quantityrcrit is
exactly the standard critical density of classical FRW c
mology. It is also customary to introduce

VM[
r

rcrit
, VL[

rL

rcrit
, ~3.32!

V tot[VM1VL5
r tot

rcrit
, ~3.33!

so that we may rewrite Friedmann’s equation~3.24a! either
as

ȧ21K

a2
5

8p

3
G r tot ~3.34!

or as

K5ȧ2F r tot

rcrit
21G5ȧ2@V tot21#. ~3.35!

As a trivial consequence of its definition, the critical dens
satisfies
8-9
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rcrit~ t !G~ t !H~ t !225
3

8p
. ~3.36!

By Eq. ~3.35!, an expanding Universe withK50 has

r tot~ t !5rcrit~ t ! ~K50! ~3.37!

at any time. In this case

r tot~ t !G~ t !H~ t !225
3

8p
~K50!. ~3.38!

Sometimes the flatness problem is rephrased as the co
logical ‘‘coincidence puzzle:’’ Why does the product of th
observed matter density of the Universe, the square of its
t, and Newton’s constant give rise to a number of order un

~r G t2! today5O~1! ? ~3.39!

It is clear that Eq.~3.39! is essentially the same statement
Eq. ~3.38! if rL is negligible or at most of the same order
magnitude asr, and if the age of the Universe is of the ord
of H(t)21. The ‘‘coincidence’’~3.39! has also been regarde
as a manifestation of Mach’s principle@28#.

IV. PERTURBATIVE AND FIXED POINT SOLUTIONS

In this section we solve the system of equations~3.24!
using the approximate RG equations that are valid in
perturbative and in the fixed point regimes, respectively.

A. The perturbative regime

The perturbative approximation is valid fork!mPl , i.e.
for t@tPl . The corresponding solutions to the RG equatio
are given by Eqs.~3.9!,~3.10! from where we obtain

Ġ~ t !5
2ṽ G0

2

t3 H 11OS tPl
2

t2 D J , ~4.1!

L̇~ t !52
4 ñ G0

t5 H 11OS tPl
2

t2 D J . ~4.2!

Hence Eq.~3.25! for the energy density and Eq.~3.27! for
the scale factor lead to

r~ t !5
1

4p S ñ

ṽ
D 1

G0t2 H 11OS tPl
2

t2 D J ~4.3!

and

a~ t !5F1

2 S ṽ

ñ
DM G0G 1/(313w)

t2/(313w)H 11OS tPl
2

t2 D J ,

~4.4!

respectively. Now we must insert Eqs.~4.3! and ~4.4! along
with G(t) and L(t) from Eqs. ~3.9! and ~3.10! into the
04350
o-

ge
y,

s

e

s

Friedmann equation~3.24a! in order to check whether the
above solutions are consistent. Omitting subleading ter
consistency requires that

S 2

313wD 2 1

t2 1KF1

2S ṽ

ñ
DMG0G22/(313w)

1

t4/(313w)

5
L0

3
1S 8pG0

3 D 1

4p S ñ

ṽ
D 1

G0t2 1•••. ~4.5!

Note that on the RHS of Eq.~4.5! it is sufficient to setG
5G01••• and L5L01••• because the~known! correc-
tions to these approximations have the same time dep
dence as the~unknown! second order corrections on th
LHS. In order to analyze Eq.~4.5! we must distinguish the
casesK50 andK561.

1. The case KÄ0

In the caseK50, Eq. ~4.5! is satisfied provided that the
consistency conditions

L050 and
ṽ

ñ
5

3

2
~11w!2 ~4.6!

are satisfied. The conditionL050 does not come as a su
prise because the formula~2.12! for L(k) from which we
started is accurate fork→0 only if L050. Recalling that
ñ/ṽ5(n/v)j2 we see that the second condition puts a co
straint on the cutoffR(0) which affectsv andn, as well as
the functionk5k(t), i.e.j in our case. We use this conditio
in order to expressj in terms ofv andn which are not then
subject to any further condition:

j25
2v

3n~11w!2 . ~4.7!

Thus, upon inserting Eq.~4.7! into Eqs.~3.9! and~3.10!, the
time dependences of Newton’s constant and of the cos
logical constant are now completely determined. Moreov
using Eq.~4.6! for the ratioṽ/ ñ in Eq. ~4.3! and Eq.~4.4! we
see thatr(t) anda(t) are actually completely independent
v andn. As a consequence, the consistent solution we fo
is given by the following four equations:

a~ t !5F3

4
~11w!2MG0G1/(313w)

t2/(313w)H 11OS tPl
2

t2 D J ,

~4.8a!

r~ t !5
1

6p~11w!2G0t2 1OS 1

t4D , ~4.8b!

G~ t !5G0F12
2v2

3n~11w!2S tPl

t D 2

1OS tPl
4

t4 D G , ~4.8c!

L~ t !5
4v2mPl

2

9n~11w!4 S tPl

t D 4

1OS tPl
4

t6 D . ~4.8d!
8-10
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COSMOLOGY OF THE PLANCK ERA FROM A . . . PHYSICAL REVIEW D65 043508
We observe that the leading terms of the above express
for a(t) and r(t) coincide exactly with the corresponding
solutions of the classical FRW equations.@See Eqs.~B3! and
~B4! in Appendix B.# This coincidence is quite remarkab
because in our approach, by Eqs.~3.25! and ~3.27!, a andr
arise from thetime dependent, i.e. higher order, terms in
G(t) and L(t), which clearly have no counterpart in th
classical situation.

The vacuum energy density and the critical energy den
for the cosmology~4.8! are

rL501OS 1

t4D , rcrit5r1OS 1

t4D ~4.9!

so that, in leading order,r tot5r5rcrit , or

VM51, VL50, V tot51. ~4.10!

2. The case KÄÁ1

Equation~4.5! has a chance of being consistent only if
terms can be given a time dependence proportional to 1/t2. If
KÞ0 this is possible only for an ‘‘exotic’’ equation of stat
with w521/3. Indeed the consistency conditions implied
Eq. ~4.5! are

L050, w52
1

3
,

ṽ

ñ
5

2

3
2

2K

MG0
. ~4.11!

Again we use the last condition in order to eliminatej:

j25
v

n S 2

3
2

2K

MG0
D 21

. ~4.12!

Note that in the present casej depends also on the constan
of integrationM and G0. Proceeding as above we find th
following consistent solution forw521/3:

a~ t !5F1

3
MG02KG1/2

tH 11OS tPl
2

t2 D J , ~4.13a!

r~ t !5
M
8p F1

3
MG02KG21 1

t2 H 11OS tPl
2

t2 D J , ~4.13b!

G~ t !5G0F12
v2

n S 2

3
2

2K

MG0
D 21S tPl

t D 2

1OS tPl
4

t4 D G , ~4.13c!

L~ t !5
v2

n
mPl

2 S 2

3
2

2K

MG0
D 22S tPl

t D 4

1OS tPl
4

t6 D . ~4.13d!

The leading terms in Eqs.~4.13a! and ~4.13b! coincide with
the corresponding classical FRW solutions forw521/3. The
cosmology~4.13! gives rise to
04350
ns
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rL~ t !501OS 1

t4D , rcrit~ t !5
3

8pG0t2 1OS 1

t4D
~4.14!

so that, in leading order,VL50 andVM5V tot with

V tot5
MG0

MG023K H 11OS tPl
2

t2 D J . ~4.15!

As expected,V tot depends on the constants of integration
the caseK561.

B. The fixed point regime

The fixed point approximation is valid whenk@mPl or t
!tPl . In this regime the time dependence ofG and L is
given by Eqs.~3.12! and ~3.13!, respectively. From Eqs
~3.25! and ~3.27! we obtain

a~ t !5S g̃* M
l̃*

D 1/(313w)

t4/(313w), ~4.16!

r~ t !5
l̃*

8pg̃*

1

t4 . ~4.17!

The next step is to check the consistency of Eq.~3.24a!.
Inserting G, L and the above expressions fora and r we
have

S 4

313wD 2 1

t2 1KF g̃* M
l̃*

G22/(313w)
1

t8/(313w)
5

2l̃*
3t2

.

~4.18!

We shall discuss this equation forK50 andK561 sepa-
rately.

1. The case KÄ0

For K50, Eq. ~4.18! implies only a single consistenc
condition:

l̃* 5
8

3~11w!2 . ~4.19!

If we use this condition in order to eliminatel̃* in all equa-
tions we are led to

a~ t !5F3

8
~11w!2g̃* MG1/(313w)

t4/(313w), ~4.20a!

r~ t !5
1

3p~11w!2g̃*

1

t4 , ~4.20b!

G~ t !5g̃* t2, ~4.20c!

L~ t !5
8

3~11w!2

1

t2 . ~4.20d!
8-11
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A. BONANNO AND M. REUTER PHYSICAL REVIEW D65 043508
This family of solutions, one for each value ofg̃* andw, was
already found in Ref.@27#. In this work, the RG equation
~3.24d! were not used. Since the system~3.24a!, ~3.24b!,
~3.24c! is underdetermined, the time dependence forG(t),
Eq. ~4.20c! above, was postulated on anad hocbasis in order
to obtain a unique solution. In this manner the analogue
g̃* appears as a free parameter whilel̃* is fixed. In our case
it is more natural to use the consistency condition~4.19! in
order to expressj in terms of l* which is given by the
renormalization group. Becausel̃* [l* j2 we have then

j25
8

3~11w!2l*
. ~4.21!

When expressed in terms of the fixed point values, the s
tions read

a~ t !5F S 3

8D 2

~11w!4g* l* MG1/(313w)

t4/(313w),

~4.22a!

r~ t !5
8

9p~11w!4g* l*

1

t4 , ~4.22b!

G~ t !5
3

8
~11w!2g* l* t2, ~4.22c!

L~ t !5
8

3~11w!2

1

t2 . ~4.22d!

Sinceg* , l* andw are given by the renormalization grou
and the equation of state, respectively, Eqs.~4.22! represent a
one-parameter family of solutions parametrized by the c
stant M. The solutions~4.22! reflect the renormalization
group flow in the vicinity of the UV attractive fixed poin
where the RG trajectories have ‘‘forgotten’’ their IR valu
G0 andL0. Because of this universality, these solutions
independent of the constants of integrationG0 andL0. This
means that~4.22! is an attractor solution fort↘0 in the
sense thateveryconsistent solution to Eq.~3.24!, character-
ized by arbitrary constants of integration (G0 , L0 , M),
looks like ~4.22! in the limit t↘0. Actually theM depen-
dence of the solutions~4.22! is quite trivial: r, G andL are
M independent, whilea(t) responds to a change ofM by a
simple constant rescaling.

It is very remarkable and a nontrivial confirmation of o
approach that after the elimination ofj the RG data enter the
attractor solution only via the productg* l* . This product is
universal~scheme independent! in the sense that it does no
depend on the functionR(0) @17#. Hence Eqs.~4.22! are free
from any numerical ambiguities.

For the cosmologies~4.22! we find thatrL(t)5r(t) and
rcrit(t)52r(t) so that

r5rL5
1

2
rcrit , r tot5rcrit ~4.23!

or
04350
f
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VM5VL5
1

2
, V tot51. ~4.24!

We also read off the Hubble parameter

H5
4

313w

1

t
~4.25!

and observe that

r~ t !G~ t !t25
1

3p~11w!2 ~4.26!

is a time-independent fixed number that depends only on
equation of state.

The solutions~4.22! exists for every equation of state o
the type considered, i.e. for every value of the parametew.
Since at least immediately after the Planck era during wh
~4.22! is valid the Universe is radiation dominated, a partic
larly plausible choice isw51/3. In the case of a ‘‘radiation
dominated Planck era’’ withw51/3 we have

a~ t !5F4

9
g* l* MG1/4

t, ~4.27a!

r~ t !5
9

32p g* l*

1

t4 , ~4.27b!

G~ t !5
2

3
g* l* t2, ~4.27c!

L~ t !5
3

2

1

t2 . ~4.27d!

The most interesting property of this solution is that it
perfectly scale free. BecauseM is dimensionless forw
51/3 and becauseG0 andL0 do not occur due to the fixed
point behavior, the only dimensionful quantity available
the cosmological timet itself. As a consequence, the variou
exponents oft appearing in Eqs.~4.27! are completely fixed
by the canonical mass dimensions ofa,r,G and L, which
are 21, 14, 22, and12, respectively. In particular, the
linear expansion lawa}t is a direct consequence of this typ
of scale invariance. Sincew51/3 corresponds to a traceles
energy momentum tensor, this solution is realized ifGM is
the effective action of a quantum conformal field theory, f
instance. It is interesting in this respect that there are ind
tions from semiclassical gravity@24# that the effective matter
action could be asymptotically scale invariant.

2. The case KÄÁ1

In this case Eq.~4.18! can be made consistent only for
specific choice of the equation of state, namely, forw5
11/3. Equation~4.18! is satisfied if

w51
1

3
and 11KS l̃*

g̃* MD 1/2

5
2

3
l̃* . ~4.28!
8-12
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We use the second consistency condition in order to eli
natej in favor of g* , l* andM:

j25S g*
M
l * D 1/2F2

3
Ag* l* M2KG21

. ~4.29!

This leads to the following solutions forw511/3:

a~ t !5F2

3
Ag* l* M2KG1/2

t, ~4.30a!

r~ t !5
M
8p F2

3
Ag* l* M2KG22 1

t4 , ~4.30b!

G~ t !5S g* l*
M D 1/2F2

3
Ag* l* M2KG t2, ~4.30c!

L~ t !5Ag* l* MF2

3
Ag* l* M2KG21 1

t2 . ~4.30d!

This family of solutions, again parametrized by a dimensio
less constantM, is scale free as well. All solutions have th
property that their vacuum energy density equals the ma
density:

rL~ t !5r~ t !5
1

2
r tot~ t !. ~4.31!

Furthermore, their critical density reads

rcrit~ t !5
3

8p S M
g* l*

D 1/2F2

3
Ag* l* M2KG21 1

t4

~4.32!

from which one obtains

VM5VL5
1

2
V tot5

1

3
Ag* l* MF2

3
Ag* l* M2KG21

.

~4.33!

If K511, solutions of the form~4.30! exist only if M is
such thatAg* l* M.3/2. It is also important to note that fo
K561 the quantity

r~ t !G~ t !t25
1

8p
Ag* l* MF2

3
Ag* l* M2KG21

~4.34!

is not a universal number but depends onM.

V. COMPLETE SOLUTIONS FOR THE PLANCK ERA

A. Early versus late stages of the Planck era

In the previous section we found solutions to the RG i
proved system of cosmological evolution equations that
valid for t↘0 and for t*tPl , respectively. In particular, it
turned out that the improved cosmologies, too, start from
‘‘big bang,’’ i.e. there exists a time~conveniently chosen a
t50! at which the scale factor vanishes. We also saw t
there is a certain transition timetclass such that fort.tclass
04350
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quantum gravitational effects become negligible so that
evolution of the Universe is correctly described by the cl
sical FRW models. The timetclass is of the order of a few
Planck times,tclass*tPl . We shall refer to the epoch betwee
t50 andt5tclassas thePlanck era. At the beginning of the
Planck era, immediately after the big bang, we are in
fixed point regime of the RG equations, while the end of t
Planck era and its transition to classical cosmology co
sponds to the perturbative regime.

We were able to find analytic solutions to the improv
equations only for the very early and the very late parts
the Planck era. Let us now discuss how those solutions
be fitted together to obtain complete solutions that are v
during the entire Planck era.

For a spatially flat geometry,K50, and for every value of
w, there exist exact solutions of Eqs.~3.24! both in the fixed
point and in the perturbative regimes, see Eqs.~4.22! and
~4.8!, respectively. We expect that those two limiting sol
tions possess a continuous interpolation that satisfies
~3.24! for all tP(0,tclass). Generically this interpolating solu
tion should exist, because we have considerable freedom
adjusting the functionsR(0) and k„t,a(t), . . . … without
changing their qualitative features. We shall refer to this
lution $a(t),r(t),G(t),L(t)%, tP(0,tclass), as thecomplete
K50 solution. Actually this is a whole family of solutions
labeled by the constants of integration (G0 ,L0 ,M). ~Within
the present approximation, only solutions withL050 were
found.!

It is the main assumption of this paper that the RG i
proved system~3.24! and its completeK50 solution are
valid throughout the Planck era, i.e. even immediately a
the big bang. The reason why we think that our approxim
tions are valid even fort↘0 is the asymptotic freedom w
found for quantum gravity. It entails gravity in the very ear
Universe being weakly coupled. In fact, the coupling co
stant, i.e. Newton’s constant, vanishes very rapidly as
approach the initial singularity:G}t2. For k→` the RG
flow in (g,l) space is dominated by a fixed point that is U
attractive for bothg and l. By the RG improvement, this
fixed point translates into the attractor solution~4.22! for
a,r,G and L. In the vicinity of the attractor, all solutions
have the same universal behavior.

The w value of the perturbative regime must coincid
with that of the following classical era, most plausiblyw
51/3. In principle it is conceivable that the interpolatio
from the fixed point to the perturbative regime involves
adiabatic change ofw.

For the spatially curved geometries withK511 or 21
we found a solution in the fixed point regime only ifw5
11/3, and a solution in the perturbative regime only forw
521/3. Hence, at least within the present approximati
there exists no consistent interpolating solution fort
P(0,tclass) with a constantw.

As for the interpretation of this result, we must be ve
careful. Clearly it would be premature to conclude that t
RG approach predictsK50 as the only possibility. In par-
ticular the nonexistence of perturbative solutions withwÞ
21/3 is quite likely to be an artifact of our approximation
We mentioned already that the simple perturbative form
8-13
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A. BONANNO AND M. REUTER PHYSICAL REVIEW D65 043508
L(t), Eq. ~2.12!, is correct only if one either neglects th
back reaction of the runningL contained in theF functions
or specializes toL050. In general the situation is similar t
QCD @29# where, thanks to asymptotic freedom, simple tru
cations are sufficient for large values ofk, but at smallk they
necessarily become very complicated because they hav
describe all sorts of nonperturbative effects. On the basi
this analogy we expect that in quantum gravity also it
much more difficult to describe the IR behavior correctly.
is intriguing that in our approach this problem is particula
pressing ifL0Þ0. In fact, it has been suggested@30# that
there are strong renormalization effects in the IR wh
might solve the cosmological constant problem@31# in a dy-
namical way.

It is less obvious why forK561 there seem to be n
solutions withw5” 11/3 in the fixed point regime. It would
be tempting to speculate that this reflects a property of
exact theory in which case the slightest deviation from
classical valuew511/3 would lead to the prediction tha
K50.

B. ‘‘Naturalness’’ of the solutions

Let us now make more precise in what sense the existe
of the complete (K50) RG improved solution removes th
flatness problem. We emphasize that the reason isnot that we
found no solutions forK561 and thatr tot5rcrit is auto-
matic if K50. In fact, for the sake of argument, let us su
pose that there is some better approximation~an exact treat-
ment! such that there are complete solutions forK561 and
perhaps also forK50, L0Þ0. Then, both the classical an
the RG improved theories describe cosmologies with a
types of spatial geometry: flat (K50), spherical (K511),
and pseudospherical (K521). Let us select one out of thes
3 options,K50 say, and let us compare what the two the
ries have to say about the evolution of the Universe.

Classical FRW cosmologyhas a limited domain of appli
cability. It is valid only for t>t i where t i*tclass is some
initial time at which one must specify initial conditions fo
the classical differential equations. They include the init
density r(t i) and the Hubble parameterH(t i) from which
one can deduce the initial critical densityrcrit(t i)
[3H(t i)

2/8pG0. Since we opted forK50, the classical dif-
ferential equations tell us that there is a solution only if t
initial conditions are such thatr(t i)5rcrit(t i) . Thus, in order
to be in theK50 sector, an infinite fine-tuning of the initia
data is necessary, and this is what is referred to as the flat
problem.

Because gravity is weakly coupled fort↘0, RG improved
cosmologyhas the ambition of being valid for allt.0, i.e.
already directly after the big bang. Att50 the spacetime is
singular, and there is no such thing as at5t i hypersurface at
which initial data are to be imposed. There is a family
complete consistentK50 cosmologies labeled by the param
eters (G0 ,L0 ,M). For any value of the parameters,r tot(t)
5rcrit(t) is automatically satisfied for allt.0. For t↘0 all
solutions approach an essentially universal attractor solu
which is independent of (G0 ,L0 ,M) except for an overall
M dependence ofa. It is precisely this attractor that makes
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not only unnecessary but even impossible to specify ini
conditions in a standard way. Thus, by the time the class
solution emerges from the quantum solution,the condition
r tot5rcrit is imposed automatically.

To summarize: At present the RG improvement provid
no strong theoretical arguments againstK511 or 21.
However, if one selects theK50 option ‘‘by hand,’’ no natu-
ralness problem occurs.

C. Particle horizons

Let us consider an observer in a Robertson-Walker spa
time who, at cosmological timet, receives a light signal tha
was emitted by some distant galaxy at timet,t. Then, at
time t, the proper distance between this galaxy and the
server is given by@32#

R~ t,t!5a~ t !E
t

t dt8

a~ t8!
. ~5.1!

In a spacetime with a singularity at time zero, the most d
tant galaxies from which the observer can receive a li
signal at timet have the proper distanceR(t,0)[dH(t). If
this distance is finite, i.e. if the integral~5.1! converges for
t→0,

dH~ t !5a~ t !E
0

t dt8

a~ t8!
, ~5.2!

we say that the spacetime has a particle horizon at the
tancedH . Hence it is thet↘0 behavior of the scale facto
that decides the presence or absence of a particle hori
For instance, if

a~ t !}ta ~a.0! ~5.3!

there is a horizon atdH(t)5t/(12a) for aP(0,1) but there
is no horizon ifa>1.

For t!1/AL all classical FRW solutions are power law
of the type~5.3! with the exponent

aclass5
2

313w
~5.4!

~see Appendix B!. If we take these solutions at face valu
even for t↘0, there appears to be a horizon in both t
physically relevant cases of the radiation and the ma
dominated Universe withw51/3 and w50, respectively.
However, since the classical equations become invalid
t↘0 there is no compelling reason why these horizons
tually should exist in nature.

In the RG improved cosmology forK50 the early part of
the Planck era is governed by the attractor solution~4.22!
with

a~ t !}t4/(313w). ~5.5!

Since we believe that this attractor provides a valid desc
tion for t↘0, even very close to the big bang, we may u
8-14
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FIG. 1. Graphical representation of the prop
distanceR(t,t) as a function oft for fixed t.
Only light signals emitted from points below th
solid line can reach the spacetime pointP. The
dashed line showsRclass(t,t) which gives rise to
a horizon atdH52t. The deviation ofR from
Rclassbecomes appreciable only fort,tclass.
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Eq. ~5.5! in order to check for the existence of horizons. W
observe thatthe RG improved spacetime has no particle h
rizon provided w<1/3.5

During the following discussion we assume that the m
ter system is such thatw<1/3 so that there is indeed n
horizon. However, as we shall see now, this fact by itsel
not yet a solution to the horizon problem. For the sake
simplicity we consider a ‘‘radiation dominated Planck er
with w51/3 followed by a classical radiation dominated e
again withw51/3. In this case we have a linear expansion
early times and the familiar square-root expansion at
times:

a~ t !}H t for t!tclass,

t1/2 for t@tclass.
~5.6!

In order to visualize the causal properties of this Roberts
Walker spacetime we consider a simple toy model wh
interpolates smoothly betweena}t for t!tclass and a}t1/2

for t@tclass:

a~ t !5
At

11At/tclass

. ~5.7!

HereA is an arbitrary positive constant. It is easy to calcul
the proper distance~5.1! for Eq. ~5.7!:

R~ t,t!5
t

11At/tclass
F lnS t

t D12A t

tclass
22A t

tclass
G .
~5.8!

As expected, this distance diverges fort→0 andt fixed. In
Fig. 1 it is represented graphically as a kind of gravitatio
ally distorted backward light cone of the pointP. It is com-
pared to its classical counterpart

Rclass~ t,t!52At~At2At! ~5.9!

which results froma}t1/2 and gives rise to the familiar ho
rizon atdH52t.

In Fig. 2 we show two spacetime pointsP1 andP2 at the
same cosmological timet. In classical cosmology those tw
points would be causally disconnected because their ‘‘li
cones’’ given byRclassdo not intersect. However, in the RG
improved spacetime, the light cones become infinitely bro
for t↘0. This means that events which take place at su

5Within the phenomenological applications@26,27# of the system
~3.24a!, ~3.24b!, ~3.24c! this was already pointed out earlier@27#.
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ciently early timest can causally influence bothP1 andP2.
Because of this quantum gravity induced broadening of
backward light cones, the light cones of all eventsPi at a
given time t overlap for some small enought. Since this
broadening sets in only fort&tclass5O(tPl) we see that only
eventsP0 in the Planck era can causally influenceall points
P on the hypersurface at timet.

Let us imagine, for instance, that the two pointsP1 and
P2 are located in opposite directions in the sky. Two micr
wave antennas pointing in these directions receive radia
that has been emitted at the timet r of the hydrogen recom-
bination when the cosmological plasma had just become
tically thin to radiation, about 105 years after the big bang. In
the standard FRW spacetime the number of horizon distan
separating the two sources in opposite directions is given

N5
2R~ t0 ,t r!

dH~ t r!
5 lim

t→0

2R~ t0 ,t r!

R~ t r ,te!1R~ te,t!
~5.10!

where t0 denotes the present time, andte*tclass is in the
equivalence era, when matter and radiation were in lo
thermodynamic equilibrium. However, since bothR(t0 ,t r)
andR(t r ,te) are finite, it is clear that, in the quantum gravi
improved spacetime, eventuallyN,1 for sufficiently small
t,tPl .

In view of the above discussion we propose that the is
ropy of the cosmic microwave background radiation on la
angular scales is a consequence of the quantum gravity
fects in the Planck era which remove the particle horizon a
hence allow for causal mechanisms giving rise to appro
mately the same temperature everywhere on the last sca
ing surface. The important point of this discussion is th
since the broadening of the light cones becomes signific
only for t,tPl , it is necessary that those causal mechanis
are already operative during the Planck era. In the follow
section we outline a scenario for the generation of primord
density fluctuations where this is actually the case.

VI. DENSITY FLUCTUATIONS

It is a fascinating idea that the structure formation in t
Universe started out from primordial density fluctuatio
dr(x) which were triggered by quantum mechanical fluctu
tions. As the Universe expanded, these density fluctuat
became amplified and magnified, and finally gave rise to
large-scale structures that we observe today. This idea
been worked out in the framework of inflationary cosmolog
Here instead we consider the possibility that the primord
density fluctuations were already generated during
8-15
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FIG. 2. While the pointsP1 andP2 are caus-
ally disconnected classically, the quantum grav
induced broadening of the backward light con
allows for eventsP0 in the Planck era that can
causally influence bothP1 andP2.
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Planck era as the aftermath of the big bang. This hypoth
allows us to invoke the broadening of the light cones fot
,tclass that we found above in order to explain the hig
degree of isotropy of the fluctuations at later times.

In our approach the most natural assumption about
quantum origin ofdr is that, beforet'tclass, the quantum
fluctuations of the metric itself generated the primordial d
sity fluctuations by some decoherence mechanism. As
shall argue now, this assumption naturally leads to a s
free ~Harrison-Zeldovich! fluctuation spectrum.

We need to know the two-point correlation function@33#

j~x!5^d~x1y!d~y!& ~6.1!

of the density contrastd(x)[dr(x)/^r& t at somefixed time
t&tclassclose to the end of the Planck era when the spect
is ‘‘handed over’’ from the quantum gravity to the classic
regime. We define the power spectrum by

udku2[VE d3x j~x!e2 ik•x ~6.2!

and we say that the fluctuation spectrum has the spe
index n if udku2 has the form of a power lawudku2}ukun. (V
denotes the normalization volume.! What is the prediction
for udku2 if our above hypothesis is correct?

In @17# it was shown that, on a flat background, the effe
tive graviton propagator for the fixed point regime is prop
tional to G̃(p)}1/p4, which amounts toG(x,y)} ln(x2y)2 in
position space. This form of the propagator is valid forp2

@mPl
2 or (x2y)2! l Pl

2 , respectively. The logarithmic two
point function may be understood as a limiting case of
familiar ‘‘critical’’ propagator G(x,y)}1/ux2yud221h for d
54 and the anomalous dimensionh[hN(g* ,l* )522
which characterizes the UV fixed point@17#. Let us look at
the curvature fluctuationdR}]]h caused by a fluctuation
hmn(x) of the metric.~We use a symbolic notation whereR
stands for the curvature scalar or for any component of
Riemann or Einstein tensor.! Becausê hmn(x)hlt(y)&} ln(x
2y)2, the curvature correlation function iŝdR(x)dR(y)&
}1/(x2y)4, rather than}1/(x2y)6 as implied by the tree
level propagator. Therefore the leading short distance sin
larity in a curved spacetime is given bŷdR(x)dR(y)&
}1/d(x,y)4 whered(x,y) is the geodesic distance ofx andy.
This formula is applicable when the spacetime curvature
small compared to 1/d(x,y)2.

Now we consider the background of a Robertson-Wal
spacetime and we putx andy on the same time slice. Henc
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d(x,y)5a(t)ux2yu wherex andy are the comoving Carte
sian coordinates ofx and y, respectively. This leads to th
important result

^dR~x,t !dR~y,t !&}
1

ux2yu4
. ~6.3!

The constant of proportionality implicit in Eq.~6.3! is time
dependent but for the derivation of the spectrum this is
important.

In the scenario where the primordial density fluctuatio
are generated by quantum fluctuations one assumes@33# that
the classical statistical expectation value~6.1! is proportional
to a quantum mechanical expectation value^Cuf̂(x
1y)f̂(y)uC& wheref̂ is the operator whose fluctuations a
supposed to become classical. In the case at hand wher
assume thatdr originates from the fluctuations of the spac
time geometry itself the natural choice forf̂ is f̂}R, i.e., a
to some extent arbitrary linear combination of curvatu
components. In fact, classically the Einstein equation~3.2!
already implies 8pGdr52dG0

0 whereGm
n is the Einstein

tensor.6 As a consequence, the two-point function off̂ is
proportional to thedR correlator~6.3!. Therefore the corre-
lation function ofdr behaves as

j~x!}
1

uxu4
~6.4!

provided the physical distancea(t)uxu is smaller thanl Pl .
The power spectrum of the modes with physical mome
uku/a(t)&mPl ~at fixed time t&tclass) is given by the
3-dimensional Fourier transform of Eq.~6.4!:

udku2}uku. ~6.5!

This is precisely the Harrison-Zeldovich scale invariant sp
trum with the spectral indexn51.

We can thus imagine that ‘‘sub-Hubble scale’’ mod
evolve according to the standard theory of cosmological p
turbations starting with a scale-invariant spectrum imme
ately after the quantum gravity epoch,t*tPl . A more com-
plete treatment would also include the contribution fro
‘‘super-Hubble scale’’ modes in a gauge-invariant fram
work, but this is beyond the scope of the present paper.

6See Ref.@34# for a similar discussion.
8-16
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VII. CONCLUSION

In this paper we studied homogeneous, isotropic cosm
gies in the Planck era before the classical Einstein equat
become valid. We performed a RG improvement of the c
mological evolution equations by taking into account t
running ofG andL as it follows from the flow equation o
the effective average action. For a spatially flat geometry
found solutions to the improved equations that are ma
ematically consistent even fort↘0, i.e., immediately after
the initial singularity of the the Universe. We believe th
calculations can be done reliably in this regime beca
gravity becomes asymptotically free at high moment
scales so that Newton’s constant is very small close to
big bang:G}t2. The situation is comparable to QCD whe
physics at small length scales is simple but becomes incr
ingly complex as one probes larger distance scales. Fort↘0
the cosmological evolution is described by an attractor-t
solution in (a,r,G,L) space which is a direct manifestatio
of the UV fixed point of the RG flow in (g,l) space.

For a radiation dominated Planck era the attractor is p
fectly scale free, the only dimensionful parameter being
cosmological timet. The RG improved solutions are ‘‘natu
ral’’ in the sense that no fine-tuning is required, and fo
broad class of equations of state (w<1/3) they are free from
particle horizons. Thus they offer an intriguing possibility f
overcoming the flatness and the horizon problem of stand
cosmology. We also found a natural mechanism for gene
ing a scale free spectrum of primordial density fluctuatio

It is important to keep in mind which assumptions we
into our derivation. They enter at different stages of the c
struction:

~i! We assume that fork→` the RG flow in (g,l) space
is governed by an UV attractive fixed point withg* .0 and
l* .0 so that gravity becomes asymptotically free in th
limit. This UV fixed point is known to exist within the
Einstein-Hilbert truncation of pure gravity. The assumpti
is that the coupled system of gravity plus matter beha
qualitatively in the same way.

~ii ! We assume that the system of RG improved cosm
logical evolution equations~3.24! with k}1/t is valid for all
times t after the big bang. This assumption means that
dominant quantum corrections are correctly incorporated
substitutingG0→G(t), L0→L(t) in Einstein’s equations
and that no further modifications need to be taken into
count explicitly ~higher curvature terms, etc.!. This assump-
tion is consistent with~i! where it is also assumed that th
Einstein-Hilbert action is sufficient to describe physics
k→` or t↘0.

~iii ! We assume that all matter fields can be integrated
completely before solving the gravitational equations. Thi
supposed to lead to an effective conserved energy mom
tum tensorTmn with a linear equation of state,p5wr.
~However, quantum effects in the matter sector can influe
g* and l* , and they may shiftw away from its classica
value.! This assumption means that, consistently with~i!,
there are no renormalization effects coming from the ma
sector that would be more important than those of pure qu
tum gravity.
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In conclusion it is clear that cosmologies of the kin
found in this paper are certainly extremely interesting a
promising candidates for an extrapolation of classical FR
cosmology toward earlier cosmological times and for a p
sible solution of its problems and limitations. Their mo
attractive feature is that the resolution of those problem
obtained at a very low price. Noad hocadditional geometric
structures, matter fields or cosmological eras have to be
voked. All that is needed is the quantization of the fields t
are present anyway.
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APPENDIX A: THE CUTOFF kÊ1Õa

In this appendix we analyze the system of different
equations~3.24! under the assumption that the relevant c
off momentum is given by the inverse scale function:

k~ t !5
j

a~ t !
. ~A1!

Since this cutoff functionally depends on the unknown fun
tion a(t), it is less straightforward to find solutions than fo
the 1/t cutoff. We begin by solving the conservation la
~3.24b! for the densityr. From Eq.~3.26! we have

r~ t !5
M

8pa~ t !313w
. ~A2!

Next we insert Eq.~A2! into Eqs. ~3.24a! and ~3.24c! and
reexpress the time derivatives in the latter equation acc
ing to Ġ5(dG/da)ȧ, L̇5(dL/da)ȧ. Clearly this trick is
possible only for cutoffs such as~A1! for which the time
dependence ofk is purely implicit. Thus we have to solve th
system~for ȧÞ0)

S ȧ

a
D 2

1
K

a25
L

3
1

MG

3a313w
, ~A3a!

dL

da
1

M
a313w

dG

da
50, ~A3b!

G~ t !5G~k5j/a!,

L~ t !5L~k5j/a!. ~A3c!

It is interesting that Eq.~A3b! can be rewritten directly in
terms of the RG beta functions:
8-17
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k
dL

dk
1MS k

j D 313w

k
dG

dk
50. ~A4!

Let us look at the fixed point regime and the perturbat
regime separately.

1. The fixed point regime

In the fixed point regime Eq.~A3c! assumes the form

G~ t !5g̃* a2, L~ t !5l̃* a22. ~A5!

Again we set

g̃* [g* j22, l̃* [l* j2 ~A6!

but the constantj differs from the one occurring in the 1/t
cutoff. If we now insert Eq.~A5! into Eq.~A3b! we find that
this equation is satisfied provided

w51
1

3
and l̃* 5Mg̃* . ~A7!

A consistent solution can be obtained only for thew51/3
equation of state, satisfied by classical radiation for instan
The second condition of Eq.~A7! will be used in order to
determinej:

j25Ag* M
l*

. ~A8!

The last equation to be checked is Eq.~A3a!. Substituting in
w51/3, and Eqs.~A5! and~A8! it reduces to the trivial dif-
ferential equationȧ5const which, for the initial condition
a(0)50, is solved bya}t. Taking everything together we
see that forw511/3 there exists the following consiste
solution for all three casesK50, 21, and11:

a~ t !5F2

3
Ag* l* M2KG1/2

t, ~A9a!

r~ t !5
M
8p F2

3
Ag* l* M2KG22

t24, ~A9b!

G~ t !5S g* l*
M D 1/2F2

3
Ag* l* M2KG t2, ~A9c!

L~ t !5Ag* l* MF2

3
Ag* l* M2KG21

t22. ~A9d!

We observe that Eqs.~A9! coincide precisely with Eq.~4.27!
for K50 and with Eq.~4.30! derived forK561. Contrary
to the situation with the 1/t cutoff, no solution exists forw
Þ1/3, not even ifK50.

2. The perturbative regime

In the perturbative regime we have

G~ t !5G02ṽG0
2a221•••, ~A10!
04350
e

e.

L~ t !5L01 ñG0a241•••

with ṽ[vj2 and ñ[nj4. By using Eq.~A10! in Eq. ~A3b!
the following conditions arise:

w52
1

3
and 2ñ5ṽMG0 . ~A11!

Consistency can be achieved only for rather exotic ma
with w521/3 but not for the physically relevant cases wi
w511/3 or w50, for instance. If we insert Eqs.~A10! and
~A11! into Eq. ~A3a! we obtain the differential equation tha
determinesa(t):

ȧ21K5
1

3
L0a21

1

3
MG02

1

6
ṽMG0

2a221•••.

~A12!

To lowest order in 1/a, the solution to this equation is pre
cisely the classical FRW solution forw521/3.

To summarize: In the fixed point regime and forw5
11/3 the 1/a cutoff leads to precisely the same cosmology
the 1/t cutoff. For wÞ11/3 there are no solutions in th
fixed point regime. In the perturbative regime solutions ex
only for the exotic equation of state withw521/3. Because
the fixed point regime and the perturbative regime desc
the limiting cases oft↘0 andt→`, respectively, we mus
conclude that, at least with the~perhaps too poor! approxi-
mations we used, there exists no solution with constantw,
valid from t50 up to the beginning of the classical er
which would connect to a standard radiation dominated FR
cosmology.

APPENDIX B: RG IMPROVEMENT OF THE CLASSICAL
FRW SOLUTIONS

In the main body of the paper we made the improvem
G0→G(t), L0→L(t) in the equationswhich determine the
time evolution ofa(t) and the other quantities of cosmolog
cal interest. In this appendix we discuss an alternative st
egy: the improvement of thesolutionsto the classical equa
tions. In this second approach one first solves the differen
equations containingG0 and L0, and then one makes th
replacementsG0→G(t), L0→L(t) in their solutions. If
k(t) has an implicit time dependence,G(t) and L(t) will
depend on the classical solutionaclass(t) through k

5k„t,aclass(t),ȧclass(t), . . . …. It seems clear, and we sha
demonstrate this in detail, that the method of improvi
equations is superior to the improvement of solutions. In
latter case only small quantum corrections that do not cha
the behavior of the solution too strongly can be dealt w
reliably, while with the first method solutions that are qua
tatively different from the classical ones can also be inve
gated.

The starting point is the classical Friedmann equation

S ȧ

a
D 2

1
K

a2 5
L0

3
1

MG0

3a313w
~B1!
8-18
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from which r has been eliminated via the conservation l
~3.26!,

r5
M

8pa313w
. ~B2!

We restrict our analysis to the caseK50 for which the so-
lutions to Eq.~B1! can be expressed in terms of elementa
functions. Omitting the subscript ‘‘class,’’ they read@as al-
ways, for the initial conditiona(0)50#:

~i! For K50, L050:

a~ t !5F3

4
~11w!2MG0G1/(313w)

t2/(313w). ~B3!

Hence, for anyw,

r~ t !5
1

6p~11w!2G0t2 . ~B4!

~ii ! For K50, L0.0:

a~ t !5FMG0

2L0
$cosh@~11w!A3L0t#21%G1/(313w)

.

~B5!

We shall need the Taylor expansion of this scale factor
early timest!1/AL0:

a~ t !5F3

4
~11w!2MG0t2G1/(313w)

3H 11
11w

12
L0t21O~L0

2t4!J . ~B6!

~iii ! For K50, L0,0:

a~ t !5FMG0

2uL0u $12cos@~11w!A3uL0ut#%G1/(313w)

.

~B7!

Next we shall discuss the improvement of these soluti
in the perturbative and in the fixed point regimes, resp
tively. We use the identificationk5j/t throughout.

1. The perturbative regime

In this regime,t may be close to the Planck time so th
quantum effects are important, but it is assumed that
lowest order terms in thetPl /t expansion are sufficient to
describe them:t*tPl . Furthermore we assume that, as in t
real Universe,L0 is small:L0!mPl

2 . The epoch we are in
terested in is characterized by7

7For definiteness we assume thatL0.0.
04350
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tPl&t!1/AL0. ~B8!

This interval contains the late part of the Planck era wh
quantum gravity still plays a role, as well as the classical
before the effect of the cosmological constant becom
dominant. During this epoch the productL0t2 is small so
that it is legitimate to base the improvement on the expan
form of the classical solution, Eq.~B6!. Thus the RG im-
proved scale factor reads

aimp~ t !5F3

4
~11w!2Mt2G1/(313w)

@G~ t !#1/(313w)

3H 11
11w

12
L~ t !t21•••J . ~B9!

Using the 1/t cutoff, G(t) andL(t) are given by Eqs.~3.9!
and ~3.10!, respectively. Hence we find the result

aimp~ t !5F3

4
~11w!2MG0t2G1/(313w)H 11

11w

12
L0t2

1S ~11w!ñ

12
2

ṽ

3~11w!
D S tPl

t D 2

1•••J . ~B10!

The leading quantum correction is a modification ofa(t) by
a term of order (tPl /t)

2. Within the present approach, it
prefactor is completely undetermined, however. It involv
the parameterj which cannot be fixed by renormalizatio
group arguments alone. The method of improving equati
is much more powerful in this respect; it allows us to expre
j in terms ofv and n. In a kind of hybrid calculation we
could use this result in order to rewrite Eq.~B10!. This
would change the terms inside the curly brackets of E
~B10! to

12
5v2

27n~11w!3 S tPl

t D 2

1•••. ~B11!

@We also took the other one of the consistency conditio
~4.6!, L050, into account.#

It is important to note that a correction term of the ty
~B11! could not have been found as a solution to the i
proved equation unless one included inG(t) and L(t)
higher orders of thetPl /t expansion. The reason is the r
markable fact, discussed in Sec. IV, that the classicala(t)
arises as a consequence of the lowest order nontrivial t
dependence inG(t) andL(t).

2. The fixed point regime

Let us look at the improvement fort!tPl . In this regime
the renormalization effects are strong and strictly speakin
is not clear if the results are reliable. We start from the cl
8-19
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sical K50, L0.0 solution~B5! and substituteG0→G(t),
L0→L(t) according to Eq.~3.12! and Eq.~3.13!, respec-
tively. This substitution turns the cosh(t) time dependence
into a purely algebraic one:

aimp~ t !5F g̃* M
2l̃*

$cosh@~11w!A3l̃* #21%G 1/(313w)

3t4/(313w). ~B12!
10

a-
,’

r-

t.

-

.
l.

ic

99

04350
It is reassuring that apart from the details of the prefac
Eq. ~B12! coincides with our previous result obtained b
improving equations, Eq.~4.20a!.

To summarize: Improving the classical FRW solutio
shows that fort↘0 the onset of the Planck era is charact
ized by a (tPl /t)

2 correction to the scale factor. In the fixe
point regime, this approach provides an independent co
mation of the picture we obtained by RG improving th
equations.
.
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