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Cosmology of the Planck era from a renormalization group for quantum gravity
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Homogeneous and isotropic cosmologies of the Planck era before the classical Einstein equations become
valid are studied taking quantum gravitational effects into account. The cosmological evolution equations are
renormalization group improved by including the scale dependence of Newton’s constant and of the cosmo-
logical constant as it is given by the flow equation of the effective average action for gravity. It is argued that
the Planck regime can be treated reliably in this framework because gravity is found to become asymptotically
free at short distances. The epoch immediately after the initial singularity of the Universe is described by an
attractor solution of the improved equations which is a direct manifestation of an ultraviolet attractive renor-
malization group fixed point. It is shown that quantum gravity effects in the very early Universe might provide
a resolution to the horizon and flatness problems of standard cosmology, and could generate a scale-free
spectrum of primordial density fluctuations.
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[. INTRODUCTION dard model can describe the later evolution of such a highly
isotropic universe, but clearly it would be very desirable to

Two of the most frequently discussed limitations of theidentify some causal mechanism that explains why one must
cosmological standard model are the flathess and the horizastart the classical evolution with these very special initial
problem, respectively. These so-called “problems” actuallyconditions. This is usually called the horizon problem be-
do not endanger the internal consistency of the standardause those Robertson-Walker spacetimes that solve the
model in the domain where it is applicable but rather expres§riedmann equations have a particle horizon. Because of this
the fact that in order to describe the Universe as we observiorizon, there are points on the last scattering surface whose
it today the standard Friedmann-Robertson-Walker evolutiomvackward light cones never intersect and which are therefore
has to start from a set of highly nongeneric initial conditions.causally disconnected.

Typically these conditions are imposed at some time after the However, strictly speaking this is a “problem” only if one
Planck era where the classical Friedmann equations are sugpplies the standard model in a domain where it is actually
posed to become valid. The matter dengitpf the present believed not to be valid any more. Whether or not a
Universe is very close to the critical densjiy;;. According  Robertson-Walker spacetime has a particle horizon depends
to the evolution equations of the standard model this impliesnly on the behavior of its scale factaft) in the limit t

that the initial value forp must have been fine-tuned to the —0. In the ordinary radiation dominated Universe we have
critical density with the enormous precision of about 60 deci-axt> which does lead to a horizon. However, we expect
mal places if the initial conditions are imposed at the Planckhat for the cosmological time very close to the big bang
time. This phenomenon is referred to as the flatness probleift=0) this behavior ofa(t) will get modified by some sort
because a generic initial value for the density would neveobf “new physics.” If, say,axt® with a=1 during the very
have led to the large and almost flat Universe we observearly evolution of the Universe then there is no particle ho-
today. More generally, if one allows for a cosmological con-rizon. It might be that a causal mechanism which is operative
stantA, it is the total density,,=p+ p, with the vacuum  during this early epoch, before the standard model becomes
energy density, =A/87G that should be equal tpg; . valid can explain the observed isotropy of the Universe.

A similar naturalness problem is posed by the high degree It is well known that the above naturalness problems can
of isotropy of the cosmic microwave background radiation.be addressed and, in a sense, solved within the framework of
From the observations we know that even those points on thiaflationary cosmology1], for instance. In the present paper
last scattering hypersurface which, according to the metric ofve are going to propose a different physical mechanism
the cosmological standard model, have never been in causahich also could lead to a solution of the horizon and the
contact emit radiation at a temperature that is constant with #atness problem. Using renormalization group techniques we
precision of about 10%. Again, when equipped with suffi- determine the leading quantum gravity corrections that
ciently symmetric initial conditions the cosmological stan-modify the standard Friedmann-Robertson-WalkERW)

cosmology during the first few Planck times after the big

bang. Within a certain approximation, which we shall de-
*Email address: abo@ct.astro.it scribe in detail below, we find that immediately after the big
TEmail address: reuter@thep.physik.uni-mainz.de bang there is a period during which the scale factor increases
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linearly with time,a~t. This means that the spacetime hasspace of all action functionals onto some finite dimensional
no particle horizon. We shall set up a system of quantunsubspace which is particularly relevant. In this manner the
corrected cosmological evolution equations &ft), p(t), functional RG equation becomes a system of ordinary differ-
p(t), and for the now time dependent Newton constant anential equations for a finite set of generalized coupling con-
cosmological constant. We shall argue that, because of a spgtants which serve as coordinates on this subspace. In Ref.
cific form of asymptotic freedom enjoyed by quantum grav-[2] the flow was projected on the 2-dimensional space
ity, those equations are reliable even for times infinitesimallyspanned by the operatofs/gR and [ /g (“Einstein-Hilbert
close to the big bang where the gravitational coupling contruncation”). The corresponding generalized couplings are
stant goes to zero. During the epoch directly after the bighe scale dependefitrunning”) Newton constanG(k) and
bang the quantum corrected equations are uniquely solved hjte cosmological constart(k). In the original papef2] the

an essentially universal attractor-type solution. For a spadifferential equations governing tHedependence o6 (k)
tially flat geometry the attractor satisfigs=p,=pw/2 and  and A (k) were derived, and i3,4] their solutions were
Prot=pPerit- FOrt much larger than the Planck time, the quan-giscussed further. In particular one finds that if one increases
tum corrected solutions approach those of classical FRW from small valueglarge distancesto higher valuegsmall
cosmology. Since the quantum solutions are valid fortall yistancesthe value ofG(k) decreases, i.e. gravity is asymp-
>0, they automatically prepare the initial conditigne tofically free, as in non-Abelian gauge theories. Ko o

= pqit for the classical regime if one decides for a spatlallythe dimensionless Newton constami(k)=k2G(k) ap-

flat Universe. Hence no fine-tuning is necessary. roaches a non-Gaussian UV attractive fixed pglfit. This
In this paper we employ the exact renormalization groupD

approach to quantum gravity which was developed in RefM€ans thaG(k) vanishes proportionally to &7 for k—oe,

[2]. Its basic ingredient is the effective average action'N® Non-Gaussian fixed point of 4-dimensional quantum
I'[g,,], a Wilsonian coarse grained free energy which deg_rawty is similar to the Weinberg fixed point irH2e dimen-
pends on a momentum scake Loosely speakingl, de-  SIOns[5]. _

scribes the dynamics of metrics that have been averaged over !N the following we shall use the known results about the
spacetime volumes of linear dimensikn; i.e., kis a mea- running of G(k) and A(k) in order to “renormalization
sure for the resolution of the “microscope” with which a 9roup improve” the Einstein equations that govern the evo-
system is observed. The functiodag,,,] defines an effec- lution of the Unlvgrse. They contam Newton’s co-nstéht
tive field theory appropriate for the scateThis means that, and the cosmological constaAt The improvement is done
when evaluated ateelevel,T', correctly describes all gravi- PY substitutingG—G(k), A—A(k), and by expressingin
tational phenomenancluding all loop effectsif the typical ~ t€rms of the geometrically relevant IR cutoff. Considering
momenta involved are all of the order kf The actionl', is ~ ONly homogeneous and isotropic cosmologies we shall argue
constructed in a similar way to the ordinary effective actionthat the correct identification of the cutoffks: 14 wheret is

T, to which it reduces in the limk— 0. It has the additional the cosmological time. _ _
feature of a built-in infraredIR) cutoff at the momenturk. Similar RG improvements are standard tools in particle
Quantum fluctuations with momenia>k? are integrated physics. A first gravitational RG improvement based upon

out in the usual way, while the contributions coming from the effective average action was described in RE£6,4]
large-distance metric fluctuations wigpP<k? are not in- where quantum effects in black hole spacetimes were stud-

cluded inT', . When regarded as a functionkfl’, describes  1€9: o o o
a renormalization grougRG) trajectory in the space of all  1he applicability of the Wilsonian RG equations is not

action functionals. This trajectory can be determined by solv/estricted to renormalizable models. Already, before it was

ing an exact functional renormalization group equation ofNroduced, gravitational RG flows were studied using the
“flow equation.” The trajectory interpolates between the familiar RG equations of perturbative renormalization theory
classical actiorS=T,_.., and the ordinary effective action Wh.ICh refers to the -relevaznt anpl marginal .coupllngs only.
I'=T_.o. More precisely, in order to quantize a renormaliz- This framework applies t&" gravity [6,7], for instance, bZUt
able fundamental theory with actidone integrates the RG Ot t0 ordinary general relativity. The running Gik) in R*
equation from an initial poinf'z=S down to[,=I. After ~ 9ravity was used iri8,9] to explore possible cosmological
appropriate renormalizations one then lts®. The RG manifestations of quantum gravity at the kiloparsec s@ale

t Iso b din order to furth tation curves of galaxies, density perturbations,)et8ince
equation can also be used in order to further evobaarse- we are interested in much smaller length scales we shall have
grain effective field theory actions from one scale to an-

~ nothing to say about such effects.
other. In this case no UV limik—« needs to be taken. The In the present paper we shall set up a system of differen-
evolution of the effective average action frakg down to  tjg| equations which consists of the RG equations@oand
ka<kj is always well defined even {&s in the case at hand A the improved Einstein equations, an additional consis-
the model defined by’y is not perturbatively renormaliz- tency condition dictated by the Bianchi identities, and the
able. equation of state of the matter sector. This system determines
Approximate yet nonperturbative solutions to the RGthe evolution ofG, A, a, p andp as a function of the cos-
equation that do not require an expansion in a small couplingnological timet. We shall see that far\,0 all solutions to
constant can be obtained by the method of “truncation.” Thethis system have a simple power law structure. This attractor-
idea is to project the RG flow from the infinite dimensional type solution fixesp= perit Without any fine-tuning. If the

043508-2



COSMOLOGY OF THE PLANCK ERAFROMA . .. PHYSICAL REVIEW [®5 043508

matter system is assumed to obey the equation of state of _ 1 (D =
ordinary radiation, the scale factor expands linealy)=t,  KaI'l9,91=5Tr{ix “(I'"[9,9]
so that the RG-improved spacetime has no particle horizon.

For t much larger than the Planck time the solutions of the +RINMg]) kR I g} - Tr{(— M[g,0]
RG-improved system approach those of standard FRW cos- o o
mology. +RPTg]) ko R ITal} (2.)

The remaining sections of this paper are organized as fol-
lows. In Sec. Il we review the essential properties of thewhereI'(*) stands for the Hessian &, with respect tog,,,
effective average action for gravity and the solutions of itsand M is the Faddeev-Popov ghost operator. The operators
RG equation which we need in the present context. In Secg 2 andR‘gh implement the IR cutoff in the graviton and
Il we describe the derivation of the RG improved Einsteinthe ghost sector. They are defined in terms of a to some
equations and in Sec. IV we obtain solutions to it that areextent arbitrary smooth functioR,(p?)«k?R(®(p?/k?) by
valid for t—0 andt— o, respectively. In Sec. V we investi- replacing the squared momentym with the graviton and
gate the physical properties of solutions that are valid duringhe ghost kinetic operators, respectively. Inside loops, they
the entire Planck era. In Sec. VI we discuss the generation gfuppress the contribution of infrared modes with covariant
primordial density perturbations and Sec. VIl contains themomentap<k. The functionR(®)(z), z=p?/k?, has to sat-
conclusions. isfy the conditionsR(®(0)=1 and R©®(z)—0 for z—.

In the main body of this paper we use a specific identifi-For explicit computations the exponential cutoff
cation of the cutoffk in terms of the cosmological timek (
«1/t). In Appendix A we compare the results to those ob- RO(z)=7expz)—-1]* (2.2
tained with a different cutoffke1/a(t)]. In the main part of
the paper we improve the basiquationsfor the cosmologi- is particularly convenient.
cal evolution. In Appendix B we describe the alternative In order to find approximate but nonperturbative solutions

strategy of improving theolutionsto the classical equations. to the flow equation the Einstein-Hilbert truncation was
adopted in2]. This means that the RG flow in the space of

all actions is projected onto the two-dimensional subspace
Il. THE EFFECTIVE AVERAGE ACTION FOR GRAVITY spanned byf g and J VgR. This truncation of the “theory
space” amounts to considering only actions of the form

In this section we review some properties of the effective

average actiod’,[g,,] and collect various results that we Fk[g,g]=[16wG(k)]’1J’ d9%g{—R(g)+2A(K)}
shall need in the present investigation. The average action for

gravity was constructed if2] using an approach which in +classical gauge fixing 2.3
earlier work[11-14 had already been tested for Yang-Mills
theory.

_— i . whereG(k) and A (k) denote the running Newton constant
_ The definition ofl'[g,,,] is based upon a modified gauge 54 cosmological constant, respectively. More genéad,
fixed path integral ofi-dimensional Euclidean gravity in the harefore. more preciseruncations would include higher

background gauge. The crucial new ingredient is an IR cutofhowers of the curvature tensor as well as nonlocal terms
which suppresses the contributions from long-wavelengtii15), for instance. By inserting Eq2.3) into Eq. (2.1) and
metric fluctuations with momenta smaller thilarin a second performing the projection we obtain a coupled system of
step, the functional’, defined by the modified path integral equations foiG(k) andA (k). It is most conveniently written

is shown to satisfy an exact functional differential equation,down in terms of the dimensionless Newton constant

the flow equation, from whicl',, for all values ofk, can be

computed if it is known at some initial poirit In order to 9(k)=k%"2G(k) (2.9
obtain an actiod",[ g] that is invariant under general coor-

dinate transformations the standard background gauge foend the dimensionless cosmological constant

mulation has been employed. This leads to the complication

that we actually have to RG-evolve an actib g,g] that M(K)=A(K)/K. (2.9
depends on both the “ordinary” metrig,,, and on the back-

ground metricg,,,. The standard action with one argument One finds
is recovered by sgttingzg, i.e.I'[g]=T'\g,9]. The flow

equation forl'\[g,g] reads kag=[d—2+7y]g (2.6

and

This is already a simplified form of the flow equation appropriate
for truncations that neglect the running of the ghost term. For its .
most general form, sge]. 2In [2] the notationG,=G(k) and\,=A (k) was used.
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1 tions, or choosed ;=0. ForA,>0 and with the back reac-

KA =—(2= )N+ 59(477)1_d/2[2d(d+ Py, tion due to the argument @b3(—2A/k?) included, the RG
trajectory runs into a singularity and cannot be continued

X(—2N\)— 8dCI>§,2(0) —d(d+1) below a certain critical value &€ This is probably due to the
_ fact that the Einstein-Hilbert truncation is too simple to de-
X gD ga(—20)]. (2.7 scribe the IR behavior of quantum gravity with a positive

cosmological constant. Since in this paper we are mostly
interested in UV physics we avoid this problem by restricting
9B, (V) ourselves to the casky=0.
n(GN) = (2.9 The precise values @ andv depend on the choice of the
1-gBx(\) cutoff function R©®. For every admissibl&R(®) both con-
stants are positive, however. In Eq2.11) and (2.12 we
wrote Go=G(k=0) andAy=A(k=0) for the infrared val-
ues ofG and A. At least within the Einstein-Hilbert trunca-

Here

is the anomalous dimension of the operat@R, and the
functionsB4(\) andB,(\) are given by

1 tion, G(k) does not run any more between scales where
Bi(N)= §(47r)1’d’2[d(d+1)CI>5,2_1(—2)\) Newton’s constant has been determined experimentally
(laboratory scale, scale of the solar system,)etnd the
—6d(d—1)®2,(—2\)—4dd2,_,(0) cosmological scale where~0. Therefore we may identify
G, with the experimentally observed value of Newton’s con-
—24D5,,(0)], (2.9  stant. We us&, in order to define théconventional Planck
L massmp, Planck lengtHp,, and Planck timep,:
Bz()\)E—6(477)17d/2[d(d+1)(1’5/2—1(_2)\) Mp=Ggy 2, lp=tp=G3?. (2.15
—6d(d—1)D3,(—2\)] The solutiong2.11) and(2.12) are expansions in the dimen-
sionless ratio K/mp)2. Obviously the renormalization ef-
with the threshold functionsp=1,2, .. .) fects become strong only fifis about as large asp,. We see
© 0 that G(k) decrea_lses when we incredsavhich is a first hint
d)p(w)=ifwdz f,lR (2)-zR? (2) at the asymptotic freedom of pure quantum graV@y
n I'(n)Jo [2+RO(2)+w]P In the following we shall say thék is in the perturbative

(2.10 regimeif the approximationg2.11) and(2.12 are valid, i.e.
if k=mp,, so that the first order in thek(mp) expansion is

RO)(z) sufficient to describe the running & and A.
Next let us look at the opposite limiting case whkn
>mp,. It turns out[3,4,16,17 that fork— the physically

These equations are valid for an arbitrary spacetime dimer{-elevant RG trajectorle\zls '8\90‘) space run mtq a Uv
A4 ). For the exponential cutoff

- . . U
siond. In the following we shall focus on the cade-4. attractive fixed pomt 4~ ’
Clearly it is not possible to find solutions to the system(2-2 the numerical analysi§3,16,17 of Egs. (2.6), (2.7)

(2.6), (2.7) in closed form; for a numerical determination of Yields the valueg;’~0.27 and\,"'~0.36. (If one neglects
the phase diagram we refer [a6]. However, for our pur- the running of\ there is still a fixed point forg at g3
poses it will be sufficient to know the behavior of the solu-~0.71) The existence of this fixed point implies that fior
tions in the limiting casek— 0 andk— . For small values >Mp the dimensionful quantities run according to

of the cutoff the solutions are power seriesknFor the

~ 1 (=
p - -1
PalW) I"(n)fo dz2 [z+RO(z)+w]P’

dimensionful quantities one obtai o
| ) 6=, (2.16
G(k)=Gg[1— 0wGk?+O(G2k™], (2.1
A(K)=Ag+ vGok [ 1+0(Gok?)] (2.12 A(K) =AYk, (2.17)
with the constants We shall say thak is in thefixed point regimef k>mp, so

that the asymptotic solution®.16), (2.17) apply.

1 5 1 For intermediate values df the RG equations can be
0= 57 124P5(0) = P1(0)], (213 Solved numerically only. However, if one geglects the influ-
ence ofA on the running ofG [and omits a tiny correction
1 coming fromB,(0)] one obtains the following simple for-
v=7-23(0). (2.14 mula which is valid for allk [4]:
As it stands, Eq(2.12 for A (k) is correct only if one either G(k) = Go 218
neglects the back reaction of the runningvia the® func- 1+ w Goki' ’
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Fork small we recover Eq2.11), and fork?>G, * the fixed ~ point one finds that two of the eigenvaluésitical expo-
point behavior sets inG (k) ~1/wk?, so thatG(k) becomes nentg of the stability matrix are essentially the same as in
independent of its IR valu&,. the pure Einste_in—HiIt_)ert truncation; _the plane _spanneq by
We observe that fok— Newton’s constant, and hence the corresponding eigenvectors coincides quite precisely
the strength of the gravitational interaction, decreases very/ith theg-A plane. The fixed point is UV attractive in all 3
rapidly so that gravity is “asymptotically free.” In fac(G directions of parameter space. The new, third eigenvalue is
runs much faster than the gauge coupling constant in YangeUch that when a RG trajectory approaches the fixed point

: : s rom below (k—o) it is pushed onto they-A plane long
g/lslllsmtf:gg(rzy,nm?]licr:]h c:)?ptﬁgdfs Ofngzoféyvbﬁagghnﬂgﬁj%fg before the fixed point is reached. Hence the vicinity of the

ymp 9. St . J Y fixed point is well described by the Einstein-Hilbert trunca-
Polyakov[19]. A similar powerlike running ofs was already

; . ; X tion alone.
known to occur |B\/(2+S\)/-d|men5|onal gravity5,2]. In fact, Conversely, wherk is lowered, it is not befor& ap-
1A*

the fixed point g,*,\,;") is the 4-dimensional counterpart roaches the Planck scail®m abovethat higher operators

of Weinberg's fixed point in 2 e dimensiong3]. If the ex-  sych asR? are generatedBy approaching the Planck scale

istence of the fixed point can be confirmed by more generafrom belowperturbation theory also suggests that higher op-

truncations this means that Einstein gravity in 4 dimensiongrators are importantear the Planck scale, but it fails to

is “asymptotically safe” and as well behaved and predictivediscover that they are unimportant again far beyonxlit.

as a perturbatively renormalizable the¢8y. appears that both QCD and gravity can be described by
Newton’s constant being an asymptotically free couplingsimple local actions fok—o. Only for sufficiently small

means that the gravitational interaction is “switched off” values ofk, when one leaves the asymptotic scaling region,

when we go to very large momenta or small distances. Thisloes the description become very involved because many

“tames” the notorious UV divergences one finds in pertur-new operators are generated by the RG flow. In QCD and

bation theory[19]. In principle the running ofG could be  gravity the scales that mark the lower boundary of the scal-

tested in scattering processes with a large momentum tran#g region areA ocp andmg, respectively.

fer, in complete analogy with deep inelastic scattering in The fixed point is a typical effect of quantuiield theory,

QCD, for instance. Very much like QCD deep inside a pro-i-€- it anses_due to the presenceimdinitely mapydegrees of

ton, say, gravity is very weakly coupled at sub-Planckianffeedom. Itis clear, therefore, that all approximations such as

length scales. We describe this situation in a formalisrrfn€ familiar minisuperspace models which retain only finitely

where spacetime is still a smooth manifold at short distanced"any degrees of freedom cannot see the asymptotic freedom

: h : ; : : dnd lead to a different picture.
still equipped with a tensor field,,,,, but since the coupling . : .
constant vanishes the graviton no longer mediates any matt%lUp to now we have discussed pure gravity without matter

or self-interaction(As for the absence of local gauge inter- ds. But of course any matter field leads to an additional
- O ) - - gaug . renormalization ofG and A [20,21]. In [20] the average
actions, this “phase” of gravity is reminiscent of a topologi-

. X . ._action approach was generalized and an arbitrary number of
cal field theory, although free propagating gravitons do exiSgree scalars, spinors, vector fields, and Rarita-Schwinger
in the present ca;)e. ) fields was addedSee alsd22,23.) In particular in[22] the
Recently considerable new evidence has been found th@hnnection with the approach based on the scaling of the
suggests that the UV fixed point is not an artifact of themetic introduced by24] was discussed and it was shown
Einstein-Hilbert truncation but should actually exist in the 4t a5 far as perturbation theory is concerned, the RG evo-
exact theory. I 17] and[18] a comprehensive analysis of |ytion of the UV relevant couplings of a scalar field is essen-
the quality of the Einstein-Hilbert truncation was performed.tia"y the same in the two approaches. Depending on the
In [17] the schemécutoff) dependence of its predictions was patyre and number of the matter fields, either gravity contin-
investigated in detail by using two types of cutoff actibgS  es to be antiscreening and asymptotically free, or the quan-
of a rather different structure along with different families of 1,y effects of the matter fields overwhelm those of the met-
shape functiorR(®). In an exact treatment universal quanti- ric and destroy asymptotic freedorfthe same happens in
ties such as critical exponents or, in our case, the produghcp with too many quark flavorsin this paper we assume
9.\, are scheme independent by definition. Approximationshat the matter system is such that the resulting RG flow for
spoil this scheme independence though. As a consequencg, and A is qualitatively the same as in pure gravity. In
by looking at the response of universal quantities to a variaparticular, we assume that there is a non-Gaussian fixed point
tion of the cutoff function we can judge the quality of the yich is UV attractive forg and\, but we allow the numeri-
approximation. The Einstein-Hilbert truncation successfullyca| values 0fguv and\Y to differ from their pure gravity
passed these highly nontrivial tests, partly even at a rathgf,jes. In fact. none of our conclusions will depend on the

surprising level of accurachd7]. valuesg?V, \YY' | w, andv provided all those parameters are
Furthermore, in[18] the truncation was generalized by i > M0 @) VP P

including anR? term. Quite remarkably, it turned out that, strllctlyhpofs |ﬂve.. hall wri dn. f W and
within the residual scheme dependence, the results of theUVn the fo owing we sha writeg, and, for g~ an
Einstein-Hilbert truncation are not changed at all. The fixed“ s - respectively.
point value of theR? coefficient was found to be about two
orders of magnitude smaller than and\, , and one is led
to speculate that it might turn out to be zero in an exact We consider homogeneous, isotropic cosmologies de-

treatment. By linearizing the RG flow near the UV fixed scribed by Robertson-Walker metrics of the form

lll. THE RG IMPROVED EINSTEIN EQUATIONS
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) ) dr? o o ) metric and the curve can be reexpressed in a generic coordi-
ds’=—dt*+a(t) k2’ (dg*+sinfode?) |. nate systenx*, so that the cutoff is actually a scalar function

Another momentum scale which appears natural at first

For K=0 the 3-spaces of constant cosmological tirre ~ Sight is

flat, and forK=+1 and —1 they are spheres and pseudo-

spheres, respectively. In standard FRW cosmology the dy- k(t)= ——,
namics of the scale fact@(t) is determined by Einstein’s a(t)
equations

(3.6

but in particular for the most important casekof 0 it is not
1 obvious why the RG flow should be stopped at this point. In
Ry~ EgWR: —~Ag,,+87GT,, (3.2 fact, it will turn out that for the perturbative regime the im-
proved system of equations has no consistent solution if one
uses Eq(3.6). On the other hand, for the fixed point regime
WhereG andA are constant parameters. In order to take_ theyf a radiation-dominated Universe Eq8.4) and (3.6) lead
leading quantum corrections into account we now “im- 5 exactly the same answers so that our predictions are par-
prove” Eq. (3.2) by replacingG andA with the scale depen- ticylarly robust in this case. A third scale one might invoke is

dent quantitiess(k) and A (k). the Hubble parameter
In general it is a difficult task to identify the actual physi-

cal cutoff mechanism which, in a concrete situation, stops a(t)
the running in the infrared. Typically this involves expressing H(t)= an)” 3.7
kin terms of all scales that are relevant to the problem under

consideration, such as the momenta of particles, fielgyowever, in the present context only power laavst® are of
strengths, or the curvature of the spacetime, for instance. Iphterest. For theni is proportional to 1/and does not define
the case at hand the situation simplifies because the condiyy independent scale.

tions of homogeneity and isotropy imply thatcan be a While we believe that the leading effects are correctly
function of the cosmological time onlk=k(t). Provided  gescribed by the L/cutoff, the more subtle subleading ef-
we know howk depends om we can turn the solutions of the  facts most probably require more complicated cutoffs which,
RG equationG(k) and A(k), into functions of time: apart from arexplicittime dependence, also haveiaplicit

time dependence via(t) and its derivatives:
G(t)=G(kk=k(t)), A(t)=AKk=k(1)). (3.3

, , , k=k(t,a(t),a(t),a(t), ...). (3.9
There are two plausible scales that could determine the iden-
tification of k in terms oft. The first one iskoc14. In fact, the  In this paper we discard those subleading effects. From now
temporal proper distance of some pofft,r,0,¢) to the on we assume thatx1/t is indeed the correct first order
big bang(which will still be present in the improved space- approximation and we shall use E§.4) in the main body of
time) is directly given byt itself. If we want to construct an the paper. For comparison we also investigate the conse-
effective field theoryl’, that is valid near® we may not quences of the &/ cutoff (3.6) in Appendix A.
integrate out quantum fluctuations with momenta smaller Upon inserting Eq(3.4) into Egs.(2.11) and (2.12 we
than 1f because, by the time the age of the Universg is obtain for the time dependent Newton constant and cosmo-
fluctuations with frequencies smaller thart tannot have logical constant in the perturbative regime
played any role yet. By this argument we are indeed led to

the identification ~(tp)| th
G(t)=Go| 1-w| | +O all (3.9
k(t)= £ (3.9
t o) 2
_ ~ o 'PI PI
At)=Ag+ vmp|<—) 1+0| 5 1 (3.10
where¢ is a positive constantNote thatt anda have mass t
dimension—1, whiler, 8, ¢,K and ¢ are dimensionlessAs ) .
it stands, Eq(3.4) refers to thet,r, 6,¢ coordinate system, With the positive constants
but it has an invariant meaning. At any poltwe set =0 v=vi (3.1
k(P)= g (3.5 In the fixed point regime we get from EgR.16), (2.17
d(P) '
G(t)=g,t? (3.12

where d(P)= ) \ds® is the proper length of the curve

C(P) as given by the metrig3.1). With respect to the A()=n,t72 (3.13
t,r,0,¢ system,C(P) is defined byh—(\,r,0,¢) with A

e[0t] where ¢,r,0,¢) are the coordinates d?. Both the  with
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2 N, =\, & (3.14 The next issue is the energy momentum terBgy to be
used on the RHS of the improved Einstein equations. Be-
cause of the imposed homogeneity and isotropy it can always
In order to find the function&(t) and A (t) that interpolate  pe transformed to the form
between the behaviors.9), (3.10 and (3.12, (3.13 one
must solve the RG equation numerically. . v =diag — p,p,p,p) (3.15

At this point several comments might be in order. The first

one concems the logical status of the improved Einsteif e e the density and the pressung depend ort only. As
equation(3.2). We emphasize that, conceptually, it is a COM-in standard cosmology we assume that the energy-

pletely quantum mechanical equation which happens to loo omentum tensor is covariantly conserded
like its classical counterpart only because of the specific ap- '

proximations madéEinstein-Hilbert truncation Quite gen-
erally, if I'[ ¢] is the effective action for an arbitrary set of
fields ¢, the equation of motion for the expectation value
o=(¢) is given bysT'/8o=0. This is a quantum mechani-
cally exact equation, the analogue of the classigalde .
_=0 with all modifications due to the guantum_fluctuations b+3E(P+D)=0- (3.17
included. The exact quantum mechanical amplitudes are ob- a
tained by evaluating’ at tree level. The same remarks apply
to ' with the only difference thasT",/5¢=0 does not yet The physical picture behind ,, is not necessarily that of a
contain the effects of fluctuations with momenta smaller tharperfect classical fluid as in the familiar FRW case. We rather
k. Now, if there is a physical cutoff mechanism that stops thenterpret it as the functional derivative of soraffectiveac-
RG running at some value &fso thatl" at this value ofk tion FM[gW] for the matter system in the background of the
already coincides with the ordinary effective actidh  metricg,,. For the equation of state relatipgo p we shall
=I'\_,, the functionall', with k identified appropriately use the linear ansatz
takes all quantum effects into accodid].
Up to now we have assumed that we know the eXgct p(t)=w p(t) (3.18
We argued already that fde— < the only important invari-
ants in I', are [Jg and fVgR, albeit with strongly wherew is an arbitrary constant. It includes the case of a
k-dependent coefficients. Thus, in the domain where th@erfect fluid consisting of classical dust€0) or radiation
Einstein-Hilbert truncation of theory space is reliable, the(w=1/3), but we emphasize that" is by no means re-
classical equationéS/oh,,=0, and the quantum one stricted to describing classical matter. In particwamay be
ol'y/oh,,=0 have the same structure formally. The latterdifferent from its classical value.
equation is precisely Eq3.2) with the k-dependent con- The energy-momentum tensor for a quantum field in a
stantsA andG. It is clear, therefore, that the RG-improved curved spacetime is a very complicated object, containing
Einstein equation for the expectation value figlg,(x) has  information about vacuum polarization, particle creation, or
the status of a fully quantum mechanical equation in anythe trace anomaly. In general this can give rise to a compli-
regime where the Einstein-Hilbert truncation applies, in parcated equation of state. Even leaving calculational problems
ticular close to the fixed point. The familiar appearance ofaside, we are facing a problem of principle here. Unless we
the equation of motion does not mean that gravity or theknow all the matter fields in the the Universghich we do
geometry of spacetime is treated classically in any sense, aot) we cannot determinEM[gw] and the resulting equa-
that there are classes of quantum effects which are not ation of state from first principles. However, it is almost cer-
counted for. tain that the matter content influences the RG improved cos-
We need the running couplings on Lorentzian spacetimesnology even at the qualitative level. We mentioned already
A priori the RG equations are derived within a covariantthat certain matter systems destroy the antiscreening charac-
Euclidean formalism so that the problems typical of theter of pure gravity. They can also destroy the UV fixed point
Hamiltonian approaclinotion of time, choice of spacetime and lead to completely different cosmologies. Thus, in the
foliation, etc) are not encountered. In contrast to the Euclid-absence of a complete matter theory, the best thing one can
ean path integral, the flow equation allows for a rather simplalo is to work out the cosmology resulting from a specific set
“Wick rotation” to the Lorentzian signaturd While the RG  of assumptions about the matter system. In the present paper
flows in the Euclidean and Lorentzian cases might be differthe assumptions are the equation of st8té8, and that the
ent fork— 0 where topological issues play a role, the large-fixed point of pure gravity is not destroyed by the matter
k behavior is the same in both cases, and this is all we neesystem. The form(3.18 is motivated by its mathematical
for the present investigation. simplicity and the absence of explicit dimensionful param-
eters, which seems natural at very high energies.

D,T,=0, (3.19

so that for the Robertson-Walker metric

3This is due to the fact that the functional traces on the right-hand
side (RHS) of the flow equation are always convergent and well “See for instance Ref25] for a class of cosmologies with a time
defined[2]. dependent\ whereT,, as defined here is not conserved.

043508-7



A. BONANNO AND M. REUTER PHYSICAL REVIEW D65 043508

Let us return to the Einstein equati@®2) now. By virtue A+87rp G=0 (3.249
of Bianchi’s identity its LHS is covariantly conserved, so for ’
consistency the RHS must be conserved too: G =Gk(1), AM=AK®). (3.249
D,[-Ag,+87GT,]=0. (3.19

These are 5 equations for the 4 functi@gs),p(t),G(t) and
Because\ andG depend o, this equation is not automati- A (t). [Of course we could immediately insert EG.249

cally satisfied ifT,, is conserved. Instead we obtain the MO the first 3 equations. Then Eg8.24a,b,g are 3 equa-
following consistency condition which relates the time de-tions for the 2 unknowns and p. For the time being we

endencies o\, G and p: shall not adopt this point of viey.
P p The systeni3.243, (3.24b, (3.249 without the last equa-
A+8mpG=0 (3.20 tions coming from the renormalization group has already

been studied in the literatuf®6,27. It consists of only 3
Sometimes it is convenient to rewrite E&.20 in the form equations for 4 unknowns and is underdetermined therefore.
As a way out, the authors made ad hocassumption about
d ) one of the functions, typicall(t), and checked if there are
a(A +87G p)=87G p. (3.2)  interesting cosmologies consistent with, but not uniquely de-
termined by, Eqs(3.243, (3.24b, (3.249.
In our case with Eq(3.240 included we seem to be in the
opposite situation because the 5 equations might overdeter-
mine the 4 unknowns and no consistent solution might exist.

When we insert the Robertson-Walker meti3cl) into Ein-
stein’s equatior(3.2) we obtain two independent equations:

22 ko1 87 In order to see that this is not actually the case we must
_) —=-A+—Gp (3.22  return to the RG equation from which E@.24d is derived.
aj a° 3 3 The flow equation contains the functi®® which is com-

pletely arbitrary up to the two condition®®(0)=1 and

from the 00 component, and R(©)(z—)=0. This function describes the details of the

. 2 cutoff mechanism, i.e. how quickly the modes with different
23 n a +5 ~A—87Gp (3.23 momentgp get suppressed whenapproacheg&. Only if one
a \a a’ ' uses the flow equation in order to compute quantities that are

“universal” in the sense of statistical mechanics are the an-
from theii components. As in the classical case, these tWawers independent of the shapeRIf). In generall',, for
field equations are consistent onlyTif,, is conserved. After  intermediate values ok, does depend oR(®. (Only the
multiplying Eg. (3.22 by a?, taking its time derivative, and |imit k— 0 is R independent because the cutoff drops)out.
combining it with Eq.(3.23 one obtains the conservation Therefore the RG trajectori— (G(k),A(k)) is also R(®
law (3.17) as an integrability condition for the improved Ein- dependent. This is obvious from Eq.13,(2.14), for in-
stein equations. In this calculation essential use is made Gftance: the coefficients and » depend onR(® via the
the new consistency conditidB.21). We see that its role is  ¢-integrals. This means that, if we want to give a physical
completely analogous to that of the conservation equation fofeaning toG(k) and A (k) at intermediate values d¢ the
T, both of them_constraln the sources to which gravity canfynction R(>) should be chosen in such a way that it models
be coupled consistently. Thus only 2 of the 3 equationghe actualphysical cutoff mechanism as accurately as pos-
(3.17), (3.22 and (3.23 are independent; in the following sjple.
we shall use the conservation Ig®&.17) and the improved Similarly, the identification of the scalein terms of the
Friedmann equatio(B8.22) as independent equations. actual physical parameters of the system also depends on the

To summarize: We would like to write down a set of system under consideration. In our case we Have/t with
(differentia) equations that determirg,p,p,G andA as a  an unknown constar. If we changeR(® the optimal value
function of time. This set includes Frl_edmanns equation, thefor ¢ also changes. Typically combinations of parameters in
conservation law fofT,,, the equation of state, the new the RG equationd, v, ...) and in thecutoff identification
consistency condition, and the RG equations Gand A. (£) such asw=w&?, for instance, are much 1e&®) depen-
More precisely, we shall always assume that the RG equ ent, i.e. more “physical,” than those parameters separately.
ﬁ:or the RG improved Newton potential it can be checked

constantk by k(t) in the solution. Eliminating the pressure y,. 4o r(0) dependences ab and an analogously defined
by virtue of the equation of state, this system of equations _,

reads mutually cancel, and thab is a physical, i.e. observable,
guantity[4].) However, even measurable combinations simi-
a\? kK 1 8w lar to w cannot be calculated by RG techniques alone.
a + ¥=§A+ ?Gp, (3.243 In this situation it is a virtue of the syste(.24) rather

than a disadvantage that it is seemingly overdetermined be-

) cause in this manner it also places restriction&6H and on

: a the cutoff identification. In fact, we may regard it as a system
+3(1+w)—p= 24 . . . ' :

p+3(1+w) al 0. (3.248 of 5 integro-differential equations for the 5 functions
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a,p,G,A and R(®). In the next section we shall solve this Already at this point all 4 function§, A, p anda are com-
system in the perturbative and in the fixed point regimes, angletely determined. They depend on 3 constants of integra-
we shall see that solutions exist only if certain relationstion: Gy, Ay, and M. The last and crucial step is to insert
among the parameteﬁé, a* , etc. are satisfied. They are the solution we found into Eq324a and check if this equa-
implicit conditions onR(® and/or £. This shows that the tion is satisfied too. In general it will be satisfied only for
system (3.24) is quite powerful in the sense that it also appropriately chosen cutoff functioi®® andk(t), and for
teaches us something about how to consistently model the IRPecial values of the constants of integration and of the pa-
cutoff for the concrete system “expanding Universe.” rameterw.

This enhanced degree of predictability is also one of the We note that the Hubble parameter also has a simple rep-
reasons why we are RG improvimgjuationsrather tharso- ~ resentation directly in terms @ and A:
lutions Improving solutions means that we take some fixed .
solutiona(t),p(t) of standard cosmology that depends para- H— a_ 1
metrically on the constants and A and then substitut& a 3+3w
—G(t), A—A(t). In general this simple approach is reli-
able only if the improved solution is close to the classicallt is clear that the syster{8.24) can be solved in this simple
one.(See[4] for a detailed discussion in the context of black manner only in the special case whkft) has no implicit
holes) The main advantage of improving the underlying time dependence via(t). For a generick=Kk(t,a(t), ...)
equations is that their solutions may well be quite differentthe situation is much more involved; see for instance Appen-
from the classical ones without necessarily lying in a domairdix A for the ansatk= &/a.
where the entire approach has become unreliable. In Appen- Before closing this section let us introduce a few conve-
dix B we describe the improvement of the classical FRWnient definitions. We define the vacuum energy density
solutions. Where they are valid, the results are consistenhe total energy density,,; and the critical energy density
with the approach of improving equations. They are less prep_; according to
dictive, however, in particular because they do not reproduce

(3.28

GA)
G A}

the relations among, g, , etc. mentioned above. ()= A1) (3.29
It is important to understand how many constants of inte- PA 8m7G(1)’ '

gration occur in the process of solving the sysi@24). Let

us pick someR(® and a functiork=Kk(t) with an explicitt poi)=p+pn, (3.30

dependence only. TheB(k) and A (k) can be obtained by

solving 2 coupled RG equations which are of first order and 3 a\?

therefore lead to 2 constants of integration. We choose them Perit(t) = 860 \a) - (3.3)

to be thek=0 valuesG, and A,. As a consequence, the

functions G(t) and A(t) in Eq. (3.240 depend parametri- The definitions(3.29 and (3.31) are the same as usual ex-
Ca”y on GO and Ao, -|.e. on the RG tlja]ectory selected. In a Cept thatG('[) andA(t) appear in p|ace cﬁo andAo_ This
first step we may insert Eq3.24d into Eq. (3.240 and  means in particular that, for very late times when the running

obtain the energy density as Newton constant assumes its IR valBig the quantityp is
exactly the standard critical density of classical FRW cos-
1 A mology. It is also customary to introduce
p(t):_B_wE' (3.29 , o
Qu=——", Qp=—, (3.32
. . . Perit Perit
The time dependence gf is completely determined once
A(t) andG(t) are fixed, and no new constant of integration Prot
arises. In a second step we insprof Eq. (3.25 into Eq. QtotEQM+QA:’Ty (3.33
(3.24b and solve the resulting differential equation &ft). et
Equation(3.24b is easily integrated: so that we may rewrite Friedmann’'s equati@?24g either
as
p(Ha(t)]®>" 3= M/8m=const. (3.2 .
a’+K 8w G 3.3
Here we encounter a further constant of integratidf, Its a2 3 Prot (334

mass dimension is 13w. For a radiation dominated Uni-
verse M is dimensionless, while it has the dimension of aor as
mass in the matter dominated case. Combining E825

and(3.26 we obtain the scale factor K =52 Prot 1= 20~ 1]. (3.39
Perit
MG 1/(3+3w)
a(t)=| - — (3.27)  As atrivial consequence of its definition, the critical density
A satisfies
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3
pei)G(HH(t) 2=

- (3.36

By Eqg. (3.35, an expanding Universe witki=0 has

prol ) =peri(t)  (K=0) (3.37

at any time. In this case

3
Ptot(t)G(t)H(t)_ZZ% (K=0). (3.39

PHYSICAL REVIEW D65 043508

Friedmann equationi3.24a in order to check whether the
above solutions are consistent. Omitting subleading terms,
consistency requires that

—2/(3+3w)

2 |21 « 1 @ G 1

3+3w/ K|zl 5 Mo £4/(3+3w)
Ay (87Go) 1 [v| 1 . A
3T @\ )eet 49

Note that on the RHS of Eq4.5) it is sufficient to setG
=Gp+--- and A=Ay+--- because théknown) correc-

Sometimes the flatness problem is rephrased as the cosmgons to these approximations have the same time depen-

logical “coincidence puzzle:” Why does the product of the

dence as thgunknown second order corrections on the

observed matter density of the Universe, the square of its ageHsS. In order to analyze Eq4.5 we must distinguish the
t, and Newton’s constant give rise to a number of order unitycasek =0 andK==+1.

?

(pG tz)today: 0(1) (3.39

It is clear that Eq(3.39 is essentially the same statement as

Eq. (3.38 if p, is negligible or at most of the same order of
magnitude ap, and if the age of the Universe is of the order
of H(t) 1. The “coincidence”(3.39 has also been regarded
as a manifestation of Mach’s princip[28].

IV. PERTURBATIVE AND FIXED POINT SOLUTIONS

In this section we solve the system of equatid@4)

1. The case K=0

In the caseK =0, Eq. (4.5 is satisfied provided that the
consistency conditions

(1+w)?

N w

A0:0

and (4.6)

ARIESK

are satisfied. The conditiohy=0 does not come as a sur-
prise because the formul2.12 for A(k) from which we
started is accurate fdtk—0 only if A;=0. Recalling that

using the approximate RG equations that are valid in thé/w=(v/w)&? we see that the second condition puts a con-

perturbative and in the fixed point regimes, respectively.

A. The perturbative regime

The perturbative approximation is valid faremp,, i.e.

for t>tp,. The corresponding solutions to the RG equations

are given by Eqs(3.9),(3.10 from where we obtain

2 2

. 2w GO tp|

G(t)= 3 1+0 t_2 , (4.2
. 47 G, t3,

A(t)y=— G 1+0 t_z . (4.2

Hence Eq.(3.25 for the energy density and E3.27) for
the scale factor lead to

1 2

t)= v) 1 1+0| P 4.3
p()=7— = Goi? 2 4.3
and
1 Z) 1/(3+3w) t2
alt)=|=|=| MG, t26+3wi 1 4o 2| 1,
2\ 7% t2
(4.4

respectively. Now we must insert Eqg..3) and(4.4) along
with G(t) and A(t) from Egs. (3.9) and (3.10 into the

straint on the cutofR(®) which affectsw and v, as well as
the functionk=Kk(t), i.e. ¢ in our case. We use this condition
in order to expresg in terms ofw and v which are not then
subject to any further condition:

- 2w 4
¢ T 3u(1+w)? 4.7
Thus, upon inserting Ed4.7) into Egs.(3.9) and(3.10, the
time dependences of Newton’s constant and of the cosmo-
logical constant are now completely determined. Moreover,
using Eq.(4.6) for the ratiow/ in Eq. (4.3) and Eq.(4.4) we
see thap(t) anda(t) are actually completely independent of
o andv. As a consequence, the consistent solution we found
is given by the following four equations:

3 1/(3+3w) t§>|
a(t)=L—1(1+w)2MGO 23 1+0 2|
(4.83
= ol 4 4.8b)
PO grirwrc,e Ole) &59
6(t)=Gq 1- —22 tp')z ol 4.8
(t)=Go T arwil T + it (4.80
4o’mg, (tp|)4 thy
=— " = +0o|l =|. 4.8
9p(1+w)4\ t t® (4-89
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We observe that the leading terms of the above expressions 1 3 1
for a(t) and p(t) coincide exactly with the corresponding pA(1)=0+0| 7|, pei(t)=5—=2+0|=
solutions of the classical FRW equatiopSee Eqs(B3) and (4.14

(B4) in Appendix B] This coincidence is quite remarkable

because in our approach, by E¢3.25 and(3.27, aandp  so that, in leading ordef) , =0 andQ = Q with

arise from thetime dependenti.e. higher order, terms in
2

G(t) and A(t), which clearly have no counterpart in the MG t2,
classical situation. Qufm 1+0| = (4.19
The vacuum energy density and the critical energy density 0 t

for the cosmology4.8) are As expected(),,; depends on the constants of integration in

1 1 the case&K==*1.
pr=0+0 t—4), Peit=p+ O t—4) (4.9
B. The fixed point regime
so that, in leading ordepo=p=perit, OF The fixed point approximation is valid whea>mp, or t
<tp. In this regime the time dependence @fand A is
Qu=1, 0,=0, Q=1. (4.10 given by Egs.(3.12 and (3.13, respectively. From Egs.
(3.25 and (3.27 we obtain
2. The case kx1 M 1/(3+3w)
Equation(4.5) has a chance of being consistent only if all a(t)=( il ) 43 +3w) (4.1
terms can be given a time dependence proportionaltfo £/ N
K+ 0 this is possible only for an “exotic” equation of state -
with w= —1/3. Indeed the consistency conditions implied by p(t)= Ay i 417
Eq. (4.5 are 873, es .
1 o 2 2K The next step is to check the consistency of E2j244.
Ao=0, w=-g, ~=3 MGy (41D |nsertingG, A and the above expressions farand p we
have
Again we use the last condition in order to elimingte 4 \21 T M S2A3HIW) g B X,
wl2 oK |1 3+3w) t? ”* 18/(3+3w) a 3t2 "
2| Z _
213 MGO) (4.12 (4.189

) We shall discuss this equation f&r=0 andK=*1 sepa-
Note that in the present cagedepends also on the constants

rately.
of integration M and G,. Proceeding as above we find the y
following consistent solution fow= —1/3: 1. The case K=0
1 U2 {2 For K=0, Eqg. (4.18 implies only a single consistency
a(t)z{gMGo—K} t[1+0 t—zl , (4.13a condition:
Ny = 8 4.1
M1 11 & * 31w’ (4.19
P(t)=g[§MGo—K} 2110 Z ][ (4.13b 5
If we use this condition in order to eliminake, in all equa-
tions we are led to
(U2 2 2K _1 tp| 2 té)| 3 . 1/(3+3w)
- S Beeen ) B i il t)=|=(1+ t#GH3wW) - (4.20
(=G, 1 V(3 MGO) (t) rol 1], (a3 a(t)=| 5 (1+w)%, M (4.203
w? (2 2K \ 7% tp\? tp) ,o(t)——E (4.200
— 2 = 7 .
A(t)—Tmp|(§— M—Go) (T) +0 ©/ (4.139 3m(1+w)%g, t
G(1)=0,t?, (4.209

The leading terms in Eq$4.133 and (4.13b coincide with
the corresponding classical FRW solutionsvior — 1/3. The A(t)= 8 i (4.200
cosmology(4.13 gives rise to 3(1+w)? t?° '
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This family of solutions, one for each value@f andw, was
already found in Ref[27]. In this work, the RG equations
(3.240 were not used. Since the systei®1243, (3.24b),
(3.249 is underdetermined, the time dependence Gdgt), We also read off the Hubble parameter
Eqg.(4.200 above, was postulated on ad hocbasis in order

Qtot: 1. (424)

to obtain a unique solution. In this manner the analogue of b= 4 E 4.25
E;* appears as a free parameter WﬁiLeis fixed. In our case 3+3w t ‘
it is more natural to use the consistency condit{drl9 in
order to express in terms of A, which is given by the @and observe that
renormalization group. Becausg =\, £2 we have then 1
2_
i 8 p(1)G(1)t 31+ w)2 (4.26
S5, @2y |
* is a time-independent fixed number that depends only on the
When expressed in terms of the fixed point values, the soleguation of state. _ _
tions read The solutions(4.22 exists for every equation of state of
the type considered, i.e. for every value of the paramster
3\2 . L/(3+3w) W3t 3m) Since at least immediately after the Planck era during which
a(t)= 3 (1+w) g N M t , (4.22 is valid the Universe is radiation dominated, a particu-

(4.223 larly plausible choice isv=1/3. In the case of a “radiation
dominated Planck era” withv=1/3 we have

8 1
t)= =, 4.22 4 va
p(t) 9m(1+w)*ge\, t* .22 a(t)=[§g*)\*/\/l t, (4.273
G(t)=§(1+w)zg G (4.220 9 1
8 * Ttk 1 . - - -
p()= 35— gin, O (4.27h
A(t)= 8 ! (4.220 2
3(1+w)? t?” ' G(t)= §g*)\*t2, (4.279
Sinceg, , A, andw are given by the renormalization group
and the equation of state, respectively, E422) represent a 31
one-parameter family of solutions parametrized by the con- A= 212" (4.279

stant M. The solutions(4.22 reflect the renormalization
group flow in the vicinity of the UV attractive fixed point The most interesting property of this solution is that it is
where the RG trajectories have “forgotten” their IR values perfectly scale free BecauseM is dimensionless fow
Go and A . Because of this universality, these solutions are=1/3 and becaus€&, and A, do not occur due to the fixed
independent of the constants of integrati®ép and A,. This  point behavior, the only dimensionful quantity available is
means that(4.22 is an attractor solution fot\,0 in the the cosmological timeitself. As a consequence, the various
sense thaeveryconsistent solution to Ed3.24), character- exponents of appearing in Eqs4.27) are completely fixed
ized by arbitrary constants of integratio®s{, Ay, M), by the canonical mass dimensionsafp,G and A, which
looks like (4.22 in the limit t\ 0. Actually the M depen- are—1, +4, —2, and+2, respectively. In particular, the
dence of the solutiongt.22) is quite trivial: p, G andA are  linear expansion lawt is a direct consequence of this type
M independent, whil@(t) responds to a change @8ff by a  of scale invariance. Sinoe=1/3 corresponds to a traceless
simple constant rescaling. energy momentum tensor, this solution is realizedf is

It is very remarkable and a nontrivial confirmation of our the effective action of a quantum conformal field theory, for
approach that after the elimination 8the RG data enter the instance. It is interesting in this respect that there are indica-
attractor solution only via the produgf A, . This productis  tions from semiclassical gravif24] that the effective matter
universal(scheme independerin the sense that it does not action could be asymptotically scale invariant.
depend on the functioR(®) [17]. Hence Eqs(4.22) are free
from any numerical ambiguities. 2. The case ke x1

For the cosmologie#t.22) we find thatp,(t) =p(t) and

In this case Eq(4.18 can be made consistent only for a
perit(t) = 2p(t) so that

specific choice of the equation of state, namely, for
1 +1/3. Equation(4.18) is satisfied if

P:PAIEPcritv Ptot™ Perit (4.23 5 112

. -
= =-\,. (4.28
g*M> 3

1
w=+—- and 1+K
or 3
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We use the second consistency condition in order to elimiquantum gravitational effects become negligible so that the

nate¢ in favor of g, , A, and M:

M 1/2] 2 -1
52:<g* T*) §Vg*)\*M_K} . (4.29

This leads to the following solutions fav= +1/3:

2
a(t):{gvg*)\*M_K

172
t, (4.309

M2 21
P(t)=g[§vg*)\*M—K} red (4.300
g N 1/22
G(t)=( 1/‘*) [?/g*h*M—K}tz, (4.300
[2 -1
A(t)=¢g*x*M{§¢g*x*M—K z- (4300

evolution of the Universe is correctly described by the clas-
sical FRW models. The timé,,.sis of the order of a few
Planck timest.ss=tp;. We shall refer to the epoch between
t=0 andt=tg,ssas thePlanck era At the beginning of the
Planck era, immediately after the big bang, we are in the
fixed point regime of the RG equations, while the end of the
Planck era and its transition to classical cosmology corre-
sponds to the perturbative regime.

We were able to find analytic solutions to the improved
equations only for the very early and the very late parts of
the Planck era. Let us now discuss how those solutions can
be fitted together to obtain complete solutions that are valid
during the entire Planck era.

For a spatially flat geometrit =0, and for every value of
w, there exist exact solutions of E(8.24) both in the fixed
point and in the perturbative regimes, see E¢s22 and
(4.8, respectively. We expect that those two limiting solu-
tions possess a continuous interpolation that satisfies Egs.
(3.29 for all t e (0,tyas9 - Generically this interpolating solu-

This family of solutions, again parametrized by a dimension-ion should exist, because we have considerable freedom in
less constant\, is scale free as well. All solutions have the adjusting the func_tmr_wsR(O) and k(t,a(t), ...) without
property that their vacuum energy density equals the matte¢hanging their qualitative features. We shall refer to this so-

density:

1
pA(D)=p(t)= Eptot(t)- (4.3)

Furthermore, their critical density reads

3/ M \Y32 11
pcrit(t)ZB_W(g*)\*) Z[g\/g*k*M_K} t_4
(4.32
from which one obtains
1 1 [2 -1
QM:QAIEQtot:§\/g*)\*M{g\/g*)\*M_K
(4.33

If K=+1, solutions of the form(4.30 exist only if M is

such thatyg, A , M>3/2. It is also important to note that for

K= *1 the quantity

1

1 [2 -
p(t)G(t)tng\/g* Ay M{g\/g* N M— K}
(4.39

is not a universal number but depends.bh

V. COMPLETE SOLUTIONS FOR THE PLANCK ERA

A. Early versus late stages of the Planck era

lution {a(t),p(t),G(t),A(t)}, te(0tyass, as thecomplete
K=0 solution Actually this is a whole family of solutions
labeled by the constants of integratid@¢, Ay, M). (Within
the present approximation, only solutions with=0 were
found)

It is the main assumption of this paper that the RG im-
proved system(3.24) and its completeK=0 solution are
valid throughout the Planck era, i.e. even immediately after
the big bang. The reason why we think that our approxima-
tions are valid even fot\,0 is the asymptotic freedom we
found for quantum gravity. It entails gravity in the very early
Universe being weakly coupled. In fact, the coupling con-
stant, i.e. Newton’s constant, vanishes very rapidly as we
approach the initial singularityGot?. For k—x the RG
flow in (g,\) space is dominated by a fixed point that is UV
attractive for bothg and . By the RG improvement, this
fixed point translates into the attractor solutioh22) for
a,p,G and A. In the vicinity of the attractor, all solutions
have the same universal behavior.

The w value of the perturbative regime must coincide
with that of the following classical era, most plausibly
=1/3. In principle it is conceivable that the interpolation
from the fixed point to the perturbative regime involves an
adiabatic change of.

For the spatially curved geometries wik=+1 or —1
we found a solution in the fixed point regime onlyvif=
+1/3, and a solution in the perturbative regime only for
=—1/3. Hence, at least within the present approximation,
there exists no consistent interpolating solution for

In the previous section we found solutions to the RG im-e (0,ty,s9 With a constantv.
proved system of cosmological evolution equations that are As for the interpretation of this result, we must be very

valid for t\,0 and fort=tp|, respectively. In particular, it

careful. Clearly it would be premature to conclude that the

turned out that the improved cosmologies, too, start from &G approach predict& =0 as the only possibility. In par-
“big bang,” i.e. there exists a timéconveniently chosen as ticular the nonexistence of perturbative solutions witk
t=0) at which the scale factor vanishes. We also saw that-1/3 is quite likely to be an artifact of our approximations.

there is a certain transition timg,ss such that fort>t s

We mentioned already that the simple perturbative form of
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A(t), Eg. (2.12, is correct only if one either neglects the not only unnecessary but even impossible to specify initial
back reaction of the running contained in theb functions  conditions in a standard way. Thus, by the time the classical
or specializes ta\,=0. In general the situation is similar to Solution emerges from the quantum solutidne condition
QCD[29] where, thanks to asymptotic freedom, simple trun-Ptot= Perit IS imposed automatically

cations are sufficient for large valueslofbut at smalk they To summarize: At present the RG improvement provides
necessarily become very complicated because they have B9 strong theoretical arguments agaimst+1 or —1.
describe all sorts of nonperturbative effects. On the basis difowever, if one selects th€=0 option “by hand,” no natu-
this analogy we expect that in quantum gravity also it isr@lness problem occurs.

much more difficult to describe the IR behavior correctly. It

is intriguing that in our approach this problem is particularly C. Particle horizons

pressing ifAo#0. In fact, it has been suggestg80] that | et us consider an observer in a Robertson-Walker space-
there are strong renormalization effects in the IR whichtime who, at cosmological time receives a light signal that

namical way. time t, the proper distance between this galaxy and the ob-
It is less obvious why foK==*1 there seem to be N0 server is given by32]

solutions withw+# +1/3 in the fixed point regime. It would

be tempting to speculate that this reflects a property of the t dt’

exact theory in which case the slightest deviation from the R(t,r)=a(t) [ —-—. (5.)
classical valuew=+1/3 would lead to the prediction that ra(t’)

K=0.

In a spacetime with a singularity at time zero, the most dis-
tant galaxies from which the observer can receive a light
signal at timet have the proper distand®(t,0)=dy(t). If

Let us now make more precise in what sense the existendbis distance is finite, i.e. if the integréb.1) converges for
of the complete K=0) RG improved solution removes the 7—0,
flatness problem. We emphasize that the reasontithat we
found no solutions folK=*1 and thatp,,;= pit IS auto- t
matic if K=0. In fact, for the sake of argument, let us sup- dH(t)=a(t)J’0
pose that there is some better approximatiam exact treat-

men) such that thEre are complete solutionsfor =1 and e g5y that the spacetime has a particle horizon at the dis-
perhaps also foK=0, Ao#0. Then, both the classical and (yncaq.,  Hence it is thet\,0 behavior of the scale factor

the RG improved theories describe cosmologies with all 3,5; gecides the presence or absence of a particle horizon.
types of spatial geometry: flaK(=0), spherical K=+1), For instance. if

and pseudosphericak —1). Let us select one out of these
3 options,K=0 say, and let us compare what the two theo- a(t)xt® (a>0) (5.3
ries have to say about the evolution of the Universe.

Classical FRW cosmologyas a limited domain of appli- there is a horizon ady(t)=t/(1— «) for e (0,1) but there
cability. It is valid only for t=t; where t;=t;,s IS SOme is no horizon ifa=1.
initial time at which one must specify initial conditions for  Fort<1/\/A all classical FRW solutions are power laws
the classical differential equations. They include the initialof the type(5.3) with the exponent
density p(t;) and the Hubble parametéi(t;) from which
one can deduce the initial critical densityg.(t;) 2
=3H(t;)%/87G,. Since we opted foK =0, the classical dif- Aclass™ 37 30 (5.9
ferential equations tell us that there is a solution only if the

initial conditions are such thai(t;) = pri(ti). Thus, in order  (see Appendix B If we take these solutions at face value
to be in theK=0 SeCtOI’, an infinite ﬁne'tuning of the initial even fort\o, there appears to be a horizon in both the
data is necessary, and this is what is referred to as the flatneggysically relevant cases of the radiation and the matter
problem. o . dominated Universe wittw=1/3 andw=0, respectively.
Because gravity is weakly coupled for,0, RG improved  However, since the classical equations become invalid for
cosmologyhas the ambition of being valid for al>0, i.e.  t\ 0 there is no compelling reason why these horizons ac-
already directly after the big bang. A0 the spacetime is tually should exist in nature.
singular, and there is no such thing at=at; hypersurface at In the RG improved cosmology fd¢ =0 the early part of

which initial data are to be imposed. There is a famlly Ofthe Planck era is governed by the attractor So|u'('|¢r22
complete consistert =0 cosmologies labeled by the param- ith

eters Gg,Aq,M). For any value of the parametefsy(t)

= pqie(t) is automatically satisfied for att>0. Fort\,0 all a(t)oct¥E+3w), (5.5
solutions approach an essentially universal attractor solution

which is independent ofGq,A(, M) except for an overall Since we believe that this attractor provides a valid descrip-
M dependence d. It is precisely this attractor that makes it tion for t\,0, even very close to the big bang, we may use

B. “Naturalness” of the solutions

dt’

m, (5.2)
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time

FIG. 1. Graphical representation of the proper
distanceR(t,7) as a function ofr for fixed t.
Only light signals emitted from points below the
solid line can reach the spacetime poitThe
dashed line showR,.{t,7) which gives rise to
a horizon atdy=2t. The deviation ofR from
R.asshecomes appreciable only fortg s

dH=2t space

Eq. (5.5 in order to check for the existence of horizons. Weciently early timesr can causally influence both; andP,.
observe thathe RG improved spacetime has no particle ho-Because of this quantum gravity induced broadening of the
rizon provided w<1/3° backward light cones, the light cones of all eveRtsat a
During the following discussion we assume that the matgiven timet overlap for some small enough Since this
ter system is such that=<1/3 so that there is indeed no broadening sets in only for<t s O(tp) we see that only
horizon. However, as we shall see now, this fact by itself issventsP in the Planck era can causally influeredé points
not yet a solution to the horizon problem. For the sake ofP on the hypersurface at tinte
simplicity we consider a “radiation dominated Planck era” Let us imagine, for instance, that the two poifts and
with w=1/3 followed by a classical radiation dominated era,P, are located in opposite directions in the sky. Two micro-
again withw= 1/3. In this case we have a linear expansion atwvave antennas pointing in these directions receive radiation
early times and the familiar square-root expansion at latg¢hat has been emitted at the tirheof the hydrogen recom-
times: bination when the cosmological plasma had just become op-
tically thin to radiation, about fOyears after the big bang. In
a(t)o t for t<teass (5.6 the standard FRW spacetime the number of horizon distances
tY2 for t>tgee ' separating the two sources in opposite directions is given by
In order to visualize the causal properties of this Robertson- 2R(to.t) 2R(to,t,)
Walker spacetime we consider a simple toy model which =g ) =1m R(t, .10+ R(to.7)
interpolates smoothly betweeart for t<tg,ss and axt'/? HAMT o0 TR Te e
for t>1tgee

(5.10

where t, denotes the present time, amgzt s IS in the
At equivalence era, when matter and radiation were in local
a(t)ZT- (5.7 thermodynamic equilibrium. However, since bd®ft,,t,)
+ VUlolass andR(t,,tg) are finite, it is clear that, in the quantum gravity

HereA is an arbitrary positive constant. It is easy to calculatdMProved spacetime, eventually<1 for sufficiently small

the proper distancés.1) for Eq. (5.7): T<tp|-. _ _ .
In view of the above discussion we propose that the isot-
t t t - J ropy of the cosmic microwave background radiation on large
R(t,7)= —F—|In| | +2\/:—2\/ : angular scales is a consequence of the quantum gravity ef-
( 1+ \t/tgas 7 telass telas g a d g y

fects in the Planck era which remove the particle horizon and
hence allow for causal mechanisms giving rise to approxi-
As expected, this distance diverges for-0 andt fixed. In mately the same temperature everywhere on the last scatter-

Fig. 1 it is represented graphically as a kind of gravitation-Nd Surface. The important point of this discussion is that
ally distorted backward light cone of the poift It is com-  SINce the broadening of the light cones becomes significant

(5.9

pared to its classical counterpart only for t<tp,, it is necessary that those causal mechanisms
are already operative during the Planck era. In the following
Rejasdt, 7) = Zﬁ( ﬁ_ \/;) (5.9 section we outline a scenario for the generation of primordial

density fluctuations where this is actually the case.
which results fromact'? and gives rise to the familiar ho-
rizon atd, = 2t.

In Fig. 2 we show two spacetime poirfg and P, at the
same cosmological time In classical cosmology those two It is a fascinating idea that the structure formation in the
points would be causally disconnected because their “lighUniverse started out from primordial density fluctuations
cones” given byR,ssdo not intersect. However, in the RG p(x) which were triggered by quantum mechanical fluctua-
improved spacetime, the light cones become infinitely broadions. As the Universe expanded, these density fluctuations
for t\,0. This means that events which take place at suffibecame amplified and magnified, and finally gave rise to the

large-scale structures that we observe today. This idea has
been worked out in the framework of inflationary cosmology.
SWithin the phenomenological applicatiof6,27] of the system Here instead we consider the possibility that the primordial
(3.243, (3.24D, (3.249 this was already pointed out earligt7]. density fluctuations were already generated during the

VI. DENSITY FLUCTUATIONS
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FIG. 2. While the point$?; andP, are caus-
ally disconnected classically, the quantum gravity
induced broadening of the backward light cones
allows for eventsP, in the Planck era that can
causally influence botk, and P,.

Planck era as the aftermath of the big bang. This hypothesig(x,y) =a(t)|x—y| wherex andy are the comoving Carte-
allows us to invoke the broadening of the light conestfor sian coordinates ok andy, respectively. This leads to the
<tgass that we found above in order to explain the high important result
degree of isotropy of the fluctuations at later times.
In our approach the most natural assumption about the
quantum origin ofdp is that, beforet~t.,s, the quantum (OR(X,t) SR(y,t) ) 7
fluctuations of the metric itself generated the primordial den- Ix—y|
sity fluctuations by some decoherence mechanism. As we
shall argue now, this assumption naturally leads to a scal&€he constant of proportionality implicit in Eq6.3) is time
free (Harrison-Zeldovich fluctuation spectrum. dependent but for the derivation of the spectrum this is un-
We need to know the two-point correlation functii88]  important.
In the scenario where the primordial density fluctuations
_ are generated by quantum fluctuations one ass(i@&shat
) =(oxty)oy)) €1 the classical statistical expectation valéel) is proportional

of the density contrasf(x) = dp(x)/{p); at somefixedtime o a quantum miac.hamcal expectation val&é’!¢(x
t=t,.e.Close to the end of the Planck era when the spectrum™Y) #(¥)|'¥) whered is the operator whose fluctuations are
is “handed over” from the quantum gravity to the classical SUPPOsed to become classical. In the case at hand where we
regime. We define the power spectrum by assume thabp originates from the quctualtlon.f, of the space-
time geometry itself the natural choice fgris ¢=R, i.e., a
to some extent arbitrary linear combination of curvature
|5k|zzvf d3x &(x)e kX (6.2  components. In fact, classically the Einstein equatid:2)
already implies 8&Gép= —568 where G/, is the Einstein

tenso® As a consequence, the two-point function @fis
%roportional to thesSR correlator(6.3). Therefore the corre-
lation function of p behaves as

6.3

and we say that the fluctuation spectrum has the spectr
indexn if |5,/% has the form of a power laps, |2 |k|". (V
denotes the normalization volumé/hat is the prediction
for | 5,/ if our above hypothesis is correct?

In [17] it was shown that, on a flat background, the effec- £(x)oc i (6.4)
tive graviton propagator for the fixed point regime is propor- x|+
tional to G(p) = 1/p*, which amounts t@(x,y) In(x—y)?in
position space. This form of the propagator is valid fgr  provided the physical distanca(t)|x| is smaller thanlp,.
>m2, or (x—y)?<I2,, respectively. The logarithmic two- The power spectrum of the modes with physical momenta
point function may be understood as a limiting case of thdk|/a(t)=mp, (at fixed time t<t.,s) is given by the
familiar “critical” propagator G(x,y)«1/|x—y|9"2*7 for d ~ 3-dimensional Fourier transform of E¢6.4):
=4 and the anomalous dimension= 7y(g, A )=—2
which characterizes the UV fixed poifit7]. Let us look at | 6% |K]|. (6.5
the curvature fluctuatio®Re«doh caused by a fluctuation
h,.(x) of the metric.(We use a symbolic notation wheRe  This is precisely the Harrison-Zeldovich scale invariant spec-
stands for the curvature scalar or for any component of th&um with the spectral inder=1.
Riemann or Einstein tenspBecauseh,,,(x)h, ,(y))=In(x We can thus imagine that “sub-Hubble scale” modes
—y)?, the curvature correlation function iSSR(x) SR(y)) evolve according to the standard theory of cosmological per-
x1/(x—y)*, rather thanc1/(x—y)® as implied by the tree turbations starting with a scale-invariant spectrum immedi-
level propagator. Therefore the leading short distance singwately after the quantum gravity epodtxtp,. A more com-
larity in a curved spacetime is given b{pR(x)SR(y)) plete treatment would also include the contribution from
= 1/d(x,y)* whered(x,y) is the geodesic distance xandy. “super-Hubble scale” modes in a gauge-invariant frame-
This formula is applicable when the spacetime curvature isvork, but this is beyond the scope of the present paper.
small compared to #l(x,y)?.

Now we consider the background of a Robertson-Walker—
spacetime and we putandy on the same time slice. Hence 8See Ref[34] for a similar discussion.
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VII. CONCLUSION In conclusion it is clear that cosmologies of the kind
found in this paper are certainly extremely interesting and

. Inlth|shpaF;))|er Wlf Stu%'eg horrrl]ogelneo_us,l Eptroplc CosmQlo'romising candidates for an extrapolation of classical FRW
gies in the Planck era before the classical Einstein equationg, oy ,jogy toward earlier cosmological times and for a pos-

become valid. We performed a RG improvement of the cosgjpie solution of its problems and limitations. Their most

mological evolution equations by taking into account the,ractive feature is that the resolution of those problems is
running of G and A as it follows from the flow equation of gptained at a very low price. Nad hocadditional geometric
the effective average action. For a spatially flat geometry wetructures, matter fields or cosmological eras have to be in-
found solutions to the improved equations that are mathyoked. All that is needed is the quantization of the fields that
ematically consistent even far\ 0, i.e., immediately after are present anyway.

the initial singularity of the the Universe. We believe that

caICL_JIations can be done _reliably in this regime because ACKNOWLEDGMENTS
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of the UV fixed point of the RG flow ing,\) space.

For a radiation dominated Planck era the attractor is per- APPENDIX A: THE CUTOFF kx1/a
fectly scale free, the only dimensionful parameter being the
cosmological time. The RG improved solutions are “natu-
ral” in the sense that no fine-tuning is required, and for a
broad class of equations of state<1/3) they are free from
particle horizons. Thus they offer an intriguing possibility for
overcoming the flatness and the horizon problem of standard __°

Y k(t) .
cosmology. We also found a natural mechanism for generat- a(t)
ing a scale free spectrum of primordial density fluctuations.

It is important to keep in mind which assumptions wentSince this cutoff functionally depends on the unknown func-
into our derivation. They enter at different stages of the contion a(t), it is less straightforward to find solutions than for
struction: the 1t cutoff. We begin by solving the conservation law

(i) We assume that fdk— the RG flow in @,\) space (3.24D for the densityp. From Eq.(3.26) we have
is governed by an UV attractive fixed point wigf) >0 and
A, >0 so that gravity becomes asymptotically free in this
limit. This UV fixed point is known to exist within the p(t)=
Einstein-Hilbert truncation of pure gravity. The assumption

is that the coupled system of gravity plus matter behave . .
qualitatively in the same way. Rlext we insert Eq(A2) into Egs.(3.243 and (3.249 and

(i) We assume that the system of RG improved cosmoleexpress the time.de.rivatives in t_he latter equation accord-
logical evolution equationé3.24 with ks 1/t is valid for all ~ ing to G=(dG/da)a, A=(dA/da)a. Clearly this trick is
timest after the big bang. This assumption means that th@0ssible only for cutoffs such a@1) for which the time
dominant quantum corrections are correctly incorporated bylependence dtis purely implicit. Thus we have to solve the
substitutingGy— G(t), Ay— A(t) in Einstein’s equations system(for a#0)
and that no further modifications need to be taken into ac-

In this appendix we analyze the system of differential
equations(3.24) under the assumption that the relevant cut-
off momentum is given by the inverse scale function:

(A1)

877_a(t)3+3w' (A2)

count explicitly (higher curvature terms, ejcThis assump- al? K A MG
tion is consistent withi) where it is also assumed that the 2 ta2T3 T s (A3a)
Einstein-Hilbert action is sufficient to describe physics for 3a
k—oo or t\0.
(i) We assume that all matter fields can be integrated out dA M dG
completely before solving the gravitational equations. This is da + m da 0, (A3b)
supposed to lead to an effective conserved energy momen-
tum tensorT,, with a linear equation of statep=wp.
(However, quantum effects in the matter sector can influence G(H)=G(k=¢/a),
g, and\, , and they may shifiv away from its classical
value) This assumption means that, consistently wiih A()y=A(k=¢/a). (A3c)

there are no renormalization effects coming from the matter
sector that would be more important than those of pure quarnit is interesting that Eq(A3b) can be rewritten directly in
tum gravity. terms of the RG beta functions:
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dA

K\3"3W dG A()=Ag+1Gga 4+ - - -
S oV Oa +
Gl

, , ,  with o=w&? andv=r¢*. By using Eq.(A10) in Eq. (A3b)
Let us look at the fixed point regime and the perturbativeyhe following conditions arise:
regime separately.

1. The fixed point regime w=-3 and w=wMG,. (Al11)

In the fixed point regime EqA3c) assumes the form ] ] ]
Consistency can be achieved only for rather exotic matter

G(t)=g,a% A(t)=x,a 2 (A5)  with w=—1/3 but not for the physically relevant cases with
w= +1/3 orw=0, for instance. If we insert Eq§A10) and
Again we set (A1l) into Eqg. (A3a) we obtain the differential equation that
- - determinesa(t):
0.=0.67% N=NE (A6)
. 1 1 1.
but the constant differs from the one occurring in thetl/ a’+K= §Aoa2+ §MGO— gwMGga‘zwL cee

cutoff. If we now insert Eq(A5) into Eq.(A3b) we find that

this equation is satisfied provided (A12)

1 To lowest order in H, the solution to this equation is pre-
w=+- and \,=Mayg,. (A7)  cisely the classical FRW solution fov=—1/3.

3 To summarize: In the fixed point regime and for=
+1/3 the 14 cutoff leads to precisely the same cosmology as
the 1t cutoff. For w# +1/3 there are no solutions in the
Sixed point regime. In the perturbative regime solutions exist
only for the exotic equation of state with= —1/3. Because

A consistent solution can be obtained only for the=1/3
equation of state, satisfied by classical radiation for instanc
The second condition of EqA7) will be used in order to

determinet: the fixed point regime and the perturbative regime describe
9, M the limiting cases of\,0 andt— o, respectively, we must
&= ; . (A8) conclude that, at least with th@erhaps too pograpproxi-
*

mations we used, there exists no solution with constant
The last equation to be checked is EA3a). Substituting in  Valid from t=0 up to the beginning of the classical era,
w=1/3, and Eqs(A5) and (A8) it reduces to the trivial dif- which would connect to a standard radiation dominated FRW

ferential equatioria=const which, for the initial condition cosmology.

a(0)=0, is solved byact. Taking everything together we _
see that forw=+1/3 there exists the following consistent APPENDIX B: RG IMPROVEMENT OF THE CLASSICAL

solution for all three casel§=0, —1, and+1: FRW SOLUTIONS
5 172 In the main body of the paper we made the improvement
a(t)z[—\/g* A, M— K} t, (A9a) Go—G(t), Ap—A(t) in the equationswhich determine the
3 time evolution ofa(t) and the other quantities of cosmologi-

M2 —2 cal interest. In this appendix we discuss an alternative strat-
= — | SN  M—K| 4 A9b egy: the mprovement of theolutlongto the classical equa-
p(t) 877{3 G s } ( ) tions. In this second approach one first solves the differential

equations containings, and Ay, and then one makes the

Y 1/2] 2 . . . .
G(t)=(g* *) [gm_K}tz, (A90) replacementsGy— G(t), Ay—A(t) in their solutions. If

M k(t) has an implicit time dependenc€(t) and A(t) will
depend on the classical solutioag,sdt) through k

-2 (A9d) =k(t,ac|asf(t),éc,.ass(.t), ) It seems clear, and we sha_ll
demonstrate this in detail, that the method of improving

o ] ) equations is superior to the improvement of solutions. In the

We observe that Eq$A9) coincide precisely with E4.27)  |atter case only small quantum corrections that do not change

for K=0 and with Eq.(4.30 derived forK==x1. Contrary  the behavior of the solution too strongly can be dealt with

to the situation with the 1/cutoff, no solution exists fow  reliably, while with the first method solutions that are quali-

-1

[2
A(t)= \/g* )\*M{g\/g*)\*M_ K

#1/3, not even ifK=0. tatively different from the classical ones can also be investi-
gated.
2. The perturbative regime The starting point is the classical Friedmann equation
In the perturbative regime we have 2
a K Ag N MGy B1
G(t)=Gy— wG3a 2+ -, (A10) al] "a? 3  g3g3tow B
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from which p has been eliminated via the conservation law tost<1/\A,. (B8)
(3.26),
This interval contains the late part of the Planck era where
M quantum gravity still plays a role, as well as the classical era
p= —87-ra3+3‘”' (B2) before the effect of the cosmological constant becomes

dominant. During this epoch the produst? is small so

that it is legitimate to base the improvement on the expanded

We restrict our analysis to the cake=0 for which the so- i . )
lutions to Eq.(B1) can be expressed in terms of elementary/©rM of the classical solution, EqB6). Thus the RG im-
proved scale factor reads

functions. Omitting the subscript “class,” they regds al-
ways, for the initial conditiora(0)=0]:
(i) ForK=0, Ay=0: 1/(3+3w)

aimp(t):{;(l-l—w)z,/\/ltz [G(1)]YE+3w)

1/(3+3w)
t2/(3+3W). (BB)

a(t)={§(1+w)2MG
4 0
X

1+w
1+ TA(t)tzJr . ] (B9)
Hence, for anyw,

Using the 1f cutoff, G(t) and A(t) are given by Eqs(3.9)
and(3.10, respectively. Hence we find the result

PO (L w)ZG, e &4
(i) Fork=0, A¢>0: 3 ) PO 1w
aimp(t): Z(1+W) MGot 1+ 12 Aot
MGO 1/(3+3w)
a(t):[ A, {cosh (1+w)y3At]—1} (1+w)7/_ > to 2+... ®10
(B5) 12 3(1+w)/lt '

We shall need the Taylor expansion of this scale factor fo

early timest<1/\Ay: [Fhe leading quantum correction is a modificatiora¢f) by

a term of order {/t)?. Within the present approach, its
prefactor is completely undetermined, however. It involves
the parameteg¢ which cannot be fixed by renormalization
group arguments alone. The method of improving equations
is much more powerful in this respect; it allows us to express

1/(3+3w)

a(t)=[§(1+w)2MG t2
4 0

1+w =, 2.4 & in terms ofw and v. In a kind of hybrid calculation we
X1+ 12 Aot™+O(Agth) 1. (B6)  could use this result in order to rewrite E(B10). This
would change the terms inside the curly brackets of Eq.
(iii) ForK=0, A¢<0: (B10) to
MG, 1/(3+3w) 52 ()2
a(t)=[— 1—cog (1+w)y3|Alt] . _ P
3TAg |[Aolt]} - w1 T (B1D)

(B7)

Next we shall discuss the improvement of these solution§We also took the other one of the consistency conditions
in the perturbative and in the fixed point regimes, respect4.6), Ao=0, into account.

tively. We use the identificatiok= &/t throughout. It is important to note that a correction term of the type
(B11) could not have been found as a solution to the im-

proved equation unless one included irG(t) and A(t)
_ _ ) higher orders of thep/t expansion. The reason is the re-
In this regime,t may be close to the Planck time so that markable fact, discussed in Sec. IV, that the classi&)

quantum effects are important, but it is assumed that thgrises as a consequence of the lowest order nontrivial time
lowest order terms in thép/t expansion are sufficient to  dependence iG(t) andA(t).

describe themt=tp,. Furthermore we assume that, as in the
real Universe A is smaII:A0<m,2,|. The epoch we are in-
terested in is characterized by

1. The perturbative regime

2. The fixed point regime

Let us look at the improvement fartp,. In this regime
the renormalization effects are strong and strictly speaking it
For definiteness we assume thigg>0. is not clear if the results are reliable. We start from the clas-
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sical K=0, Ay>0 solution(B5) and substitutés,— G(t), It is reassuring that apart from the details of the prefactor
Ap—A(t) according to Eq(3.12 and Eq.(3.13, respec- Eq. (B12) coincides with our previous result obtained by
tively. This substitution turns the cogh(time dependence improving equations, Eq4.203.

into a purely algebraic one: To summarize: Improving the classical FRW solutions
oy 1/(3+3w) shows that fot\,0 the onset of the Planck era is character-
O« N ized by a ¢p/t)? correction to the scale factor. In the fixed
Aimp(t) =| —=—{cosh (1+w)V3\,]—1 . P i ; .
mp(t) 2N, {costi(1+w) #1712} point regime, this approach provides an independent confir-
mation of the picture we obtained by RG improving the
X t4(3+3w)

(B12) equations.

[1] For a recent review, see R. Brandenberger, hep-ph/9910410.[20] D. Dou and R. Percacci, Class. Quantum Gra®, 3449

[2] M. Reuter, Phys. Rev. 37, 971(1998; for a brief introduc- (1998.
tion, see M. Reuter, in “Annual Report 2000 of the Interna- [21] L.N. Granda and S.D. Odintsov, Grav. Cosm#|.85 (1998;
tional School in Physics and Mathematics, Thilisi, Georgia,” Phys. Lett. B409, 206 (1997); L.N. Granda, Europhys. Lett.
hep-th/0012069. 43, 487 (1998; A. Bytsenko, L.N. Granda, and S. Odintsov,
[3] W. Souma, Prog. Theor. Phys02 181 (1999. JETP Lett.65, 600 (1997); S. Falkenberg and S.D. Odintsov,
[4] A. Bonanno and M. Reuter, Phys. Rev.62, 043008(2000. Int. J. Mod. Phys. AL3, 607 (1998.
[5] S. Weinberg, ifGeneral Relativity, an Einstein Centenary Sur- [22] A. Bonanno, Phys. Rev. B3, 7373(1996; A. Bonanno and
vey, edited by S. W. Hawking and W. IsragCambridge Uni- D. Zappalaibid. 55, 6135(1997).
versity Press, Cambridge, England, 1279 [23] D. Dalvit and F. Mazzitelli, Phys. Rev. B0, 1001(1994); 52,

[6] J. Julve and M. Tonin, Nuovo Cimento Soc. Ital. Fis.4B
137(1978; E.S. Fradkin and A.A. Tseytlin, Nucl. PhyB201,
469 (1982; E.G. Avramidi and A.O. Barvinsky, Phys. Lett.
159B, 269(1985.

[7] I.L. Buchbinder, S.D. Odintsov, and I|.L. Shapiiifective Ac-
tion in Quantum Gravity(Institute of Physics, Bristol, 1992

[8] T. Goldman, J. Pez-Mercader, F. Cooper, and M. Martin-

2577(1995.

[24] B.L. Nelson and P. Panangaden, Phys. Re2501019(1982);
29, 2759(1984); Gen. Relativ. Gravitl6, 265 (1984).

[25] M. Reuter and C. Wetterich, Phys. Lett. 188 38 (1987.

[26] A. Beesham, Nuovo Cimento Soc. Ital. Fis. 9B, 17 (1986);
Int. J. Theor. Phys25, 1295(1986); A.-M.M. Abdel-Rahman,

Nieto, Phys. Lett. B281, 219(1992. Gen. Relativ. Gravit22, 655(1990; M.S. Berman, Phys. Rev.
[9] O. Bertolami, J.M. Moura, and J. Pez-Mercader, Phys. Lett. D 43, 1075(1991; Gen. Relativ. Gravit23, 465(1991; R.F.
B 311, 27 (1993; O. Bertolami and J. Garcia-Bellido, Nucl. Sistero,ibid. 23, 1265(1991); T. Singh and A. Beesharibid.
Phys. B(Proc. Supp). 48, 122(1996; Int. J. Mod. Phys. 5, 32, 607 (2000; A. Arbab and A. Beeshamipid. 32, 615
363(1996. (2000.
[10] A. Bonanno and M. Reuter, Phys. Rev.6D, 084011(1999. [27] D. Kalligas, P. Wesson, and C.W.F. Everitt, Gen. Relativ.
[11] M. Reuter and C. Wetterich, Nucl. PhyB417, 181 (1994); Gravit. 24, 351(1992.
B427,291(1994); B506, 483(1997); for the original “average  [28] H. Bondi and J. Samuel, gr-qc/9607009; for a comprehensive
action” of gauge theory se®391, 147 (1993; B408 91 account, seMach’s Principle edited by J. Barbour and H.
(1993. Pfister(Birkhauser, Boston, 1995
[12] M. Reuter, Phys. Rev. B3, 4430(1996; Mod. Phys. Lett. A [29] M. Reuter and C. Wetterich, Phys. Rev.58, 7893(1997.
12, 2777(1997. [30] N.C. Tsamis and R.P. Woodard, Phys. Lett3@l, 351(1993;
[13] S. Falkenberg and B. Geyer, Phys. Re\v6® 085004(1998. Ann. Phys(N.Y.) 238 1 (1995; I. Antoniadis and E. Mottola,
[14] For a review, see J. Berges, N. Tetradis, and C. Wetterich, Phys. Rev. D45, 2013(1992.
hep-ph/0005122. [31] S. Weinberg, Rev. Mod. Phy8&1, 1 (1989; astro-ph/9610044;
[15] C. Wetterich, Gen. Relativ. GraviB0, 159 (1998. V. Sahni and A. Starobinsky, Int. J. Mod. Phys. © 373
[16] M. Reuter and F. Saueresdig preparation (2000.
[17] O. Lauscher and M. Reuter, Phys. Rev6B 025013(2002. [32] S. Weinberg,Gravitation and CosmologyWiley, New York,
[18] O. Lauscher and M. Reutéin preparation 1972.

[19] A. Polyakov, inGravitation and QuantizationProceedings of [33] T. Padmanabhar§tructure Formation in the Universg€Cam-
the Les Houches Summer School, Les Houches, France, 1992, bridge University Press, Cambridge, England, 1995
Vol. 57, edited by J. Zinn-Justin and B. Juliorth-Holland, ~ [34] I. Antoniadis, P. Mazur, and E. Mottola, Phys. Rev. L&f, 14
Amsterdam, 1995 hep-th/9304146. (1997.

043508-20



