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Scalar measure of the local expansion rate
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We define a scalar measure of the local expansion rate based on how astronomers determine the Hubble
constant. Our observable is the inverse conformal d’Alembertian acting on a unit ‘‘standard candle.’’ Because
this quantity is an integral over the past light cone of the observation point it provides a manifestly causal and
covariant technique for averaging over small fluctuations. For an exactly homogeneous and isotropic spacetime
our scalar gives minus one-half times the inverse square of the Hubble parameter. Our proposal is that it be
assigned this meaning generally and that it be employed to decide the issue of whether or not there is a
significant quantum gravitational back reaction on inflation. Several techniques are discussed for promoting the
scalar to a full invariant by giving a geometrical description for the point of observation. We work out an
explicit formalism for evaluating the invariant in perturbation theory. The results for two simple models are
presented in subsequent papers.
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I. INTRODUCTION

Quantum gravitational back reaction offers an attract
model of cosmology. The idea@1# is that there is no fine-
tuning of the cosmological constantL or of scalar potentials
In fact there need not be any scalars. Inflation begins in
early universe becauseL is positive and not unnaturally
small. Inflation eventually ends due to the accumulation
gravitational attraction between long wavelength virtu
gravitons which are pulled apart by the rapid expansion
spacetime. Inflation persists for many e-foldings beca
gravity is a weak interaction, even at typical inflationa
scales, and it requires an enormous accumulation of gra
tional potential to overcome this. Since the process is in
red it can be studied reliably using quantum general rela
ity, without regard to the ultraviolet problem@2#. Because the
model has only a single free parameter—GL, whereG is
Newton’s constant—it can be used to make unique and t
able predictions@3#.

The physical mechanism of back reaction requires qua
which are massless on the scale of inflation but not cla
cally conformally invariant. This rules out competition fro
most ordinary matter, but it does allow an effect from lig
minimally coupled scalars. It has been suggested that sig
cant back reaction can occur in scalar-driven inflation, e
at one loop@4,5#. It has also been proposed that scalar s
interactions can give a significant back reaction at hig
loops inL-driven inflation@6#. All these models involve fine
tuning to keep the scalar light compared with the scale
inflation, so they are probably not relevant to phenomen
ogy. However, scalars have the great advantage of b
comparatively simpler to study than gravitons.

With any model of back reaction one encounters the pr
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lem of reliably inferring its impact on the cosmological e
pansion rate. For a perfectly homogeneous and isotropic
ometry one would compute the expansion rate
transforming to co-moving coordinates, reading off the sc
factor, and then taking its logarithmic time derivative. B
back reaction derives from the gravitational response
quantum fluctuations, and these break homogeneity and
ropy. The notion of a cosmological expansion rate must
viously have a reasonable generalization since the cur
universe is not perfectly homogeneous and isotropic, yet
tronomers mean something by measuring the Hubble c
stant. However, it is not so clear how to represent this
servable in terms of quantum gravitational operators.

Previous studies of back reaction have tried to resolve
problem by averaging over fluctuations to produce an eff
tive geometry which is homogeneous and isotropic. Then
cosmological expansion rate is computed from this effect
geometry in the usual way. In one method the averagin
accomplished by taking the expectation value of the ga
fixed metric in the presence of a state which is homogene
and isotropic@2,6–8#. Then theexpectation valueof the met-
ric must be homogeneous and isotropic even though it is
average over quantum fluctuations which are not. The o
technique is to enforce homogeneity and isotropy by s
tially averaging the gauge fixed metric over a surface of
multaneity@4,5#.

Serious objections have been raised to both techniq
Unruh dislikes using the gauge-fixed metric@9#, either in an
expectation value or in a spatial average. He argues that
tain variations of the gauge fixing condition change the
pectation value~or spatial average! of the metric in ways
which cannot be subsumed into a coordinate transformat
Unruh therefore maintains that even forming the expecta
value ~or spatial average! of the metric into coordinate in-
variant quantities does not purge these quantities of ga
dependence. He would prefer that back reaction be stu
with an operator which is itself an invariant, before takin
©2002 The American Physical Society07-1
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the expectation value. He also disbelieves that averag
over a surface of simultaneity can be relevant to what a lo
observer perceives.

A different objection has been raised by Linde. He is w
ing to use the gauge fixed metric—and both men accept
validity of quantum field theory in determining the time ev
lution of the Heisenberg field operators. However, Linde s
pects that inferring back reaction with expectation values
vites a Schro¨dinger cat paradox. This is because inflationa
particle production leaves the long wavelength modes
highly squeezed states whose behavior is essentially cl
cal. No matter what Heisenberg operator is used to mea
the cosmological expansion rate, Linde would prefer to s
chastically@10# sample its probability distribution rather tha
take its expectation value.

The present work is an attempt to address the prece
objections. To avoid potential problems from using the gau
fixed metric we propose to infer the local expansion r
instead from the functional inverse of the conform
d’Alembertian:

hc[
1

A2g
]m~A2ggmn]nt !2

1

6
R. ~1!

This operator, acting on a unit ‘‘standard candle,’’

A@g#~x![
1

hc
1, ~2!

averages over the past light cone, as astronomers do w
compiling a Hubble diagram. In the slow roll approximatio
the observable gives2 1

2 H22 for an arbitrary homogeneou
and isotropic universe. It is therefore a reasonable candi
for measuring the local expansion rate when the univers
not precisely homogeneous and isotropic.And it is a scalar
function of the observation pointxm.

Nothing can be done about the noninvariance associ
with the fixed initial value surface upon which the Heise
berg state is defined. However, invariance under the subc
of transformations which preserve the initial value surfa
can be achieved by geometrically specifying the point
whichA@g# is observed. In scalar-driven inflation this can
done by defining zero-shift surfaces of simultaneity so t
the quantum inflaton agrees with its classical value.~Using
these coordinates was Unruh’s suggestion.! In more general
models one can build invariant surfaces of simultaneity us
the inverse minimally coupled d’Alembertian. The expec
tion value of the resulting invariant can then be evaluated
else its probability distribution can be sampled stochastica

In Sec. II we motivate the scalar and show that it has
proper correspondence limit for exactly homogeneous
isotropic geometries. Section III discusses the correcti
needed to geometrically specify the observation point.
Sec. IV we expand the scalar in powers of the metric fl
tuations. Section V concerns the retarded Green’s funct
which appear in this expansion. We discuss a somew
more complicated but considerably sharper observable
Sec. VI. Our conclusions comprise Sec. VII. Two subsequ
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papers give the results of applying the observable to mo
of scalar-driven@11# andL-driven @12# inflation.

II. MOTIVATING THE SCALAR

Since we are interested in the effect of back reaction
inflation it is reasonable to consider perturbations abou
background geometry which is homogeneous, isotropic
spatially flat,

ds0
252dt21e2b(t)dxW•dxW5a2~h!~2dh21dxW•dxW !. ~3!

There is general agreement that the cosmological expan
rate for this background isH5ḃ5a8/a2. Dots denote co-
moving time derivatives while primes represent conform
time derivatives. We normalize the initial (t50 or h5h I)
scale factor to unity.

The full metric has the form

gmn~h,xW ![a2~h!g̃mn~h,xW ![a2~h!@hmn1kcmn~h,xW !#,
~4!

wherehmn is the spacelike Lorentz metric andk2[16pG is
the loop counting parameter of quantum gravity. Fluctuatio
reside in the pseudo-graviton field,cmn(h,xW ), whose indices
are raised and lowered with the Lorentz metric. What
seek is a scalar functional of the metric which provides
reasonable extrapolation for how a localized observer wo
measure the cosmological expansion rate whencmn(h,xW )
Þ0.

It is worth explaining why the Ricci scalar is not satisfa
tory. R(x) is certainly scalar, and it is closely related to th
Hubble constant for the case of perfect homogeneity
isotropy,

R→12H216a21H856a23a9. ~5!

However, no local curvature invariant can account for t
ability of observers to perceive the larger universe at cosm
logical distances by looking back along their past lig
cones. Einstein’s equations set the Ricci scalar to28pG
times the trace of the stress tensor. This actually vanis
during a phase of radiation-dominated expansion. Nor d
the local value ofR(x) have much to do with what an ob
server can see at cosmological distances. For example,
‘‘empty’’ space within our solar system contains about
hydrogen atoms per cubic centimeter. Were we to infer
rate of cosmological expansion usingR(x) the result would
correspond to a Hubble constant about a hundred tim
larger than the actual value,

8pGr;3310230
1

s2
;S 53104

km

s MpcD
2

. ~6!

We stress that there must be a reasonable solution to
problem because the current universe is not precisely ho
geneous and isotropic, yet human astronomers still claim
be able to measure the Hubble constant. It is instructive
review one of their simpler techniques. Consider light em
7-2
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SCALAR MEASURE OF THE LOCAL EXPANSION RATE PHYSICAL REVIEW D65 043507
ted at (h1 ,xW1) and received at (h0 ,xW0). The observed quan
tities are the redshiftz and the fluxF. If the source luminos-
ity L is known, these two quantities can be related under
assumption of perfect homogeneity and isotropy. Astro
mers simply define the local Hubble constant so as to m
the same relation true in the presence of fluctuations. T
they average over many sources.

Deriving the relation betweenF andz is a standard exer
cise @13#. Assuming perfect homogeneity and isotropy t
physical distance between source and observer at timeh0
would be

Dr[a0ixW02xW1i5a0~h02h1!. ~7!

The measured flux is the flat space formula, corrected for
redshifts of energy and rate,

F5S 1

11zD
2 L
4pDr 2

. ~8!

One inverts this relation to solve for the product of 11z
timesDr , which is known as the ‘‘luminosity distance,’’

dL[~11z!Dr 5A L
4pF . ~9!

If both observer and source are at rest in conformal coo
nates then the observed redshift would be

z5
a0

a~h1!
21. ~10!

Its relation toDr comes from the scale factor’s Taylor e
pansion,

a~h1!5a0F12H0Dr 1
1

2
~12q0!H0

2Dr 21•••G , ~11!

where the current Hubble constant and deceleration par
eter are

H0[
a08

a0
2

, q0[12
a0a09

a08
2

. ~12!

Inverting to solve forDr gives

H0Dr 5z2
1

2
~11q0!z21••• ~13!

and multiplication by 11z results in the luminosity distance

H0dL5z1
1

2
~12q0!z21•••. ~14!

Plotting z againstdL for relatively smallz gives a straight
line whose inverse slope is the Hubble constant.

It is not simple to identify invariants which represent t
observed quantitiesz and F for an arbitrary metric. If one
considers the transmission process in terms of individ
04350
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photons then the redshift could be formulated as follows.
us denote the worldlines of the emitter and observer as fu
tions of their respective proper times byXem

m (t) andXobs
m (t).

Recall that proper times are normalized to obey,

gab„X~t!…Ẋa~t!Ẋb~t!521, ~15!

where the overdots stand for differentiation with respect tot.
Now consider a photon which was emitted at proper timet1
and reaches the observer at proper timet0. Of course the
affine parameters of the photon’s worldlineXph

m (s) cannot
be a proper time since the 4-velocity must be lightlike,

gab„Xph~s!…Ẋph
a ~s!Ẋph

b ~s!50. ~16!

Given any functionXph
m (s) which obeys Eq.~16! as it inter-

polates fromXem
m (t1)5x1

m to Xobs
m (t0)5x0

m , one makes a
reparametrization of the affine parameter~the new value of
which we shall continue to calls) so as to enforce the geo
desic equation,

Ẍph
m ~s!1G rs

m
„Xph~s!…Ẋph

r ~s!Ẋph
s ~s!50. ~17!

The redshift experienced by such a photon is given by

11z5
grs~x1!Ẋph

r ~s1!Ẋem
s ~t1!

gmn~x0!Ẋph
m ~s0!Ẋobs

n ~t0!
. ~18!

The flux is essentially the response, at the observer’s
cation, to the~presumed known! source’s current density
Jm(x). One begins by solving Maxwell’s equations for th
field strength tensorFmn(x),

Fmn
;n52Jm , Fab;g1Fbg;a1Fga;b50. ~19!

These equations are invariant under local conformal res
ings,

Fmn→Fmn , Jm→V2Jm , gmn→V2gmn , ~20!

and they can be solved in terms of something we shall
the conformal tensor d’Alembertian,

mnhc
rs[ mnhrs2d m

r R n
s 2d n

s R m
r 12R m n

r s . ~21!

The solution is

Fmn5mnS 1

hc
D rs

~2Jr;s1Js;r!. ~22!

One gets the stress tensor from the field strength tensor

Tmn5S d m
a d n

b 2
1

4
gmngabDgrsFarFbs . ~23!

The Poynting vector is obtained by contracting the obse
er’s 4-velocity into the electromagnetic stress tensor,

Sm5Tmn~x0!Ẋn~t0!. ~24!
7-3
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L. R. ABRAMO AND R. P. WOODARD PHYSICAL REVIEW D65 043507
And the measured flux is the norm of the Poynting vector
the orthogonal projection of the observer’s metric,

F 25SmSn~gmn1Ẋobs
m Ẋobs

n !. ~25!

Astronomers measure electromagnetic radiation beca
it is available to them, but this choice of observable comp
cates the metric dependence of the operators which repre
their measurements. For example, the tensor characte
Maxwell’s field strength is why one has to invert the tens
conformal d’Alembertian in Eq.~22!, rather than its simpler
scalar cousin. It is also why the response field has to
squared in Eq.~23!. Other complications arise from the fa
that the source luminosities are not precisely known, and
their distribution throughout space is not uniform.

The preceding complications pose important limitatio
on observational astronomy but they need not restrict
choice of the operator with which to probe the theory. For
the really essential feature is to measure the respons
some long range field to known sources distributed along
observer’s past light cone. We can retain this feature
vastly simplify our labor by observing a conformally couple
scalar, rather than a conformally coupled tensor. We
achieve a further simplification by taking the source to b
uniformly distributed monopole, rather than a sparse dis
bution of dipoles of varying strength. Then a single measu
ment of the scalar represents a full sky average and we
dispense with the complication of having to tabulate t
quantities (z andF) for each source point. We call the scal
A and define it to obey the equation,

hcA51, ~26!

wherehc is the conformal d’Alembertian~1!. If we define
the scalar and its first time derivative to vanish on the ini
value surface the result is just the integral of the retar
conformal Green’s function,

A@g#~x!5
1

hc
1. ~27!

It remains to show thatA@g#(x) has the right correspon
dence limit for exact homogeneity and isotropy. In this ca
the conformal d’Alembertian reduces to the form

hc→a23]2a, ~28!

where]2[hmn]m]n is the flat space d’Alembertian in con
formal coordinates. The operator becomes even simpler
ing on spatial constants. One consequence is that Eq.~26!
can be solved by simple integration,

A0~h,xW !52a21~h!E
h I

h
dh8E

h I

h8
dh9a3~h9!

52e2b(t)E
0

t

dt8e2b(t8)E
0

t8
dt9e2b(t9). ~29!

It turns out that Eq.~29! can be evaluated quite general
in what is known asthe slow roll approximation. This is
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obeyed by all successful models of inflation and it amou
to neglecting all higher comoving time derivatives of th
logarithmic scale factorb(t) with respect to the first,

UdNb

dtNU!~ ḃ!N ;N>2. ~30!

Most operations of ordinary calculus can be done explic
in the slow roll approximation. For example, the followin
trivial rearrangement:

e2b5
d

dt S e2b

2ḃ
D 1e2b

b̈

2ḃ2
, ~31!

allows us to express the initial integrand of Eq.~29! as a total
derivative plus a term which is negligible in the slow ro
approximation. It would be straightforward to develop a s
ries in slow roll corrections but the first is generally suf
cient for the inflationary setting in which we wish to emplo
the new observable. With positive exponents and any sign
cant amount of inflation it is also possible to ignore the low
limit,

E
0

t

dt8e2b(t8)5
e2b(t8)

2ḃ~ t8!
H 11

b̈~ t8!

2ḃ2~ t8!
1•••JU t

0
'

e2b(t)

2ḃ~ t !
.

~32!

We can therefore apply the slow roll approximation to E
~29! to express the observable in terms of the Hubble c
stant,

A0~h,xW !'2
1

2ḃ2~ t !
. ~33!

In analogy to astronomical practice the local Hubble const
in the presence perturbations is defined so as to preserve
relation,

A@g#~x![2
1

2H2~x!
. ~34!

Although we are chiefly interested in applying the ne
observable during inflation it is worth noting that the slo
roll result~34! is valid, up to a number of order one, for qui
general geometries. For example, with general power
expansion the logarithmic scale factor and Hubble cons
are

b~ t !5s lnS 11
HIt

s D , ḃ~ t !5HI S 11
HIt

s D 21

, ~35!

whereHI is the initial Hubble constant ands is a constant.
With this simple time dependence we can perform the in
grals in Eq.~29! exactly,
7-4
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SCALAR MEASURE OF THE LOCAL EXPANSION RATE PHYSICAL REVIEW D65 043507
Apower5
2s2

S s1
1

2D ~s12!

1

2ḃ2~ t !
1

s2

~s21!~s12!

e2b(t)

HI
2

2
s2

~s21!S s1
1

2D
e22b(t)

2HIḃ~ t !
. ~36!

The second and third terms become insignificant at late ti
and the first rapidly approaches Eq.~34! for larges. Even for
s5 2

3 the numerical factor is17 .

III. FIXING THE OBSERVATION POINT
GEOMETRICALLY

Even scalars depend upon the point at which they
observed. Part of this dependence is physical. The Hei
berg state is specified on a particular initial value surface
the geometrical relation of the observation point to this init
value surface can and should affect the result. The purpos
this section is to formulate the technology for imposing su
a relation.

Of course any method of describing points amounts
fixing a gauge; however, there is an important distinct
betweenad hoc gauge conditions and those which explo
some special feature of the particular system under study.
example, if the system includes a Sun then it is geometric
meaningful to take this star’s center as the spatial origin. I
therefore necessary to be as precise as possible abou
nature of the system under study.

The dynamical variables of our system include the me
gmn(x) and possibly also a scalar inflaton fieldw(x). Our
goal is to compute the expectation value of the opera
A@g# ~or to stochastically sample its probability distributio!
in the presence of a Heisenberg state which we shall ass
is homogeneous and isotropic. Since the only effective te
nique for making such a calculation is perturbation theory
shall also assume that the various quantum field operator
perturbations on a background which is homogeneous
isotropic,

w~h,xW !5w0~h!1f~h,xW !, ~37!

gmn~h,xW !5a2~h!@hmn1kcmn~h,xW !#.
~38!

Because geometrically significant gauge conditions can
volve nonlocal and nonlinear functionals of the fields, w
wish to preserve the option of carrying out the calculation
more convenient gauge. A simple technique for accompl
ing this is to define the observation point as the fie
dependent coordinate transformationYm@w,g#(x) such that
the transformed scalar~if there is one! and the transformed
metric,

w8~x![w„Y~x!…, ~39!
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gmn8 ~x![
]Yr

]xm

]Ys

]xn
grs„Y~x!…,

~40!

obey the geometrically significant gauge conditions. Th
one can evaluateA@g#(Y(x)) in any gauge and the resu
will be the same.

The existence of a fixed initial value surface~at h5h I)
suggests thatYm should be expressed as the composition o
temporal transformationh→t(h,xW ) followed by a purely
spatial transformationxi→x i(h,xW ). Surfaces of simultaneity
are defined by the conditiont(h,xW )5const, whilex i(h,xW )
traces out ‘‘the same’’ space point on the foliation of the
surfaces. The full transformation would be

Y0~h,xW !5t~h,xW !, Yi~h,xW !5x i
„t~h,xW !,xW…. ~41!

The problem’s homogeneity and isotropy implies that
space points are physically equivalent and we may as w
use orthogonal projection to define ‘‘the same’’ space po
This amounts to the conditiong0i8 50 and hence

05
]xk

]xi g0k~h,xW !1
]x j

]h

]xk

]xi gjk~h,xW !. ~42!

The relation can be simplified by multiplying with the in
verse Jacobian,

g0 j~h,xW !1
]x i

]h
gi j ~h,xW !50. ~43!

Whereupon multiplication by the inverse 3-metric results
the following first order~but nonlinear! differential equation,

]x i

]h
52~g21! i j g0 j~h,xW ! ~44!

52kc0i~h,xW !1k2~c0 jc j i !~h,xW !

2k3~c0kck jc j i !~h,xW !1•••. ~45!

Making the obvious choice of an initial condition gives a
integral equation whose iteration to any order is straightf
ward;

x i~h,xW !5xi2E
h I

h
ds~g21! i j g0 j~s,xW ! ~46!

5xi2kE
h I

h
dsc0i~s,xW !1k2E

h I

h
ds~c0 jc j i !~s,xW !

1k2E
h I

h
dsc0i , j~s,xW !E

h I

s

drc0 j~r,xW !1O~k3!.
~47!

Defining surfaces of simultaneity is less subtle f
L-driven inflation than for its scalar-driven cousin. Witho
back reaction the cosmological expansion rate is constan
L-driven inflation, so the effect is certainly real if one se
7-5
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progressive slowing under any timelike foliation. In th
scalar-driven case there is already slowing as the backgro
scalar rolls down its potential so one must be careful to co
pare the expansion rate with and without back reaction at
same physical time.

Since the value of the scalar determines the expan
rate without back reaction it seems reasonable to define
faces of simultaneity so that the full inflaton field agrees w
its background value,

w~t~h,xW !,xW ![w0~h!. ~48!

This can be solved perturbatively by first writing,

t~h,xW !5h1dt~h,xW !, ~49!

and Taylor expanding,

(
n51

` w0
(n)~h!

n!
~dt~h,xW !!n52 (

n50

`
f (n)~h,xW !

n!
„dt~h,xW !…n.

~50!

Inverting results in an expansion fordt in powers of the
quantum scalarf and its derivatives@all evaluated at (h,xW )#,

dt52
f

w8
1

ff8

w08
2

2
w09f

2

2w08
3

1O~f3!. ~51!

L-driven inflation can be included within the sam
scheme by employing a scalar functional of the metric w
monotonic time dependence in place of the dynamical sca
Perhaps the simplest of these ‘‘clock functions’’ makes use
the inverse minimally coupled d’Alembertian acting on t
Ricci scalar,

N@g#~x![2
1

4h
R. ~52!

We define surfaces of simultaneity so as to make the cl
agree with its background value, just as relation~48! does for
scalar-driven inflation,

N„t~h,xW !,xW…[N0~h!. ~53!

Figure 1 depicts the resulting foliation. To see th

FIG. 1. Invariant procedure to fix the observation point.
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N@g#(x) is a good clock in perturbation theory note th
N0(h)' ln„a(h)… in the slow roll approximation. This fol-
lows because the minimally coupled d’Alembertian takes
following form in a homogeneous, isotropic and spatially fl
geometry:

h[
1

A2g
]m~A2ggmn]n!→a24]m~a2hmn]n!. ~54!

When acting on functions of only time the inverse ofh
reduces to

1

h
→2E

h I

h
dh8a22~h8!E

h I

h8
dh9a4~h9!

52E
0

t

dt8e23b(t8)E
0

t8
dt9e3b(t9). ~55!

With no perturbations we therefore have

N0~h!5E
0

t

dt8e23b(t8)E
0

t8
dt9e3b(t9)S 3ḃ2~ t9!1

3

2
b̈~ t9! D .

~56!

Making the slow roll approximation gives

N0~h!'E
0

t

dt8e23b(t8)E
0

t8
dt9

d

dt9
@ ḃ~ t9!e3b(t9)# ~57!

'E
0

t

dt8ḃ~ t8!5b~ t !. ~58!

Before closing the section we should comment that th
is no problem in perturbation theory about evaluating an
erator such asA@g#(x) at a point such asYm@w,g#(x),
which is itself an operator. One merely expands in powers
the perturbatively small quantityYm(x)2xm. Only a finite
number of terms need be included to reach any fixed orde
perturbation theory. Note that the various operator produ
should be time ordered. This is because the functional in
gral of theC-number functionalA@g#(Y@w,g#(x)) is mani-
festly invariant as it is, and gives the expectation value of
time-ordered product of the corresponding operator.

IV. PSEUDO-GRAVITON EXPANSION

The purpose of this section is to expandA@g#(x) in pow-
ers of the pseudo-graviton fieldcmn(h,xW ). This is most eas-
ily accomplished by first expressinghc in terms of the con-
formally rescaled metric,

g̃mn~h,xW ![a22~h!gmn~h,xW !5hmn1kcmn~h,xW !. ~59!

We now writehc5a23Da, whereD and its expansion are

D[
1

A2g̃
]m~A2g̃g̃mn]n!2

1

6
R̃5]21kD11k2D21•••.

~60!
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The first two operators in the expansion are

D152cmn]m]n1S 2c ,a
ma 1

1

2
c ,mD ]m2

1

6
~c ,rs

rs 2c r
,r !,

~61!

D25cmaca
n ]m]n1S ~cabc a

m ! ,b2
1

2
cab,mcab

1
1

2
camc ,aD ]m2

1

6
R̃2 . ~62!

We remind the reader that pseudo-graviton indices are ra
and lowered by the Lorentz metric,hmn . Other notational
points are that the trace of the pseudo-graviton field isc
[c r

r and that the second order, conformally rescaled R
scalar is

R̃2[cab~cab g
,g 1c ,ab22c a,bg

g !1
3

4
cab,gcab,g

2
1

2
cab,gcgb,a2c ,b

ab c a,g
g 1c ,b

ab c ,a2
1

4
c ,ac ,a .

~63!

The next step is to factor]2 out of D,

D5]2S 11
1

]2
kD11

1

]2
k2D21O~k3!D . ~64!

Inverting D is now straightforward,

1

D 5
1

]2
2

1

]2
kD 1

1

]2
1

1

]2
kD1

1

]2
kD 1

1

]2

2
1

]2
k2D 2

1

]2
1O~k3!. ~65!

All this implies the following expansion for the scalar o
servable,

A@g#5a21
1

Da35A01kA11k2A21O~k3!. ~66!

A0 was worked out at the end of Sec. II. The next two ter
are

A1[2a21
1

]2
D 1

1

]2
a3, ~67!

A2[2a21
1

]2
D2

1

]2
a3

1a21
1

]2
D 1

1

]2
D 1

1

]2
a3. ~68!
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It should be noted that the pseudo-graviton field is n
free, nor are all of its components dynamical. The next s
after this would be to expandcmn(h,xW ) in terms of the fun-
damental dynamical degrees of freedom, whatever they h
pen to be. This obviously depends upon selecting a partic
model and must be postponed until this has been d
@11,12#.

V. RETARDED GREEN’S FUNCTIONS

The pseudo-graviton expansion of the previous sec
results in a series of terms which involve the inverse diff
ential operator 1/]2. The purpose of this section is to pre
cisely define the action of this operator. We also apply
slow roll approximation.

The first task is easily accomplished. The retarded Gree
function for the operator]2 is well known,

G~x;x8!52
u~Dh!

4pDx
d~Dh2Dx!, ~69!

whereDh[h2h8 andDx[ixW2xW8i . Since the initial value
surface is ath5h I we define the result of acting 1/]2 on an
arbitrary functionf (h,xW ) as

F 1

]2
f G ~h,xW ![2E

h I

h
dh8E d3x8

d~Dh2Dx!

4pDx
f ~h8,xW8!

~70!

52E
h I

h
dh8DhE d2n̂

4p
f ~h8,xW1Dhn̂!.

~71!

When the function depends only upon time we can re
a form similar to that of Sec. II. Making the substitutio
f (h,xW )→F(h) gives

F 1

]2
FG ~h,xW !52E

h I

h
dh8DhF~h8! ~72!

52E
h I

h
dh8~h2h8!

d

dh8
E

h I

h8
dh9F~h9!

~73!

52E
h I

h
dh8E

h I

h8
dh9F~h9!. ~74!

An important example is provided by the rightmost term f
each of theAn’s—]22a3. We can explicitly evaluate thes
terms by making use of the slow roll approximation,

F 1

]2
a3G ~h,xW !52E

0

t

dt8e2b(t8)E
0

t8
dt9e2b(t9)'

2eb(t)

2ḃ2~ t !
.

~75!
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The fact that this depends only uponh allows one to sim-
plify expressions in which derivatives act upon it. For e
ample, the contribution from the first term in Eq.~61! is

a21
1

]2
kcmn]m]n

1

]2
a352a21

1

]2
kc00a

3 ~76!

5a21~h!E
h I

h
dh8a3~h8!Dh

3E d2n̂

4p
kc00~h8,xW1Dhn̂!. ~77!

Further progress requires using the slow roll approxim
tion. It turns out, as one evaluates the various factors of 1]2

from left to right, that the various integrands upon whi
they act are always dominated by the universal initial fac
of a3. In typical gauges the pseudo-graviton field can grow
most like powers of ln(a). Although derivatives can some
times result in a net loss of powers of the scale factor, t
can never add such powers. Further, whenever even a s
power of a is lost the contribution which finally results t
A@g#(x) is exponentially suppressed and hence irrelevan
therefore suffices to consider terms of the form]22(a3f ) for
functions f (h,xW ) which grow less rapidly thata(h),

F 1

]2
a3f G ~h,xW !52E

0

t

dt8e2b(t8)DhE d2n̂

4p
f ~h8,xW1Dhn̂!.

~78!

Note thatDh andh8 are the following functions oft andt8:

Dh5E
t8

t

dt9e2b(t9), h85h I1E
0

t8
dt9e2b(t9). ~79!

BecauseDh vanishes att85t a single partial integration
fails to extract the leading order term in the slow roll a
proximation,

E
0

t

dt8e2b(t8)Dh f ~h8,xW1Dhn̂!

5e2b
Dh f

2ḃ
u0
t 2E

0

t

dt8e2b
d

dt8
FDh f

2ḃ
G . ~80!

The surface term vanishes at the upper limit and is expon
tially suppressed at the lower limit. The remaining integra
is

e2b
d

dt8
S Dh f

2ḃ
D 52

b̈

2ḃ2
e2bDh f 1

eb

2ḃ
$2 f 1Dh]0f

2Dhn̂•¹W f %. ~81!

The first term on the right is the original integrand times
term which is negligible in the slow roll approximation. O
the remaining terms only the one without the factor ofDh
survives at the upper limit after another partial integratio
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Since each additional partial integration produces eithe
factor of b̈/ḃ2 or of e2b the slow roll approximation of Eq.
~78! is

F 1

]2
a3f G ~h,xW !'E

0

t

dt8
eb(t8)

2ḃ~ t8!
E d2n̂

4p
f ~h8,xW1Dhn̂!,

~82!

'2
a~h!

2H2~h!
f ~h,xW !. ~83!

The vast simplification inherent in Eq.~83! derives from
the fact that the response of a conformally coupled scala
h5h0 to that part of the source ath5h1 redshifts as
a(h0)/a(h1). Hence only the most recent sources contrib
effectively. One can recapture the slow roll approximati
much more simply by rewriting the differential equation~26!
which definesA@g#(x),

A52
6

R S 12
1

A2g
]mA2ggmn]nAD . ~84!

Since the Ricci scalar is almost constant during inflation
leading order slow roll term—toall orders in the pseudo
graviton expansion—is contained in the reduction,A@g#(x)
→26/R(x).

VI. A BETTER OBSERVABLE

Simple expressions are nice but the results of the prev
section are too much of a good thing. To leading order in
slow roll approximation our new observable has turned
to be nothing more than26 over the Ricci scalar. The nex
order terms disrupt this correspondence but still give exp
sions which are local in the observation point. We criticiz
this sort of locality in Sec. II. A reasonable measure of t
cosmological expansion rate should not be dominated by
cal fluctuations. Of course small fluctuations are, by defi
tion, subdominant to the background, so one can still
A@g#(x) to measure back reaction during the first stages
inflation. However, the defect of too much locality has
relatively simple fix which we shall present in this sectio
We shall also refine the observable so that it gives
Hubble constant exactly for any homogeneous and isotro
geometry, without recourse to the slow roll approximation

The effective locality ofA@g#(x) derives from the fact
that conformal scalars redshift like the inverse scale fac
During inflation the scale factor grows so rapidly that on
the most recent sources matter much. A straightforward w
of avoiding this is by breaking conformal invariance. Su
pose we measure a minimally coupled scalarB@g#(x), whose
value and whose first derivative vanish on the initial val
surface, and which is driven by a sourceS(x),

hB~x!5S~x!. ~85!

For a homogeneous and isotropic geometry~3! the slow roll
approximation results in an almost uniformly weighted av
age over comoving time,
7-8
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1

h
S→2E

0

t

dt8e3b(t8)E
0

t

dt9e3b(t9)S~ t9! ~86!

'2E
0

t

dt8
S~ t8!

3ḃ~ t8!
. ~87!

It remains to identify a suitable source. Note that for
homogeneous and isotropic geometry~3! the nonzero com-
ponents of the Ricci tensor are

R00→23b̈23ḃ2, Ri j →~ b̈13ḃ2!gi j . ~88!

The trace of the spatial part has the curious property of g
ing a total derivative when multiplied bye3b,

3@ b̈~ t !13ḃ2~ t !#e3b(t)5
d

dt
@3ḃ~ t !e2b(t)#. ~89!

If the sourceS(x) reduces to minus one-third times this sp
tial trace, for a homogeneous and isotropic geometry, t
the minimally coupled scalar will reduce to the logarithm
scale factor exactly,

B@g#~x!→E
0

t

dt8e3b(t8)E
0

t8
dt9e3b(t9)@ b̈~ t9!13ḃ2~ t9!#

5b~ t !. ~90!

We can then obtain the Hubble constant by differentiat
with respect to comoving time.

The object we have just described is not quite a sc
because the spatial trace of the Ricci tensor is not. Howe
we can give the latter an invariant formulation by exploiti
the technology of Sec. III to define it in a special coordina
system which reduces to conformal coordinates for a ho
geneous and isotropic geometry. With the transformat
Ym@g#(x) we can define the spatial components of the me
and the Ricci tensor,

gi j8 ~x![
]Yr

]xi

]Ys

]xj
grs„Y~x!…,

Ri j8 ~x![
]Yr

]xi

]Ys

]xj
Rrs„Y~x!…. ~91!

The 3-curvature is just the inverse of the first contracted i
the second,

R@g#~x![~g821! i j Ri j8 ~x!, ~92!

and the minimally coupled scalar is

B@g#~x!5
1

h
S 2

1

3
RD . ~93!

Since conformal coordinates have zero shift we obviou
wish to use the same spatial transformation~46! as in Sec.
III. The temporal transformation requires a scalar clock fu
tion, the most uniformly applicable choice of which
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V@g#(x), the invariant volume of the past light cone as se
from the pointxm back to the inital value surface. Note th
it must be a good clock generally, not just in perturbati
theory, because the volume of the past light cone increa
monotonically under any timelike foliation.

We define V @g#(x) as the invariant integral over a
points which are connected tox8m by any future-directed,
non-space-like path.1 For a homogeneous and isotropic g
ometry this reduces to a single integral,

V @g#~x!→V0~h![
4

3
pE

h I

h
dh8V4~h8!~h2h8!3.

~94!

As in Sec. III, we define surfaces of simultaneity to ma
this relation persist in the presence of perturbations,

V„t~h,xW !,xW…[V0~h!. ~95!

We define the general conformal factor as the square
of the 00 component of the metric in these coordinates,

V@g#~x![Ag008 ~x!, ~96!

5
]t

]h
@g00„Y~x!…

2~g21! i j g0ig0 j„Y~x!…#1/2. ~97!

Since the coordinates have zero shift,g0i8 50, and it follows
thatV is precisely the factor needed to scale from conform
to comoving time. One possible definition for the Hubb
constant is therefore the comoving time derivative of t
scalarB evaluated in these coordinates,

H1@g#~x![V21@g#~x!
]

]h
B@g#„Y@g#~x!…. ~98!

Of course one might equally well base the observable
V@g#(x) now that we have it,

H2@g#~x![V21@g#~x!
]

]h
ln~V@g#~x!!. ~99!

One might instead employ the third root of the determin
of gi j8 (x). All of these are plausible measures for the cosm
logical expansion rate, all reduce exactly to the Hubble c
stant for homogeneous and isotropic geometries, and we
ticipate that all will give the same result as regards
existence or non-existence of a significant back reaction.
emphasize this multiplicity of plausible observables is as
should be because a similar situation exists in the many
ferent methods by which astronomers attempt to measure
Hubble constant.

1The path need not be a geodesic, nor does it have to be the
path which connectsx8m andxm.
7-9
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VII. DISCUSSION

Reliably quantifying the effect of back reaction on infl
tion poses a frustrating paradox. The possibility of an eff
derives from fluctuations in homogeneity and isotropy, b
these call into question precisely what is meant by the rat
cosmological expansion. Previous work has attempted to
solve the issue by averaging the gauge fixed metric, ei
over a surface of simultaneity@4,5# or over the range of
quantum fluctuations in a homogeneous and isotropic s
@2,6–8#. It has been objected that neither technique is ma
festly invariant, and also that the former procedure involv
superposing data unavailable to a local observer on the
face of simultaneity@9#.

In Sec. II we argued that both problems can be avoided
measuring the response of a noninteracting, conform
coupled scalar to a constant source. The scalarA@g#(x) is a
nonlocal functional of the metric which is obtained by sup
posing over the past light cone ofxm, just as astronomers d
in measuring the Hubble constant. Its phenomenological
terpretation also follows the standard practice in astrono
we define the locally observed rate of cosmological exp
sion to bear the same relation—Eq.~34!—to A@g#(x) for a
general metric as it does for a homogeneous and isotr
one. Of course the result will be a little different at differe
locations, just as we must expect the Hubble constant m
sured by human astronomers to disagree slightly with
value obtained from the different field of view available
their opposite numbers in the Coma Cluster. But nearby
servers will tend to agree because their past light co
largely overlap.

It should be noted that we are not adding a conform
scalar to whatever model of inflation is being probed. T
observable is only a functional of the metric used to po
invariant questions about the expansion rate; it does
change the dynamics of the model. Even if one insists
the scalar represents a sort of measuring device whose e
must be included, the strength of the constant source can
be adjusted so as to make this effect negligible. The requ
constant would simply appear on the right-hand sides of b
Eqs.~27! and ~34!,

A@g#~x!→ 1

hc
K[

2K

2H2~x!
, ~100!

so that the magnitude of the scalar could be made arbitra
small without affecting our determination of the local Hubb
constant.
y

ys

ys
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One can either compute the expectation value
A@g#(x)—or else stochastically sample its probabili
distribution—in the presence of a Heisenberg state which
assume to be homogeneous and isotropic. The passage
a scalar to an invariant can be achieved by geometric
fixing the observation point relative to the initial value su
face on which the Heisenberg state is defined. Because
points on the initial value surface are physically equivale
the problem reduces to orthogonally projecting between g
metrically specified surfaces of simultaneity. Two definitio
for such surfaces were presented in Sec. III, along with p
turbative expansions for the field-dependent observa
point Ym@w,g#(x) which can be used to fix the observatio
point when working an arbitrary gauge.

Sections IV and V developed the general machinery n
essary to evaluate the new observable perturbatively. We
phasize that these computations are imminently doable in
slow roll approximation. It remains to apply the technolo
to simple models of scalar-driven@11# and L-driven @12#
inflation.

An embarrassing postscript to these labors is that the s
roll approximation purgesA@g#(x) of its nonlocality. In fact
it reduces to26/R(x), which we initially rejected as being
dominated by local fluctuations. There is actually no obsta
to making use ofA@g#(x) in perturbation theory becaus
small fluctuations are, by definition, subdominant to the h
mogeneous background. However, one would still prefer
observable which represents a more evenly weighted ave
over the past light cone. Several alternatives are discusse
Sec. VI. We have taken the additional trouble to constr
them to reduce exactly to the Hubble constant for homo
neous and isotropic geometries, without recourse to the s
roll approximation.
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