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Scalar measure of the local expansion rate
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We define a scalar measure of the local expansion rate based on how astronomers determine the Hubble
constant. Our observable is the inverse conformal d’Alembertian acting on a unit “standard candle.” Because
this quantity is an integral over the past light cone of the observation point it provides a manifestly causal and
covariant technique for averaging over small fluctuations. For an exactly homogeneous and isotropic spacetime
our scalar gives minus one-half times the inverse square of the Hubble parameter. Our proposal is that it be
assigned this meaning generally and that it be employed to decide the issue of whether or not there is a
significant quantum gravitational back reaction on inflation. Several techniques are discussed for promoting the
scalar to a full invariant by giving a geometrical description for the point of observation. We work out an
explicit formalism for evaluating the invariant in perturbation theory. The results for two simple models are
presented in subsequent papers.
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I. INTRODUCTION lem of reliably inferring its impact on the cosmological ex-
pansion rate. For a perfectly homogeneous and isotropic ge-
Quantum gravitational back reaction offers an attractiveometry one would compute the expansion rate by
model of cosmology. The idefl] is that there is no fine- transforming to co-moving coordinates, reading off the scale
tuning of the cosmological constaator of scalar potentials. factor, and then taking its logarithmic time derivative. But
In fact there need not be any scalars. Inflation begins in théack reaction derives from the gravitational response to
early universe becausg& is positive and not unnaturally quantum fluctuations, and these break homogeneity and isot-
small. Inflation eventually ends due to the accumulation ofropy. The notion of a cosmological expansion rate must ob-
gravitational attraction between long wavelength virtualviously have a reasonable generalization since the current
gravitons which are pulled apart by the rapid expansion oliniverse is not perfectly homogeneous and isotropic, yet as-
spacetime. Inflation persists for many e-foldings becaus@onomers mean something by measuring the Hubble con-
gravity is a weak interaction, even at typical inflationary stant. However, it is not so clear how to represent this ob-
scales, and it requires an enormous accumulation of gravitaervable in terms of quantum gravitational operators.
tional potential to overcome this. Since the process is infra- Previous studies of back reaction have tried to resolve this
red it can be studied reliably using quantum general relativproblem by averaging over fluctuations to produce an effec-
ity, without regard to the ultraviolet problef@]. Because the tive geometry which is homogeneous and isotropic. Then the
model has only a single free parametésA-, whereG is  cosmological expansion rate is computed from this effective
Newton’s constant—it can be used to make unique and testgeometry in the usual way. In one method the averaging is
able predictiong3]. accomplished by taking the expectation value of the gauge
The physical mechanism of back reaction requires quantfixed metric in the presence of a state which is homogeneous
which are massless on the scale of inflation but not classiand isotropid2,6—8§. Then theexpectation valuef the met-
cally conformally invariant. This rules out competition from ric must be homogeneous and isotropic even though it is the
most ordinary matter, but it does allow an effect from light, average over quantum fluctuations which are not. The other
minimally coupled scalars. It has been suggested that signiftechnique is to enforce homogeneity and isotropy by spa-
cant back reaction can occur in scalar-driven inflation, evenially averaging the gauge fixed metric over a surface of si-
at one loop4,5]. It has also been proposed that scalar selfmultaneity[4,5].
interactions can give a significant back reaction at higher Serious objections have been raised to both techniques.
loops inA-driven inflation[6]. All these models involve fine  Unruh dislikes using the gauge-fixed meti@, either in an
tuning to keep the scalar light compared with the scale okxpectation value or in a spatial average. He argues that cer-
inflation, so they are probably not relevant to phenomenoltain variations of the gauge fixing condition change the ex-
ogy. However, scalars have the great advantage of beingectation value(or spatial averageof the metric in ways
comparatively simpler to study than gravitons. which cannot be subsumed into a coordinate transformation.
With any model of back reaction one encounters the probunruh therefore maintains that even forming the expectation
value (or spatial averageof the metric into coordinate in-
variant quantities does not purge these quantities of gauge
*Email address: abramo@theorie.physik.uni-muenchen.de dependence. He would prefer that back reaction be studied
"Email address: woodard@phys.ufl.edu with an operator which is itself an invariant, before taking
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the expectation value. He also disbelieves that averagingapers give the results of applying the observable to models
over a surface of simultaneity can be relevant to what a locabf scalar-driver{11] and A -driven[12] inflation.
observer perceives.
A different objection has been raised by Linde. He is will- II. MOTIVATING THE SCALAR
ing to use the gauge fixed metric—and both men accept the
validity of quantum field theory in determining the time evo- ~ Since we are interested in the effect of back reaction on
lution of the Heisenberg field operators. However, Linde susinflation it is reasonable to consider perturbations about a
pects that inferring back reaction with expectation values inbackground geometry which is homogeneous, isotropic and
vites a Schidinger cat paradox. This is because inflationaryspatially flat,
particle production leaves the long wavelength modes in L L
highly squeezed states whose behavior is essentially classi- ds5=—dt?+e®*Vdx-dx=a?(5)(—d»*+dx-dx). (3)
cal. No matter what Heisenberg operator is used to measure ] ) )
the cosmological expansion rate, Linde would prefer to sto- here is general agreement that the cosmological expansion
chastically{10] sample its probability distribution rather than rate for this background isl=b=a’/a®. Dots denote co-
take its expectation value. moving time derivatives while primes represent conformal
The present work is an attempt to address the precedingme derivatives. We normalize the initiat€0 or n= 7))
objections. To avoid potential problems from using the gaugecale factor to unity.
fixed metric we propose to infer the local expansion rate The full metric has the form
instead from the functional inverse of the conformal

d'Alembertian: 9 7.X)=8%(17)8 (7, X)=a% n)[vzw+f<df“y(77,>?)],( :
4
O.= La (N—gg*a,t) — ER_ (1)  Wherenp,, is the spacelike Lorentz metric and=167G is

NEr 6 the loop counting parameter of quantum gravity. Fluctuations

reside in the pseudo-graviton fielgdw(n,i), whose indices
This operator, acting on a unit “standard candle,” are raised and lowered with the Lorentz metric. What we
seek is a scalar functional of the metric which provides a
reasonable extrapolation for how a localized observer would

measure the cosmological expansion rate ij@g(n,i)

#0.

averages over the past light cone, as astronomers do when It is worth explaining why the Ricci scalar is not satisfac-
compiling a Hubble diagram. In the slow roll approximation tory. R(x) is certainly scalar, and it is closely related to the
the observable gives 3H 2 for an arbitrary homogeneous Hubble constant for the case of perfect homogeneity and
and isotropic universe. It is therefore a reasonable candidaigotropy,

for measuring the local expansion rate when the universe is ) 1 s,

not precisely homogeneous and isotropind it is a scalar R—12H"+6a "H'=6a "a". ®)

function of the observation poit”. owever, no local curvature invariant can account for the
Nothing can be done about the noninvariance associate'db.. ’ ) |
ility of observers to perceive the larger universe at cosmo-

with the fixed initial value surface upon which the Heisen-2&

berg state is defined. However, invariance under the s;ubcla:ls(%glcal d'.Stam.:e,S by Io_okmg back alqng their past light
cones. Einstein’s equations set the Ricci scalar-®7G

of transformations which preserve the initial value surface; ) .
can be achieved by geometrically specifying the point atimes the trace of the stress tensor. This actually vanishes
which A[ g] is observed. In scalar-driven inflation this can bedhurl?g al ph?se oigradﬁuon-domlr??teg expt?]n&ﬁni Nor goes
done by defining zero-shift surfaces of simultaneity so thafne local value o (x) ave much 1o do with what an ob-
the quantum inflaton agrees with its classical vallésing SErver can see at. cgsmologmal distances. For. example, even
these coordinates was Unruh’s suggesjidm.more general ‘empty” space within our solar_system contains al_)out 10
models one can build invariant surfaces of simultaneity usin ydrogen atoms per cubic c.entlmt_ater. Were we to infer the
ate of cosmological expansion usifRfx) the result would

the inverse minimally coupled d’Alembertian. The expecta- d Hubb| b hundred i
tion value of the resulting invariant can then be evaluated, ?j;orrespon to a Hubble constant about a hundred times

else its probability distribution can be sampled stochasticall arger than the actual value,
In Sec. Il we motivate the scalar and show that it has the

proper correspondence limit for exactly homogeneous and 87er~3><10*3°£~

isotropic geometries. Section Ill discusses the corrections

needed to geometrically specify the observation point. In

Sec. IV we expand the scalar in powers of the metric fluc- We stress that there must be a reasonable solution to this

tuations. Section V concerns the retarded Green'’s functiongroblem because the current universe is not precisely homo-

which appear in this expansion. We discuss a somewhajeneous and isotropic, yet human astronomers still claim to

more complicated but considerably sharper observable ibe able to measure the Hubble constant. It is instructive to

Sec. VI. Our conclusions comprise Sec. VII. Two subsequenteview one of their simpler techniques. Consider light emit-

1
A[g](x)ED—cl, )

2
5x 100 <™ ) . ®
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ted at (7,,X,) and received at#,,X,). The observed quan- Photons then the redshift could be formulated as follows. Let
tities are the redshift and the fluxF. If the source luminos- Us denote the worldlines of the emitter and observer as func-
ity £ is known, these two quantities can be related under théons of their respective proper times By, 7) andXg,{7).
assumption of perfect homogeneity and isotropy. AstronoRecall that proper times are normalized to obey,
mers simply define the local Hubble constant so as to make , ,
the same relation true in the presence of fluctuations. Then UapX(T)XA(T)XP(7) =~ 1, (19
they average over many sources. _ o ,

Deriving the relation betwee andz is a standard exer- where the overdots stand for differentiation with respect.to
cise [13]. Assuming perfect homogeneity and isotropy theNOw consider a photon which was emitted at proper time

physical distance between source and observer at e and reaches the observer at proper time Of course the
would be affine parameter of the photon’s worldlineX{(o) cannot

be a proper time since the 4-velocity must be lightlike,

Ar=ag|xo—X4l|=ao( 70— 71)- (7 . .
JupXpr(0)XpH(0) XB(0) =0. (16)
The measured flux is the flat space formula, corrected for the
redshifts of energy and rate, Given any functionXfj(o) which obeys Eq(16) as it inter-
polates fromX4 (71) =x{ to X5, {79)=X§, one makes a
(1 e reparametrization of the affine paramettite new value of
14z azar? ®  \which we shall continue to calf) so as to enforce the geo-

desic equation,
One inverts this relation to solve for the product of 1

timesAr, which is known as the “luminosity distance,” Xbi(0) + T4, (Ko o) Xb( ) Xp(0)=0. (1)
L The redshift experienced by such a photon is given by
d=(1+2Ar=\/——. 9
A F . o
147 Jpo( X)) XPH( 1) Xgl T1) (18
If both observer and source are at rest in conformal coordi- QW(Xo)XSh(Uo)XZbg 7o) '

nates then the observed redshift would be

The flux is essentially the response, at the observer’s lo-
=—— 1. (10)  cation, to the(presumed knownsource’s current density
a( 1) J#(x). One begins by solving Maxwell's equations for the
field strength tensoF ,,(x),

dp
z

Its relation toAr comes from the scale factor’s Taylor ex-

pansion, Fo'==3., FapyTFpyatFyas=0. (19
1 2012 Th i invariant under local conformal rescal
a(ny)=ap 1_H0Af+§(1—q0)HoAr +...|, (11  These equations are invariant under local conformal rescal-
ings,
where the current Hubble constant and deceleration param- Fo—Fu 3,—0%,, g,—0%,,, (20
eter are
) , and they can be solved in terms of something we shall call
_ . 803 the conformal tensor d’Alembertian,
HO=¥, do=1-—,. (12
0 0 o_— o o o 0
wg7=,,0/7-6" R7, =67 R +2R" 7 . (21

Inverting to solve forAr gives o
The solution is

po

1

1
HOAr:z—§(1+qo)zz+... (13
F,uV:;LV Dc

(=36t J5p)- (22

and multiplication by H z results in the luminosity distance,
One gets the stress tensor from the field strength tensor,

1
2 T
)%

5¢ SP _1 aB|qpo

n” v 4gMVg g Fa’pF,BO" (23)

Plotting z againstd, for relatively smallz gives a straight

line whose inverse slope is the Hubble constant. The Poynting vector is obtained by contracting the observ-
It is not simple to identify invariants which represent the er’s 4-velocity into the electromagnetic stress tensor,

observed quantitieg and F for an arbitrary metric. If one _

considers the transmission process in terms of individual S.=T (X)) X"(7o). (24
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And the measured flux is the norm of the Poynting vector inobeyed by all successful models of inflation and it amounts
the orthogonal projection of the observer’s metric, to neglecting all higher comoving time derivatives of the
o logarithmic scale factob(t) with respect to the first,
fZZSMSV(gMV+ngS>(ng)_ (25)
dVb

I <(b)N VYN=2. (30)

Astronomers measure electromagnetic radiation because
it is available to them, but this choice of observable compli-
cates the metric dependence of the operators which represent ) ) o
their measurements. For example, the tensor character HOSt operations of ordinary calculus can be done explicitly
Maxwell’s field strength is why one has to invert the tensorin the slow roll approximation. For example, the following
conformal d’Alembertian in Eq(22), rather than its simpler trivial rearrangement:
scalar cousin. It is also why the response field has to be

squared in Eq(23). Other complications arise from the fact d (eZb

:
+e??— (31)

that the source luminosities are not precisely known, and that e = di\ on op2’

their distribution throughout space is not uniform. 2b
The preceding complications pose important limitations L
on observational astronomy but they need not restrict ouf!lOWs us to express the initial integrand of E29) as a total
choice of the operator with which to probe the theory. For uglerivative plus a term which is negligible in the slow roll
the really essential feature is to measure the response @pPProximation. It would be straightforward to develop a se-
some long range field to known sources distributed along th€€S In slow roll corrections but the first is generally suffi-
observer’s past light cone. We can retain this feature angient for the mflanonary settm.glln which we wish to employl
vastly simplify our labor by observing a conformally coupled the new observgble._Wlt_h positive exponents and any signifi-
scalar, rather than a conformally coupled tensor. We Caﬁar_]t amount of inflation it is also possible to ignore the lower
achieve a further simplification by taking the source to be diMit,
uniformly distributed monopole, rather than a sparse distri-
bution of dipoles of varying strength. Then a single measure- e2b(t) b(t") t e2b(t)
ment of the scalar represents a full sky average and we can j dt’e2b(t) = — r1+ i +.. ] ~—
dispense with the complication of having to tabulate two /0 2b(t") 2b*(t") o 2b(t)
guantities ¢ and.F) for each source point. We call the scalar (32
A and define it to obey the equation,

B We can therefore apply the slow roll approximation to Eq.
OeA=1, (26) (29 to express the observable in terms of the Hubble con-

where[l,. is the conformal d’Alembertiafl). If we define stant,

the scalar and its first time derivative to vanish on the initial

value surface the result is just the integral of the retarded Ao(7. %)~ — (33
conformal Green’s function, ol 7, 2b2(1)

1 . .

Alg](x)==1. (270 Inanalogy to astronomical practice the local Hubble constant
He in the presence perturbations is defined so as to preserve this
It remains to show thati[g](x) has the right correspon- relation,
dence limit for exact homogeneity and isotropy. In this case 1
the conformal d’Alembertian reduces to the form - _
O.—a 3%, (28)

. L Although we are chiefly interested in applying the new
2= v ! - . . . . . .

¥vhere|¢9 — %ﬂ Iudy 1S ;he flat spacbe dAIembertlan_m ?on observable during inflation it is worth noting that the slow

ormal coordinates. The operator becomes even simpler acfy| reqyt(34) is valid, up to a number of order one, for quite

Ing %n sp?tlaé Eons_tan'lts..One consequence 1S that Zay. general geometries. For example, with general power law
can be solved by simple integration, expansion the logarithmic scale factor and Hubble constant
are

" -1 K ’ 7' a3
Ao(n.x)=—a ()| dy'| dn"a’(yn")
7 7

t '
= —e7b® f dt'e°) J Cdre?®), (29
0 0

-1

b(t)=sIn , (39

Hit) . Hit
1+—|, b(t)=H,|1+—
S S

whereH, is the initial Hubble constant anglis a constant.
It turns out that Eq(29) can be evaluated quite generally With this simple time dependence we can perform the inte-
in what is known ashe slow roll approximationThis is  grals in Eq.(29) exactly,
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o —s? 1 . s? e M . aYPaYe v
power— o E (S+ 2) 2b2(t) (S—l)(S+ 2) H|2 gp,v(x)_ M%gpo( (X)),
2 (40)
g2 e 2b(1) obey the geometrically significant gauge conditions. Then
1 —, (36) one can evaluated[g](Y(x)) in any gauge and the result
(s—1)[ s+ = 2H,b(t) will be the same.
2 The existence of a fixed initial value surfata »= 7,)

suggests that* should be expressed as the composition of a
The second and third terms become insignificant at late timegmporal transformationy— 7(7,x) followed by a purely
and the first rapidly approaches E84) for larges. Evenfor g iia| transformation'— y'( 7,x). Surfaces of simultaneity

) X .
s=3 the numerical factor ig. are defined by the condition( 7,X) = const, WhiIeX'(n,i)
traces out “the same” space point on the foliation of these
lll. FIXING THE OBSERVATION POINT surfaces. The full transformation would be
GEOMETRICALLY

0 SV (o % iy o
Even scalars depend upon the point at which they are Yo(n,x)=1(n,X),  Y'(2,X)=x"(1(1,X),%X). (41)
observed. Part of this dependence is physical. The Heisen- The problem’s homogeneity and isotropy implies that all
berg state is specified on a particular initial value surface an@pace points are physically equivalent and we may as well

value surface can and should affect the result. The purpose ghis amounts to the conditiog, =0 and hence
this section is to formulate the technology for imposing such '
a relation. ax* .9y axk .
Of course any method of describing points amounts to 0= WGOK(W'XH% S Jik(7.%)- (42
fixing a gauge; however, there is an important distinction
betweenad hocgauge conditions and those which exploit The relation can be simplified by multiplying with the in-
some special feature of the particular system under study. FQlerse Jacobian,
example, if the system includes a Sun then it is geometrically
meaningful to take this star’s center as the spatial origin. It is .oy -
therefore necessary to be as precise as possible about the Joj(7,x)+ ﬁgij(ﬂix)ﬂ)- (43
nature of the system under study.

The dynamical variables of our system include the metrioyhereupon multiplication by the inverse 3-metric results in

9.,(X) and possibly also a scalar inflaton fief(x). Our  the following first order(but nonlineay differential equation,
goal is to compute the expectation value of the operator

A[g] (or to stochastically sample its probability distribution % N -
in the presence of a Heisenberg state which we shall assume %: —(979)"9oj(7,x) (44)
is homogeneous and isotropic. Since the only effective tech-
nigue for making such a calculation is perturbation theory we

= — . o 2 . . v
shall also assume that the various quantum field operators are r<poi (7, X) 1oy i) (1, X)

ip;irttrl,(l)rrl))iitlons on a background which is homogeneous and — (Yot i) (mx) + . (45)
Making the obvious choice of an initial condition gives an
o(7,X)= eo(m) +d(7 X) (37) integral equation whose iteration to any order is straightfor-
’ o ward;

v = 2 v . - . .. -
9l 7:X) =@ (ML 70+ €072 ] (39) X'(77,X)=X'—Jnda(g_l)”goj‘(a.x) (46)
7

Because geometrically significant gauge conditions can in- A n - n -
volve nonlocal and nonlinear functionals of the fields, we =X'—« | dogoi(o,x)+&* | do(ojti)(o.X)
wish to preserve the option of carrying out the calculation in " K

more convenient gauge. A simple technique for accomplish- 5 (7 (o R 3
ing this is to define the observation point as the field- tk f dmﬂm,j(mx)f dpihoj(p,X)+O(k”).
dependent coordinate transformati®f[ ¢,g](x) such that K K (47
the transformed scaldif there is ong and the transformed Defining surfaces of simultaneity is less subtle for

metric, A-driven inflation than for its scalar-driven cousin. Without
back reaction the cosmological expansion rate is constant in
o' (X)=oe(Y(X)), (399  A-driven inflation, so the effect is certainly real if one sees
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t Mgl(x) is a good clock in perturbation theory note that

No(m)=In(a(7n)) in the slow roll approximation. This fol-
""""""""""""""""""""""" N N+dN lows because the minimally coupled d’Alembertian takes the
following form in a homogeneous, isotropic and spatially flat
geometry:

1
0=l V=99"9,)—a 3, (@%n""3,). (54

When acting on functions of only time the inverse [of

X reduces to
FIG. 1. Invariant procedure to fix the observation point. iﬂ_ J”dn,a-z(n,)f”/dnnazt( 7")
O
7 7
progressive slowing under any timelike foliation. In the ' '
scalar-driven case there is already slowing as the background L “ant) [V g a3b(t)
scalar rolls down its potential so one must be careful to com- == fodt e fo dt’e”™" ). (55
pare the expansion rate with and without back reaction at the
same physical time. With no perturbations we therefore have

Since the value of the scalar determines the expansion
rate without back reaction it seems reasonable to define sur- t, “ant!) [V yera3bt”)| g2 3.
faces of simultaneity so that the full inflaton field agrees with No(7)= fodt e fo dt’e 3b(t") +5b(t") |.
its background value, (56)

@(7(7,X),X)= ¢o( 7). (48)  Making the slow roll approximation gives

This can be solved perturbatively by first writing, t (v d . .
NO( n)%f dt/e—3b(t )f dt//a[b(tu)GSb(t )] (57)
0 0 1"

7(9,X) = n+ 87(7,X), (49)
and Taylor expanding, - ftdt’b(t’)zb(t). (58)
0
>z ) ® 4(n) "
@0 (1) - &M (7,x) -
ngl o (07(7,%))"= _nZO —r 0" Before closing the section we should comment that there

(50) is no problem in perturbation theory about evaluating an op-
erator such asA[g](x) at a point such asr*[¢,g](x),
Inverting results in an expansion fair in powers of the Which is itself an operator. One merely expands in powers of

uantum scalap and its derivativegall evaluated at ¢,x)], € Perturbatively small quantity*(x) —x*. Only a finite
a ap s 6] number of terms need be included to reach any fixed order in

b b OLd? perturbation theory. Note that the various operator products
0r=——+—75— O—,3+o(¢3), (51)  should be time ordered. This is because the functional inte-
¢ @ 2¢q gral of theC-number functional4[ g](Y[ ¢,g](x)) is mani-

festly invariant as it is, and gives the expectation value of the

A-driven inflation can be included within the same jme_ordered product of the corresponding operator.
scheme by employing a scalar functional of the metric with

monotonic time dependence in place of the dynamical scalar.
Perhaps the simplest of these “clock functions” makes use of
the inverse minimally coupled d’Alembertian acting on the  The purpose of this section is to expadfig](x) in pow-

Ricci scalar, ers of the pseudo-graviton fielﬂlw(n,i). This is most eas-
ily accomplished by first expressirig, in terms of the con-

_ 1 R 52)  formally rescaled metric
Mal(x)=-5R (52 ’

IV. PSEUDO-GRAVITON EXPANSION

~ N . -
We define surfaces of simultaneity so as to make the clock 9y 7 X) =8 (M) Gl 72X = Myt 18a(7:). (39
agree with its background value, just as relaii48) does for ~ We now write[J.=a ™ >Da, whereD and its expansion are
scalar-driven inflation,

1 —_ 1.
N (7,%),)=No( 7). (53) ~ D=——,(N—gg""d,) ——R=0’+ kD1 + k’Dp+ - - -.
1/_5 6

Figure 1 depicts the resulting foliation. To see that (60)
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The first two operators in the expansion are It should be noted that the pseudo-graviton field is not
free, nor are all of its components dynamical. The next step
— gy EWL) P _E(lppa' P ) after this would be to expangﬂw(n,i) in terms of the fun-
@2 “ 6 ad P damental dynamical degrees of freedom, whatever they hap-
(61) pen to be. This obviously depends upon selecting a particular
model and must be postponed until this has been done
[11,12.

D]_: - l,[/'uvé’lué)y"_

1
D2: 'ﬂwdf;&m?v‘F ('paﬁlpﬂa),ﬁ_ E 'paﬁ”ul//aﬁ

V. RETARDED GREEN’S FUNCTIONS

The pseudo-graviton expansion of the previous section

. L _ results in a series of terms which involve the inverse differ-
We remind the reader that pseudo-graviton indices are raiseg iig| operator 1. The purpose of this section is to pre-

and lowered by the Lorentz metrig,,,. Other notational = jse|y define the action of this operator. We also apply the
points are that the trace of the pseudo-graviton fieldsis g5\ roll approximation.

=", and that the second order, conformally rescaled Ricci The first task is easily accomplished. The retarded Green’s

scalar is function for the operato#? is well known,
~ 3
— a , aB, (A
Ro= 0P (Yrog 7yt 0= 2070 py) T 707 Wy Glex )= — A S A%, (69)
47AX
apB,y afB Y apB 1 a > > . L
TV g T g T g gV e whereA »=7— 7' andAx=||x—x'|. Since the initial value

surface is aty= 7, we define the result of actingd on an

(63 arbitrary functionf(7,x) as
The next step is to facta? out of D,
1f . fnd ’fd3 ,5(A77—Ax)f , =
, 1 l , . (?2 (7]1)()_ - 7] X 47TAX (7] !X )
D=4 1+;KD1+?K D,+0(x%) |. (64) (70)
i i i 7 d?n ..
Inverting D is now straightforward, _ dﬂ'Aﬂf = X A D).
» 47
1 1 1 1 1 1 1 (71
5— ;— ?K'Dlﬁ-l- ;KDl?’(Dl;
When the function depends only upon time we can reach
1 1 a form similar to that of Sec. Il. Making the substitution
- ;KZDZEJFO(KS)- (65  f(7,x)—F(7) gives
o , . 1 R 7
All this implies the following expansion for the scalar ob- —F (pX)=— | dy'AnF(5") (72)
servable, d )
A[g]za’1£a3=,4 + kA + K2 A,+0(k%).  (66) 7 d [«
p oA ' =—f dn'(n—n')—,f dy'F(n")
7 d77 7
Ay was worked out at the end of Sec. Il. The next two terms (73
are
K !/ 77, " "
[T [ anECn. 2
-1 1 1 3 7 7
Alz—a ;’Dlya , (67)
An important example is provided by the rightmost term for
each of thed,’s—ad 2a®. We can explicitly evaluate these
1 ) AN
A= _a,l_zpz_zag terms by making use of the slow roll approximation,
J J
1 . t o . —eb
1 11 —a’ (n,x)=—f dt’e P )ft dt"e?M~——
+a '=D,—~D,—a’ (68) J 0 0 2b%(t)
R L (75)
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The fact that this depends only upanallows one to sim- Since each additional partial integration produces either a
plify expressions in which derivatives act upon it. For ex-factor of b/b? or of e the slow roll approximation of Eq.

ample, the contribution from the first term in E@1) is (79) is
.1 1 1 1 t eh(t’) d2n
a l—kyta,0,—at=—a = ki@ 76 — 3 v %f ' f_ v
7 yrra, ) % oA (76) aza f(7,x) Odt b)) @ f(n' ,X+Azgn),
(82
—_a1 77d A3 A
a “(»n) n'a’(n')An a(7) _
" ~— 5o~ f(7.X). 83

X f EK%O(’]"XJ“A””)- (77) The vast simplification inherent in E¢83) derives from

the fact that the response of a conformally coupled scalar at
Further progress requires using the slow roll approxima-n= 7, to that part of the source ap= n, redshifts as

tion. It turns out, as one evaluates the various factors@f 1/ a(7g)/a(7,). Hence only the most recent sources contribute
from left to right, that the various integrands upon which effectively. One can recapture the slow roll approximation
they act are always dominated by the universal initial factormuch more simply by rewriting the differential equatit6)
of a3. In typical gauges the pseudo-graviton field can grow atwhich definesA[g](x),
most like powers of Irg). Although derivatives can some-
times result in a net loss of powers of the scale factor, they 6 1 ,
can never add such powers. Further, whenever even a single A=- R 1- \/?ga" —99*d,A |
power ofa is lost the contribution which finally results to
A[g](x) is exponentially suppressed and hence irrelevant. Igince the Ricci scalar is almost constant during inflation the
therefore suffices to consider terms of the fornf(a’f) for  |eading order slow roll term—tall orders in the pseudo-
functionsf(n,i) which grow less rapidly thaa( ), graviton expansion—is contained in the reductigiig](x)

— —6/R(X).

(84)

- Camaya [N
—_ ! _ Y
(7.X)= fodt € A”f g (7' X ATN). VI. A BETTER OBSERVABLE

(78) Simple expressions are nice but the results of the previous
Note thatA  and 5’ are the following functions of andt’: section are too n_1uch_ of a good thing. To leading order in the
slow roll approximation our new observable has turned out
to A , U b to be nothing more thar- 6 over the Ricci scalar. The next
An= Jt,dt e . o' =gt jo dt’e - (79 order terms disrupt this correspondence but still give expres-
sions which are local in the observation point. We criticized
Because\  vanishes at’ =t a single partial integration this sort of locality in Sec. II. A reasonable measure of the
fails to extract the leading order term in the slow roll ap- cosmological expansion rate should not be dominated by lo-
proximation, cal fluctuations. Of course small fluctuations are, by defini-
tion, subdominant to the background, so one can still use
L, 2b(t") , - N A[g](x) to measure back reaction during the first stages of
Odt e JAnf(n',x+Ann) inflation. However, the defect of too much locality has a
relatively simple fix which we shall present in this section.

1
— .3
azaf

Apf t d [ Apf We shall also refine the observable so that it gives the
=e2b—.|g—f dt'e®®—|——|.  (80)  Hubble constant exactly for any homogeneous and isotropic
2b dt’| 2b geometry, without recourse to the slow roll approximation.

The effective locality ofA[g](x) derives from the fact
at conformal scalars redshift like the inverse scale factor.
During inflation the scale factor grows so rapidly that only

The surface term vanishes at the upper limit and is expone h
tially suppressed at the lower limit. The remaining integran

IS the most recent sources matter much. A straightforward way
d [ Anf b ob of avoiding this is by breaking conformal invariance. Sup-
e2b___ _77 = _TeZbA nf+ —{—f+And,f pose we measure a minimally coupled scéfeg|(x), whose
dt’\ 2b 2b 2b value and whose first derivative vanish on the initial value
. surface, and which is driven by a soursgx),
—Azn-Vf}. (81

OB(x) =S(x). (85)
The first term on the right is the original integrand times a
term which is negligible in the slow roll approximation. Of For a homogeneous and isotropic geomé®ythe slow roll
the remaining terms only the one without the factorAof  approximation results in an almost uniformly weighted aver-
survives at the upper limit after another partial integration.age over comoving time,
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1 b aan!) [ g adbty ey M g](x), the invariant volume of the past light cone as seen
g5~ fodt e Jodt e S(t) (86  from the pointx* back to the inital value surface. Note that
it must be a good clock generally, not just in perturbation
. St theory, because the volume of the past light cone increases
m_f dt’ ——, (87)  monotonically under any timelike foliation.
o 3b(t") We define V[g](x) as the invariant integral over all
) ) ) ) points which are connected t0# by any future-directed,
It remains to identify a suitable source. Note that for anon-space-like pathFor a homogeneous and isotropic ge-

homogeneous ar_ld _isotropic geometBy the nonzero com- ometry this reduces to a single integral,
ponents of the Ricci tensor are

.. . .. . 4 7
Roo— —3b—3b?, R;j—(b+3b?)g;. (88) VIg](x)—Vo( 77)5§7Tf dn' Q%" )(n— 7).
mn
The trace of the spatial part has the curious property of giv- (94

ing a total derivative when multiplied bg®°, . . . .
As in Sec. lll, we define surfaces of simultaneity to make

3[B(t)+3b2(t)]e3b(t)=%[3b(t)e2b(‘)]. 89 this relation persist in the presence of perturbations,

V(T( nix)!X)EVO( 7]) (95)
If the sourceS(x) reduces to minus one-third times this spa-
tial trace, for a homogeneous and isotropic geometry, then We define the general conformal factor as the square root
the minimally coupled scalar will reduce to the logarithmic of the 00 component of the metric in these coordinates,
scale factor exactly,

t v Q[g1(X)=Vge(x), (96)
Blg](x)— f dt’ e30") f dt’e3 [ b(t") +3b%(t")]
0 0 aT
= = goo(Y (X))
=h(t). (90) 57 9ooY(
We can then obtain the Hubble constant by differentiation —(97"d0igo; (Y(X))]2 (97)

with respect to comoving time. i ) ) .
The object we have just described is not quite a scalapince the coordinates have zero shif;=0, and it follows

because the spatial trace of the Ricci tensor is not. Howevehat{} is precisely the factor needed to scale from conformal
we can give the latter an invariant formulation by exploiting t0 comoving time. One possible definition for the Hubble
the technology of Sec. Ill to define it in a special coordinateconstant is therefore the comoving time derivative of the
system which reduces to conformal coordinates for a homoscalar3 evaluated in these coordinates,

geneous and isotropic geometry. With the transformation

Y#[g](x) we can define the spatial components of the metric -1 i
and the RICCl tensor, Hl[g](x)_Q [g](X) 0777 B[g](Y[g](X)) (98)

L OYP YT Of course one might equally well base the observable on
g;j(x)= P ggp”(Y(x)), Q[g](x) now that we have it,
J
, ASEAN H =0! — In(Q : 99
Rij(X)E E ERPJ(Y(X))- (91) 2[9]()() [g](X) 197] ( [g](X)) ( )

The 3-curvature is just the inverse of the first contracted intoone, might instead employ the_thlrd root of the determinant
the second of gij(x). All of_these are plausible measures for the cosmo-
' logical expansion rate, all reduce exactly to the Hubble con-
R[g](x)z(gr—l)ini’j(X), (920  stant for homogeneous and isotropic geometries, and we an-
ticipate that all will give the same result as regards the
and the minimally coupled scalar is existence or non-existence of a significant back reaction. We
emphasize this multiplicity of plausible observables is as it
1 ) should be because a similar situation exists in the many dif-
- =R|. 93 ¢ ;
3 erent methods by which astronomers attempt to measure the
Hubble constant.
Since conformal coordinates have zero shift we obviously
wish to use the same spatial transformatidf) as in Sec.
[1l. The temporal transformation requires a scalar clock func- The path need not be a geodesic, nor does it have to be the sole
tion, the most uniformly applicable choice of which is path which connects’* andx*.

1
BlgI0=5
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VIl. DISCUSSION One can either compute the expectation value of
A[g](x)—or else stochastically sample its probability

tion poses a frustrating paradox. The possibility of an eﬁecpstnbutlon—m the presence of a Hesenberg state which we
derives from fluctuations in homogeneity and isotropy, but2SSUme to be homogeneous and isotropic. The passage from
these call into question precisely what is meant by the rate of S¢alar to an invariant can be achieved by geometrically
cosmological expansion. Previous work has attempted to rdiXing the observation point relative to the initial value sur-
solve the issue by averaging the gauge fixed metric, eithdfCe on which the Heisenberg state is defined. Because all
over a surface of simultaneitj,5] or over the range of Points on the initial value surface are physically equivalent
quantum fluctuations in a homogeneous and isotropic stafé@e problem reduces to orthogonally projecting between geo-
[2,6—8. It has been objected that neither technique is manimetrically specified surfaces of simultaneity. Two definitions
festly invariant, and also that the former procedure involvedor such surfaces were presented in Sec. Ill, along with per-
superposing data unavailable to a local observer on the sutdrbative expansions for the field-dependent observation
face of simultaneity9]. point Y#[ ¢,g](x) which can be used to fix the observation
In Sec. Il we argued that both problems can be avoided byoint when working an arbitrary gauge.

measuring the response of a noninteracting, conformally Sections IV and V developed the general machinery nec-
coupled scalar to a constant source. The scd[@]|(x) isa essary to evaluate the new observable perturbatively. We em-
nonlocal functional of the metric which is obtained by super-phasize that these computations are imminently doable in the
posing over the past light cone gf, just as astronomers do sjow roll approximation. It remains to apply the technology
in measuring the Hubble constant. Its phenomenological ingg simple models of scalar-driveii1] and A-driven [12]
terpretation also follows the standard practice in astronomyiation.
we define the locally observed rate of cosmological expan- ap embarrassing postscript to these labors is that the slow
sion 1o bear Fhe same relation—HgA)—to A[g](x) fqr a ol approximation purgesi[ g](x) of its nonlocality. In fact
general metric as it does f_or a homoge_neous and _|sotrop|ﬁ reduces to— 6/R(x), which we initially rejected as being
one. Of course the result will be a little different at different : . )

dominated by local fluctuations. There is actually no obstacle

locations, just as we must expect the Hubble constant mei- Ki A : turbation th b
sured by human astronomers to disagree slightly with th 0 Making use o [9](x) in perturbation theory because
small fluctuations are, by definition, subdominant to the ho-

value obtained from the different field of view available to

their opposite numbers in the Coma Cluster. But nearby obM09eneous background. However, one would still prefer an
servers will tend to agree because their past light cone8bservable which represents a more evenly weighted average
largely overlap. over the past light cone. Several alternatives are discussed in

It Shou|d be noted that we are not add|ng a Conformaﬁec. VI. We have taken the additional trouble to construct
scalar to whatever model of inflation is being probed. Thethem to reduce exactly to the Hubble constant for homoge-
observable is only a functional of the metric used to poséi€ous and isotropic geometries, without recourse to the slow
invariant questions about the expansion rate; it does nabll approximation.
change the dynamics of the model. Even if one insists that
the scalar represents a sort of measuring device whose effect
must be included, the strength of the constant source can still ACKNOWLEDGMENTS
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