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Comparison of cosmological models using Bayesian theory
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Using the Bayesian theory of model comparison, a new cosmological model due to John and Joseph@M. V.
John and K. Babu Joseph, Phys. Rev. D61, 087304~2000!# is compared with the standardVLÞ0 cosmologi-
cal model. Their analysis based on the recent apparent magnitude-redshift data of type Ia supernovas found
evidence against the new model; our more careful analysis finds instead that this evidence is not strong. On the
other hand, we find that the angular size-redshift data from compact~milliarcsecond! radio sources do not
discriminate between the two models. Our analysis serves as an example of how to compare the relative merits
of cosmological models in general, using the Bayesian approach.
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I. INTRODUCTION

In a recent publication@1#, it was argued, by modifying an
earlier ansatz by Chen and Wu@2#, that the total energy
densityr̃ for the universe should vary asa22 wherea is the
scale factor of its expansion. If the total pressure isp̃, then
this argument leads tor̃13p̃50 for the universe. This de
duction was made possible by the use of some dimensi
considerations in line with quantum cosmology. The reas
ing is as follows: Taking the comoving coordinate grid
dimensionless, we attribute a distance dimension to the s
factor a. Since there is no other fundamental energy sc
available, one can always writer̃ as Planck density (rpl
5c5/\G255.15831093 g cm23) times a dimensionles
product of quantities. The variation ofr̃ with a can now be
written as

r̃}rplF l pl

a Gn

,

where l pl5(\G/c3)1/251.616310233 cm is the Planck
length. It is easy to see thatn,2 (n.2) will lead to a
negative~positive! power of \ appearing explicitly on the
right hand side of the above equation. It was pointed out
such an\-dependent total energy density would be qu
unnatural in the classical Einstein equation for cosmolo
much later than the Planck time. However, the casen52 is
just right to survive the semiclassical limit\→0. Thus it was
argued that if we take quantum cosmology seriously, th
r̃}a22 or equivalentlyr̃13p̃50, for a conservedr̃. Solv-
ing the Friedmann equations gives a coasting evolution
the universe: i.e.,

a5m t,

wherem5Ak/(Ṽ21) is a proportionality constant;Ṽ is the
total density parameter andk50,61 is the spatial curvature
constant.

It shall be noted thatr̃13p̃50 is an equation of state
appropriate for strings or textures and that it is unrealistic
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consider the present universe as string-dominated. But in@1#,
it was shown that this ansatz will lead to a realistic cosm
ogy if we consider thatr̃ is comprised of more than on
component, say, ordinary matter~relativistic or nonrelativis-
tic! with equation of statepm5w rm and a cosmologica
constantL, which is time-varying. LetrL denote the energy
density arising fromL and pL52rL be the corresponding
pressure. With

r̃5rm1rL , p̃5pm1pL ,

the conditionr̃13p̃50 will give

rm

rL
5

2

113w
,

and this gives a realistic model for the universe. It was a
shown that this simplest cosmological model is devoid of
problems such as the horizon, flatness, monopole, cos
logical constant, size, age of the universe and the genera
of density perturbations on scales well above the pres
Hubble radius in the pure classical epoch. The solution of
cosmological constant, age and density perturbation pr
lems deserve special mention since these are not solvab
an inflationary scenario. Moreover, the evolution of tempe
ture in the model is nearly the same as that in the stand
big bang model and if we assume the valuesVm54/3 and
VL52/3, then there is no variation in the freezing tempe
ture with the latter model, and this will enable nucleosynth
sis to proceed in an almost identical manner. It also may
noted that an almost similar model which predicts the ab
values for the density parameters was proposed earlier@3#,
from some more fundamental assumptions based on ent
different grounds.

However, it should be remarked that the argument giv
above, which leads to this cosmology, is heuristic and
based on formal reasoning. It should be taken only as a g
ing principle. Also we note that it has some unusual con
quences like the necessity of continuous creation of ma
©2002 The American Physical Society06-1
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from vacuum energy, though it was argued in@1,2# that such
creation will be too inaccessible to observation.

But it was mentioned in@1# that, in spite of those suc
cesses in predicting observed values, the recent observa
of the magnitudes of 42 high-redshift type Ia supernovas@4#
are a setback for the model. A statement was explicitly m
to the effect that the predictions ofVm and VL for the
present model are outside the error ellipses given in
Vm2VL plot in @4# and it was claimed that this discrepan
is a serious problem. In this paper, we study this issue
detail to see how strong is the evidence against this mo
when compared with the standard model with a constanL
Þ0, discussed in@4,5#. Jackson and Dodgson@6,7# have ex-
amined the latter model in the light of Kellerman’s@8# and
Gurvits’ @9# compilations of angular size-redshift data f
ultracompact~milliarcsecond! radio sources. Gurvits’ compi
lation of such data, which are measured by very lon
baseline interferometry~VLBI !, is claimed to have no evo
lution with cosmic epoch. Several authors~for, e.g., @10#!
have made use of these data to test their cosmological m
els. In the present paper, we also analyze Gurvits’ data to
the new model. Using the Bayesian theory of statistics,
compare the new model discussed above with the stan
model with a non-zero cosmological constant, using both
apparent magnitude-redshift data and the angular s
redshift data. It is found that there is no strong eviden
against the new model when the apparent magnitude-red
data are considered. This is contradictory to the statem
made in @1#. The angular size-redshift data, on the oth
hand, are found to provide equal preference to the stan
model and the new one.

The remainder of this paper takes the new theory as g
and compares it with other standard cosmological mod
The analysis shall be viewed as an example of using Ba
sian theory to test the relative merits of cosmological m
els, a method which is claimed to have many positive f
tures when compared to indirect arguments using param
estimates. As such, the technique described here has w
applicability than just to the comparison of two cosmologic
models.

The paper is organized as follows. In Sec. II, we disc
the Bayesian theory of model comparison for the gene
case. Section III discusses comparison of the two mod
using apparent magnitude-redshift data, and in Sec. IV
compare the models with the angular size-redshift data. S
tion V comprises a discussion of the results.

II. BAYESIAN THEORY OF MODEL COMPARISON

The Bayesian theory of statistics@11,12# is historically the
original approach to statistics, developed by great mathe
ticians such as Gauss, Bayes, Laplace, Bernoulli, etc.,
has several advantages over the currently used long-run
tive frequency~frequentist! approach to statistics, especial
in problems like those in astrophysics, where the notion o
statistical ensemble is highly contrived. The frequentist d
nition of probability can only describe the probability of
true random variable, which can take on various valu
throughout an ensemble or a series of repeated experim
04350
ns

e

e

in
el

-

d-
st
e
rd
e
e-
e
ift
nt
r
rd

n
s.
e-
-
-

ter
er

l

s
al
ls
e
c-

a-
nd
la-

a
-

s
ts.

In astrophysical and similar problems, ensembles and
peated experiments are rarely possible and we speak a
the probability of a hypothesis, which can only be either tr
or false, and hence is not a random variable. The Baye
theory will help assign probabilities for such hypotheses
considering the~often incomplete! data available to us. Fo
example, Laplace used Bayesian theory to estimate
masses of planets from astronomical data, and to quantify
uncertainty of the masses due to observational errors@13#. In
fact, this theory finds application in all those problems whe
one can only have a numerical encoding of one’s state
knowledge.

In the Bayesian theory of model comparison, it is co
mon to report model probabilities via odds, the ratios
probabilities of the models. The posterior~i.e., after consid-
eration of the data! odds for the modelMi over M j are

Oi j 5
p~Mi uD,I !

p~M j uD,I !
,

wherep(Mi uD,I ) refers to the posterior probability for th
model Mi , given the dataD and assuming that any othe
information I regarding the models under consideration
true. Using Bayes’s theorem, one can write the above eq
tion as

Oi j 5
p~Mi uI !L~Mi !

p~M j uI !L~M j !
, ~1!

wherep(Mi uI ) is called the prior probability; i.e., any prob
ability assigned to the modelMi before consideration of the
data, but assuming the informationI to be true. WhenI does
not give any preference to one model over the other, th
prior probabilities are equal so that

Oi j 5
L~Mi !

L~M j !
[Bi j . ~2!

Bi j is called the Bayes factor.L(Mi) denotes the probability
p(DuMi) to obtain the dataD if the modelMi is the true one
and is referred to as the likelihood for the modelMi . The
models under consideration will usually have one or m
free parameters~like the density parametersVm , VL, etc.
in the case of cosmological models!, which we denote as
a, b, . . . . L(Mi) can be evaluated for models with on
parameter as

L~Mi ![p~DuMi !5E da p~auMi !Li~a!, ~3!

wherep(auMi) is the prior probability for the parametera,
assuming the modelMi to be true.Li(a) is the likelihood for
a in the model and is usually taken to have the form

Li~a![exp@2x2~a!/2#, ~4!

where

x25(
k

S Âk2Ak~a!

sk
D 2

~5!
6-2
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COMPARISON OF COSMOLOGICAL MODELS USING . . . PHYSICAL REVIEW D65 043506
is the x2 statistic. HereÂk are the measured values of th
observableA, Ak(a) are its expected values~from theory!
andsk are the uncertainties in the measurements of the
servable.

Generalization to the case of more than one paramet
straightforward. As a specific case, consider a modelMi with
two parameters,a andb, having flat prior probabilities; i.e.
we assume to have no prior information regardinga andb
except that they lie in some range@a, a1Da# and @b, b
1Db#, respectively. Then p(auMi)51/Da, p(buMi)
51/Db and hence

L~Mi !5
1

Da

1

DbEa

a1Da

daE
b

b1Db

db exp@2x2~a,b!/2#.

~6!

It is instructive to rewrite this equation as

L~Mi !5
1

DaEa

a1Da

daLi~a!.

In this case,

Li~a!5
1

DbEb

b1Db

db exp@2x2~a,b!/2#

is called the marginal likelihood for the parametera.

A. Interpretation of the Bayes factor

The interpretation of the Bayes factorBi j , which is given
by Eq. ~2! and which evaluates the relative merits of mod
Mi over modelM j , is as follows@14#: If 1 ,Bi j ,3, there is
evidence againstM j when compared withMi , but it is not
worth more than a bare mention. If 3,Bi j ,20, the evidence
againstM j is definite but not strong. For 20,Bi j ,150, this
evidence is strong and forBi j .150, it is very strong.

III. COMPARISON USING REDSHIFT-MAGNITUDE DATA

For a Friedmann-Robertson-Walker~FRW! model which
contains matter and a cosmological constant, the likelih
for these parameters, i.e.,Li(Vm ,VL) can be assigned usin
the redshift-apparent magnitude data in the following man
@14#. Before consideration of the data, let us agree thatVm
lies somewhere in the range 0,Vm,3, VL in the range
23,VL,3 and accept this as the only prior informationI.
Let m̂k be the observed best-fit distance modulus for
supernova numberk, sk its uncertainty andẑk is the cosmo-
logical redshift, withwk its uncertainty. We can write the
expression forx2 as

x25(
k

S m̂k2mk

sk
D 2

. ~7!

Here,

m̂k5mk1nk5gk2h1nk , ~8!

with
04350
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mk[gk2h55 logFDL~z;Vm ,VL ,H0!

1 Mpc G125

being the redshift-apparent magnitude relation. The lumin
ity distance is DL(z;Vm ,VL ,H0)5cH0

21dL(z;Vm ,VL),
wherec is the velocity of light,H0 is the Hubble constant a
the present epoch anddL is the dimensionless luminosit
distance.gk5g( ẑk) is the part ofmk which depends implic-
itly on Vm andVL andh is its H0-dependent part. The latte
quantity can be written ash[5 log(h/c2)225 whereH05h
3100 km s21 Mpc21 andc2 is the speed of light in units o
100 km s21. The probability distribution for the valuenk in
Eq. ~8! is assumed to be a zero-mean Gaussian with stan
deviationsk , wheresk

25sk
21@m8( ẑk)#2wk

2 , in the absence
of systematic or evolutionary effects.

One can evaluateL(Vm ,VL ,h) in a manner similar to
that in Eq. ~4!, where x2 now is a function of the three
parametersVm , VL andh. The likelihood forVm andVL ,
denoted asL(Vm ,VL) can be obtained by the technique
marginalizing overh, if one assumes a flat prior probabilit
for h in some appropriate range.

To do this, we defines215A(k(1/sk
2) where s is the

posterior uncertainty forh and let 1/Dh a flat prior probabil-
ity be assigned toh. ~These, being the same for all mode
will get canceled when evaluating probability ratios.! Using
these definitions, the marginal likelihood~defined at the end
of Sec. II! for the density parameters is

L~Vm ,VL!5
1

DhE dhe2x2/2. ~9!

Evaluating this integral analytically@14#, one assigns a like-
lihood for the parametersVm andVL in any one model as

L~Vm ,VL!5
sA2p

Dh
e2q/2, ~10!

where

q~Vm ,VL!5(
k

~m̂k2gk1ĥ !2

sk
2

, ~11!

is of the form of ax2-statistic, with ĥ the best fit~most
probable! value ofh, given Vm andVL . The latter can be
computed as@14#

ĥ~Vm ,VL!5s2(
k

~gk2m̂k!
2

sk
2

. ~12!

Now, we compare the model in@4,5# ~modelM1, having
parametersVm , VL andh) with the new model discusse
in Sec. I~modelM2, having only the parametersVm andh).
The Bayes factorB12 can be written with the help of Eq.~2!
and Eq.~3! as
6-3
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B125
L~M1!

L~M2!

5

E dVmE dVLp~Vm ,VLuM1!L1~Vm ,VL!

E dVmp~VmuM2!L2~Vm!

.

~13!

With the informationI at hand, one can assign flat prio
probabilities p(Vm ,VLuM1)51/18 and p(VmuM2)51/3.
Using Eqs.~6! and ~10! we can write the above as

B125

E
23

3

dVLE
0

3

dVm exp@2q1~Vm ,VL!/2#

6E
0

3

dVm exp@2q2~Vm!/2#

. ~14!

Our first step in the evaluation ofB12 is to findq given in
Eq. ~11!, for both the models. For model 1, we have to u

g~z!55 log$~11z!uVku21/2sinn@ uVku1/2I ~z!#%,

where Vk512Vm2VL and sinn(x)5sinx for Vm1VL

.1, sinn(x)5sinhx for Vm1VL,1 and sinn(x)5x for
Vm1VL51. Also

I ~z!5E
0

z

@~11z8!2~11Vmz8!2z8~21z8!~VL!#21/2dz8.

For model 2, the functiong(z) can be written as

g~z!55 logH m~11z!sinnS 1

m
ln~11z! D J ,

FIG. 1. L8 vs Vm for both models, using the appare
magnitude-redshift data for type Ia supernova. The curvesM1 and
M2 correspond to the marginal likelihoods forVm for the standard
VLÞ0 model and the new model, respectively~apart from some
multiplicative constants, which cancel on taking ratios!.
04350
where m5A2k/(3Vm22) for the nonrelativistic era and
sinn(x)5sinx for Vm.2/3, sinn(x)5sinhx for Vm,2/3
and sinn(x)5x for Vm52/3.

Using these expressions, Eq.~14! is numerically evalu-
ated to obtainB1253.1. ~In this calculation, we have use
the data corresponding to the Fit C in@4#, which involve 54
supernovas.! As per the interpretation ofBi j given in Sec.
II A, the above is evidence against model 2, but it is on
barely definite; the discrepancy is not a ‘‘serious problem’’
had been stated in@1#.

IV. COMPARISON USING ANGULAR SIZE-REDSHIFT
DATA

For this purpose, we use Gurvits’ data and divide t
sample which contains 256 sources into 16 redshift bins
done by Jackson and Dodgson and shown in their Fig. 1@7#.
For model 1, we use the expression for angular size

Du5
d

dA
[

d

~11z!21~k/Vk!
c

H0
sinn@ uVku1/2I 8~z!#

5
dH0

c

~11z!

~k/Vk!
1/2sinn@ uVku1/2I 8~z!#

, ~15!

where

I 8~z!5E
1

11z dx

xS Vk1Vmx1
VL

x2 D 1/2. ~16!

Hered is the linear dimension of an object,dA is the angular
size distance, andVk and sinn(x) are defined as in the cas
of model 1 in the last section. Similarly for model 2, we ha

Du5
d

dA
5

dH0

c

~11z!

m sinnS 1

m
ln~11z! D , ~17!

where m and sinn(x) are defined as in the earlier case
model 2. For the purpose of comparison, we only need
combine the unknown parametersd andH0 to form a single
parameterp[dH0 /c. Thus model 1 has three paramete
p, Vm andVL whereas model 2 has only the parameterp
andVm . As in the previous case, we accept 0,Vm,3 and
23,VL,3 as the prior informationI. With these ranges o
values ofVm andVL , p is found to give significantly low
values ofx2 only for the range 0.1,p,1 in both the mod-
els, p being given in units of milliarcseconds. The form
expressions to be used are

x25(
k

S Dûk2Duk

sk
D 2

~18!

and
6-4
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B125
L~M1!

L~M2!
5

1

Dp

1

DVm

1

DVL
E dpE dVmE dVL exp@2x1

2~p,Vm ,VL!#

1

Dp

1

DVm
E dpE dVm exp@2x2

2~p,Vm!#

5

E
0.1

1

dpE
0

3

dVmE
23

3

dVl exp@2x1
2/2#

6E
0.1

1

dpE
0

3

dVm exp@2x2
2/2#

. ~19!
s

o

f
,
o

e
In

e
he

e
h

d
es

ar-

ust
r-

both
pa-

ian
ich
ing

urb-
fit

l.

ndi-
as
not
of
pre-
in
the

ddi-
t-

a-
uld
els
are

c-
c-
he

r

The result obtained isB12'1. This may be interpreted a
providing equal preference to both models.

V. DISCUSSION

While evaluating the Bayes factors using both kinds
data, we have assumed that our prior informationI regarding
the density parameters is 0,Vm,3 and23,VL,3. The
range of values ofVL considered in@4# is 21.5,VL,3
and in@7# it is 24,VL,1. Even if we modify the range o
this parameter in our analysis to some reasonable extent
main conclusions of the paper will remain unaltered. F
example, if we accept 0,Vm,3 and 21.5,VL,1.5 as
some prior informationI 8, the Bayes factors in each cas
become 3.8 and 0.8, in place of 3.1 and 1, respectively.
stead, if we chooseI 8 as 0,Vm,3 and26,VL,6, the
corresponding values are 1.55 and 1.4, respectively. Thes
not change our conclusions very much in the light of t
discriminatory inequalities mentioned in Sec. II A.

In order to get an intuitive feeling why the standard (M1)
and new (M2) models have comparable likelihoods, consid
Figs. 1 and 2. Figure 1 is for the apparent magnitude-reds
data and plots the quantitiesL85 1

6 *23
3 dVL exp

@2q1(Vm,VL)/2# ~curve labeled M1) and L85exp
@2q2(Vm)/2# ~curve labeledM2) againstVm . From the defi-

FIG. 2. Marginal likelihood vsVm for both models, using the
angular size-redshift data. The curvesM1 andM2 correspond to the
marginal likelihoods forVm for the standardVLÞ0 model and the
new model, respectively.
04350
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nition of marginal likelihood given at the end of Sec. II an
from Eqs. ~9!–~14!, it can be seen that these two curv
correspond to the marginal likelihoods for the parameterVm

in modelsM1 andM2, respectively~apart from some multi-
plicative constants, which cancel on taking ratios!. Similarly,
Fig. 2, which is for the angular size-redshift data, plotsL
5@1/(630.9)#*0.1

1 dp*23
3 dVL exp@2x1

2/2# ~curve M1) and
L5(1/0.9)*0.1

1 dp exp@2x2
2/2# ~curve M2) against Vm .

Equation~19! allows us to interpret these terms as the m
ginal likelihoods forVm in modelsM1 andM2, respectively.
In fact, these curves rigorously show the integrands one m
integrate overVm to get the Bayes factors. Using the appa
ent magnitude-redshift data, a lower value ofq ~which is a
modifiedx2 statistic! is obtained for modelM1 whereas for
angular size-redshift data, lowerx2 is claimed by modelM2.
However, the areas under the curves are comparable in
cases and this shows why the Bayes factors are also com
rable. This is one of the strong points of the Bayes
method, in contrast to frequentist goodness of fit tests, wh
consider only the best fit parameter values for compar
models@11#.

These figures, however, show some feature that is dist
ing for the new model. Figures 1 and 2 indicate best
values ofVm50 andVm50.42, respectively, for this mode
In both cases it appears to rule out the valueVm5 4

3 that is
needed to meet the constraints on nucleosynthesis, a co
tion which had been stated in the Introduction. Though,
mentioned above, Bayesian model comparison does
hinge upon the best fit values in evaluating relative merits
models, one would desire to have an agreement between
dicted and observed parameter values. A natural option
such cases would be to compare the models by adjusting
prior probabilities regarding the parameters so that any a
tional information is accounted for. But we have not a
tempted this in our analysis.

The constantVLÞ0 model we considered has one p
rameter in excess of the new model in both cases. It sho
be kept in mind that in the Bayesian method, simpler mod
with fewer parameters are often favored unless the data
truly difficult to account for with such models. Bayes’s fa
tors thus implement a kind of automatic and objective O
cam’s razor. In this context, it is interesting to check how t
new model fares when compared with flat~inflationary!
models whereVm1VL51, by which condition the numbe
6-5
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TABLE I. Interpretation of results

Data ModelM1 Model M2 Bayes factor Interpretation

m2z Standard New model B1253.1 Slightly definite but
VLÞ0 model not strong evidence

against the new mode
m2z Standard flat New model B1255 Definite but

VLÞ0 model not strong evidence
against the new mode

u2z Standard New model B1251 Both models are
VLÞ0 model equally favored

u2z Standard flat New model B21515 Definite but
VLÞ0 model not strong evidence

against the flat model
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of parameters of modelM1 is reduced by one. This make
the two models on a par with each other, with regard to
number of parameters. We have calculated the Bayes fa
between this flat modelM1 and the new modelM2, using the
apparent magnitude-redshift data and the result isB1255.0.
This appears to be slightly more definite evidence against
new model than the corresponding result obtained in Sec
(B1253.1). @However, inflationary models with a consta
L-term suffer from the ‘‘graceful exit problem’’ forL; i.e.,
in order to explain howL manages to change from its gran
unified theory~GUT! magnitude to'102126 of its initial
value, some extreme fine tuning would be required@15#.# On
the other hand, a comparison of theVm1VL51 model with
the new model using angular size-redshift data gives a v
for the Bayes factorB21515, which shows that these data a
more difficult to account for with the flat inflationary mode
than with the new one. The results we obtained, while us
the informationI, are summarized in Table I.

When compared to the frequentist goodness of fit tes
models, which judge the relative merits of the models us
the lowest value ofx2 ~even when it is obtained by some fin
tuning or by having more parameters!, the present approac
has the advantage that it evaluates the overall performanc
the models under consideration. The Bayesian method is
a very powerful tool of model comparison and it is high tim
that the method is used to evaluate the plausibility of cosm
logical models cropping up in the literature. It is true th
since we have only one universe, one can only resor
model making and then to comparing their predictions w
observations. Again, since we cannot experiment with
universe, it is not meaningful to use the frequentist approa
We believe that the only meaningful way is to use the Ba
sian approach in such cases. Here we have made a com
son between the model in@4,5# with the new model in@1#. It
deserves to be stressed that the recent apparent magn
redshift observations on type Ia supernovas do not pos
‘‘serious problem’’ to the new model, as had been claimed
@1#. The angular size-redshift data, on the other hand, do
discriminate between the generalVLÞ0 model and the new
model and they provide definite but not strong eviden
against the standard flat (Vm1VL51) model when com-
pared to the new one.
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Here it is essential to point out that Bayesian inferen
summarizes the weight of evidence by the full posterior od
and not just by the Bayes factor. Throughout our analy
above, we have assumed that the only prior informat
available to us is eitherI ~stated in the beginning of Sec. III!
or I 8 ~stated in the beginning of Sec. V!, which helps to
make the posterior odds equal to the Bayes factor. Howe
when the Bayes factor is near unity, the prior od
p(Mi uI )/p(M j uI ) in Eq. ~1! become very important. The
standardVLÞ0 model and the standard flat~inflationary!
models are plagued by the large number of cosmolog
problems~as mentioned in Sec. I! and the new model has th
heuristic nature of its derivation and the problem with n
cleosynthesis, setting~subjective! prior odds against each o
them. In the context of having obtained comparable val
for the Bayes factor, the Bayesian model comparison for
us to conclude, in a similar tone as in@14#, that the existing
apparent magnitude or angular size-redshift data alone
not very discriminating about these cosmological models
is also worth remarking here that the Bayesian theory tells
how to adjust our plausibility assessments when our stat
knowledge regarding a hypothesis changes through the
quisition of new data@11#. Concerning future observations
one would have to say that if the supernova test is exten
to higher redshifts and if the astronomers are sure about
standard candle hypothesis, then the theories can be te
for such new data using Bayesian model comparison, us
what we have now obtained as the prior odds. In this cont
it also deserves serious consideration to extend the ana
done here to other cosmological data, such as those of
mic microwave background radiation and primordial nucle
synthesis. Hopefully, further analysis and future observati
will help to give more decisive answers to these question
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