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Using the Bayesian theory of model comparison, a new cosmological model due to John and Nbaéph
John and K. Babu Joseph, Phys. Rev6 ) 087304(2000] is compared with the standafdl, #0 cosmologi-
cal model. Their analysis based on the recent apparent magnitude-redshift data of type la supernovas found
evidence against the new model; our more careful analysis finds instead that this evidence is not strong. On the
other hand, we find that the angular size-redshift data from com(patiiarcsecond radio sources do not
discriminate between the two models. Our analysis serves as an example of how to compare the relative merits
of cosmological models in general, using the Bayesian approach.
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[. INTRODUCTION consider the present universe as string-dominated. Buf]jn
it was shown that this ansatz will lead to a realistic cosmol-
In a recent publicatiofl], it was argued, by modifying an ogy if we consider thap is comprised of more than one
earlier ansatz by Chen and Wa], that the total energy component, say, ordinary matteelativistic or nonrelativis-

densityp for the universe should vary @ 2 wherea is the  tic) with equation of statep,=w p,, and a cosmological
scale factor of its expansion. If the total pressur@,ighen  constantA, which is time-varying. Lep, denote the energy
this argument leads tp+3p=0 for the universe. This de- density arising fromA andp,=—p, be the corresponding
duction was made possible by the use of some dimension@ressure. With

considerations in line with quantum cosmology. The reason-

ing is as follows: Taki.ng the c_omoving.coord.inate grid as P=pm+Pr, P=PmtPar,

dimensionless, we attribute a distance dimension to the scale

factor a. Since there is no other fundamental energy scal
available, one can always write as Planck density g,
=c%%G?=5.158<10°® gcm %) times a dimensionless )
product of quantities. The variation pfwith a can now be Pm _

written as pr  1+3w’

§he conditionp +3p=0 will give

" and this gives a realistic model for the universe. It was also

' shown that this simplest cosmological model is devoid of the
problems such as the horizon, flatness, monopole, cosmo-
where I,=(%G/c%)¥2=1.616<10"% cm is the Planck |ogical constant, size, age of the universe and the generation
length. It is easy to see that<2 (n>2) will lead to a of density perturbations on scales well above the present
negative (positive power of 2 appearing explicitly on the Hubble radius in the pure classical epoch. The solution of the
right hand side of the above equation. It was pointed out thatosmological constant, age and density perturbation prob-
such anf-dependent total energy density would be quitelems deserve special mention since these are not solvable in
unnatural in the classical Einstein equation for cosmologyan inflationary scenario. Moreover, the evolution of tempera-
much later than the Planck time. However, the cas€2 is  ture in the model is nearly the same as that in the standard
just right to survive the semiclassical linfit—-0. Thus itwas  big bang model and if we assume the valigs=4/3 and
argued that if we take quantum cosmology seriously, ther) , = 2/3, then there is no variation in the freezing tempera-
pa~2 or equivalentlyp+3p=0, for a conserveg. Solv-  ture with the latter model, and this will enable nucleosynthe-
ing the Friedmann equations gives a coasting evolution fosis to proceed in an almost identical manner. It also may be

Lo
a

PPy

the universe: i.e., noted that an almost similar model which predicts the above
values for the density parameters was proposed ed8ier
a=mt, from some more fundamental assumptions based on entirely
— - different grounds.
wherem= Vk/({)—1) is a proportionality constanf) is the Howe\?er, it should be remarked that the argument given
total density parameter arkd=0,*1 is the spatial curvature apove, which leads to this cosmology, is heuristic and not
constant. based on formal reasoning. It should be taken only as a guid-

It shall be noted thap+3p=0 is an equation of state ing principle. Also we note that it has some unusual conse-
appropriate for strings or textures and that it is unrealistic taquences like the necessity of continuous creation of matter
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from vacuum energy, though it was argued 1n2] that such  In astrophysical and similar problems, ensembles and re-
creation will be too inaccessible to observation. peated experiments are rarely possible and we speak about

But it was mentioned irf1] that, in spite of those suc- the probability of a hypothesis, which can only be either true
cesses in predicting observed values, the recent observatioos false, and hence is not a random variable. The Bayesian
of the magnitudes of 42 high-redshift type la superndvds theory will help assign probabilities for such hypotheses by
are a setback for the model. A statement was explicitly madeonsidering thgoften incompletg data available to us. For
to the effect that the predictions &b, and ), for the example, Laplace used Bayesian theory to estimate the
present model are outside the error ellipses given in thenasses of planets from astronomical data, and to quantify the
Q,—Q, plotin[4] and it was claimed that this discrepancy uncertainty of the masses due to observational eft8}k In
is a serious problem. In this paper, we study this issue irfiact, this theory finds application in all those problems where
detail to see how strong is the evidence against this modaine can only have a numerical encoding of one’s state of
when compared with the standard model with a constant knowledge.

#0, discussed ifi4,5]. Jackson and Dodgsd#,7] have ex- In the Bayesian theory of model comparison, it is com-
amined the latter model in the light of Kellermai&] and mon to report model probabilities via odds, the ratios of
Gurvits’ [9] compilations of angular size-redshift data for probabilities of the models. The posteri@e., after consid-
ultracompactmilliarcsecondl radio sources. Gurvits’ compi- eration of the dataodds for the modeM; over M; are

lation of such data, which are measured by very long-

baseline interferometr(®VLBI), is claimed to have no evo- o p(Mi[D,1)

lution with cosmic epoch. Several authdifer, e.g.,[10]) ' p(M;|D,1)’

have made use of these data to test their cosmological mod- ) N

els. In the present paper, we also analyze Gurvits' data to te¥there p(M;|D.1) refers to the posterior probability for the
the new model. Using the Bayesian theory of statistics, wénodel M;, given the dateD and assuming that any other
compare the new model discussed above with the standaf@formation| regarding the models under consideration is
model with a non-zero cosmological constant, using both thé'ue. Using Bayes’s theorem, one can write the above equa-
apparent magnitude-redshift data and the angular sizdlon as
redshift data. It is found that there is no strong evidence (M| LM)
against the new model when the apparent magnitude-redshift - :p'—'
data are considered. This is contradictory to the statement op(M;IH LMy
made in[1]. The angular size-redshift data, on the other
hand, are found to provide equal preference to the standal
model and the new one.

The remainder of this paper takes the new theory as giveﬂ
and compares it with other standard cosmological modeld]
The analysis shall be viewed as an example of using Bayef:2
sian theory to test the relative merits of cosmological mod- _

C : - L(M))
els, a method which is claimed to have many positive fea- ij=
tures when compared to indirect arguments using parameter L(M))
estimates. As such, the technique described here has widgr
I

o : . : j is called the Bayes facto£(M;) denotes the probability
?npopzjllé:gblllty than just to the comparison of two cosmologlcalp(DlMi) to obtain the dat® if the modelM; is the true one

The paper is oraanized as follows. In Sec. 1. we discus and is referred to as the likelihood for the modw]. The
pap 9 : o nodels under consideration will usually have one or more

the Bayesian theory of model comparison for the genera{ree parametersiike the density paramete®,,. Q,, etc.

case. Section Il discusses comparison of the two models . i

. : ! . in the case of cosmological modglsvhich we denote as
using apparent magnitude-redshift data, and in Sec. IV we, p: £(M,) can be evaluated for models with one
compare the models with the angular size-redshift data. Sec-’ =’ " ° :

. . . . arameter as
tion V comprises a discussion of the results. P

@

herep(M;|1) is called the prior probability; i.e., any prob-
ability assigned to the modéll; before consideration of the
ata, but assuming the informatibo be true. When does
ot give any preference to one model over the other, these
rior probabilities are equal so that

B . )

IIl. BAYESIAN THEORY OF MODEL COMPARISON £(M)=p(D|M;) f darplafM;) £i( ), ®
The Bayesian theory of statistits1,12 is historically the ~ wherep(«|M;) is the prior probability for the parameter,

original approach to statistics, developed by great mathemassuming the modéll; to be true.Z;(«) is the likelihood for

ticians such as Gauss, Bayes, Laplace, Bernoulli, etc., and in the model and is usually taken to have the form

has several advantages over the currently used long-run rela-

tive frequency(frequentist approach to statistics, especially Li(a)=exd — x*(a)/2], (4)

in problems like those in astrophysics, where the notion of a

statistical ensemble is highly contrived. The frequentist defi\Where

nition of probability can only describe the probability of a - 2
true random variable, which can take on various values 2_2 A A(@)

) . X°= )
throughout an ensemble or a series of repeated experiments. K oy
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is the x? statistic. HereAk are the measured values of the

observableA, A (a) are its expected valuggrom theory
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D(Z;Qm, Q4 ,Hg)

T Moo +25

Mk=9k— =5 |09[

and o are the uncertainties in the measurements of the ob-

servable.

Generalization to the case of more than one parameter
straightforward. As a specific case, consider a mdtlelvith
two parametersg and 3, having flat prior probabilities; i.e.,
we assume to have no prior information regardingnd 3
except that they lie in some ran§e, a+A«] and[B3, B
+ApB], respectively. Then p(a|M;)=1Aa, p(B|M;)
=1/AB and hence

1 1 atAa B+AB )
£(Mﬂ—mﬁfq da’fﬁ dﬁexp[—)( (a,,B)/Z].
(6)
It is instructive to rewrite this equation as

a+

1 Aa
L(Mi)zﬂf dali(a).

In this case,
1 (B+AB )
Li(a)=mfﬁ dgexd —x“(«,B)/2]

is called the marginal likelihood for the parameter

A. Interpretation of the Bayes factor

The interpretation of the Bayes factBy; , which is given

by Eg.(2) and which evaluates the relative merits of model

M; over modelM;, is as follows[14]: If 1 <B;;<3, there is

evidence again¥l; when compared wittM;, but it is not

worth more than a bare mention. I&38;; <20, the evidence
againstM; is definite but not strong. For 20B;; <150, this

evidence is strong and fd;; > 150, it is very strong.

I1l. COMPARISON USING REDSHIFT-MAGNITUDE DATA
For a Friedmann-Robertson-Walké¥RW) model which

contains matter and a cosmological constant, the likelihoo

for these parameters, i.&,(Q,,{Q2,) can be assigned using

the redshift-apparent magnitude data in the following manner

[14]. Before consideration of the data, let us agree fhat
lies somewhere in the range<dl,,<3, Q, in the range
—3<Q, <3 and accept this as the only prior information
Let u, be the observed best-fit distance modulus for th
supernova numbe, s, its uncertainty andy is the cosmo-
logical redshift, withwy its uncertainty. We can write the
expression fory? as

()

Here,

k= p+ M= Gx— 7+ Ny, (8)

with

being the redshift-apparent magnitude relation. The luminos-
B distance is D (2,01, Ho)=CHy 'dy (2; 0, Q4),
wherec is the velocity of light,H, is the Hubble constant at
the present epoch andy is the dimensionless luminosity
distanceg,=g(z,) is the part ofu, which depends implic-
itly on Q),,, andQ) , and » is its Hy-dependent part. The latter
guantity can be written ag=5 log(h/c,)—25 whereHy=h
X100 kms *Mpc ! andc, is the speed of light in units of
100 kms't. The probability distribution for the value, in

Eq. (8) is assumed to be a zero-mean Gaussian with standard
deviation oy, wheresZ=s2+[u’(z)]?W2, in the absence

of systematic or evolutionary effects.

One can evaluat€(Q,,,Q2,,7) in a manner similar to
that in Eq. (4), where x> now is a function of the three
parameters),,, , andx. The likelihood forQ,, and(, ,
denoted asL(Q,,Q,) can be obtained by the technique of
marginalizing overy, if one assumes a flat prior probability
for » in some appropriate range.

To do this, we defines™'=/3,(1/02) wheres is the
posterior uncertainty fof and let 1A » a flat prior probabil-
ity be assigned to;. (These, being the same for all models,
will get canceled when evaluating probability ratjoslsing
these definitions, the marginal likelihoddefined at the end
of Sec. ) for the density parameters is

L0 2= o [ dpe 2 9
(O )= 5 | doe 2 ©

Evaluating this integral analyticallyl4], one assigns a like-
lihood for the parameter® ,, and(}, in any one model as

sV2m .,
E(erQA)z A7] e 4 ) (10)
gvhere
(k= Okt 7)?
40, Q)= —————, (11)
k oy

ds of the form of ay?-statistic, with 7 the best fit(most

probable value of 5, givenQ,, andQ, . The latter can be
computed a$14]

_ " N\2
70 0,)=23 P

Ok

(12

Now, we compare the model {#,5] (modelM,, having
parameter<),,, Q, and ) with the new model discussed
in Sec. I(modelM,, having only the parametef3,, and 7).
The Bayes factoB;, can be written with the help of E¢2)
and Eq.(3) as
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FIG. 1. L' vs Q, for both models, using the apparent
magnitude-redshift data for type la supernova. The cudMesand
M, correspond to the marginal likelihoods ffr,, for the standard
Q ,#0 model and the new model, respectivépart from some
multiplicative constants, which cancel on taking ratios

LMy
Bi= M,

[ a0 [ 40, pe0y. 0, My 24050,

| d0mp(@0IM 20
(13
With the informationl at hand, one can assign flat prior

probabilities p(Q,,Q,|M1)=1/18 and p(Q,|M,)=1/3.
Using Eqgs.(6) and(10) we can write the above as

3
f dQ,
-3

3
6 | d0 ext— 4012
0

3
a0y ext-au(0,,0,72

Bio= (14

Our first step in the evaluation &, is to find g given in

PHYSICAL REVIEW D 65 043506

where m= 2k/(3(Q,,—2) for the nonrelativistic era and
sinn(x) =sinx for Q,>2/3, sinnk)=sinhx for Q,<2/3
and sinnk)=x for Q,,=2/3.

Using these expressions, E@.4) is numerically evalu-
ated to obtainB;,=3.1. (In this calculation, we have used
the data corresponding to the Fit C[i], which involve 54
supernovag.As per the interpretation oB;; given in Sec.
IlA, the above is evidence against model 2, but it is only
barely definite; the discrepancy is not a “serious problem” as
had been stated i].

IV. COMPARISON USING ANGULAR SIZE-REDSHIFT
DATA

For this purpose, we use Gurvits’ data and divide the
sample which contains 256 sources into 16 redshift bins, as
done by Jackson and Dodgson and shown in their Fjg].1
For model 1, we use the expression for angular size

d d
Ag= —=
da _ c .
(1+2) "M (k) sin |24 (2)]
0
dH 1+z
- 1t . (19
C (ki) Ysinr [ Q] (2)]
where
1+z dx
x(9w1%¢+—§
X

Hered is the linear dimension of an object, is the angular
size distance, anf, and sinnk) are defined as in the case
of model 1 in the last section. Similarly for model 2, we have

d dHg (1+2)

Ab= —
c (1
msmr(—ln(1+z))
m

dA ’ (17)

Eq. (11), for both the models. For model 1, we have to use wherem and sinnk) are defined as in the earlier case of

9(2)=5 log{(1+2)| Q] 2sin | Q| Y2 (2) 1},

where Q,=1-Q,—Q, and sinnk)=sinx for Q,+Q,
>1, sinnk)=sinhx for Q,+Q,<1 and sinnk)=x for
Q,+Q,=1.Also

z

uzy:f [(1+2)%(1+ Q2 ) -2 (2+2')(Q,)] YAz
0

For model 2, the functiog(z) can be written as

g(z)=5 log m(1+z)sinr<%ln(1+z)

model 2. For the purpose of comparison, we only need to
combine the unknown parametet@ndH, to form a single
parameterp=dHg/c. Thus model 1 has three parameters
p, Q. andQ, whereas model 2 has only the parameters
and(Q,,. As in the previous case, we acceptQ,,<3 and
—3<0, <3 as the prior informatioh. With these ranges of
values of(},, andQ,, p is found to give significantly low
values ofy? only for the range 04 p<1 in both the mod-
els, p being given in units of milliarcseconds. The formal
expressions to be used are
A@—A@r

Oy

2:

X (18

and
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1 1
L(M;) Ap AQ,AQ,

[ an[ 40, [ a0, et - ip.00. 01

B1=7m,) 11
Ap AQ,

dp [ d0exd —i(p.0.)]

1 3 3
f dpf dﬂmf dQ, exg — x3/2]
0.1 0 -3

= - : (19

6| dp| dQnexd—x3/2]
0.1 0

The result obtained iB,,~1. This may be interpreted as nition of marginal likelihood given at the end of Sec. Il and
providing equal preference to both models. from Egs. (9)—(14), it can be seen that these two curves
correspond to the marginal likelihoods for the paramétgr
in modelsM; andM,, respectively(apart from some multi-
plicative constants, which cancel on taking ratic&imilarly,

While evaluating the Bayes factors using both kinds offig. 2, which is for the angular size-redshift data, pldts
data, we have assumed that our prior informatioegarding  —[1/(6x0.9)]f% dpS2 ;dQ, exd —x%/2] (curve M;) and
the density parameters |S<[_I)m<3 .and—'3<QA<3. The £=(1/O.9)fé_1dpexq—x§/2] (curve M,) against Q..
range of Y"’."“es ofd con5|derec_j in(4] is e 1.5<, <3 Equation(19) allows us to interpret these terms as the mar-
and in[7] itis —4<{,<1. Even if we modify the range of rg(ianal likelihoods for(),, in modelsM ; andM, respectively.

this parameter in our analysis to some reasonable extent, t ! .
In fact, these curves rigorously show the integrands one must

main conclusions of the paper will remain unaltered. For, ; ‘ Ot tthe B fact Using th
example, if we accept €(,,<3 and —1.5<0,<1.5 as integrate overiy 10 get the bayes 1actors. Using the appar-

some prior information’, the Bayes factors in each case ent m.agmtzude-reo-lsmft datf_i’ a lower valuegpfwhich is a
become 3.8 and 0.8, in place of 3.1 and 1, respectively. Inmodified x” statistio is obtained for modeM, whereas for
stead, if we choose’ as 0<Q,,<3 and—6<Q,<6, the angular size-redshift data, lowgf is claimed by modeM 2
corresponding values are 1.55 and 1.4, respectively. These d#Pwever, the areas under the curves are comparable in both
not change our conclusions very much in the light of thecases and this shows why the Bayes factors are also compa-
discriminatory inequalities mentioned in Sec. Il A. rable. This is one of the strong points of the Bayesian
In order to get an intuitive feeling why the standaid ) method, in contrast to frequentist goodness of fit tests, which
and new M,) models have comparable likelihoods, considerconsider only the best fit parameter values for comparing
Figs. 1 and 2. Figure 1 is for the apparent magnitude-redshifmodels[11].
data and plots the quantitiesL’=2%[3,dQ, exp These figures, however, show some feature that is disturb-
[—01(Q,Q4)/2] (curve labeled M;) and L’=exp ing for the new model. Figures 1 and 2 indicate best fit
[—0p(Q)/2] (curve labeledV,) against(),,. From the defi- values ofQ),,=0 and{(),,=0.42, respectively, for this model.
In both cases it appears to rule out the valyg=3 that is
needed to meet the constraints on nucleosynthesis, a condi-
tion which had been stated in the Introduction. Though, as
i | mentioned above, Bayesian model comparison does not
e hinge upon the best fit values in evaluating relative merits of
M%:f\ M2 models, one would desire to have an agreement between pre-
} \ dicted and observed parameter values. A natural option in

V. DISCUSSION

3.5e-05

o |

E § 3 such cases would be to compare the models by adjusting the

§ rswos) P prior probabilities regarding the parameters so that any addi-

= ; . \ tional information is accounted for. But we have not at-

% e 3 tempted this in our analysis.

5 Hg The constant),#0 model we considered has one pa-
rameter in excess of the new model in both cases. It should

. be kept in mind that in the Bayesian method, simpler models
e o o, 2 s : with fewer parameters are often favored unless the data are
truly difficult to account for with such models. Bayes’s fac-
FIG. 2. Marginal likelihood vs(},, for both models, using the tors thus implement a kind of automatic and objective Oc-
angular size-redshift data. The curdds andM, correspond to the ~ cam’s razor. In this context, it is interesting to check how the
marginal likelihoods fo),, for the standard) , #0 model and the new model fares when compared with flanflationary)
new model, respectively. models wherd) ,+Q =1, by which condition the number

o
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TABLE I. Interpretation of results

Data ModelM Model M, Bayes factor Interpretation
m-—z Standard New model B;,=3.1 Slightly definite but
Q,#0 model not strong evidence
against the new model
m-—z Standard flat New model B,=5 Definite but
0, #0 model not strong evidence
against the new model
60—z Standard New model B,=1 Both models are
Q,#0 model equally favored
60—z Standard flat New model B,;=15 Definite but
0, #0 model not strong evidence

against the flat model

of parameters of mode¥l; is reduced by one. This makes  Here it is essential to point out that Bayesian inference
the two models on a par with each other, with regard to thesummarizes the weight of evidence by the full posterior odds
number of parameters. We have calculated the Bayes factand not just by the Bayes factor. Throughout our analysis
between this flat modé¥; and the new mode¥ ,, using the  above, we have assumed that the only prior information
apparent magnitude-redshift data and the resui;is=5.0.  available to us is eithdr(stated in the beginning of Sec. )l
This appears to be slightly more definite evidence against thgy |’ (stated in the beginning of Sec.)Vwhich helps to
new model than the corresponding result obtained in Sec. llfhake the posterior odds equal to the Bayes factor. However,
(B1»=13.1). [However, inflationary models with a constant when the Bayes factor is near unity, the prior odds
A-term suffer frqm the “graceful exit problem” foA_; i.e., p(M;|1)/p(M;|1) in Eq. (1) become very important. The
in order to explain howA manages to change from its grand standardQ ,#0 model and the standard flénflationary)
unified theory(GUT) magnitude to~10""° of its initial  models are plagued by the large number of cosmological
value, some extreme fine tuning would be requiresl.] On  roblems(as mentioned in Sec) and the new model has the
the other hand, a comparison of g, + Q=1 model with  Lheyristic nature of its derivation and the problem with nu-
the new model using angular s_|ze-redsh|ft data gives a Valuéleosynthesis, settingsubjective prior odds against each of
for the Bayes factoB,,= 15, which shows that these data are them_ In the context of having obtained comparable values
more difficult to account for with the flat inflationary models o, the Bayes factor, the Bayesian model comparison forces
than_ with thg new one. The r_esults_ we obtained, while usingys to conclude, in a similar tone as[it4], that the existing
the informationl, are summarized in Table I. _ apparent magnitude or angular size-redshift data alone are
When compared to the frequentist goodness of fit test ofiot very discriminating about these cosmological models. It
models, which judge the relative merits of the models usings a|so worth remarking here that the Bayesian theory tells us
the lowest value of” (even when it is obtained by some fine how to adjust our plausibility assessments when our state of
tuning or by having more parametgrthe present approach nowledge regarding a hypothesis changes through the ac-
has the advantage that it evaluates the overall performance aﬁisition of new datd11]. Concerning future observations,
the models under consideration. The Bayesian method is thishe would have to say that if the supernova test is extended
a very powerful tool of model comparison and it is high time tg higher redshifts and if the astronomers are sure about the
that the method is used to evaluate the plausibility of cosmostandard candle hypothesis, then the theories can be tested
logical models cropping up in the literature. It is true thatfor sych new data using Bayesian model comparison, using
since we have only one universe, one can only resort tQuhat we have now obtained as the prior odds. In this context,
model making and then to comparing their predictions withit also deserves serious consideration to extend the analysis
observations. Again, since we cannot experiment with thgjone here to other cosmological data, such as those of cos-
universe, it is not meaningful to use the frequentist approachmic microwave background radiation and primordial nucleo-
We believe that the only meaningful way is to use the Bayesynthesis. Hopefully, further analysis and future observations

sian approach in such cases. Here we have made a compafjii| help to give more decisive answers to these questions.
son between the model [@#,5] with the new model if1]. It

deserves to be stressed that the recent apparent magnitude-
redshift observations on type la supernovas do not pose a
“serious problem” to the new model, as had been claimed in
[1]. The angular size-redshift data, on the other hand, do not We are thankful to Professor K. Babu Joseph, Ninan Sa-
discriminate between the genefa), # 0 model and the new jith Philip, and Dr. R. G. Vishwakarma for valuable discus-
model and they provide definite but not strong evidencesions. Also the help in performing the computations rendered
against the standard flat)(,+Q,=1) model when com- by Ninan Sajith Philip and Mathew V. Samuel is acknowl-
pared to the new one. edged with thanks.
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