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1/3 factor in the CMB Sachs-Wolfe effect
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We point out that a pseudo Newtonian interpretation of the 1/3 factor in the Sachs-Wolfe effect, which
relates the fluctuations in temperature and potendiglT = (1/3)6®, is not supported by the general relativ-
istic analysis. Dividing the full gravitational effect into separate parts depends on the choice of time slicing
(gauge and there exist infinitely many different choices. More importantly, interpreting the parts as being due
to the gravitational redshift and the time dilation is not justified in the rigorous relativistic perturbation theory.
We suggest regarding the 1/3 factor as a general relativistic result that applies in a restricted situation of
adiabatic perturbation in th€=0=A model with the last scattering occurring in the matter dominated era.
For an isocurvature initial condition the corresponding re8uUKT=246® has a different numerical coefficient.
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. INTRODUCTION =—dala=—(2/3)(8t/t)=— (2/3)6® where a is the scale
) o factor. For a similar argument s€&0]. We point out in this
~ Some of the exact results in general relatiViBR) can be  paper that the above decomposition is motivated by a certain
given intuitive interpretations in terms of Newtonian con- gjicing condition (temporal gauge choigeout of infinitely
cepts even though the structures of these two theories afg,ny hossible choices. More importantly, however, the in-
V?% d|ge:1ent.(|) Thhlz sm:jpleslt) examp{g IS tLhe Nder;vayon terpretation of the terms as above cannot be explained even
of the schwarzschild radius by e.qua_ Ing the Newtonian esg, 4 slicing or in any other slicing in the context of the
cape velocity to the velocity of light; one gets the Correthorrect relativistic analyses; see below E9). Hence, as the

numerical factor although the argument is not corréel. heuristic argument and interpretation are not rted b
The collapse time for a uniform density dust sphere under. 9 P supported by

self-gravity computed by Newtonian theory turns out to be'9orous theory, we believe such are spurious a_nd ha\_/e at
exactly equal to the general relativistic res(lt) The gravi-  2€St the same status as the examples we mentioned in the
tational force on a material particle located inside the emptyfi'St Paragraph. _ _ _ _
region of a spherical shell of matter vanishes in Newtonian Before proceeding with a rigorous analysis of the situa-
theory. This is usually explained by the fact that the force intion, itis worth pointing out that there are some fundamental
Newtonian gravity falls as i# while the amount of matter difficulties in providingany Newtonian interpretation of the
intercepted by a cone with a fixed solid ang|e growg%s Sachs-Wolfe effect. Given any metric in GR, the Newtonian
thereby leading to the cancellation of forces due to oppositémit can be rigorously established if the metric can be re-
pairs of material in the she]lL]. Incredibly enough this result duced to the formgg,=—(1+2®) andg,z= J,5 in some
is true in GR as well although the force law in GR is not coordinate system. When one attempts to do this with the
strictly 142 while the material intercepted by a fixed solid FLRW metric(see[11]), one finds that the procedure is valid
angle does increase a. (iv) At a more subtle level, one only for a region of size much smaller than the Hubble radius
can obtain the time-time component of Einstein’s equationsl,;(t)=(a/a) 1. This merely reiterates the fact that at scales
for a FLRW (Friedmann-Lemane-Robertson-Walkeruni- bigger than the Hubble radius one requires the full machin-
verse from the Newtonian energy conservation argument iéry of GR and—in particular—one needs to grapple with
we take the potential energy of a spherically symmetric masissues of gauge. Since the Sachs-Wolfe effect arises from
distribution to be— (GM/R). The argument is again invalid scales that are bigger than the Hubble radius at the epoch of
in GR especially since Birkhoff's theorem is applicable only recombination one can anticipate tteaty Newtonian inter-
for empty regions outside a mass distribution. In all fourpretation will have problems. This conclusion is also sup-
cases mentioned above, these are accidental coincidendgsrted by the fact that one can consistently choose a gauge in
and the heuristic arguments have no deeper significance. a perturbed FLRW universe in whiady,=—1. There is no
Recently, another pseudo Newtonian argument has suNewtonian potential available in this gauge. The key reason
faced to explain the origin of the 1/3 factor in the Sachs-for the above pseudo derivation to work is because one in-
Wolfe effect in cosmic microwave backgrouf@MB) radia-  troduced an ill-defined quantitya/a and linked it with
tion [2]. The following heuristic argument is often seen in the ST/T at one endby Ta=cons} and with 6t/t at the other
literature including several textbooks[3-9]: ST/T  end(by axt?®). There is no rigorous interpretation of this
=(1/3)6P = 6P — (2/3)6® where the first term arises from quantity 5a/a possible in Newtonian gravity, or for that mat-
the gravitational redshift whereas the second term cometer in the gauge invariant treatments of FLRW perturbations.
from the time dilation of the temperature perturbat®r T In handling the cosmological perturbation one can adopt a
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heuristic argument usinga. However, in this way, one often =®, and¢,=®, [16]. The gauge invariance of a combina-
ends up with an equation that is wrofgspecially in a me- tion assures that there remains no gatgmordinat¢ mode
dium with pressure! This is not surprising because perturb- and that its value remains the same in any gauge. However, it
ing the background system necessarily loses some degreesdifes not guarantee that a certain gauge-invariant variable has

freedom compared with perturbing the full system. an associated intrinsic physical meaning independent of the
slicing condition. For example, there exist several variables
Il. TEMPERATURE ANISOTROPY IN AN ARBITRARY ®ys =+ 6TIT, o, =¢—(aH/k)v, wherev is a veloc-
GAUGE ity related variable and#t is a wave number, etc., which are

) o ] all gauge invariant(An exception is¢, based on the syn-
We begin by obtaining the expression for the temperaturenonous gauge which fixea=0,) They all reduce top

anisotropy without imposing any choice of gauge so that wg,nder the corresponding gauge condition which sets the vari-
can study the results in the most general setting. We considef|e in the subscript equal to zero. Although all these gauge-
a spatially homogeneous and isotropic metric with the scalary,y ariant variableswe can make infinitely many different
type perturbations combination$ are curvature variables in different time slic-
42— —a2(1+2a)dn2—2a2,8,ad7;dx“+a2[gffg(l+2<p) g}lg;se%e(rjr;ggrrglqtg\?;ﬁ]aem:can safely regard them as com

+27, 4 5ldxdxE. (1) Equation(2) was derived from the geodesic equations in

’ the spacetime of Eq1) without fixing the gauge condition
This represents a fairly general perturbed metric and no spend without using the gravitational field equations. In the
cific gauge has been chosen. The variablgs, ¢, andyare literature, the two terms in the right-hand siRHS) are
spacetime dependent scalar-type metric perturbations, andofien called the Sachs-Wolfe effect and the integrated Sachs-
vertical bar indicates a covariant derivative based on thdVolfe effect, respectively. At this point it may be appropriate
background three-space comoving meg{ . We introduce ~ to quote a comment if2] which looks prescient in the con-
the variabley=a(8+ay) which gives the shear of the nor- text of the main point of this paper: “We emphasize again
mal hypersurface. ¢ is proportional to the perturbed curva- that in a generic gravitational field one cannot distinguish
ture of the hypersurface, andis the perturbed lapse func- 9gravitational redshifts from Doppler shifts by any standard
tion; we use the notation dfl3,14). The combination ofy ~ recipe; thus our division of the equation...has only a heuristic
and the rest of the variables used in the following is spatiallysignificance.”
gauge invarianf13]. The variables depend, however, on a We shall now assume théj the anisotropic stress can be
temporal gauge(coordinate transformation which corre- ignored, so that we haver,=—¢,, (i) K=0=A, and(iii)
sponds to choosing the spatial hypersurface, i.e., the timie medium is an ideal fluid with constant=p/u (wherep
slicing. Thus we have the freedom to impose a temporals the pressure and is the energy densifyso that the grow-
gauge(slicing) condition which could be used as an advan-ing solution ofe, remains constant in timeGiven all these
tage to handle the problems conveniently. The prime and thassumptions the integrated Sachs-Wolfe term vanishes, so
overdot indicate the time derivatives based mmndt, re-  that
spectively, withdt=a d. ST
The most general expression of the Sachs-Wolfe effect on 1

from the scalar-type perturbation can be found in @) of T (—¢+2Hx+300)le, ©)
[14]. Ignoring the Doppler effects due to the observer’s mo-
tion, and the emitting everfvhich is subdominant at large where we usedT/T|g=(1/4)5,|e with 8,y= S,/ 1(y)
angular scalgs the observable temperature anisotropy be-denoting fractional energy-density perturbation of the pho-

(0]

comes tons. Now, the RHS is written without fixing the gauge yet;
thus it is in a sort of gauge-ready form, but the sum is gauge

ﬂ - ﬂ " fo(a —.)dy @) invariant. In this form we can understand why and how such
Tl X T e X~ Px ' a decomposition into the intrinsic temperature perturbation

and the gravitational redshifor the time dilation is depen-
where the integration is along the photon’s null geodesic patilent on the temporal slicin@gauge condition of the space-
from the emitted(E) epoch to the observe@®) epoch. The time. Although¢ and y have meaning as the perturbed cur-
variablesa,=a—, 6T,=6T+HT,, andp,=¢—H, are  vature and shear of the normal three-hypersurface,&pd
gauge-invariant combinatiors. ¢, becomesp in the zero- looks like an energy-density perturbation of photons, these
shear gaugéoften called the Newtonian gaugehich sets variables acquire such a meaning only after fixing the tem-
x=0, etc. Using Bardeen's notation {ii5] we havew,  poral gaugetime slicing condition, where we have infinite
choices. As mentioned before, the same variable evaluated in
a different slicing(gauge condition in general behaves as a
This is in contrast with the perturbed Hubble parameter, ~ completely different variable.
which has rigorous geometric and kinematic meanings, and in fact
is quite useful in handling the cosmological perturbation in a heu-
ristic looking but fully rigorous manngr2]. 3See Eq(8) in [14].
2For the gauge transformation properties, see(Egin [14]. 4See Eq(18) in [14].
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Equation(3) can be written in a suggestive form°as 5-|-(Ad)‘ 1+3w 1 1
== Ox= T3¢y =360, (8
ST aH | T | 31+w)™* 374 "3
T Sl mex ot adon| 4 _ _ _
o E where the second equality follows by assuming matter domi-

nation atE, so thatw=02 In our case5® does not evolve in
wherev, =v —(k/a)x and 6,),=(,)+4(@H/K)v. &),  time. We stress again that the result in E&).is valid under
is the same as(,) in the comoving gauge which sets the many conditions mentioned above, especially the ones above
velocity variablev=0; in a pressureless matter the test Pareq, (3); e.g., the simple result in EG8) does not holdfor
ticles follow geodesics and hence the comoving gauge igxample in a model with an additional cosmological con-
equivalent to the synchronous gauge which fixes0. Thus,  gtant, and in such a case we should go back to the general
in this form the variables are vieweg@valuated in mixed  form in Eq. (2).
slicing (gauge. We can show that each of these gauge- |t was often stressed in the literature that th&/3 factor
invariant variables most closely resembles the NewtoniaRomes directly from the metric part in the synchronous gauge
counterparts— ¢, , §,, andv, most closely reproduce the \ynereas it gets a contribution ef1 from the metric and 2/3
behavior of the perturbed gravitational potentiaP, the per-  from the intrinsic temperature part in the zero-shear gauge
turbed densitysy= 6p/p, and the perturbed velocityv in [19 9], The origin of such gauge-dependent interpretations
the Newtonian context17,15,18. can be understood simply by rewriting the RHS of E3).or

_ It should be obvious from the above two equations and=q_(4) in the respective gauge conditions. In the zero-shear
discussion that the actual form of the terms in the “ght'ha”‘gauge,)(so, we have

side depends very much on the gauge. It is best not to yiel

to the temptation of interpreting the individual terms ST 1
“physically”—let alone try to fix the numerical prefactors. T T ¢yt 2 S(yx- 9
But if one insists on doing so, then the most natural choice is o

to intt_arpret the first term-¢, as due to the gravitational Ntice that on a large scale the temperature [@yf, is
redshift (we have— ¢, =a,=5®), the second term as due y,minatedfwhen viewed in the comoving gauge: compare
to the Doppler effect, and the third as arising from the radiay,;i, Eq. (4)] by the metric, and does not behave like an

tion field. As yvef Shaﬂ se_ehin the next selction, ﬁven t?fi,sordinary temperature. Instead, it givés,, and we use
interpretation is fraught with danger but at least the coeffi-_ 1 2~ 1 {6 get the final result. This is a rigorous argu-

cient of — ¢, is now unity. ment, and one should not confuse this with the heuristic one
mentioned in the Introduction; except for the similar division
lll. ADIABATIC PERTURBATIONS into —1 and the origins and the interpretations are com-

pletely different. Therefore, the heuristic interpretation is not
based on this zero-shear gauge analysis. The synchronous
gauge coincides with the comoving gauge in the matter

We consider a system with radiatigy) and matter(m).
The adiabatic condition

S=8(m—36(,)=0 (5)  dominated erdMDE); thus in the comoving gauge we have
implies o1
P T =@t 2Hx,)+ 58, (10
S 1+R 5  Bum) 6 ©
Cop 1H4ARBTY T Ap,” © For an ideal fluid with w=const we have¢,=[(5

, ) o - +3w)/(3+3w)]e, for the growing modé.The temperature
thus we have 5,),~ 3,= 3 (k/aH)%¢, which is subdomi-  part now behaves like the conventionally known temperature
nant at large angular scales corresponding to the large-scafigctuation and thus is negligible on large angular scales

k/aH<1 atE. We havé compared with the potential fluctuation. Therefore, using Eq.
(7) with v, = — (k/a) x,, the metric part gives- %cpx directly.
b= — E 1 qu 7) For the original derivation, sde]; see alsd20].
X 3l+waH™’

. . . . IV. ISOCURVATURE CASE
for the growing solution. Thus, adding the first two terms on

the RHS of Eq.4), we finally have The isocurvature condition i$u,=0 under which we
have ¢,=0 and ¢,=0. This condition implies S=

Swith the wave numbek appearing in the equation the variables
can be regarded as Fourier transformed ones. To linear order thePUsing sa/a=[2/3(1+w)]ét/t the heuristic argument mentioned
same equations in configuration space remain valid in Fourier spada the Introduction also produces a result for generalt the emis-
as well. Thus, we ignore specific symbols distinguishing the vari-sion epochE [5].

ables in the two spaces. %This follows from Eq.(18) in [14] and the conservation property
6See Eq(6) in [14]. of ¢, under an adiabatic conditiogi,=C. Or see Eqs(50), (51)
"See Eq(7) in [14]. in [18].
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—;?;(R*1+1)5(y)v. The isocurvature initial condition is im- we have infinitely many different ways of introducing slicing
posed early in the radiation dominated €éRDE). Einstein's  and thus viewing each variable in different gauges. While
equations giv¥® ¢,=—H(u+p) 16p, which shows that doing an actual calculation we need to choose the géage
the initial isocurvature perturbation can generate For an ~ we mentioned, a gauge-invariant variable is equivalent to a
isocurvature mode we havép, = — (1/3)um)(1+ R)"!s.  variable based on a certain slicing condition which fixes the
Assuming that the last scattering epoEhoccurred in the gauge mode completelybut the final physical results should
MDE we have be the same independently of which gauge we have chosen.
Our results in Eqs(8), (12) are the final results wheré®d
can be interpreted as the perturbed Newtonian potential
—— =5 (11)  which is related to the density contrast through Poisson’s
roe (R+1)° 3 equation.

The pseudo Newtonian method described in the Introduc-
at E where we use®=const in the large-scale lim[1]; tion is closely related to the decomposition in E®). How-

this argument was used by Liddle and Lyth[22]. Thus, in ever, as we have shown below E) such an interpretation
the MDE we havep, = 2¢, = LS; this shows the amount of is not supported by analyses in that gauge, which is true even
X 5%Yv 5%

curvature perturbatiorp, in the MDE generated from the ?n the context of our gauge_—ready form in E(@)._Th_at s,

initial isocurvature perturbatiof in the RDE. In the MDE mtgrpretmg th.e parjcs as pemg <Ijue.t.o the grawtatlonal _red-

we havelé( = —1s. Therefore, from Eq(4), using Eq shift and the time dilation is not justified in rigorous relativ-
4 Yy 3 ’ ’ .

(7) and assuming the MDE &, we have istic perturbqtiqn theory. Hence it is difficult to'imagim.e that
such a heuristic argument captures the basic physics. We
believe it is yet another curious coincidence in general rela-
tivity in which a pseudo Newtonian argument does lead to
=—2¢,|g=260, (12 the correct final result.
In a classic book by Zel'dovich and Novikd25] we find

the statement: “However,...the gravitational shift contains
which is six times larger than the adiabatic result. For origi-the factor 1/3; it is still unclear how to interpret this coeffi-
nal derivations, see below E.5 of [23] and below Eq. cient classically,” which still seems to be true.
(5.27) of [24].

_1 jMDE dR 1
QDU_3

5-|—( Iso)
T
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