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1Õ3 factor in the CMB Sachs-Wolfe effect
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We point out that a pseudo Newtonian interpretation of the 1/3 factor in the Sachs-Wolfe effect, which
relates the fluctuations in temperature and potential,dT/T5(1/3)dF, is not supported by the general relativ-
istic analysis. Dividing the full gravitational effect into separate parts depends on the choice of time slicing
~gauge! and there exist infinitely many different choices. More importantly, interpreting the parts as being due
to the gravitational redshift and the time dilation is not justified in the rigorous relativistic perturbation theory.
We suggest regarding the 1/3 factor as a general relativistic result that applies in a restricted situation of
adiabatic perturbation in theK505L model with the last scattering occurring in the matter dominated era.
For an isocurvature initial condition the corresponding resultdT/T52dF has a different numerical coefficient.
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I. INTRODUCTION

Some of the exact results in general relativity~GR! can be
given intuitive interpretations in terms of Newtonian co
cepts even though the structures of these two theories
very different.~i! The simplest example is the ‘‘derivation
of the Schwarzschild radius by equating the Newtonian
cape velocity to the velocity of light; one gets the corre
numerical factor although the argument is not correct.~ii !
The collapse time for a uniform density dust sphere un
self-gravity computed by Newtonian theory turns out to
exactly equal to the general relativistic result.~iii ! The gravi-
tational force on a material particle located inside the em
region of a spherical shell of matter vanishes in Newton
theory. This is usually explained by the fact that the force
Newtonian gravity falls as 1/r 2 while the amount of matte
intercepted by a cone with a fixed solid angle grows asr 2

thereby leading to the cancellation of forces due to oppo
pairs of material in the shell@1#. Incredibly enough this resul
is true in GR as well although the force law in GR is n
strictly 1/r 2 while the material intercepted by a fixed sol
angle does increase asr 2. ~iv! At a more subtle level, one
can obtain the time-time component of Einstein’s equati
for a FLRW ~Friedmann-Lemaıˆtre-Robertson-Walker! uni-
verse from the Newtonian energy conservation argumen
we take the potential energy of a spherically symmetric m
distribution to be2(GM/R). The argument is again invalid
in GR especially since Birkhoff’s theorem is applicable on
for empty regions outside a mass distribution. In all fo
cases mentioned above, these are accidental coincide
and the heuristic arguments have no deeper significance

Recently, another pseudo Newtonian argument has
faced to explain the origin of the 1/3 factor in the Sach
Wolfe effect in cosmic microwave background~CMB! radia-
tion @2#. The following heuristic argument is often seen in t
literature including several textbooks@3–9#: dT/T
5(1/3)dF5dF2(2/3)dF where the first term arises from
the gravitational redshift whereas the second term co
from the time dilation of the temperature perturbationdT/T
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52da/a52(2/3)(dt/t)52(2/3)dF where a is the scale
factor. For a similar argument see@10#. We point out in this
paper that the above decomposition is motivated by a cer
slicing condition ~temporal gauge choice! out of infinitely
many possible choices. More importantly, however, the
terpretation of the terms as above cannot be explained e
in that slicing or in any other slicing in the context of th
correct relativistic analyses; see below Eq.~9!. Hence, as the
heuristic argument and interpretation are not supported
rigorous theory, we believe such are spurious and hav
best the same status as the examples we mentioned in
first paragraph.

Before proceeding with a rigorous analysis of the situ
tion, it is worth pointing out that there are some fundamen
difficulties in providingany Newtonian interpretation of the
Sachs-Wolfe effect. Given any metric in GR, the Newtoni
limit can be rigorously established if the metric can be
duced to the formg0052(112F) and gab5dab in some
coordinate system. When one attempts to do this with
FLRW metric~see@11#!, one finds that the procedure is val
only for a region of size much smaller than the Hubble rad
dH(t)[(ȧ/a)21. This merely reiterates the fact that at sca
bigger than the Hubble radius one requires the full mach
ery of GR and—in particular—one needs to grapple w
issues of gauge. Since the Sachs-Wolfe effect arises f
scales that are bigger than the Hubble radius at the epoc
recombination one can anticipate thatany Newtonian inter-
pretation will have problems. This conclusion is also su
ported by the fact that one can consistently choose a gaug
a perturbed FLRW universe in whichg00521. There is no
Newtonian potential available in this gauge. The key rea
for the above pseudo derivation to work is because one
troduced an ill-defined quantityda/a and linked it with
dT/T at one end~by Ta5const! and withdt/t at the other
end ~by a}t2/3!. There is no rigorous interpretation of th
quantityda/a possible in Newtonian gravity, or for that ma
ter in the gauge invariant treatments of FLRW perturbatio
In handling the cosmological perturbation one can adop
©2002 The American Physical Society05-1



b-
e

ur
w
id
la

sp

n
th

r-
-
-

ll
a

-
tim
r
n
th

fe

o
e
e

a

-

er, it
has
the
les

e
-

ari-
ge-
t
-
-

in

e

chs-
te
-
in

ish
rd

stic

e

, so

o-
t;
ge
ch
ion

r-

ese
m-

d in
a

fa
eu

J. HWANG, T. PADMANABHAN, O. LAHAV, AND H. NOH PHYSICAL REVIEW D 65 043005
heuristic argument usingda. However, in this way, one often
ends up with an equation that is wrong~especially in a me-
dium with pressure!.1 This is not surprising because pertur
ing the background system necessarily loses some degre
freedom compared with perturbing the full system.

II. TEMPERATURE ANISOTROPY IN AN ARBITRARY
GAUGE

We begin by obtaining the expression for the temperat
anisotropy without imposing any choice of gauge so that
can study the results in the most general setting. We cons
a spatially homogeneous and isotropic metric with the sca
type perturbations

ds252a2~112a!dh222a2b ,adh dxa1a2@gab
~3!~112w!

12g ,aub#dxadxb. ~1!

This represents a fairly general perturbed metric and no
cific gauge has been chosen. The variablesa, b, w, andg are
spacetime dependent scalar-type metric perturbations, a
vertical bar indicates a covariant derivative based on
background three-space comoving metricgab

(3) . We introduce
the variablex[a(b1aġ) which gives the shear of the no
mal hypersurface. w is proportional to the perturbed curva
ture of the hypersurface, anda is the perturbed lapse func
tion; we use the notation of@13,14#. The combination ofx
and the rest of the variables used in the following is spatia
gauge invariant@13#. The variables depend, however, on
temporal gauge~coordinate! transformation which corre
sponds to choosing the spatial hypersurface, i.e., the
slicing. Thus we have the freedom to impose a tempo
gauge~slicing! condition which could be used as an adva
tage to handle the problems conveniently. The prime and
overdot indicate the time derivatives based onh and t, re-
spectively, withdt[a dh.

The most general expression of the Sachs-Wolfe ef
from the scalar-type perturbation can be found in Eq.~15! of
@14#. Ignoring the Doppler effects due to the observer’s m
tion, and the emitting event~which is subdominant at larg
angular scales!, the observable temperature anisotropy b
comes

dT

T U
O

5S ax1
dTx

T D U
E

1E
E

O

~ax2wx!8dy, ~2!

where the integration is along the photon’s null geodesic p
from the emitted~E! epoch to the observed~O! epoch. The
variablesax[a2ẋ, dTx[dT1HTx , andwx[w2Hx are
gauge-invariant combinations.2 wx becomesw in the zero-
shear gauge~often called the Newtonian gauge! which sets
x[0, etc. Using Bardeen’s notation in@15# we haveax

1This is in contrast with the perturbed Hubble parameterdH,
which has rigorous geometric and kinematic meanings, and in
is quite useful in handling the cosmological perturbation in a h
ristic looking but fully rigorous manner@12#.

2For the gauge transformation properties, see Eq.~2! in @14#.
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[FA andwx[FH @16#. The gauge invariance of a combina
tion assures that there remains no gauge~coordinate! mode
and that its value remains the same in any gauge. Howev
does not guarantee that a certain gauge-invariant variable
an associated intrinsic physical meaning independent of
slicing condition. For example, there exist several variab
wx , wdT[w1dT/T, wv[w2(aH/k)v, wherev is a veloc-
ity related variable andk is a wave number, etc., which ar
all gauge invariant.~An exception iswa based on the syn
chronous gauge which fixesa50.! They all reduce tow
under the corresponding gauge condition which sets the v
able in the subscript equal to zero. Although all these gau
invariant variables~we can make infinitely many differen
combinations! are curvature variables in different time slic
ings ~temporal gauges! we can safely regard them as com
pletely different variables.

Equation~2! was derived from the geodesic equations
the spacetime of Eq.~1! without fixing the gauge condition
and without using the gravitational field equations. In th
literature, the two terms in the right-hand side~RHS! are
often called the Sachs-Wolfe effect and the integrated Sa
Wolfe effect, respectively. At this point it may be appropria
to quote a comment in@2# which looks prescient in the con
text of the main point of this paper: ‘‘We emphasize aga
that in a generic gravitational field one cannot distingu
gravitational redshifts from Doppler shifts by any standa
recipe; thus our division of the equation...has only a heuri
significance.’’

We shall now assume that~i! the anisotropic stress can b
ignored, so that we have3 ax52wx , ~ii ! K505L, and~iii !
the medium is an ideal fluid with constantw[p/m ~wherep
is the pressure andm is the energy density! so that the grow-
ing solution ofwx remains constant in time.4 Given all these
assumptions the integrated Sachs-Wolfe term vanishes
that

dT

T U
O

5~2w12Hx1 1
4 d~g!!uE , ~3!

where we useddT/TuE5(1/4)d (g)uE with d (g)[dm (g) /m (g)
denoting fractional energy-density perturbation of the ph
tons. Now, the RHS is written without fixing the gauge ye
thus it is in a sort of gauge-ready form, but the sum is gau
invariant. In this form we can understand why and how su
a decomposition into the intrinsic temperature perturbat
and the gravitational redshift~or the time dilation! is depen-
dent on the temporal slicing~gauge! condition of the space-
time. Althoughw andx have meaning as the perturbed cu
vature and shear of the normal three-hypersurface, andd (g)
looks like an energy-density perturbation of photons, th
variables acquire such a meaning only after fixing the te
poral gauge~time slicing! condition, where we have infinite
choices. As mentioned before, the same variable evaluate
a different slicing~gauge! condition in general behaves as
completely different variable.

ct
-

3See Eq.~8! in @14#.
4See Eq.~18! in @14#.
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Equation~3! can be written in a suggestive form as5

dT

T U
O

5S 2wx2
aH

k
vx1 1

4 d~g!vD U
E

, ~4!

where vx[v2(k/a)x and d (g)v[d (g)14(aH/k)v. d (g)v
is the same asd (g) in the comoving gauge which sets th
velocity variablev[0; in a pressureless matter the test p
ticles follow geodesics and hence the comoving gauge
equivalent to the synchronous gauge which fixesa[0. Thus,
in this form the variables are viewed~evaluated! in mixed
slicing ~gauge!. We can show that each of these gaug
invariant variables most closely resembles the Newton
counterparts.2wx , dv , andvx most closely reproduce th
behavior of the perturbed gravitational potentiald F, the per-
turbed densitydN[dr/r, and the perturbed velocitydv in
the Newtonian context@17,15,18#.

It should be obvious from the above two equations a
discussion that the actual form of the terms in the right-ha
side depends very much on the gauge. It is best not to y
to the temptation of interpreting the individual term
‘‘physically’’—let alone try to fix the numerical prefactors
But if one insists on doing so, then the most natural choic
to interpret the first term2wx as due to the gravitationa
redshift ~we have2wx5ax5dF!, the second term as du
to the Doppler effect, and the third as arising from the rad
tion field. As we shall see in the next section, even t
interpretation is fraught with danger but at least the coe
cient of 2wx is now unity.

III. ADIABATIC PERTURBATIONS

We consider a system with radiation~g! and matter~m!.
The adiabatic condition

S[d~m!2
3
4 d~g!50 ~5!

implies

d[
dm

m
5

11R

114R/3
d~g! , R[

3m~m!

4m~g!
; ~6!

thus we have6 d (g)v;dv5 2
3 (k/aH)2wx , which is subdomi-

nant at large angular scales corresponding to the large-s
k/aH!1 at E. We have7

vx52
2

3

1

11w

k

aH
wx , ~7!

for the growing solution. Thus, adding the first two terms
the RHS of Eq.~4!, we finally have

5With the wave numberk appearing in the equation the variabl
can be regarded as Fourier transformed ones. To linear orde
same equations in configuration space remain valid in Fourier s
as well. Thus, we ignore specific symbols distinguishing the v
ables in the two spaces.

6See Eq.~6! in @14#.
7See Eq.~7! in @14#.
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dT~Ad!

T U
O

52
113w

3~11w!
wx52

1

3
wxU

E

5
1

3
dF, ~8!

where the second equality follows by assuming matter do
nation atE, so thatw50.8 In our cased F does not evolve in
time. We stress again that the result in Eq.~8! is valid under
many conditions mentioned above, especially the ones ab
Eq. ~3!; e.g., the simple result in Eq.~8! does not hold~for
example! in a model with an additional cosmological con
stant, and in such a case we should go back to the gen
form in Eq. ~2!.

It was often stressed in the literature that the21/3 factor
comes directly from the metric part in the synchronous ga
whereas it gets a contribution of21 from the metric and 2/3
from the intrinsic temperature part in the zero-shear ga
@19,9#. The origin of such gauge-dependent interpretatio
can be understood simply by rewriting the RHS of Eq.~3! or
Eq. ~4! in the respective gauge conditions. In the zero-sh
gauge,x[0, we have

dT

T U
O

52wx1
1

4
d~g!x . ~9!

Notice that on a large scale the temperature partd (g)x is
dominated@when viewed in the comoving gauge; compa
with Eq. ~4!# by the metric, and does not behave like
ordinary temperature. Instead, it gives2

3 wx , and we use
211 2

3 52 1
3 to get the final result. This is a rigorous arg

ment, and one should not confuse this with the heuristic
mentioned in the Introduction; except for the similar divisio
into 21 and 2

3 the origins and the interpretations are com
pletely different. Therefore, the heuristic interpretation is n
based on this zero-shear gauge analysis. The synchro
gauge coincides with the comoving gauge in the ma
dominated era~MDE!; thus in the comoving gauge we hav

dT

T U
O

5~2wv12Hxv!1 1
4 d~g!v . ~10!

For an ideal fluid with w5const we havewv5@(5
13w)/(313w)#wx for the growing mode.9 The temperature
part now behaves like the conventionally known temperat
fluctuation and thus is negligible on large angular sca
compared with the potential fluctuation. Therefore, using E
~7! with vx52(k/a)xv the metric part gives2 1

3 wx directly.
For the original derivation, see@2#; see also@20#.

IV. ISOCURVATURE CASE

The isocurvature condition isdmv[0 under which we
have wx50 and wv50. This condition implies S5

he
ce
i-

8Usingda/a5@2/3(11w)#dt/t the heuristic argument mentione
in the Introduction also produces a result for generalw at the emis-
sion epochE @5#.

9This follows from Eq.~18! in @14# and the conservation propert
of wv under an adiabatic condition:wv5C. Or see Eqs.~50!, ~51!
in @18#.
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23
4(R

2111)d(g)v . The isocurvature initial condition is im
posed early in the radiation dominated era~RDE!. Einstein’s
equations give10 ẇv52H(m1p)21dpv which shows that
the initial isocurvature perturbation can generatewv . For an
isocurvature mode we havedpv52(1/3)m (m)(11R)21S.
Assuming that the last scattering epochE occurred in the
MDE we have

wv5
1

3
SE

RDE

MDE dR

~R11!2 5
1

3
S ~11!

at E where we usedS5const in the large-scale limit@21#;
this argument was used by Liddle and Lyth in@22#. Thus, in
the MDE we havewx5 3

5 wv5 1
5 S; this shows the amount o

curvature perturbationwx in the MDE generated from the
initial isocurvature perturbationS in the RDE. In the MDE
we have1

4 d (g)v52 1
3 S. Therefore, from Eq.~4!, using Eq.

~7! and assuming the MDE atE, we have

dT~ Iso!

T U
O

52
2

5
SU

E

522wxuE52dF, ~12!

which is six times larger than the adiabatic result. For ori
nal derivations, see below Eq.~3.5! of @23# and below Eq.
~5.27! of @24#.

V. DISCUSSION

It is clear from Eq.~3! that we can divide the terms i
different ways~which is actually what the gauge choice
doing!. Correspondingly there are many different ways
reach thesamefinal results in Eqs.~8!, ~12!. In other words,

10This follows from Eqs.~12!, ~14!, ~18! in @18#.
-

se

b-
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we have infinitely many different ways of introducing slicin
and thus viewing each variable in different gauges. Wh
doing an actual calculation we need to choose the gauge~as
we mentioned, a gauge-invariant variable is equivalent t
variable based on a certain slicing condition which fixes
gauge mode completely!, but the final physical results shoul
be the same independently of which gauge we have cho
Our results in Eqs.~8!, ~12! are the final results whered F
can be interpreted as the perturbed Newtonian poten
which is related to the density contrast through Poisso
equation.

The pseudo Newtonian method described in the Introd
tion is closely related to the decomposition in Eq.~9!. How-
ever, as we have shown below Eq.~9! such an interpretation
is not supported by analyses in that gauge, which is true e
in the context of our gauge-ready form in Eq.~3!. That is,
interpreting the parts as being due to the gravitational r
shift and the time dilation is not justified in rigorous relati
istic perturbation theory. Hence it is difficult to imagine th
such a heuristic argument captures the basic physics.
believe it is yet another curious coincidence in general re
tivity in which a pseudo Newtonian argument does lead
the correct final result.

In a classic book by Zel’dovich and Novikov@25# we find
the statement: ‘‘However,...the gravitational shift conta
the factor 1/3; it is still unclear how to interpret this coef
cient classically,’’ which still seems to be true.
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