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Signal recycled laser-interferometer gravitational-wave detectors as optical springs

Alessandra Buonanno and Yanbei Chen
Theoretical Astrophysics and Relativity Group, California Institute of Technology, Pasadena, California 91125

~Received 5 July 2001; published 14 January 2002!

Using the force-susceptibility formalism of linear quantum measurements, we study the dynamics of signal
recycled interferometers, such as LIGO-II. We show that, although the antisymmetric mode of motion of the
four arm-cavity mirrors is originally described by a free mass, when the signal-recycling mirror is added to the
interferometer, the radiation-pressure force not only disturbs the motion of that ‘‘free mass’’ randomly due to
quantum fluctuations, but also, and more fundamentally, makes it respond to forces as though it were connected
to a spring with a specific optical-mechanical rigidity. This oscillatory response gives rise to a much richer
dynamics than previously known for SR interferometers, which enhances the possibilities for reshaping the
noise curves and, if thermal noise can be pushed low enough, enables the standard quantum limit to be beaten.
We also show the possibility of using servo systems to suppress the instability associated with the optical-
mechanical interaction without compromising the sensitivity of the interferometer.
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I. INTRODUCTION

In 2002 a network of broadband ground-based laser in
ferometers, aimed to detect gravitational waves~GWs! in the
frequency band 10–104 Hz, will begin operations. This net
work is composed of the Laser Interferometer Gravitation
Wave Observatory~LIGO!, VIRGO ~whose operation will
begin in 2004!, GEO 600, and TAMA 300@1#. Given the
anticipated noise spectra and the current estimates of g
tational waves from various astrophysical sources@2#, it is
plausible but not probable that gravitational waves will
detected with the first generation of interferometers. T
original conception of LIGO included an upgrade of LIGO
sensitivities at which it is probable to detect a rich variety
gravitational waves@2#. The LIGO Scientific Collaboration
~LSC! @3# is currently planning this upgrade to begin
2006. This second stage includes~i! improvement of the seis
mic isolation system to push the seismic wall downward
frequency to 10 Hz,~ii ! improvement of the suspension sy
tem to lower the noise in the band between;10 Hz and
;200 Hz, ~iii ! an increase~decrease! of light power ~shot
noise! circulating in the arm cavities (;1 MWatt!, ~iv! im-
provement in the optics so that they can handle the increa
laser power, and~v! the introduction of an extra mirror
called a signal-recycling~SR! mirror, at the dark-port output
This upgraded configuration of LIGO~‘‘advanced interfer-
ometer’’! is sometimes called LIGO-II and its design
sketched in Fig. 1.

The SR mirror~see Fig. 1! sends the signal coming ou
the dark port back into the arm cavities; in this sense itre-
cyclesthe signal.1 The optical system composed of the S
cavity and the arm cavities forms a composite resonant c
ity, whose eigenfrequencies and quality factors can be c
trolled by the position and reflectivity of the SR mirror. Ne
0556-2821/2002/65~4!/042001~26!/$20.00 65 0420
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its eigenfrequencies~resonances!, the device can gain sens
tivity. In fact, the initial motivation for introducing the SR
cavity was based on the idea of using this feature to resh
the noise curves, enabling the interferometer to work eit
in broadband or in narrow-band configurations, and impr
ing in this way the observation of specificGW astrophysical
sources@2#. Historically, the first idea for a narrow-band con
figuration, so-calledsynchronousor resonant recycling, was
due to Drever@4# and was subsequently analyzed by Vinetet
al. @5#. It used a different optical topology from Fig. 1. Th
original idea for the optical topology of Fig. 1 was due
Meers @6#, who proposed its use fordual recycling—a
scheme which by recycling the signal lightincreasesthe
storage time of the signal inside the interferometer and lo
ers the shot noise. Later, Mizunoet al. @7,8# and Heinzel@9#
proposed another scheme called resonant sideband extra
~RSE!, which also uses the optical topology of Fig. 1 b
adjusts the SR mirror so that the storage time of the sig
inside the interferometerdecreaseswhile the observation
bandwidth increases. In general, by choosing appropria
detunings2 of the SR cavity, the optical configuration can b
in either of the two regimes, or in between. These schem
have been experimentally tested by Freiseet al. @10# with the
30 m laser interferometer in Garching~Germany!, and by
Mason@11# on a table-top experiment at Caltech~U.S.A.!.

All the above-mentioned theoretical analyses and exp
ments of SR interferometers@4–11# refer to configurations
with low laser power, for which the radiation pressure on t
arm-cavity mirrors is negligible and the noise spectra
dominated by shot noise. However, when the laser powe
increased, the shot noise decreases fractionally while the
fect of radiation-pressure fluctuation increases by the sa
ratio. LIGO-II has been planned to work at a laser power
which the two effects are comparable in the observation b
splitter.
herefore,
ometer’s
1The configuration of LIGO-II will also include a power-recycling~PR! mirror between the laser and the beam splitter~see Fig. 1!. This
mirror recyclesback into the arm cavities the unused laser light coming out the bright port and increases the light power at the beam
In addition to this effect, the presence of the PR mirror does not affect the derivation of the quantum noise at the dark-port output. T
although in our analysis we assume high light power, we do not need to take into account the PR mirror in deducing the interfer
input-output relation.

2
By detuning of the SR cavity we mean the phase gained by the carrier frequency in the SR cavity, see Sec. III B for details.
©2002 The American Physical Society01-1
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10–200 Hz@3#. Therefore, to correctly describe the quantu
optical noise in LIGO-II, the results so far obtained in t
literature @4–11# must be complemented by a thorough i
vestigation of the influence of the radiation-pressure force
the mirror motion.

Until recently the LIGO-II noise curves were compute
using a semiclassical approach@3#, which, although capable
of estimating the shot noise, is unable to take into acco
correctly the effects of radiation-pressure fluctuations. V
recently, building on the earlier work of Kimble, Levin
Matsko, Thorne and Vyatchanin~KLMTV ! @12#, which de-
scribes the initial optical configuration of LIGO-TAMA
VIRGO interferometers~so-called conventional interferom
eters! within a full quantum-mechanical approach, w
investigated the SR optical configuration~Fig. 1! @13,14#.
Our analysis revealed important new properties of SR in
ferometers, including~i! the presence of correlations betwe
shot noise and radiation-pressure noise,~ii ! the possibility of
beating the standard quantum limit~SQL! by a modest
amount, roughly a factor of two over a bandwidth ofD f
; f ~see footnote 3! and ~iii ! the presence of instabilities i

3This performance refers only to the quantum optical noise. T
total noise beats the SQL only if all other noise sources can als
pushed below the SQL. These noises are not quantum limite
principle but may be technically challenging to reduce. For
ample, in the case of LIGO-II, the current estimate for the base
design places the thermoelastic noise from the sapphire test m
slightly above the SQL@15#. Design modifications have been e
plored @16# to reduce it to about half the SQL in amplitude.

FIG. 1. Schematic diagram of a signal recycled interferome
such as LIGO-II. The antisymmetric mode of motion of the fo
arm-cavity mirrors~marked by arrows! is monitored by laser inter-
ferometry. A signal-recycling mirror is used to feed the signal lig
back into the arm cavities, while a power-recycling mirror is intr
duced to feed back into the arm cavities the unused laser
coming out the bright port.
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the optical-mechanical system formed by the optical fie
and the arm-cavity mirrors. We also noticed@14# that the way
the SQL is beaten in the SR interferometer is quite differ
from standard quantum-nondemolition~QND! techniques
@17# based on building up correlations between shot no
and radiation-pressure noise by~i! injecting squeezed
vacuum into an interferometer’s dark port@18# and/or ~ii !
introducing 2-km-long filter cavities into the interferometer
output port@19,12# and applying homodyne detection on th
filtered light. Indeed, our analyses suggest that the impro
ment in the noise curves comes largely from the reson
features introduced by the SR cavity: whereas the amplit
of the classical output signal is amplified near the re
nances, the output quantum fluctuation is not strongly
fected by them. This way of using resonances to beat
SQL was first proposed by Braginsky, Khalili and colleagu
in their scheme of ‘‘optical bar’’GW detectors@20#, where
similarly the test mass is effectively an oscillator whose
storing force is provided by in-cavity optical fields. For a
‘‘optical bar’’ the free-mass SQL is irrelevant and we ca
beat the free-mass SQL using classical techniques of pos
monitoring @20#.

In Ref. @14# our analysis was mainly focused on determ
ing the input-output relations for the electromagnetic quad
ture fields in a SR interferometer, and evaluating the co
sponding noise spectral density. The resonant features o
whole device were discussed only briefly. In the present
per we give a detailed description of the dynamics of
system formed by the optical fields and the mirrors, we d
cuss the origin of the resonances and their possible insta
ties, and we analyze the suppression of the instabilities by
appropriate control system. In our analysis we have fou
the Braginsky-Khalili formalism for linear quantum mea
surements@21# very powerful and intuitive, and we use
throughout this paper.

This paper is divided into two parts: the formalism and
application. In Sec. II we introduce the force-susceptibil
formalism and discuss some general features of lin
quantum-measurement devices. In particular, after bri
commenting in Sec. II A on general quantum-measurem
systems, we derive in Sec. II B the equations of motion
linear quantum-measurement devices; in Sec. II C we w
down a set of conditions on the susceptibilities of line
quantum-measurement systems; in Sec. II D we use th
conditions to construct an effective description of a quantu
measurement process which allows us to identify in
straightforward way the shot noise and the radiation-press
noise. In the subsequent sections we apply the formal
developed in Sec. II to SR interferometers. In Sec. III w
show that SR interferometers can be described by the fo
susceptibility formalism and we derive their equations
motion, pointing out the existence of a ‘‘ponderomotive
gidity.’’ In Sec. IV we discuss in detail the oscillatory beha
ior of the system induced by the ponderomotive rigidity,
resonances and instabilities. In Sec. V we describe the
pression of the instability by a feedback control syste
which does not compromise the sensitivity. In Sec. VI w
analyze the dependence of the output signal on the in
quantization of the test masses. Finally, Sec. VII summari
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our main conclusions. As a foundation for our linear analy
of SR interferometers we summarize in the Appendix so
general properties of linear quantum-mechanical system

II. QUANTUM-MEASUREMENT SYSTEMS

A. General conditions defining a measurement system

Following Braginsky and Khalili@21#, we define amea-
surement processas a transformation from some origin
classical observable which isunknown, e.g., the
gravitational-wave amplitude, into another classical obse
able which isknown, e.g., the data stored in the comput
Generally, the system which implements this process is c
posed of a probeP, which is directly coupled to the classica
observable to be measured~for interferometers this is the
antisymmetric mode of motion of the four arm-cavity m
rors, see Sec. III A!, and the detectorD, which couples to the
probe and produces the output observable~for interferom-
eters this is the optical system and the photodetector!. A mea-
surement system is drawn schematically in Fig. 2. Wh
quantum-mechanical effects are significant in the behav
of the probe and the detector, the overall device is calle
quantum-measurement device. The output observableẐ5S
1Q̃ contains a classical partS, which depends on the clas
sical observableG to be measured, and some quantum no
Q̃ due to the probe, the detector and their mutual interact

According to the statistical interpretation of quantum m
chanics@23#, the output of a quantum-measurement proc
at different times issimultaneously measurable. One suffi-
cient condition forsimultaneous measurabilityis that the
Heisenberg operators of the output observable,Ẑ(t), satisfy4

@ Ẑ~ t1!,Ẑ~ t2!#50 ;t1 ,t2 . ~2.1!

Henceforth, we shall regard Eq.~2.1! as thecondition of
simultaneous measurability. Although the condition~2.1!
was originally introduced by Braginskyet al. @17,21# as the
definition of quantum-nondemolition~QND! observables
~see also Refs.@24–26#!, we introduce and use it for differ
ent purposes, as will become clear in the following. If t
condition ~2.1! is satisfied, then any sample of da

$Ẑ(t1),Ẑ(t2), . . . ,Ẑ(tn)% can be stored directly as bits o
classical data in a classical storage medium, and any n
from subsequent processing of the signal can be made

4We refer to this condition as sufficient since for observables
do not satisfy this condition, there may still exist a subspace of
Hilbert space of the system in which these observables are si
taneously measurable.

FIG. 2. Schematic diagram of a measurement device.G is the
classical observable acting on the probe that we want to mea

andẐ is the detector’s observable which describes the output of
measurement system.
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trarily small, i.e.,all quantum noisesin the original measure-
ment are included in the recorded fluctuations ofẐ(t). We
want to discuss thesimultaneous measurabilitycondition
~2.1! more deeply by pointing out the following relation
which was also in part discussed by Unruh@24# and Caves
et al. in Sec. IV of Ref.@25#, and reviewed subsequently i
Ref. @26#, although from a different point of view.

Simultaneous-measurability–zero-response relation.
For a quantum measurement device (QMD), the simu

neous measurability condition for the output Zˆ (t), i.e.,

@ Ẑ(t1),Ẑ(t2)#50 ;t1 ,t2, is equivalent to requiring that if
the device is coupled to an external system via an interac

Hamiltonian of the form V(Ẑ,Ê) where V is an arbitrary
function andÊ belongs to the external system, then the ba
action on the QMD does not alter the evolution of the outp
observableẐ.

Proof of necessity.5 Let us suppose that our QMD with
output Ẑ evolves under a HamiltonianĤQMD , and that

@ Ẑ(t),Ẑ(t8)#50 for all t,t8. Now let us couple it to an arbi-
trary external system with HamiltonianĤEXT via a generic
interaction termV(Ẑ,Ê) as specified above, whereÊ is an
observable of the external system. The total Hamiltonian

Ĥ5~ĤQMD1ĤEXT!1V~ Ẑ,Ê!. ~2.2!

If we treat the two terms in the parentheses as the zer
order Hamiltonian and the interaction HamiltonianV(Ẑ,Ê)
as a perturbation, by applying the results derived in the A
pendix @see Eq.~A9!# we can write the Heisenberg operat
of the output variableẐ as

Ẑpert~ t !5Ẑ~ t !1
i

\E2`

t

dt1@V„Ẑ~ t1!,Ê~ t1!…,Ẑ~ t !#

1S i

\ D 2E
2`

t

dt1E
2`

t1
dt2†V~ Ẑ~ t2!,Ê~ t2!!,

@V„Ẑ~ t1!,Ê~ t1!…,Ẑ~ t !#‡1•••, ~2.3!

with higher order terms of the form@see Eq.~A9!#

†V~ Ẑ~ tn!,Ê~ tn!!,

@•••,†V„Ẑ~ t2!,Ê~ t2!…,@V„Ẑ~ t1!,Ê~ t1!…,Ẑ~ t !#‡•••#‡.

~2.4!

HereẐ(t) andÊ(t) evolve under the HamiltoniansĤQMD and
ĤEXT , respectively. Because they belong to two differe
Hilbert spaces we have@ Ẑ(t),Ê(t8)#50 for all t,t8. By as-
sumption, we also have@ Ẑ(t1),Ẑ(t2)#50 ;t1 ,t2. Using
these two facts, we obtain@V„Ẑ(t1),Ê(t1)…,Ẑ(t2)#50
;t1 ,t2, and then using Eq.~2.3! we derive Ẑpert(t)5Ẑ(t).
t
e

ul-5A similar calculation was carried out by Caveset al. in Sec. IV of
Ref. @25#.
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This means that the evolution ofẐ is not affected by the kind
of external coupling we introduced.

Proof of sufficiency. Let us suppose the evolution ofẐ is
not affected byany external system of the form specifie
above. Then, in particular, it must be true for the simp
interaction HamiltonianV(Ẑ,Ê)52aẐE, wherea is some
coupling constant which can vary continuously, e.g., in
interval (0,1#, and we choose a classical external couplingE.
In this particular case Eq.~2.3! becomes

Ẑpert~ t !5Ẑ~ t !2a
i

\E2`

t

dt1@ Ẑ~ t1!,Ẑ~ t !#E~ t1!1O~a2!,

~2.5!

with higher order terms of the form
an

†Ẑ(tn),@•••,†Ẑ(t2),@ Ẑ(t1),Ẑ(t)#‡•••#‡. By assumption
the left-hand side~LHS! of Eq. ~2.5! does not change whe
we varya. The right-hand side~RHS! of Eq. ~2.5! is a power
series ina, and using the uniqueness of the Taylor expa
sion, we deduce that all the terms beyond the zeroth o
should vanish separately. In particular, the first-order te
should vanish and we conclude that@ Ẑ(t),Ẑ(t8)#50 for all
t,t8. h

Let us give two comments on the simultaneou
measurability—zero-response relation.

This relation links the abstract quantum mechanical id
of simultaneous measurabilityto the classical dynamics o
the measurement device, yielding a simple criterion for
quantum-classical transition: the observable which co
sponds to the classical output variable should have no
sponse to external perturbationsdirectly coupled to it.6 We
shall use this criterion in our analysis of linear systems
Sec. II C.

In practice, it is desirable to identify a subsystem of t
entire measurement process as the QMD, which would c
tain all the necessary quantum-measurement effects; w
the rest of the measurement process would only manipu
the output classically without adding fundamental quant
noise. An example of such a subsystem, naturally motiva
by the simultaneous-measurability–zero-response rela
would couple to the rest of the measurement process
directly7 through an observable satisfying the above sta
criterion.

Before ending this section, let us compare the point
view followed in this section to the one pursued in previo
QND analyses@24–26#, especially Sec. IV of Ref.@25#. The
authors of Refs.@25,26# followed two steps in their discus
sion. Firstly, they searched for a class of observablesÂ(t) of
a quantum-mechanical system that can be monitored with
adding fundamental noise, deducing a condition forÂ(t) that
coincides with Eq.~2.1!. They called such observables QN

6By directly coupling toẐ we mean the interaction Hamiltonian

of the form V(Ẑ,Ê), since only this form guarantees thatẐ is the
only observable of the device that influences the interaction.

7See footnote 6.
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observables. Secondly, they found appropriate interac
Hamiltonians describing the coupling betweenÂ(t) and a
measuring apparatus that does not disturb the evolution
Â(t) during the measurement process. However, in R
@25,26# there is no clear distinction between what we call t
detector and the external measurement system; these
systems are referred to together as the measuring appar
Thus, the observableÂ(t) does not necessarily coincide wit
the outputẐ(t) of our probe-detector system, and for th
reason we prefer not to call it a QND observable in the se
of Refs.@24–26#.

As a final remark, we note that whereas in Refs.@25,26#
the measuring apparatus and the interaction Hamiltonian
indispensable parts of a measurement process, in this p
by distinguishing the detector from the external system,
use the latter only as part of agedankenexperiment, by
which we clarify the relation between simultaneous meas
ability and the response to external couplings, which w
lead to useful properties of linear quantum-measurement
vices in Sec. II C.

B. Equations of motion of a linear quantum-measurement
system: The force-susceptibility formalism

Starting in this section we shall focus on linear measu
ment systems. We shall see in Sec. III thatGW interferom-
eters belong to this class of devices. Our analysis has b
inspired by the formalism of linear quantum-measurem
theory introduced by Braginsky and Khalili~Chaps. V, VI
and VII of Ref.@21#! and is based on the force-susceptibili
description of linearly coupled systems under linearly a
plied classical forces~see, e.g., Sec. 6.4 of Ref.@21#!.

In a linear measurement process, the device acts linearly
and is linearly coupled to the classical observable to be m
sured ~see the Appendix for a precise definition of line
systems!. We suppose that the device can be artificially
vided into two linearly coupled, but otherwise independe
subsystems: the probe, which is subject to the external c
sical force we want to measure, and the detector, wh
yields a classical output. More specifically, in our Ham
tonian system the probe is coupled to the external class
force G by 2 ŷG, whereŷ is some linear observable of th
probe, while the probe and the detector are coupled by a t
2 x̂F̂, wherex̂ is a generalized~linear! displacement of the
probe, andF̂ is a linear observable of the detector whic
describes its back-action force on the probe. In general,
observablex̂ to which the external force is coupled and th
observableŷ that the detector directly measures might not
the same. However, in our idealized model ofGW interfer-
ometers~Sec. III below!, x̂ and ŷ are actually the same ob
servable, namely the generalized coordinate of the antis
metric mode of motion of the four arm-cavity mirrors~see
Fig. 1 and Sec. III A!, and F̂ is the radiation-pressure forc
acting on this mode. Henceforth, we shall imposeŷ[ x̂. Fi-
nally, we denote byẐ the linear observable of the detect
which describes the output of the entire device. A sketc
representation of the measurement device is drawn in Fig
1-4
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The linear observablesx̂ describing the probeP; and Ẑ and

F̂, describing the detectorD, belong to two different Hilbert
spacesHP andHD , respectively, and the Hilbert space of th
combined system isHP^ HD . The Hamiltonian is given by

Ĥ5@~ĤP2 x̂G!1ĤD#2 x̂F̂. ~2.6!

We shall now derive the equations of motion of the syst
composed of the linear observablesx̂, Ẑ, and F̂. As a first
step in our calculation, we regard the HamiltoniansĤP
2 x̂G and ĤD as zeroth order Hamiltonians for the su
systemsP andD, respectively, and we treat2 x̂F̂ as a linear
coupling betweenP andD. Working in the Heisenberg pic
ture, we obtain the following equations@see Theorem 4 o
the Appendix and Eqs.~A12!, ~A13!#:

Ẑ(1)~ t !5Ẑ(0)~ t !1
i

\E2`

t

dt8CZ(0)F(0)~ t,t8!x̂(1)~ t8!,

~2.7!

F̂ (1)~ t !5F̂ (0)~ t !1
i

\E2`

t

dt8CF(0)F(0)~ t,t8!x̂(1)~ t8!,

~2.8!

x̂(1)~ t !5 x̂(G)~ t !1
i

\E2`

t

dt8Cx(G)x(G)~ t,t8!F̂ (1)~ t8!.

~2.9!

HereCAB(t,t8) is a complex number (C number!, called the
~time-domain! susceptibility, and is defined by Eq.~A11! of
the Appendix, i.e.,

CAB~ t,t8![@Â~ t !,B̂~ t8!# ~2.10!

where the superscript (1) in Eqs.~2.7!–~2.9! denotes time
evolution under the total HamiltonianĤ @Eq. ~2.6!#, the su-
perscript (0) onF̂(t) andẐ(t) denotes time evolution unde
the free Hamiltonian of the detectorĤD , while the super-
script ~G! on x̂(t) refers to the time evolution under th
HamiltonianĤP2 x̂G, which describes the probe under th
sole influence ofG(t).

As a second step, we want to relatex̂(G)(t) to x̂(0)(t),
which evolves under the free probe HamiltonianĤP . Using
Theorem 3 in the Appendix and Eqs.~A10!, ~A11!, we de-
duce

FIG. 3. Schematic diagram of a linear measurement system.G is
the external classical force acting on the probe that we wan

measure,x̂ is the linear observable of the probe,F̂ is the linear
observable of the detector which describes the back-action forc

the probe, andẐ is the linear observable of the detector whi
describes the output of the overall measurement system.
04200
x̂(G)~ t !5 x̂(0)~ t !1
i

\E2`

t

dt8Cx(0)x(0)~ t,t8!G~ t8!.

~2.11!

Noticing from Eq. ~2.11! that x̂(G) differs from x̂(0) by a
time-dependent C number, we get Cx(G)x(G)(t,t8)
5Cx(0)x(0)(t,t8). Using this fact and inserting Eq.~2.11! into
Eq. ~2.9!, we can relate the Heisenberg operators evolv
under the full HamiltonianĤ to those evolving under the
free Hamiltonians of the probe and the detectorĤP andĤD :

Ẑ(1)~ t !5Ẑ(0)~ t !1
i

\E2`

t

dt8CZ(0)F(0)~ t,t8!x̂(1)~ t8!, ~2.12!

F̂ (1)~ t !5F̂ (0)~ t !1
i

\E2`

t

dt8CF(0)F(0)~ t,t8!x̂(1)~ t8!,

~2.13!

x̂(1)~ t !5 x̂(0)~ t !1
i

\E2`

t

dt8Cx(0)x(0)~ t,t8!@G~ t8!1F̂ (1)~ t8!#.

~2.14!

A quantity of special interest for us is the displacement
duced on a free probe~without any influence of the detector!
by G(t), namely the second term on the RHS of Eq.~2.11!.
For aGW interferometer this displacement isLh(t), whereL
is the arm-cavity length andh(t) is the differential strain
induced by the gravitational wave on the free arm-cav
mirrors ~the difference in strain between the two arms!. In
our notation we denote this quantity by

Lh~ t !5
i

\E2`

t

dt8Cx(0)x(0)~ t,t8!G~ t8!, ~2.15!

and for aGW interferometerG(t)5(m/4)Lḧ(t), wherem/4
is the reduced mass of the antisymmetric mode of motion
the four arm-cavity mirrors~see Secs. III A and III B!. ~Note
that each mirror has massm.!

Henceforth, we shall assume that both the probe and
detector have time-independent Hamiltonians, i.e., bothĤD
and ĤP are time independent. In this case, as shown in
Appendix, the susceptibilities that appear in Eqs.~2.12!–
~2.14! depend only ont2t8. By transforming them into the
Fourier domain, denoting byh(V) the Fourier transform of
h(t) and introducing the Fourier-domain susceptibility

RAB~V![
i

\E0

1`

dteiVtCAB~0,2t!, ~2.16!

we derive

Ẑ(1)~V!5Ẑ(0)~V!1RZF~V!x̂(1)~V!, ~2.17!

F̂ (1)~V!5F̂ (0)~V!1RFF~V!x̂(1)~V!, ~2.18!

x̂(1)~V!5 x̂(0)~V!1Lh~V!1Rxx~V!F̂ (1)~V!.
~2.19!

to

on
1-5
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Here and below, to simplify the notation we denoteRZF
[RZ(0)F(0), RFF[RF(0)F(0), Rxx[Rx(0)x(0). By solving Eqs.
~2.17!–~2.19! for the full-evolution operators in terms of th
free-evolution ones, we finally get

x̂(1)~V!5
1

12Rxx~V!RFF~V!
@ x̂(0)~V!1Lh~V!

1Rxx~V!F̂ (0)~V!#, ~2.20!

F̂ (1)~V!5
1

12Rxx~V!RFF~V!
$F̂ (0)~V!1RFF~V!

3@ x̂(0)~V!1Lh~V!#%, ~2.21!

Ẑ(1)~V!5Ẑ(0)~V!1
RZF~V!

12Rxx~V!RFF~V!
@ x̂(0)~V!

1Lh~V!1Rxx~V!F̂ (0)~V!#. ~2.22!

Let us point out that if the kernel relating the full-evolutio
operators to the free-evolution ones, i.e., 1/(12RxxRFF),
contains poles both in the lowerand in the uppercomplex
plane@with our definition of Fourier transform given by Eq
~A14!#, then by applying the standard inverse Fourier tra
form to Eqs.~2.20!–~2.22!, we get thatx̂(1)(t), F̂ (1)(t), and
Ẑ(1)(t) depend on the gravitational-wave field and the fre
evolution operatorsx̂(0)(t), F̂ (0)(t), and Ẑ(0)(t) both in the
past and in the future. However, these are not the corre
solutions for the real motion. This situation is a very co
mon one in physics and engineering~it occurs, for example,
in the theory of linear electronic networks@22# and the
theory of plasma waves@27#!, and the cure for it is well
known: in order to obtain the~correct! full-evolution opera-
tors x̂(1)(t), F̂ (1)(t), and Ẑ(1)(t) that only depend on the
past,we have to alter the integration contour in the invers
Fourier transform, going above all the poles in the comp
plane. ~In the language of plasma physics we have to use
Landau contours.! This procedure, which can be justifie
rigorously using Laplace transforms@28#, makes x̂(1)(t),
F̂ (1)(t), and Ẑ(1)(t) for many systems infinitely sensitive t
driving forces in the infinitely distant past. This means th
such quantum-measurement systems possess instabi
which can be directly deduced from the homogeneous s
tions of Eqs. ~2.20!–~2.22!, whose eigenfrequencies a
given by the equation 12Rxx(V)RFF(V)50. The zeros of
the equation 12Rxx(V)RFF(V)50 are generically complex
and if they have positive imaginary parts then the system
unstable, corresponding to homogeneous solutions that g
exponentially toward the future.

As we shall discuss at length in Sec. IV, LIGO-II interfe
ometers would possess such an~optical-mechanical! instabil-
ity, unless an appropriate control system is implemented
the presence of an appropriate servo system~one example
will be given in Sec. V!, the dynamics will be stabilized, an
all the homogeneous solutions will oscillate at the n
eigenfrequencies with negative imaginary parts. These
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mogeneous solutions will all die out as transients, leav
only the stationary solutions given by ordinary Fouri
analysis.

C. Conditions defining a linear measurement system
in terms of susceptibilities

As we pointed out in Sec. II A, in order to be identified
the output of the measurement system, the observablẐ

should satisfy@ Ẑ(t1),Ẑ(t2)#50, ; t1 ,t2, i.e., the condition
of simultaneous measurability. In that section, we have als
proved the equivalence between this condition and the c
dition that any external coupling to the measurement sys
throughẐ should not change the evolution ofẐ itself. In the
following we shall take advantage of this equivalence:
imagining that we couple the linear measurement system
some external system throughẐ and by looking at~possible!
changes inẐ’s evolution, we shall obtain a set of condition
for the susceptibilities involvingẐ.

Let us first restrict ourselves to the simplest possible
ternal coupling,V̂52ẐE, where E is a classical externa
force. The total Hamiltonian~2.6! becomes

Ĥ5@~ĤP2 x̂G!1ĤD#2 x̂F̂2ẐE
5@~ĤP2 x̂G!1~ĤD2ẐE!#2 x̂F̂. ~2.23!

To derive the equations of motion for the Hamiltonian~2.23!
we apply the procedure used in Sec. II B to deduce the eq
tions of motion for the Hamiltonian~2.6!. First, we consider
(ĤP2 x̂G) and (ĤD2ẐE) as zeroth order Hamiltonians an
relate the operatorsẐpert

(1) , F̂pert
(1) , and x̂pert

(1) , which evolve un-

der the full Hamiltonian~2.23!, to the operatorx̂(G), which
evolves under the Hamiltonian (ĤP2 x̂G), and the operators
Ẑ(E) and F̂ (E), evolving under the Hamiltonian (ĤD2ẐE),

Ẑpert
(1) ~ t !5Ẑpert

(E) ~ t !1
i

\E2`

t

dt8CZ(E)F(E)~ t,t8!x̂pert
(1) ~ t8!,

~2.24!

F̂pert
(1) ~ t !5F̂pert

(E) ~ t !1
i

\E2`

t

dt8CF(E)F(E)~ t,t8!x̂pert
(1) ~ t8!,

~2.25!

x̂pert
(1) ~ t !5 x̂(G)~ t !1

i

\E2`

t

dt8Cx(G)x(G)~ t,t8!F̂pert
(1) ~ t8!.

~2.26!

Second, we relate the operatorsx̂(G), Ẑ(E) and F̂ (E) to the
operatorsx̂(0), Ẑ(0), and F̂ (0) which evolve underĤP and
ĤD :

Ẑpert
(E) ~ t !5Ẑ(0)~ t !1

i

\E2`

t

dt8CZ(0)Z(0)~ t,t8!E~ t8!,

~2.27!
1-6
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F̂pert
(E) ~ t !5F̂ (0)~ t !1

i

\E2`

t

dt8CF(0)Z(0)~ t,t8!E~ t8!,

~2.28!

x̂(G)~ t !5 x̂(0)~ t !1
i

\E2`

t

dt8Cx(0)x(0)~ t,t8!G~ t8!.

~2.29!

Noticing thatẐpert
(E) , F̂pert

(E) , andx̂(G) differ from Ẑ(0), F̂ (0), and

x̂(0) only by time-dependentC numbers, we obtain the fol
lowing relations: CZ(E)F(E)(t,t8)5CZ(0)F(0)(t,t8),
CF(E)F(E)(t,t8)5CF(0)F(0)(t,t8) and Cx(G)x(G)(t,t8)
5Cx(0)x(0)(t,t8). Then, by inserting Eqs.~2.27!–~2.29! into
Eqs.~2.24!–~2.26!, we deduce the equations of motion ofẐ,
F̂, and x̂ under the Hamiltonian~2.23!:

Ẑpert
(1) ~ t !5Ẑ(0)~ t !1

i

\E2`

t

dt8@CZ(0)Z(0)~ t,t8!E~ t8!

1CZ(0)F(0)~ t,t8!x̂pert
(1) ~ t8!#, ~2.30!

F̂pert
(1) ~ t !5F̂ (0)~ t !1

i

\E2`

t

dt8@CF(0)Z(0)~ t,t8!E~ t8!

1CF(0)F(0)~ t,t8!x̂pert
(1) ~ t8!#, ~2.31!

x̂pert
(1) ~ t !5 x̂(0)~ t !1

i

\E2`

t

dt8Cx(0)x(0)~ t,t8!@G~ t8!

1F̂pert
(1) ~ t8!#. ~2.32!

From Eqs.~2.30!–~2.32! we infer that there are two ways th
external forceE can influence the evolution ofẐpert

(1) : ~i! E can

affect Ẑpert
(1) directly, through the first term in the bracket o

Eq. ~2.30!, unlessCZ(0)Z(0)(t,t8)50 for all t.t8 ~and thus
for all pairs of t and t8); and ~ii ! E can influence the evolu
tion of Ẑpert

(1) indirectly, affecting the evolution ofF̂pert
(1) @first

term in the square bracket of Eq.~2.31!#, and through it the
evolution ofx̂pert

(1) andẐpert
(1) @second terms in the square brac

ets of Eqs.~2.32! and ~2.30!#, unlessCF(0)Z(0)(t,t8)50 for
all t.t8.

Now we are ready to deduce the conditions that mus
satisfied in order that the evolution ofẐ not be changed by
the external couplingE. In principle the two waysE affects
the evolution ofẐ may cancel each other. However, noticin
the fact that case~i! does not depend on the probe~only
CZ(0)Z(0) matters!, but case~ii ! does (Cx(0)x(0) also matters!,
we see that the cancellation will not always occur if we
sume that,whatever probe the detector is coupled to, Ẑ al-
ways corresponds to the output of the measurement proc
Thus both conditions must be satisfied:CZ(0)Z(0)50 and
CF(0)Z(0)50.

This argument for both conditions can be made more c
by assigning an ‘‘effective mass’’m to the probe and con
sider a continuous family of probes labeled bym ~for inter-
ferometers the family of probes are the family of mirro
04200
e

-

ss.

ar

with different masses!. The susceptibility of the coordinatex̂
depends on the effective mass as

Cx(0)x(0)}
1

m
, ~2.33!

which simply says that the probe’s response to exter
forces decreases as its effective mass increases. BecausẐ(0)

and F̂ (0) are operators evolving under the free Hamiltoni
of the detector, they do not depend onm. Now consider two
cases: First, the limiting case ofm→`. Then Cx(0)x(0)→0
and from Eq.~2.32! we get x̂pert

(1) (t)5 x̂(0)(t). As a conse-

quence,E affects the evolution ofẐpert
(1) only through the first

term in the square bracket of Eq.~2.30! @see case~i! above#,
unlessCZ(0)Z(0)(t,t8)50 for all pairs of t and t8. Second,
consider the case of finite massm, and then conclude thatE
will affect the evolution ofẐpert

(1) only through the second term
in the bracket of Eq.~2.30! @see case~ii ! above#, unless
CF(0)Z(0)(t,t8)50 for all t.t8.

In conclusion we have found that if, whatever the pro
is, Ẑ always corresponds to the output of the linear measu
ment device, then the following conditions must be satisfi

LQM: H CZ(0)Z(0)~ t,t8![@ Ẑ(0)~ t !,Ẑ(0)~ t8!#50, ;t,t8,

CF(0)Z(0)~ t,t8![@ F̂ (0)~ t !,Ẑ(0)~ t8!#50, ;t.t8.

~2.34!

In the frequency domain these conditions read

RZZ~V!505RFZ~V!. ~2.35!

It is possible to show that LQM@Eqs.~2.34!# are also suffi-
cient conditions for the simultaneous measurability condit
~2.1! be satisfied independently of the probe’s nature; im
ine coupling our linear measurement system to an exte
system with an arbitrary HamiltonianHEXT via a generic
couplingV(Ẑ, Ê), Ê being an external observable, and che
whether the evolution ofẐ is affected by this coupling. The
check can be achieved by writing the total Hamiltonian a

Ĥ5@~ĤP2 x̂G!1~ĤD2ẐÊ1ĤEXT!#2 x̂F̂, ~2.36!

and re-doing all the steps followed earlier in this section. I
helpful to notice that the evolutions ofẐ and F̂ under ĤD
2ẐÊ1ĤEXT are the same as those underĤD , once the con-
dition LQM, or Eqs.~2.34!, is satisfied. The result, after
long calculation, is that conditions~2.34! are sufficient to
guarantee that the evolution ofẐ is unaffected by the cou
pling.

D. Effective description of measurement systems

It is common to normalize the output observableẐ to unit
signal—e.g., in the case ofGW interferometer, it is common
1-7
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to set to unity the coefficient in front of the~classical! ob-
servableLh we want to measure so the normalized outpuẐ
has the form

Ô5N̂1Lh, ~2.37!

whereN̂ is the so-calledsignal-referredquantum noise. The
observableÔ can be easily deduced in the frequency dom
by renormalizing Eq.~2.22!,

Ô~V!5
12Rxx~V!RFF~V!

RZF~V!
Ẑ(1)~V!

5
Ẑ(0)~V!

RZF~V!
1Rxx~V!F F̂ (0)~V!2RFF~V!

Ẑ(0)~V!

RZF~V!
G

1 x̂(0)~V!1Lh~V!, ~2.38!

that is

Ô~V!5Ẑ~V!1Rxx~V!F̂~V!1 x̂(0)~V!1Lh~V!.
~2.39!

Here we have introduced two linear observablesẐ and F̂
defined in the Hilbert spaceHD of the detector,

Ẑ~V![
Ẑ(0)~V!

RZF~V!
, F̂~V![F̂ (0)~V!2RFF~V!

Ẑ(0)~V!

RZF~V!
.

~2.40!

In the time domain the output observableÔ(t) reads

Ô~ t !5E
2`

1`

dt8K~ t2t8!Ẑ(1)~ t8!, ~2.41!

where

K~ t !5E
2`

1`12Rxx~V!RFF~V!

RZF~V!
e2 iVt

dV

2p
. ~2.42!

Thus

Ô~ t !5Ẑ~ t !1
i

\E2`

t

dt8Cx(0)x(0)~ t,t8!F̂~ t8!1 x̂(0)~ t !

1Lh~ t !. ~2.43!

Using the two properties given by Eqs.~A17! of the Appen-
dix, and applying the conditions LQM@Eqs.~2.34!#, we ob-
tain the following commutation relations for the observab
Ẑ(t) and F̂(t) in the Fourier domain:

@Ẑ~V!,Ẑ†~V8!#505@F̂~V!,F̂†~V8!#,

@Ẑ~V!,F̂†~V8!#522p i\d~V2V8!,
~2.44!
04200
n

s

or in the time domain:8

@Ẑ~ t !,Ẑ~ t8!#505@F̂~ t !,F̂~ t8!# ;t,t8, ~2.45!

@Ẑ~ t !,F̂~ t8!#52 i\d~ t2t8! ;t,t8. ~2.46!

It is interesting to notice that, because the observablesẐ(t)
and F̂(t) satisfy the commutation relations~2.45!, they can
be regarded at different times as describing different deg
of freedom. Moreover, because of Eq.~2.46!, the observables
Ẑ(t) and F̂(t) can be seen at each instant of time as
canonical momentum and coordinate of differenteffective
monitors ~probe-detector measuring devices!. Therefore,
Ẑ(t) and F̂(t) define an infinite set of effective monitors
indexed byt, similar to the successive independent monito
of von Neumann’s model@23# for quantum-measuremen
processes investigated by Caves, Yuen and Ozawa@29#.
However, by contrast with von Neumann’s model, the mo
tors defined byẐ(t) and F̂(t) at differentt ’s arenot neces-
sarily independent. They may, in fact, have nontrivial sta
tical correlations, embodied in the relations

^Ẑ~ t !Ẑ~ t8!&5” const3d~ t2t8!,

^F̂~ t !F̂~ t8!&5” const3d~ t2t8!,

^Ẑ~ t !F̂~ t8!&5” const3d~ t2t8!, ~2.47!

where ‘‘̂ & ’’ denotes the expectation value in the quantu
state of the system. These correlations can be built up a
matically by the internal dynamics of the detector—for e
ample, they are present in LIGO-typeGW interferometers
@12–14#.

Let us now comment on the origin of the various term
appearing in Eq.~2.43!.

The first termẐ(t) describes the quantum fluctuations
the monitors’ readout variable@see also Eq.~2.40!# which are
independent of the probe. In particular,Ẑ does not depend on
the effective massm of the probe. Henceforth, we refer toẐ
as theeffectiveoutput fluctuation. For an interferometer, th
quantum noise embodied inẐ is the well-known shot noise

The second term in Eq.~2.43! is the effective response o
the output at timet to the monitor’s back-action force a
earlier timest8,t. SinceCx(0)x(0)}1/m this part of the output
depends on the effective mass of the probe. ForGW inter-
ferometers the back action is caused by radiation-pres
fluctuations acting on the four arm-cavity mirrors. In the fo
lowing we refer toF̂ as theeffectiveback-action or radiation-

8Note that if we use the commutator ofẐ and F̂ to evaluate the
susceptibilities, we find naively thatRFZ andRZF are proportional
to *0

`dtd(t), which is not a well defined quantity. However, intro
ducing an upper cut-offL in the frequency domain we can writ
d(t) asd(t)5sinLt/pt for L→1`, which is symmetric around
the origin. With this prescription*0

1`dtd(t)51/2, and the suscep
tibilities RZZ5RFF50,RFZ51/2,RZF521/2.
1-8



n

r
is
ob
nc
, t
he
th
n

lili

n
re
t’s

n
r
n

b

le
th
-

ea
to

n
in

e
m

. I

a
-

i-
rm-
ave

in

l of

ter,

al
l we

mir-

SIGNAL RECYCLED LASER-INTERFEROMETER . . . PHYSICAL REVIEW D 65 042001
pressure force. The noise embodied inF̂ is called the back-
action noise.@In the case ofGW interferometers, it is also
called the radiation-pressure noise, since the back actio
just the radiation-pressure force.#

The third term in Eq.~2.43! is the free-evolution operato
of the probe’s coordinate. In principle, this is also a no
term. However, in many cases the free evolution of the pr
coordinate is confined to a certain uninteresting freque
range, so if we make measurements outside this range
noise due to the free evolution of the probe will not affect t
measurement. We shall see in Sec. III B that this will be
case forGW interferometers, as has been pointed out a
discussed at length by Braginsky, Gorodetsky, Kha
Matsko, Thorne and Vyatchanin~BGKMTV ! @30#.

The last term in Eq.~2.43! is the displacement induced o
the probe by the classical observable we want to measu

Within the effective description of the measuremen
renormalized output@Eq. ~2.43!#, it is instructive to analyze
how the simultaneous measurability conditio
@Ô(t1),Ô(t2)#50 ;t1 ,t2, is enforced by the probe-detecto
interaction. To evaluate explicitly the commutation relatio
of the observableÔ, we notice that in Eq.~2.43! the first two
terms always commute with the third term, because they
long to the two different Hilbert spacesHD and HP . The
other terms give

@Ô~ t1!,Ô~ t2!#

5F Ẑ~ t1!1
i

\E2`

t1
dt18Cx(0)x(0)~ t1 ,t18!F̂~ t18!,

Ẑ~ t2!1
i

\E2`

t2
dt28Cx(0)x(0)~ t2 ,t28!F̂~ t28!

1@ x̂(0)~ t1!,x̂(0)~ t2!#. ~2.48!

Hence, the two-time commutator ofÔ(t) is the sum of two
terms: the first term depends solely on detector observab
while the second term is just the two-time commutator of
free-probe coordinatex̂(0)(t). Using the commutation rela
tions of Ẑ(t) and F̂(t) given by Eqs.~2.45!, ~2.46! it is
straightforward to deduce that in Eq.~2.48! the detector com-
mutator exactly cancels the probe commutator. This cl
cancellation is a very interesting property of probe-detec
kinds of quantum-measurement systems and has bee
cently pointed out and discussed at length by BGKMTV
Ref. @30#.

III. DYNAMICS OF SIGNAL RECYCLED
INTERFEROMETERS: EQUATIONS OF MOTION

In this section we investigate the dynamics of a SR int
ferometer, showing that it is a probe-detector linear quantu
measurement device as defined and investigated in Sec

A. Identifying the dynamical variables and their interactions

In gravitational-wave interferometers composed of equ
length arms~the optical configuration adopted by LIGO
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VIRGO-GEO-TAMA!, laser interferometry is used to mon
tor the displacement of the antisymmetric mode of the a
cavity mirrors induced by the passage of a gravitational w
~see Fig. 4!.

Recently Kimble, Levin, Matsko, Thorne and Vyatchan
~KLMTV ! @12# described a conventional~LIGO-I type! in-
terferometer using a full quantum mechanical approach~see
the optical scheme inside the dashed box in the left pane

FIG. 4. On the bottom panel we draw a SR interferome
showing the antisymmetric mode of mirror motion~marked by ar-

rows!, the dark-port and SR optical fieldsâi , . . . ,f̂ i and the bright-

port fields ĝi ,ĥi , i 51,2. The conventional-interferometer optic
scheme is contained inside the dashed box. In the top pane

identify the variables,x̂[ x̂antisym5( x̂n12 x̂n2)2( x̂e12 x̂e2), Ẑ, and

F̂, describing the dynamics of the SR interferometer.@Note that
GEO600 does not have arm cavities, but instead has only one
ror in each arm.#
1-9
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ALESSANDRA BUONANNO AND YANBEI CHEN PHYSICAL REVIEW D65 042001
Fig. 4!. KLMTV @12# showed~as has long been known@31#!
that in this kind of interferometer the antisymmetric mode
motion of the four arm-cavity mirrors and the dark-port sid
band fields@ ĉi and d̂i ~see footnote 9! in Fig. 4# are decou-
pled from other degrees of freedom, i.e., from other mode
motion of the four arm-cavity mirrors and from the brigh
port sideband fields (ĝi and ĥi in Fig. 4!. As a consequence
the dynamics relevant to the output signal and the co
sponding noise are described only by the antisymme
mode of motion of the four arm-cavity mirrors and the da
port sideband fields~see Appendix B of KLMTV@12# for
details!. This result remains valid for SR interferomete
@13,14#: we only need to include in the analysis all the op
cal fields inside the SR cavity, such asĉi , d̂i , êi , and f̂ i @but
not ĝi or ĥi#, and those outside the SR cavity, such asâi and
b̂i .

The coordinate of the antisymmetric mode of motion
defined by KLMTV@see Fig. 3 and Eq.~12! of Ref. @12#, and
the right panel of Fig. 4 in our paper# as

x̂antisym[~ x̂n12 x̂n2!2~ x̂e12 x̂e2!, ~3.1!

and we identify it with the dynamical variablex̂ introduced
in Sec. II B@see Eq.~2.9!#. The output of the detector can b
constructed from two independent output observables,
two quadraturesb̂1 and b̂2 of the outgoing electromagneti
field immediately outside the SR mirror~see the left panel o
Fig. 4!. If a homodyne-detection read-out scheme is imp
mented, then the output is a linear combination of the t
quadratures, that is

b̂z[sinzb̂11coszb̂2 , z5const, ~3.2!

which is a generic quadrature field.10 We thus identify the
dynamical variableẐ introduced in Sec. II B@Eq. ~2.7!# as
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Ẑz[b̂z . ~3.3!

In particular, whenz5p/2 andz50 we haveẐ1[b̂1 and
Ẑ2[b̂2.

The radiation-pressure force acting on the arm-cavity m
rors, and coupled to the antisymmetric mode, can be dire
related to the dark-port quadrature fields. This result w
explicitly derived in Appendix B of KLMTV@12#. As a foun-
dation for subsequent calculations, we shall summarize
main steps of their derivation: The force acting on each a
cavity mirror is 2W/c, whereW is the power circulating in
each arm cavity, which is proportional to the square of
amplitude of the electric field propagating toward the mirr
In the arm cavities, the electric field can be decomposed
two parts: the carrier and the sideband fields. The car
refers to the strong, stationary component of the optical fi
at the laser frequencyv0, driven directly by the input laser
while the sideband fields refer to all of the rest of the opti
field distributed over the entire spectrum, which may co
from the vacuum fluctuations or from the modulations to t
carrier field generated by changes of the cavity lengths.
troducing the carrier amplitudeD and the sideband quadra
ture operatorsŝ1,2, we have

Ê~ t !5D cosv0t1cosv0tF E
0

1`dV

2p
e2 iVtŝ11H.c.G

1sinv0tF E
0

1`dV

2p
e2 iVtŝ21H.c.G , ~3.4!

where H.c. stands for the Hermitian conjugate.~Note that by
writing the carrier field asD cosv0t, we have adopted the
convention used by KLMTV@12#.! Taking the square of
Ê(t), we obtain
nd
r
ion for

ped by

l

Ê2~ t !5@DC component#1@high frequency component~.v0!#

1DF E
0

1`dV

2p
e2 iVtŝ11H.c.G1~quadratic terms in;ŝ1 ,ŝ2!, ~3.5!

where we have used the fact that in the integralV,v0.TheDC andv0;1015 sec21 components are not in the detection ba
of GW interferometers, 10 Hz<V/2p<104 Hz. We also ignore the quadratic terms in Eq.~3.5!, since they are much smalle
than the linear terms. Thus, modulo a factor of proportionality, we obtain in the Fourier domain the following express
the radiation-pressure force acting on each mirror in the detection band:

F̂RP~V!}Dŝ1~V!. ~3.6!

9Here âi , b̂i , ĉi , . . . with i 51,2 stand for the two quadrature operators of the electromagnetic field. This formalism was develo
Caves and Schumaker@32#, adopted by KLMTV@12# and the authors@13,14#.

10Rigorously speaking, the output is the photocurrent, which in the frequency band of interest~10–104 Hz! is almost precisely proportiona
to the output quadrature field, but not quite so; see Ref.@30# and the Appendix of Ref.@14# for more discussion on this point.
1-10
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As shown in Appendix B of Ref.@12#, the in-cavity quadra-
ture field ŝ1 is a combination of the incoming quadratur
from both the dark and the bright ports. However, the c
tribution from the bright-port fields do not couple to the a
tisymmetric mode, so the force acting on the antisymme
mode is due only to the incoming fields from the dark po
More specifically, in Sec. 4 of Appendix B of Ref.@12#,
KLMTV related the in-cavity carrier amplitudeD and the
sideband quadratureŝ1 @which they denoted byĵ 1 ~see foot-
note 11!# to the input carrier amplitude and ingoing dark-po
quadratureĉ1 ~which they denoted byâ1). Although they did
not give the explicit expression we need here forF̂RP, it is
straightforward to recover it. Using the arrows indicated
the right panel of Fig. 4 as positive directions, we find12

F̂RP5A 2I 0\v0

~V21g2!L2
eibĉ1 , ~3.7!

wherev0 is the carrier laser frequency,I 0 is the carrier light
power entering the beam splitter from the bright port, 2b
52 arctanV/g is the net phase gained by the sideband f
quency V while in the arm cavity,g5Tc/4L is the half
bandwidth of the arm cavity (T is the power transmissivity
of the input mirrors andL is the length of the arm cavity!.
Note that, by assuming the four forces acting on the a
cavity mirrors to be equal, we have made the approxima
used by KLMTV @12# of disregarding the motion of the mir
rors during the light’s round-trip time ~quasi-static
approximation!.13 We identify this forceF̂RP with the dy-
namical variableF̂ introduced in Sec. II B@see Eq.~2.8!#:

F̂[F̂RP5A 2I 0\v0

~V21g2!L2
eibĉ1 . ~3.8!

Applying Newton’s law to the four mirrors, we deduce

mẍ̂54F̂1other forces, ~3.9!

where ‘‘other forces’’ refer to forces not due to the optica
mechanical interaction, e.g., the force due to the gravitatio
wave and thermal forces. By identifying the reduced mas
the antisymmetric mode asm/4, we obtain that the coupling

11We ignore the effect of the arm-cavity optical losses, thus in t

case the quadraturesĵ i and k̂i in Ref. @12# are equal.
12This result can be obtained from Eq.~B21! of KLMTV @12#

using the fact thatx̂BA524/mV2F̂RP. Since in this paper we ig-
nore optical losses, in Eq.~B21! we can replaceb* andK* by b

andK and ignore the noise operatorn̂1.
13The description of a SR interferometer beyond the quasi-st

approximation@33,34# introduces nontrivial corrections to the bac
action force, proportional to the power transmissivity of the inp
arm-cavity mirrors. Since the power transmissivity expected
LIGO-II is very small, we expect a small modification of our r
sults, but an explicit calculation is much needed to quantify t
effect.
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term in the total Hamiltonian~2.6! is 2 x̂F̂. ~The reduced
mass coincides with the effective mass of the probem intro-
duced in Sec. II.!

B. Free evolutions of test mass and optical field

In this section we derive the dynamics of the free pro
and the detector, i.e., that of the antisymmetric mode of m
tion of the arm-cavity mirrors when there is no light in th
arm cavities, and that of the optical fields when the ar
cavity mirrors are held fixed. The full, coupled dynamics w
be discussed in the following section.

The mirror-endowed test masses are suspended from
mic isolation stacks as pendula and have free oscillation
quency;1 Hz. However, since we are interested in freque
cies above;10 Hz ~below these frequencies the seismic a
other technical noises are dominant!, we can approximate the
antisymmetric-mode coordinate as the coordinate of a
particle with ~reduced! mass m/4—as is also done by
KLMTV @12#. Hence, its free evolution is given by

x̂(0)~ t !5 x̂s1
4

m
p̂st, ~3.10!

wherex̂s andp̂s are the Schro¨dinger operators of the canon
cal coordinate and momentum of the mode. Inserting
~3.10! into Eqs.~2.10!, ~2.16! and using the usual commuta
tion relations@ x̂s ,p̂s#5 i\, it is straightforward to derive

Rxx52
4

mV2
. ~3.11!

Concerning the free detector, i.e., the optical field w
fixed mirrors, which is free in the sense that the light trav
freely without modulations coming from mirror motions, w
can solve its dynamics by expressing the various quant
in terms of the quadrature operators of the input field at
SR mirror, âi , i 51,2 ~see Fig. 4!. For LIGO-II the input
field will be in the vacuum state. All the quantum fluctu
tions affecting the output optical fieldb̂i are due to the
vacuum fluctuationsâi entering the interferometer from th
SR mirror.

Through Eqs.~3.3!, ~3.8!, we have already expressedẐ

and F̂ in terms of the quadrature fieldsb̂z and ĉ1; thus we
need now to relate the latter toâi , i 51,2, This can be done
using Eqs.~2.11!,~2.15!–~2.19! of Ref. @14#, in the case of
fixed mirrors. First, for the input-output relation at the bea
splitter ~see Fig. 4! we have

d̂15 ĉ1e2ib, d̂25 ĉ2e2ib, ~3.12!

which is obtained from Eq.~2.11! of Ref. @14#, or Eq.~16! of
Ref. @12# in the limit I 0→0 andh→0, i.e., when we neglec
the effects of mirror motion under radiation pressure a
gravitational waves. Second, propagating the quadra
fields inside the SR cavity, we obtain@see Eqs.~2.16!, ~2.17!
of Ref. @14##
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f̂ 15~ d̂1 cosf2d̂2 sinf!, f̂ 25~ d̂1 sinf1d̂2 cosf!,

~3.13!

ê15~ ĉ1 cosf1 ĉ2 sinf!, ê25~2 ĉ1 sinf1 ĉ2 cosf!,

~3.14!

wheref[@v0l /c#mod 2p is the phase gained by the carri
frequencyv0 traveling one-way in the SR cavity, and fo
simplicity we have neglected the tiny additional phaseF
[V l /c gained by the sideband frequencyV/2p in the SR
cavity. @The length of the SR cavity is typicallyl;10 m,
henceF!1.# From the reflection/transmission relations
the SR mirror we derive@see Eqs.~2.18!, ~2.19! of Ref. @14##

ê15tâ11r f̂ 1 , ê25tâ21r f̂ 2 , ~3.15!

b̂15t f̂ 12râ1 , b̂25t f̂ 22râ2 , ~3.16!

wheret and r are the transmissivity and reflectivity of th
SR mirror, with t21r251.14 For simplicity we ignore the
effects of optical losses which were discussed in Sec. V
Ref. @14#. Solving Eqs.~3.12!–~3.16! and using Eq.~3.3!, we
obtain for the free-evolution operators

Ẑ1
(0)~V![@ b̂1~V!#mirrors fixed

5
e2ib

M0
$@~11r2!cos 2f22r cos 2b#â1

2t2 sin 2fâ2%, ~3.17!

Ẑ2
(0)~V![@ b̂2~V!#mirrors fixed

5
e2ib

M0
$t2 sin 2fâ11@~11r2!cos 2f

22r cos 2b#â2%, ~3.18!

@ ĉ1~V!#mirrors fixed

5
t@~12re2ib!cosfâ12~11re2ib!sinfâ2#

M0
~3.19!

where we have defined

14For simplicity we ignore the effects of optical losses which we
discussed in Sec. V of Ref.@14#.
04200
t

f

M0~V![11r2e4ib22r cos 2fe2ib

5~112r cos 2f1r2!
~V2V1!~V2V2!

~V1 ig!2
,

~3.20!

and

V65
1

112r cos 2f1r2
@62rg sin 2f2 ig~12r2!#.

~3.21!

Note thatẐz
(0) can be computed from Eqs.~3.17!, ~3.18! by

taking the linear combination ofẐ1
(0) andẐ2

(0) , in the manner
of Eqs.~3.2!, ~3.3!. From Eqs.~3.8! and~3.19! we obtain for
the free-evolution radiation-pressure force15

F̂ (0)~V!5tA 2I 0\v0

~V21g2!L2

eib

M0
@~12re2ib! cosfâ1

2~11re2ib!sinfâ2#. ~3.22!

Using Eqs.~3.17!, ~3.18!, and ~3.22!, and the fact thatz is
frequency independent, we have explicitly checked that
susceptibilities of the free-evolution operators,Ẑz

(0) andF̂ (0),
satisfy the necessary and sufficient conditions LQM, given
Sec. II C, which define a linear quantum-measurement s
tem with outputẐ. More specifically, using the commutatio
relations among the quadrature fieldsâ1 and â2 @Eqs. ~7a!,
~7b! of Ref. @12##, namely,

@ â1 ,â28
†

#52@ â2 ,â18
†

#52p id~V2V8!, ~3.23!

@ â1 ,â18
†

#505@ â1 ,â18#, @ â2 ,â28
†

#505@ â2 ,â28#,
~3.24!

we have derived that

RZzZz
505RFZz

. ~3.25!

We have also derived that

15Note that if we take the limitt→0, F̂ (0)(V) does not go to zero
but ;d(V6g tanf). Thus the main contribution of the fluctuatin
force comes from frequencies close toV56g tanf, which are the
optical resonances of the interferometer with arm-cavity mirr
fixed.
1-12
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RFF~V!5
2I 0v0

L2

r sin 2f

112r cos 2f1r2

1

~V2V1!~V2V2!
, ~3.26!

RZ1F~V!52 iA2I 0v0

\L2

t sinf

112r cos 2f1r2

~12r!V1 i ~11r!g

~V2V1!~V2V2!
, ~3.27!

RZ2F~V!5 iA2I 0v0

\L2

t cosf

112r cos 2f1r2

~11r!V1 i ~12r!g

~V2V1!~V2V2!
, ~3.28!

RZzF~V!5RZ1F~V! sinz1RZ2F~V! cosz. ~3.29!
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In actuality the commutation relations~3.23!, ~3.24! are
approximate expressions forV!v0. However, this is a good
approximation in our case since the sideband freque
V/2p of interest varies over the range 10–104 Hz, which is
ten orders of magnitude smaller thanv0/2p;1014 Hz. If we
had used the exact commutation relations~see Caves and
Schumaker@32# or Eqs.~2.4!, ~2.5! of Ref. @14#!, we would
still haveRFZz

50,16 but we would have correction terms i

the other susceptibilities. In particular,RZzZz
would not van-

ish, but would instead be on the order ofV/v0. These issues
are discussed in the Appendix of Ref.@14#.

Before ending this section we want to discuss the reson
features of the free-evolution optical fields, which origina
motivated the signal recycling~SR! @4–6# and resonant side
band extraction~RSE! schemes@7–9#. By definition a reso-
nance is a peaked response to a driving force acting
certain frequency. Mathematically, it corresponds to a pole
the Fourier-domain susceptibility. From Eqs.~3.26!–~3.29!
we deduce thatRFF and RZzF have only two polesV6 ,
given by Eq.~3.21!, which are the two complex resona
frequencies of the free optical fields, Eqs.~3.17!, ~3.18!. The
corresponding eigenmodes are of the forme2t/tdecaye2 iVosct,
with oscillation frequency

Vosc65R~V6!56
2rg sin 2f

112r cos 2f1r2
, ~3.30!

and decay time

tdecay52
1

I~V6!
5

112r cos 2f1r2

g~12r2!
. ~3.31!

This oscillation frequency and decay time give inform
tion on the frequency of perturbations to which the opti

16It is quite straightforward to understand whyRFZz
must be zero.

In fact Ẑz is the amplitude of an outgoing wave; thus, the opera

Ẑz at an earlier time cannot be causally correlated withF̂ at any

later time, and as a consequence@ F̂ (0)(t1),Ẑz
(0)(t2)#50 for t1.t2.
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fields are most sensitive, and on the time these perturbat
last in the interferometer before leaking out. Let us focus
several limiting cases.

~i! For r50, i.e., the case of a conventional~LIGO-I
type! of interferometer, we haveVosc50 and tdecay51/g.
Thus, there is no oscillation, while the decay time 1/g of the
entire interferometer is just the storage time of the arm c
ity.

~ii ! For r→1, i.e., when the SR optical system is nea
closed, we haveVosc56g tanf and tdecay→1`, which
corresponds to a pure oscillation. Noticing that for sideba
fields with frequencyV/2p, the phase gained in the arm
cavity is 2b52 arctanV/g and the phase gained during
round trip in the SR cavity is 2f52v0l /c, we obtain that
Vosc is just the frequency at which the total round-trip pha
in the entire cavity~arm cavity1 SR cavity! is 2pn, with n
an integer.

~iii ! For 0,r,1 andf50, we getVosc50 and tdecay
5(11r)/@g(12r)#.1/g. This is the so-called tuned SR
configuration@4–6#, where the sideband fields remain in th
inteferometer for a time longer than the storage time of
arm cavities@cf. ~i!#.

~iv! For 0,r,1 and f5p/2, we get Vosc50 and
tdecay5(12r)/@g(11r)#,1/g. This is the so-called tuned
RSE configuration@7–9#, where the sideband fields rema
in the interferometer for a time shorter than the storage t
of the arm cavities@cf. ~i!#.

C. Coupled evolution of test mass and optical field:
ponderomotive rigidity

In Sec. II B we have solved the equations of motion fo
generic quantum-measurement device by expressing the
evolution operators in terms of the free-evolution operat
@see Eqs.~2.20!–~2.22!#. Using the free-evolution optical
field operators~3.17!, ~3.18! and ~3.22! and the optical-field
susceptibilities~3.26!–~3.29!, along with the susceptibility of
the antisymmetric mode~3.11!, we can now obtain the full
evolution of the antisymmetric modex̂(1) and that of the
output optical fieldẐz

(1) for a SR interferometer. In Ref.@14#,
we evaluated the output quadrature fields by a slightly d
ferent method, introduced by KLMTV@12#. However, the
approach followed in this paper provides the output field i

r
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more straightforward way, and gives a clearer understand
of the interferometer dynamics. Moreover, we think th
method is more convenient when the optical configuration
the interferometer is rather complex.

We start by investigating the interaction between
probe and the detector. The equations that couple the var
quantitiesx̂, F̂, andẐ are @Eqs.~2.17!–~2.19!#:

Ẑz
(1)~V!5Ẑz

(0)~V!1RZzF~V!x̂(1)~V!, ~3.32!

F̂ (1)~V!5F̂ (0)~V!1RFF~V!x̂(1)~V!, ~3.33!

x̂(1)~V!5 x̂(0)~V!1Rxx~V!@G~V!1F̂ (1)~V!#. ~3.34!

In these equations, we have made explicit the dependenc
the gravitational forceG(V)52(m/4)V2h(V) @see also
Eq. ~2.15!#.

Equation~3.34! is the equation of motion of the antisym
metric mode under theGW force G and the radiation-
pressure forceF̂, with response functionRxx . Equations
~3.32! and ~3.33! are the equations of motion of the optic
fields Ẑz and F̂ under the modulation of the antisymmetr
mode of motion of the four arm-cavity mirrorsx̂, with re-
sponse functionsRZzF(V) andRFF(V), respectively.

The optical-mechanical interaction in a conventional
terferometer (r50 andf50) was analyzed by KLMTV in
Ref. @12#. Here we summarize only the main features. Ins
the arm cavity the electric field is@see Eq.~3.4!#

Ê~ t !}D cosv0t1Ŝ1~ t !cosv0t1Ŝ2~ t !sinv0t

'DF11
Ŝ1~ t !

D
GcosFv0t2

Ŝ2~ t !

D
G , ~3.35!

with

Ŝj~ t !5E
0

1`dV

2p
e2 iVtŝj1H.c., j 51,2, ~3.36!

where in Eq.~3.35! we have assumed that the sideband a
plitudes are much smaller than the carrier amplitude. Fr
Eq. ~3.35! we infer that the existence of these weak sideba
fields Ŝ1 and Ŝ2 could be seen as modulations to the amp
tude and the phase of the carrier field. If the arm-cavity m
rors are not moving, then it is easy to deduce thatb̂1} ŝ1

}â1 and b̂2} ŝ2}â2 ~see Fig. 4!. Thus, given our conven
tions for the quadratures, we can refer toŝ1 , â1, and b̂1 as
amplitude quadratures, andŝ2 , â2, and b̂2 as phase quadra
tures in the present case of a conventional interferome
When the arm-cavity mirrors move, their motion modula
the phase of the carrier field, pumping part of it into t
phase quadratureŜ2(t), and thus intob̂2 @see Appendix B of
Ref. @12#, especially Eq.~B9a!#. As a consequenceRZ2F5” 0

but RZ1F50. On the other hand, the radiation-pressure fo
acting on the arm-cavity mirrors is determined by the am
tude modulationŜ1(t), which is not influenced by the motio
of the arm-cavity mirrors; thusRFF50.
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Let us now analyze a SR interferometer. As pointed
above, the antisymmetric mode of motion of the arm-cav
mirrors, x̂, only appears in the phase quadratured̂2. @Note
that now ĉi and d̂i take the place ofâi and b̂i in the above
analysis of conventional interferometers.# Schematically,

S ĉ1

ĉ2
D →

arm
cavity

ei (phase)S ĉ1

ĉ2
D 1S 0

x̂D⇔S d̂1

d̂2
D . ~3.37!

Because of the presence of the SR mirror, part of the fi
coming out from the beam splitter is reflected by the S
mirror and fed back into the arm cavities. Due to the prop
gation inside the SR cavity, the outgoing amplitude/pha
quadrature fields at the beam splitter,d̂1,2, get rotated@see
Eqs.~3.13!, ~3.14!#. Moreover, whereas part of the light leak
out from the SR mirror, contributing to the output field, som
vacuum fields leak into the SR cavity from outside@see Eqs.
~3.15!, ~3.16!#. When the light reflected by the SR mirro
along with the vacuum fields that have leaked in, reaches
beamsplitter again, the rotation angle is 2f. Schematically,
we can write

S d̂1

d̂2
D →

SR
cavity

r S cos 2f 2sin 2f

sin 2f cos 2f D S d̂1

d̂2
D

1t S vacuum fields

from outsideD⇔S ĉ1

ĉ2
D , ~3.38!

wherer andt are the amplitude reflectivity and transmissi
ity of the SR mirror.

In the particular case off50 or p/2, namely thetuned
SR/RSE configurations@6–9#, the rotation matrix in Eq.
~3.38! is diagonal. Sincex̂ appears only ind̂2 @see Eq.
~3.37!#, the fact that the propagation matrix is diagonal gu
antees thatx̂ remains only in the quadraturesd̂2 andĉ2. As a
result, the radiation-pressure force, which is proportiona
ĉ1 @see Eq.~3.8!#, is not affected by the antisymmetric mod
of motion, andRFF50 @see Eq.~3.26!# as in conventional
interferometers. Moreover, since the quadratures at the b
splitter d̂1,2 are rotated by an angle off when they reach the
SR mirror@see Eq.~3.13!#, the information on the motion o
the arm-cavity mirrors is contained only in the outp
quadratureb̂2 for f50 andb̂1 for f5p/2. ThereforeRZ1F

50 for f50 andRZ2F50 for f5p/2, as obtained directly
from Eqs.~3.27!, ~3.28!.

For a generic configuration withf5” 0 or p/2, which is
often referred to as thedetunedcase@6#, x̂ appears in both
the quadraturesĉ1,2 as a consequence of the nontrivial rot
tion in Eq.~3.38!. Thus the radiation-pressure force and bo
the output quadratures respond tox̂, i.e., RFF5” 0 andRZzF

50 for all z, as can be seen from Eqs.~3.26!–~3.28!.
Before ending this section let us make some rema

WhenRFF50, as occurs in conventional interferometers a
the tuned SR/RSE configurations, we infer from Eqs.~3.11!,
~3.33! and ~3.34! that
1-14
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2
m

4
V2x̂(1)~V!52

m

4
V2x̂(0)~V!1G~V!1F̂ (0)~V!.

~3.39!

This means that the antisymmetric mode of motion of
four arm-cavity mirrors behaves as a free test mass subje
the GW force G(V) and the fluctuating radiation-pressu
force F̂ (0). It is well known that for such systems the Heise
berg uncertainty principle imposes a limiting noise spec
density Sh

SQL58\/(mV2L2) for the dimensionless
gravitational-wave signalh(t)5DL/L @35#. This limiting
noise spectral density is called the standard quantum l
~SQL! for GW interferometers, and LIGO-VIRGO-TAMA
interferometers can beat this SQL if correlations among
optical fields are introduced@18,19,12–14#.

WhenRFF5” 0, Eqs.~3.11!, ~3.33!, and~3.34! give

2
m

4
V2x̂(1)~V!52

m

4
V2x̂(0)~V!1G~V!1F̂ (0)~V!

1RFF~V!x̂(1)~V!. ~3.40!

Thus the antisymmetric mode of motion of the four ar
cavity mirrors is not only disturbed randomly by the fluct
ating forceF̂ (0), but also, and more fundamentally, is subje
to a linear restoring force with a frequency-dependent rig
ity ~or ‘‘spring constant’’! K(V)52RFF(V)5” 0, generally
called aponderomotive rigidity@20#. This phenomenon wa
originally analyzed in ‘‘optical-bar’’GW detectors by Bra-
ginsky, Khalili and colleagues, where the ponderomotive
gidity affects the internal mirror, i.e., an intra-cavity met
which couples the two resonators with end-mirror–endow
test masses@20#. Hence, SR interferometers do not monit
the displacements of a free test mass but instead that of a
mass subject to a force fieldF̂ res(V)52K(V) x̂(1)(V). This
suggests that the SQL, derived from the monitoring of a f
test mass, is not applicable to detuned SR interferome
Indeed, in Refs.@13,14# we found that there exists an expe
mentally accessible region of the parameter spacer, f, and
I 0 for which the quantum noise curves can beat the SQL
roughly a factor of two over a bandwidthD f ; f .

IV. DYNAMICS OF SIGNAL RECYCLED
INTERFEROMETERS: RESONANCES

AND INSTABILITIES

In the preceding section we have shown that in a
interferometer the four arm-cavity mirrors are subject to
frequency-dependent restoring force. Thus we expect
mirrors’ motion may be characterized by resonances and
sible instabilities. In Refs.@13,14#, we have identified those
resonances by evaluating the input-output relation for
quadrature fieldsb̂i(âi ,h). In this section, by using the dy
namics of the whole system composed of the optical fie
and the mirrors, we shall investigate in more detail the f
tures of those resonances and instabilities.
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A. Physical origins of the two pairs of resonances

Let us first seek a qualitative understanding of the re
nances. In Fig. 5 we draw the amplitude and the phase of
ponderomotive rigidityRFF , given by Eq.~3.26!, for a typi-
cal choice of LIGO-II parameters:f5p/220.47, r50.9,
and I 0.104 W. The amplitude and phase ofRFF resemble
those of the response function of a damped harmonic os
lator, except for the fact that the phase ofRFF is reversed.
From Fig. 5 we infer that when the frequencyf 5V/2p is
small, uRFFu is almost constant, while the phase is nea
2180 °. Thus in this frequency region the spring constan
approximately a constant positive number;K(V50)5
;K(V50)52RFF(V50).0. However, K(V50) is
positive only if 0,f,p/2, while forp/2,f,p the spring

FIG. 5. Amplitude~on the top panel! and phase~on the bottom
panel! of RFF as a function of the sideband frequencyf 5V/2p for
f5p/220.47, r50.9, andI 0.104 W. Note that the amplitude of
RFF is shown in arbitrary units.
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ALESSANDRA BUONANNO AND YANBEI CHEN PHYSICAL REVIEW D65 042001
constant at low frequencies is negative. As a conseque
for p/2,f,p, there is a non-oscillating instability, name
a pair of complex-conjugate purely imaginary resonant f
quencies.~Note that because the SR-interferometer dynam
is invariant under the transformationf→f1p @14#, we can
restrict ourselves to 0<f<p.!

For larger f 5V/2p, K(V)52RFF(V) has a resonan
peak centered atV5Vosc, with width ;1/tdecay @see Eqs.
~3.30!, ~3.31!#.

Hence, the dynamics of the system composed of the
tical field and the arm-cavity mirrors in a SR interferome
is analogous to the dynamics of a massive spring, with
internal mode, attached to a test mass. When the test m
moves at low frequency, i.e.,V!Vosc, the internal configu-
ration of the spring has time to keep up with its motion a
it remains uniform, providing a linear restoring force whic
induces a pair of resonances at frequenciesVmech
56A4K(V!Vosc)/m;6A4K(V50)/m.

When the test mass moves at high frequency, the inte
mode of the spring is excited, providing another pair of re
nances to the system. Inserting the equation of motion~3.34!
of x̂ and the expression forRFF , Eq.~3.26!, into the equation
of motion ~3.33! of F̂, we obtain

2~V2V1!~V2V2!F̂ (1)~V!

5driving terms1
4

mV2

2I 0v0

L2

3
r sin 2f

112r cos 2f1r2
F̂ (1)~V!. ~4.1!

In the absence of the SR mirror, i.e., forr50, the term
proportional toF̂ (1) on the RHS of Eq.~4.1! vanishes, and
the optical field is characterized by the two resonant frequ
ciesV6 given by Eq.~3.21!. By contrast, when the SR mir
ror is present, the term proportional toF̂ (1) on the RHS of
Eq. ~4.1! shifts the resonant frequencies away from the v
uesV6 .

In conclusion, the dynamics of SR interferometers is ch
acterized by two~pairs of! resonances with different origin
the ~pair of! resonances at low frequency have a ‘‘mecha
cal’’ origin, coming from the linear restoring force due to th
ponderomotive rigidity; the~pair of! resonances at highe
frequency have an ‘‘optical’’ origin. Because of the motio
of the arm-cavity mirrors the optical resonant frequencies
shifted away from the free-evolution SR resonant frequ
ciesV6 . In this sense we can regard the SR interferome
as an ‘‘optical spring’’@see Fig. 6#.

B. Quantitative investigation of the resonances

Equations~3.32!–~3.34! describe the coupled evolution o
the dynamical variablesx̂, F̂, andẐ:

x̂(1)~V!5
Rxx~V!

12Rxx~V!RFF~V!
@G~V!1F̂ (0)~V!#

1
x̂(0)~V!

12Rxx~V!RFF~V!
, ~4.2!
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F̂ (1)~V!5
1

12Rxx~V!RFF~V!
@ F̂ (0)~V!

1RFF~V!Rxx~V!G~V!#1
RFFx̂(0)~V!

12Rxx~V!RFF~V!
,

~4.3!

Ẑz
(1)~V!5Ẑz

(0)~V!1
RZzF~V!Rxx~V!

12Rxx~V!RFF~V!
@G~V!

1F̂ (0)~V!#1
RZzF~V!x̂(0)~V!

12Rxx~V!RFF~V!
. ~4.4!

Let us first analyze these equations in the low-laser-po
limit, which has long been considered in the literature for t
SR or RSE schemes@4–9# and has recently been tested e
perimentally @10,11#. In doing it we shall neglect in Eqs
~4.3!, ~4.4! the terms proportional tox̂(0) in the above equa-
tions. Indeed, in Sec. VI we shall show that this is alwa
appropriate. For LIGO-II@3#, the low-laser-power limit cor-
responds to a power impinging on the beam splitter from
bright port of I 0!104 W. Using Eqs.~3.26!–~3.29!, and the
fact thatẐz

(0) does not depend onI 0, andF̂ (0)}AI 0 @see Eqs.
~3.17!, ~3.18!, and ~3.22!#, we deduce thatRFF}I 0 and
RZzF}AI 0. Therefore, for very low laser power, if we restric

ourselves only to terms up to the order ofAI 0, we can reduce
Eq. ~4.4! to

@ Ẑz
(1)~V!# low power5Ẑz

(0)~V!1RZzF~V!Rxx~V!G~V!,
~4.5!

which says that the response ofẐz
(1) to the GW force G is

given by the product ofRxx , the response ofx̂ to G, times
RZzF , the response ofẐz to F̂. Hence, for low laser powe
the dynamics is characterized by fourdecoupledresonant
frequencies: two of them,V250 ~degenerate!, are those of
the free test mass as embodied inRxx ; the other two,V
5V6 @see Eq.~3.21!#, are those of the free-evolution optica
fields as embodied inRZzF . As was discussed in Sec. II B
when the imaginary part of the resonant frequency is ne

FIG. 6. The SR-interferometer dynamics resembles the dyn
ics of a massive spring with one internal oscillation mode~and
damping! attached to a test mass. The overall dynamical system
characterized by two pairs of resonances.
1-16
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SIGNAL RECYCLED LASER-INTERFEROMETER . . . PHYSICAL REVIEW D 65 042001
tive ~positive! the mode is stable~unstable!. Therefore the
decoupled ‘‘mechanical’’ resonancesV250 are marginally
stable, while the decoupled ‘‘optical’’ resonancesV6 are
stable.@We remind the reader thatI(V6),0.#

If we increase the laser power sufficiently, the effect
the radiation pressure is no longer negligible, and from E
~4.2!–~4.4! we derive the following condition for the reso
nances:

Rxx~V!RZzF~V!

12Rxx~V!RFF~V!
→1` ~4.6!

which simplifies to

V2~V2V1!~V2V2!1
I 0g3

2I SQL
~V12V2!50. ~4.7!

In these equations we have adopted as a reference
power I SQL[mL2g4/4v0, introduced by KLMTV@12#; this
is the light power at the beam splitter needed by a conv
tional interferometer to reach the SQL atV5g. Because of
the presence of the term proportional toI 0 in Eq. ~4.7!, V2

50 andV5V6 are no longer the resonant frequencies
the coupled SR dynamics.

If the laser power is not very high, we expect the roots
Eq. ~4.7! to differ only slightly from the decoupled ones. Le
us then apply a perturbative analysis. Concerning the do
rootsV25V0

250, working at leading order in the frequenc
shift DV05V2V05V, we derive
e
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~DV0!252
I 0g3

2I SQL

~V12V2!

V1V2

5
I 0

I SQL

~2rg2 sin 2f!~112r cos 2f1r2!

4r2 sin22f1~12r2!2
.

~4.8!

If the SR detuning phase lies in the range 0,f,p/2,
then (DV0)2 is always positive. Hence, at leading order, t
initial double zero resonant frequencyV250 splits into two
real resonant frequencies having opposite signs and pro
tional to (I 0 /I SQL)

1/2g. The imaginary parts of these resona
frequencies appear only at the next to leading order, an
turns out ~as discussed later on in this section! that they
always increase~becoming more positive! asI 0 /I SQL grows,
generating instabilities.

If the SR detuning phase lies in the rangep/2,f,p,
then at leading order (DV0)2 is negative, and we get two
complex-conjugate purely imaginary roots. The system
therefore characterized by a non-oscillating instability.

Regarding the rootsV5V6 , we can expand Eq.~4.7!
with respect toDV65V2V6 . A simple calculation gives

DV657
I 0g3

2I SQL

1

~V6!2
. ~4.9!

Using Eq.~3.21! we find that
R~DV6!57
I 0g

2I SQL

@4r2 sin22f2~12r2!2#~112r cos 2f1r2!2

@4r2 sin22f1~12r2!2#2
, ~4.10!

I~DV6!52
I 0

I SQL

@2rg sin 2f~12r2!#~112r cos 2f1r2!2

@4r2 sin22f1~12r2!2#2
. ~4.11!
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This says that, if the SR detuning phase lies in the rang
,f,p/2, thenI(DV6) always decreases~becoming more
negative! asI 0 /I SQL increases. Hence, the imaginary parts
the resonant frequencies are pushed away from the reaV
axis, i.e., the system remains stable. On the other h
R(DV6) may either increase or decrease asI 0 /I SQL grows.
If p/2,f,p then the imaginary parts become less nega
as the laser power increases, so the system becomes
stable.

Note that, although turning up the laser power drives
optical resonant frequencies away from their nonzero va
V6 , their changes are very small or comparable to th
original values. By contrast, the mechanical resonant
quencies move away from zero; hence their motion is v
significant. In this sense, as the laser power increases
mechanical~test-mass! resonant frequencies move faster th
the optical ones. This fact can also be understood by obs
ing thatDV0 is proportional to the square root ofI 0, while
0
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DV6 is proportional toI 0 itself. For the optical configura-
tions of interest for LIGO-II, we found@14# that when we
increase the laser power fromI 050 to I 05I SQL, the optical
resonant frequencies stay more or less close to their orig
values while the mechanical ones, which start from zero
I 050, move into the observation band of LIGO-II asI 0
→I SQL.

To get a more intuitive idea of the shift in the resona
frequencies for high laser power, we have explored the re
nant features numerically. In Fig. 7 we plot the trajectories
the resonant frequencies whenI 0 varies from;0 to I SQL ~the
arrows indicate the directions of increasing power!, for two
choices of SR parameters:r50.9, andf5p/270.47, for
which the decoupled resonant frequenciesV6 coincide. The
behaviors of the optical resonant frequencies under an
crease of the power agree with the conclusion of the per
bative analysis deduced above. Forf5p/220.47, or more
generally for 0,f,p/2, the imaginary part of the optica
1-17
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FIG. 7. Shift of the resonances in a SR inte
ferometer induced by the radiation pressure for
asI 0 increases from;0 up toI SQL. This figure is
drawn for a SR mirror reflectivityr50.9.
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resonant frequency becomes more negative when the
power increases, and the resonance becomes more stab
f5p/220.47, or generically forp/2,f,p, the imaginary
part becomes slightly less negative when the laser po
increases. The behavior of the mechanical resonance is
ticularly interesting. Forf5p/220.47, or generically for
0,f,p/2, and for very low laser powerI 0 the two reso-
nant frequencies separate along the real axis, as anticip
by the perturbative analysis. Moreover, asI 0 increases they
both gain a positive imaginary part. However, since the
jectory is tangent to the real axis, the growth of the ima
nary parts is much smaller than the growth of the real pa
For f5p/210.47, or more generally forp/2,f,p, the
two resonant frequencies separate along the imaginary
moving in that direction asI 0 increases.

We finally note that whenever the SR detuningf is dif-
ferent from 0 andp/2, the mechanical resonance is alwa
unstable. We shall discuss this issue in more detail in
next section.

C. Characterization of mechanical instabilities

As discussed in the preceding section, the coupled
chanical resonant frequencies always have a positive im
nary part, corresponding to an instability. The growth rate
this unstable mode is proportional to the positive imagin
part of the resonant frequency. The time constant,
e-folding time of the mode, is 1/I(V). Hence, the larger the
I(V) the more unstable the system is.

In order to quantify the consequences of the instabil
we have solved numerically the condition of resonances,
~4.7!. In the left panel of Fig. 8 we plot the imaginary par
of the four resonant frequencies, in units ofg5Tc/4L ~the
bandwidth of the arm cavity, see Sec. III A!, as a function of
the detuning phase 0,f,p of the SR cavity, fixingI 0
5I SQL.104 W andr50.9. For an interferometer with arm
cavity lengthL54 km, and internal-mirror power reflectivity
T50.033, which is the value anticipated by the LIGO
community@3#, we getg5619 s21. Hence, the storage tim
of the arm cavity is 1/g.1.6 ms.

From the left panel of Fig. 8 we infer that the imagina
parts of the two coupled optical resonant frequencies~shown
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with a solid line! coincide over the entire range 0,f,p.
The imaginary parts of the two coupled mechanical reson
frequencies~drawn by a long-dashed line! also coincide for
0,f,p/2, but they have opposite imaginary parts forp/2
,f,p ~see also Fig. 7 for two special choices off). From
the various plots we conclude that the region characteri
by the weakest instability isf&p/2. It is important to note
that for these values of the detuning phase the noise cu
of a SR interferometer have two distinct valleys that beat
SQL ~see Sec. IV of@14#!.17 In Ref. @14# the authors pointed
out that the positions of the valleys of the noise curves
incide roughly with the real parts of the system’s coupl
mechanical and optical resonant frequencies. By taking
account Fig. 5 and the dynamics of the system, discusse
Sec. IV A, we can make the following remark. The ‘‘sprin
constant’’K(V) is real only forV!V6 . For largerV ’s, its
imaginary part contributes to that of the resonant frequen
and thus to the instability. Therefore, the farther the coup
mechanical resonant frequency is from the decoupled op
resonant frequency (V6), the less unstable it is. Howeve
the distance between the coupled mechanical resonant
quency and the decoupled optical resonant frequency (V6)
is directly related to the distance between the coupled
chanical and coupled optical resonant frequencies. There
the more separate the two coupled resonances are, i.e
farther apart the two valleys of the noise curve are, the m
stable the mechanical resonance is.

In Ref. @14#, by analyzing the case of very highly reflec
ing SR mirrors (r→1) the authors found interesting nois
curves for the detuning rangeD5$f:arctan@(4I0 /ISQL)

1/3#
,f,p/2% @see Sec. IV A and, in particular, Eq.~4.4! of Ref.
@14##. In the right panel of Fig. 8, we enlarge the left pan
around this regionD and plot various curves obtained b
varying the SR reflectivityr50.8,0.9,0.95 and 0.98. We ob
serve that, for this parameter set, the largest growth rat
;0.2g –124 s21, corresponding to ane-folding time of 8 ms,
which is five times larger than the arm-cavity storage tim

17See footnote 3.
1-18
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Finally, we notice that the kind of instability we hav
found in SR interferometers has an origin similar to the d
namical instability induced in a detuned Fabry-Perot cav
by the radiation-pressure force acting on the mirr
@36,33,34#.

V. CONTROL SYSTEMS FOR SIGNAL RECYCLED
INTERFEROMETERS

In this section we discuss how to suppress the instabili
present in SR interferometers by a suitable servo syst
Since the control system must sense the mirror motion in
the observation band and act on~usually damp! it, there is an
issue to worry about: If the dynamics is changed by the c

FIG. 8. The growth of instabilities for highly reflecting SR mi
rors. In the left panel we plot the imaginary part of the reson
frequencies, obtained solving Eq.~4.7!, versus the SR detuning
phasef, for r50.9 andI 05I SQL.104 W. On the top panel we
enlarge the plot shown in the bottom panel for the detuning reg
D5$f:arctan@(4I0 /ISQL)

1/3#,f,p/2%, fixing r50.8,0.9,0.95,0.98
and I 05I SQL.104 W. This range of physical parameters corr
sponds to interesting LIGO-II noise curves@13,14#.
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trol system, it is not cleara priori whether the resonant dip
~or at least the mechanical one which corresponds to
unstable resonance!, which characterize the noise curves
the uncontrolled SR interferometer@13,14#, will survive. In
the following we shall show the existence of control syste
that suppress the instability without altering the noise cur
of uncontrolled interferometers, thereby relieving ourselv
from the above worry.

A. Generic feedback control systems: changing the dynamics
without affecting the noise

We shall identify a broad category of control systems
which, if the instability can be suppressed, the noise cur
are not altered. We suppose that the output signalẐ is sent
through a linear filterKC and then applied to the antisymme
ric mode of the arm-cavity mirrors~see the schematic draw
ing in Fig. 9!. This operation corresponds to modifying th
Hamiltonian~2.6! into the form

Ĥ5@~ĤP2 x̂G!1ĤD#2 x̂F̂2 x̂Ĉ, ~5.1!

whereĈ is a detector observable whose free Heisenberg
erator~evolving underHD) at timet is given, as required by
causality, by an integration overt8,t,

Ĉ (0)~ t !5E
2`

t

dt8KC~ t2t8!Ẑ(0)~ t8!. ~5.2!

Physically the filter kernelKC(t) should be a function de
fined fort.0 and should decay to zero whent→1`. How-
ever, in order to apply Fourier analysis, we can extend
definition to t,0 by imposingKC(t,0)[0, thereby ob-
taining

Ĉ (0)~ t !5E
2`

1`

dt8KC~ t2t8!Ẑ(0)~ t8!. ~5.3!

Therefore, in the Fourier domain we have

Ĉ (0)~V!5KC~V!Ẑ(0)~V!, ~5.4!

where KC(V) is the Fourier transform ofKC(t). It is
straightforward to show that the two time-domain propert
KC(t,0)50 andKC(t→1`)→0 correspond in the Fou
rier domain to the requirement thatKC(V) have poles only in
the lower-halfV plane.

t

n

FIG. 9. Scheme of the control system introduced to quench

instabilities present in a SR interferometer. The outputẐ, which
contains theGW signal and the quantum noise, is sent through

linear filter with output Ĉ5KCẐ, and is then fed back onto th
probe, i.e., the antisymmetric mode of motion of the four ar
cavity mirrors.
1-19
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Working in the Fourier domain and assuming that t
readout scheme is homodyne detection with detection ph
z5const, we derive a set of equations of motion similar
Eqs.~3.32!–~3.34!,

Ẑz
(1)~V!5Ẑz

(0)~V!1@RZzF~V!1RZzCz
~V!# x̂(1)~V!, ~5.5!

F̂ (1)~V!5F̂ (0)~V!1@RFF~V!1RFCz
~V!# x̂(1)~V!,

~5.6!

x̂(1)~V!5 x̂(0)1Rxx~V!@G~V!1F̂ (1)~V!1 Ĉz
(1)~V!#,

~5.7!

Ĉz
(1)~V!5 Ĉz

(0)~V!1@RCzF~V!1RCzCz
~V!# x̂(1)~V!.

~5.8!

Each of Eqs.~5.5!, ~5.6!, and ~5.8! has two response term
due to the two coupling terms between the probe and
detector in the total Hamiltonian~5.1!. However, some of the
responses are actually zero. In particular, inserting Eq.~5.2!
into @ F̂ (0)(t),Ĉ z

(0)(t8)# and using the fact tha

@ F̂ (0)(t),Ẑz
(0)(t8)#50 for t.t8 @see Eq.~2.34!#, we find

RFCz
(V)50. Combining Eq. ~5.2! with the fact that

@ Ẑz
(0)(t),Ẑz

(0)(t8)#50 for all t,t8 @see Eq.~2.34!#, we have
RZzCz

(V)505RCzCz
(V). Moreover, the fact thatKC(t2t8)

505CZ(0)F(0)(t,t8) for t,t8 gives the equalityRCzF(V)

5KC(V)RZzF(V). Imposing these conditions, we deduce
simplified set of equations of motion:

Ẑz
(1)~V!5Ẑz

(0)~V!1RZzF~V!x̂(1)~V!, ~5.9!

F̂ (1)~V!5F̂ (0)~V!1RFF~V!x̂(1)~V!, ~5.10!

x̂(1)~V!5 x̂(0)~V!1Rxx~V!@G~V!

1F̂ (1)~V!1 Ĉ z
(1)~V!#, ~5.11!

Ĉ z
(1)~V!5KC~V!Ẑ(1)~V!. ~5.12!

Solving Eqs.~5.9!–~5.12!, we obtain

x̂(1)~V!5
1

12Rxx~RFF1RZzFKC!
$x̂(0)~V!

1Rxx@G~V!1F̂ (0)~V!1KC~V!Ẑz
(0)~V!#%,

~5.13!

Ẑz
(1)~V!5

12RxxRFF

12Rxx~RFF1RZzFKC!
S Ẑz

(0)~V!

1
RZzF

12RxxRFF
@ x̂(0)~V!1Rxx@G~V!

1F̂ (0)~V!#% D ~5.14!
04200
se

e

F̂ (1)~V!5
12KCRxxRZzF

12Rxx~RFF1RZzFKC! S F̂ (0)~V!

1
RFF

12KCRxxRZzF
$x̂(0)~V!1Rxx@G~V!

1KCẐ(0)~V!#% D . ~5.15!

From the above equations~5.13!–~5.15!, we infer that the
stability condition for the controlled system is determined
the positions of the roots of@12Rxx(RFF1RZzFKC)#. There-

fore, by choosing the filter kernelKC appropriately, it may be
possible that all the roots have a negative imaginary part
which case the system will be stable.

Before working out a specific control kernelKC that sup-
presses the instability, let us notice that different choices
KC give outputs ~5.14! that differ only by an overall
frequency-dependent normalization factor. This factor d
not influence the interferometer’s noise, since from E
~5.14! we can see that the relative magnitudes of the sig
~term proportional toG) and the noise~terms proportional to
Ẑz

(0) andF̂ (0)) depend only on the quantities inside the cu
brackets$ % and not on the factor multiplying the bracket~see
Ref. @14# for a detailed discussion of the noise spectral d
sity!. Therefore if this control system can suppress the ins
bility, the resulting well-behaved controlled SR interferom
eter will have the same noise as evaluated in Refs.@13,14#
for the uncontrolled SR interferometer. This important fa
can be easily understood by observing that, because
whole output~theGW signalh and the noiseN) is fed back
onto the arm-cavity mirrors,h and N are suppressed in th
same way by the control system, and thus their relative m
nitude at any frequencyV is the same as if the SR interfe
ometer had been uncontrolled.

B. An example of a servo system: Effective damping of the
test mass

Physically, it is quite intuitive to think of the feed-bac
system as a system that effectively ‘‘damps’’ the test-m
motion. When the control system is present, the equation
motion for the antisymmetric mode can be obtained fro
Eqs. ~5.11!, ~5.9!, and ~5.12!. It reads@as compared to Eq
~3.34!#:

x̂(1)~V!5
Rxx

12KCRxxRZzF
@G~V!1F̂ (1)~V!1KCẐz

(0)~V!#

1
x̂(0)~V!

12KCRxxRZzF
. ~5.16!

Denoting byRxx
C the response ofx̂(1) to G andF̂ (1) when the

servo system is present, i.e.,

Rxx
C 5

Rxx

12KCRxxRZzF
, ~5.17!
1-20
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FIG. 10. Effective damping due to a serv
system with control kernel given by Eq.~5.21!.
We have fixed l50.05g, r50.9, f5p/2
20.47, andI 0 from ;0 up to I SQL.104 W. The
arrows indicate the directions of increasing lig
power I 0. The originally unstable mechanica
resonance~solid line! is pushed downward in the
complex V plane, and stabilized~dashed line!.
The figure also shows the effect of the contr
system on the stable optical resonances.
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we can rewrite the overall normalization factor which a
pears in Eqs.~5.13!–~5.15! as

1

12Rxx~RFF1RZzFKC!
5

Rxx
C

Rxx

1

12Rxx
C RFF

. ~5.18!

A sufficient condition for stability is that bothRxx
C /Rxx and

1/(12Rxx
C RFF) have poles only in the lower-half comple

plane.@Note that when the servo system is presentRxx
C re-

placesRxx in the stability condition of the system, see Se
II B, Eqs. ~2.20!–~2.22! and discussions after them.#

We have found it natural to choose forRxx
C (V) the sus-

ceptibility of a damped oscillator~with effective massm/4),
having both poles in the lower-halfV plane atV52 il,
i.e.,18

Rxx
C ~V!52

4

m

1

~V1 il!2
, ~5.20!

with l a real parameter. This choice automatically ensu
thatRxx

C /Rxx has poles only in the lower-half complex plan
Moreover, by choosingl appropriately we can effectively
push the roots of (12Rxx

C RFF) in Eq. ~5.18! to the lower-half
V plane, as shown in Fig. 10 forr50.9, f5p/220.47, l
50.05g, andI 0 from ;0 up to I SQL.

18In the time domain this choice ofRxx
C (V) corresponds to the

equation of motion

m

4
ẍ52

ml

2
ẋ2

ml2

4
x1forces. ~5.19!
04200
-

.

s

However, we also need to check thatKC(V) has poles
only in the lower-halfV plane. Using Eqs.~5.17!, ~5.20! we
obtain the following explicit expression for the kernel:

KC~V!5
1

RZzF
S 1

Rxx
2

1

Rxx
C D

5
ml

2t
A \L2

2I 0v0
S V1

il

2 D
3

~112r cos 2f1r2!~V2V2!~V2V1!

~V1 ig!cos~f1z!1r~V2 ig!cos~f2z!
.

~5.21!

For z50 or z5p/2, i.e., when either of the two quadrature
b̂1 or b̂2 is measured, the control kernel~5.21! indeed has
poles only in the lower-half complex plane. More genera
we have shown that if 0,f,p/2, the control kernel~5.21!
has poles in the lower-half complex plane for allp/2<z
<p, regardless of the value ofr, but it may become un-
physical in the region 0,z,p/2. However, for the unphysi-
cal values ofz there are various feasible ways out. For e
ample, we could changeRxx

C by replacingm in Eq. ~5.20!
with a slightly smaller quantitymC . In this case

S 1

Rxx
2

1

Rxx
C D 52

m

4 FVS 12AmC
m D 2 ilAmC

m G
3FVS 11AmC

m D 1 ilAmC
m G . ~5.22!

By choosingmC appropriately, we can use the first factor
Eq. ~5.22!, which has a root in the upper-half complex plan
1-21
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to cancel the bad pole coming fromRZzF in Eq. ~5.21!, so

thatKC will have poles only in the lower-half complex plan
Finally, we must adjustl so that the effective damping sup
press the instability.

Of course, the servo electronics employed to implem
the control system will inevitably introduce some noise in
the interferometer. In our investigation we have not model
this noise but LIGO experimentalists have seen no fun
mental noise limit in implementingcontrol kernelsof the
kind we discussed, and deem it technically possible to s
press any noise contribution coming from the electronics
within 10% of the total predicted quantum noise@37,38#.

However, the example of control loop~interferometer
1servo system! we modeled here is described by a quant
mechanical Hamiltonian system in the Heisenberg pictu
which implicitly assumes that the entire system must be i
pure state in the Schro¨dinger picture. Although this assump
tion may be realistic for a control loop based on an a
optical servo system, it might not be very realistic when
electronic servo system is implemented. Indeed, in this la
case a macroscopic measurement process takes place
the loop and quantum coherence might be lost. Thus, fo
electronic servo system a more realistic formulation sho
be used to fully describe the system@39#. This is a delicate
yet very important issue, which deserves a careful study
will be tackled elsewhere@40#.

In this paper we have restricted ourselves to the read
scheme of frequency-independent homodyne detection
which only one ~frequency independent! quadraturebz is
measured. The issue of control-system design when o
readout schemes are present, e.g., the so-called ra
frequency modulation-demodulation design, is currently
der investigation@40#.

Finally, for simplicity we have limited our discussion t
lossless SR interferometers. When optical losses are ta
into account, we have found that the instability problem
still present@14# and we have checked that those instabilit
can be cured by the same type of control system as
discussed above for lossless SR interferometers.

VI. INFLUENCE OF THE INITIAL QUANTIZATION
OF THE TEST MASSES ON THE OUTPUT SIGNAL

Let us suppose that our quantum-measurement device
been stabilized through the kind of control system discus
in Sec. V and that we are in the stationary regime, wh
Fourier analysis provides the correct solution. By applyin
Fourier transform to Eq.~3.10!, we have

x̂(0)~V!52pF x̂sd~V!2
4i

m
p̂sd8~V!G . ~6.1!

Inserting the above expression ofx̂(0)(V) into the Fourier-
domain output signalẐz

(1)(V), Eq. ~5.14!, and plugging into
it the expressions ofRxx(V) @Eq. ~3.11!#, RZzF(V) and

RFF(V) @Eqs. ~3.26!–~3.29!#, we obtain that the term pro
portional tox̂(0)(V) reads
04200
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RZzF

12Rxx~RFF1RZzFKC!
x̂(0)~V!

;
V2

•~polynomial in V!

~V2V1
C!~V2V2

C!~V2V3
C!~V2V4

C!

3F x̂sd~V!2
4i

m
p̂sd8~V!G . ~6.2!

Here we indicated withV i
C , i 51, . . . ,4 theresonant fre-

quencies of the controlled system, all of which lie in th
lower half part of the complex plane. It is easy to see that
factor outside the square brackets on the RHS of Eq.~6.2! is
zero and has a first derivative equal to zero if evaluated
V50. Using the following properties of delta-functions:

E
2`

1`dV

2p
e2 iVt f ~V!d~V!5

f ~0!

2p
, ~6.3!

E
2`

1`dV

2p
e2 iVt f ~V!d8~V!5

i f ~0!t2 f 8~0!

2p
, ~6.4!

we then conclude that the term proportional tox̂(0)(V) in
Eq. ~5.14!, i.e., Eq.~6.2!, vanishes. This means that the initi
quantization of the test mass does not contribute to the qu
tum noise in the output signal. Nevertheless, note that
initial state of the test masses~and of the electromagneti
field as well! will enter the output signal through the homo
geneous solutions of the system of Eqs.~5.13!–~5.15!. How-
ever, these solutions oscillate at the eigenfrequenciesV i

C ,i
51,2,3,4 and die out as transients~see also the discussion a
the end of Sec. II B! leaving only the stationary solution
which is not contaminated by the initial quantization of t
test mass.

Let us now consider the marginally stable cases of tu
SR/RSE configurations~among which LIGO-I is a specia
case!, wheref50 or p/2, RFF(0)50 while RZzF(0)5” 0. In
these optical configurations the real part of the optical re
nances is zero and the mechanical resonance is not pu
away from zero frequency becauseRFF(0)50, i.e., the pon-
deromotive effect is absent. It is straightforward to deri
from Eq. ~6.2! and Eqs.~6.3!, ~6.4! that in this case the term
proportional tox̂(0)(V) in Eq. ~5.14! doesnot vanish but
gives a contribution to the output signal at zero frequen
However, as discussed at length by BGKMTV in Ref.@30#,
this zero-frequency component can be filtered out in the d
analysis stage. Hence, also in the tuned SR/RSE config
tions the output signal is not contaminated by the init
quantization of the test masses.

VII. CONCLUSIONS

Using the formalism of linear quantum-measureme
theory, extended by Braginsky and Khalili@21# to GW de-
tectors, we have described the optical-mechanical dynam
of SR interferometers such as LIGO-II@3#. This analysis has
allowed us to work out various significant features of su
1-22
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interferometers, which previous investigations@4–8# could
not reveal.

We have found that when the~carrier! laser frequency is
detuned in the SR cavity, the arm-cavity mirrors are not o
perturbed by a random fluctuating force but are also sub
to a linear restoring force with a specific frequenc
dependent rigidity. This phenomenon is not unique to
interferometers; it is a generic feature of detuned cavi
@36,20,33,34# and was originally used by Braginsky, Khali
and colleagues in designing the ‘‘optical bar’’GW detectors
@20#.

Our analysis has revealed that for SR interferometers
dynamics of the whole optical-mechanical system, compo
of the arm-cavity mirrors and the optical field, resembles t
of a free test mass~mirror motion! connected to a massiv
spring~optical fields!. When the test mass and the spring a
not connected~e.g., for very low laser power! they have their
own eigenmodes, namely the uniform translation mode
the free test mass~free antisymmetric mode! and the
longitudinal-wave mode for the spring~decoupled SR optica
resonance!. However, as soon as the free test mass is c
nected to the massive spring~e.g, for LIGO-II laser power!,
the two free modes become shifted in frequency, so the en
coupled system can resonate at two pairs of finite frequen
~coupled mechanical and optical resonances!. From this
point of view a SR interferometer behaves like an ‘‘optic
spring’’ detector. For LIGO-II parameters, both resonant f
quencies can lie in the observation band 10 Hz, f ,10 kHz
and they are responsible for the beating of the SQL in
interferometers@13,14#.

The formalism used in the present paper has allowed u
analyze in more detail the features of the instabilities in
interferometers, pointed out in Refs.@13,14#. Most impor-
tantly, we have shown the possibility of using a feedba
control system to cure such instabilities without comprom
ing the performance of the interferometer. However, bef
any practical implementation, a much more careful and p
cise study should be carried out, including various read
schemes@40#.

Finally, the general discussion based on the Bragins
Khalili force-susceptibility formalism, given in the first pa
of this paper~Sec. II!, and the application to a specific typ
of GW interferometer, the LIGO-II SR interferometer, give
in the second part of this paper~Secs. III–V!, may provide,
along with Refs.@12,14#, a framework for future investiga
tions of quantum noise in advanced, more complex, opt
configurations.
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APPENDIX: BASIC PROPERTIES OF LINEAR SYSTEMS

In this appendix, to clarify the formalism used in Sec.
we summarize some well-known basic properties of lin
systems linearly coupled to each other or to external class
forces. Much of this material can be found in Sakurai@41#,
and for its application to quantum-measurement processe
Braginsky and Khalili@21# and Caveset al. @25#.

Definition 1 „linear systems…. Any system whose Hami
tonian is at most quadratic in its canonical coordinates a
momenta is a linear system.

Definition 2 „linear observables…. Any linear combina-
tion (either time dependent or time independent) of the
nonical coordinates and momenta of a linear system, plu
possible complex number(C number), is a linear observable
of the system.

Denoting all the canonical coordinates and momenta bĈi
with i 51,2, . . . , theHamiltonian of a linear system can b
written as

Ĥ~ t !5(
i , j

L2
i j ~ t !Ĉi Ĉj1(

i
L1

i ~ t !Ĉi1L0~ t !, ~A1!

whereL2
i j (t) is symmetric ini andj. The equations of motion

of the canonical observables in the Heisenberg picture r
~we use the fact thatĈjH does not depend explicitly on time!:

i\
d

dt
ĈjH~ t !5@ ĈjH~ t !,ĤH~ t !#

5Û†~2`,t !@ ĈjS ,ĤS~ t !#Û~2`,t !

5Û†~2`,t !F(
l ,m

2L2
lm~ t !Cjl ĈmS

1(
l

L1
l ~ t !Cjl GÛ~2`,t !

5(
l ,m

2L2
lm~ t !Cjl ĈmH~ t !1(

l
L1

l ~ t !djl .

~A2!

Here the subscriptsS and H stand for Schro¨dinger and
Heisenberg pictures, respectively,Cjl [@ ĈjS ,ĈlS# is the com-
mutator between the canonical operators, which is aC num-
ber, andÛ(2`,t) is the time-evolution operator which sa
isfies the Schro¨dinger equation

i\
d

dt
Û~2`,t !5ĤSÛ~2`,t ! ~A3!

with the initial conditionÛ(2`,2`)51. The solution to
Eq. ~A2! is of the form
1-23
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ĈjH~ t !5(
k

a jk~ t !ĈkH~2`!1b j~ t !5(
k

a jk~ t !ĈkS1b j~ t !,

~A4!

wherea jk(t) andb j (t) are time-dependentC numbers.
For any linear observableA it follows from linearity that

ÂH(t)5( jaj (t) ĈjH(t)1b(t), which, along with Eq.~A4!,
leads to

ÂH~ t !5(
j

aj~ t !ĈjH~ t !1b~ t !

5(
j ,k

aj~ t !a jk~ t !ĈkS1(
j

aj~ t !b j~ t !1b~ t !.

~A5!

This provides the following theorem.
Theorem 1. At any time the operator of a linear observ

able in the Heisenberg picture can always be written as
linear combination of operators of the (time-independe
canonical variables in the Schro¨dinger picture plus a pos-
sible C number.

Applying the above theorem to any two linear observab
A andB, recalling thatCjk[@ ĈjS ,ĈkS# is aC number and the
commutator between aC number and any operator is zer
we find

@ÂH~ t !,B̂H~ t8!#5(
j ,k

g j
A~ t !gk

B~ t8!Cjk , ~A6!

which is a C number. Therefore, the following theore
holds.

Theorem 2. In the Heisenberg picture, the commutator
the operators of any two linear observables at two times
C number.

We are interested in the evolution of a linear system s
ject to a classical external linear force or linearly coupled
another independent linear system. A force-susceptib
e

o
n
ng

si-
y

04200
a
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kind of formulation can be introduced in these cases~as is
done by Braginsky and Khalili, see Sec. 6.4 of Ref.@21#!. We
shall describe the system using a perturbative approach. T
we write the total Hamiltonian in the Schro¨dinger picture as
ĤS5Ĥ0S1V̂S(t), where V̂S(t) is treated as a perturbatio
with respect to the zeroth order HamiltonianĤ0S . It is gen-
erally convenient to introduce the so-called interaction p
ture ~see, e.g., Secs. 5.5 and 5.6 of Ref.@41#!, in which the
evolution operatorÛI is defined by the relationÛ(2`,t)
[Û0(2`,t)ÛI(2`,t), where Û0(2`,t) is the evolution
operator associated withĤ0S and Û is defined by Eq.~A3!.
Then,ÛI(2`,t) satisfies the equations

i\
d

dt
ÛI~2`,t !5V̂I~ t !ÛI~2`,t !, ÛI~2`,2`!51,

~A7!

with V̂I(t)[Û0
†(2`,t)V̂S(t)Û0(2`,t). The solution of Eq.

~A7! can be written as a perturbative expansion,

ÛI~2`,t !511
1

i\E2`

t

dt1V̂I~ t1!

1S 1

i\ D 2E
2`

t

dt1E
2`

t1
dt2V̂I~ t1!V̂I~ t2!1•••

5 (
n50

`
1

n! S 1

i\ D n

TH F E
2`

t

dt1V̂I~ t1!GnJ , ~A8!

whereT denotes the time-ordered product@42#. The Heisen-
berg operator associated with any observableA, evolving
under the full HamiltonianĤ, is linked to the corresponding
Heisenberg operator evolving under the HamiltonianĤ0 by
the relationÂH(t)5ÛI

†(2`,t)ÂH
(0)(t)ÛI(2`,t), where the

superscript (0) on the observableA denotes that the evolu
tion is due toĤ0. Inserting Eq.~A8! into the above equation
we get
ÂH~ t !5ÂH
(0)~ t !1

i

\E2`

t

dt1@V̂I~ t1!,ÂH
(0)~ t !#1S i

\ D 2E
2`

t

dt1E
2`

t1
dt2†V̂I~ t2!,@V̂I~ t1!,ÂH

(0)~ t !#‡1•••

1S i

\ D nE
2`

t

dt1E
2`

t1
dt2•••E

2`

tn21
dtn†V̂I~ tn!,@•••,†V̂I~ t2!,@V̂I~ t1!,ÂH

(0)~ t !#‡•••#‡1•••. ~A9!
r

i.e.,
For a linear system subject to an external classical lin
force G(t), the interaction term isV̂I(t)52 x̂H

(0)G(t). Plug-
ging this expression into Eq.~A9! and using Theorem 2, it is
straightforward to deduce that the second and all higher
der terms in Eq.~A9! vanish and the first order perturbatio
gives the exact solution. Hence, we obtain the followi
theorem.

Theorem 3. Consider a linear system subject to a clas
cal generalized force G(t), whose Hamiltonian is given b
ar

r-

Ĥ5Ĥ02 x̂G(t), where x̂ is a linear observable. Then, fo

any linear observable Aˆ , the Heisenberg operator Aˆ
H(t) can

be written as the sum of its free-evolution part, Aˆ
H
(0)(t), plus

a term which is due to the presence of the external force,

ÂH~ t !5Â(0)
H~ t !1

i

\E2`

t

dt8CAx~ t,t8!G~ t8!, ~A10!
1-24
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where CAx(t,t8) is a C number, called the (time-domain
susceptibility, given explicitly by

CAx~ t,t8![@ÂH
(0)~ t !,x̂H

(0)~ t8!#. ~A11!

Let us now suppose that we have two independent lin
systemsP ~e.g., the probe! andD ~e.g., the detector!, which
by definition are described by two different Hilbert spac
HP and HD . We introduce the Hilbert spaceH5HP^ HD
and define for any operatorx̂ of the systemP the corre-
sponding operator acting onH asx̂^ 1̂, while for any opera-
tor F̂ of the systemD we introduce the operator 1ˆ ^ F̂ which
acts onH. Henceforth, we shall limit ourselves to interactio
terms V, in the total HamiltonianĤ5ĤP1ĤD1V̂, of the
form V̂52 x̂^ F̂, with x̂ and F̂ acting onP andD, respec-
tively. Using Eq.~A9! with V̂I(t)52 x̂H

(0)(t)F̂H
(0)(t), noticing

that ~i! the zeroth order Heisenberg operators of two obse
ables living in different Hilbert spaces commute and~ii ! the
zeroth order Heisenberg operators of two linear observa
living in the same Hilbert space have aC-number commuta-
tor, we derive the following theorem.

Theorem 4. Consider two independent linear systemsP
and D, and two linear observables, xˆ of P and F̂ of D.

Suppose that the two systems are coupled by a term2 x̂

^ F̂, i.e., the Hamiltonian of the composite systemP 1 D
reads Ĥ5ĤP1ĤD2 x̂^ F̂. Then, for any linear observabl

Â of the systemP and B̂ of the systemD, their full Heisen-
berg evolutions are given by

ÂH~ t !5ÂH
(0)~ t !1

i

\E2`

t

dt8CAx~ t,t8!F̂H~ t8!,

B̂H~ t !5B̂H
(0)~ t !1

i

\E2`

t

dt8CBF~ t,t8!x̂H~ t8!,

~A12!

where ÂH
(0) and B̂H

(0) stand for the free Heisenberg evolution
and the susceptibilities are defined by

CAx~ t,t8![@ÂH
(0)~ t !,x̂H

(0)~ t8!#,

CBF~ t,t8![@B̂H
(0)~ t !,F̂H

(0)~ t8!#. ~A13!

In the case where the zeroth order Hamiltonian is time in
pendent, it is easy and convenient to express the above
S.
er
E

le

04200
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malism in the Fourier domain. We first notice that for a tim
independentĤ0 , Û0(t,t1t)5e2 iĤ 0t/\ and for any two lin-
ear observablesÂ1 and Â2 we have CA1A2

(t1t,t81t)

5CA1A2
(t,t8), i.e., CA1A2

(t,t8) depends only ont2t8. De-

fining the Fourier transform of any observableÂ(t) as

Â~V![E
2`

1`

dteiVtÂ~ t !, ~A14!

Eq. ~A10! becomesÂH(V)5ÂH
(0)(V)1RAx(V)G(V) while

Eq. ~A12! can be recast in the form

ÂH~V!5ÂH
(0)~V!1RAx~V!F̂H~V!,

B̂H~V!5B̂H
(0)~V!1RBF~V!x̂H~V!,

~A15!

where RAB(V) is the susceptibility in the Fourier-domain
given by

RAB~V!5
i

\E2`

1`

dteiVtQ~t!CAB~0,2t!

5
i

\E0

1`

dteiVtCAB~0,2t!, ~A16!

with Q(t) the step function. For future reference, let us po
out two properties whichRAB(V) satisfies and that we us
repeatedly in Sec. II:

RAB* ~V!5RAB~2V!,

@ÂH
(0)~V1!,B̂H

(0)~V2!#522p i\d~V11V2!@RAB~V1!

2RBA~V2!#. ~A17!

To deduce the first identity in Eq.~A17!, we consider the
complex ~Hermitian! conjugate of Eq.~A16! and use the
Hermiticy of ÂH

(0)(t) and B̂H
(0)(t). For the second identity in

Eq. ~A17!, we take the double Fourier transform o

@ÂH
(0)(t1),B̂H

(0)(t2)# with respect tot1 and t2, and then using
Eq. ~A16! we find that the region corresponding tot1.t2 in
the double integral yields theRAB term of Eq.~A17!, while
the region corresponding tot1,t2 gives theRBA term.
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