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Signal recycled laser-interferometer gravitational-wave detectors as optical springs
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Using the force-susceptibility formalism of linear quantum measurements, we study the dynamics of signal
recycled interferometers, such as LIGO-II. We show that, although the antisymmetric mode of motion of the
four arm-cavity mirrors is originally described by a free mass, when the signal-recycling mirror is added to the
interferometer, the radiation-pressure force not only disturbs the motion of that “free mass” randomly due to
quantum fluctuations, but also, and more fundamentally, makes it respond to forces as though it were connected
to a spring with a specific optical-mechanical rigidity. This oscillatory response gives rise to a much richer
dynamics than previously known for SR interferometers, which enhances the possibilities for reshaping the
noise curves and, if thermal noise can be pushed low enough, enables the standard quantum limit to be beaten.
We also show the possibility of using servo systems to suppress the instability associated with the optical-
mechanical interaction without compromising the sensitivity of the interferometer.
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[. INTRODUCTION its eigenfrequenciegesonancesthe device can gain sensi-
tivity. In fact, the initial motivation for introducing the SR
In 2002 a network of broadband ground-based laser intereavity was based on the idea of using this feature to reshape

ferometers, aimed to detect gravitational wa®$Vs) in the  the noise curves, enabling the interferometer to work either
frequency band 10—£Hz, will begin operations. This net- in broadband or in narrow-band configurations, and improv-
work is composed of the Laser Interferometer Gravitationaling in this way the observation of specif&W astrophysical
Wave ObservatoryLIGO), VIRGO (whose operation will sourceg2]. Historically, the first idea for a narrow-band con-
begin in 2004, GEO 600, and TAMA 3001]. Given the figuration, so-calledsynchronousr resonant recyclingwas
anticipated noise spectra and the current estimates of gravilue to Drevef4] and was subsequently analyzed by Viagt
tational waves from various astrophysical sourf®k it is  al. [5]. It used a different optical topology from Fig. 1. The
plausible but not probable that gravitational waves will beoriginal idea for the optical topology of Fig. 1 was due to
detected with the first generation of interferometers. TheMeers [6], who proposed its use fodual recycling—a
original conception of LIGO included an upgrade of LIGO to scheme which by recycling the signal lightcreasesthe
sensitivities at which it is probable to detect a rich variety ofstorage time of the signal inside the interferometer and low-
gravitational waveg$2]. The LIGO Scientific Collaboration ers the shot noise. Later, Mizumt al.[7,8] and Heinze[9]
(LSC) [3] is currently planning this upgrade to begin in proposed another scheme called resonant sideband extraction
2006. This second stage includ@simprovement of the seis- (RSB, which also uses the optical topology of Fig. 1 but
mic isolation system to push the seismic wall downward inadjusts the SR mirror so that the storage time of the signal
frequency to 10 Hz(ii) improvement of the suspension sys- inside the interferometedecreaseswhile the observation
tem to lower the noise in the band betweeri0 Hz and bandwidthincreases In general, by choosing appropriate
~200 Hz, (iii) an increasgdecreasgof light power (shot  detuningé of the SR cavity, the optical configuration can be
noise circulating in the arm cavities41 MWatt), (iv) im- in either of the two regimes, or in between. These schemes
provement in the optics so that they can handle the increasdthve been experimentally tested by Fraiseal.[10] with the
laser power, andv) the introduction of an extra mirror, 30 m laser interferometer in Garchiri@ermany, and by
called a signal-recyclingSR) mirror, at the dark-port output. Mason[11] on a table-top experiment at Calte@h.S.A).

This upgraded configuration of LIGQ'advanced interfer- All the above-mentioned theoretical analyses and experi-
ometer”) is sometimes called LIGO-II and its design is ments of SR interferometefd—11] refer to configurations
sketched in Fig. 1. with low laser power, for which the radiation pressure on the

The SR mirror(see Fig. 1 sends the signal coming out arm-cavity mirrors is negligible and the noise spectra are
the dark port back into the arm cavities; in this sense-it dominated by shot noise. However, when the laser power is
cyclesthe signal® The optical system composed of the SRincreased, the shot noise decreases fractionally while the ef-
cavity and the arm cavities forms a composite resonant cavfect of radiation-pressure fluctuation increases by the same
ity, whose eigenfrequencies and quality factors can be corratio. LIGO-II has been planned to work at a laser power for
trolled by the position and reflectivity of the SR mirror. Near which the two effects are comparable in the observation band

The configuration of LIGO-II will also include a power-recyclit§R) mirror between the laser and the beam splitsere Fig. 1 This
mirror recyclesback into the arm cavities the unused laser light coming out the bright port and increases the light power at the beam splitter.
In addition to this effect, the presence of the PR mirror does not affect the derivation of the quantum noise at the dark-port output. Therefore,
although in our analysis we assume high light power, we do not need to take into account the PR mirror in deducing the interferometer’s
input-output relation.

sz detuning of the SR cavity we mean the phase gained by the carrier frequency in the SR cavity, see Sec. IlI B for details.
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the optical-mechanical system formed by the optical fields
and the arm-cavity mirrors. We also notidddl] that the way
the SQL is beaten in the SR interferometer is quite different
from standard quantum-nondemolitiogf@ND) techniques
[17] based on building up correlations between shot noise
and radiation-pressure noise bf§) injecting squeezed
vacuum into an interferometer’s dark pdd8] and/or (ii)
introducing 2-km-long filter cavities into the interferometer’s
< Antisym mode > output p_ort[19,12 and applying homodyne detection_on the
A — \ filtered light. Indeed, our analyses suggest that the improve-
ment in the noise curves comes largely from the resonant
\ / features introduced by the SR cavity: whereas the amplitude
Internal mirror End mirror of the classical output signal is amplified near the reso-
nances, the output quantum fluctuation is not strongly af-
fected by them. This way of using resonances to beat the
Sl reeaing Sl SQL was first propo“sed. by Braglnsky, Khalili and colleagues
mirror in their scheme of “optical bar'GW detectorq 20], where
similarly the test mass is effectively an oscillator whose re-
storing force is provided by in-cavity optical fields. For an
“optical bar” the free-mass SQL is irrelevant and we can
FIG. 1. Schematic diagram of a signal recycled interferometeieat the free-mass SQL using classical techniques of position
such as LIGO-II. The antisymmetric mode of motion of the four monitoring[20].
arm-cavity mirrors(marked by arrowsis monitored by laser inter- In Ref.[14] our analysis was mainly focused on determin-
ferometry. A signal-recycling mirror is used to feed the signal lighting the input-output relations for the electromagnetic quadra-
back into the arm cavities, while a power-recycling mirror is intro- ture fields in a SR interferometer, and evaluating the corre-
duced to feed back into the arm cavities the unused laser lightponding noise spectral density. The resonant features of the
coming out the bright port. whole device were discussed only briefly. In the present pa-
per we give a detailed description of the dynamics of the
10-200 HZ3]. Therefore, to correctly describe the quantumSystem formed by the optical fields and the mirrors, we dis-
optical noise in LIGO-II, the results so far obtained in the Cuss the origin of the resonances and their possible instabili-
literature [4—11] must be complemented by a thorough in- ti€s, and we analyze the suppression of the instabilities by an
vestigation of the influence of the radiation-pressure force oPPropriate control system. In our analysis we have found
the mirror motion. the Braginsky-Khalili formalism for linear quantum mea-
Until recently the LIGO-II noise curves were computed Surementg21] very powerful and intuitive, and we use it
using a semiclassical approafdi, which, although capable throughout this paper. . .
of estimating the shot noise, is unable to take into account This paper is divided into two parts: the formalism and its
correctly the effects of radiation-pressure fluctuations. VeryaPplication. In Sec. Il we introduce the force-susceptibility
recently, building on the earlier work of Kimble, Levin, formalism and discuss some general features of linear
Matsko, Thorne and WatchaniiKLMTV ) [12], which de- ~quantum-measurement devices. In particular, after briefly
scribes the initial optical configuration of LIGO-TAMA- Ccommenting in Sec. Il A on general quantum-measurement
VIRGO interferometergso-called conventional interferom- Systems, we derive in Sec. Il B the equations of motion for
eter3 within a full quantum-mechanical approach, we linear quantum-meas'u'rement devices; in S.e'c.. 'II C We'wnte
investigated the SR optical configuratigRig. 1) [13,14. down a set of conditions on the susceptibilities of linear
Our analysis revealed important new properties of SR interduantum-measurement systems; in Sec. IID we use these
ferometers, includingj) the presence of correlations between conditions to construct an effective description of a quantum-
shot noise and radiation-pressure noigi¢ the possibility of ~Measurement process which allows us to identify in a
beating the standard quantum limi8QL) by a modest Straightforward way the shot noise and the radiation-pressure
amount, roughly a factor of two over a bandwidth of  Noise. In the subsequent sections we apply the formalism

~f (see footnote Band (iii ) the presence of instabilities in developed in Sec. Il to SR interferometers. In Sec. Ill we
show that SR interferometers can be described by the force-

susceptibility formalism and we derive their equations of

3This performance refers only to the quantum optical noise. Thd"0tion, pointing out the existence of a “ponderomotive ri-
total noise beats the SQL only if all other noise sources can also bgidity.” In Sec. IV we discuss in detail the oscillatory behav-
pushed below the SQL. These noises are not quantum limited i} Of the system induced by the ponderomotive rigidity, its
principle but may be technically challenging to reduce. For ex-fesonances and instabilities. In Sec. V we describe the sup-
ample, in the case of LIGO-II, the current estimate for the baselindression of the instability by a feedback control system
design places the thermoelastic noise from the sapphire test mass&§ich does not compromise the sensitivity. In Sec. VI we
slightly above the SQI[15]. Design modifications have been ex- analyze the dependence of the output signal on the initial
plored[16] to reduce it to about half the SQL in amplitude. gquantization of the test masses. Finally, Sec. VIl summarizes
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G 7 trarily small, i.e.,all quantum noise@ the original measure-
Probe Detector [~ ment are included in the recorded fluctuationsZ¢f). We
want to discuss thesimultaneous measurabilitgondition
FIG. 2. Schematic diagram of a measurement devizés the ~ (2.1) more deeply by pointing out the following relation,
classical observable acting on the probe that we want to measur#hich was also in part discussed by Uniid#] and Caves

andZ is the detector’s observable which describes the output of th&t al. in Sec. IV of Ref.[25], and reviewed subsequently in
measurement system. Ref.[26], although from a different point of view.

Simultaneous-measurability-zero-response  relation
our main conclusions. As a foundation for our linear analysid=or a quantum measurement device (QMD), the simulta-
of SR interferometers we summarize in the Appendix someeous measurability condition for the outpUt(ty, i.e.,
general properties of linear quantum-mechanical systems. [Z(t,),Z(t,)]=0 Vt,,t,, is equivalent to requiring that if

the device is coupled to an external system via an interaction

Il. QUANTUM-MEASUREMENT SYSTEMS Hamiltonian of the form YZ,&) where Vis an arbitrary
A. General conditions defining a measurement system function and belongs to the external system, then the back
Following Braginsky and Khalil{21], we define amea- agtlon Og|$e QMD does not alter the evolution of the output
servableZ.

surement processs a transformation from some original © ] )
classical observable which isunknown e.g., the Proof of necessity Let us suppose that our QMD with
gravitational-wave amplitude, into another classical observoutput Z evolves under a Hamiltoniatdgyp, and that

able which isknown e.g., the data stored in the computer.[Z(t),Z(t")]=0 for all t,t’. Now let us couple it to an arbi-

Generally, the system which implements this process is COMYary external system with HamiltonidﬁEXT via a generic
posed of a prob@, which is directly coupled to the classical

observable to be measuréfbr interferometers this is the
antisymmetric mode of motion of the four arm-cavity mir-
rors, see Sec. Ill A and the detectdP, which couples to the N " 5 %

’ ’ . H=(Howp+H +V(Z,8). 2.2
probe and produces the output observalite interferom- (Howo * Hexr) +V(2,6) 22
eters this is the optical system and the photodetgdlanea-  |f e treat the two terms in the parentheses as the zeroth-

surement system s drawn schemaﬂ_c_ally n Fig. 2. Wherbrder Hamiltonian and the interaction Hamiltonialmz,é’)
guantum-mechanical effects are significant in .the_behaworas a perturbation, by applying the results derived in the Ap-
of the probe and the detector, the overall device is called %endix[see Eq(A9)] we can write the Heisenberg operator
guantum-measurement deviCehe output observablg=S of the output variabl& as
+ O contains a classical pa&, which depends on the clas-
sical observabl& to be measured, and some quantum noise
Q due to the probe, the detector and their mutual interaction.
According to the statistical interpretation of quantum me-
chanics[23], the output of a quantum-measurement process

interaction termV(Z,€) as specified above, whegis an
observable of the external system. The total Hamiltonian is

A A i t A~ ~ A
Zoed0) =20+ | AtV &) 2001

2 rt ty . .
[* at " vz o,

at different times issimultaneously measurahl®©ne suffi- * f

cient condition forsimultaneous measurabilitis that the . R .

Heisenberg operators of the output observab(¢), satisfy [V(Z(ty), (1), Z(O]]+ - - -, 2.3
[2(t1),2(t)]=0 Vi t,. (2.1)  With higher order terms of the forfisee Eq(A9)]

Henceforth, we shall regard E42.1) as thecondition of  [V(Z(tn),&(ty)),

simultaneous measurabilityAlthough the condition(2.1) - - - - -

was originally introduced by Braginskst al.[17,21] as the [ [V(Z(t2), E(2)),[V(Z(t1), £(t1)), Z(D)]]- - - 1]
definition of quantum-nondemolitiofQND) observables (2.9
(see also Refd24-24), we introduce and use it for differ- A

ent purposes, as will become clear in the following. If theHereZ(t) and&(t) evolve under the Hamiltoniar$gyp and
condition (2.1) is satisfied, then any sample of dataf_ _ respectively. Because they belong to two different

{Z(t1),2(t,), ... Z(t,)} can be stored directly as bits of Hilbert spaces we ha{é(t),é(t’)]=0 for all t,t’. By as-
classical data in a classical storage medium, and any noiseum tion, we also havéZ(t,).Z(t,)]=0 Vt,.t,. Usin
from subsequent processing of the signal can be made arpismpton, Va2 12 9

these two facts, we obtaifV(Z(t,),&(t;)).Z(t,)]=0
Vi, tp, and then using Eq(2.3) we derive Zpe{t) = Z(t).
“We refer to this condition as sufficient since for observables that
do not satisfy this condition, there may still exist a subspace of the
Hilbert space of the system in which these observables are simul-°A similar calculation was carried out by Cawvessal.in Sec. IV of
taneously measurable. Ref.[25].
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This means that the evolution @fis not affected by the kind Observables. Secondly, they found appropriate interaction
of external coupling we introduced. Hamiltonians describing the coupling betweAlt) and a
Proof of sufficiencyLet us suppose the evolution #fis rAneasuring apparatus that does not disturb the evolution of
not affected byany external system of the form specified A(t) during the measurement process. However, in Refs.
above. Then, in particular, it must be true for the simple[25,26] there is no clear distinction between what we call the
interaction Hamiltonian\/(Z,é’):—aZé’, wherea is some detector and the external measurement system; these two

coupling constant which can vary continuously, e.g., in theSystems are referred to together as the measuring apparatus.
interval (0,1, and we choose a classical external coupling Thus, the observabl&(t) does not necessarily coincide with

In this particular case Ed2.3) becomes the outputZ(t) of our probe-detector system, and for this
reason we prefer not to call it a QND observable in the sense
- A it - - ) of Refs.[24-2§.
Zpert(t):z(t)_“ﬁﬁmdtl[z(tl)’z(t)]g(tl)+O(a ), As a final remark, we note that whereas in R¢25,26]

(2.5 the measuring apparatus and the interaction Hamiltonian are
indispensable parts of a measurement process, in this paper,
by distinguishing the detector from the external system, we
use the latter only as part of gedankenexperiment, by

_ which we clarify the relation between simultaneous measur-
the left-hand sidéLHS) of Eq. (2.5 does not change when ,pijivy and the response to external couplings, which will

we varya. The right-hand sideRHS) of Eq. (2.5) is a power |44 to useful properties of linear quantum-measurement de-
series ina, and using the uniqueness of the Taylor expan+ices in Sec. Il C.

sion, we deduce that all the terms beyond the zeroth order
should vanish separately. In particular, the first-order term

should vanish and we conclude tha(t),Z(t')]=0 for all

with higher order terms of the form
a"[Z(tn),[ - - -, [2(t2).[2(t1),Z()]]- - -]]. By assumption

B. Equations of motion of a linear quantum-measurement
system: The force-susceptibility formalism

t,t'. O
Let us give two comments on the simultaneous- Startingin this section we shall focus on linear measure-
measurability—zero-response relation. ment systems. We shall see in Sec. Ill tk&tV interferom-

This relation links the abstract quantum mechanical ide£ters belong to this class of devices. Our analysis has been
of simultaneous measurability the classical dynamics of inspired by the formalism of linear quantum-measurement
the measurement device, yielding a simple criterion for th¢heory introduced by Braginsky and KhaliChaps. V, VI
quantum-classical transition: the observable which corre@nd VIl of Ref.[21]) and is based on the force-susceptibility
sponds to the classical output variable should have no redescription of linearly coupled systems under linearly ap-
sponse to external perturbatiodsectly coupled to it We ~ Plied classical forcessee, e.g., Sec. 6.4 of R¢R1]).
shall use this criterion in our analysis of linear systems in In alinear measurement procesthe device acts linearly
Sec. Il C. and is linearly coupled to the classical observable to be mea-

In practice, it is desirable to identify a subsystem of theSured(see the Appendix for a precise definition of linear
entire measurement process as the QMD, which would corSyStems We suppose that the device can be artificially di-
tain all the necessary quantum-measurement effects; whidded into two linearly coupled, but otherwise independent,
the rest of the measurement process would only manipulatelbsystems: the probe, which is subject to the external clas-
the output classically without adding fundamental quantun$ical force we want to measure, and the detector, which
noise. An example of such a subsystem, naturally motivate¥i€lds a classical output. More specifically, in our Hamil-
by the simultaneous-measurability—zero-response relatioonian system the probe is coupled to the external classical
would couple to the rest of the measurement process onlfprce G by —yG, wherey is some linear observable of the
directly’ through an observable satisfying the above stategrobe, while the probe and the detector are coupled by a term
criterion. —XF, wherex is a generalizedlinear displacement of the

Before ending this section, let us compare the point o, ohe andf is a linear observable of the detector which

view followed in this section to the one pursued in previousyegcribes its back-action force on the probe. In general, the
QND analyse$24-2§, especially Sec. IV of Ref25]. The observablex to which the external force is coupled and the

authors of Refs[25,26 followed two steps in their discus- i ) )
sion. Firstly, they searched for a class of observabigs of observabley that the detector directly measures might not be
' ﬁpe same. However, in our idealized model®¥ interfer-

a quantum-mechanical system that can be monitored witho - A
ometers(Sec. Il below, x andy are actually the same ob-

adding fundamental noise, deducing a conditionﬁ((jr) that . . :
coincides with Eq(2.1). They called such observables QND servable, namely the generalized coordinate of the antisym-
metric mode of motion of the four arm-cavity mirro(see

Fig. 1 and Sec. Ill A, andF is the radiation-pressure force

6By directly coupling toZ we mean the interaction Hamiltonian is @cting on this mode. Henceforth, we shall impgsex. Fi-

of the formV/(Z,£), since only this form guarantees thatis the nal_ly, we de_note by the linear ObserV_able Of_ the detector
only observable of the device that influences the interaction. which describes the output of the entire device. A sketchy
See footnote 6. representation of the measurement device is drawn in Fig. 3.
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. . it
X(G)(t)=x(°)(t)+gji dt’ Cyono(t,t")G(t").
(2.11

the external classical force acting on the probe that we want tdloticing from Eq.(2.11) that x® differs from x(©) by a

measurex is the linear observable of the probg,is the linear

time-dependent C number, we get Cyo)o)(t,t")

observable of the detector which describes the back-action force off Cx(x©(t,t"). Using this fact and inserting E.11) into

the probe, andZ is the linear observable of the detector which
describes the output of the overall measurement system.

The linear observables describing the prob@; andZ and
F, describing the detectdp, belong to two different Hilbert

spacesi, and’Hp, respectively, and the Hilbert space of the

combined system i%{,® Hp. The Hamiltonian is given by

A= (Flp—XG)+ Flp]—5E. @6

Eqg. (2.9, we can relate the Heisenberg operators evolving
under the full HamiltonianA to those evolving under the
free Hamiltonians of the probe and the detedigrandH :

A A i [t -
Z(l)(t)=Z(°)(t)+gj dt'Czoro(t,t)xP(t"),  (2.12

. . i [t -
FO(t) = F(O)(t)ﬂ?f dt’ Croro(t,t)xD(t),
(2.13

We shall now derive the equations of motion of the system

composed of the linear observablesZz, andF. As a first
step in our calculation, we regard the Hamiltonialﬁsb
—XG and Hy, as zeroth order Hamiltonians for the sub-

systemsP and D, respectively, and we treatxF as a linear
coupling betweerP andD. Working in the Heisenberg pic-
ture, we obtain the following equatiorisee Theorem 4 of
the Appendix and EqgA12), (A13)]:

. . it .
Z(l)(t)=Z(°)(t)+%f dt’ Coopo(t,t)xP(t"),

(2.7
. . i [t .
FO()=FO(t) + f ~dt'Cropo(t,t)xB(t),

(2.9
. . i [t .
x<”(t)=x<®(t)+ﬂ_ dt’ Cyerye(t,t")FI(t").

(2.9

HereCug(t,t’) is a complex numberG numbey, called the
(time-domain susceptibility, and is defined by EGA11) of
the Appendix, i.e.,

Cas(t,t)=[A(1),B(t")] (2.10

where the superscript (1) in Eq&.7)—(2.9) denotes time
evolution under the total Hamiltoniad [Eq. (2.6)], the su-
perscript (0) orF(t) andZ(t) denotes time evolution under
the free Hamiltonian of the detectdt,, while the super-
script (G) on x(t) refers to the time evolution under the

Hamiltonian H»— XG, which describes the probe under the
sole influence of5(t).

As a second step, we want to relat€®)(t) to x(O(t),

which evolves under the free probe Hamiltonl%lla. Using
Theorem 3 in the Appendix and Eq#10), (A1l), we de-
duce

xW(t) =xO(t)+ %—Ji dt’ Cyox@(t,t)[G(t)+FD(t)].
(2.14

A quantity of special interest for us is the displacement in-
duced on a free prob@vithout any influence of the detecjor
by G(t), namely the second term on the RHS of E2j11).

For aGW interferometer this displacementlii(t), whereL

is the arm-cavity length anti(t) is the differential strain
induced by the gravitational wave on the free arm-cavity
mirrors (the difference in strain between the two ajms
our notation we denote this quantity by

it
Lh(t)Z% B dt’ Cyono(t,t")G(t"), (2.195

and for aGW interferometeiG(t) = (m/4)Lh(t), wherem/4

is the reduced mass of the antisymmetric mode of motion of
the four arm-cavity mirrorgsee Secs. Il A and Il B (Note
that each mirror has mass)

Henceforth, we shall assume that both the probe and the
detector have time-independent Hamiltonians, i.e., tlfxbyq
andH are time independent. In this case, as shown in the
Appendix, the susceptibilities that appear in E¢g.12—
(2.14 depend only ort—t’. By transforming them into the
Fourier domain, denoting blg({}) the Fourier transform of
h(t) and introducing the Fourier-domain susceptibility

i [(te
RAB(Q)EgJ'O d7e' " Cp(0,— 7), (2.16
we derive
ZW(Q)=20(Q) +Rze()XxB(Q), (217
FOQ)=FOQ)+Ree(Q)xP(Q),  (2.18
XD(Q)=XO(Q)+Lh(Q)+ Ry (Q)FD(Q).
(2.19
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Here and below, to simplify the notation we dend®ep mogeneous solutions will all die out as transients, leaving
=Rz, Rep=Rror0), Ry=Ry o). By solving Egs. only the stationary solutions given by ordinary Fourier
(2.17—(2.19 for the full-evolution operators in terms of the analysis.

free-evolution ones, we finally get

C. Conditions defining a linear measurement system

" 1 R . i epear
X0y = [X(O)(Q) +Lh(Q) in terms of susceptibilities
1-Ru(Q)Rer((2) As we pointed out in Sec. Il A, in order to be identified as
+ R (Q)FO(Q)] (2.20  the output of the measurement system, the observzble
should satisfy{ Z(t;),Z(t,)]=0, V ty,t,, i.e., the condition
A 1 . of simultaneous measurabilityn that section, we have also
FOQ)= IR IORD {FOQ)+Re(Q) proved the equivalence between this condition and the con-
xx(Q)Rer(€2) dition that any external coupling to the measurement system
X[xO(Q)+Lh(Q)]}, (2.20) throughZ should not change the evolution gfitself. In the

following we shall take advantage of this equivalence: By

imagining that we couple the linear measurement system to
Rzr(€2)

ZW(0)=20Q)+ TR (DR [XO(Q) some external system throughand by looking atpossible
> FF changes irZ’s evolution, we shall obtain a set of conditions
+Lh(Q)+ R (Q)EO(Q)]. (2.22  for the susceptibilities involving.

Let us first restrict ourselves to the simplest possible ex-

Let us point out that if the kernel relating the full-evolution ternal coupling,V=—Z&, where € is a classical external
operators to the free-evolution ones, i.e., HR,Rrr), force. The total Hamiltonian2.6) becomes
contains poles both in the lowand in the uppercomplex

plane[with our definition of Fourier transform given by Eq. H=[(Hp—XG)+Hp]—XF—Z&
(A14)], then by applying the standard inverse Fourier trans- A . .
form to Eqs.(2.20—(2.22, we get tha®)(t), F()(t), and =[(Hp=xG)+(Hp—Z&)]—xF. (223

~(1) o i i i
Z+(t) depend on the gravitational-wave field and the free To derive the equations of motion for the Hamiltoni@23

evolution operator®(t), F(O(t), andz(®)(t) both in the  \ye apply the procedure used in Sec. Il B to deduce the equa-
pastand in the future However, these are not the correct tjons of motion for the Hamiltoniaf2.6). First, we consider

solutions for the real motion. This situation is a very com—(ﬂp_;(G) and @p— 2£) as zeroth order Hamiltonians and
mon one in physics and engineerifigoccurs, for example, E()

in the theory of linear electronic network®2] and the relate the operator&{ch, Fich, andxc, which evolve un-

theory of plasma wavef27]), and the cure for it is well der the full Hamiltonian(2.23, to the operatox(®), which

known: in order to obtain thécorrecj full-evolution opera-  evolves under the Hami|t0nia|1|:|6)— ;(G), and the operators

tors (1), F(t), and Z()(t) that only depend on the 7 andF®, evolving under the Hamiltoniari(p— Z2€),

past,we have to alter the integration contour in the inverse-

Fourier transform, going above all the poles in the complex . . i [t .

plane (In the language of plasma physics we have to use the ~ Z{o(t)=Z{(t) +gf dt’ Czar@(t,t )xSE(t"),

Landau contourg This procedure, which can be justified o (2.24)

rigorously using Laplace transform£8], makesx)(t), '

FA(t), andZM)(t) for many systems infinitely sensitive to . A i [t .

driving forces in the infinitely distant past. This means that Féle)n(t)ZFé?n(t)Jrgf dt’CF(s)Fm(t,t’)xét)n(t’),

such quantum-measurement systems possess instabilities, o (2.25

which can be directly deduced from the homogeneous solu- :

tions of Egs.(2.20—(2.22, whose eigenfrequencies are .

given by 'the equation R, ,(Q)Ree(Q)=0. 'The zeros of ;((1)n(t):;((e)(t)+'_f dt’CX(G)X(G)(t,t/)IE(l)r{t,).

the equation £ R (Q)Re(Q)=0 are generically complex pe hi) - pe

and if they have positive imaginary parts then the system is (2.2

unstable, corresponding to homogeneous solutions that grow

exponentially toward the future. . Second, we relate the operatot$®, Z( and F© to the
As we shall discuss at length in Sec. IV, LIQO_—II mte_rfer— operatorsi(o), 70 and E© which evolve underl:|p and

ometers would possess such(aptical-mechanicalinstabil-  ~"

ity, unless an appropriate control system is implemented. I#D'

the presence of an appropriate servo systermme example -

will be given in Sec. V, the dynamics will be stabilized, and 5(8) (+) — 5(0) _f / , /

all the homogeneous solutions will oscillate at the new Zper ) =2 O+ 7ocdt CzozotL )L,

eigenfrequencies with negative imaginary parts. These ho- (2.27
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£(8) 1 £(0) e , , with different masses The susceptibility of the coordinate
Fped)=F (t)+g wdt Crozo(t, 1)), depends on the effective mass as

(2.28 .
C(0y(0)%% e (2.33

- R it
X(G)(t):x(o)(t)+gf dt’ C,oxo(t,t")G(t').
(2.29  which simply says that the probe’s response to external
o =6 2O £ Q) 50) £(0) forces decreases as its effective mass increases. Bec&use
[\I((g)tlcmg thatZper, Fhen, andx(®) differ from 2, Fhand 54 EO are operators evolving under the free Hamiltonian
X only by time-dependenC numbers, we obtain the fol- of the detector, they do not depend anNow consider two
lowing relations: Czore(t,t)=Czoro(t,t’),  cases: First, the limiting case @f—o. Then Cyo)0—0
Crora(t,) =Croro(tt) and Cxex@(Lt)  ang from Eq.(2.32 we etx(D(t)=xO(t). As a conse-
=C, o)y (t,t"). Then, by inserting Eq92.27)—(2.29 into a.(2.32 g ‘(() (V).
Eqs.(2.24—(2.26 ded th i f motionZf guenceg affects the evolution oZp tonIy through the first
gs.(2.24—(2.26, we deduce the equations of motiond term in the square bracket of E@®.30 [see caséi) abovd,

F, andx under the Hamiltonia(2.23: unlessC),©(t,t')=0 for all pairs oft andt’. Second,
it consider the case of finite mags and then conclude that
Z(D(t)=20t) +5J7mdt’[cz(0)z(0)(t,t’)S(t’) will affect the evolution oZ{L), only through the second term

in the bracket of Eq(2.30 [see casqii) abovd, unless

2(1) Crzo)(t,t")=0 for all t>t'.

T CzrO(L)Xper( )], (230 In conclusion we have found that if, whatever the probe
A . i [t is, Z always corresponds to the output of the linear measure-
Ff)t)n(t) = F(O)(t)+%jiwdt’[CF(O)Z(o)(t,t’)éZ(t’) ment device, then the following conditions must be satisfied:

+Cropo(t,t’ )X(l)n(t (2.3 LOM: Czz0)(t,t")= [Z(O) Z(O)(t )]=0, Vtt’,

- Cr)z0)(t,t") [F(O) Z(O)(t’)]ZO, Vi>t'.

Xper( ) =X (t) + f At Cyono(tt)[G(t) (2.34

+ Féle)n(t’)]. (2.32  In the frequency domain these conditions read

From Eqgs.(2.30—-(2.32 we infer that there are two ways the R;7(Q)=0=Rg7(Q). (2.35

external forcef can influence the evolution &%’n: (i) Ecan

affect Z(y), directly, through the first term in the bracket of It is possible to show that LQNEgs.(2.34] are also suffi-
Eq. (2.30, unlessC,)o(t,t')=0 for all t>t’ (and thus cient conditions for the simultaneous measurability condition

for all pairs oft andt’); and i) & can influence the evolu- (2.1 be satisfied independently of the probe’s nature; imag-

tion of Z{g), indirectly, affecting the evolution of (), [first ine coupling our linear measurement system to an external

term in thetsquare bracket of E@.31)], and througfg it the SYStem W'tr) an arbitrary Hamiltoniaklexr via a generic

evolution ofx{Y), andZ{}) [second terms in the square brack- couplingV(Z, £), £ being an external observable, and check

pert pert q . 3 . . .

ets of Egs.(2.32 and (2.30], unlessCroo(t,t’)=0 for whether the evolution of is affected by this coupling. The

all t>t'. check can be achieved by writing the total Hamiltonian as
Now we are ready to deduce the conditions that must be R . o .

satisfied in order that the evolution @fnot be changed by H=[(Hp—XG)+(Hp—Z&+ Hexr)]—XF,  (2.39

the external coupling. In principle the two way< affects

the evolution ofZ may cancel each other. However, noticing and re-doing all the steps followed earlier in this section. It is

the fact that caséi) does not depend on the prolenly  helpful to notice that the evolutions & and F underHp

Cz(0)z(0) matters, but caselii) does C,o)©0) also matters —75+ Heyr are the same as those undies, once the con-
we see that the cancellation will not always occur if we as-dition LQM, or Eqgs.(2.34), is satisfied. The result, after a
sume thatwhatever probe the detector is coupled Ioal-  long calculation, is that condition€.34) are sufficient to

ways corresponds to the output of the measurement procesguarantee that the evolution @fis unaffected by the cou-
Thus both conditions must be satisfiedZ;0),0)=0 and  pling.
Cr)z=0.

This argument for both conditions can be made more clear
by assigning an “effective massf. to the probe and con- R
sider a continuous family of probes labeled py(for inter- It is common to normalize the output observalléo unit
ferometers the family of probes are the family of mirrors signal—e.g., in the case &W interferometer, it is common

D. Effective description of measurement systems
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to set to unity the coefficient in front of thlassical ob-

servableLh we want to measure so the normalized oufput

has the form

O=N+Lh, (2.37)

whereis the so-callessignal-referredquantum noise. The

PHYSICAL REVIEW D65 042001

or in the time domaiff:

[Z(t),2(t")]=0=[F1),Ft)] Vit (2.45

[Z(t),F(t)]=—iks(t—t") Vtt'. (2.46)

It is interesting to notice that, because the observable}

observable) can be easily deduced in the frequency domairand F(t) satisfy the commutation relatior{8.45), they can

by renormalizing Eq(2.22,

1-Ru(D)Ree())

% Z(1)
TR ()
ZA(S) A ()
:RZF(Q)+RXX(Q) F(O)(Q) RFF(Q)R (Q)
+xOQ)+Lh(Q), (2.39
that is

O(0Q)=2(0)+ R () FQ) +XO(Q)+Lh(Q).
(2.39

Here we have introduced two linear observabi®esand F
defined in the Hilbert spack, of the detector,

R ARI(¢) . 7))
Z(Q)=m, FQ)=FOQ)- RFF(Q)R )
(2.40

In the time domain the output observahﬁkﬁt) reads

(b(t)=ﬁxdt'K(t—t')Z(”(t'), (2.4))
where
_ toel— RXX(Q)RFF(Q) —i0ot dQ
K(t)—J_w Ry () > (2.42
Thus

-~ N it ~ R
Ot)=Z(t)+ 7| dt' Cyon(t,t") F(t)+x(1)

+Lh(t). (2.43

Using the two properties given by Eq#17) of the Appen-
dix, and applying the conditions LQNEQs.(2.34)], we ob-

be regarded at different times as describing different degrees
of freedom. Moreover, because of £g.46), the observables

Z(t) and F(t) can be seen at each instant of time as the
canonical momentum and coordinate of differerffective
monitors (probe-detector measuring devigesTherefore,

Z(t) and F(t) define an infinite set of effective monitors,
indexed byt, similar to the successive independent monitors
of von Neumann’s mode]23] for quantum-measurement
processes investigated by Caves, Yuen and Ozg2@h
However, by contrast with von Neumann’s model, the moni-

tors defined byZ(t) and F(t) at differentt’s are not neces-
sarily independent. They may, in fact, have nontrivial statis-
tical correlations, embodied in the relations

(Z(t) Z(t")) +cons 8(t—t'),
(F(H)F(t"))#constx 8(t—t'),

(Z(t)F(t"))#consi 8(t—t'), (2.47
where ‘()" denotes the expectation value in the quantum
state of the system. These correlations can be built up auto-
matically by the internal dynamics of the detector—for ex-
ample, they are present in LIGO-tygeW interferometers
[12-14.

Let us now comment on the origin of the various terms
appearing in Eq(2.43.

The first termZ(t) describes the quantum fluctuations in
the monitors’ readout variab[see also Eq2.40] which are

independent of the probe. In particulér,does not depend on

the effective masg of the probe. Henceforth, we refer
as theeffectiveoutput fluctuation. For an interferometer, the

quantum noise embodied ifi is the well-known shot noise.
The second term in Eq2.43 is the effective response of
the output at timet to the monitor’'s back-action force at
earlier timeg’ <t. SinceCy(o)y 0= 1/u this part of the output
depends on the effective mass of the probe. Gdv inter-
ferometers the back action is caused by radiation-pressure
fluctuations acting on the four arm-cavity mirrors. In the fol-

lowing we refer taF as theeffectiveback-action or radiation-

tain the following commutation relations for the observables

Z(t) and A(t) in the Fourier domain:
[2(Q),2(Q")]=0=[FQ),F(Q")],

[Z(Q),F(Q)]=-27ihs(Q—-Q"),
(2.44)

8Note that if we use the commutator &f and F to evaluate the
susceptibilities, we find naively th& - andR 3 are proportional
to [5d7d(7), which is not a well defined quantity. However, intro-
ducing an upper cut-ofA in the frequency domain we can write
8(7) as 8(7)=sin A7 w7 for A— +<, which is symmetric around
the origin. With this prescriptiorf§ “d78(7) =1/2, and the suscep-
tibilities Rzz=Rzr=0,Rzz=1/2Rzr=—1/2.
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measurement. We shall see in Sec. Il B that this will be the| Laser
case forGW interferometers, as has been pointed out and
discussed at length by Braginsky, Gorodetsky, Khalili,
Matsko, Thorne and WatchaniBGKMTV) [30].
The last term in Eq(2.43 is the displacement induced on
the probe by the classical observable we want to measure.
Within the effective description of the measurement’s
renormalized outputEq. (2.43)], it is instructive to analyze
how the  simultaneous measurability  condition
[O(t1),0(t5)]=0 Vtq,t,, is enforced by the probe-detector
interaction. To evaluate explicitly the commutation relations
of the observabl®, we notice that in Eq2.43 the first two

LI AN

~
d 1—. .—D
i mirror mirror

pressure force. The noise embodiedfris called the back- ; TN :
action noise[In the case ofGW interferometers, it is also y T . ;
called the radiation-pressure noise, since the back action i = é ;
just the radiation-pressure forge. E § g :

The third term in Eq(2.43) is the free-evolution operator 5 g z ;
of the probe’s coordinate. In principle, this is also a noise ' S g ;
term. However, in many cases the free evolution of the probe mirror Nl ;
coordinate is confined to a certain uninteresting frequency : & ;
range, so if we make measurements outside this range, th : “ Q\'\“* antisym. mode -
noise due to the free evolution of the probe will not affect the _ iBright &i ‘0@0“@ arm cavity ;

Signal-recycling €; T
Mirror

+——
=h)

o

R

\

~

terms always commute with the third term, because they be: S
long to the two different Hilbert spaced, and Hp. The T/T\f""l
other terms give § 7
- - [
[O(t1),0(t2)] £
A it A, g‘ l ﬁ' =
= Z(tl)+ gf dthX(O)X(O)(tl,tl)f(tl), ‘ Se e fxﬂz
ooy I —» antisym mode <—
~ (2, A, | . AN
Z(ty) + %f_mdtzcx(o)x(o)(tzvtz)f(tz) - Laser S ’/\* L ‘:
I \Ii F ',l
+[XO(t) XOt)]. (249 | o =
[
Hence, the two-time commutator 6¥(t) is the sum of two
terms: the first term depends solely on detector observables 7
while the second term is just the two-time commutator of the
free-probe coordinat&®)(t). Using the commutation rela- ®
tions of Z(t) and F(t) given by Egs.(2.45, (2.4 it is FIG. 4. On the bottom panel we draw a SR interferometer,
straightforward to deduce that in E®.48 the detector com- showing the antisymmetric mode of mirror motiémarked by ar-
mutator gxagtly cancgls the probe commutator. This clearows), the dark-port and SR optical fields, . . . ,f; and the bright-
cancellation is a very interesting property of probe-detectopor fields g ,h;, i=1,2. The conventional-interferometer optical

kinds of quantum-measurement systems and has been r&heme is contained inside the dashed box. In the top panel we
cently pointed out and discussed at length by BGKMTV injgenity the variablesX=Xanisyn= (Xn1— Xnz) — (Xe1 — Xez), Z, and

Ref. [30]. F, describing the dynamics of the SR interferomefélote that

GEOG600 does not have arm cavities, but instead has only one mir-

INTERFEROMETERS: EQUATIONS OF MOTION

In this section we investigate the dynamics of a SR inter-;gertﬁg;j(;’sEg;'?n'\gﬁ)t’ ;??ﬁ; Igﬁﬁgemgg?/c'fngfjgdo?n:gogr'hq-
ferometer, showing that it is a probe-detector linear quantum-_ . ISpiac y o
measurement device as defined and investigated in Sec. ”;:aVItyler;)rs induced by the passage of a gravitational wave

see Fig. 4

L . i . ) Recently Kimble, Levin, Matsko, Thorne and Watchanin
A. ldentifying the dynamical variables and their interactions (KLMTV ) [12] described a conventiondLIGO-I type) in-
In gravitational-wave interferometers composed of equalierferometer using a full quantum mechanical approaele
length arms(the optical configuration adopted by LIGO- the optical scheme inside the dashed box in the left panel of
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Fig. 4. KLMTV [12] showed(as has long been knowB1]) 5 =b,. 3.3
that in this kind of interferometer the antisymmetric mode of e
motion of the four arm-cavity mirrors and the dark-port side- , A~ A

In particular, when{==/2 and (=0 we haveZ,;=b,; and

band fieldg c; andd; (see footnote in Fig. 4] are decou- .~ "
pled from other degrees of freedom, i.e., from other modes of 2=D2. . . . .

motion of the four arm-cavity mirrors and from the bright- | N€ radiation-pressure force acting on the arm-cavity mir-
port sideband fields@ andﬁi in Fig. 4. As a consequence, rors, and coupled to the antisymmetric mode, can be directly

. ) I h k- fields. Thi |
the dynamics relevant to the output signal and the correre ated to the dark-port quadrature fields Is result was

sponding noise are described only by the antisymmetri explicitly derived in Appendix B of KLMTV[12]. As a foun-

mode of motion of the four arm-cavity mirrors and the dark-
port sideband field¢see Appendix B of KLMTV[12] for

Yation for subsequent calculations, we shall summarize the
main steps of their derivation: The force acting on each arm-
. ) . X . cavity mirror is 2W/c, whereW is the power circulating in
([jf?:ailj]j ngzn:eiuelteﬁ??rzgfuggl;g tLoer aiil |n.terfﬁrt%metetrf each arm cavity, which is proportional to the square of the
A y ) ;e analysis all the opti amplitude of the electric field propagating toward the mirror.
cal fields inside the SR cavity, such@s d;, €;, andf; [but |y the arm cavities, the electric field can be decomposed into
notg; or h;], and those outside the SR cavity, suctagand  two parts: the carrier and the sideband fields. The carrier
b; . refers to the strong, stationary component of the optical field
The coordinate of the antisymmetric mode of motion isat the laser frequency,, driven directly by the input laser;
defined by KLMTV([see Fig. 3 and Eq12) of Ref.[12], and  While the sideband fields refer to all of the rest of the optical

the right panel of Fig. 4 in our papkeas field distributed over the entire spectrum, which may come
A A A o from the vacuum fluctuations or from the modulations to the
Xantisyr= (Xn1— Xn2) = (Xe1— Xe2), (3.1  carrier field generated by changes of the cavity lengths. In-

troducing the carrier amplitud® and the sideband quadra-
and we identify it with the dynamical variabfeintroduced  tyre operatorglyz, we have
in Sec. I B[see Eq(2.9)]. The output of the detector can be
constructed from two independent output observables, the

two quadrature®, andb, of the outgoing electromagnetic E(t)=D coswqt + coswt

tedQ e
J Ee" tSl+ H.c.
field immediately outside the SR mirr¢see the left panel of 0

Fig. 4). If a homodyne-detection read-out scheme is imple- _ tedQ
mented, then the output is a linear combination of the two +sinwot fo 5-€  SstHc, (3.9
guadratures, that is

b,=sin¢b,+cos¢b,, {=const, (3.2  Where H.c. stands for the Hermitian conjugatéote that by

writing the carrier field a® coswgyt, we have adopted the
which is a generic quadrature fieliWe thus identify the convention used by KLMTV[12].) Taking the square of

dynamical variable introduced in Sec. IlBEq. (2.7]as  E(t), we obtain

Ez(t) =[DC component+[high frequency componeint wg) ]

+edQ) L _ s
+Df Ee"mlerH.c.+(quadrat|ctermsm;sl,sz), (3.5

0

where we have used the fact that in the inte§tat w,. TheDC andwy~ 10" sec ! components are not in the detection band

of GW interferometers, 10 HzQ/27r<10* Hz. We also ignore the quadratic terms in E8,5), since they are much smaller

than the linear terms. Thus, modulo a factor of proportionality, we obtain in the Fourier domain the following expression for
the radiation-pressure force acting on each mirror in the detection band:

Fre(Q)xDs,(Q). (3.6)

Herea,, b;, ¢, ... withi=1,2 stand for the two quadrature operators of the electromagnetic field. This formalism was developed by
Caves and Schumakgs2], adopted by KLMTV[12] and the author§l3,14).

PRigorously speaking, the output is the photocurrent, which in the frequency band of ifii€re&tf Hz) is almost precisely proportional
to the output quadrature field, but not quite so; see R3] and the Appendix of Ref.14] for more discussion on this point.
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As shown in Appendix B of Ref.12], the in-cavity quadra- term in the total Hamiltoniar(2.6) is —XF. (The reduced
ture field s; is a combination of the incoming quadratures mass coincides with the effective mass of the prpbiatro-
from both the dark and the bright ports. However, the con-duced in Sec. ).

tribution from the bright-port fields do not couple to the an-

tisymmetric mode, so the force acting on the antisymmetric B. Free evolutions of test mass and optical field

mode is due only to the incoming fields from the dark port.
More specifically, in Sec. 4 of Appendix B of Reff12],
KLMTV related the in-cavity carrier amplitud® and the

In this section we derive the dynamics of the free probe
and the detector, i.e., that of the antisymmetric mode of mo-

. ~ . o tion of the arm-cavity mirrors when there is no light in the
sideband quadratus [which they denoted by, (see foot- arm cavities, and that of the optical fields when the arm-

note 11] toAthe Input carrier amplituge and ingoing dark-port cavity mirrors are held fixed. The full, coupled dynamics will
quadraturee; (which they denoted byg,). Although they did e discussed in the following section.

not give the explicit expression we need here R, it is The mirror-endowed test masses are suspended from seis-
straightforward to recover it. Using the arrows indicated inmic isolation stacks as pendula and have free oscillation fre-
the right panel of Fig. 4 as positive directions, we ffhd quency~1 Hz. However, since we are interested in frequen-
cies above~10 Hz (below these frequencies the seismic and
. 2l ohi wg i other technical noises are dominante can approximate the
Fre= me C1» (3.7) antisymmetric-mode coordinate as the coordinate of a free

particle with (reducedl mass m/4—as is also done by

wherewy, is the carrier laser frequendly, is the carrier light ~KEMTV [12]. Hence, its free evolution is given by

power entering the beam splitter from the bright porg 2 4

=2 arctarf)/y is the net phase gained by the sideband fre- XO(t) =X+ —pdt, (3.10
quency Q) while in the arm cavity,y=Tc/4L is the half m

bandwidth of the arm cavityT is the power transmissivity . . o )
of the input mirrors and. is the length of the arm cavity —Wherexs andps are the Schrdinger operators of the canoni-
Note that, by assuming the four forces acting on the armcal coordinate and momentum of the mode. Inserting Eq.
cavity mirrors to be equal, we have made the approximatiort3-10 into Egs.(2.10, (2.16 and using the usual commuta-
used by KLMTV[12] of disregarding the motion of the mir- tion relations[ xs,ps]=i#, it is straightforward to derive

rors during the light's round-trip time (quasi-static

approximation.*®> We identify this forceFgp with the dy- 4

namical variableé~ introduced in Sec. Il Bsee Eq(2.8)]: Ro=— mQ2’ (319
A A 2l ol wg g Concerning the free detector, i.e., the optical field with
F=Fre= Q%+ yz)l_ze C1- (38 fixed mirrors, which is free in the sense that the light travels
freely without modulations coming from mirror motions, we
Applying Newton's law to the four mirrors, we deduce can solve its dynamics by expressing the v.arious_ guantities
in terms of the quadrature operators of the input field at the
mx= 4E + other forces, (3.9 SR mirror, a;, i=1,2 (see Fig. 4. For LIGO-II the input

field will be in the vacuum state. All the quantum fluctua-
where “other forces” refer to forces not due to the optical- tions affecting the output optical field, are due to the

mechanical interaction, e.g., the force due to the gravitationajacuum fluctuations; entering the interferometer from the
wave and thermal forces. By identifying the reduced mass 0§R mirror.

the antisymmetric mode aw/4, we obtain that the coupling Through Eqs(3.3), (3.8, we have already expressé&d
andF in terms of the quadrature fields andcy; thus we

e ignore the effect of the arm-cavity optical losses, thus in this"€€d now to relate the latter &, i =1,2, This can be done
case the quadraturésandRi in Ref. [12] are equal. qsmg E.qs.(2.1]?),(2.15)—(2.]:9) of Ref. [14], In the case of
12This result can be obtained from E(B21) of KLMTV [12] fixed mirrors. First, for the input-output relation at the beam

using the fact thakga= —4/mQ?Frp. Since in this paper we ig- splitter (see Fig. 4 we have

nore optical losses, in E¢B21) we can replacg, andC, by B
and K and ignore the noise operatoy.

13The description of a SR interferometer beyond the quasi-static = . _
approximatior{33,34 introduces nontrivial corrections to the back- Which is obtained from Eq2.11) of Ref. [14], or Eq.(16) of
action force, proportional to the power transmissivity of the input Ref. [12] in the limit1,—0 andh—0, i.e., when we neglect
arm-cavity mirrors. Since the power transmissivity expected forthe effects of mirror motion under radiation pressure and
LIGO-II is very small, we expect a small modification of our re- gravitational waves. Second, propagating the quadrature
sults, but an explicit calculation is much needed to quantify thisfields inside the SR cavity, we obtdisee Eqs(2.16), (2.17)
effect. of Ref.[14]]

a1=6182iﬁ, 62:62e2iﬁ, (312

042001-11



ALESSANDRA BUONANNO AND YANBEI CHEN PHYSICAL REVIEW D65 042001

%l:(al COS(Z)—ag sing), ]?2=(alsin(b+ag cos¢), MO(Q)El+p2e4iB—2p cos 2¢e2iB
Q-0)(Q-09)
(3.13 =(1+2p cos 2p+ p?) Qi)

(3.20

€,=(C,COSph+CyrSiNg), €,=(—CySing+C,CoSdh),
(3.14 and

where ¢p=[ wgl/c]noq 27 is the phase gained by the carrier

frequencyw, traveling one-way in the SR cavity, and for _ . . 2

simplicity we have neglected the tiny additional phabe 1+ 2p C032¢+p2[i2pysm 2¢=iy(1=p)].

=()l/c gained by the sideband frequenfy27 in the SR (3.22)

cavity. [The length of the SR cavity is typically~10 m,

henced<1.] From the reflection/transmission relations at R

the SR mirror we derivésee Eqs(2.18), (2.19 of Ref.[14]]  Note thatZ{”) can be computed from Eq3.17), (3.18 by
taking the linear combination & andz{, in the manner
of Egs.(3.2), (3.3). From Eqs(3.8) and(3.19 we obtain for

er=1a;+pfy, €=ra+pl,, (3.19  the free-evolution radiation-pressure forte
by=rf1—pay, by=1i,—pa,, (3.16 i
20 ()= on | Dofw0 € L o 3
FPQ)=7 3 20 2 M (1—pe“'P) cospa,
where r and p are the transmissivity and reflectivity of the (Q7+ 9L Mo
i 24 21 14 Al ; , .
SR mirror, with 77+ p“=1."" For simplicity we ignore the (14 pe?B)sin pa,]. (3.22

effects of optical losses which were discussed in Sec. V of

Ref.[14]. Solving Eqs(3.12—(3.16) and using Eq(3.3), we

obtain for the free-evolution operators Using Egs.(3.17), (3.18), and(3.22, and the fact that is
frequency independent, we have explicitly checked that the
susceptibilities of the free-evolution operatar§’ andF(©),

Z(Q)=[01() Jmirrors ves satisfy the necessary and sufficient conditions LQM, given in
e2iB R Sec. Il C, which define a linear quantum-measurement sys-
:M—O{[(1+P2)COS 2p—2p cos 2B]a, tem with outputZ. More specifically, using the commutation
R relations among the quadrature fielals and a, [Egs. (73),
— 72 sin 2¢a,}, (3.1  (7b) of Ref.[12]], namely,
ZO(Q)=[b() Imirrors fixed [a;,a),]=—[a,,a], ]=27i 5(Q—Q"), (3.23
e2iB

=M—{7-2 sin 2¢a, +[(1+ p?)cos 2
0

. [a;,8;,]=0=[2;,a,/], [&,.a5]=0=[a,a,], (329
—2p cos 2B]a,}, (3.18

we have derived that

[61(Q ) ] mirrors fixed

Rzgzgz 0= RFZg' (325)
1 (1-pe?P)cosga, — (1+pe?#)sin ga,]
Mo We have also derived that
(3.19
where we have defined Note that if we take the limit—0, F(©(Q) does not go to zero

but ~ §(Q) = ytan¢). Thus the main contribution of the fluctuating

force comes from frequencies closeQda= + y tan¢, which are the
YrFor simplicity we ignore the effects of optical losses which wereoptical resonances of the interferometer with arm-cavity mirrors
discussed in Sec. V of Relf14]. fixed.
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R Q _2'0(00 pSIth) 1 32
e ) e  acos2prp? (-0 )(0-0 ) (329
. 2l gwg 7Sing (1-p)Q+i(1+p)y
R )= TN 2 1 2pcosap i p2 (O-0)(Q-0 ) 329
. [2lowg TCOS¢h (1+p)Q+i(1—p)y
Rer O TIN G T 2pcos2prp? (@-0)(@-0) (3.28
Rzgp(Q): RZlF(Q) sin{+ RZZF(Q) cos{. (3.29

In actuality the commutation relation8.23, (3.24 are
approximate expressions for< wy. However, this is a good

fields are most sensitive, and on the time these perturbations
last in the interferometer before leaking out. Let us focus on

approximation in our case since the sideband frequencgeveral limiting cases.

Q/27 of interest varies over the range 1024Mz, which is
ten orders of magnitude smaller thag/2w~ 10 Hz. If we
had used the exact commutation relatiqsse Caves and
Schumakef32] or Egs.(2.4), (2.5 of Ref.[14]), we would
still have RFZ{=0,16 but we would have correction terms in
the other susceptibilities. In particuIaRzgzg would not van-

ish, but would instead be on the order(®fw,. These issues
are discussed in the Appendix of REL4].

Before ending this section we want to discuss the resona
features of the free-evolution optical fields, which originally

motivated the signal recyclinggR) [4—6] and resonant side-
band extractiofRSE schemeg$7-9|. By definition a reso-

nance is a peaked response to a driving force acting at in

(i) For p=0, i.e., the case of a conventiondlIGO-I
type) of interferometer, we havél,s=0 and 7geca=1/y.
Thus, there is no oscillation, while the decay time df the
entire interferometer is just the storage time of the arm cav-
ity.

(ii) For p—1, i.e., when the SR optical system is nearly
closed, we have() = * ytang and 7gecay— +, Which
corresponds to a pure oscillation. Noticing that for sideband
rﬁelds with frequency(}/2m, the phase gained in the arm
cavity is 28=2 arctan()/y and the phase gained during a
round trip in the SR cavity is 2=2wgl/c, we obtain that
Qs is just the frequency at which the total round-trip phase
the entire cavityarm cavity+ SR cavity is 2#n, with n

certain frequency. Mathematically, it corresponds to a pole oft" INt€ger.

the Fourier-domain susceptibility. From Eq8.26—(3.29
we deduce thaRge and RZzF have only two poled).. ,
given by Eg.(3.21), which are the two complex resonant
frequencies of the free optical fields, E¢3.17), (3.18. The
corresponding eigenmodes are of the fagnd/ 7decag ~1Posct,
with oscillation frequency

2pysin2
Qoser =R(Q L) == Py ¢ , (3.30
1+ 2p cos 2p+ p?
and decay time
1 1+ 2p cos 2p+ p?
Tdecay~ — j(Qi) = ’y(l—pz) . (33])

(i) For 0<p<1 and ¢=0, we getQ,=0 and 7yecay
=(1+p)[y(1—p)]>1ly. This is the so-called tuned SR
configuration4—6], where the sideband fields remain in the
inteferometer for a time longer than the storage time of the
arm cavitiegcf. (i)].

(iv) For 0<p<1l and ¢==/2, we getQ,,~=0 and
Tgecay= (1= p)/[ v(1+p)]<1ly. This is the so-called tuned
RSE configuratiof7-9], where the sideband fields remain
in the interferometer for a time shorter than the storage time
of the arm cavitiegcf. (i)].

C. Coupled evolution of test mass and optical field:
ponderomotive rigidity

In Sec. Il B we have solved the equations of motion for a
generic quantum-measurement device by expressing the full-
evolution operators in terms of the free-evolution operators
[see Egs.(2.20—(2.22]. Using the free-evolution optical-

This oscillation frequency and decay time give informa-field operatorg3.17), (3.18 and(3.22 and the optical-field
tion on the frequency of perturbations to which the opticalsusceptibilitieg3.26—(3.29), along with the susceptibility of

181t is quite straightforward to understand Wﬁ’,&zg must be zero.

the antisymmetric modé€3.11), we can now obtain the full
evolution of the antisymmetric mode™ and that of the
output optical fieldZ{" for a SR interferometer. In Reff14],

In fact Z, is the amplitude of an outgoing wave; thus, the operatorye evaluated the output quadrature fields by a slightly dif-

Zg at an earlier time cannot be causally correlated \fitlat any
later time, and as a consequefiéé®)(t,),Z2{")(t,)]=0 for t;>t,.

ferent method, introduced by KLMTV12]. However, the
approach followed in this paper provides the output field in a
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more straightforward way, and gives a clearer understanding Let us now analyze a SR interferometer. As pointed out
of the interferometer dynamics. Moreover, we think thisabove, the antisymmetric mode of motion of the arm-cavity

method is more convenient when the optical configuration ofnjrrors, X, only appears in the phase quadratdee [Note

the interferometer is rather complex. that nowf:i andai take the place oﬁi and Bi in the above

We start by investigating the_mteractlon between theanalysis of conventional interferometgrSchematically,
probe and the detector. The equations that couple the various

quantitiesx, F, andZ are[Egs.(2.19)—(2.19]: 5\ om &\ (0 a,
1 ~0 . L] oellhasel Tl ol T (3.37)
Z3(0)=Z2O(0) +Ry ()X, (332 Cz CYRRTIANY:?
,‘;(1)(9):,‘:(0)(9)+RFF(Q);((1)(Q) (3.33 Because of the presence of the SR mirror, part of the field

coming out from the beam splitter is reflected by the SR

SO0 =xO(Q) + LE@ _ mirror and fed back into the arm cavities. Due to the propa-

XD =X D)+ R DG +FH(D)] (334 gation inside the SR cavity, the outgoing amplitude/phase
In these equations, we have made explicit the dependence guadrature fields at the beam splittég,yz, get rotated see
the gravitational forceG(Q)=—(m/4)Q%h(Q) [see also EQs.(3.13, (3.14]. Moreover, whereas part of the light leaks
Eqg. (2.19]. out from the SR mirror, contributing to the output field, some

Equation(3.34) is the equation of motion of the antisym- vacuum fields leak into the SR cavity from outsidee Egs.
metric mode under theGW force G and the radiation- (3.15, (3.16]. When the light reflected by the SR mirror,
pressure forcd’i’ with response functiorRXX_ Equations along with the vacuum fields that have leaked in, reaches the
(3.32 and (3.33 are the equations of motion of the optical Peamsplitter again, the rotation angle ig.2Schematically,
fields Zg and F under the modulation of the antisymmetric we can write

mode of motion of the four arm-cavity mirrobs with re- 3 th
sponse functionRng(Q) andRep(Q), respectively. (Al)cﬂ yp

The optical-mechanical interaction in a conventional in- d;
terferometer p=0 and¢=0) was analyzed by KLMTV in

CoS2p —sin2¢ al
sin 2¢ c032¢) d,

Ref.[12]. Here we summarize only the main features. Inside +7 vacuum fI?IdT@( fl (3.39
the arm cavity the electric field isee Eq.(3.4)] from outside/ ™| ¢, )’
E(t)cD coswot + S, () coswot + Sy(t)sinwet wherep andr are the amplitude reflectivity and transmissiv-
. . ity of the SR mirror.
—olis Sl(t)} i{w 3 &} (3.35 In the particular case op=0 or /2, namely thetuned
D 0 D |’ ' SR/RSE configuration$6—9], the rotation matrix in Eq.

(3.39 is diagonal. Sincex appears only ind, [see Eq.

(3.37)], the fact that the propagation matrix is diagonal guar-
. f2dQ . antees thax remains only in the quadraturés andc,. As a
Si(t)= J; 2.8 StHC, j=12, (330  result, the radiation-pressure force, which is proportional to

¢, [see Eq(3.9)], is not affected by the antisymmetric mode
where in Eq.(3.35 we have assumed that the sideband amof motion, andRrr=0 [see Eq.(3.26] as in conventional
plitudes are much smaller than the carrier amplitude. Froninterferometers. Moreover, since the quadratures at the beam
Eq. (3;35) Wejnfer that the existence of these weak Sideba”%plitteral , are rotated by an angle @f when they reach the
fields S; andS, could be seen as modulations to the ampli-SR mirror[see Eq(3.13], the information on the motion of
tude and the phase of the carrier field. If the arm-cavity mirthe arm-cavity mirrors is contained only in the output
rors are not moving, then it is easy to deduce thats;  quadratureb, for ¢=0 andb; for ¢=7/2. ThereforeR, ¢
<@, andb,*s,>a, (see Fig. 4 Thus, given our conven- =0 for =0 andR,=0 for ¢=m/2, as obtained directly
tions for the quadratures, we can referstq a;, andb; as  from Egs.(3.27), (3.29.
amplitude quadratures, arsd, a,, andb, as phase quadra- For a generic configuration witlh+0 or 7/2, which is
tures in the present case of a conventional interferometepften referred to as thdetunedcase[6], X appears in both
When the arm-cavity mirrors move, their motion modulatesy,e g adratures, , as a consequence of the nontrivial rota-
the phase of the carrier field, pumping part of it into thejq, in £q.(3.38. Thus the radiation-pressure force and both
phase quadratur®,(t), and thus intd, [see Appendix B of  yhe oytput quadratures respondstoi.e. Ree#0 andRy ¢
Ref. [12], especially Eq(B9a)]. As a consequend®, + 0 ’ ¢

e 2 =0 for all £, as can be seen from Eq8.26—(3.29.

butRz =0. On the other hand, the radiation-pressure force pgafyre ending this section let us make some remarks.
acting on the arm-cavity mirrors is determined by the ampli-whenRg-=0, as occurs in conventional interferometers and
tude modulatior,(t), which is not influenced by the motion the tuned SR/RSE configurations, we infer from E@s11),
of the arm-cavity mirrors; thuRgg=0. (3.33 and(3.34 that

with
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m ~ m ~ -
_ ZQqu)(Q): — ZQ2x<0>(m+e(9)+ FOQ).
(3.39

This means that the antisymmetric mode of motion of the _, |
four arm-cavity mirrors behaves as a free test mass subject t_
the GW force G(Q)) and the fluctuating radiation-pressure é:

forceF(©). It is well known that for such systems the Heisen- ~,
berg uncertainty principle imposes a limiting noise spectral <
density S;°'=8#/(mQ2L?) for the dimensionless o
gravitational-wave signah(t)=AL/L [35]. This limiting
noise spectral density is called the standard quantum limit
(SQL) for GW interferometers, and LIGO-VIRGO-TAMA
interferometers can beat this SQL if correlations among the
optical fields are introducefd8,19,12—14

WhenRgg#0, Egs.(3.11), (3.33, and(3.349) give

f (Hz)

m .. m . . e}
- 7X(Q) = - 70%O(Q) +G(Q) +F Q)
00 T T

+Ree(Q)xM(Q). (3.40
-30° - .

Thus the antisymmetric mode of motion of the four arm-
cavity mirrors is not only disturbed randomly by the fluctu- _ —60°| ]
ating forceF(®, but also, and more fundamentally, is subject .:‘E
to a linear restoring force with a frequency-dependent rigid- so _og° |- ,
ity (or “spring constant) K(Q)=—Rg(Q)#0, generally
called aponderomotive rigidityf 20]. This phenomenon was
originally analyzed in “optical-bar"'GW detectors by Bra-
ginsky, Khalili and colleagues, where the ponderomotive ri-
gidity affects the internal mirror, i.e., an intra-cavity meter _;5p0 | i
which couples the two resonators with end-mirror—endowed
test massef20]. Hence, SR interferometers do not monitor

the displacements of a free test mass but instead that of a te  ~180° = 100 1000
mass subject to a force fiefdl.d Q) = — K(Q)xH(Q). This f (Hz)

suggests that the SQL, derived from the monitoring of a free(b)

test mass, is not applicable to detuned SR interferometers.

Indeed, in Refs[13,14] we found that there exists an experi-  FIG. 5. Amplitude(on the top pangland phaséon the bottom
mentally accessible region of the parameter spacé, and  pane) of Rg¢ as a function of the sideband frequerfey /27 for
|, for which the quantum noise curves can beat the SQL byt=7/2—0.47, p=0.9, andl o=10" W. Note that the amplitude of
roughly a factor of two over a bandwidthf~f. Rer is shown in arbitrary units.

-120° |- b

A. Physical origins of the two pairs of resonances
IV. DYNAMICS OF SIGNAL RECYCLED . L .
INTERFEROMETERS: RESONANCES Let us first seek a qualitative understanding of the reso-

AND INSTABILITIES nances. In F_ig. ‘E’.We. draw th(_e amplitude and the phase. of the
ponderomotive rigidityReg, given by Eq.(3.26), for a typi-

In the preceding section we have shown that in a SReal choice of LIGO-II parametersp=m/2—0.47, p=0.9,
interferometer the four arm-cavity mirrors are subject to aand|,=10* W. The amplitude and phase & resemble
frequency-dependent restoring force. Thus we expect thghose of the response function of a damped harmonic oscil-
mirrors’ motion may be characterized by resonances and posator, except for the fact that the phaseRyr is reversed.
sible instabilities. In Refg.13,14, we have identified those From Fig. 5 we infer that when the frequenéy: Q/27 is
resonances by evaluating the input-output relation for th&mall, |Re¢| is almost constant, while the phase is nearly
quadrature field®;(a; ,h). In this section, by using the dy- —180°. Thus in this frequency region the spring constant is
namics of the whole system composed of the optical fieldepproximately a constant positive numberK(Q=0)=
and the mirrors, we shall investigate in more detail the fea~K(Q=0)=—Rge(2=0)>0. However, K(Q1=0) is
tures of those resonances and instabilities. positive only if 0< ¢< /2, while for 77/2< ¢ < 7 the spring
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constant at low frequencies is negative. As a consequence n n
for w/2< ¢<ar, there is a non-oscillating instability, namely

a pair of complex-conjugate purely imaginary resonant fre-
guencies(Note that because the SR-interferometer dynamics
is invariant under the transformati@ft— ¢+ 7 [14], we can
restrict ourselves to € ¢p<1r.)

For largerf=Q/2m, K(Q)=—Rge(Q) has a resonant
peak centered af =y, with width ~1/74.., [S€€ EQS.
(3.30, (3.3D].

Hence, the dynamics of the system composed of the op- U u U u U u U U U u U
tical field and the arm-cavity mirrors in a SR interferometer
5 cralogous (0 e By Of 8 M SPIG, W A1 G, 6. The inererometr mamis reseibesthe dyna:
moves at low frequency, i.eQ<Q,.., the internal configu- ics of_ a massive spring with one internal osmllatlon maded _
ration of the spring has time to kgsecp up with its motion anddamplng _attached toa t‘_ast mass. The overall dynamical system is
it remains uniform, providing a linear restoring force which characterized by two pairs of resonances.
induces a pair of resonances at frequenciBs,ecn
=+ J4AK(Q<Q e/ m~ = V4K (Q=0)/m. ED(Q) =

When the test mass moves at high frequency, the interna‘: 1-R(Q)Re(2)
mode of the spring is excited, providing another pair of reso-
nances to the system. Inserting the equation of mgBo8¥)

[FO@)

Reex(@(Q)

of x and the expression f@® , Eq.(3.26), into the equation FRer(QRA(MGQ) ]+ 7= Ri(Q)RE(Q)’
of motion (3.33 of F, we obtain 4.3
_ _ _ £(1)
(Q-0)(Q-Q )FH(Q) 50— 200 + Rz F()R(Q2) ()
. 4 2lowg co T 1-R(Q)Rer(2)
=driving termst 5> R
mas L ) Rz,r (X))
+FOQ) ]+ (4.9

1-Rx(Q)Rep(Q)

p sin 2¢ _EOQ). @)
1+2pcos2p+p Let us first analyze these equations in the low-laser-power
In the absence of the SR mirror, i.e., fpr=0, the term limit, which has long been considered in the literature for the
proportional toF (") on the RHS of Eq(4.1) vanishes, and SR or RSE schemed 9] and has recently been tested ex-
the optical field is characterized by the two resonant frequenPerimentally [10,11. In doing it we shall neglect in Egs.
cies(). given by Eq.(3.21). By contrast, when the SR mir- (4.3), (4.4 the terms proportional ta(®) in the above equa-
ror is present, the term proportional E§*) on the RHS of tions. Indeed, in Sec. VI we shall show that this is always

Eq. (4.1 shifts the resonant frequencies away from the val-2Ppropriate. For LIGO-I[3], the low-laser-power limit cor-
uesQ). . responds to a power impinging on the beam splitter from the

In conclusion, the dynamics of SR interferometers is charbright port ofl ;<10 W. Using Eqs.(3.26-(3.29, and the
acterized by twa(pairs of resonances with different origin: fact thatz{”) does not depend diy, andF®< /I, [see Egs.
the (pair of) resonances at low frequency have a “mechani-(3.17, (3.18, and (3.22], we deduce thaRgrx=l, and
cal” origin, coming from the linear restoring force due to the RZgFoc \/G_ Therefore, for very low laser power, if we restrict

ponderomotive nguj:ty; .the("pa|.r .Of) resonances at h|gh§er ourselves only to terms up to the order\df,, we can reduce
frequency have an “optical” origin. Because of the motion ItEq (4.4 to

of the arm-cavity mirrors the optical resonant frequencies ge
shifted away from the free-evolution SR resonant frequen- 51 _5(0)
ciesQ). . In this sense we can regard the SR interferometer [Z2¢7(2) Jow power= 27(2) + Rz p ()Rl D) G(),

as an “optical spring’[see Fig. 6. (4.9

B. Quantitative investigation of the resonances which says that the response D?l) to the GYV force G is
given by the product oR,,, the response of to G, times
Ry, the response aZ, to F. Hence, for low laser power

the dynamics is characterized by fodecoupledresonant
frequencies: two of them()?>=0 (degenerate are those of
the free test mass as embodiedRy,; the other two,()
= . [see Eq(3.21)], are those of the free-evolution optical
x©(Q) fields as embodied iR, r . As was discussed in Sec. II B,

* 1-Ry(Q)Rep(Q)’ (4.2 when the imaginary part of the resonant frequency is nega-

Equationg3.32—(3.34) describe the coupled evolution of
the dynamical variables, F, andZ:
Rux(£2)

X =T-R (R [ OV FFEO)]
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tive (positive the mode is stabléunstable. Therefore the loy® (Q,—Q.)
decoupled “mechanical” resonancé¥’=0 are marginally (AQg)*=— o 9.0
stable, while the decoupled “optical” resonancBs, are SQL TR
stable.[We remind the reader tha(().)<0.] lo (2py?sin2¢)(1+2p cos 2+ p?)
If we increase the laser power sufficiently, the effect of =1 > 22 .
the radiation pressure is no longer negligible, and from Eqgs. 'saL 4p®sinf2¢+(1-p%)
(4.2—(4.4) we derive the following condition for the reso- (4.8
nances:
If the SR detuning phase lies in the rangel §<m/2,
Rl )Rz £ (2) then (AQ,)? is always positive. Hence, at leading order, the
1-Ru()Ree(2) -t (4.8 initial double zero resonant frequenfy?=0 splits into two
real resonant frequencies having opposite signs and propor-
which simplifies to tional to (1/1so) ?y. The imaginary parts of these resonant

frequencies appear only at the next to leading order, and it
turns out(as discussed later on in this sechidhat they
always increasébecoming more positiveas| o/l sq. grows,

. . Ig:enerating instabilities.
In these equations we have adopted as a reference light |f the SR detuning phase lies in the rang&< ¢<r,
power | so=mL?y*/4wo, introduced by KLMTV[12]; this  then at leading orderA(,)? is negative, and we get two
is the light power at the beam splitter needed by a convencomplex-conjugate purely imaginary roots. The system is
tional interferometer to reach the SQL@t= y. Because of  therefore characterized by a non-oscillating instability.
the presence of the term proportionalltpin Eq. (4.7), Q? Regarding the root§)= ., we can expand Eq4.7)

=0 andQ=Q. are no longer the resonant frequencies ofyith respect toAQ . =Q— Q. . A simple calculation gives
the coupled SR dynamics.

If the laser power is not very high, we expect the roots of

QZ |073 —
Q-0 ) Q-0 ) +-2(Q, -0 )=0. (4.7
2|SQL

3
Eqg. (4.7) to differ only slightly from the decoupled ones. Let AQ. =7 loy L (4.9
us then apply a perturbative analysis. Concerning the double T 2lsqL(0.)?
rootst=Q§=O, working at leading order in the frequency
shift AQy=Q—-Qy=(Q, we derive Using EQ.(3.22) we find that
|
I 4p?sirf2¢—(1—p?)?](1+2p cos 2p+ p?)?
RAQ.L) =T oy [4p ¢('p)]( p 2¢p)’ 4.10
2lsqu [4p?siP2¢+(1—p?)?]?
lo [2pysin24(1—p?)](1+2p cos 2+ p?)?
j(AQt):__o[ Py Sin 2¢( _p)]( pCos2p+pT)” @10
I'squ [4p?siP2¢+(1—p?)?]?

This says that, if the SR detuning phase lies in the range @ (). is proportional tol itself. For the optical configura-

<¢p<ml2, thenJ(AQ.) always decreasgbecoming more tions of interest for LIGO-II, we found14] that when we

negative asl,/lsq_increases. Hence, the imaginary parts ofincrease the laser power frolg=0 to Iy=15q, , the optical

the resonant frequencies are pushed away from the(teal resonant frequencies stay more or less close to their original

axis, i.e., the system remains stable. On the other handalues while the mechanical ones, which start from zero at

R(AQ-) may either increase or decreasel gd 5o grows.  1,=0, move into the observation band of LIGO-II &g

If 7/2<¢$<ar then the imaginary parts become less negative—lgq, .

as the laser power increases, so the system becomes lessTo get a more intuitive idea of the shift in the resonant

stable. frequencies for high laser power, we have explored the reso-
Note that, although turning up the laser power drives thenant features numerically. In Fig. 7 we plot the trajectories of

optical resonant frequencies away from their nonzero valuethe resonant frequencies whiyvaries from~0 tolgq (the

Q. , their changes are very small or comparable to theiarrows indicate the directions of increasing powéor two

original values. By contrast, the mechanical resonant freehoices of SR parameterp:=0.9, and ¢ = m/2% 0.47, for

guencies move away from zero; hence their motion is veryhich the decoupled resonant frequendies coincide. The

significant. In this sense, as the laser power increases, thmhaviors of the optical resonant frequencies under an in-

mechanicaltest-maspresonant frequencies move faster thancrease of the power agree with the conclusion of the pertur-

the optical ones. This fact can also be understood by obserbative analysis deduced above. ke 7/2—0.47, or more

ing thatA(Q), is proportional to the square root bf, while  generally for 6<¢p<w/2, the imaginary part of the optical
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80
60 | unstable half-plane — 0=m2-047
e 0 =n/2+0.47
a0 |
: o E ——;’__//V FIG. 7._Shift of the resonances in a SR inter-
b, IEN ferometer induced by the radiation pressure force
é 20 | ™ _ ] aslg increases from-0 up tol s, . This figure is
A x drawn for a SR mirror reflectivitpy=0.9.
-0 |
Py
=60 [ stable half-plane
-80 L L L s
-200 -100 100 200

0
Re(f) (Hz)

resonant frequency becomes more negative when the lasefth a solid line coincide over the entire range<Gp<r.
power increases, and the resonance becomes more stable; Tdte imaginary parts of the two coupled mechanical resonant
¢=m/2—0.47, or generically forr/2< ¢ <, the imaginary  frequenciegdrawn by a long-dashed lihalso coincide for
part becomes slightly less negative when the laser powey< ¢< /2, but they have opposite imaginary parts fof2
increases. The behavior of the mechanical resonance is pat¢< 7 (see also Fig. 7 for two special choicesgf. From
ticularly interesting. For¢=/2—0.47, or generically for the various plots we conclude that the region characterized
0<¢<m/2, and for very low laser powdr, the two reso-  py the weakest instability igp=< /2. It is important to note
nant frequencies separate along the real axis, as anticipatgl; for these values of the detuning phase the noise curves
by the perturbative analysis. Moreover, lasincreases they ot 5 SR interferometer have two distinct valleys that beat the
both gain a positive imaginary part. However, since the tra‘SQL(see Sec. IV of14]).Y7 In Ref. [14] the authors pointed

jectory is tangent to the real axis, the growth of the IMagl5 1t that the positions of the valleys of the noise curves co-

nary parts is much smaller than the growth of the real parts.__. : ,
= incide roughly with the real parts of the system’s coupled
For ¢=m/2+0.47, or more generally foir/2< <, the .mechanical and optical resonant frequencies. By taking into

two resonant frequencies separate along the imaginary axis : . . .
moving in that direction as, increases. atcount Fig. 5 and the dynamics of the system, discussed in

We finally note that whenever the SR detunisgs dif- Sec. IVA, we can make the following remark. The “spring

ferent from 0 andw/2, the mechanical resonance is alwaysCOnstant’k () is real only forQ <@ . For largerQ)’s, its
unstable. We shall discuss this issue in more detail in thémaginary part contributes to that of the resonant frequency,

next section. and thus to the instability. Therefore, the farther the coupled
mechanical resonant frequency is from the decoupled optical
C. Characterization of mechanical instabilities resonant frequency(Y.), the less unstable it is. However,

the distance between the coupled mechanical resonant fre-

AS. discussed in the prepedmg section, the cqqpleq meCiuency and the decoupled optical resonant frequeficy)(
chanical resonant frequencies always have a positive |magtj—

X . o s directly related to the distance between the coupled me-
nary part, corresponding to an instability. The growth rate o . . :
chanical and coupled optical resonant frequencies. Therefore,

this unstable mode is proportional to the positive imaginaryhe more separate the two coupled resonances are, i.e., the

part of the resonant frequency. The time constant, 0% .
e-folding time of the mode, is 3(Q)). Hence, the larger the arther apart the two valleys of the noise curve are, the more
' : ’ stable the mechanical resonance is.

J3(Q) the more unstable the system is. ; )

In order to quantify the consequences of the instability, " Ref-[14], by analyzing the case of very highly reflect-
we have solved numerically the condition of resonances, EqN9 SR mirrors p—1) the authors found interesting noise
(4.7). In the left panel of Fig. 8 we plot the imaginary parts curves for the detuning rang®={¢:arcta(4lo/lsq)*"]
of the four resonant frequencies, in units pE Tc/AL (the — <¢<m/2} [see Sec. IVAand, in particular, EGt.4) of Ref.
bandwidth of the arm cavity, see Sec. II),As a function of [14]]. In the right panel of Fig. 8, we enlarge the left panel
the detuning phase Q¢<m of the SR cavity, fixingl, around this regiorD and plot various curves obtained by
=lso= 10* W andp=0.9. For an interferometer with arm- varying the SR reflectivity=0.8,0.9,0.95 and 0.98. We ob-
cavity lengthL =4 km, and internal-mirror power reflectivity serve that, for this parameter set, the largest growth rate is
T=0.033, which is the value anticipated by the LIGO-II ~0.2y—124 s%, corresponding to ae-folding time of 8 ms,
community[3], we gety=619 s1. Hence, the storage time Wwhich is five times larger than the arm-cavity storage time.
of the arm cavity is 1y=1.6 ms.

From the left panel of Fig. 8 we infer that the imaginary
parts of the two coupled optical resonant frequentigewn 7see footnote 3.
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optical resonance Probe | _ Detector
mechanical resonance  _~—7 7"~ 7
7

FIG. 9. Scheme of the control system introduced to quench the
instabilities present in a SR interferometer. The outfutwhich
contains theGW signal and the quantum noise, is sent through a
linear filter with outputC=K.Z, and is then fed back onto the
probe, i.e., the antisymmetric mode of motion of the four arm-
cavity mirrors.

Im(Q)fy

trol system, it is not cleaa priori whether the resonant dips
(or at least the mechanical one which corresponds to the
unstable resonangewhich characterize the noise curves in
the uncontrolled SR interferometgt3,14], will survive. In

the following we shall show the existence of control systems
that suppress the instability without altering the noise curves
of uncontrolled interferometers, thereby relieving ourselves
from the above worry.

(a)

A. Generic feedback control systems: changing the dynamics
without affecting the noise

We shall identify a broad category of control systems for
which, if the instability can be suppressed, the noise curves
are not altered. We suppose that the output si@nm sent
through a linear filteK . and then applied to the antisymmet-
ric mode of the arm-cavity mirror&see the schematic draw-
ing in Fig. 9. This operation corresponds to modifying the
Hamiltonian(2.6) into the form

H=[(Hp—XG)+Hp]—XxF—XC, (5.2)

where( is a detector observable whose free Heisenberg op-
(b) . . L i
erator(evolving undeH ) at timet is given, as required by

FIG. 8. The growth of instabilities for highly reflecting SR mir- causality, by an integration ovef<t,
rors. In the left panel we plot the imaginary part of the resonant .
frequencies, obtained solving E¢4.7), versus the SR detuning C(O)(t):f dt’KC(t—t’)Z(O)(t’). (5.2)
phase¢, for p=0.9 andly=1gq = 10* W. On the top panel we —
enlarge the plot shown in the bottom panel for the detuning region
D={¢:arctan(dly/Isq) *]< p<m/2}, fixing p=0.8,0.9,0.95,0.98 Physically the filter kerneK(7) should be a function de-
and lo=1go=10" W. This range of physical parameters corre- fined for7>0 and should decay to zero when- + . How-
sponds to interesting LIGO-II noise curvgk3,14. ever, in order to apply Fourier analysis, we can extend its
definition to 7<<0 by imposingK (7<0)=0, thereby ob-
Finally, we notice that the kind of instability we have taining
found in SR interferometers has an origin similar to the dy- o
namical |nst{ib!llty induced in a detune_d Fabry-Perot c_avny &(O)(t):J dt’KC(t—t’)Z(O)(t’). (5.3
by the radiation-pressure force acting on the mirrors —w
[36,33,34.
Therefore, in the Fourier domain we have
V. CONTROL SYSTEMS FOR SIGNAL RECYCLED

INTERFEROMETERS COQ)=K(Q)ZOQ), (5.4)

In this section we discuss how to suppress the instabilitiesvhere K(2) is the Fourier transform oK.(7). It is
present in SR interferometers by a suitable servo systenstraightforward to show that the two time-domain properties
Since the control system must sense the mirror motion insid&(7<0)=0 andK(7— +%)—0 correspond in the Fou-
the observation band and act @rsually dampit, there is an  rier domain to the requirement thigt(€2) have poles only in
issue to worry about: If the dynamics is changed by the conthe lower-half(Q) plane.
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Working in the Fourier domain and assuming that the
readout scheme is homodyne detection with detection phase
{=const, we derive a set of equations of motion similar to

1- KCRxszgF

£(1) =
PO T TR Rer Ry oK)

(ﬁ@)m)

Egs.(3.32—(3.34),

ZP(0)=20(0)+ [Re () +Rz e (M) XD(Q), (5.5

F(Q)=FO(Q) +[Rer() +Rec () XD(Q),

(5.6
x1(Q) =xO+ R ([G(Q) +FO(Q) + ()],

(5.7
CEI(0)=CUQ)+[Re () +Re 0 () IXD(Q).

(5.8

Each of Egs(5.5), (5.6), and (5.8 has two response terms

Rer

B )
TR Ry 1)+ Rel GO

+KCZ(°)(Q)]}). (5.19

From the above equation®.13—(5.15, we infer that the
stability condition for the controlled system is determined by
the positions of the roots ¢fL. — R, (Rgr+ RngKc)]- There-
fore, by choosing the filter kern&l, appropriately, it may be
possible that all the roots have a negative imaginary part, in
which case the system will be stable.

Before working out a specific control kerni€}, that sup-

due to the two coupling terms between the probe and th@resses the instability, let us notice that different choices of
detector in the total Hamiltonias.1). However, some of the Kc give outputs (5.14 that differ only by an overall

responses are actually zero. In particular, inserting(E®)
into  [FOt),c?(t")]  and

RZgC{(Q)=0=RC£C§(Q). Moreover, the fact thaK (t—t")
=0=Czoro(t,t") for t<t’ gives the equalityRQF(Q)

=KC(Q)RZ£F(Q). Imposing these conditions, we deduce a

simplified set of equations of motion:

Zgl>(n)=2§°>(n)+Rng(Q)%l)(Q), (5.9
FOQ)=FO(Q)+Rer(Q)xD(Q), (5.10
XM () =xO(Q) +R(M[G(Q)

+EDQ)+c ()], (5.11)
Q) =K()ZD(Q). (5.12)

Solving Egs.(5.9—(5.12), we obtain

)‘((l)(Q): )“((0)(9)

1R (Rer Ry Ko

+R[G(Q)+FO(Q) +K ()21},

(5.13
. 1-R,,R .
1) _ XX \FF (0)
Z (Q)‘l—RXX<RFF+Rz§FKC>(Zﬁ (@)
TR R D@ T RAGO)
+|”=<0>(Q)]}> (5.14

using the fact that
[FO(t),z0(t')]=0 for t>t' [see Eq.(2.34], we find
Rpcg(Q)zo. Combining Eq. (5.2 with the fact that

[2O(t),z8(t")1=0 for all t,t" [see Eq.(2.34], we have

frequency-dependent normalization factor. This factor does
not influence the interferometer’s noise, since from Eq.
(5.14 we can see that the relative magnitudes of the signal
(term proportional td5) and the noiséterms proportional to

Z{ andF(©) depend only on the quantities inside the curly
bracketq } and not on the factor multiplying the bracksee
Ref.[14] for a detailed discussion of the noise spectral den-
sity). Therefore if this control system can suppress the insta-
bility, the resulting well-behaved controlled SR interferom-
eter will have the same noise as evaluated in Rdf3,14]

for the uncontrolled SR interferometer. This important fact
can be easily understood by observing that, because the
whole output(the GW signalh and the noisdN) is fed back
onto the arm-cavity mirrorsh and N are suppressed in the
same way by the control system, and thus their relative mag-
nitude at any frequenc{ is the same as if the SR interfer-
ometer had been uncontrolled.

B. An example of a servo system: Effective damping of the
test mass

Physically, it is quite intuitive to think of the feed-back
system as a system that effectively “damps” the test-mass
motion. When the control system is present, the equation of
motion for the antisymmetric mode can be obtained from
Egs.(5.11, (5.9, and(5.12. It reads[as compared to Eq.

(3.39]:

I:2XX

x(1) = X
xH(Q)=
( 1- KCRxszgF

[G(Q)+FD(Q)+K20(Q)]
xO(Q)

Denoting byRS, the response of) to G andF") when the
servo system is present, i.e.,

RC _ RXX

1- KCRXXRZ{F , ®.12
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20 T T T
unstable half-plane

10 + E

0 \ /, FIG. 10. Effective damping due to a servo
i~ ‘& 4‘/ system with control kernel given by E@5.21).
< T We have fixed \=0.05y, p=0.9, ¢=m/2
2 — Uncontrolled —0.47, andl from ~0 up tolgg =10" W. The
v —10 ~ g N . . . . .
N ———_ Damped: A=0.05y arrows indicate the directions of increasing light
f; power l,. The originally unstable mechanical

resonancesolid line) is pushed downward in the
=20 A complex Q) plane, and stabilizeddashed ling
The figure also shows the effect of the control

0 \\ / / system on the stable optical resonances.
30 - 4

stable half-plane

_40 | 1 1 1
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we can rewrite the overall normalization factor which ap- However, we also need to check thag()) has poles
pears in Eqs(5.13—(5.15 as only in the lower-halfQ) plane. Using Egqs(5.17), (5.20 we
obtain the following explicit expression for the kernel:

1 R
—X___—__ (519
1-Ru(Rert Rz rKe)  Rux 1-R{,Rer Ko(Q)=

R
Z,F

1 1
Rux RS,

A sufficient condition for stability is that botRS, /R, and 5 .
mx [ AL ( m)

1/(1— RQXRFF) have poles only in the lower-half complex

=— +
plane.[Note that when the servo system is presléﬁu re- 27 VN 2lowg 2
lacesR,, in the stability condition of the system, see Sec. 2 _ _
lIOIB, Eqsix(2.2()—(2.22) a};d discussions afteBr/ them. (1+.2p cos2p+p7)(Q Q.f)(ﬂ 2.) .

We have found it natural to choose fB,(Q) the sus- (Q+iy)cod ¢+ )+ pQ—iy)cod ¢={)
ceptibility of a damped oscillatofwith effective massn/4), (5.21
having both poles in the lower-hal plane atQ)=—i\,

i.e. 18 For (=0 or {=/2, i.e., when either of the two quadratures
b, or b, is measured, the control kern@d.21) indeed has
c 4 poles only in the lower-half complex plane. More generally,
Ru(Q)=— m m (5.20 we have shown that if & ¢< /2, the control kerne(5.21)

has poles in the lower-half complex plane for all2<¢
<1, regardless of the value qgf, but it may become un-
Bhysical in the region & {< /2. However, for the unphysi-
cal values of{ there are various feasible ways out. For ex-
ample, we could changBS, by replacingm in Eq. (5.20

with a slightly smaller quantityn,. In this case
1 1 m /m /m

R___C):_Z Q(l— —C)—I)\ —C}
xx Ry, m m

m

1+ —

m

with A a real parameter. This choice automatically ensure
that RiX/RXX has poles only in the lower-half complex plane.
Moreover, by choosing. appropriately we can effectively
push the roots of (+ R$,Rer) in Eq. (5.18) to the lower-half

Q) plane, as shown in Fig. 10 fgr=0.9, ¢=m/2—0.47, A
=0.05y, andl, from ~0 up tolgg, .

8 the time domain this choice d®’(Q) corresponds to the
equation of motion

Q Nl (5.2

X +IAN E . (6.22

m. . 2

7%= X Ty xtforees, .19 By choosingm, appropriately, we can use the first factor in

Eq. (5.22, which has a root in the upper-half complex plane,
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to cancel the bad pole coming froR&gF in Eq. (5.27), so R, ¢
s

thatK, will have poles only in the lower-half complex plane. 1-R(Rer+ Ry (K )X(O)(Q)
Finally, we must adjusk so that the effective damping sup- oA TER T T PR
press the instability.

Of course, the servo electronics employed to implement ~

Q2. (polynomialin Q)

the control system will inevitably introduce some noise into (Q—0H Q-5 (Q-05)H(Q-Qf)

the interferometer. In our investigation we have not modelled .

this noise but LIGO experimentalists have seen no funda- % >A<s5(9)—ﬂl355’(9) . 6.2
mental noise limit in implementingontrol kernelsof the m

kind we discussed, and deem it technically possible to sup- o e

press any noise contribution coming from the electronics tdiere we indicated with)y, i=1,...,4 theresonant fre-

within 10% of the total predicted quantum nofs¥,38. quencies of the controlled system, all of which lie in the
However, the examp|e of control |00ﬁnterferometer lower half part of the complex plane. It is easy to see that the

+servo systemwe modeled here is described by a quantumfactor outside the square brackets on the RHS of(E®) is

mechanical Hamiltonian system in the Heisenberg picturezero and has a first derivative equal to zero if evaluated at

which implicitly assumes that the entire system must be in §2=0. Using the following properties of delta-functions:

pure state in the Schdinger picture. Although this assump-

tion_ may be realistic .for a control loop base_d on an all- Jﬂcﬁeimf(ﬂw(ﬂ):@, 6.3
optical servo system, it might not be very realistic when an —w 2T 2

electronic servo system is implemented. Indeed, in this latter

case a macroscopic measurement process takes place inside +«dQ o if(0)t—f'(0)

the loop and quantum coherence might be lost. Thus, for an f one f(Q)6'(Q)= — % (6.9

electronic servo system a more realistic formulation should
be used to fully describe the systdB8]. This is a delicate

yet very important issue, which deserves a careful study an€ then conclude that the term proportional@®(©2) in
will be tackled elsewherg40], Eqg.(5.14), i.e., Eq.(6.2), vanishes. This means that the initial

In this paper we have restricted ourselves to the readodzluantiz_atior_1 of the test mass does not contribute to the quan-
scheme of frequency-independent homodyne detection, i_prj_nj noise in the output signal. Nevertheless, note that_ the
which only one (frequency independentuadratureb, is mmal state of _the test massdand _of the electromagnetic
measured. The issue of control-system design when othdi€!d @s wel) will enter the output signal through the homo-
readout schemes are present, e.g., the so-called radi§€neous solutions of the system of E@s13—(5.15. How-
frequency modulation-demodulation design, is currently uneVer, these solutions oscillate at the agenfrequer@@s
der investigatiorj40]. =1,2,3,4 and die out as tr_ansmrﬁme also the d|scu53|on at

Finally, for simplicity we have limited our discussion to the end of Sec. IIBleaving only the stationary solution
lossless SR interferometers. When optical losses are takeMhich is not contaminated by the initial quantization of the
into account, we have found that the instability problem ist€St mass. _ _
still presenf14] and we have checked that those instabilities L€t us now consider the marginally stable cases of tuned
can be cured by the same type of control system as wa3R/RSE configurationséamong which LIGO-I is a special
discussed above for lossless SR interferometers. casg, where¢=0 or /2, Ree(0)=0 while Rz (0)#0. In
these optical configurations the real part of the optical reso-
nances is zero and the mechanical resonance is not pushed
away from zero frequency becauRe:(0)=0, i.e., the pon-
deromotive effect is absent. It is straightforward to derive

Let us suppose that our quantum-measurement device hf9m Eq.(6.2) and Eqs(6.3), (6.4) that in this case the term
been stabilized through the kind of control system discussegroportional tox(?(Q) in Eq. (5.14 doesnot vanish but
in Sec. V and that we are in the stationary regime, whergjives a contribution to the output signal at zero frequency.
Fourier analysis provides the correct solution. By applying aHowever, as discussed at length by BGKMTV in R0,
Fourier transform to Eq(3.10, we have this zero-frequency component can be filtered out in the data

analysis stage. Hence, also in the tuned SR/RSE configura-
. A 4i . tions the output signal is not contaminated by the initial
xO(Q)=2m| x;8(Q)— mpsé’(ﬂ) . (6.1)  quantization of the test masses.

VI. INFLUENCE OF THE INITIAL QUANTIZATION
OF THE TEST MASSES ON THE OUTPUT SIGNAL

. VII. CONCLUSIONS
Inserting the above expression x)(Q) into the Fourier-
. . 2 (l) . .
domain output signal /°({2), Eq. (5.14), and plugging into theory, extended by Braginsky and Khali21l] to GW de-

it the expressions oR(() [Eq. (3:13)]' Rng(Q) and tectors, we have described the optical-mechanical dynamics
Rer(Q) [Egs. (3.26—(3.29], we obtain that the term pro- of SR interferometers such as LIGOfB]. This analysis has
portional tox(®(Q) reads allowed us to work out various significant features of such

Using the formalism of linear quantum-measurement
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interferometers, which previous investigatig@s-8| could  nally, we are deeply indebted to K.S. Thorne for his constant

not reveal. support and for offering numerous useful comments and sug-
We have found that when thearriep laser frequency is gestions. This research was supported by NSF grants PHY-

detuned in the SR cavity, the arm-cavity mirrors are not only9900776 and PHY-0099568 and also for A.B. by Caltech

perturbed by a random fluctuating force but are also subjedRichard C. Tolman Funds.

to a linear restoring force with a specific frequency-

dependent rigidity. This phenomenon is not unique to SR APPENDIX: BASIC PROPERTIES OF LINEAR SYSTEMS

interferometers; it is a generic feature of detuned cavities

[36,20,33,3%and was originally used by Braginsky, Khalili In this appendix, to clarify the formglism useq in Sec;. I,
and colleagues in designing the “optical baBW detectors W€ Summarize some well-known basic properties of linear
[20]. systems linearly coupled to each other or to external classical

Our analysis has revealed that for SR interferometers thfPrces. Much of this material can be found in Sakuet],
dynamics of the whole optical-mechanical system, compose@nd for its application to quantum-measurement processes in
of the arm-cavity mirrors and the optical field, resembles thaBraginsky and Khalil{21] and Cavest al. [25]. _
of a free test masémirror motion connected to a massive  Definition 1 (linear systemy. Any system whose Hamil-
spring (optical fields. When the test mass and the spring arefonian is at most quadratic in its canonical coordinates and
not connectede.g., for very low laser powgthey have their momenta is a linear system. , _
own eigenmodes, namely the uniform translation mode for Definition 2 (linear observableg. Any linear combina-
the free test masgfree antisymmetric modeand the t|on_(e|ther t|r_ne dependent or time mde_pendent) of the ca-
longitudinal-wave mode for the spririgecoupled SR optical nomgal coordinates and momenta of'a Im_ear system, plus a
resonance However, as soon as the free test mass is conP0SSible complex numbe€ number), is a linear observable
nected to the massive spritig.g, for LIGO-II laser powey ~ Of the syfstem. _ . A
the two free modes become shifted in frequency, so the entire Denoting all the canonical coordinates and momentd; by
coupled system can resonate at two pairs of finite frequenciesith i=1,2, . . ., theHamiltonian of a linear system can be
(coupled mechanical and optical resonancd¥om this  written as
point of view a SR interferometer behaves like an “optical
springi’ detectqr. For LIGO-II par'ameters, both resonant fre- |:|(t)=2 Lg(t)@i@ﬁE Lil(t)@i+L0(t), (A1)
guencies can lie in the observation band 10<Hf<10 kHz ] i
and they are responsible for the beating of the SQL in SR — o ) ) _
interferometer$13,14. whereL(t) is symmetric ini andj. The equations of motion

The formalism used in the present paper has allowed us tef the canonical observables in the Heisenberg picture read
analyze in more detail the features of the instabilities in SRwe use the fact theijH does not depend explicitly on tire
interferometers, pointed out in Refgl3,14. Most impor-
tantly, we have shown the possibility of using a feedback ihgé- (1) =[Cis (), An(D)]
control system to cure such instabilities without compromis- dt iR T EEIHAE LT
ing the performance of the interferometer. However, before R L R
any practical implementation, a much more careful and pre- =0"(=,)[Cjs, Hs(1)]JU(—2,1)
cise study should be carried out, including various readout
schemeg40). — _ =0T<—m,t>{2 2L3°(1)CjiCns

Finally, the general discussion based on the Braginsky- Im
Khalili force-susceptibility formalism, given in the first part
of this paper(Sec. I), and the applicati_on to a specific type +> L'l(t)Cj,}U(—OO,t)
of GW interferometer, the LIGO-II SR interferometer, given [
in the second part of this papéBecs. IlI-\j, may provide,
along with Refs[12,14, a framework for future investiga- => 2L|2m(t)cj|&mH(t)+z L'l(t)dj, _
tions of quantum noise in advanced, more complex, optical f,m [
configurations. (A2)

Here the subscript$S and H stand for Schrdinger and
Heisenberg pictures, respectiv J-,,E[@J-S,&S] is the com-
We wish to thank P. Fritschel, J. Mason, N. Mavalvala, G.mutator between the canonical operators, which Graum-
Mueller and K.A. Strain for very interesting, helpful discus- per, andO(—oo,t) is the time-evolution operator which sat-
sions and/or comments. It is also a pleasure to thank V.Bisfies the Schidinger equation
Braginsky for pointing out the importance of optical-
mechanical oscillations il W detectors, F.Ya. Khalili for
very stimulating interactions concerning the optical-
mechanical rigidity in LIGO-II and Yu. Levin for very lively
discussions which further motivated our descriptions of SRwith the initial conditionU(—,—%)=1. The solution to
interferometers using the force-susceptibility approach. FiEq. (A2) is of the form

ACKNOWLEDGMENTS

d. ~ A
ihaU(—m,t)=H5U(—00,t) (A3)
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. . . kind of formulation can be introduced in these ca&es is
Cin(t)= ; @i () C(— ) + Bj(1) = ; aj(t)CstBi(t),  done by Braginsky and Khalili, see Sec. 6.4 of RefL]). We
(Ad) shall describe the system using a perturbative approach. Thus
we write the total Hamiltonian in the Schiimger picture as
wherea;,(t) and 8;(t) are time-depender@ numbers. Hs=Hos+ Vs(t), whereVg(t) is treated as a perturbation
_ For any linear observabl it follows from linearity that  jth respect to the zeroth order Hamiltoniias. It is gen-
An(t)=Za;(t)Cj(t) +b(t), which, along with Eq.(A4), erally convenient to introduce the so-called interaction pic-

leads to ture (see, e.g., Secs. 5.5 and 5.6 of Réfl]), in which the
evolution operatotU, is defined by the relatiot) (—,t)
Au()=2 a()Cju(t) +b(t) =Uq(—,t)U,(—0,t), where Ug(—c0,t) is the evolution

i

operator associated witH,s andU is defined by Eq(A3).
Then,U,(—oo,t) satisfies the equations

:g ai(t)ajk(t)&kS"‘; a;(1) B;(1)+b(t).
, N o A
a5 0= )=V (—=t), O(=%,—e)=1,

This provides the following theorem. (A7)
Theorem 1 At any time the operator of a linear observ- it Vi(t)=0](—,t)Vg(t)Ug(—o0,t). The solution of Eq.

able in the Heisenberg picture can always be written as &A7) can be written as a perturbative expansion,
linear combination of operators of the (time-independent)

canonical variables in the Schdinger picture plus a pos- A 1t -

sible C number. Ui(—»,t)=1+ ﬁfﬁwdtlvl(tl)

Applying the above theorem to any two linear observables

A A 2
AandB, recalling thatC;,=[C;s,Cks] is aC number and the 1 J’t Jtl - -
commutator between @ number and any operator is zero, i) ) A deViltoVit)+
we find
% 1 ( 1 )n jt R n
R ~ = — = T dt,V,(t , A8
[A(®.Ba(t)]=3 AORMEICK,  (A0) Ao nt lif [ AR 1)} } "o

o . whereT denotes the time-ordered prod(id®]. The Heisen-
which is a C number. Therefore, the following theorem berg operator associated with any observahleevolving
holds. under the full HamiltoniarH, is linked to the corresponding

Theorem 2 In the Heisenberg picture, the commutator o . . S
the operators of any two linear observables at two times is Aﬂelsenberg operator evolving under the Hamiltorkinby

C number. the relationAy(t)=U/(—=,0)AD(t)U,(—=,t), where the

We are interested in the evolution of a linear system subsuperscript (0) on the observabledenotes that the evolu-
ject to a classical external linear force or linearly coupled totion is due toH,. Inserting Eq(A8) into the above equation,
another independent linear system. A force-susceptibilityve get

2 rt ty R . ~ 0
[ at [ et (a0 AR+

i
h

A=At +;1—Ji dt; [V, (ty), AD(1)]+

+(i—)nf dt ftl dt ftn*ldt vt V(). [V (1), At + A9
ot [ dt e [T ) [ [0 [ ) APOTE 11 (19)

For a linear system subject to an external classical lineafj=fj,—xG(t), where xis a linear observable. Then, for

force G(t), the interaction term i¥,(t)= —X{’G(t). Plug-  any linear observablé Athe Heisenberg operator,At) can

ging this expression into EGA9) and using Theorem 2, it is . . i . ~ (0)
straightforward to deduce that the second and all higher ort-Je written as the sum of its free-evolution parf{4t), plus

der terms in Eq(A9) vanish and the first order perturbation a term which is due to the presence of the external force, i.e.,
gives the exact solution. Hence, we obtain the following

theorem. .
Theorem 3 Consider a linear system subject to a classi- AL(H=AO,(t)+ '_ft dt’Ca(t,t")G(t"), (A10)
cal generalized force @), whose Hamiltonian is given by h) -
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where G,(t,t") is a C number, called the (time-domain) malism in the Fourier domain. We first notice that for a time
susceptibility, given explicitly by independentl,, Uy(t,t+7)=e" "o and for any two lin-
ear observabledA; and A, we have Cp a (t+7,t'+7)
=CA1A2(t,t’), ie., CAlAZ(t,t’) depends only on—t’. De-

Let us now suppose that we have two independent lineaning the Fourier transform of any observaldiét) as
systemsP (e.g., the probeandD (e.g., the detectdrwhich

by definition are described by two different Hilbert spaces ~ o

Hp and Hp. We introduce the Hilbert spack=H,® Hp A(Q)Ef dte 'A(t), (A14)
and define for any operator of the systemP the corre- N

spopding operator acting drf asx® 1, while fo[ any opera-  gq (A10) becomeshy(Q) :A&O)(Q) + R (Q)G(Q) while
tor F of the systenD we introduce the operatorddF which  Eq. (A12) can be recast in the form

acts onH. Henceforth, we shall limit ourselves to interaction

Cax(t,t)=[AD() x{P(t")]. (A11)

termsV, in the total HamiltonianA=Hp+Hp+V, of the Au(Q)=AD(Q)+ R Q)FH(Q),

form V=—x®F, with x andF acting on and D, respec-

tively. Using Eq.(A9) with V,(t) = —x{"(t) F{9(t), noticing Br(Q)=BO(Q)+Rgr(Q)X4(Q),

that (i) the zeroth order Heisenberg operators of two observ- (A15)

ables living in different Hilbert spaces commute &iidl the

zeroth order Heisenberg operators of two linear observableshere R g({2) is the susceptibility in the Fourier-domain,
living in the same Hilbert space haveCanumber commuta- given by

tor, we derive the following theorem.

Theorem 4. Consider two independent linear systefds i
Rag(©) =+ dre'*"@(7)Cag(0,— 7)

and D, and two linear observables, &f P and F of D. .
Suppose that the two systems are coupled by a tepn .
®F, i.e., the Hamiltonian of the composite syst@m+ D = ;L_jo dre'?7Cp(0,~ 1), (A16)

reads H=Hp+Hp—x®F. Then, for any linear observable

A of the systen® and B of the systenD, their full Heisen-

berg evolutions are given by with @ (7) the step function. For future reference, let us point

out two properties whichiR,g({)) satisfies and that we use
repeatedly in Sec. II:

A - it -
Au) =AM+ [ dt'Cat,t)Fu(t),

" RXB(Q)ZRAB(_Q)v

A . i [t -
Bu()=BP(t)+ f AU Car(t,t)xu(t"), [AD(Q),BY(Q2)]= — 275 8(Qy + Q) [Rag(Q1)
(A12) —Rea(Q2)]. (A17)

“N0) A 1 2(0) , ,
Whgriﬁ{‘ and B(r.,b'lls'gand foréh(]i freotlatl)—|e|senberg evoluiions, To deduce the first identity in EQA17), we consider the
and the susceptibiliies are detined by complex (Hermitian conjugate of Eq.(A16) and use the

Ca(t.t)=[AO(1), XO(t")] Hermiticy of A%(t) andB{%)(t). For the second identity in
n HATH ’ Eq. (A17), we take the double Fourier transform of
Cor(tt)=[BO (1), EO(t')]. A13)  [AD(t),BY(t2)] with respect tat; andt,, and then using

Eqg. (A16) we find that the region correspondingtto>t, in
In the case where the zeroth order Hamiltonian is time indethe double integral yields thR,g term of Eq.(A17), while
pendent, it is easy and convenient to express the above fothe region corresponding tg<t, gives theRg, term.
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