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Solution to the F-derivable approximation for scalar thermodynamics
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~Received 4 June 2001; published 28 January 2002!

We solve the 3-loopF-derivable approximation to the thermodynamics of the masslessf4 field theory by
reducing it to a 1-parameter variational problem. The thermodynamic potential is expanded in powers ofg2

andm/T, whereg is the coupling constant,m is a variational mass parameter, andT is the temperature. There
are ultraviolet divergences beginning at 6th order ing that cannot be removed by renormalization. However a
finite thermodynamic potential obtained by truncating after terms of 5th order ing andm/T defines a stable
approximation to the thermodynamic functions.
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The thermodynamic functions for massless relativis
field theories at high temperatureT can be calculated a
weak-coupling expansions in the coupling constantg. They
have been calculated explicitly through orderg5 for the
masslessf4 field theory@1,2#, for QED @3,4#, and for QCD
@5,6#. Unless the coupling constant is tiny, the weak-coupl
expansions are poorly convergent and sensitive to the re
malization scale. This makes the weak-coupling expans
essentially useless as a quantitative tool: it seems to be
able only when the coupling constant is so small that
corrections to ideal gas behavior are negligibly small. T
physical origin of the instability seems to be effects asso
ated with screening and quasiparticles.

A possible solution to this instability problem is to reo
ganize the weak-coupling expansion within a variatio
framework. A variational approximation can be defined b
thermodynamic potentialV that depends on a set of varia
tional parametersmi . The free energy and other thermod
namic functions are given by the values ofV and its deriva-
tives at the variational point where]V/]mi50. A variational
approximation is systematically improvable if there is a
quence of successive approximations toV that reproduce the
weak-coupling expansions of the thermodynamic functio
to successively higher orders ing. An example of a system
atically improvable variational approximation isscreened
perturbation theory, which involves a single variational mas
parameter@7#.

A variational approach can be useful only if the corre
physics can be captured by appropriate choices of the va
tional parameters. Information about screening and quas
ticles is contained within the exact propagator of the fi
theory. The possibility that these effects are responsible
the instability of the weak-coupling expansion suggests
use of the propagator as a variational function. Such a va
tional formulation was constructed for nonrelativistic ferm
ons by Luttinger and Ward@8# and by Baym@9# long ago,
and has been generalized to relativistic theories@10#. In the
case of a relativistic scalar field theory, the propagator
the form @P21P(P)#21, where P(P) is the self-energy
which depends on the momentumP. The thermodynamic
potential has the form

V0@P#5
1

2X PF log~P21P!2
P

P21PG1F@P#, ~1!
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where the interaction functionalF@P# can be expressed as
sum of 2-particle-irreducible diagrams. It is constructed
that the solution to the variational equationdV0 /dP50 is
the exact self-energy, and the value ofV0 at the variational
point is the exact free energy. The subscript onV0 empha-
sizes that this bare thermodynamic potential contains ul
violet divergences. We can obtain a systematically impr
able variational approximation by truncatingF at nth order
in the loop expansion, wheren52,3, . . . . Werefer to such
an approximation as then-loop F-derivable approximation.
The two-loopF-derivable approximation for the massle
f4 field theory, which can be solved exactly@11,12#, illus-
trates the basic ideas of theF-derivable approximation. The
2-loop F-derivable approximation for QCD has recent
been used as the basis for quasiparticle models of the t
modynamics of the quark-gluon plasma@12,13#. Since
F-derivable approximations guarantee consistency with c
servation laws, they may be particularly useful for noneq
librium problems@14#.

It is easier to formulate theF-derivable approximation
than to solve it. If the self-energyP is independent ofP as in
the 2-loopF-derivable approximation for the masslessf4

field theory @11,12#, the problem reduces to a 1-parame
variational problem that can be solved exactly. IfP depends
on P, the variational equation is a nontrivial integral equati
that is difficult to solve. The main problem is that the the
modynamic potential has severe ultraviolet divergences
vanish at the variational point only ifF is calculated to all
orders. They do not vanish away from the variational po
and they do not vanish at the variational point if the lo
expansion forF is truncated.

In this Rapid Communication, we solve the 3-loo
F-derivable approximation for a massless scalar field the
with a f4 interaction by reducing it to a 1-parameter vari
tional problem involving a mass parameterm. The resulting
thermodynamic functions have ultraviolet divergences beg
ning at 6th order in the coupling constantg. However a finite
thermodynamic potential obtained by truncating after ter
of 5th order ing andm/T defines a stable approximation t
the thermodynamic functions. In this paper we describe
solution as concisely as possible. The technical details
presented in Ref.@15#.

The Lagrangian for the massless scalar field theory wit
f4 interaction with bare coupling constanta05g0

2/(4p)2 is
©2002 The American Physical Society01-1
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L5
1

2
]mf]mf2

1

24
g0

2f4. ~2!

We define the renormalized coupling constanta5g2/(4p)2

using dimensional regularization in 422e dimensions and
the modified minimal subtraction (MS) prescription with
renormalization scalem:

a0m22e5a1
3

2e
a21S 9

4e2 2
17

12e Da31•••. ~3!

The two-loop beta function for the running coupling consta
a(m) is b(a)53a22 17

3 a3. The thermodynamic function
for this theory are known to orderg5 @1,2#. The weak-
coupling expansion for the free energy density is

F
Fideal

51115F2
a

12
14S a

6 D 3/2

19~L11.097!S a

6 D 2

136@2 log~a/6!23L13.665#S a

6 D 5/2G , ~4!

wherea5a(m), L5 log(m/4pT), andFideal is the pressure
of the ideal gas of a free massless boson:Fideal
52(p2/90)T4.

The instability of the weak-coupling expansion is illu
trated in Fig. 1, which shows the free energy divided by t
of the ideal gas as a function ofg(2pT). The dashed lines
are the predictions of the weak coupling expansion~4! with
m52pT truncated after ordersgn for n52,3,4,5. The
dashed line forn52 is hidden under the solid line labele
g2. The successive approximations show no sign of conv
ing.

To illustrate our method in the simplest possible conte
we first consider the 2-loopF-derivable approximation. The
self-energy is independent ofP, so we denote it byP5m2.
The interaction functional in Eq.~1! is

F~m!5
1

8
g0

2m24eItad
2 , ~5!

FIG. 1. Free energy divided by that of the ideal gas for
weak-coupling expansion~dashed lines! and the truncated
F-derivable approximation~solid lines!.
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Q21m2 .

The measure for the dimensionally regularized sum-integ
in Eqs.~1! and~5! includes a factor of (egm2/4p)e, whereg
is Euler’s constant. We insert a factor ofm22e into the sum-
integral in Eq.~1!, soV0 is independent of the renormaliza
tion scale. The variational equation]V0 /]m50 reduces to
the simple gap equation

m25
1

2
g0

2m22eItad. ~6!

The sum integrals in Eqs.~1! and ~5! contain ultraviolet di-
vergences. Some of the divergences vanish at the variati
point. They can be removed by adding a term proportiona
the square of the gap equation:

V5V02~m22G!2/~32p2a0!, ~7!

whereG is the expression on the right-hand side of Eq.~6!.
The additional term gives no contribution to those therm
dynamic functions that are determined by the value ofV and
its first derivatives at the variational point. The remaini
divergences can be absorbed into a renormalized coup
constant ā(m) defined by a0m22e5ā(12ā/2e)21. Ex-
panding in powers ofm/T, the resulting thermodynamic po
tential V is

V/Fideal51115@3m̂4/ā2m̂214m̂313~L1g!m̂41•••#,
~8!

wherem̂5m/(2pT). The coupling constantā runs with the
beta functionb(ā)5ā2, whose first coefficient is too sma
by a factor of 3 compared to that of the true coupling co
stant. Thusā can be identified with the true coupling con
stanta only at a single scalem0. If one expresses the the
modynamic potential in terms of the true coupling const
a defined by Eq.~3!, the ultraviolet divergences cannot b
eliminated. The closest one can come to defining a fin
thermodynamic potential is to truncate Eq.~8! after the term
of orderm3:

V/Fideal51115@3m̂4/a2m̂214m̂3#. ~9!

The truncation eliminates the ultraviolet divergences, wh
are of orderg4. In Eq. ~8!, those divergences are hidden
the coupling constantā that runs with the wrong beta func
tion. The gap equation obtained by varying Eq.~9! with re-
spect tom with a fixed is

m̂25aS 1

6
2m̂D . ~10!

Solving this quadratic equation and substituting the solut
into Eq. ~9!, the free energy is

F/Fideal5125a/4@116a16a224~213a!Aa/61a2/4#,
~11!
1-2
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wherea5a(m). When expanded in powers ofg, this agrees
with the weak-coupling expansion~4! through orderg3. It
depends on the renormalization scalem through the depen
dence ofa(m) on m. However, it is much less sensitive t
variations inm than the truncated weak-coupling expansio
The reason is that the truncated weak-coupling expan
grows like a power ofa in the strong-coupling limit, while
the expression~11! approaches the limiting value31

36 .
We now proceed to consider the three-loopF-derivable

approximation. The interaction term in Eq.~1! is

F@P#5
1

8
g0

2m24eItad
2 2

1

48
g0

4m26eIball , ~12!

Itad5X Q

1

Q21P~Q!
,

Iball5X Q1Q2Q3)i 51

4
1

Qi
21P~Qi !

,

whereQ452(Q11Q21Q3) in the definition of the basket
ball sum-integral. The variational equation obtained by va
ing with respect toP(P) is

P~P!5
1

2
g0

2m22eItad2
1

6
g0

4m24eIsun~P!, ~13!

Isun~P!5X Q1Q2)i 51

3
1

Qi
21P~Qi !

,

where Q352(P1Q11Q2) in the definition of the sunse
sum-integral. The variational equation~13! is a nontrivial
integral equation forP(P) whose solution is complicated b
the presence of severe ultraviolet divergences in the s
integrals.

Our strategy is to introduce a variational mass param
m that is of ordergT in the weak-coupling limit and calcu
late the sum-integrals as double expansions ing and m/T.
The variational equation~13! is then solved forP(P) as a
function of P andm. Inserting the solution into Eqs.~1! and
~12! and expanding in powers ofg andm/T, the thermody-
namic potentialV reduces to an algebraic function ofm. The
final step is to minimizeV with respect to the variationa
parameterm.

There is some freedom in the choice of the mass par
eterm. We definem implicitly by the equation

m25
1

2
g0

2m22eItad2
1

6
g0

4m24eIsun~0,p!up5 im . ~14!

The solution to this gap equation form can be interpreted a
the screening mass. This choice is motivated by the fact
the screening mass is a physical quantity, so it should
ultraviolet finite up to perturbative truncation errors. The
are two important momentum scales: thehard scale 2pT and
the soft scale m. The hard region for the momentumP
5(2pnT,p) includesnÞ0 for all p and alson50 with p of
orderT. The soft region isn50 andp of orderm. We will
04170
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solve the variational equation in the two momentum regio
separately. We expandP(P) in powers ofg0 andm/T. For
hard momentumP, the expansion has the form

P~P!5m21g0
4m24e@P4,0~P!1P4,1~P!1•••#

1g0
8m28e@P8,22~P!1•••#1•••, ~15!

wherePn,k(P) is of orderT2(m/T)k whenP is of orderT.
For soft momentumP5(0,p), the functions(p) in the self-
energyP(0,p)5m21s(p) has the form

s~p!5g0
4m24e@s4,22~p!1s4,0~p!1•••#

1g0
8m28e@s8,24~p!1•••#1•••, ~16!

wheresn,k(p) is of orderm2(m/T)k whenp is of orderm.
We insert the expansions~15! and ~16! into the variational
equation~13! and expand in powers ofg0

4 andm/T. Match-
ing the coefficients at each order ing0

4 and m/T, we find a
recursive structure in which the functionsPn,k(P) and
sn,k(p) are either completely determined or expressed
terms of lower order functions. For example, the solutions
the first few self-energy functions at hard momentumP are

P4,0~P!52
1

6X Q1Q2

1

Q1
2Q2

2Q3
21

1

6
T2I sun~ im!, ~17!

P4,1~P!52
1

2
TI1X QS 1

Q2~P1Q!2 2
1

~Q2!2D ,

~18!

whereQ352(P1Q11Q2). The solutions to the first few
self-energy functions at soft momentum (0,p) are

s4,22~p!52
1

6
T2@ I sun~p!2I sun~ im!#, ~19!

s4,0~p!5
1

6
~p21m2!X QR

Q22~4/d!q2

~Q2!3R2~Q1R!2
.

The sunset integral appearing in Eqs.~17! and ~19! is

I sun~p!5E
q1q2

)
i 51

3
1

qi
21m2 ,

whereq352(p1q11q2), while the integralI 1 in Eq. ~18!
is

I 15E
p

1

p21m2 .

Having solved the gap equation, we can reduce the b
thermodynamic potentialV0 to a function of the single
variational parameterm by inserting the expansions~15! and
~16! into Eqs.~1! and ~12! and expanding in powers ofa0
andm/T. The functionV0 contains ultraviolet divergences i
the form of poles ine. Some of them are eliminated whe
V0 is evaluated at the solution of the gap equation. We
1-3



e

g
in

ub

f

y

o

-
p
a

tio
a

rmi-

xi-
sive
ee
of

f
ns

n-
-
al-
e
-

tly

ve
le

ys-

ared

n-
,

a

a-
nd
i-
t
lve

e
At

ec-
bles
c

is
the
sion

s
tial

onal
sed

RAPID COMMUNICATIONS

ERIC BRAATEN AND EMMANUEL PETITGIRARD PHYSICAL REVIEW D65 041701~R!
cancel them through 5th order ing andm/T by adding a term
proportional to (m22G)2, whereG is the expression on th
right side of the gap equation~14!:

V5V02F 1

a0
1

L22e

e G~m22G!2

32p2 . ~20!

We have introduced an arbitrary momentum scaleL in order
that all terms have the correct dimension 422e wheneÞ0.
Other ultraviolet divergences inV0 can be removed by usin
Eq. ~3! to renormalize the coupling constant. The remain
ultraviolet divergences are 6th and higher order ing and
m/T. The most severe divergences at 6th order are do
poles ine proportional toam4, a2m2, anda3. These diver-
gences are unavoidable consequences of the truncation o
loop expansion. If we used the 4-loopF-derivable approxi-
mation, the truncation error would be reduced to orderg8.
Expanding Eq.~20! in powers ofg andm/T and then trun-
cating after terms of 5th order, we obtain a finite thermod
namic potential:

1

15
~V/Fideal21!53m̂4/a

1@2m̂214m̂313~3L22l 1g!m̂4#

1a@2~ l 22 logm̂22.757642!m̂2

212~ l 1g!m̂3#1a2F2
1

6
~ l 24 logm̂

29.873296!12~ l 22 log 21g!m̂G ,
~21!

where a5a(m), m̂5m/(2pT), L5 log(m/4pT), and l
5 log(L/4pT).

The gap equation obtained by varying the finite therm
dynamic potential~21! with respect tom2 with m and L
fixed is

m̂25aF1

6
2m̂2~3L22l 1g!m̂2G

1a2F2
1

3
~ l 22 logm̂23.75764!13~ l 1g!m̂G

1a3F2
1

18
2

1

6
~ l 22 log 21g!m̂G Y m̂2. ~22!

If we solve this gap equation iteratively in powers ofg and
insert the solution into Eq.~21!, we recover the weak
coupling expansion~4! for the free energy. Solving the ga
equation numerically, we find a solution only below a critic
value of g that depends onm and L. For m5l52pT, the
critical value isg52.61. For larger values ofg, the thermo-
dynamic potential~21! has a run-away minimum atm50. A
similar behavior was observed in screened perturba
theory at 3 loops@16#. When the screening mass is used
04170
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the mass parameter, the solution to the gap equation te
nates at nearly the same critical value ofg.

By truncating the thermodynamic potential~21! and the
gap equation~22! after terms ofnth order in g and m/T,
wheren52,3,4,5, we obtain a series of successive appro
mations to the free energy. The stability of these succes
approximations is exhibited in Fig. 1, which shows the fr
energy divided by that of the ideal gas as a function
g(2pT) for m5L52pT. For theg4 andg5 truncations, the
solutions to the gap equation terminate at critical values og.
In contrast to the weak-coupling expansion, the predictio
of the truncatedF-derivable approximation seem to be co
verging for values ofg below these critical values. The trun
catedF-derivable approximations depend on the renorm
ization scalem and also forn54,5 on the momentum scal
L introduced in Eq.~20!. However the changes in the pre
dictions from varying the arbitrary scales is significan
smaller than in the weak-coupling expansion.

An important application of our method would be to sol
theF-derivable approximation for QCD. One should be ab
to reduce the 2-loop and 3-loopF-derivable approximations
to single-parameter variational problems by expanding s
tematically in powers ofg2 andm/T, wherem is some ap-
propriate electric screening mass of ordergT. The Debye
screening mass might not be an appropriate choice form,
because the perturbative Debye screening mass is infr
divergent at next-to-leading order ing @17#. The solution to
the 2-loop F-derivable approximation should give an e
tropy consistent with the ‘‘HTL approximation’’ of Blaizot
Iancu and Rebhan@12#, which has an error of orderg3. Their
‘‘NLO HTL approximation,’’ which has an error ofg4, re-
duces essentially to thead hoc substitution g2→g2/(1
1g/p) in their ‘‘HTL approximation. In their ‘‘NLA HTL
approximation,’’ their mass parameter is the solution to
simple polynomial gap equation analogous to Eq.~10!. Our
approach would give an entropy with error of orderg4 that is
part of a systematically improvable sequence of approxim
tions. It would also allow the calculation of the pressure a
other thermodynamic variables for which the ultraviolet d
vergences of the 2-loopF-derivable approximation canno
be avoided. A serious obstacle for using our method to so
the 3-loopF-derivable approximation for QCD would b
evaluating the resulting sum-integrals and integrals.
4-loops, our strategy for reducing theF-derivable approxi-
mation to a single-parameter variational problem would n
essarily break down, because the thermodynamic varia
become sensitive to the scaleg2T associated with magneti
screening. Another complication of theF-derivable approxi-
mation for QCD is that the thermodynamic potential
gauge-dependent, simply because it is a functional of
gluon propagator, which is gauge-dependent. The expan
of the thermodynamic potential in powers ofg2 andm/T is
therefore likely to depend on a gauge parameterj. At the
variational minimum, the dependence onj must of course
cancel up to the order ing set by the truncation error. Thi
complication of a gauge-dependent thermodynamic poten
could perhaps be avoided by using a more general variati
approach in which the thermodynamic potential is expres
1-4
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as a functional of exact vertices as well as exact propaga
@18#.

We have solved the 3-loopF-derivable approximation for
the thermodynamics of thef4 field theory by reducing it to a
problem with a single variational parameterm. We con-
structed a finite thermodynamic potential by adding a te
proportional to the square of the gap equation and trunca
after terms of 5th order ing andm/T. This thermodynamic
potential has a minimum as a function ofm only for g below
some critical value. Below this critical value ofg, the suc-
cessive approximations obtained by truncating the thermo
namic potential at ordersn52,3,4,5 give predictions for the
pressure that are stable with respect to both the orde
truncation and variations inm andL. The resulting predic-
tions for the pressure are numerically close to those
s.

04170
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screened perturbation theory@16#. The advantage of the
F-derivable approximation is that it is an infinite-parame
variational approximation. Our solution to theF-derivable
approximation can in principle be extended to higher ord
in the loop expansion. The primary obstacle to extendin
to 4-loop order would be evaluating the same sum-integ
that would be required to extend the weak-coupling exp
sion to orderg6. Thus our approach provides a systema
cally improvable approximation to the thermodynamic fun
tions that seems to have very good convergence propert
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