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We solve the 3-loopb-derivable approximation to the thermodynamics of the massghédield theory by
reducing it to a 1-parameter variational problem. The thermodynamic potential is expanded in pogeérs of
andm/T, whereg is the coupling constanim is a variational mass parameter, ahé the temperature. There
are ultraviolet divergences beginning at 6th ordeg ithat cannot be removed by renormalization. However a
finite thermodynamic potential obtained by truncating after terms of 5th ordgraimd m/T defines a stable
approximation to the thermodynamic functions.
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The thermodynamic functions for massless relativisticwhere the interaction functiond}[ I1] can be expressed as a
field theories at high temperatufe can be calculated as sum of 2-particle-irreducible diagrams. It is constructed so
weak-coupling expansions in the coupling consgnthey that the solution to the variational equatiéfl,/sI1=0 is
have been calculated explicitly through ordg? for the  the exact self-energy, and the value(d§ at the variational
masslessp” field theory[1,2], for QED[3,4], and for QCD  point is the exact free energy. The subscript{dfn empha-
[5,6]. Unless the coupling constant is tiny, the weak-couplingsizes that this bare thermodynamic potential contains ultra-
expansions are poorly convergent and sensitive to the renoviolet divergences. We can obtain a systematically improv-
malization scale. This makes the weak-coupling expansioable variational approximation by truncatidg at nth order
essentially useless as a quantitative tool: it seems to be relin the loop expansion, where=2,3, ... . Werefer to such
able only when the coupling constant is so small that thean approximation as the-loop ®-derivable approximation
corrections to ideal gas behavior are negligibly small. TheThe two-loop ®-derivable approximation for the massless
physical origin of the instability seems to be effects associ* field theory, which can be solved exacfly1,12, illus-
ated with screening and quasiparticles. trates the basic ideas of tide-derivable approximation. The

A possible solution to this instability problem is to reor- 2-loop ®-derivable approximation for QCD has recently
ganize the weak-coupling expansion within a variationalbeen used as the basis for quasiparticle models of the ther-
framework. A variational approximation can be defined by amodynamics of the quark-gluon plasn{d2,13. Since
thermodynamic potentiall that depends on a set of varia- ®-derivable approximations guarantee consistency with con-
tional parametersn;. The free energy and other thermody- servation laws, they may be particularly useful for nonequi-
namic functions are given by the values(fand its deriva-  librium problems[14].
tives at the variational point whep£)/dm;= 0. A variational It is easier to formulate th&-derivable approximation
approximation is systematically improvable if there is a sethan to solve it. If the self-enerdgyl is independent oP as in
quence of successive approximationgtahat reproduce the the 2-loop®-derivable approximation for the massleg$
weak-coupling expansions of the thermodynamic functiondield theory[11,12), the problem reduces to a 1-parameter
to successively higher orders @n An example of a system- variational problem that can be solved exactiIlfdepends
atically improvable variational approximation &creened onP, the variational equation is a nontrivial integral equation
perturbation theorywhich involves a single variational mass that is difficult to solve. The main problem is that the ther-
parametef7]. modynamic potential has severe ultraviolet divergences that

A variational approach can be useful only if the correctvanish at the variational point only @ is calculated to all
physics can be captured by appropriate choices of the variarders. They do not vanish away from the variational point,
tional parameters. Information about screening and quasipaand they do not vanish at the variational point if the loop
ticles is contained within the exact propagator of the fieldexpansion ford is truncated.
theory. The possibility that these effects are responsible for In this Rapid Communication, we solve the 3-loop
the instability of the weak-coupling expansion suggests theb-derivable approximation for a massless scalar field theory
use of the propagator as a variational function. Such a variawith a ¢* interaction by reducing it to a 1-parameter varia-
tional formulation was constructed for nonrelativistic fermi- tional problem involving a mass parametar The resulting
ons by Luttinger and War@l8] and by Baym[9] long ago, thermodynamic functions have ultraviolet divergences begin-
and has been generalized to relativistic theofed. In the  ning at 6th order in the coupling constantHowever a finite
case of a relativistic scalar field theory, the propagator haghermodynamic potential obtained by truncating after terms
the form [P?+1I(P)]~%, where I1(P) is the self-energy of 5th order ing andm/T defines a stable approximation to
which depends on the momentul The thermodynamic the thermodynamic functions. In this paper we describe the
potential has the form solution as concisely as possible. The technical details are

. presented in Ref.15].
Qo[ I1]= Ei P

log(P2+1T)— The Lagrangian for the massless scalar field theory with a
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P2+11 ¢* interaction with bare coupling constadilt)=g§/(4a-r)2 is
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1.00

1
Ztad=$Qm-

The measure for the dimensionally regularized sum-integrals
in Egs.(1) and(5) includes a factor ofd”u?/4)€, wherey
is Euler’s constant. We insert a factor pf ¢ into the sum-

3
§ integral in Eq.(1), so() is independent of the renormaliza-
tion scale. The variational equationl,/dm=0 reduces to
the simple gap equation
0.95 | 1
| | | m? =2 gou > Teag. 6)
0.0 1.0 20 3.0 4.0
g(2nT) The sum integrals in Eq$l) and (5) contain ultraviolet di-

vergences. Some of the divergences vanish at the variational
point. They can be removed by adding a term proportional to
the square of the gap equation:

FIG. 1. Free energy divided by that of the ideal gas for the
weak-coupling expansion(dashed lings and the truncated
®-derivable approximatiofsolid lines.

Q=00— (M?>—G)?/(327%ay), (7)

1 1
L=50,4d" P ﬂggdfl- (2)  whereG is the expression on the right-hand side of ).
The additional term gives no contribution to those thermo-
We define the renormalized coupling constant g?/(4)2  dynamic functions that are determined by the valu€.adnd
using dimensional regularization in—2e¢ dimensions and its first derivatives at the variational point. The remaining
the modified minimal subtractionM_S) prescription with divergences can be absorbed into a renormalized coupling

renormalization scalg.: constanta(u) defined by aou™ 2= a(1— al2€) . Ex-
panding in powers of/T, the resulting thermodynamic po-
Sre_ 4 3 2, 9 B 17 3y 3 tential () is
V= T L

O Figea= 1+ 19 3m* 7 a— m?+4m3+3(L+ y)m*+ - - -],
The two-loop beta function for the running coupling constant (8
a(w) is B(a)=3a’—Y a®. The thermodynamic functions ) _

for this theory are known to ordeg® [1,2]. The weak- Wherem=m/(27T). The coupling constant runs with the

coupling expansion for the free energy density is beta functionB(«) = o, whose first coefficient is too small
2o 5 by a factor of 3 compared to that of the true coupling con-

1+ 15[_ R +9(L+1.097)(E> stant. Thusa can be identified with the true coupling con-

Fideal 12 16 6 stante only at a single scalg. If one expresses the ther-

5/2 modynamic potential in terms of the true coupling constant
+362 Iog(a/6)—3L+3.665|(z) } (4) a.dt_afined by Eq(3), the ultraviolet divergenceg cannot 'b(_a
6 eliminated. The closest one can come to defining a finite

. thermodynamic potential is to truncate E§) after the term
wherea=a(u), L=log(u/4nT), and Fyey is the pressure ¢ orqerm?3:

of the ideal gas of a free massless bosafie,

= —(7*190)T*. _ o Qf Figea= 1+ 15 3M* a— m2+ 4m?]. 9)
The instability of the weak-coupling expansion is illus-

trated in Fig. 1, which shows the free energy divided by thatThe truncation eliminates the ultraviolet divergences, which

of the ideal gas as a function g{2#T). The dashed lines are of orderg®. In Eq. (8), those divergences are hidden in

are the predictions of the weak coupling expansiénwith  the coupling constant that runs with the wrong beta func-

n=2mT truncated after orderg” for n=234,5. The oy The gap equation obtained by varying E@). with re-
dashed line fon=2 is hidden under the solid line labeled spect tom with « fixed is

g°. The successive approximations show no sign of converg-
ing. N

To illustrate our method in the simplest possible context, m’=a
we first consider the 2-loof-derivable approximation. The

self-energy is independent & so we denote it byI=m?.  Solving this quadratic equation and substituting the solution

=

The interaction functional in Eq1) is into Eq. (9), the free energy is
1 _ Fl Figea=1—5al4[1+6a+6a’—4(2+3a)\alb+ a?l4],
D(m) =5 03 T g e [ (Zrsapalorail,
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wherea= a(u). When expanded in powers gf this agrees  solve the variational equation in the two momentum regions
with the weak-coupling expansio@) through orderg®. It  separately. We expand (P) in powers ofg, andm/T. For
depends on the renormalization scalehrough the depen- hard momentun®, the expansion has the form

dence ofa(u) on . However, it is much less sensitive to o 4 e

variations inu than the truncated weak-coupling expansion. H(P)=m+gou "I o(P)+1144(P)+---]

The reason is that the truncated weak-coupling expansion 8 _8e

grows like a power ofx in the strong-coupling limit, while TOop “IMe2(P)+--- ], (15)
the expressiorill) approaches the limiting valug . wherell,, (P) is of orderT2(m/T)¥ whenP is of orderT.

We now proceed to consider the three-lobpderivable  £q soft momentunP = (0,p), the functiono(p) in the self-
approximation. The interaction term in E@) is energyll(0,p) = m?+ o(p) has the form

1 1 _ 4 —A4e
@[H]=§géu‘453tzad— 4_893M_6€jballv (12) o(pP)=gos “Toa-2(p)+osdp)+---]
+gou *log a(p)+---1+-- (16
1
7tad=$qm, where o, \(p) is of orderm?(m/T)* whenp is of orderm.

We insert the expansiond5) and (16) into the variational
equation(13) and expand in powers ayg andm/T. Match-
ing the coefficients at each order g} andm/T, we find a
recursive structure in which the functiond,  (P) and

_ . _ onk(p) are either completely determined or expressed in
whereQ4_— (Q1+Q2+Q.3) In the defln_mon of t_he basket- torms of lower order functions. For example, the solutions to
ball sum-integral. The variational equation obtained by vVaryine first few self-energy functions at hard momentBrare

ing with respect tdI(P) is

4 1

Jpai= i QleQsiﬂl Q?+11(Q)’

1 1 1
1 1 =—_ T2 i
(P)=5Gon *Tag~ gUon “TsulP) (13 Had®) 6$Q1Q2Q§Q§Q§+6T ol (40
1 1 1
Sl P =3 Mt H“(P):_ETIlj:Q(QZ(F“rQ)Z_(Q2)2 ’
- N QFHTI(Q)) (19)

whereQz;=—(P+Q;+Q,) in the definition of the sunset whereQ;=—(P+Q;+Q,). The solutions to the first few
sum-integral. The variational equatidfi3) is a nontrivial  self-energy functions at soft momentumgpare

integral equation fofI(P) whose solution is complicated by

the presence of severe ultraviolet divergences in the sum- 1 .

integrals. O4-2(p)=— ETZ[Isun( P) —lsudim)], (19

Our strategy is to introduce a variational mass parameter

m that is of ordergT in the weak-coupling limit and calcu- 1 Q2 (4/d)q?
late the sum-integrals as double expansiong iand m/T. 0'4'0(p)=€(p2+ m2)$QRﬁ_
The variational equatiofil3) is then solved fodl(P) as a (Q9)°R(Q+R)

function of P andm. Inserting the solution into Eq¢l) and
(12) and expanding in powers @f andm/T, the thermody-
namic potential) reduces to an algebraic functionmof The

The sunset integral appearing in E¢E7) and (19) is

3
final step is to minimize&) with respect to the variational | — H 1
sul P) _ 7, 20
parametem. qai=1 gy +m
There is some freedom in the choice of the mass param- . . _
eterm. We definem implicitly by the equation wheregs=—(p+d;+0y), while the integrall; in Eq. (18)
is
2 1 2 —2e~ 1 4 —de~
m :Egoﬂ Jtad_ggoﬂ“ Jsur(oap)|p:im- (14 | _j 1
1= | pPrme

The solution to this gap equation forcan be interpreted as

the screening mass. This choice is motivated by the fact that Having solved the gap equation, we can reduce the bare
the screening mass is a physical quantity, so it should bthermodynamic potential), to a function of the single
ultraviolet finite up to perturbative truncation errors. Therevariational parametemn by inserting the expansior{45) and

are two important momentum scales: tr@d scale 27T and  (16) into Egs.(1) and (12) and expanding in powers af,

the soft scalem. The hard region for the momenturd andm/T. The function(), contains ultraviolet divergences in
=(27nT,p) includesn+0 for all p and alson=0 withp of  the form of poles ine. Some of them are eliminated when
orderT. The soft region i;m=0 andp of orderm. We will Qg is evaluated at the solution of the gap equation. We can

041701-3



RAPID COMMUNICATIONS

ERIC BRAATEN AND EMMANUEL PETITGIRARD PHYSICAL REVIEW D65 041701R)

cancel them through 5th ordergrandm/T by adding aterm the mass parameter, the solution to the gap equation termi-

proportional to (M?>— G)?, whereG is the expression on the nates at nearly the same critical valuegof

right side of the gap equatiaii4): By truncating the thermodynamic potenti@l) and the

) ) gap equation22) after terms ofnth order ing and m/T,

(m"°-G) (20) wheren=2,3,4,5, we obtain a series of successive approxi-
32m* mations to the free energy. The stability of these successive

] ] . approximations is exhibited in Fig. 1, which shows the free
We have introduced an arbitrary momentum scil@ order  energy divided by that of the ideal gas as a function of
that all terms have the correct dimensior Z2e whene+0. g(27T) for u=A =2=T. For theg andg® truncations, the

Other ultraviolet divergences 1, can be removed by using  gqtions to the gap equation terminate at critical valueg of

Eq. (3) to renormalize the coupling constant. The remaining;, ¢qntrast to the weak-coupling expansion, the predictions

uliraviolet divergences are 6th and higher ordergirand of the truncatedb-derivable approximation seem to be con-
mT. 'I_'he most severe d"’irge';‘ce;s at 6”; order are doubl\(/eerging for values ofy below these critical values. The trun-
poles ine proportional toam®, a“m*, anda”. These diver-

gences are unavoidable consequences of the truncation of tﬁgttgd(I)-delnvabledaplpro])((lma_nans de{:)hend on th? renornlwal-
loop expansion. If we used the 4-lodp-derivable approxi- 1zalion scaleu and aiso fom=4,5 on the momentum scale

mation, the truncation error would be reduced to orger 4 introduced in Eq(20). However the changes in the pre-
Expanding Eq(20) in powers ofg and m/T and then trun- dictions from varying the arbitrary scales is significantly

cating after terms of 5th order, we obtain a finite thermody-Smaller than in the weak-coupling expansion.
namic potential: An important application of our method would be to solve

the ®-derivable approximation for QCD. One should be able
to reduce the 2-loop and 3-losp-derivable approximations

1 A—Zs

[27)) €

Q:QO_

E(Qlfideal_ 1)=3m"/a to single-parameter variational problems by expanding sys-
tematically in powers o§? andm/T, wherem is some ap-
+[—rAnz+4r:nS+ 3(3L—2I+y)ﬁ14] propriate electric screening mass of ordgf. The Debye
. . screening mass might not be an appropriate choicerfor
+a[2(1-2 logm—2.757642m? because the perturbative Debye screening mass is infrared
divergent at next-to-leading order @[17]. The solution to
. 1 . . S .
—12(1+ y)m3]+ a4 — = (1—4 logm the 2-loop ®-derivable approximation should give an en-
6 tropy consistent with the “HTL approximation” of Blaizot,

lancu and Rebhali2], which has an error of ordey®. Their
—9.873296+2(1 — 2 log 2+ y)rAn}, “NLO HTL approximation,” which has an error of*, re-
duces essentially to thed hoc substitution g>—g?/(1
(22) +g/) in their “HTL approximation. In their “NLA HTL
approximation,” their mass parameter is the solution to a
where a=a(un), m=m/(27T), L=log(w/4=T), and | simple polynomial gap equation analogous to Ed). Our
=log(A/4=T). approach would give an entropy with error of orgérthat is
The gap equation obtained by varying the finite thermo-part of a systematically improvable sequence of approxima-

dynamic potential(21) with respect tom? with x and A tions. It would also allow the calculation of the pressure and
fixed is other thermodynamic variables for which the ultraviolet di-

vergences of the 2-loo@-derivable approximation cannot
1 . ~y be avoided. A serious obstacle for using our method to solve
g mM-@BL-2l+y)m the 3-loop ®-derivable approximation for QCD would be
evaluating the resulting sum-integrals and integrals. At

m2=a

, 1 . - 4-loops, our strategy for reducing tlle-derivable approxi-
+a” — 3(I1-2logm—3.75764+3(l+ y)m mation to a single-parameter variational problem would nec-
essarily break down, because the thermodynamic variables
O E(I 21002+ )rAn} / 2 22) become sensitive to the scaléT associated with magnetic
18 6 gery : screening. Another complication of tlde-derivable approxi-

mation for QCD is that the thermodynamic potential is
If we solve this gap equation iteratively in powersgnd  gauge-dependent, simply because it is a functional of the
insert the solution into Eq(21), we recover the weak- gluon propagator, which is gauge-dependent. The expansion
coupling expansiort4) for the free energy. Solving the gap of the thermodynamic potential in powers @t andm/T is
equation numerically, we find a solution only below a critical therefore likely to depend on a gauge parameéteAt the
value ofg that depends om and A. For u=X=2=T, the  variational minimum, the dependence émimust of course
critical value isg=2.61. For larger values df, the thermo- cancel up to the order ig set by the truncation error. This
dynamic potentia(21) has a run-away minimum at=0. A  complication of a gauge-dependent thermodynamic potential
similar behavior was observed in screened perturbatiolould perhaps be avoided by using a more general variational
theory at 3 loopg16]. When the screening mass is used asapproach in which the thermodynamic potential is expressed
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as a functional of exact vertices as well as exact propagatoicreened perturbation theofyl6]. The advantage of the
[18]. d-derivable approximation is that it is an infinite-parameter
We have solved the 3-loop-derivable approximation for variational approximation. Our solution to thk-derivable
the thermodynamics of thé* field theory by reducing itto a approximation can in principle be extended to higher orders
problem with a single variational parameter We con- in the loop expansion. The primary obstacle to extending it
structed a finite thermodynamic potential by adding a ternto 4-loop order would be evaluating the same sum-integrals
proportional to the square of the gap equation and truncatinthat would be required to extend the weak-coupling expan-
after terms of 5th order iy andm/T. This thermodynamic sion to orderg®. Thus our approach provides a systemati-
potential has a minimum as a functionmafonly for g below  cally improvable approximation to the thermodynamic func-
some critical value. Below this critical value g¢f the suc- tions that seems to have very good convergence properties.
cessive approximations obtained by truncating the thermody-
namic potential at ordens=2,3,4,5 give predictions for the This work was supported in part by the U.S. Department
pressure that are stable with respect to both the order aff Energy Division of High Energy Physics Grant No. DE-
truncation and variations i and A. The resulting predic- FG02-91-ER40690. We thank J.O. Andersen and M. Strick-
tions for the pressure are numerically close to those ofand for valuable discussions.
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