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Numerical portrait of a relativistic thin film BCS superfluid
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We present results of numerical simulations of the-@@D Nambu—Jona-Lasinio model with a nonzero
baryon chemical potentigk, including the effects of a diquark source term. Diquark condensates, suscepti-
bilities and masses are measured as functions of source stijefidh results suggest that diquark condensa-
tion does not take place in the high density phaseu., but rather that the condensate scales nonanalytically
with j, implying a line of critical points and long range phase coherence. Analogies are drawn with the low
temperature phase of the 2BY model. The spectrum of the spérsector is also studied, yielding the
quasiparticle dispersion relation. There is no evidence for a nonzero gap; rather the results are characteristic of
a normal Fermi liquid with Fermi velocity less than that of light. We conjecture that the high density phase of
the model describes a relativistic gapless thin film BCS superfluid.
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[. INTRODUCTION of freedom are relativistic degenerate quarks forming a
Fermi sphere with Fermi momentuk~350-400 MeV.
Spontaneous symmetry breaking in particle physics wasuch conditions are conceivably found in the cores of neu-
predated by the Bardeen-Cooper-SchrieffBCS mecha- tron stars. However, since the force between quarks, due to,
nism for superconductivity in metals at low temperatllif  e.g. one-gluon exchange, is attractive, this simple picture is
which predicts a ground state in which a macroscopic fractinstable with respect to a BCS scenario in which condensa-
tion of the electrons in the vicinity of the Fermi surface re-tion of diquark pairsoccurs[4]. Since theqq wave function
side in spin-0 bound states known as Cooper pairs. In fielés gauge non-singlet, the resulting ground state renders some
theoretic term$2] the Cooper pairs form a condensate whichor all of the gluons massive, an effect known as “color su-
alters the symmetry of the ground state; in the case of supeperconductivity.” The resulting dynamically generated mass
conductivity U1) electromagnetic gauge invariance is spon-scale or “gap”A is predicted to beéD(100) MeV[5], and
taneously broken, leading to the Meissner effect, i.e., thdence is comparable with the constituent quark scale.
exclusion of a magnetic field from a superconducting sample Unfortunately, theoretical studies of color superconductiv-
due to surface screening currents. The ideas of BCS havgy are to date limited to perturbative and self-consistent
been incorporated into particle physics in two distinct direc-methodq4—6]; there is no systematic method of performing

tions. Firstly, particle—antiparticle pair condensatiopy) ~ hon-perturbative QCD calculations in the high density re-
#0 was suggested as a means of breaking the global chirflime because of the notorious “sign problem,” i.e. the mea-
symmetries responsible for keeping fermion masses smalgure of the Euclidean path integral becomes complex once
Goldstone’s theorem then predicts light weakly interactingthe baryon chemical potentiai# 0, making the importance
bosonic states which can be identified with pions, whoséampling techniques traditionally used in numerical simula-
masses are considerably less than the nucleon, the lightdi@ns of lattice gauge theory ineffective. There are, however,
strongly-interacting fermion. The resulting model provides astrongly-interacting model field theories where this difficulty
reasonable description of low-energy strong interaction phecan be circumvented. One is QCD with just two colors, in
nomend 3]. Secondly, condensation of an elementary Higgswhich qqg baryons andjg mesons fall into multiplets related
field has of course been invoked as a mechanism for eledsy enhanced global symmetries. Some of the multiplets con-
troweak gauge symmetry breaking, imbuing gauge bosontin Goldstone bosons, so that the methods of chiral pertur-
(as well as fermionic matter fieldsvith non-zero mass in bation theory can be applie/]. Baryonic matterng>0
precise analogy with the Meissner effect. forms for chemical potentigh=m_/2 [7—9]. The resulting

In recent years the BCS mechanism has returned to paground state is a superfluid of light but strongly bomgl
ticle physics in a new guise in the context of the fundamentastates which form a Bose-Einstein condensate. There is no
theory of the strong interaction, QCD, at high density. ForFermi surface in this regime, and the BCS description is
baryon charge densitieg;~O(1) fm™3, it is believed that inappropriate.
chiral symmetry is restored and nucleons dissociate into Another possibility, to be studied in the present paper, are
quarks. The resulting ground state is thought togoark  four Fermi models such as the Nambu—Jona-LasiNidlL)
matterin which to first approximation the dominant degreesmodel[3], in which it can be shown that the effects of adding
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“conjugate quarks”g® to make the path integral real and elementary quanta of an interacting field theory. Our results
positive have little impact on the physics: at low density lighthave not supported the expected scenario outlined above,
Goldstone states arising as a result of chiral symmetry breakaising the question of whether important physics is ne-
ing can only form in mesonigq channels, whereas baryonic 9dlected in the self-consistent approach. Although there is evi-
qq¢ bound states remain massive, i.e. at the constituent quafi€nce for enhanced diquark pairing in the scalar isosinglet
scale[10]. This means that unlike in physical three-color channelin[15], we have not succeeded in finding an unam-
QCD with conjugate quarks, it is possible for simulations of219uous signal for a condensdgq) # 0. Rather, in the high
four-Fermi models to maintain a separation of scales begensn_y phase the c_;ondensgte appears  to yamsh non-
tweenm_ and the criticalu. at which chiral symmetry is analytlcall_y_ asa func_tlon of dlqu_ark source st_rerygtlsug-
restored and baryonic matter induced into the ground sta estmg cr|t|ca_l liehaV|o[r16]. Studies of the e>I<C|tat|on shec
[11]. In this case the model does not reproduce any of th um in the spins sector reveal a sharp Fermi surface and no

Bvid f .
physics of confinement, but has a Fermi surfacenigr0. vidence for a ga #0 [16]. The purpose of the present

. . : ) paper is to present these results in greater depth, and to at-
Because theq interaction is attractive, diquark conden- tempt to interpret them.

sation is expected in the high density phase of each of the A simulation of a Euclidean field theory of fermions in
models d.escnbed apove. In both cases, however, the releva@t_,_ 1)D with ©#0 is an attempt to model a two-
(qq)#0 is gauge singlet, meaning that the ground state iglimensional physical system in the presence of a Fermi sur-
not superconducting, but rathsuperfluid In field theoretic  face. As we shall see, it may be possible to attribute the
terms, a superfluid forming by BCS condensation is characanconventional signals to the specifically two-dimensional
terized by a ground state which does not respect a globalature of the system, which thus bears much resemblance to
symmetry of the underlying action, in this case th€l)J superfluidity observed in thin helium filnjd9]. We will ar-
corresponding to a baryon number, which is thus no longer gue that neither long range ordégq)#0 nor a gapA+#0
good quantum number. Fermionic excitations above the&re necessary attributes of a superfluid. Instead, the critical
Fermi surface are a superposition of particle and hole statebehavior observed ifiL6] results from long rangeoherence
and require energg A to excite. Finally, because a continu- in the phase of the diquark wave function—the associated
ous global symmetry is spontaneously broken, Goldstone’sassless excitations are the spin waves in tlig)-Malued
theorem applies and massless diquark states are expectedpinase field. In this case superfluidity is realized in the
the excitation spectrum. Physically these result both in @erezinskii-Kosterlitz-ThouleséBKT) mode[20,21—a to-
long-ranged interaction between the vortex excitations foungbological argument, reviewed below in Sec. IV, shows that
in a rotating superfluid, and in propagating waves of tem-ersistent flow in this case can only be disrupted by the cre-
perature variation known asecond sounf12,13. ation of vortex anti-vortex pair excitations which are sup-
The two known superfluids are liquitHe at Kelvin and  pressed below a critical temperature, and is hence meta-
liquid 3He at milli-Kelvin temperatures*He is a boson and stable. The new feature of the NiLs(x) model, however,
is naturally treated using a complex scalar field theory, suin contrast to a recent study of planar superfluidity in the
perfluidity arising via a Bose-Einstein condensation. Noteattractive Hubbard moddR2], is that the critical indexs
however, that a fundamental description would tf#tde as a  inferred from our data lies outside the range predicted for the
tightly bound state of fermionic constituents, not too dissimi-BKT scenario[23], implying that the model falls in a new
lar in spirit to two-color QCD.3He by contrast is a fermion, and hitherto unobserved universality class. We attribute this
and superfluidity in this case is believed to arise via a BC310vel behavior to the presence of additional light excitations,
instability resulting in a condensation of weakly bound Coo-namely the spiny quasiparticles implied by the absence of a
per pairs. We might thus consider superfluidity in the NJLgap at the Fermi surface, which will be described in detail in
model as a relativistic generalization of this phenomenon. I6ec. V. These excitations have a Fermi velogy~O(1)
is important to note, though, that due to short distance repuland are hence relativistic, implying that in an effective de-
sion between helium atoms the BCS wave functiofilite is  scription of the critical behavior they are strongly coupled to
actually p wave, resulting in ground states described by athe spin-waves. We therefore conjecture that the NJ(u)
complicated order parameter and many interesting topologimodel describes a gapless relativisitic thin film superfluid.
cal excitationd 14]. In the NJL model studied here, the cor-  In Sec. Il we review the formulation and numerical simu-
respondingqq wave function is a scalas wave, and any lation of the lattice NJL model in (2 1) D with the non-zero
superfluid might be expected to behave more Itke. chemical potential, paying particular attention to the intro-
Superfluidity in a relativistic model similar to the NJL duction of diquark source ternjgq via the use of &or’kov
model has been studied using mean field techniquggliin ~ basis[2]. It is thus possible to define diquark observables
our previous work[15,16 we have attempted to identify which are measurable on a finite system; Sec. Il reviews
superfluidity in the (2-1)-dimensional[(2+1)D] NJL  numerical results for the diquark condensétm(j)), the
model using nonperturbative numerical lattice simulationsassociated susceptibilites, and diquark masses. Critical be-
Apart from the obvious computational gain, we chose thishavior in the high density phase;>0 is identified after
particular dimensionality because the model has a nontriviadxtrapolating results for the first two quantities to the zero-
continuum limit[17,18. Therefore, in contrast with effective temperature(i.e. L,—) limit, leading to consistent esti-
descriptions, such as the Landau-Ginzburg theory, the cormates for the critical exponent conventionally denow®@d
densed matter described in this approach is formed from thevhich vary with x. In Sec. IV this behavior is discussed in
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analogy with that of the B XY model, in which long range self-interact via a four-point contact term proportionabfo
order is washed out by spin wave excitations and which als@orresponding to the interaction of the NJL mof26].
displays critical behavior in a continuous parameter range. It In addition to the usual NJL interactions, EQ.1) con-

is argued that in such circumstances persistent flow, the deains diquark and anti-diquark terms proportional to source
fining property of a superfluid, can only be disrupted by ex-strengthg andy, respectively. These have been introduced to
citations costing infinite energy in the thermodynamic limit. enaple the measurement of the diquark conder{sgte,y)
Section V presents the results of a study of the dispersiogn a finite system, in precise analogy with the role of the
relationE(k) of spin quasiparticleexcitations in the dense hare massm in the measurement of the chiral condensate
phase, revealing a sharp Fermi surface for the first time usmg;)o To proceed, we define the bispinwrtr:(;[r x), and
!attlce methods. Th(_are is no evidence for partl_cle—hole MiX-awrite the fermion action as a quadratic for,

Ing ora non-vanls_hlng_gap as the source strer]lgﬁo. In- =W AV, where in this Gor’kov basis the antisymmetric
stead, the results in this sector are consistent with a norm%atrixfl fs

Fermi liquid of the type first discussed by Land@4,25; in

particular it is possible to estimate both Fermi momenkgm

and velocity B¢ as functions ofu and to show that these — 1

depart from their free-field values, yielding information on J72 EM

quasiparticle interactions. Conclusions and suggestions for A= 1 . (2.3
further work are outlined in Sec. VI. _ thr i

Il. THE LATTICE MODEL o _ .
The fermion fields may then be integrated out to yield the

A. Formulation and symmetries following Euclidean path integral:
The model studied in this paper is a lattice transcription of

the NJL model in (2-1) dimensions, identical to that stud- . _
ied in[15,16. It is defined by the Euclidean action Z=f DoDaPf(2A[D,],J])exp—Syod P], (2.9
S= Stert Spos: (2.1

where the pfaffian PQ)= ydetQ. Note that this expression
differs from the(incorrecj version given in16] by a physi-

Ster= 2 XM[PIx+jx" rox+Jx2x", cally irrelevant factor of two; for convenience we will stick
) with the current notation, but note that if the source is inter-
1 preted as a Majorana massthenj=\/2 [9].

sbosz_ZE trd TP, The model described by the actipigs.(2.1), (2.2)] has
97% an SU(2) ®SU(2)r®U(1)g global symmetry. Defining

- ) o )  projection operatorse,=3[1+¢(x)] onto even and odd
wherey, x are isospinor fermionic fields defined on the sitessyplattices, respectively, we have

x of a (2+1)D lattice, andb=o+i - 7 is a 2x 2 matrix of
bosonic auxiliary fields living on the dual sitgsThe kinetic . T + Ty

. . + +
operatorM has the standard form for staggered lattice fermi- X=(PU+PVIxs - x> x(PeVi+PoU )
ons interacting with scalar field48]:

d—VOUT [U,VeSUQ2); (2.5
1
MPI D)= = 6P (€8x 5—€ “yx_d : — — i
P17 5 07 (€ 0me Hopd) x—e%  x—xe ' [e"eU(Dg]. (2.6
+ L) (Bygs s — Syes) +2M8 The symmetry(2.5) is broken to a diagonal S@), of isos-
vzzl,z 70 Oy ye?) o pin with U=V in Eq. (2.5), either explicitly by a bare fer-
1 mion massm#0, or spontaneously by the generation of a
+ §5xy2 [o(X)8P9+ie(x)m(X)- 7P9]. chiral condensatéyx)+0 by the model's dynamics. Far
(x,x) =0 this occurs for a sufficiently strong coupli@2>g§
(2.2 =1.0a, wherea is the physical lattice spacind8]. In the

chirally broken phase the fermions have a dynamically gen-
The parameters are bare fermion magsbaryon chemical erated mass which, up to corrections@§1/N;), whereN;
potential «, and couplingg?®. The 7 are Pauli matrices nor- is the number of fermion flavors, coincides with the expec-
malized to tr(r 7j) = 24j; acting on isopin indicep,q=1,2.  tation value of the scalar field =(o)=(g%2){xx). Since
The symbolsz,(x) denote the phases—(1)" " "-1, 53,0 asg?—g?, a continuum limit may be taken at this
e(x) the phase € 1)*™1™*2 and(x,x) the set of 8 dual critical point. A remarkable feature of the §21)D NJL
sites neighboring. Integration over the auxiliargd fields  model is that the continuum theory so obtained remains in-
leads to an equivalent action in terms of fermions whichteracting, as signaled by the exact renormalizability of the
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Lo ' ' ' ' state is separated from excited states by an energyAgap
analogous to the constituent quark masi a chirally bro-
ken vacuum; mean-field calculations of a phenomenologi-

0.8 1 cally inspired (3+1)D NJL-type model predict that for
. - - == quark matterA is of the same order a% [5]. As well as
g being massive, the quasiparticle excitations above the ground
06 - hd state carry an indefinite baryon charge due to the Y(1)

breaking. Physically, this means that the quasiparticle is a
coherent superposition of particle and hole states. In Ref.

o - * [15] diquark time-slice correlator®(qq(0,0)qq(x,t)) in
woomX & various plausible condensation channels were studieg for
oo my o >u., and evidence for pairing was found in the form of a
o L i ’0 | plateau whose height did not decrease with Euclidean time
- separatiort for the scalar SU(2)® SU(2) singlet channel
¥ qqg=x",x. However, the naive interpretation of diquark
-y ; . _— condensation via the clustering hypothesis, namely that
0.0 0.2 0.4 0.6 0.8 1.0
H im (qq(0)qa()=|(qa)[? 29

I
FIG. 1. Chiral condensafg and baryon charge density as a o

function of u for a 16X 24 system withg?=2.0, m=0.01, j=0. . . .
Hnet # y wittg J was ruled out because the plateau height did not scale in the

expected way, i.e., extensively in the spatial voluhie To
clarify the situation, Ref[16] introduced diquark source
terms, as in Eq(2.1), making direct measurements @fq)
possible; we now review the “standard” signals which might
be expected if diquark condensation occurs.

Firstly we define diquark operatotg.. via

1/N; expansion17,18. As in our previous studiefgl5,16],
the simulations in this paper were performed with= 2.0
corresponding t&a=0.71, implying that we are rather far
from the continuum limit.

For u#0 the model is known to exhibit a strong first-
order transition to a chirally symmetric phak#7]; for our
realization this occurs at a critical,=>,=0.65, as shown in
Fig. 1[15]. Chiral symmetry restoration is accompanied at 1 — —
this point by the onset of a non-vanishing density of baryon q9=(x)= E[Xtr(x) ox(X) = x(X) X" (x)], (2.9
charge in the ground state, signaled by a condensate

with corresponding source strengths=| tI It is readily

1 dInZ checked thatjq.. are invariant under S@) ® SU(2)  rota-
Ne=5y e tions(2.5), but Fhey rotate into each other under U£12.6).
In terms of Dirac spinorsl, the operatorg2.9) may be

= %(?(X)G”X(X-f- 6)+;(X)e_'u)((x_©)>>0. written [15]

2.7) qQ-=—i[P(Cys® 7,0 7o) W £ W (Cys® 7,@ 75) W],

Existing numerical evidence suggests these awaiori dis- (2.10
tinct transitions are coincidef®8]. For u> u., =0, and '

: : 2
the density follows the approximate foma> u”, the behav-  hare the first matrix in the tensor product acts on spinor

ior expected for massless states populating a two dimenggices the second on a 2-component flavor structure which
sional Fermi sphere of radiis:= w, until it gets close 0 its  j5 jmpjicit in the staggered fermion approaf2d], and the
saturation value of one quark of each isospin per lattice sitgirq on the explicit isospin index introduced in E@.1).

For our realizationng=0.25 quarks of each isospin label per 1,o charge conjugation matri is defined byCy,C~ =
o

site atu=0.8, corresponding to a physical density of about_ _« The diquark condensate is now given b
80 fm 2, assuming a constituent quark massf 300 MeV:; Yu- q 9 y

by ©=0.9 this has risen tong=0.4, corresponding to
125 fm 2. ~14inz 1 .

The question which will occupy us in this paper is the {aa.)= Vo dj, _4V<tr72“4 ) 219
nature of the high density phase presentgor u., and in
particular whether the (1) symmetry(2.6) is spontane- and is calculable using standard lattice techniques, such as
ously broken by the generation of a diquark condensat¢he use of a stochastic estimator for the diagonal elements of
which we will generically denote byqqg)#0. In a BCS the inverse matrix. The non-vanishing of E@.11) in the
condensation, the participating diquark pairs come from thdimit j , —0 is a criterion for the spontaneous breakdown of
neighborhood of the Fermi surface. The resulting groundJ(1)g symmetry. Furthermore, if we define susceptibilities
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limit j—0. It can be shown that in the continuum limit the
X==2, (40:(0)qg. (X)), (2.12  model contains\;=4 species of 4-component Dirac fermi-
X ons[29]. The simulation is performed using a hybrid mo-
Jecular dynamics “R” algorithm[30], in which the square
root is taken by inserting a factor df in the force term
derived from a local action; note that we were able to debug
(q99.) and tune the code by also checking against an exact algo-
X-lj —0=— A (2.13  rithm for the caseN;=8. In all cases we used a molecular
- )+ dynamics time steph 7=0.04, and never saw any evidence
of departure from equipartition of energy. We performed
simulations on lattice sizes?X L,=16°, 162X 24, 24, 32,
and in one case 48with the couplingg? fixed to 2.0 as

then it is straightforward to derive a Ward identity analogou
to the axial Ward identity for the pion propagator:

On the assumption that the dominant contributionyto is
from a simple pole, theqq_ couples to a Goldstone mode

whose mas#/ _ vanishes in the zero source limit . If described above, and bare Dirac masdixed to 0.01 to

vae /s);m";?rg}\//igggk;ur:ea)l(lge:r?aztii\;rEgzr?;otg‘eé},;t?r?gutﬁirrétlp?os assist with the identification of chirally broken and restored
Ix- - i : ) )
sible symmetry-breaking scenarios in the lifuit—0: phases. A typical run is oved(400) hybrid molecular dy

namics(HMD) time units with a mean refreshment interval
) ] 1.0; data were taken every two units. The cost of the simu-
R= lim — X" — 1 ifU(1)g manifest, (2.14 lation rises considerably in the chirally restored phase where
X- |0 ifU(l)g broken. ' the diagonal elements d&fl, proportional to{c), are small,
particularly asj—0. The 48 point at x=0.8]=0.025 re-
In Sec. IIl we will present numerical results for these quan-quired approximately 40 Silicon Graphics Origin2000 pro-

tities and discuss to what extent the above consideration@essor days.

j+—0

help in describing the high density phase of thet(®D In Sec. Il A we review the behavior of the model as a
NJL model. function of «, and present results fégq) taken in the “par-
tially quenched” approximation in whiclh#0 only in the
B. The simulation measurement, and the simulation performed using an exact

i ) i . , algorithm withj =0. Our studies with full pfaffian dynamics,
Numerical simulation of the path integré2.4) requires  yresented in Secs. Il B—IIl D, focussed on two representa-

some discuss_i_on of how to Qeal with t_he pfaffian. First let usjye points in the chirally symmetric low density phase at
find the condition that det2 is real. Using the property of a ©=0.0,0.2, and on two values in the high density chirally

block square matrix symmetric phasg.=0.8,0.9. We used= ranging in value
Xy from 0.3 down to 0.025. In our studies of the quasiparticle
det( ):detx de(z—Wx~1y), (2.19 spectrum_discussed in Sec. V we performed runs ohas2
W Z four additional values of. € (0.8,0.9).

and the property,M 7,=M* which follows from Eq.(2.2), lll. NUMERICAL RESULTS FOR DIQUARK
we deduce OBSERVABLES

— ot A. Partially quenched results
det24=det(4jj+M™™M), 2.1 . . . . .
4 ) 218 In this section we discuss the direct numerical measure-

ment of diquark condensatégq), which the Gor’kov basis
i = i L ~discussed in the preceding section makes possible. To warm
tive. !r_l all our work we choosgez_J real which satisfies this up we consider the partially quenched approximation, in
condition. It follows that_ P_f(24) is real_._ln fact, one can go | hich the source strengihis set to zero in the updating of
further_and argue that it is also positive as follows. In thethe{(b} configuration, which thus proceeds via an exact hy-
limit j,j—0, Pf(2A4) reduces to dé&t, which can be proven prid Monte Carlo algorithm as ifl5], but is non-zero in the
both real and positive using an argument, identical to thafneasurement routine so thaiqg) can be measured via Eq.
used for SW2) lattice gauge theory with staggered quarks in(2.11). Since at a givep a single simulation serves for 4|
the fundamental representati¢8], showing that any com-  this approach is fairly cheap and hence good coverage of the
plex eigenvalue oM is accompanied in the spectrum by its ,, axis is practicable. Our results are shown in Fig. 2, where
conjugate, and any purely real eigenvalue is doubly degerppen symbols denote data taken in the low density ppase
erate. The relatiorﬁZ.l@, however, shows that dEIAZ can <MC’ and filled Symb0|s are from the dense phase. Eor
only increase and hence cannot change sign gneed; it  <u. {(qq.) varies approximately linearly with, implying
follows that Pf(24) can be consistently chosen real andthat a smooth extrapolation to the origin is possible, and
positive[9]. hence the condensate vanishes in jthe0 limit. A striking
Despite this reassuring property, in our simulation wejump occurs betweep =0.65 andu= 0.7, and for values of
chose to use d¥f(.A'A)=Pf(24) as the measure, corre- w in the dense phadgq(j)) is markedly more curved. This
sponding to two staggered lattice fermion species, for conbehavior cannot be taken as evidence of diquark condensa-
sistency with the model of15] which is recovered in the tion, however; one should expect discontinuities in all physi-

and is hence real and positivejij_is chosen real and posi-
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FIG. 2. Partially quenched results for the diquark condensate FIG. 4.
(x""m,x) as a function of source strengjtfior various values of;
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limit.

unless otherwise shown, data was taken on %<8} system.

sition.

a limited number of differenj, as described next.

In Fig. 3 we show(qq,) data taken from simulations
using the full pfaffian measur®.4) at two values ofu from
each phase on a 3mttice. The results resemble those of the

B. Diquark condensate

lines a smooth
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Extrapolation ofqqg. ) at x=0.9 to the thermodynamic

dense phase seems to become more pronounced with in-

cal observables on different sides of a first order phase tranc_reased,u, to the extent that by =0.2 the results aj

Despite the curvature of the
extrapolation to the origin consistent with unbroken baryon
number symmetry at high density is still plausible. Another
possibility, suggested by the=0.8 data from a 3Dlattice
shown in Fig. 2, is that the symmetry breaking is masked b
a finite-volume suppression @s-0. To explore the behavior
for w> u in more depth data from lattices with several dis-
tinct Lg andL, are needed. We chose to perform this using
“unitary” data generated using the correct meas(@) for

=0.9 actually undershoot those at=0.8. As remarked in
Sec. lll A, there are significant finite volume effects in this
phase. Figure 4 shows=0.9 data from simulations on 16
243, and 32 lattices. The equivalent data far=0.8, includ-
ing a single point from 43 is tabulated in Table | and plot-
Yed as Fig. 2 of 16]. Empirically, we find by comparing data
from 16°, 16°x 24, and 22 lattices that the dominant cor-
rection on a_§>< L, system appears due to finite¢, suggest-
ing a specifically thermal origin. This motivates an extrapo-
lation to the thermodynamic limit which is linear inLl/ at

smallerj, however, the data depart significantly from this

trend.

Assuming a 1/, scaling, we extrapolated the data from

4 and 32 lattices to estimatéqq. (j)) in the thermody-
namic limit. The results are shown on a log-log plot in Fig. 5
(a similar plot including unextrapolated data from the

partially quench(_ed _approach shown in Fig. 2_bot_h qua“ta'chirally broken phase at.=0.0,0.2 is presented ifiL6]).
tively and quantitatively. The curvature ¢§q.(j)) in the Remarkably, there is a reasonably wide interval
€[0.05,0.3 within which the plot is approximately linear,

08 ' : ' indicative of a power-law scaling
R S
. R (9o (j))y=je. (3.9
6 & .
06 A = TABLE |. Values of (qq,(j)) on various lattice sizes gt
) =0.8.
£
49> o4} & G - j 16° 167X 24 24 32 48
’ o0 P=0.0
vA [ 0 u=0.2 0.025 0.1718) 0.21583) 0.214G2) 0.24002) 0.26191)
5 oo 4=0.8 0035 023283 - 028013 - -
02T A-ap=09 | 005 03126) 035813 0.35723) 0.3737) -
o 0.075 0.4168) 0.44973) 0.44923) 0.45762) -
0.1 0.49215) 0.51373) 0.51334) 0.51742) -
0.00-0 0:1 ojz 0:3 - 0.15 0.591(6) 0.59933) 0.60023) 0.60032) -
Jj 0.2 0.65065) 0.65473) 0.65423) 0.65442) -
0.25 0.68965) 0.690%3) 0.691G3) 0.69062) -
FIG. 3. Results fokqq.) vsj for various values ofu from a 0.3 0.71485) 0.71583) 0.716@3) 0.715%2) —

full simulation on a 32 system.
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FIG. 5. Inlqq, ) vs Inj, showing evidence for power-law scaling FIG. 6. x° vsj for =0.8 on a 32 lattice.

in the dense phase. The solid line indicates the fit interval.

1 -

Fits to Eq. (3.1) in this range yielda=0.314(3) for u X==g ; (X" Tax(0) X" Tox (%) + x T2x"(0) x T2x (X))
=0.8, with y?/dof=1.2, anda=0.213(3) foru=0.9, with o -

x?/dof=0.4. In both cases this is clearly distinct from the (X" 2x(0) xT2x" (X) + xT2x"(0) X" Tox (X))
linear (i.e. «a=1) behavior observed at low density. For (3.2
outside the fitted range, the data start to fall below the fitted

line; we ascribe this to scaling violations f¢e=0.25, as né generic susceptibility may be expressed as the sum of two

perhaps revealed by the crossing of the curves in Fig. 3, a d buti di h ibl
for j=<0.035 to non-thermal finite volume effects, eg. due toco_nnecte contributions corresponding to the two possible
=0 S Wick contractions,

an insufficiently large explicit Majorana mass, as perhaps

indicated by the different systematics of the® pdint in Fig.

4. Unfortunately our resources have not permitted further y=[((trT'G,,)?) — (trT'G )21+ {trGo I G5, )= x5+ x"S,
systematic study of this point, although the choice of fit in-

terval will be to some extent justified by the susceptibility (3.3
study of Sec. Il C.

Assuming the validity of the form(3.1), we draw two whereG=.4 "1 is the Gor’kov propagator anid projects out
conclusions. Firstly, the non-analytic behavior is reminiscenthe appropriate components. By analogy with meson physics
of the power-law scaling observed at a critical point of awe label these contributions “singlet” and “non-singlet,” re-
thermodynamic system. For a spin system at its critical temspectively. Estimates foyS. are made with the same stochas-
perature the spontaneous magnetizatiehscales with ap- tic method used fofqq. ), and are plotted fo=0.8 on a
plied magnetic fieldh as Mo«h'® [31]; for a fermionic 32 lattice in Fig. 6. Apart from the observation thgf
model exhibiting chiral symmetry breaking the equivalent~y% , no other trend is apparent in the data, which are noisy
relation is<¢¢>ocm1/5 [18]. We thus identify critical scaling, and quite possibly consistent with zero. In the following we
with §=a~1. Secondly, Fig. 2 leads us to expect that criticalignore x% and assume .= x1°. This is in marked contrast
behavior is generic in the dense phase, but with the exponeif the behavior observed in studies of chiral symmetry break-
8 varying continuously with chemical potential taking the ~ ing in (2+1)D fermionic models, where singlet contribu-
valued~3 atu=0.8 and~5 atu=0.9. This suggests a line tions_ to the relevant susceptibility are significB®] or even
of critical points for u> u.. The origins of such behavior dominant[10]. _ , , o
and its consequences for superfluidity will be elaborated in Restricting attention to the non-singlet pieces, it is not
Sec. IV. In an attempt to find further evidence for criticality, hard to show using the properties gfreviewed in Sec. V-
however, we now switch attention from one- to two-point below, that the first expectation value on the right-hand side

functions in a study of the various susceptibilities. of Eq. (3.2 is negative and vanishes in the limiit-0,
whereas the second is positive and in fact corresponds to the

diquark correlator examined fgr=0 in [15]. We conclude
C. Susceptibilities that|y_|>|x|. Data fory"® from a 32 lattice are shown in
Fig. 7. Data atu=0.0 are indistinguishable from those at
Next we examine the diquark susceptibilitigs defined «=0.2 on the scale plotted. Note the difference of scale on
by Eqg.(2.12, which may be expanded to the vertical axis between Figs. 6 and 7. We should also com-
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FIG. 7. x"® (filled) and x"® (open vs j for variousu on a 33

lattice FIG. 9. Susceptibility ratioRR extrapolated to infinite volume

for various = 0.8.

ment that they"® data when checked againstq. ) saturate
the Ward identity(2.13 within errors. Both observations jus-
tify our neglect ofy?%. .

In a conventional symmetry breaking scengyio should
diverge in the thermodynamic and-0 limits according to
Eqg. (2.13, whereasy, could in principle remain finite. The
ratio R defined in Eq(2.14) is expected to vanish gs-0 if

U(1)g symmetry is spontaneously broken by the ground . - _
state, and to approach unity if the symmetry remains maniEq' (3.2 of the form(qq(0)qq(x)) which spiit the degen

! . o . eracy betweery, and y_ necessarily vanish gs—0 away
fest. In order to investigate this it is once again necessary tg i o thermgdynamic limit. In this regard it is encourag-

?ng that these non-thermal effects manifest themselves in the
same rangg <0.05 observed for the condensate measure-
"Ments of Sec. Il B. We are thus motivated to attempt a linear

in Fig. 9. In the chirally broken phase the results supjport
tending smoothly to one gs—0, consistent with unbroken
baryon number symmetry. The behavior in the high-density
phase is very different; the accumulation of intercepts in Fig.
8 manifests itself as a plateau fpe0.075. For smallef the
ratio shoots sharply upward towards one. This can be attrib-
uted to a finite volume artifact, since we know that terms in

effect for u<u., but in the dense phase the variation with
lattice size is considerable, as shown in Fig. 8. Once agai
an extrapolationxL{1 seems plausible, and indeed in this extrapolation tq =0 for the data with e [0.75,0.2. The fits
case a linear fit to the data from all three available volumes, .o ot axcellent quality and yiel®(j=0)=0.29(2) for u
proved acceptable. The accumulation of the resulting inter— g andR(j =0)=0.17(1) foru=0.9.

cepts in the regiofiR=0.3 is striking.

. Measurements of the diquark condensate of Sec. Ill B
The extrapolated results f& as a function of are shown

support a power-law forriqq, )ecj* (3.2). If this is the case,
then the relationy . =d(qq, )/dj . together with the Ward

1.0 ; ; : — . . .
R /4/, identity (2.13 imply [33]
= j=0.035 " o
08 1 :;:Z%S ,,/'/ a7 | R(j):w:a (3.4)
vj=015 |--* e g alnj, '
j=0.20 =
06 || :;3;; = /,/’" 7 which crucially is independent gf The plateaus of Fig. 9
R : ' a7 e clearly support this interpretation; moreover, the values we
PR S _‘-——”" obtain forR(j=0) are in surprisingly good agreement with
04 I ,,/'/,—:’_',-—4”' IR PR those from fits to Eq(3.1). The susceptibility measurements
o i A thus provide an independent corroboration of the hypothesis
£ e u— s that the system is critical for> u..
02 Focccmmm e o ---@-----"-"" - B
---------------- - - D. Diquark masses
Our final numerical study in this sector is of the spatial
9. 5 e ) 08 i behavior of the diquark correlation functions, in an attempt
1/L to estimate the masséd . of diquark bound states. For

FIG. 8. Susceptibility ratidR at x= 0.8 for various lattice sizes.

brevity we only consideru> w., in which caseM. are
probably best thought of as the energies required to excite a
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FIG. 10. Diquark time slice correlatot€.. (t)| for two values j

of j at ©=0.8 on a 32 lattice.

FIG. 11. Diquark masses extracted from fits to E8}5 on a
diquark pair above the ground state. We have restricted ou23 |attice.
attention to the zero-momentum time slice correlaar(t)

=2(99-(0,0)q0-(x.t)), so that the excited state must The fitted values fo. vary considerably over the range of
consist of quarks with equal and opposite momenkurRe-  j explored: eg. for=0.8, Q. rises from 0.102(1¥ 10 ° at
call that in the presence of a Fermi surface, only quarks witj =0.25 to 0.315(5X 10! at j=0.025; in the same range
k=Kkg can be excited; the measurements presented here a@e_ rises even more dramatically from 0.49¢610 ' to
not sensitive to this restriction, although it will prove a de-0.279(7)<10 1.
cisive factor in the quasiparticle study of Sec. V. As in Sec. The most important feature of Fig. 11 is that there is no
[l C, we ignore “singlet” diagrams in calculating . . evidence fortM _ vanishing ag—0, as might be expected if
Figure 10 shows the correlators fp=0.025 and 0.25 at qg_ coupled to a Goldstone mode as a result of broken
n=0.8. By virtue of its definitionC.. is clearly symmetric U(1)g symmetry. One might argue that thd hocinclusion
under time reversal, in contrast to the correlators studied inf Q_ in the fit (3.5 results in artificially high values of
[15]. It is also clear, as expected, tH&_|>|C, |, and that M_; in any case, the conclusion remains that simple pole
the difference between them grows wijthClose inspection fits to C_(t) corresponding to a weakly interacting Gold-
of Fig. 10 suggests that a standard simple-pole fiCtqt) stone boson in this channel fail drastically. The scaling form
will not succeed unless a constant term is included; we havés.1) combined with the Ward identit{2.13 imples a mass-

therefore attempted fits of the forf5] less degree of freedom @s-0, and hence long range corre-
lations, in bothqq_ and(since symmetry is restored in this
C.(t)=P.{exp—M.t)+exd —M_(Li—t)]}+Q-. limit) gq, channels; they must, however, be strongly inter-

acting and hence short-lived states.
(3.5

The plateau heigh , by the cluster property would be pro-
portional to|(qq_ )|? if the condensate formed; however, the  Having established that in the limit of a vanishing source
analysis of[15] showed that af=0, Q. does not display there is no diquark condensation at high density, but instead
the required extensive scaling with two-dimensional spatiah critical phase with the scaling of the condensate with the
volume. There is no obvious theoretical interpretation forsource governed by an exponehtarying continuously with
Q_. m, we now discuss the implications for possible superfluid
Figure 11 show$ . (j) for ©=0.8,0.9 resulting from fits behavior of the (2-1)D NJL model. In fact, this result is in
of Eg. (3.5 to time slices 5-26. In most cases th&dof  accordance with well-known theorems that long range order-
was 2.0 and in no case exceeded 6M.. is found to ing of a two-dimensional system with a continuous global
increase almost linearly with maintaining a roughly con- symmetry is impossiblg34]. In the current context a particu-
stant differenceM , —M _=0.08 for j=0.05. For smallej larly appropriate statement of the theorem is due to Hohen-
the curvature in the plots suggests the two states may bderg|[35], who explicitly considers the case of a composite
come degenerate gs—0. A linear extrapolation tg =0 order parameter via Cooper pairing in a low-dimensional fer-
yields M, (©=0.8)=0.23, M, (x=0.9)=0.21, values of mion superfluid. Long-wavelength fluctuations of the phase
the same order of magnitude but slightly lower than thosed of the would-be condensate always wash out the order in
obtained directly aj=0 on a 16X 24 lattice in[15] (note  the zero source limit. In field theoretic language, in two di-
that the symbol#$/ . have a different meaning in that paper mensions infrared divergences dictate that the Goldstone

IV. CRITICALITY AND SUPERFLUIDITY
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pole in the transverse susceptibility predicted by a naive ap- i
plication of Eq.(2.13 is replaced by a softer divergence Jou* = 5197 0,d=(9,4%)p]=Ksd,0. (4.3
consistent with a power-law decay of the correlator
The constanKg must be determined empirically. In the non-
_ _ 1 relativistic limit it is given by
lim(qq-(0)qq.(r))o=(e'"@e™ "o =, (4.
j—0

—nNg (4.4
where is another critical exponent, implying a massless but
strongly interacting mode and long-ranged phase correlayhereM is the mass of the current-carrying atomic species
tions. Note that direct numerical tests of Eg.1) would [M(*He) or 2V(°He) in the case of the two known super-
require data from spatial diquark correlators, in contrast withfluids], andng is a parameter called thguperfluid density
the temporal correlators explored in Sec. Il D. There arewhich for an interacting system need not coincide with the
also technical difficulties in taking the limjt-0. charge density of the particles in the conden$a. In turn
_ The best known example of a system with a critical phasgpis enables the definition of @uperfluid velocity v
is the 2D @2) spin or XY model, which is similar in that =(ﬁ/M)ﬁ0. For a relativistic system the relation.
long range order would also spontaneously breakB glo- - . o
bal symmetry. The critical behavior occurs fb< Tgk 1, the =(7/2u)V 6 can be shown to hold for diquark pairs for
temperature  of the celebrated Berezinskii-Kosterlitz-Smallvs [36]. o _ o
Thouless transitiofi21,20. The physical picture can be ex- Now in the StatIC_JImLt, rglat|or(4.3) implies that the flow
plained as follows; on the assumption that the interactioris irrotational, viz.VxJL=0, and hence the circulatior
strength is a periodic function of the difference in angle =¢J.-dl around any closed path vanishes unless either the
between adjacent spins, and is approximately Gaussian in tigndensate is somewhere singular within the contour, i.e.
neighborhood of its minima, then an effective Hamiltonian ¢,=0, or the space is non-simply connected. In either case
can be written as the requirement tha@ be single-valued results in the quan-
tization of circulation: k=2mnKg, with n integer. In the
case of a singularity irp the physical realization o£+#0 is
m(}), a vortex, with a non-zero radiug, within which the normal
phase is restored. Superfluid vortices experience long-ranged
(4.2 mutual interactions; for a two-dimensional system such vor-
tices can be identified with the vortices of ti& model, and

J being the nearest neighbor coupling. In addition toétee ~ @re expected to be governed by an effective Hamiltonian of

the Hamiltonian depends on integer-charged vorticgx) the same form as Ed4.2). An .egample of a nqn-sm_ply
located on the sites of the dual lattice. The vortices are topogonnec_ted space would be a f|n|t(_a_sys.te_m Of dimenkion
logical excitations of the spins which interact via a Coulomb XLy with pe.”Od'C boundary conditions; in this cage*0
potential which is logarithmic in two dimensions, ensuring'mplles a uniform supercurrent

that all configurations with finitél x are overall charge neu-
tral, i.e. contain as many anti-vortices as vortices. The pa-
rameterr is the “core size” of the vortex, which can be
considered of the same order as the lattice spacing. Now, at
low temperatures the second term of F42) strongly sup- The crucial point is that the resulting flow patterns are topo-
presses well-separated vortex—anti-vortex pairs, and th@gically stable, implying the system’s energy must be
model’s dynamics are dominated by small-amplitude fluctuagreatly increased to change[21]. For instance, in order to
tions of 6, the so-calledspin wavesPhase correlations are changen, by one unit, a vortex—anti-vortex pair must be
governed by Eq(4.1) with 7(T)=T/4xJ, implying a criti-  created and the vortex moved in thelirection right around
cal phase with a continuously varying exponent. At the criti-the system before being allowed to reannihilate with the anti-
cal temperatur@gy 1, the vortex entropy begins to dominate vortex. In so doing the system must be brought through a
the free energy of the system, and vortex pairs of arbitrargaddle-point configuration in which the pair is separated by
separation form. The resulting vortex plasma screens longalf the system extent; from E@4.2) the energy required
range correlations resulting in a finite correlation length for~2mJIn(Ly/2ro). Since this diverges with the size of the

X—y

o

Hyy[ 6,m]=32 [3,0(x)]>— 2732, m(X)In
X x,y

Js(ny,ny)=2mK (4.5

Ny>  Nyz
LXX+ Lyy).

T>Tgkr system, we infer that the circulation is stable and hence the
Next we discuss the relation with superfluidity. We cancurrent J, persistent, implying superfluidity. We conclude
rewrite the diquark operatorqq. (x)= ¢(x)= e ™, that the critical phase of th¥Y model, and by extension

where the constanp, is the density of quark pairs partici- critical behavior in any two-dimensional system with &1
pating in the condensate ardlis the local phase of the global symmetry, describes superfluidity despite the absence
diquark operator. In this fornqq. (x) can be regarded as a of a condensate. Long range order of the phésis not
bosonicmacroscopic wave functiofor the condensed pairs. necessary; phase coherence, as expressed by4Hg,. is

We now identify a superfluid curredt,, via sufficient. It is noteworthy in this regard that some of the
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most precise tests of the universal predictions of ¥ yielding »(x=0.8)~1 and »(u=0.9)~0.7. Note that had
model have come from studies of thin films of superfluidwe used an effective dimensial= 3, the prediction forp at

“He[19]. 1=0.9 would be almost vanishing.

Since we have used universal features of vortices and spin
waves to argue that critical behavior implies superfluidity in V. THE QUASIPARTICLE SPECTRUM
two dimensions, to justify the application of these ideas to _ ) ) o
the NJL model we should address the issue of why dig In this section we study the spihsector by examining
not consistent with that of th&Y model as revealed by a the Gor’kov propagatog=.A"* as a function ofu andj.
renormalization group analysj&3], which predicts For u<u. the fermion excitations are simply related to

those atu=0, as reported ifil1]. For u>u., however, the

ground state of the model changes radically, and is charac-
, (4.6 terized by a Fermi surface with energy and characteristic

momentumkg . A generic description is Fermi liquid theory
with equality holding asT— Tgyr— . First we note that di- [24,29, in which excitations with momenturk such that
mensional reduction, which predicts that the critical thermalk—kg|<kg are quasiparticles whose mass need not coincide
properties of (2-1)D systems should be governed by thewith that of the fundamental quanta. If a BCS condensation
2D spin model with equivalent global symmetry, dasst ~ occurs, then the lowest energy excitation may be separated
apply in this casé:we have needed the limit,— rather ~ from zero by a gap\, and the quasiparticles may not be
than L,—0. Since the number of accessible Matsubarsgigenstates of the baryon number, but instead some kind of
modes in our simulations remains large, the fermions neegarticle-hole superposition. Analysis gfusing standard lat-
not decouple, and indeed there remain light fermionic excitice spectroscopy techniques yields information on the qua-
tations, as we shall see in Sec. V. Therefore, we should naiparticle dispersion relatioB(k), thus probingA and, more
necessarily expect the model’'s dynamics to be described bygenerally, the nature of the model's Fermi surface.
purely bosonic effective action. Symmetry breaking via a We begin by making some general observations about the
composite order parameter is qualitatively different fromGor’kov propagator. Write
cases where the order parameter is an elementary field; there
is a wealth of evidence, both analytical and numerical, that A(X,y) N(X,y)
bosonic and fermionic models with the same patterns of glo- gx,y)=| — — ) )
bal symmetry breaking belong to separate universality N(xy)  AXY)

classes in dimensions up [t67,18,32,3gand even including \here each element denotes &2 matrix in isospace. Our
[26] four. It would appear rather that the feature which PETnotation signifies that the propagator contains both “normal”

mits us to use a two-dimensional effective model isdtatic (q(x)a(y)> and “anomalous™(g(x)q(y)) components, to-
nature of the phase fluctuations, igd=0, as evidenced by gether with their barred counterparts. On a finite systam,

the plateaux observed in the largéehavior of diquark cor- — S oo =
relation functions in Ref{15] and Sec. Il D. Of course, we and A vanish in the limitj—0, andN,N become propor-
should also not forget that a ¢21)D Euclidean field theory tional to the_ usual fermion and anti-fermion propagators. The
is supposed to describe a 2D physical system. numper. of ||j(jependent compor_wentsg)ﬁs .constramed by
Our simulations have yielded information only about thecertain identities. For instanc®| is proportional to an ele-
critical exponents in the dense NJL model. Our results ment of SU2), implying N,;=N7; and N;=—NT,, with
6(n=0.8)~3, 5(u=0.9)~5 are consistent with a critical similar relations forN. In the anomalous sector, however, it
phase foru> .. The lower numerical values as comparedis 7,A which resembles an SP) matrix so the equivalent
to Eq. (4.6 typify the distinct nature of symmetry breaking identities areA,,=— A7, andA,;=A},. These relations im-
via a composite order parameter as discussed above. Nofgly that a column ofG can be reconstructed using just two
however, that althouglé decreases withu, the analagous conjugate gradient inversions gff @].
ekt at which superfluid vortices unbind may not be physi- We first examined the time slice propagatgi(t)

cally accessible; most probably chiral symmetry breaking at_ E;g(ﬁ,o;i,t) and empirically found the following fea-
u= uc happens first. Finally, although we have not yet foundy, es.

a method to measure, it is interesting to estimate its value For t+0, Re(Nll(t)>~Re(Wll(Lt—t)), ie the anti-

using the hyperscaling relatioa=(d+2—»)/(d—2+ 7) X ! . .
[31]. Since we have assumed an effective dimensier? fermion propagator is related to that of the fermion by time

e

60=15, 7g=

(5.9

for the critical dynamics, the appropriate relation is reversal.
' IM(N1)~Im(N1;)~(N;)~(N;,)~0: the vanishing of
4— 7y the off-diagonal components & is consistent with isopin
o= ——, (4.7  SU2), symmetry.

IM(A (1)) =~IM(A(t))~—Im(A(L,—t)), i.e. in the
anomalous sector fermion and anti-fermion have equivalent
'Reference[37] describes a recent numerical study of a (2 behavior under tlmeieversal._ ) _ )
+1)D fermionic model with 1) axial symmetry aff #0 which Re(A1p)~(A1)~(A1)~0, i.e. isopin symmetry in the
does appear consistent with the BKT scenario. anomalous sector demands the diagonal components vanish.
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1 24
162% 24 lattice withj = 0.1, L . ; 6
From here on for convenience we will denoteNReby N FIG. 13. Normal and anomalous propagators viithm/4 at u
and ImA, by A. In Fig. 12 we plot IfiN(t)| vs t for two ~ =0.8 on a 16x 24 lattice withj=0.1.

values ofu in the low density chirally broken phase. At

=0 the propagator is symmetric under time reversal, and
fermion massX=0.73(2), consistent with the breaking o
chiral symmetry. Atu=0.2 the time-reversal symmetry is
broken; one state propagates forwards with mass (4952

the other backwards with mass 0.%20) corresponding ap- The caption of Fig. 14 assigns differektranges to a

proximately to masse = u. Now, sinceng=0 for u p » : “ . "
<., the ground state is unchanged and the physical inter_hole branch” (E decreases witk) and a “particle branch

retation of this result is simply that the chemical otential(E increases witfk). It is straightforward to verify this in-
pre . simply . . P terpretation by considering the free Euclidean propagator
shifts the energies required to excite fermions and anti

< P 1 . , :
fermions in opposite directions, the anti-fermion travelling in Sr(K)=(iK+ pyor m) . For fixed spatial momentum, with

thEhe U(1); symmetric limit; Fig. 14 shows thd(k,j) can be

f smoothly extrapolated tp=0, and we quote the results of
linearly extrapolating the data withe[0.025,0.]. Fits to
the anomalous propagatdy(k,t) yield quantitatively very
similar results fore(k,j).

the +1 direction and the particle-t. n<E(k)= Vk*+m?,
For u> u. the situation is completely altered. Recall that
in the presence of a Fermi surface excitations have a charac- 2(1+W‘)e‘(5+ﬂ)‘ t>0,
teristic momentum scalke- . Therefore it is necessary to in- ~ 2E ’
troduce momentum dependence into the Gor’kov propagator Se(k,t) = m 5.4
via G(K,t)=3;G(0,0;x,t)e~ kX [16]. We choosek oriented Sg(1-VTe (E=mll, t<0,
along a lattice axis, and the setto include only sites an
even number of lattice spacings from the origin in each di- 08 o LT
rection, so that the physically accessible momenta are give! §v T
by k=27n/Ls with n=0,1, ... /4. Figure 13 shows both B e
normal and anomalous propagators in the high density phas 06 - E § . ‘ B o
for k=m/4. Note that nowN(t)~0 for t even, andA(t) & 2 o
~0 for t odd. This is a manifestation of the restored } & = o g
SU(2) . ® SU(2)g symmetry(2.5), which would be broken by ) e Sl
any Neg oo OF Age eo* 0. We have found that the propagators E(k) o4} P B ¥
for variousj andk are well fitted on every second time slice T . 0 k=0
by the following forms, with fit parameters,B,C andE: &% ~ L E o k=n/16
02t e o Ztsm;la
N(k,t)=Ae El+Be B0, (5.2) e v ker/d
e * ® k=3m/8
A(k,t)=C(e Et—e E(LiD), (5.3 o
0.0 ‘ ‘ '
The resultingg(k,j) is the quasiparticlelispersion relation 00 01 j 02 03

We have studied this function in detail on a&3attice, which
has 9 distinct values df, performing fits to Eq(5.2) over FIG. 14. E(k,j) vs | extracted from fits to Eq(5.2) on a 33
the ranget €[5,27]. The fits are of excellent quality, with lattice with . =0.8. Open symbols denote excitations on the hole
x?/dof rarely exceeding 2.0. We are naturally interested irbranch, and closed symbols the particle branch.
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o Gl 02 ki L 04 25 FIG. 16. Dispersion relatioE(k) at x=0.8 on a 33 lattice for

both interacting and free fermions.

FIG. 15. The amplitudes,B, andC extracted from fits to Egs. .
(5.2), (5.3 on a 32 lattice with »=0.8. The data foA andB were  hole branch as negative in order to generate a smooth curve.

taken withj=0.025. There is no sign of any discontinuity characteristic of a BCS
gapA#0. In order to interpret the detailed form of the curve
£ (E,+iK)/m. The it is necessary to take account of discretization effects; for

where the complex "4-velocity” v, free massless fermions the expected dispersion relation
propagator has both forward- and backward-decaying S|g-hOWn as a solid curve in Fig. 16, IE(K)=—u

nals, each associated with a different projection operator; i’ ~."" ", * .

e = . +sinh “(sink). We have found that a reasonable fit to our
the limit k—0 these become(1+ o) and thus project onto ., foru €[0.8,0.9, shown as a dashed line in Fig. 16, is
anti-fermion and fermion states, respectively. The fermiongiven by B '
being lighter, dominates the signal fat>1 yielding a pre-
dominantly backward propagation. Far>E(k), however,
there is only a forward-moving signal, once again dominated

by the fermion: Equation(5.6) predicts a sharply defined effective Fermi mo-
mentum given by

E(k)=—Eq+ D sinh (sink). (5.6)

Se(k,t) = znl]z(t)[(l-l-w_)e_("”'E)t—(1_w+)e—(,u—E)t]_

Ke=sinh 1(sinkg)=E,/D. (5.7)

In addition it is possible to define a quasiparticle group ve-

(5.5 locity B=d sinhE+Ey)/dsink, whose value
For free fermions the transition between E@s4) and(5.5)
takes place at a sharply defined Fermi enerBy Be— coshE, 5.9
F_ .

= \/k2F+ m?= u. Excitations withk>kg, the Fermi momen- coshKg

tum, add particles to levels above the Fermi surface; those ] . ] ] )

with k<kg vacate holes in the Fermi sea. The energy cost i§t the Fermi surface is theermi velocity which helps to

smallest wherk=kg . characterize the Fermi liquid. Eor free massless fermions
In Fig. 15 we plot the amplitude&,B andC from the fits ~Kr=# andBg=1 for all x. Our fitted values oK and B¢

to Egs. (5.2, (5.3 and confirm that for smalk, N(k,t) is &€ given in Table II.

dominated by a forward-moving signal, but there is a rather

sharp crossover to backward propagatiork/at=0.3. This

transition becomes sharper ps>0; however, we plot data

TABLE Il. Quasiparticle parameters resulting from fits (6£6)
to data from a 32lattice. The quoted errors are purely statistical.

with j#0 to show that the amplitud€ only differs signifi- K 8 Ke/uf
cantly from zero for momentum states in the neighborhoo F F FIRPF
of the Fermi surface. Were a BCS gap to form, we would0.80 0.7203) 0.6703) 1.341)
expect lim_C(j)#0 indicating particle-hole mixing; our 0.82 0.7383) 0.6713) 1.341)
data, however, do not give strong support for this. 0.84 0.7783) 0.6843) 1.341)

Figure 16 shows the dispersion relatig(k) extrapolated 0.86 0.7915) 0.6734) 1.371)
to j=0 for ©=0.8, together with points derived from the ¢ gg 0.8115) 0.6284) 1.471)
free Gor’kov propagatofi.e. generated witlg?=0) using .90 0.8364) 0.7044) 1.321)

the identical procedure. We have plotted energies from the
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Although the errors quoted in Table Il are almost certainlyshould contain a term of the for o~ By the fact
underestimated, some systematic features are apparent. Tfigt -~ 0O(1) leaves open the possibility that the quasipar-
observed values oK increase smoothly withk, and are ticles play as important a role as bosonic spin-wave degrees
~90% of their free-field values. The Fermi velociB¢, by  of freedom in determining the universality class, as conjec-
contrast, is more or less independengfand only=~70%  tured in the previous section.
of the free-field value; i.e. the quasiparticles travel at less
than the speed of light. In non-relativistic Fermi liquid theory
[24,25, the ratioK /B¢ defines a quantity called theffec- VI. SUMMARY AND OUTLOOK
tive mass M, which need not coincide with the mass of the
fundamental atomic speci®4; e.g. for the archetypal Fermi
liquid 3He in the sub-Kelvin(but non-superfluid regime,
M*=3M [25]. In Landau’s theory the ratio for a two-
dimensional fluid is given in terms of the dipole component
of the interaction between quasiparticles: i.e.

Let us briefly review the main achievements of the paper.
Firstly, we have developed the necessary formalism to iden-
tify diquark condensation in numerical lattice studies of field
theories on finite systems at non-zero chemical potential, the
crucial ingredient being the introduction of a diquark source
term. Secondly, to our initial surprise, we have found no
evidence for a condensatgq)#0 in studies of the (2

2rdd +1)D NJL model in its high density phage> u.. Rather,
IV NFL 5 f(9)cosd, (5.9 the results from two independent analyses of diquark observ-
ables are consistent with a critical behaviagq(j))oj*
throughout the dense phase. Whilst there is some residual
uncertainty about the source of finite volume effects jfor
=<0.05, we suspect it would require computer resources con-
siderably greater than those we have used to modify this
conclusion. Critical behavior in two dimensions implies long
?ange coherence in the phase of the condensate wave func-

*

where Ne=gV,(ke/27BE) is the number of quasiparticle
states on the Fermi surface per unit energy intervali¢ the
volume of 2D space ang counts independent spin and isos-
pin componentsandf(¥) the spin-singlet interaction energy
between quasiparticles at the Fermi surface with moment

separated by angl8. In a relativistic generalizati_on the left- ion which is a sufficient condition for superfluidity. Whilst
hand side of Eq(5.9) is replaced byKe /u B¢ [39]; we infer  ynare s qualitative similarity with the well-known example
from the data of Table II that()cos9>0 when averaged of the low temperature phase of the 20¢ model, the mea-
over the Fermi circle, and the interaction hence repulsivgreq value of the critical exponestis distinct, suggesting
between quasiparticles with parallel momenta and/or attraGnat the (2+ 1)D dense NJL model belongs to a new univer-
tive if the momenta are anti-parali@he simpler conclusion  gajity class. Thirdly, we have performed the first systematic
that the interaction is always attractive was wrongly drawn INspectroscopic study in the spin-sector for x#0, and
[16]). This should be contrasted with the interaction betweenyapned out the quasiparticle dispersion relation. The success
the fundamental fermions of the NJL model duedoex-  f the simple pole fit§Eqs. (5.2), (5.3)] confirms the long-

change, which is attractive and independent of directiBn. jived nature of the quasiparticles. There is no evidence for
similar effective reversal of sign arises in the Hartree-Focksjiher particle-hole mixing o #0 in the j—0 limit. In-

treatment of free electron states in a m¢fd], and is char-  gie5q the system resembles a normal Fermi liquid with a
acteristic of a quantum-mechanical exchange effect. well-defined Fermi surface; the Fermi velocigy is of the

To summarize, we have examined the quasiparticle speGme order as but significantly less than the free-field value
trum and estimated both Fermi momentip and velocity 1 oy findings can be summarized by the conjecture that the

Be with due allowance made for discretization artifacts. Thehigh density phase of the (21)D NJL model is a relativis-
results are consistent with a relativistic generalization of g gapless thin film BCS superfluid.

Landau Fermi liquid, and are qualitatively similar to the nor- |4 3 sense this and related papers witi O represent the

mal phase of liquid®He. There is no evidence for a BCS primitive beginnings of the study of condensed matter phys-
gap, and in thg — 0 limit the anomalous components of the jcs o the Iattice. Let us sketch a few possible future direc-
propagator signaling particle-hole mixing probably vanish.ions. Firstly, it would be interesting to estimate the super-
We note, however, that superfluid behavior is not IOreclUde%urrentj corresponding to a quantized flow pattern around a
by the absence of a gdf5]; the unlimited growth of quasi- s P 9 q P

. o . finite system as in Eq4.5), which could be set up using a
particle excitations that couple normal and superfluid COM< -~ tiallv varvin (x). As well as providing a direct demon-
ponents and hence destroy superfluidity in a gapless Bos y varyingj (x). P 9

liquid is here prevented by the Pauli exclusion principle.s ration of superfluidity, this would also enable the extraction

Long range phase coherence is a sufficient condition for squ the phenomenologically important parametey. Sec-

perfluidity. Finally, it is potentially significant that the light °"dl: it is possible to study quasiparticles and other Fermi

o . .. surface-rel henomena. For instan harp Fermi sur-
excitations resulting from the absence of a gap are relativiss" 2¢€ elated phenomena. For instance, a sharp Fermi su

tic. As a result the effective 2D quasiparticle Hamiltonianface leads to o§C|IIat|0ns of sp_at|al frequenclg:2in the .
screened potential between static charges, known as Friedel

oscillations[13,40. Friedel oscillations can be observed in

2Single 7 exchange is attractive in isosinglet but repulsive in isot-the wave functiqns ofjq and qq states in (Zlf 1)D four-
riplet channels; the net binding effect in matter made from equaf"€'Mi models withu> u [41]. Another possibility is the
numbers ofu andd quarks vanishes. observation of lightgg mesons in the spin-1 channel, corre-
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sponding to low-energy excitations of the Fermi surface resmechanism, the signals for which, namélyg)+#0 and A

lated to the phenomenon of zero soy@d,25,43. Finally, it ~ #0, should be readily observed using the methods we have
is of prime importance to extend our calculations to thedeveloped.
physically relevant case of (81)D. In this case the NJL

model is no longer a fundamental field theory, but instead

can be thought of as an effective description of strong inter-

action physics with many possible phenomenological appli- This work is supported by the TMR network “Finite tem-
cations, including thermodynamid€3]. In the higher di- perature phase transitions in particle physics” EU contract
mensionality, we expect the BKT scenario suggested by oueRBFMRX-CT97-0122. S.J.H. also received support from
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