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Inverse amplitude method in pp scattering in chiral perturbation theory to two loops
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The inverse amplitude method is used to unitarize the two-looppp scattering amplitudes of SU~2! chiral
perturbation theory in theI 50,J50,I 51,J51, andI 52,J50 channels. An error analysis in terms of the low

energy one-loop parametersl̄ 1,2,3,4 and existing experimental data is undertaken. A comparison to standard

resonance saturation values for the two-loop coefficientsb̄1,2,3,4,5,6is also carried out. Crossing violations are
quantified and the convergence of the expansion is discussed.
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I. INTRODUCTION

The pp reaction is theoretically one of the cleanest p
cesses in hadronic physics. This is because crossing, un
ity, and analyticity impose severe constraints on the sca
ing amplitude@1#. Thus, a lot of attention has been paid
the study of this process and the determination of par
wave phase shifts@2–10#. The current theoretical setup fo
such an approach is chiral perturbation theory~ChPT!, which
is an effective field theory embodying all these constrain
and leads to a perturbative expansion of the scattering pa
wave amplitude in the~I,J! isospin-spin channel:1

t IJ~s!5t IJ
~2!~s!1t IJ

~4!~s!1t IJ
~6!~s!1¯ . ~1!

Here the expansion parameter turns out to bel2

[mp
2 /(4p f p)2;0.01 with mp5139.57 MeV the physica

pion mass andf p592.3 MeV the weak pion decay constan
Hence t IJ

(n) turns out to be proportional tol2n. In the pp
scattering case, the chiral expansion generates a hierarc
corrections which depend on an increasing number of dim
sionless and renormalization scale independent parame
To lowest nontrivial order~LO, tree level! current algebra
unique predictions for the scattering amplitudest IJ

(2)(s) in
terms of f p and mp are generated@11#. At next-to-leading
order ~NLO, one loop! four low energy parametersl̄ 1,2,3,4

determine the amplitudet IJ
(4)(s) @12,13#. At next-to-next-to-

leading order~NNLO, two loops! the amplitudet IJ
(6)(s) can

be expressed in terms of six parametersb̄1,2,3,4,5,6 @14,15#.
Unlike the one-loop parametersl̄ 1,2,3,4, which can be fixed
from ChPT calculations confronted with experimental d
from several sources, the two-loop coefficientsb̄1,2,3,4,5,6are
somewhat more difficult to fix directly from experimen
since the amount of data close enough to threshold is sca
Because of this problem and motivated by the success o
resonance saturation hypothesis at the one-loop level and
renormalization scalem57506250 MeV@16#, values for the

*Email address: jmnieves@ugr.es
†Email address: earriola@ugr.es
1We use the normalization such that the partial wave cross sec

is s IJ5(2J11)(4p/s)ut IJ(s)u2. See also Eq.~2! below.
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two-loop b̄’s have been suggested on the basis of this

pothesis at that scale@15#. This causes theb̄’s, independent
in principle of the renormalization scheme, to have a spu
ous scale dependence. Since it is not really known what
certainty should be assigned to this hypothesis, it has b
suggested to ascribe a 100% error on the contributions to
low energy parameters determined by resonances@17#.

The numerical consideration of errors from ChPT requi
taking into account consistent sets of low energy paramet

both l̄ 1,2,3,4 and b̄1,2,3,4,5,6, deduced from several source
@18–22#. Moreover, there seem to be strong anticorrelatio

betweenl̄ 1 and l̄ 2 in the light of the two-loopKl4 analysis
@19,20#. This point has been thoroughly discussed in a p
vious work by two of us@23# and we refer the reader to it fo
further details. There, error propagation was undertaken
the form of a Monte Carlo simulation, instead of using pa
metric statistics, by generating a synthetic set of prim
data. The basic assumption is that primary quantities,
those obtained either directly from experiment or from
acceptablex2 fit, i.e., with ax2 per degree of freedom~DOF!
;1, are Gauss distributed although perhaps with corre
tions. In practice, the distributions are represented by a po
lation of finite but sufficiently large number (N5104) of
samples. The discussion in Ref.@23# amounts to having three
compatible sets of one-loopl̄ and two-loopb̄ low energy
parameter distributions deduced from several sources. T
are summarized in Tables I and II. For consistency, we k
the same notation of our previous work. Set Ic in Ref.@23#
corresponds toKl4 decays, following the fits of Ref.@19# and
some statistical modeling designed to reproduce the fr
mentary information given in theKl4 analysis of Ref.@19#.
Set II corresponds to usingD waves as proposed in the two
loop pp scattering calculation in standard ChPT@15#. Fi-
nally, set III denotes the values of the low energy parame
obtained through Roy sum rules following the lines of R
@17#. We found in Ref.@23# that the anticorrelations betwee
l̄ 1 and l̄ 2 persist in set III, although they are not very stron
In the present work we discard sets Ia and Ib as somew
unrealistic. We also disregard set II because it produces
large errors as compared to sets Ic and III.

Despite its great success, ChPT does not incorporate e
unitarity to a given order of the expansion and hence can
account for resonances, in particular for ther and s reso-

on
©2002 The American Physical Society02-1
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TABLE I. One-loop l̄ 1,2,3,4 low energy parameters in ChPT for the parameter sets Ic, II, and III of

@23# as well as the correlation coefficient betweenl̄ 1 and l̄ 2 . In the present paper we use only Sets Ic and

Set l̄ 1 l̄ 2 l̄ 3 l̄ 4 r ( l̄ 1 , l̄ )

Ic ~K14 decays! 0.361.2 4.7760.45 2.962.4 4.460.3 20.69
II ~D waves! 20.864.8 4.561.1 2.962.4 4.460.3 20.75

III ~Roy sum rules! 20.961.2 4.3460.25 2.962.4 4.460.3 20.22
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nances which appear in theI 51,J51 and I 50,J50 chan-
nels, respectively. To deal with this problem, several unita
zation methods have been devised in the past in the con
of pp scattering@24–36# ~for a recent and short review, se
e.g., Ref.@37#!. In those methods, unitarity is restored in t
different partial wave amplitudes, while crossing is violat
@30,34,40#. In the complex energy plane this corresponds
exactly taking into account the unitarity right hand elastic
(s.4mp

2 ) but to approximating the left hand cut (s,0).
Detailed quantitative studies reveal that the approxima
used to take into account the left hand cut does not bec
critical to describe phase shifts in the scattering region, bu
may significantly influence the violation of crossing and t
values of the low energy parameters. Thus, there is s
confidence that unitarization methods can indeed be use
enlarge the domain of applicability of ChPT to the study
intermediate energy hadronic reactions. Among these un
rization approaches the inverse amplitude method~IAM ! has
been successfully applied to the description of meson-me
scattering, incorporating up to one-loop perturbative c
straints. The original applications of the IAM involved di
persion relation arguments@27,29#, which became rathe
cumbersome when incorporating coupled channels suc
KK̄ in pp scattering. An algebraic derivation was so
found @32# to provide an almost trivial generalization to th
coupled channel case, and a complete one-loop analysi
all meson-meson channels was carried out very recentl
Ref. @33#. In addition to its very simple implementation from
the standard chiral expansion, what makes this method
ticularly attractive is the fact that no new constants arise
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addition to those already present in standard ChPT. Furt
more, the IAM offers the possibility of systematic improv
ment according to the chiral expansion. Given the great s
cess of this unitarization method in several meson-me
reactions including up to one-loop corrections, it seems
most obvious to extend the calculation to the~in principle!
more accurate description up to two loops. As we will sho
below, such an extension is not as trivial as one might thi
Actually, there was a previous calculation@31# where an
analysis of the IAM for ChPT to two loops was undertake
The conclusion was that the IAM is a well converge
scheme. It is fair to say that no effort was made to ass
uncertainties in the low energy parameters, making it som
what hard to decide not only on the convergence itself
also on the compatibility with standard ChPT.

Recently, theoretical restrictions for thes-wave scattering
lengths have been obtained from an analysis of Roy eq
tions@41#. Unprecedented accuracy is obtained if, in additi
to the relativistic, crossing, and unitarity demands from lo
quantum field theory, chiral symmetry constraints and
corresponding chiral expansion are implemented. The re
work @42# on matching the Roy equation analysis@41# to the
two-loop ChPT expansion@14,15# has produced, using para
metric statistics, the smallest error estimates for the low
ergy parameters so far. Roy equations provide an extrem
elegant framework to incorporate crossing, analyticity, a
unitarity constraints inpp scattering amplitudes. The set o
nonlinear inhomogeneous integral equations is not auto
mous but requires some high energy tails obtained from
periment as input. In the low energy regime these so ca
driving terms can be described as polynomials, whose c
ficients can be mapped to the low energy parameters
Ref.
TABLE II. Two-loop b̄1,2,3,4,5,6low energy parameters in ChPT for the parameter sets Ic and III of

@23# used in the present paper. The relation to theb1,2,3,4,5,6 parameters used in this work isb̄1,2,3,4

516p2b1,2,3,4 and b̄5,65(16p2)2b5,6. We also show explicitly the decompositionb̄i5b̄i
01Dbi referred to

in Eq. ~19!.

Set b̄1 b̄2 b̄3 b̄4 b̄5 b̄6

Ic 211.622.5
12.4 11.261.8 20.260.3 0.860.1 5.723.9

13.2 2.621.0
10.8

III 13.222.3
12.5 12.421.8

11.7 20.420.2
10.4 0.7460.06 1.623.8

13.7 2.020.9
10.8

Set b̄1
0 b̄2

0 b̄3
0 b̄4

0 b̄5
0 b̄6

0

Ic 29.162 8.261.7 0.360.3 0.6660.07 5.723.9
13.2 2.621.0

10.8

III 210.722.0
12.1 9.861.7 20.1660.40 0.5860.04 1.623.8

13.7 2.020.9
10.8

Set Db̄1
0 Db̄2

0 Db̄3
0 Db̄4

0 Db̄5
0 Db̄6

0

Ic 22.420.4
10.5 3.060.3 20.520.1

10.2 0.1960.04 0 0
III 22.420.4

10.5 2.620.3
10.4 20.460.2 0.1520.04

10.15 0 0
2-2
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INVERSE AMPLITUDE METHOD IN pp SCATTERING IN . . . PHYSICAL REVIEW D65 036002
ChPT in the common region of validity of the Roy equatio
and ChPT. As a theoretical tool, the Roy equations canno
solved by unitarization methods since the latter violate cro
ing to some extent. On the other hand, the Roy equat
have not been generalized yet to other processes diffe
from pp scattering and require a knowledge of high ene
data which may not always be available or accurate enou2

Taking this fact into account and the time elapsed since
original work @1# and the recent update@41#, it would be
desirable for Roy equation techniques to become a daily
in hadronic physics, but it seems unlikely. In contrast, un
rization methods based on ChPT require in principle no m
work than ChPT itself, which works well in the thresho
region, but they are able to describe, in addition, resona
physics and have been successfully applied to a variet
problems. Because of this the unitarization ofpp scattering
amplitudes using the IAM provides a model case where
can learn about the virtues and drawbacks of the method
also its convergence properties.

In the present work we study the IAM of unitarization
the two-loop ChPT amplitudes including a detailed er
analysis based on the presently available information on
low energy parameters obtained from ChPT. By pursu
such a calculation we want to answer the question of whe
or not low energy information plus unitarization reproduc
the data beyond the domain of applicability of standa
ChPT. In common with other unitarized calculations it is n
clear how to avoid the unavoidable and prejudiced choice
a particular unitarization method. Moreover, given the un
rization method, it is hard to estimate uncertainties due
higher orders in the expansion. Our only hint so far is
compare successive orders in the scattering phase shifts
their corresponding error bars and determine whether or
practical convergence requirements are met. We do
analysis using sets Ic and III of one- and two-loop low e

ergy parametersl̄ 1,2,3,4 and b̄1,2,3,4,5,6, respectively, of our
previous work@23#.

The paper is structured as follows. In Sec. II we prov
some basic definitions in order to fix notation. We also e
mate unitarity violations and the failure of a perturbati
definition of phase shifts to describe the data in the reg
above threshold. In Sec. III we analyze the IAM phase-s
predictions as well as the corresponding threshold par
eters, together with estimates of the amount of crossing
lations in terms of Roskies sum rules@38,39#, inherent to any
unitarization method. Motivated by previous experiences,
believe that such crossing violations can be amended b
suitable generalization of the IAM. This point is analyzed
Sec. III E. Although there has been some work on the o
loop IAM of unitarization, we present in Sec. IV an updat
analysis from the point of view of the convergence of t
expansion for the unitarized phase shifts. Finally, we dr
our main conclusions in Sec. V. In the Appendix we provi
some information not presented in our previous paper@23#

2See, however, the recent work onpN scattering@43#.
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and also relevant for the present work, such as correla
matrices of both low energy constants and threshold par
eters.

II. CHIRAL PERTURBATION THEORY TO TWO LOOPS
AND UNITARITY VIOLATIONS

A. Basic definitions

Let t IJ(s) be the partial wave scattering amplitude for t
reactionpp→pp at the center of mass~c.m.! energyAs in
the IJ isospin-spin channel:

t IJ~s!5
e2id IJ~s!21

2is~s!
~2!

with s(s)5A124mp
2 /s the c.m. momentum andd IJ(s) the

corresponding phase shifts. Two-particle unitarity cor
sponds to reald IJ(s) and can be written as a nonlinear rel
tion in the amplitude:

Im t IJ~s!5s~s!ut IJ~s!u2 ~3!

or, equivalently, as a linear relation in the inverse amplitu

Im t IJ
21~s!52s~s!. ~4!

For app scattering amplitude calculated in the chiral expa
sion sketched in Eq.~1!, the lowest order amplitudet IJ

(2)(s) is
a real function forS and P waves, and vanishes forD and
higher waves. The NLO amplitudet IJ

(4)(s) develops an
imaginary part forS and P waves but becomes real forD
waves, and so on. The exact unitarity relation of Eq.~4!
requires, at a perturbative level, the set of relations

Im t IJ
~2!~s!50, ~5!

Im t IJ
~4!~s!5s~s!ut IJ

~2!~s!u2, ~6!

Im t IJ
~6!~s!52s~s!t IJ

~2!~s!Ret IJ
~4!~s!. ~7!

Standard ChPT satisfies exact crossing symmetry at any
der of the expansion, but violates unitarity. Two aspects
related to this violation. In the first place, a necessary con
tion for unitarity is the satisfaction of the inequality

s~s!ut IJ~s!u5usind IJ~s!u<1. ~8!

This unitarity limit yields values ofs slightly too high.3 A
better way to quantify the unitarity violation is by definin
the quantity

UIJ~s!5u112is~s!t IJ~s!u. ~9!

Below the two-pion production thresholdAs54mp

;560 MeV, the elastic unitarity condition requiresUIJ(s)

3For instance, for the isoscalarS wave one gets the inequalit
satisfied at LO in the ranges,4Ap f p;660 MeV. We will show
below that unitarity violations take place at significantly lower e
ergies.
2-3
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J. NIEVES, M. PAVÓN VALDERRAMA, AND E. RUIZ ARRIOLA PHYSICAL REVIEW D 65 036002
5ue2idIJ(s)u51. Strictly speaking, if unitarity is violated
UIJ(s)Þ1, there is no way other than perturbation theory
a real phase shift to satisfy simultaneously Eq.~1! and Eq.
~2!. Expanding Eq.~2! according to Eq.~1!, the standard
ChPT phase shift may be computed, yielding

d IJ
ChPT~s!5

1

2i
ln@112is~s!t IJ~s!#

5s~s!t IJ
~2!~s!1s~s!@ t IJ

~4!~s!2 is~s!t IJ
~2!~s!2#

1s~s!@ t IJ
~6!~s!22is~s!t IJ

~2!~s!t IJ
~4!~s!

2 4
3 s~s!2t IJ

~2!~s!3#1¯ . ~10!

The elastic unitarity condition corresponds tod IJ
ChPT(s) being

real, which is automatically satisfied if the perturbative u
tarity relations, Eq.~7!, are used, and one effectively gets

d IJ
ChPT~s!5s~s!t IJ

~2!~s!1s~s!Ret IJ
~4!~s!

1s~s!@Ret IJ
~6!~s!1 2

3 s~s!2t IJ
~2!~s!3#1¯ .

~11!

Close to threshold, the scattering amplitude can be wri
in terms of the threshold parameters, scattering lengthsaIJ ,
and slopesbIJ , defined by

t IJ~s!52mp~s/42mp
2 !J@aIJ1bIJ~s/42mp

2 !1¯#.
~12!

The scattering amplitudest IJ(s) present kinematical zeros o
orderJ at s54mp

2 . Chiral symmetry implies the existence o
dynamical zeros for theS waves, named chiral or Adler ze
ros. In ChPT, Adler zeros may be determined perturbativ
i.e.,

t IJ~sA!5t IJ
~2!~sA!1t IJ

~4!~sA!1t IJ
~6!~sA!1¯ . ~13!

Expanding the solutionsA5sA
(2)1sA

(4)1sA
(6)1¯ , we get4

t IJ
~2!~sA

~2!!50, ~14!

sA
~4!52t IJ

~4!~sA
~2!!/t IJ

~2!~sA
~2!!8, ~15!

sA
~6!52t IJ

~6!~sA
~2!!/t IJ

~2!~sA
~2!!8

1
t IJ
~4!~sA

~2!!8t IJ
~4!~sA

~2!!

@ t IJ
~2!~sA

~2!!8#2 . ~16!

At lowest order, nonkinematical zeros are located at

sA
~2!5 1

2 mp
2 , I 50, J50, ~17!

sA
~2!52mp

2 , I 52, J50. ~18!

4For a general function there would be a term involving the s
ond derivative oft IJ

(2) . This term disappears from the formulas sin
t IJ
(2) is a linear function ofs.
03600
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From the formulas above, direct application of ChPT
quires a scrupulous separation between different chiral
ders. As we have already mentioned above, the NLO am
tudes t IJ

(4)(s) depend linearly on four dimensionles

parametersl̄ 1,2,3,4. These parameters are supposed to be
dependent off p andmp and therefore they are zeroth ord
in the chiral expansion.5 Finally, at NNLO the amplitude can
be expressed in terms of six independent parame
b̄1,2,3,4,5,6. As was shown in the original two-loop calculatio
work @14,15# theseb̄ coefficients contain a zeroth order piec
and a second order piece:

b̄i5b̄i
01Db̄i . ~19!

This makes the separation somewhat subtle because, w
substituted into Eq.~1!, an unwanted eighth order correctio
is induced. From the point of view of ChPT this contributio
has to be dropped since the complete eighth order calcula
is not available. On the other hand, these higher order
rections are numerically small as can be deduced from Ta
II.

B. Numerical results

The c.m. energy dependent figures with error bars p
sented in this work are generated as follows. If we have
energy dependent functionF in terms of a set of random
parameters (a1 ,...,an), distributed according to some stati
tical law, a random variable for any fixed value ofs,
F(s;a1 ,...,an) is generated. Obviously, for a nonlinear p
rameter dependent function the mean value of the curv
not equal to the function of the mean value
^F(s;a1 ,...,an)&ÞF(s;^a1&,... ,̂ an&). There is nothing
wrong with this and one could simply bin the distribution
for any fixed s value. Nevertheless, to make the resu
slightly more useful we wish to quote such a function of t
mean values,F(s;^a1&,... ,̂ an&), as our central curves. To
assign an upper and lower error bar~the distribution may in
general be asymmetric! relative to this central value, we bin
the distribution and first exclude the 16% top values and
16% bottom values of the distribution. The remaining bi
comprise 68% of the distribution values; the distances fr
the upper and lower values to our central value provide
upper and lower error bars, respectively. Evidently, o
bands correspond to a 68% confidence level. This proced
of assigning errors fails for extremely asymmetric distrib
tions, such that the central value turns out to be within
discarded upper or lower 16% intervals. Although we fi
that this situation seldom occurs in our calculation, in suc
case we proceed in a different way. We first discard the 1
upper and lower intervals and then compute the arithm
mean, which we assign as the central value. To control
quality of this second definition of central value, we compu

-

5Practical calculations require, however, a truncation of the ch
expansion and confrontation with experimental data, and he
some higher order systematic uncertainties remain in the one-
parameters in addition to the experimental uncertainties.
2-4
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FIG. 1. Unitarity condition for standard NNLO ChPT amplitudes inpp scattering forS and P waves defined byUIJ(s)5u1
12is(s)t IJ(s)u. Upper panels: Set Ic of Ref.@23#. Lower panels: Set III of Ref.@23#. In the calculation the parametersb̄i

0 defined in Eq.~19!
and given in Table II have been used. The unitarity condition requiresUIJ(s)51.
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both definitions whenever possible, and find that the diff
ences are numerically less significant than the error bars

The results for the unitarity conditionUIJ(s) as defined in
Eq. ~9!, can be seen in Figs. 1 and 2 in terms of theb̄i

0 and

b̄i5b̄i
01Db̄i coefficients, respectively, and for the parame

sets Ic and III. As we see, standard ChPT violates unitarit
a systematic manner well below the resonance region inc
ing uncertainties for set Ic. For set III only theP wave ex-
hibits this behavior, due to large uncertainties in theS-wave
unitarity violation. The perturbatively defined phase shif
d IJ

ChPT(s) as given by Eq.~10! can be seen in Figs. 3 and 4

terms of theb̄i
0 and b̄i5b̄i

01Db̄i coefficients, respectively
and for the parameter sets Ic and III. As we see from
figures, the perturbatively defined phase shifts seem com
ible with experimental data whenever the corresponding u
tarity condition is compatible within uncertainties with ela
tic unitarity. Let us recall that threshold parameters for set
have uncertainties similar to or slightly smaller than set
@23#. This also holds for higher energies but there app
some systematic discrepancies with the data, slightly fa
ing Set III.

Threshold parameters for sets Ic and III at the two-lo
level were computed in our previous work@23#. There, a
separation of the tree-level, one-loop, and two-loop contri
tions with their corresponding error estimates was presen
03600
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The partialS- and P-wave amplitudes in the unphysica
region below threshold and above the left cut, 0<0<4mp

2 ,
are depicted in Fig. 5. In this region partial wave amplitud
are real and present real single zeros. The single zero atmp

2

in the P wave is of kinematical origin as can be seen fro
Eq. ~12!. However, zeros in theS waves are dynamical con
sequences of chiral symmetry. As we see, the agreemen
tween the parameter sets Ic and III is very good within u
certainties. The two-loop location of Adler zeros with err
estimates is given in Table III. The additive structure of t
ChPT amplitude makes a numerically small distinction in t
separationb̄i5b̄i

01Db̄i . As we see, the isotensorS-wave
chiral zero does not move within uncertainties from its tre

TABLE III. Nonkinematical Adler zeros forS-wave I 50 and 2
amplitudes for ChPT and the parameter sets Ic and III of Ref.@23#.
We also indicate the phase-shift figures that correspond to th
zeros. Errors are given in parentheses.

sA /mp
2 (I ,J)5(0,0) (I ,J)5(2,0)

ChPT Ic Fig. 2 0.38~6! 2.03~5!

ChPT III Fig. 2 0.43~6! 2.00~5!

ChPT8 Ic Fig. 4 0.38~6! 2.03~5!

ChPT8 III Fig. 4 0.43~6! 2.00~5!
2-5
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FIG. 2. Unitarity condition for standard NNLO ChPT amplitudes inpp scattering forS and P waves defined byUIJ(s)5u1
12is(s)t IJ(s)u. Upper panels: Set Ic of Ref.@23#. Lower panels: Set III of Ref.@23#. In the calculation the parametersb̄i defined in Eq.~19!
and given in Table II have been used. The unitarity condition requiresUIJ(s)51.
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level value of Eq.~18! for either set Ic, or set III. For the
parameter set III, the two-loop shift of theS-wave isoscalar
Adler zero also almost does not move. Nevertheless, for
rameter set Ic there is a systematic shift of about 20%.

III. INVERSE AMPLITUDE METHOD TO TWO LOOPS
AND PERTURBATIVE MATCHING

A. Algebraic derivation

The idea of the method is quite simple and we review
here for the sake of completeness. If, instead of expand
the amplitude, one considers the inverse amplitude and
pands according to the chiral expansion@assumingt IJ

(2)(s)
Þ0#, one gets

1

t IJ~s!
5s~s!cotd IJ

IAM ~s!2 is~s!

5
1

t IJ
~2!~s!

2
t IJ
~4!~s!

t IJ
~2!~s!2 1F t IJ

~4!~s!2

t IJ
~2!~s!32

t IJ
~6!~s!

t IJ
~2!~s!2G1¯ .

~20!

One may check that the unitarity relation Eq.~4! is exactly
preserved because of the perturbative relations of Eq.~7!.
Note that a direct application of the IAM including up to tw
loops can unitarize onlyS and P waves. To unitarizeD
03600
a-

t
g
x-

waves a three-loop calculation would be needed. Since s
a calculation has not yet been done, we will restrict oursel
to S andP waves in the present work. The structure of E
~20! makes it possible to have poles in the second Riem
sheet, i.e., zeros oft21(s), but this is done at the expense
some fine-tuning between several orders. Actually, the IA
assumes that the inverse amplitude 1/t IJ(s) is small, which is
particularly true in the neighborhood of a resonance.

B. Inverse amplitude method phase shifts

The best way to quantify the goodness of a unitarizat
scheme such as the IAM is to check whether or not
information contained in the low energy parameters, in c
junction with the unitarized amplitude given by Eq.~20!,
predicts within acceptable errors the phase shifts in the
gion above the threshold. To proceed further we have to
in some way our sets of parameters. An alternative, and
tually complementary, point of view is to make a direct fit
the data. Unfortunately, this involves a ten-parameter fit, a
moreover there are some parameters, like for instancel̄ 3 and
l̄ 4 , for whichpp scattering is not very sensitive. Actually, a
was recognized in Ref.@42#, there are two kinds of low en
ergy parameters according to the properties of the co
sponding terms in the partial wave amplitudes: Class
terms that survive in the chiral limit, comprisingl̄ 1 , l̄ 2 , r 5 ,
and r 6 ;
2-6
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INVERSE AMPLITUDE METHOD IN pp SCATTERING IN . . . PHYSICAL REVIEW D65 036002
FIG. 3. Standard NNLO ChPT phase shifts~in degrees! for pp scattering forSandP waves after Eq.~10!. Upper panels: Set Ic of Ref

@23#. Lower panels: Set III of Ref.@23#. In the calculation the parametersb̄i
0 defined in Eq.~19! and given in Table II have been use

Combined data from Refs.@2–10#.
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and class B, symmetry breaking terms corresponding to
remaining low energy parametersl̄ 3 , l̄ 4 , r 1 , r 2 , r 3 , andr 4 .
The r i parameters determine the pure two-loop contribut
to the amplitude. On the basis that chiral symmetry break
is a small effect, we expect a higher sensitivity of the sc
tering data to variations of the class A parameters.

1. Naive scheme

The simplest and most direct way to look at the quant
tive predictions of the IAM is to take the unitarized amp
tude Eq.~20! for all partial waves and propagate the errors
the one- and two-loop parametersl̄ 1,2,3,4 and b̄1,2,3,4,5,6, re-
spectively. As we have already pointed out, this may b
dangerous procedure since the two-loop parameters cont
higher order piece, but one might argue that, since the
merical effect on theb̄’s should be small~see Table II!, one
might expect an overall small effect anyhow. Along the
lines, we present in Fig. 6 the results obtained by using
parameter sets Ic and III of Ref.@23#. As can be seen from
the figures, the errors are huge and there is even a tren
discrepancy in ther channel for set III.

2. Monte Carlo scheme

Having realized the dangers of making a naive Mo
Carlo error propagation from the analysis of Ref.@23#, we
03600
e
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g
t-
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u-

e
e

to

e

proceed now in a different manner. We consider sets Ic
III of Ref. @23# for both the one-loopl̄ i parameters and the
zeroth order two-loop parametersb̄i

0 as explicitly given in
the Appendix of Ref.@15#. The results are shown in Fig. 7
Although in theSwaves there are no big differences as co
pared to Fig. 6, in ther channel the effect at intermediat
energies not only makes the predicted phase shifts com
ible with data but also the error bars are substantially
duced.

3. Partial fit scheme

The results of the two previous schemes suggest
some fine-tuning mechanism is needed, since the large
ference between them is due to either considering theb̄ pa-
rameters as a whole or explicitly splitting them as differe
orders, according tob̄i5b̄i

01Db̄i . This fact seems to indi-
cate that their numerical values may be constrained to a la
extent by performing ax2 fit. As we have mentioned abov
this involves ten parameters. Another possibility might be
make selective fits in some subsets of parameters and pr
gate the errors in the remaining ones. After trying out seve
combinations, we have found that, indeed, the low ene
parameters of class A, i.e., those not vanishing in the ch
limit, are enough for a satisfactory fit to the data. In practi
the procedure is as follows. For either set Ic or set III,
2-7
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J. NIEVES, M. PAVÓN VALDERRAMA, AND E. RUIZ ARRIOLA PHYSICAL REVIEW D 65 036002
FIG. 4. Standard NNLO ChPT phase shifts~in degrees! for pp scattering forSandP waves after Eq.~10!. Upper panels: Set Ic of Ref

@23#. Lower panels: Set III of Ref.@23#. In the calculation the parametersb̄i defined in Eq.~19! and given in Table II have been use
Combined data from Refs.@2–10#.
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generate a sufficiently large sample~N5104 proves large
enough! of class B parameters, i.e., those corresponding
chiral symmetry breaking terms in thepp scattering ampli-
tudes. For any member of the class B parameter populati
x2 fit of class A parameters is performed. This proced
yields distributions for l̄ 1 , l̄ 2 , r 5 , and r 6 parameters,
whence straightforward error analysis may be undertak
The choice of these parameters rather than theb̄’s has the
advantage that the separationb̄i5b̄i

01Db̄i may be explicitly
done within the fitting procedure, and hence a correct bo
keeping of chiral orders in the inverse amplitude is imp
mented. The result of the fit is6

l̄ 1520.1420.74
10.62, l̄ 254.460.1,

104r 551.0720.35
10.31, 104r 6520.3520.34

10.13,
~21!

which producesx2 / DOF of 69.9/(6724)51.11, a rather
satisfactory value as can also be clearly seen in Fig. 8

6We apply the following energy cuts and scattering data. For
isoscalarS wave we cut atAs5610 MeV the data of Refs.@2
–4,6–8#. For the isotensorS wave we cut at 970 MeV the data o
Refs.@9,5#. For the isovectorP wave we cut at 1 GeV.
03600
to
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In

addition, we obtain the correlation coefficientr ( l̄ 1 , l̄ 2)
50.22. There are no set Ic and set III labels becausel̄ 1 and
l̄ 2 , which provide this label, are determined from the fi
Both class A and class B parameters contribute to the t
errors. The errors corresponding to fitted~class A! low en-
ergy parameters can be determined by employing the s
dard procedure of changing thex2 from its minimal value by
one unit. We find that they are rather small, so the quo
errors in Eq.~21! are dominated by the uncertainties in th
class B low energy parameters and the scale at which r
nance saturation is assumed,m57506250 MeV.

As we see, the resulting values of the fitted paramet
particularly l̄ 1 and l̄ 2 , are very much in agreement with th
standard ChPT estimates of Ref.@23#. It is also interesting to
note that the values ofr 5 and r 6 are consistent within erro
bars with those assumed from resonance saturation prov
with 100% uncertainty as suggested in Ref.@17#. Transform-
ing these values intob̄ parameters, we get

b̄15212.122.2
11.9, b̄2511.521.0

11.2, b̄3520.2920.27
10.20,

b̄450.7560.02, b̄553.1420.56
10.42, b̄650.5520.64

10.46.
~22!

These numbers have been constructed by adding the re
ing b̄i

0 to the second orderDb̄i contribution, although both

e

2-8
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INVERSE AMPLITUDE METHOD IN pp SCATTERING IN . . . PHYSICAL REVIEW D65 036002
FIG. 5. S and P partial wave amplitudesf IJ(s)5AstIJ(s) ~in fm! for pp scattering in standard ChPT to two loops in the unphysi
region 0<s<4mp

2 . Upper panels: Set Ic of Ref.@23#. Lower panels: Set III of Ref.@23#. Normalization is such that ats54mp
2 one has the

scattering length for theS waves. In the scattering region (s.4mp
2 ) this figure corresponds to Fig. 3.
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contributions enter the fit in a nonadditive way. As we s
the resulting values agree with those expected from stan
ChPT analyses within uncertainties, with the sole excep
of b̄6 , which turns out to be inconsistent. The reason is t
the corresponding value forr 6 comes out with exactly oppo
site sign to that expected in resonance saturation.

Finally, we present in Fig. 9 the IAM unitarized partialS-
and P-wave amplitudes in the unphysical region 0<s
<4mp

2 using the Monte Carlo scheme for both sets Ic a
III. Obviously, the kinematical zero of theP wave at s
54mp

2 remains fixed. On the other hand, the nonkinemat
Adler zeros of theS-wave amplitudes do not move from the
lowest order locations given by Eq.~18! but become higher
order zeros, as can be observed from the figures in the s
bumps around the zeros, and analytically in Eq.~20!. Al-
though this effect is undesirable, we see that from a dir
comparison of the standard ChPT amplitudes of Fig. 5 w
the IAM unitarized ones of Fig. 9 one may conclude that
violation of the order of the nonkinematical zero does n
have dramatic quantitative consequences.

C. Crossing violations

As we have said, the IAM restores unitarity but violat
crossing symmetry. The interesting point is that althou
unitarization, which has to do with the right hand cut, m
provide a satisfactory energy dependence and hence a
03600
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ct
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de-

scription of the data in the scattering region, it can still do
with low energy constants~LEC’s! that differ from those
expected in standard ChPT. The precise numerical value
the LEC’s depend on how the left hand cut is handled a
approximated before and after unitarization. On the ot
hand, a proper left hand cut is a direct consequence of cr
ing symmetry in thes,t,urepresentation. It is therefore inte
esting to study these crossing violations on a quantita
basis. A particular way of doing this at the level of parti
wave amplitudes is by using Roskies sum rules@38,39#. Two
methods at least have been introduced in the literature
characterize crossing violations in a quantitative way. De
ing the quantities introduced in Ref.@30#,

C15E
0

4mp
2

ds~4mp
2 2s!~3s24mp

2 !@ t00~s!12t20~s!#,

~23!

C25E
0

4mp
2

ds~4mp
2 2s!@2t00~s!25t20~s!#,

C35E
0

4mp
2

ds$~4mp
2 2s!~3s24mp

2 !@2t00~s!25t20~s!#

19~4mp
2 2s!2t11~s!%,
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J. NIEVES, M. PAVÓN VALDERRAMA, AND E. RUIZ ARRIOLA PHYSICAL REVIEW D 65 036002
FIG. 6. IAM unitarized phase shifts~in degrees! for pp scattering forS andP waves. Naive scheme~see main text!. Upper panels: Set
Ic of Ref. @23#. Lower panels: Set III of Ref.@23#. Combined data from Refs.@2–10#.
-

C45E
0

4mp
2

ds$~4mp
2 2s!s2@2t00~s!25t20~s!#

13~4mp
2 2s!3t11~s!%,

C55E
0

4mp
2

ds$~4mp
2 2s!2s2@2t00~s!25t20~s!#

13~4mp
2 2s!2~8mp

2 23s!st11~s!%.

These relations can be written in the general form

Ci5E
0

4mp
2

ds(
IJ

v IJ,i~s!t IJ~s!. ~24!

Crossing symmetry impliesCi50. We also consider the defi
nitions introduced in Ref.@40#:

A152E
0

4mp
2

ds~s24mp
2 !t00~s!, ~25!

B155E
0

4mp
2

ds~s24mp
2 !t20~s!,

A25E
0

4mp
2

ds~s24mp
2 !~3s24mp

2 !t00~s!,
03600
B2522E
0

4mp
2

ds~s24mp
2 !~3s24mp

2 !t20~s!,

A35E
0

4mp
2

ds~s24mp
2 !~3s24mp

2 !t00~s!,

B352E
0

4mp
2

ds~s24mp
2 !2t11~s!,

A45E
0

4mp
2

ds~s24mp
2 !~3s24mp

2 !$2t00~s!25t20~s!%,

B459E
0

4mp
2

ds~s24mp
2 !2t11~s!,

A55E
0

4mp
2

ds~s24mp
2 !~10s2232smp

2 116mp
4 !

3$2t00~s!25t20~s!%,

B5526E
0

4mp
2

ds~s24mp
2 !2~5s24mp

2 !t11~s!,
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INVERSE AMPLITUDE METHOD IN pp SCATTERING IN . . . PHYSICAL REVIEW D65 036002
FIG. 7. IAM unitarized phase shifts~in degrees! for pp scattering forSandP waves. Monte Carlo scheme~see main text!. Upper panels:
Set Ic of Ref.@23#. Lower panels: Set III of Ref.@23#. Combined data from Refs.@2–10#.
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A65E
0

4mp
2

ds~s24mp
2 !~35s32180s2mp

2 1240smp
4 264mp

6 !

3$2t00~s!25t20%,

B6515E
0

4mp
2

ds~s24mp
2 !2~21s2248smp

2 116mp
4 !t11~s!.
03600
Crossing symmetry implies in this caseAi2Bi50 for i from
1 to 6. Formally, if the unitarized amplitudes embody ChP
to some order, these sum rules will be identically verified
the same order. In previous work, the numerical satisfac
of the sum rules has been tested to one and two loops, bu
error estimates have been taken into account. Becaus
this, somead hoc dimensionless crossing violations hav
been defined@30,40#. In Refs.@30,34# the ratio
FIG. 8. IAM unitarized phase shifts~in degrees! for pp scattering forSandP waves. Partial fit scheme~see main text!. There are no set

Ic and set III labels becausel̄ 1 and l̄ 2 , which provide this label, are determined from the fit. Combined data from Refs.@2–9#. Uncertainties
in the curves stem from those of class B parameters and the scale for which resonance saturation is assumed,m57506250 MeV.
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J. NIEVES, M. PAVÓN VALDERRAMA, AND E. RUIZ ARRIOLA PHYSICAL REVIEW D 65 036002
FIG. 9. S andP partial wave amplitudesf IJ(s)5AstIJ(s) ~in fm! for pp scattering in the IAM to two loops in the unphysical regio
0<s<4mp

2 . Monte Carlo scheme. Upper panels: Set Ic of Ref.@23#. Lower panels: Set III of Ref.@23#. Normalization is such that ats
54mp

2 one has the scattering length for theS waves. In the scattering region (s.4mp
2 ) this figure corresponds to Fig. 7.
the

the
to
of
Ri51003

E
0

4mp
2

ds(
IJ

v IJ,i~s!t IJ~s!

E
0

4mp
2

dsU(
IJ

v IJ,i~s!t IJ~s!U ~26!

is introduced,7 whereas in Ref.@40# the violation
03600
Vi51003UAi2Bi

Ai1Bi
U ~27!

is defined. The advantage of providing error bars to
crossing sum rulesCi50 or Ai2Bi50 is obvious; the di-
mensionless quantity is naturally defined as the size of
uncertainty relative to the mean value. This allows one
make a definite statement on crossing violations in terms
TABLE IV. Roskies sum rule violations in percentages as defined by Eq.~27! and introduced in Ref.@40#
for the IAM method and the parameter sets Ic and III of Ref.@23#. We also indicate the phase-shift figures
that generate these violations

IAM V1 V2 V3 V4 V5 V6

Set Ic naive. Figure 6 0.920.7
10.6 0.920.5

10.7 0.920.5
10.8 0.420.3

10.4 33221
162 6267

113

Set III naive. Figure 6 0.320.6
10.2 0.420.2

10.6 0.420.3
10.6 0.1520.30

10.17 14213
140 2261

122

Set Ic non-naive Figure 7 0.720.6
10.4 0.720.5

10.6 0.920.6
10.8 0.520.4

10.5 22219
129 4214

112

Set III non-naive. Figure 7 0.320.1
10.5 0.320.2

10.5 0.420.3
10.6 0.220.2

10.4 9215
123 6215

110

Fit of Figure 8 0.520.3
10.5 0.520.3

10.5 0.520.4
10.6 0.320.3

10.3 12225
119 727

121

7We use specifically the formula proposed in Ref.@34# since it is unambiguous. The formula of Ref.@30# is misleading, probably due to a
misprint.
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INVERSE AMPLITUDE METHOD IN pp SCATTERING IN . . . PHYSICAL REVIEW D65 036002
TABLE V. Sum rule violations in percentages as defined by Eq.~26! and introduced in Refs.@30,34# for
the IAM and the parameter sets Ic and III of Ref.@23#. We also indicate the phase-shift figures that gene
these violations

IAM R1 R2 R3 R4 R5

Set Ic naive. Figure 6 1.220.7
10.9 20.920.8

10.6 0.920.6
10.8 0.0320.08

10.12 20.0520.10
10.09

Set III naive. Figure 6 0.520.3
10.8 20.320.7

10.2 0.320.3
10.6 20.0720.07

10.18 20.0220.07
10.13

Set Ic non-naive. Figure 7 0.920.6
10.7 20.720.6

10.5 1.020.7
11.0 0.120.1

10.2 0.0820.1
10.2

Set III non-naive. Figure 7 0.420.3
10.7 20.320.6

10.1 0.420.4
10.8 0.0620.1

10.2 0.0420.1
10.2

Fit of Figure 8 0.620.4
10.6 20.520.5

10.3 0.620.5
10.7 0.0620.1

10.1 0.0120.2
10.1
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statistical uncertainties. Nevertheless, we quote in Tables
and V theVi and Ri values of Ref.@40# and Refs.@30,34#,
respectively, since they give an idea of how large these
violations in percentage terms.

As can be inferred from Table IV, crossing violations
introduced in Ref.@40# do not seem to be dramatically larg
although this depends on their particular definition. The m
serious violations appear in theV5 rule, which combines
both isospinS-wave channels and theP wave. The computed
uncertainties provide a less pessimistic impression, sinc
some cases these violations are compatible with zero. M
over, if the crossing violation definition of Refs.@30,34# is
evaluated we see from Table V that these sum rules are b
satisfied. The effect of uncertainties on the violations h
been overlooked in previous work@30,31#. Nevertheless, we
point out that generally speaking there are systematic, tho
small, crossing violations. In the partial fit scheme cor
sponding to Fig. 8 the crossing violations defined in Re
@30,34# are compatible with values smaller than 0.1%.

D. Threshold parameters

The chiral expansion is expected to work best at low
ergies. But even so threshold parameters such as scatt
lengthsaIJ and effective rangesbIJ defined by Eq.~12! turn
out to get corrections at each order of the expansion.
IAM is constructed to reproduce ChPT at all energies bu
the lowest orders of the 1/f p

2 expansion. Thus, if we go to th
threshold region we do not exactly reproduce the stand
ChPT behavior. Nevertheless, as can be seen from the fig
the difference between the standard ChPT amplitudes and
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unitarized ones is actually very small. Our results for t
two-loop IAM threshold parameters are presented in Ta
VI. The fact that ChPT and ChPt8 entries in the table are th
same within errors is not accidental; it merely reflects

additive combinationb̄i5b̄i
01Db̄i and the smallness o

Dbi . A more detailed table containing the explicit separati
in tree-level, one-loop, and two-loop contributions as well
68% ellipses of theS-wave scattering lengths can be found
Ref. @23#. In general we see that the IAM threshold para
eters are compatible within errors with the ChPT ones. T
only exception is the slopeb11 in the r channel for the two
Monte Carlo schemes. The partial fit scheme provides co
patiblea11 andb11 values with slightly better accuracy.

E. Generalized inverse amplitude method

The Roskies sum rules provide a set of necessary co
tions for a crossing symmetricpp scattering amplitude. It
has been noted that the IAM transforms the nonkinemat
single zeros of the partial wave amplitudes in
(N11)-order zeros of the IAM unitarized amplitudes,N be-
ing the order of the chiral expansion„see the denominator
@ t IJ

(2)(s)#N11 of Eq. ~20!…. Since the integrals involve the
interval 0<s<4mp

2 between the right and left hand cut
these higher order zeros clearly influence the satisfactio
the crossing sum rules. However, there is no unique wa
modify the chiral zero behavior in order to achieve a bet
satisfaction of crossing. To overcome this difficulty, seve
interesting methods have been proposed, effectively rec
ing the amplitude behavior in the unphysical region,
s
eters.
TABLE VI. Scattering lengthsaIJ and slopesbIJ defined by Eq.~12! for the IAM and the parameter set
Ic and III of Ref.@23#. We also indicate the phase-shift figures that correspond to these threshold param

a00mp b00mp
3 10a11mp

3 10b11mp
5 10a20mp 10b20mp

3

ChPT Ic Fig. 2 0.214~5! 0.27~1! 0.37~1! 0.06~1! 20.42~1! 20.76~2!

ChPT III Fig. 2 0.208~6! 0.25~1! 0.374~8! 0.053~7! 20.44~1! 20.80~2!

ChPT Ic Fig. 4 0.214~5! 0.27~1! 0.37~1! 0.06~1! 20.42~1! 20.76~2!

ChPT III Fig. 4 0.208~6! 0.25~1! 0.374~8! 0.053~7! 20.44~1! 20.80~2!

IAM Ic Fig. 6 0.220~7! 0.30~2! 0.37~8! 0.048~6! 20.42~1! 20.76~2!

IAM III Fig. 6 0.211~8! 0.27~2! 0.37~6! 0.046~5! 20.44~1! 20.80~2!

IAM Ic Fig. 7 0.221~8! 0.29~2! 0.38~1! 0.072~1! 20.42~1! 20.76~2!

IAM III Fig. 7 0.213~8! 0.27~2! 0.381~9! 0.064~1! 20.44~1! 20.80~2!

Fit of Fig. 8 0.216~5! 0.280~7! 0.376~6! 0.058~5! 20.43~1! 20.79~1!
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TABLE VII. Roskies sum rules violations in percentages as defined by Eq.~27! and introduced in Ref.
@40# for the generalized IAM of Ref.@34# and the parameter sets Ic and III of Ref.@23#.

Generalized IAM V1 V2 V3 V4 V5 V6

Set Ic naive 20.0620.11
10.12 0.620.09

10.02 0.0120.04
10.04 20.0220.05

10.04 1429
123 625

14

Set III naive 0.0220.01
10.01 0.0620.02

10.02 0.0120.04
10.03 20.0220.04

10.04 824
110 226

14

Set Ic non-naive 20.320.1
10.1 20.0920.04

10.03 20.0420.04
10.04 0.0220.04

10.05 122
15 225

14

Set III non-naive 20.320.1
10.1 20.0620.03

10.03 20.0120.03
10.04 0.0220.04

10.05 121
12 225
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though one should say that none of them is entirely satis
tory from the point of view of the mathematical properti
that one wants to imposea priori on the amplitude. In Ref
@30# ~scheme II of that work!, use of a dispersion relation ha
been suggested for the inverse amplitudet IJ(s)21. In this
way, not only the unitarity cut but also the position of th
single chiral zero, which becomes a single pole for the
verse amplitude, may be enforced from the beginning. T
left hand cut is assumed to be that of ChPT up to a cer
a
he

th
e
ef
o
e
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negatives52L2 value (L250.5– 0.6 GeV2) and a constant
up to s52`. This procedure has the disadvantage of int
ducing a new variable~the cutoff L! into the problem not
present in the ChPT amplitude. In addition, it does not ta
the shift in the nonkinematical chiral zeros into account, a
imposes the tree-level ones. More recently, in Ref.@34# a
generalized IAM to two loops was proposed. Ifs0 is the
chiral Adler zero to lowest ordert IJ

(2)(s0)50 then the follow-
ing expression for the inverse amplitude is suggested@34#:
t IJ
21~s!5

t IJ
~2!~s!2t IJ

~4!~s!1t IJ
~4!~s!2/t IJ

~2!~s!2t IJ
~6!~s!12t IJ

~4!~s0!@12t IJ
~4!~s!/t IJ

~2!~s!#12t IJ
~6!~s0!1t IJ

~4!~s0!2/t IJ
~2!~s!

@ t IJ
~2!~s!1t IJ

~4!~s0!1t IJ
~6!~s0!#2 . ~28!
ns

is
ters

er
an
stion
this
two
m-
lso
this
e
gy
sing
This expression violates exact unitarity since

Im t IJ
21~s!52s~s!

t IJ
~2!~s!212t IJ

~4!~s0!t IJ
~2!~s!

@ t IJ
~2!~s!1t IJ

~4!~s0!1t IJ
~6!~s0!#2 ~29!

and, in addition, has a single zero at the lowest order
proximation of the chiral zero. The slope coincides with t
one obtained in ChPT as can be seen from the formula

t IJ~s!5@ t IJ
~2!~s0!81t IJ

~4!~s0!81t IJ
~6!~s0!8#~s2s0!

1O@~s2s0!2#. ~30!

In the limit t IJ
(4)(s0)1t IJ

(6)(s0)→0 in Eq.~28! the generalized
IAM of Ref. @34# reduces to the standard IAM of Eq.~20!
and also unitarity is exactly satisfied. In practice, both
unitarity violations and the absence of a shift for nonkin
matical zeros are numerically small. It was shown in R
@34# that the generalized IAM improves the satisfaction
the Roskies sum rules, but no uncertainty estimates w
p-

e
-
.
f
re

considered. Using the two definitions of crossing violatio
given by Eqs.~26! and ~27! suggested in Refs.@30,34# and
@40#, we show in Tables VII and VIII, respectively, that th
is indeed the case, provided uncertainties in the parame
are taken into account.

IV. CONVERGENCE OF THE INVERSE AMPLITUDE
METHOD

The IAM can be systematically implemented to any ord
in the chiral expansion with no additional LEC’s other th
those required by standard ChPT. There arises the que
as to what extent this method is convergent. To answer
question in practice we can only compare one-loop and
loop predictions for the unitarized phase shifts. Such a co
parison makes sense only if errors in the LEC’s are a
transported, as we have repeatedly done throughout
work. Actually, in Ref.@29# the one-loop error analysis of th
IAM phase shifts was estimated by varying the low ener
constants. In this section we reanalyze this question by u
TABLE VIII. Sum rule violations in percentages as defined by Eq.~26! and introduced in Refs.@30,34#
for the generalized IAM of Ref.@34# and the parameter sets Ic and III of Ref.@23#.

Generalized IAM R1 R2 R3 R4 R5

Set Ic naive 0.0820.02
10.03 20.0620.1

10.1 20.0420.10
10.09 20.0620.03

10.03 20.0520.04
10.05

Set III naive 0.0820.03
10.02 0.0220.1

10.1 20.0520.09
10.08 20.0320.03

10.03 20.00420.05
10.06

Set Ic non-naive 20.1120.05
10.04 20.320.1

10.1 0.0320.09
10.10 20.1220.04

10.03 20.220.06
10.05

Set III non-naive 20.0820.04
10.05 20.320.1

10.1 0.0420.08
10.10 20.1020.04

10.03 20.220.1
10.2
2-14



INVERSE AMPLITUDE METHOD IN pp SCATTERING IN . . . PHYSICAL REVIEW D65 036002
FIG. 10. Unitarity condition for standard NLO ChPT amplitudes inpp scattering forS and P waves defined byUIJ(s)5u1
12is(s)t IJ(s)u. Upper panels: Set Ic of Ref.@23#. Lower panels: Set III of Ref.@23#. The unitarity condition requiresUIJ(s)51.
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the updated values of the one-loop coefficients given by
Ic and III taking into account by means of a Monte Ca
simulation the important anticorrelations betweenl̄ 1 and l̄ 2
determined in Ref.@23#. Following the same systematics a
in the two-loop calculation, we show in Fig. 10 the unitar
condition of Eq.~9!. As one would expect, unitarity viola
tions of one-loop ChPT occurr at lower energies. The N
ChPT phase shifts defined through Eq.~10! are depicted in
Fig. 11. The general trend follows a similar pattern to t
two-loop calculation, although some important differenc
emerge. First, the uncertainties in the phase shifts are sm
at NNLO than at NLO in the threshold region, as one wou
expect from the fact that threshold parameters are more
curately determined at NNLO than at NLO@23#.8 In the re-
gion above threshold the situation is exactly the opposite,
two loop calculation produces larger uncertainties than
one loop one. In addition, by comparison of Fig. 11 and Fi
3 ~and 4 in ther channel! one sees that the discrepancies
the region above threshold are larger than the estimated
certainties, with an overall trend to improvement in the tw
loop calculation. A similar trend, although in a less cle
manner, is observed in the twoS waves. The unitarity con-

8This circumstance is not trivial and it happens only for sets
and III. Set II of Ref.@23# shows cases where predictive ability
the threshold parameters is lost, and the NNLO result is no m
accurate than the NLO.
03600
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r

dition Eq. ~9! gives us a good idea about the applicability
standard ChPT to one- and two-loop approximations. Nev
theless, the agreement of the perturbative phase shifts
~10! with experiment seems to extend up to a region wh
the unitarity violation may be as large as 10–20 %.

The one-loop IAM phase shifts are depicted in Fig. 1
Clearly, the general picture provided by NLO ChPT loo
better than that obtained by comparing either of the t
Monte Carlo schemes studied in Sec. III based on NN
ChPT. By looking at either of these two-loop schemes, Fi
6 and 7, we realize that there is a clear loss of predict
power; the errors in the two-loop phase shifts are larger t
the discrepancy between their mean value and the one-
mean value. Finally, in Fig. 13 a partial one-loop fit proc
dure in l̄ 1 and l̄ 2 parameters to the data is presented, wh
variations in l̄ 3 and l̄ 4 are taken into account. The result o
the fit is

l̄ 1520.4460.02, l̄ 255.5160.04, r ~ l̄ 1 , l̄ 2!520.81,
~31!

where the errors reflect the uncertainties inl̄ 3 and l̄ 4 . Here
x2 per DOF is 191/(6722)52.94, almost three times large
than in the two-loop case~1.11!, and too large to be consid
ered a satisfactory description of the scattering data. Su
large x2 value makes the determination of the uncertaint
of l̄ 1 and l̄ 2 due to the error bars in the fitted data meanin

c

re
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FIG. 11. Standard NLO ChPT phase shifts~in degrees! for pp scattering forS andP waves after Eq.~10!. Upper panels: Set Ic of Ref
@23#. Lower panels: Set III of Ref.@23#. Combined data from Refs.@2–10#.
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less. As we see, the values obtained for the fitted parame
are compatible with the corresponding two-loop partial
procedure, Eq.~21!, although the errors in the one-loop ca
due to uncertainties inl̄ 3 and l̄ 4 are much smaller than in th
two-loop case. This may be an indirect consequence of
largex2 value.

V. CONCLUSIONS

In the present work we have presented a thorough st
of the inverse amplitude method to unitarize the NLO~one-
loop! and NNLO~two-loop! ChPTpp scattering amplitudes
below theKK̄ threshold. To this end, we have consider
several one-loopl̄ 1,2,3,4 and two-loop b̄1,2,3,4,5,6 parameter
sets along the lines discussed in our previous work@23#.
Particularly interesting in this work is the role played by t
uncertainties in these parameters. To complement the an
sis and provide some quantitative motivation we have de
mined unitarity violations within standard ChPT, with err
estimates. They take place at much lower energies than
unitarity limit suggests. Moreover, we have also shown
systematic discrepancy with the data in the region ab
threshold if phase shifts are defined perturbatively. The
cussion is complicated by the fact that the two-loop para
etersb̄1,2,3,4,5,6may be split into a zeroth order contributio
b̄1,2,3,4,5,6

0 and a higher order contributionDb̄1,2,3,4,5,6, which
slightly spoils the chiral counting. The difference caused
03600
rs
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ly-
r-

he
a
e
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n

the phase shifts by including or not the higher contribution
small within ChPT. Motivated by this we have unitarized t
two-loop amplitude, and devised several schemes to pre
the phase shifts from threshold up to the resonance reg

The effect of consistently treating or notDb̄1,2,3,4,5,6as higher
order is much stronger for the IAM unitarized phase shif
Typically, a factor of 2 or more difference in the uncertainti
is encountered. In any case, they are rather large, altho
they seem consistent with the scattering data. This indicat
kind of fine-tuning going on, and suggests a fit to the data
determine the low energy parameters that remain in the
ral limit, keeping the remaining low energy paramete
within their error bars. The result of the fit is satisfacto

although a discrepancy appears in theb̄6 coefficient. Never-
theless, the predicted partially fitted phase shifts vary wit
very small uncertainties, not far from the recent ChPT ana
sis of the Roy equations carried out in Ref.@42#. Despite
these features, the IAM produces crossing violations, wh
have been quantified in terms of Roskies sum rules. Ge
ally speaking, they are not very large in percentage ter
although in some cases the uncertainties are so large tha
conclusion can be drawn. We have also studied some pro
als to generalize the IAM in order to achieve a better sa
faction of crossing properties. Finally, we have addressed
convergence of an expansion based on the IAM and incr
ing order of approximation in ChPT. By comparing NL
~one-loop! and NNLO~two-loop! IAM predicted phase shifts
2-16
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FIG. 12. NLO IAM unitarized phase shifts~in degrees! for pp scattering forSandP waves. Monte Carlo scheme~see main text!. Upper
panels: Set Ic of Ref.@23#. Lower panels: Set III of Ref.@23#. Combined data from Refs.@2–10#.
t
e
Th
o

67

of
we see at the present stage a lack of predictive power;
errors in the two-loop phase shift are larger than the diff
ence between the central one-loop and two-loop values.
is a direct consequence of the low accuracy in the two-lo
parameters.
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APPENDIX: CORRELATIONS AMONG NEXT-TO-NEXT-
TO-LEADING ORDER LOW ENERGY CONSTANTS

AND THRESHOLD PARAMETERS IN STANDARD CHIRAL
PERTURBATION THEORY

The correlation matrix, defined as usual by

r i j 5^xixj&, ~A1!
FIG. 13. NLO IAM unitarized phase shifts~in degrees! for pp scattering forSandP waves. Partial fit scheme~see main text!. The errors

in the curves are due to uncertainties inl̄ 3 and l̄ 4 . Combined data from Refs.@2–10#.
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xi5
ci2^ci&

A^ci
2&2^ci&

2
,

^ f ~c1 ,...,cn!&5
1

N (
a51

N

f ~c1,a ,...,cn,a!,
03600
ci being any of the low energy constants or threshold para
eters, is provided below as obtained from ourN5104 finite
size samples for both set Ic and set III. Taking into acco
the central values and their errors given in Tables II and
and ignoring the slight error asymmetries, the parameter
are fully general by going through diagonalization to t
principal axis in parameter space and making a Monte C
Gaussian simulation in each principal direction.
Set Ic

r ~ b̄i ,b̄ j !5S 11.00

20.74 11.00

10.53 20.77 11.00

20.49 10.64 20.49 11.00

10.09 10.04 20.41 10.10 11.00

20.08 10.23 20.54 10.23 10.57 11.00

D , ~A2!

r i j
threshold5

a00 a11 a20 b00 b11 b20

S 11.00

10.13 11.00

10.58 20.21 11.00

10.75 20.13 10.37 11.00

10.02 10.89 20.07 20.10 11.00

10.20 10.06 10.57 10.38 10.11 11.00

D . ~A3!

Set III

r ~ b̄i ,b̄ j !5S 11.00

20.73 11.00

10.53 20.76 11.00

20.12 10.20 20.14 11.00

10.22 20.16 20.19 10.21 11.00

10.06 10.02 20.29 10.19 10.47 11.00

D , ~A4!

r i j
threshold5

a00 a11 a20 b00 b11 b20

S 11.00

20.08 11.00

10.67 20.46 11.00

10.81 20.32 10.55 11.00

20.11 10.82 20.23 20.18 11.00

10.37 20.45 10.71 10.59 20.21 11.00

D . ~A5!
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