
PHYSICAL REVIEW D, VOLUME 65, 034006
QCD factorized Drell-Yan cross section at large transverse momentum
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We derive a new factorization formula in perturbative quantum chromodynamics for the Drell-Yan massive
lepton-pair cross section as a function of the transverse momentumQT of the pair. WhenQT is much larger
than the pair’s invariant massQ, this factorization formula systematically resums the logarithmic contributions
of the typeas

mlnm(QT
2/Q2) to all orders in the strong couplingas . WhenQT;Q, our formula yields the same

Drell-Yan cross section as conventional fixed order QCD perturbation theory. We show that resummation is
important when the collision energyAS is large enough andQT@Q, and we argue that perturbative expansions
are more stable and reliable in terms of the modified factorization formula.
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I. INTRODUCTION

The study of massive lepton-pair production in hadro
collisions~the Drell-Yan process! has been a valuable pursu
for many years@1#. The process is an excellent laboratory f
theoretical and experimental investigations of strong inter
tion dynamics, and it is a channel for discovery of quark
nium states and intermediate vector bosons. In the Drell-
process, the massive lepton pair is produced via the deca
an intermediate virtual photong* . Within the context of per-
turbative quantum chromodynamics~QCD!, the Drell-Yan
cross section in a collision between hadronsA and B,
A(PA)1B(PB)→g* @→ l l̄ (Q)#1X, can be expressed i
terms of the cross section for production of an unpolariz
virtual photon of the same invariant mass@2#:

dsAB→ l 1 l 2(Q)X

dQ2 dQT
2dy

5S aem

3pQ2D dsAB→g* (Q)X

dQT
2dy

. ~1!

The variablesQ, QT , andy are the invariant mass, transver
momentum, and rapidity of the pair. The symbolX stands for
an inclusive sum over final states that recoil against the
tual photon. An integration has been performed over the
gular distribution in the lepton-pair rest frame. Because
leptons can be detected and measured without restricti
massive lepton-pair production as well as inclusive virt
photon production defined in Eq.~1! are entirely inclusive.

Precise knowledge of the gluon parton distribution
nucleons is critical for reliable predictions of the signals a
backgrounds for many important reactions studied at the
milab Tevatron and CERN Large Hadron Collider~LHC!. It
was pointed out recently that the transverse momentum
tribution of massive lepton pairs produced in hadronic co
sions is an advantageous source of constraints on the g
distribution @2#, free from the experimental and theoretic
complications of photon isolation that beset studies
prompt photon production@3,4#. Other than the difference
between a virtual and a real photon, the Drell-Yan proc
and prompt photon production share the same partonic
0556-2821/2002/65~3!/034006~23!/$20.00 65 0340
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processes. Similar to prompt photon production, the lowe
order virtual photon ‘‘Compton’’ subprocess:g1q→g* 1q
dominates theQT distribution whenQT.Q/2, and the next-
to-leading order contributions preserve the fact that theQT
distributions are dominated by gluon initiated partonic su
processes@2#.

If both physically measured quantitiesQ andQT are large,
the cross section for lepton pairs of invariant massQ and
transverse momentumQT can be factored systematically i
QCD perturbation theory and expressed as@5,6#

dsAB→g* (Q)X

dQT
2dy

5(
a,b

E dx1fa/A~x1 ,m!E dx2fb/B~x2 ,m!

3
dŝab→g* (Q)X

dQT
2dy

~x1 ,x2 ,Q,QT ,y;m!. ~2!

The sum(a,b runs over all parton flavors;fa/A andfb/B are
normal parton distributions; andm is the renormalization and
the factorization scale. The functiondŝab→g* (Q)X /dQT

2dy in
Eq. ~2! represents the short-distance physics of the collis
and is calculable perturbatively in terms of a power series
as(m). The leading order and next-to-leading order con
butions are available@2,7#. The scalem is of the order of the
energy exchange in the reaction,m;AQ21QT

2.
There is a phase space penalty associated with the fi

mass of the virtual photon, and the Drell-Yan fact
aem/(3pQ2),1023/Q2 renders the production rates fo
massive lepton pairs small at large values ofQ andQT . In
order to enhance the Drell-Yan cross section while keep
the dominance of the gluon initiated subprocesses, it is u
ful to study lepton pairs with low invariant mass and re
tively large transverse momenta@2#. With the large trans-
verse momentumQT setting the hard scale of the collision
the invariant mass of the virtual photonQ can be small, as
long as the process can be identified experimentally, and
numerical valueQ@LQCD. For example, the cross sectio
©2002 The American Physical Society06-1
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for Drell-Yan production was measured by the CERN UA
Collaboration @8# for virtual photon mass Q
P@2mm ,2.5# GeV.

When QT is very different fromQ while both are much
larger thanLQCD, the calculation of massive lepton-pair pr
duction becomes a two-scale problem in QCD perturba
theory. The corresponding short-distance partonic parts,
culated in conventional fixed-order QCD perturbation theo
include potentially large terms proportional to the logarith
of the ratio of these two physical scales. As a result,
higher-order corrections in powers ofas are not necessarily
small. The ratiosNLO/sLO @}as3~large logarithms!# can be
of order 1, and the convergence of the conventional per
bative expansion in powers ofas is possibly impaired.

When QT
2!Q2, the Drell-Yan~or W6 and Z) transverse

momentum distributions calculated in fixed-order QCD p
turbation theory are known not to be reliable@9#. After all-
orders resummation of the large ln(Q2/QT

2) terms is per-
formed, predictions for the transverse momentu
distributions become consistent with data forQT

2!Q2

@10,11#. Similarly, whenQT
2@Q2, the region of phase spac

of interest in this paper, the perturbatively calculated sh

distance partonic parts,dŝab→g* (Q)X /dQT
2dy in Eq. ~2!, re-

ceive one power of the logarithm ln(QT
2/Q2) at every order of

as beyond the leading order. At sufficiently largeQT , the
coefficients of the perturbative expansion inas will have
large logarithmic terms, and these high order correcti
may not be small. In order to derive reliable QCD pred
tions, resummation of the logarithmic terms lnm(QT

2/Q2) must
be considered.

The purpose of this paper is to modify the factorizati
formula in Eq. ~2! so that resummation of the logarithm
contributions can be included naturally whenQT

2@Q2. At the
same time, the modified factorization formula should rem
effectively the same as the conventional factorization f
mula in Eq.~2! whenQT

2;Q2.
In Sec. II, we review the general structure of the Dre

Yan cross section, and we identify where the large logarith
arise whenQT

2@Q2@LQCD
2 . We show that whenQ2 is fixed

and Q2/QT
2→0, the Drell-Yan cross section behaves sim

larly to the cross section for prompt real photon product
@2#. The large logarithmic contributions to the Drell-Ya
cross section at highQT come from partonic processes th
fall into the two-stage generic pattern of fragmentation c
tributions: ~1! short-distance production of a parton of m
mentumpc , and ~2! fragmentation of this parton into th
observed virtual photon.

In Sec. III we show that the lnm(QT
2/Q2) logarithmic con-

tributions to the Drell-Yan cross section can be resumm
systematically to all orders inas . We demonstrate that thes
resummed logarithmic contributions have the same facto
form as those for single hadron production at large transv
momentum, with the parton-to-hadron fragmentation fu
tions replaced by the fragmentation functions for a parton
a virtual photon of invariant massQ. As for single hadron
production, the short-distance production of the parton
evaluated at a single hard scale (;QT), and it is calculable
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perturbatively in a power series ofas . However, unlike the
parton-to-hadron fragmentation functions, the parton-
virtual-photon fragmentation functions are calculable pert
batively if Q2@LQCD

2 @12#.
In addition to the logarithmic contributions, the Drell-Ya

cross section includes largenon-logarithmic contributions, in
particular, the leading order contributions, referred to of
as direct contributions. In Sec. IV, we derive our modifie
factorization formula for massive lepton-pair production, E
~35!, in which both logarithmic and non-logarithmic contr
butions are fully included. This modified factorization fo
mula agrees with the conventional fixed-order QCD expr
sion whenQT

2;Q2 ~or when the logarithmic contribution
are less important!. We show that at the next-to-leading o
der, the difference between the modified factorization f
mula and the conventional factorization formula is co
pletely determined by QCD evolution of the virtual photo
fragmentation functions. Our modified factorization forma
ism reorganizes thesingleperturbative expansion of conven
tional QCD factorization intotwo perturbative expansion
plus the perturbatively calculated parton-to-virtual phot
fragmentation functions. The main advantage of this reor
nization is that the new perturbative expansions are ev
ated at a single hard scale and are free of large logarith
terms forQT>Q.

In Sec. V, we present our predictions for the cross secti
for massive lepton-pair production at energies of interest
experiments at the Fermilab Tevatron, Brookhaven’s Rela
istic Heavy Ion Collider~RHIC!, and the CERN Large Had
ron Collider~LHC!. We include both leading order and nex
to-leading order direct short-distance contributions and
resummed logarithmic contributions. The resummed la
logarithmic contributions change the shape of the predic
QT spectrum of the Drell-Yan cross section but, at the or
in perturbation theory at which we work, they have only
modest effect on the normalization. We confirm that after
large logarithmic terms are resummed to all orders inas the
Drell-Yan cross section at largeQT remains an excellen
source of contraints on the gluon parton density. Our conc
sions are summarized in Sec. VI.

II. MASSIVE LEPTON PAIR PRODUCTION AT FIXED
ORDER

In hadronic collisions, massive lepton-pair producti
proceeds through partonic hard-scattering processes inv
ing initial-state quarks and gluons. If the lepton-pair’s inva
ant massQ and its transverse momentumQT are both much
larger thanLQCD, the partonic hard scattering at a distan
scale betweenO(1/Q) and O(1/QT) can be systematically
factored from the physics at the scale of hadron wave fu
tions, O(1/LQCD). In this situation, the cross section can
expressed in the factored form of Eq.~2!. Corrections to the
expression in Eq.~2! are suppressed by powers ofLQCD

2 /Q2

or LQCD
2 /QT

2 . The predictive power of Eq.~2! relies on the
universalityof the parton distributions and thereliability of
the partonic cross sections.

The short-distance partonic cross sectio
dŝab→g* (Q)X /dQT

2dy in Eq. ~2!, can be calculated in prin
6-2
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ciple order by order in QCD perturbation theory in a pow
series of the strong couplingas :

dŝab→g* (Q)X

dQT
2dy

5 (
n50

Hab→g* X
(n)

~x1 ,x2 ,Q,QT ,y;m!S as~m!

2p D n

.

~3!

The reliability of QCD perturbative calculations depends
the behavior of the coefficient functionsHab→g* X

(n) in Eq. ~3!.
At lowest order,O(as

0), the only partonic subprocess fo

virtual photon production isq1q̄→g* . The incoming par-
tons are assumed to be collinear to their respective incom
hadrons if power suppressed corrections are neglec
Therefore, the lowest order coefficient function,Hqq̄→g* X

(0)

}d(QT), vanishes ifQTÞ0.
At order O(as), both quark-antiquark annihilation,q1q̄

→g* 1g, and ‘‘Compton,’’ g1q→g* 1q, subprocesses
contribute to the Drell-Yan cross section, with the recoil
the final-state parton balancing the transverse momentum
the lepton pair. These partonic subprocesses, known as
2→2 subprocesses, are shown in Figs. 1~a! and 1~b!. They
are often referred to as the leading order~LO! contributions
to the Drell-Yan cross section with finite transverse mom
tum. The corresponding leading order coefficient functio
are

Hab→g* X
(1)

5eq
2 p

2x1x2SU 1

gs
M̄ab→g* XU2

~8p2!

3d„~x1PA1x2PB2Q!2
…S aem

2p D . ~4!

The incoming parton flavors ‘‘ab’’ can be eitherqq̄ for the
quark-antiquark annihilation orgq for the Compton subpro
cess, andeq is quark’s fractional charge. In Eq.~4!, gs and
aem are the strong coupling constant and the fine struc
constant of QED, respectively;PA andPB are the momenta
of the colliding hadrons, andS5(PA1PB)2 is the square of
the total collision energy. The expressionsuM̄ab→g* Xu2 in
Eq. ~4! are the squares of the matrix elements of the parto

FIG. 1. Feynman diagrams for the LO contribution to the Dre

Yan cross section:~a! quark-antiquark annihilationq1q̄→g* 1g
and ~b! Comptong1q→g* 1q subprocesses.
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subprocesses shown in Fig. 1, summed~averaged! over the
colors and spins of the final-state~initial-state! partons. They
are available in Ref.@13#. As long asQT is large, the LO
coefficient functions in Eq.~4! are well behaved, even whe
Q2→0.

The calculation of the perturbative coefficient functions
orderO(as

2), known as the next-to-leading order~NLO! con-
tribution, involve all 2→3 partonic subprocesses with th
virtual photon in the final state as well as the 2→2 diagrams
in Fig. 1 with one-loop corrections. After renormalizatio
the loop momentum integrations for the 2→2 diagrams at
order O(as

2) yield renormalization scale (m) dependence
and logarithmic terms in the coefficient functionsHab→g* X

(2) .
Integration over the phase space of the extra parton in
final state of the 2→3 subprocesses leads to a collinear
vergence when this parton is collinear to either incom
parton. QCD factorization and subtraction of the colline
divergence results in factorization scale (m f) dependence
and logarithmic terms in the coefficient functions at this o
der. Consequently, the coefficient functionsHab→g* X

(2) display
logarithmic dependence on the ratios of the following m
mentum scales:m, m f , QT , andQ @2,7#.

Since we are interested in identifying the logarithms
the ratioQT

2/Q2, with QT
2@Q2, we concentrate on the part o

the Drell-Yan cross section that diverges when ln(QT
2/Q2)

→` with Q2@LQCD
2 . According to the QCD factorization

theorem, the perturbatively calculated partonic cross sect
dŝab→g* (Q)X /dQT

2dy in Eq. ~2! should be analytic functions
of QT

2 andQ2. Therefore, we expect the logarithmic behavi
of the Drell-Yan cross section as ln(QT

2/Q2)→` with Q2

@LQCD
2 fixed to be connected closely to logarithmic dive

gences associated with the massless photon (Q250) in the
case of prompt real photon production.

Other than the non-vanishing invariant mass, product
of a virtual photon and a real photon share the same par
level Feynman diagrams. However, the QCD factorizat
formula for the production of a real photon (Q250) is dif-
ferent from that in Eq.~2!,

dsAB→gX

dQT
2dy

5(
a,b

E dx1fa/A~x1 ,m!E dx2fb/B~x2 ,m!

3Fdŝab→gX
(Dir )

dQT
2dy

1
dŝab→gX

(F)

dQT
2dy

G , ~5!

wheredŝab→gX
(Dir ) /dQT

2dy represents the direct production o
the real photon at a short-distance scale ofO(1/QT), and

dŝab→gX
(F)

dQT
2dy

5(
c
E dz

z2

dŝab→cX

dpcT

2 dy
S pc5

Q

z
,mF

2 DDc→gX~z,mF
2 !

~6!

is the fragmentation contribution to the prompt photon cro
section. The functiondŝab→cX /dpcT

2 dy in Eq. ~6! represents

short-distance production of a parton of flavorc, and
Dc→gX(z,mF

2) is a fragmentation function for partonc to
6-3
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fragment into a real photon with photon momentumQ
5z pc ; mF is the fragmentation scale.

The fragmentation contribution arises because there
collinear singularities associated with the region of ph
space in which the real photon is parallel to one or more
the final-state partons@13,14#. Because the real photon
massless, the parent parton, which fragments into the
photon and other collinear partons, can propagate for a l
time. Consequently, quantum interference between the
duction of the parent parton and the physics associated
the fragmentation~or decay! of the parton is suppressed
Therefore, the fragmentation contribution to prompt pho
production can be further factored as in Eq.~6!. Because the
transverse momentumQT is large, all logarithmic collinear
divergences associated with the massless photon arise
final-state partons that are parallel to the observed real p
ton. Such logarithmic divergences are all absorbed into
fragmentation functions. These functions are nonperturba
in nature.

Unlike prompt photon production, it is not necessary
introduce fragmentation functions to absorb final-state c
linear singularities for the Drell-Yan cross section. Becau
the photon is off-shell, its large invariant massQ regulates
the singularity. This finite mass regularization leads to
logarithmic dependence of the Drell-Yan cross section on
invariant mass of the virtual photonQ. If Q is large enough
and QT , the only other physically observed momentu
scale, is not too large, the logarithmic terms lnm(QT

2/Q2) are
small, and no resummation of the logarithms is necessary
a reliable prediction of the cross section.

When Q2 is chosen to be small, so as to enhance
Drell-Yan cross section, and when the collision energyAS
andQT become large, it is necessary to examine the size
the final-state logarithmic contributions and ascert
whether resummation of these logarithmic terms is w
ranted.

The explicit form of NLO contributions to the Drell-Yan
cross section from a 2→3 partonic subprocessq1q̄

→g* (Q)1q81q̄8 @2# provides an example of the logarith
mic terms under discussion. The relevant Feynman diagr
are shown in Figs. 2~a! and 2~b! for initial- and final-state

FIG. 2. Feynman diagrams that illustrate situations in which
photon can become collinear to a quark in~a! the initial state and
~b! the final state.
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photon radiation. Since we are interested mainly in the str
ture of the final state in the region where a photon becom
collinear to a quark, this subprocess is typical of the gene
2→3 subprocess in Fig. 3, and conclusions drawn from
can be applied to other subprocesses such asqg and qq8
scattering. For the phase space integrals of the diagram
Fig. 2, we use the exact forms in Ref.@15#. The logarithmic
contributions have the form

lnFs1Q22s21l

s1Q22s22l
Gg~s,t,u,Q2!.

The functiong(s,t,u,Q2) is given in Ref.@2#. It is well-
behaved asQ2→0. The parton-level Mandelstam variable
s,t,u are defined ass5(p11p2)2, t5(p12Q)2, and u
5(p22Q)2. The function l5A(t1u)224Q2s2, with s2
[(p11p22Q)25s1t1u2Q2; s2 is the square of the in-
variant mass of the two final-state partons that recoil aga
Q.

In the limit Q2!ut1uu, the generic logarithm from the
splitting of a quark into a photon can be approximated a

lnFs1Q22s21l

s1Q22s22l
G→ lnF2Q2~s2Q2!/@2~ t1u!#

2~2~ t1u!! G
→2 lnF2~ t1u!

Q2 G . ~7!

To derive the second line we useQ2!ut1uu ands;ut1uu.
Since ut1uu;O(QT

21Q2), the logarithm takes the form
ln@(QT

21Q2)/Q2#;ln@QT
2/Q2#, and the limit ofQ2!ut1uu is

effectively the same asQ2!QT
2 . The logarithmic contribu-

tions to the Drell-Yan cross section become more import
whenQ2 is chosen to be small.

In principle, we can resum these large but finite log
rithms into parton-to-virtual-photon fragmentation function
just as the logarithmic divergences in real photon product
are resummed into real-photon fragmentation functions.
cause the logarithms in the Drell-Yan case are finite, andQ2

is much larger thanLQCD
2 , the parton-to-virtual-photon frag

mentation functions should be calculable perturbatively@12#.

III. FRAGMENTATION CONTRIBUTIONS TO THE
DRELL-YAN CROSS SECTION

In this section, we derive the resummed logarithmic co
tributions to the Drell-Yan cross section whenQT

2@Q2.

e

FIG. 3. A generic diagram of the lowest order 2→3 subprocess
that contributes to the Drell-Yan cross section with large final-st
logarithmic terms whenQ2!QT

2 .
6-4
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Since we are interested mainly in the cross section at lowQ2,
we ignore contributions from the intermediate vector bos
Z.

A. Logarithmic contributions to the Drell-Yan cross section
at large QT

As demonstrated in Sec. II, the Drell-Yan cross section
large transverse momentumQT receives potentially large
logarithmic terms lnm(QT

2/Q2) from the part of phase space
which the virtual photon is almost collinear to one or mo
final-state partons. Since at least one final-state parto
needed to balance the virtual photon’s transverse momen
the logarithmic contributions can arise only at NLO and b
yond.

Because of the logarithms, the coefficient functions in E
~3! might be large, and resummation of the logarithmic co
tributions might be needed. As long asQ2 is much larger
thanLQCD

2 , all coefficient functions in Eq.~3! are calculable
in principle order by order in QCD perturbation theor
Therefore, resummation of the logarithms lnm(QT

2/Q2) is ac-
tually a reorganizationof the perturbative expansion in Eq
~3!, such that all coefficient functions in the reorganized p
turbative expansions are evaluated at a single hard scale
free of any large logarithms.

The energy exchange in the hard collision is of the or
of AQT

21Q2'QT1O(Q2/QT
2). WhenQT

2@Q2, the partonic
hard collision should not be sensitive to the scaleQ2 at
which the virtual photon is produced. If we neglect pow
corrections of the orderQ2/QT

2 , the partonic hard collisions
are effectively independent ofQ2, except for the logarithmic
dependence lnm(QT

2/Q2) from the final-state bremsstrahlun
production of the virtual photon. Therefore, other than
appearance of the virtual photon’s massQ to regulate the
final-state collinear divergences, the potentially large lo
rithmic contributions at largeQT have the same structure a
the fragmentation contributions to prompt real photon p
duction. They can be separated into two stages:~1! produc-
tion of a parton of momentumpc at a very short distance
(;1/pcT

;1/QT), and~2! production of the lepton-pair via a
virtual photon of invariant massQ through bremsstrahlung
~or fragmentation! from the parton produced at the fir
stage. This two-stage production, shown in Fig. 3 or in g
eral in Fig. 4, shares the same generic pattern of the f
mentation production of a single particle~e.g., a hadron of
massMh or a real photon! at large transverse momentu
QT . If we neglect the power suppressed quantum inter
ence between these two stages, the fragmentation~or brems-

FIG. 4. Sketch of the fragmentation contribution to low ma
Drell-Yan lepton-pair production at highQT .
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strahlung! contributions should have the same general f
tored form that is present in single hadron or prompt pho
production@12#:

dŝab→g* (Q)X
(F)

dQT
2dy

5(
c
E dz

z2 Fdŝab→cX
(F)

dpcT

2 dy
~x1 ,x2 ,pc5Q̂/z;mF!G

3Dc→g* X~z,mF
2 ;Q2!. ~8!

Superscript~F! indicates the fragmentation contribution, th
sum(c runs over all parton flavors, andmF is the fragmen-
tation scale defined below. The four vectorQ̂m in Eq. ~8! is
defined to beQm but with Q2 set to be zero.

The partonic cross sections,dŝab→cX /dpcT

2 dy in Eq. ~8!,

represent the inclusive production of a parton of flavorc.
These partonic cross sections are evaluated at a single
scalepcT

;QT . Exact perturbative expressions for the pa
tonic cross sections depend on how the fragmentation fu
tions Dc→g* X(z,mF

2 ;Q2) are defined~or depend on the
choices of the scheme! @12#.

As for single hadron~or prompt photon! production, all
large logarithms from the integration over the distance sc
from O(1/pcT

) @or O(1/QT)# to O(1/Q), where the virtual
photon is produced, are resummed into the fragmenta
functions. The main difference for the production of a virtu
photon, a hadron, or a real photon is the difference in
fragmentation functions.

B. Parton-to-virtual-photon fragmentation functions

The fragmentation function for a parton of flavorc into a
virtual photon of invariant massQ is defined as a probability
density for finding the virtual photon with fractionz of the
parent parton’s momentum. Because of the universality
fragmentation functions, virtual photon fragmentation fun
tions can be derived in a process independent way@12# or
extracted from a specific physical process. In this section,
derive the virtual photon fragmentation functions by resu
ming the leading logarithmic contributions to the Drell-Ya
cross section at large transverse momentum.

In order to resum the large logarithmic contributions
the Drell-Yan cross section to all orders and to extract
virtual photon fragmentation functions, we must identify a
sources and the pattern of these logarithmic contributio
Consider a nonsinglet fragmentation of a quark into a virt
photon, shown in Fig. 5. The virtual photon is produced fro
bremsstrahlung of a quark~or an antiquark!. The quark~or
antiquark! itself is produced either in the hard collision, a
shown in Fig. 5~a!, or from the fragmentation of anothe
quark, as shown in Fig. 5~b! or Fig. 5~c!. In a physical gauge
~such as the light-cone gauge!, the leading large logarithmic
contributions of the subprocesses in Fig. 5 come from
part of the phase space in which the daughter quark’s inv
ant masski

2 is much smaller than that of the parent qua
ki 11

2 . In this situation, we can neglect all contributions su
pressed by powers ofki

2/ki 11
2 . The ‘‘decay’’ rate~or the frag-

mentation function! of the parent quark into a daughter qua
6-5
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plus massless partons is dominated by logarithmic contr
tions that are proportional to ln(ki11

2 /ki
2). The leading loga-

rithmic contributions from the general fragmentation d
gram in Fig. 4 arise from the region of strong ordering in t
invariant masses of the fragmentation partons in Fig. 5:pc

2

@ . . . ki 11
2 @ki

2@ . . . @k0
2 @12#.

With the strong ordering approximation, the leading log
rithmic contributions from the non-singlet fragmentation
Fig. 5 can be factored into the hard production of a quark
momentumpc convoluted with a sum of all-orders fragme
tation ladder diagrams, as shown in Fig. 6. By comparing
factored cross section in Eq.~8! with the factored expressio
in Fig. 6, and summing the ladder diagrams to all orders,
obtains the leading contributions to the nonsinglet quark
virtual-photon fragmentation functions@12#:

Dq→g* X
NS

~z,pc
2 ;Q2!

5E
Q2/z

pc
2 dk0

2

k0
2 S aem

2p
gq→g*

(0)
~z,k0

2 ;Q2! D
1 (

n51

` F)
i 51

n E
Q2/z

ki 11
2 dki

2

ki
2 S as

2pEzi 11

1 dzi

zi

3Pq→q
(0) S zi 11

zi
D D G E

Q2/z

k1
2 dk0

2

k0
2

3S aem

2p
gq→g*

(0)
~z1 ,k0

2 ;Q2! D . ~9!

The superscript ‘‘NS’’ represents the non-singlet contribu
tion; the upper limit of integration iskn11

2 5pc
2 ; and the

lower limit of integration,Q2/z, is the mass threshold~or
minimum invariant mass! for the quark to produce the virtua
photon of invariant massQ @12#. The leading-order quark-to
quark splitting functionPq→q

(0) (z) is the same as the leading
order quark-to-quark splitting function of the Dokshitze

FIG. 5. Scattering amplitudes that provide large logarithm
contributions to the Drell-Yan cross section via quark fragmen
tion.
03400
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Gribov-Lipatov-Altarelli-Parisi ~DGLAP! evolution
equations@16#. In deriving Eq.~9!, we include the diagrams
with quark wave function renormalization in addition to th
ladder diagrams shown in Fig. 6. The functio
gq→g*

(0) (z,k0
2 ;Q2) in Eq. ~9! is the lowest order QED splitting

function for a quark to fragment into a virtual photo
@12,17#, defined below.

Since the invariant mass of the parent quark,pc
2 , can be

very large in high energy collisions, the resummed logari
mic contributions, given by the second term on the rig
hand side of Eq.~9!, can be important for the Drell-Yan cros
section at lowQ2. From Eq.~8! and the fact that the partoni
hard parts are evaluated at a single hard scale;pcT

;QT ,
we conclude that all leading large logarithmic contributio
at highQT are included in the virtual photon fragmentatio
functions. Resummation of the large logarithmic contrib
tions is equivalent to the derivation of the virtual photo
fragmentation functions in Eq.~9!. Unlike the parton-to-
hadron fragmentation functions, the virtual photon fragme
tation functions in Eq.~9! have no dependence on any no
perturbative momentum scale. The virtual photon’s no
vanishing invariant mass removes the final-state collin
singularities that appear in the parton-to-hadron~or real pho-
ton! fragmentation functions. Therefore, all parton-to-virtua
photon fragmentation functions should be free of colline
singularities, and they are calculable in principle perturb
tively to all orders inas @12#.

By reorganizing the second term on the right-hand side
Eq. ~9!, one may derive an integral equation for the no
singlet quark-to-virtual-photon fragmentation function:

Dq→g* X
NS

~z,pc
2 ;Q2!5E

Q2/z

pc
2 dk0

2

k0
2 S aem

2p
gq→g*

(0)
~z,k0

2 ;Q2! D
1E

Q2/z

pc
2 dk2

k2 F as

2pEz

1dz8

z8
Pq→q

(0) S z

z8
D G

3Dq→g* X
NS

~z8,k2;Q!. ~10!

Carrying out the sum over all-orders logarithmic contrib
tions in Eq.~9! is equivalent to solving the integral equatio
in Eq. ~10!.

We introduce fragmentation scalemF and letmF
2[pc

2 , the
square of the invariant mass of the parent quark in Eq.~10!.
One can derive an evolution equation by applyingmF

2d/dmF
2

to both sides of Eq.~10!:

-

FIG. 6. Factored non-singlet quark-to-virtual-photon fragmen
tion contributions to the Drell-Yan cross section.
6-6
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mF
2 d

dmF
2

Dq→g* X
NS

~z,mF
2 ;Q2!5

aem

2p
gq→g*

(0)
~z,mF

2 ;Q2!

1
as

2pEz

1dz8

z8
Pq→q

(0) S z

z8
D

3Dq→g* X
NS

~z8,mF
2 ;Q2!.

~11!

Because the quark can interact directly with the virtual p
ton, the evolution equation in Eq.~11! has an inhomogeneou
term.

By extending the simple ladder diagrams in Fig. 6 to ge
eral ladder diagrams@18#, one can derive evolution equation
for the singlet quark-to-virtual-photon and gluon-to-virtua
photon fragmentation functions@12#,

mF
2 d

dmF
2

Dc→g* X~z,mF
2 ;Q2!

5S aem

2p Dgc→g* ~z,mF
2 ,as ;Q2!

1S as

2p D(
d
E

z

1dz8

z8
Pc→dS z

z8
,asD

3Dd→g* X~z8,mF
2 ;Q2!, ~12!

wherec,d5q,q̄,g. In Eq. ~12!, the evolution kernelsPc→d
are evaluated at a single hard scale,mF , and can be calcu
lated perturbatively as a power series inas . QCD correc-
tions to the QED quark-to-virtual-photon splitting functio
gc→g* can be evaluated in principle order-by-order inas .

Calculating the lowest order quark-to-virtual-photon la
der diagram in Fig. 6, we obtain the leading order quark-
virtual-photon QED evolution kernel@12,17#,

gq→g*
(0)

~z,k2;Q2!5eq
2F11~12z!2

z
2zS Q2

zk2D GuS k22
Q2

z D .

~13!

The u function is a consequence of the mass threshold.
gluon-to-virtual-photon evolution kernel vanishes at t
same order

gg→g*
(0)

~z,k2;Q2!50, ~14!

because the gluon does not interact directly with the virt
photon.

It is important to note that if we work in the strict leadin
power~or leading twist! approximation, we would dropboth
the power corrections to the fragmentation functions as w
as power corrections to the evolution kernels of the fragm
tation functions. That is, we would neglect theO(Q2/k2)
term in Eq.~13!,
03400
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e
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gq→g*
(LP20)

~z,k2!5gq→g*
(0)

~z,k2;Q250!

5eq
2F11~12z!2

z GuS k22
Q2

z D . ~15!

The superscript ‘‘LP’’ represents the leading power approx
mation. With this strictly leading power quark-to-photo
QED evolution kernel, the evolution equation in Eq.~12! for
the parton-to-virtual-photon fragmentation functions is e
actly the same as that for the parton-to-real-photon fragm
tation functions@13#. Under the strict leading power approx
mation, the only difference between virtual and real pho
fragmentation functions is the boundary condition for t
evolution equations. For real photon fragmentation fun
tions, a set of unknown non-perturbative input fragmentat
functionsDc→gX(z) is needed at a given scalemF

0 (; a few
GeV! @19#. On the other hand, no non-perturbative inp
fragmentation functions are needed to solve the evolu
equations in Eq.~12!. Instead, the mass threshold for produ
tion of a timelike virtual photon of invariant massQ imposes
a natural boundary condition for all flavorsc,

Dc→g* X~z,mF
2<Q2/z;Q2!50. ~16!

The strict leading-power approximation might be too s
vere in the threshold region@12#. Because its mass is non
zero, the virtual photon can have both transverse and lo
tudinal polarization modes. The QED evolution kernel in E
~13! is a sum of evolution kernels for a quark to fragme
into either transverse~T! or longitudinal ~L! polarization
modes@12,17#,

gq→g*
(0)

~z,k2;Q2!52gq→g
T*

(0)
~z,k2;Q2!1gq→g

L*
(0)

~z,k2;Q2!,

~17!

with

gq→g
T*

(0)
~z,k2;Q2!5eq

2 1

2 S 11~12z!2

z D
3F12

Q2

zk2GuS k22
Q2

z D , ~18!

gq→g
L*

(0)
~z,k2;Q2!5eq

2F2S 12z

z D G S Q2

zk2D uS k22
Q2

z D .

~19!

The factor 2 in Eq.~17! represents the two transverse pola
ization states of the virtual photon. Under the strict lead
power approximation, Eq.~19! vanishes. In this strict limit,
only transversely polarized virtual photons are produc
through the fragmentation processes, and there are no l
rithmic contributions to the production of longitudinally po
larized virtual photons. Furthermore, without theO(Q2/k2)
term in Eq.~18!, the evolution kernelgq→g

T*
(0)

(z,k2;Q2) gives

the wrong threshold behavior. Instead of being zero at
6-7
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threshold whenk25Q2/z, the leading power evolution ker
nel gq→g

T*
(LP20)

(z,k2;Q2) is finite and proportional to 1/z. It is

large if z is small.
In general, there can be two types of power correction

the leading power virtual photon fragmentation function
Power suppressed contributionsO(Q2/mF

2) to the fragmen-
tation functions are one type~type I, as defined in Ref.@11#!,
and power corrections contributions to the evolution kern
~or the slopes! of the fragmentation functions are the oth
type ~known as type II!. For example, consider the lowe
order contribution to the quark-to-virtual-photon fragmen
tion function from the evolution kernel in Eq.~18!,

Dq→g
T* X

(0)
~z,mF

2 ;Q2![E
Q2/z

mF
2 dk2

k2 S aem

2p Dgq→g
T*

(0)
~z,k2;Q2!

5eq
2S aem

2p D1

2 S 11~12z!2

z D
3F lnS zmF

2

Q2 D 2S 12
Q2

zmF
2 D G . ~20!

The (12Q2/zmF
2) term results from the power suppress

Q2/zk2 term in the evolution kernel, and it is clear that th
term is as important as the logarithmic term in the thresh
region. The term proportional to 1 in this (12Q2/zmF

2) com-
bination is not power suppressed byO(Q2/mF

2). In the
threshold region, the virtual photon fragmentation functio
are dominated by the longitudinally polarized compon
particularly whenz is small @12#. The type-II power correc-
tions are not necessarily small and could provide powernon-
suppressedcontributions to physical observables@11#.

In the rest of our discussion, we keep the leading pow
suppressed terms in the QED evolution kernels in Eq.~13!
when we calculate our parton-to-virtual-photon fragmen
tion functions. As shown in Ref.@12#, the inhomogeneous
QED evolution kernels in Eq.~12! dominate the scale depen
dence of the fragmentation functions, and therefore, we
glect the power corrections to the QCD evolution kern
Pc→d in Eq. ~12!. With the inclusion of power corrections i
the evolution kernels, the resummation discussed here i
longer a simple one-scale problem in QCD perturbat
theory. More detailed discussions of the virtual-photon fra
mentation functions can be found in Ref.@12#.

In summary, the all-orders resummation of the large lo
rithmic contributions to the low mass Drell-Yan cross sect
is equivalent to a sum of all logarithmic contributions to t
virtual photon fragmentation functions, achieved by solut
of the evolution equations in Eq.~12!. The evolution equa-
tions for the virtual photon fragmentation functions have
same functional forms as those for real photon fragmenta
functions @13#. However, the differences in both bounda
conditions and the inhomogeneous terms due to the n
vanishing ofQ2 lead to many differences between the re
and virtual photon fragmentation functions. One major d
ference is that the virtual photon fragmentation functions
purely perturbative. In addition, the virtual photon fragme
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tation functions provide the resummed contributions to
production of a longitudinally polarized virtual photon@12#.

C. Calculation of the partonic hard parts

To determine the fragmentation contributions to the Dre
Yan cross section,

dsAB→g* (Q)X
(F)

dQT
2dy

5(
a,b

E dx1fa/A~x1 ,m!E dx2fb/B~x2 ,m!

3(
c
E dz

z2 Fdŝab→cX
(F)

dpcT

2 dy
~x1 ,x2 ,pc5Q̂/z;mF!G

3Dc→g* X~z,mF
2 ;Q2!, ~21!

we must evaluate the partonic hard partsdŝab→cX
(F) /dpcT

2 dy in

Eq. ~21!. Although these are calculable perturbatively, ex
expressions depend on how the parton distributions and f
mentation functions are defined~or the choice of factoriza-
tion scheme!. In this subsection, we provide a self-consiste
procedure for the calculation of the partonic hard parts.

We separate the procedure into four steps:~1! instead of
considering the hadronic processA1B→g* (Q)X, we apply
the factored formula in Eq.~21! to a partonic processa8
1b8→c8X with an on-shell final-state partonc8; ~2! we
expand both sides of the factored formula for the parto
process order by order inas ; ~3! we calculate the partonic
cross sectiondsa8b8→c8X /dpc

T8
2

dy, and parton-to-parton dis

tributions and fragmentation functions order by order inas ;
and ~4! we extract the short-distance partonic hard pa
dŝab→cX /dpcT

2 dy by comparing both sides of the perturb

tively expanded factored formula at the same order ofas .
By applying the fragmentation expression in Eq.~21! to

the partonic processesa81b8→c8X, we obtain the follow-
ing schematic formula:

sa8b8→c85 (
a,b,c

fa/a8^ fb/b8^ ŝab→c
(F)

^ Dc→c8 . ~22!

The symbol^ represents the convolutions over momentu
fractionsx1 , x2, andz in Eq. ~21!. @In Eq. ~22! and in the rest
of the equations of this subsection, we omit the inclus
symbolX for reasons of notational simplicity.#

To produce a parton with large transverse momentum
2→2 partonic process is required at the parton level, at m
mum of the orderO(as

2). Expanding both sides of the fac
tored formula Eq.~22! order by order inas , we define the
following perturbative expansions:

sa8b8→c8[ (
n52

sa8b8→c8
(n) S as~m!

2p D n

, ~23!
6-8
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ŝab→c
(F) [ (

n52
Hab→c

(n) S as~m!

2p D n

, ~24!

fa/a8[ (
n50

fa/a8
(n) S as~m!

2p D n

, ~25!

Dc→c8[ (
n50

Dc→c8
(n) S as~m!

2p D n

. ~26!

We substitute these four perturbative expansions into
~22! and obtain atO(as

2),

sa8b8→c8
(2)

5 (
a,b,c

fa/a8
(0)

^ fb/b8
(0)

^ Hab→c
(2)

^ Dc→c8
(0) . ~27!

Since the zeroth order parton distributions and fragmenta
functions ared functions, Eq.~27! yields Hab→c

(2) 5sab→c
(2) or

dŝab→c
(F2LO)

dpcT

2 dy
5

dsab→c
(LO)

dpcT

2 dy
~28!

at leading order.
Expanding Eq.~22! to NLO, we write

sa8b8→c8
(3)

5 (
a,b,c

fa/a8
(0)

^ fb/b8
(0)

^ Hab→c
(3)

^ Dc→c8
(0)

1 (
a,b,c

fa/a8
(1)

^ fb/b8
(0)

^ Hab→c
(2)

^ Dc→c8
(0)

1 (
a,b,c

fa/a8
(0)

^ fb/b8
(1)

^ Hab→c
(2)

^ Dc→c8
(0)

1 (
a,b,c

fa/a8
(0)

^ fb/b8
(0)

^ Hab→c
(2)

^ Dc→c8
(1) .

~29!

Using the zeroth order parton distributions and fragmenta
functions, fordŝab→c

(F2NLO)/dpcT

2 dy, we obtain

Hab→c
(3) 5sab→c

(3) 2(
a8

fa8/a
(1)

^ Ha8b→c
(2)

2(
b8

fb8/b
(1)

^ Hab8→c
(2)

2(
c8

Hab→c8
(2)

^ Dc8→c
(1) . ~30!

In Eq. ~30!, Hab→c
(2) is the leading order contribution calcu

lated in Eq.~28!. The partonic cross sectionsab→c
(3) and all

parton-level parton distributions and fragmentation functio
are perturbatively calculable with proper regulators. The s
traction terms in Eq.~30! remove the collinear singularitie
associated with the massless partons. Following the s
procedure, we can derive the short-distance partonic h
parts for the fragmentation contributions in Eq.~21! at all
orders inas .

Equation~30! shows that beyond the leading order, t
exact expressions for the perturbatively calculated sh
03400
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distance hard parts depend on the definitions of parton-le
parton distributions and fragmentation functions. The p
tonic hard parts are fixed uniquely once we fix the parto
level parton distributions and fragmentation functions. In
der to use available conventional parton distributions,
have little choice other than to select the parton-level par
distributions in either the modified minimal subtractio
(MS) or deep inelastic scattering~DIS! scheme@20#.

In the partonic cross sectionsab→c
(n) , the parton momen-

tum pc is assumed to be massless,pc
250, and, therefore, a

final-state collinear singularity arises. Within the usual QC
factorization framework, there is freedom to choose any f
torization scheme to remove the final-state collinear sin
larities of the partonic cross section and absorb all poss
finite differences into the non-perturbative fragmentati
functions. Different choices for the factorization scheme le
to finite differences between the extracted non-perturba
fragmentation functions. However, owing to the non-zero
variant mass of the virtual photon, the parton-to-virtu
photon fragmentation functions do not have final-state c
linear singularities. They are completely perturbativ
Therefore, the parton-to-virtual-photon fragmentation fun
tions cannot uniquely fix the definition of the parton-t
parton fragmentation functions. As a consequence of the
ference in the invariant masses of the parton and the vir
photon, an extra constraint has to be introduced to spe
the parton-to-parton fragmentation functionsDc8→c

(n) . We can
choose a scheme for defining the parton-level fragmenta
functions so as to remove the final-state collinear singul
ties in the partonic cross sectionssab→c

(n) , with n>3. The
finite differences between schemes cannot be completely
sorbed into theperturbative parton-to-virtual-photon frag-
mentation functions.

Finite differences associated with the choice of sche
for the parton-level fragmentation functions correspond
non-logarithmic contributions to the Drell-Yan cross sectio
For the logarithmic contributions to the Drell-Yan fragme
tation functions, we can choose parton-level fragmentat
functions in theMS scheme or in any other scheme wh
calculating the partonic short-distance hard parts in Eq.~29!.
The perturbatively calculated partonic hard pa
dŝab→c

(F) /dpcT

2 dy will be the same as those for inclusiv

single hadron~or prompt photon! production if the same fac
torization scheme is used. The non-logarithmic differen
caused by the different choices of the factorization schem
can be absorbed into thedirect contributions to the Drell-Yan
cross section, defined and discussed in the next section.

IV. DRELL-YAN CROSS SECTION WITH RESUMMED
FRAGMENTATION CONTRIBUTIONS

In this section, we derive our modified factorization fo
mula for the Drell-Yan cross section including resummati
of the logarithmic contributions. Particularly at leading ord
but also at all higher orders in perturbation theory, there
significant contributions to the cross section that are not
cluded in the fragmentation terms. It is essential that the
factorization formula include all non-logarithmic contribu
6-9
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tions order by order inas , while retaining the all orders
resummation of the logarithmic contributions.

We use the worddirect to designate the non-logarithmi
contributions to the Drell-Yan cross section. This use of
term is the same as its use in prompt photon production
leading order the direct terms in the Drell-Yan cross sect
are those supplied by the short distanceO(1/QT) 2-parton to
2-parton Compton and annihilation subprocesses. Howe
there is an additional component at higher orders. The di
contribution must also absorb the finite non-logarithmic d
ferences in the partonic hard partsHab→cX

(m) associated with
the ambiguity in definition of the parton-level fragmentati
functions, as discussed in the last section. This second c
ponent accounts for the non-logarithmic terms over the
tance intervalO(1/Q) to O(1/QT). The logarithmic terms
are included in the fragmentation functions. The physics
our direct term is very similar to that represented by theY
term in the Collins, Soper, and Sterman~CSS! formalism@9#
for resummation at smallQT .

To be precise, wedefine the direct contribution as the
difference

dsAB→g* (Q)X
(Dir )

dQT
2dy

[
dsAB→g* (Q)X

dQT
2 dy

2
dsAB→g* (Q)X

(F)

dQT
2dy

5(
a,b

E dx1fa/A~x1 ,m!

3E dx2fb/B~x2 ,m!Fdŝab→g* (Q)X
(Dir )

dQT
2dy

G . ~31!

The parton level direct term is obtained from the factor
formulas in Eqs.~2! and ~21!,

dŝab→g* (Q)X
(Dir )

dQT
2dy

~x1 ,x2 ,Q,QT ,y;m,mF!

[
dŝab→g* (Q)X

dQT
2dy

~x1 ,x2 ,Q,QT ,y;m!

2
dŝab→g* (Q)X

(F)

dQT
2dy

~x1 ,x2 ,Q,QT ,y;m,mF!, ~32!

with dŝab→g* (Q)X
(F) /dQT

2dy given in Eq. ~8! and

dŝab→g* (Q)X /dQT
2dy calculated in conventional fixed-orde

QCD perturbation theory. Sincedŝab→g* (Q)X /dQT
2dy and

dŝab→g* (Q)X
(F) /dQT

2dy are calculable perturbatively, the dire

contributions,dŝab→g* (Q)X
(Dir ) /dQT

2dy in Eq. ~32!, should also
be calculable perturbatively. They have the perturbative
pansion
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dŝab→g* (Q)X
(Dir )

dQT
2dy

5 (
n51

Yab→g* (Q)X
(n)

~x1 ,x2 ,Q,QT ,y;mF ,m!

3S as~m!

2p D n

, ~33!

wheren>1 because the leading order contributions to Dre
Yan cross section are of orderO(aemas). Since the
fragmentation contributions dŝab→g* (Q)X

(F) /dQT
2dy and

dŝab→g* (Q)X /dQT
2dy share the same large logarithm

terms, lnm(QT
2/Q2), the direct contributions should be free o

large logarithms order by order inas . Therefore, the coeffi-
cient functionsYab→g* (Q)X

(n) in Eq. ~33! are evaluated at a
single hard scale (;QT), and the perturbative expansion fo
the direct contribution in Eq.~33! is expected to be well-
behaved perturbatively. We substitute Eqs.~3!, ~24!, ~26!,
and ~33! into Eq. ~32! and obtain

Yab→g* (Q)X
(n)

5Hab→g* (Q)X
(n)

2 (
m52

n F(
c

Hab→cX
(m)

^ Dc→g* (Q)X
(n2m) G . ~34!

FunctionsDc→g* (Q)X
(n2m) are the coefficient functions for th

perturbatively calculated parton-to-virtual-photon fragmen
tion functions@12#. The subtraction term in Eq.~34! removes
the logarithmic contributions included in the coefficie
functions Hab→g* (Q)X that are calculated in conventiona
fixed-order perturbation theory. As remarked above, the
rect contributions defined in Eq.~34! absorb the finite non-
logarithmic differences in the partonic hard partsHab→cX

(m) . If
Hab→cX

(m) is larger in one scheme and more is included in
fragmentation contributions, then more will be subtract
from the direct contributions. Any non-compensated diff
ences will be higher order corrections inas .

We substitute Eq.~32! into Eq.~31! and derive a modified
factorization formula for the Drell-Yan cross section atQT
>Q:

dsAB→g* (Q)X

dQT
2 dy

5(
a,b

E dx1fa/A~x1 ,m!E dx2fb/B~x2 ,m!

3H dŝab→g* (Q)X
(Dir )

dQT
2dy

~x1 ,x2 ,Q,QT ,y;mF ,m!

1(
c
E dz

z2 Fdŝab→cX
(F)

dpcT

2 dy
S x1 ,x2 ,pc5

Q̂

z
;mF ,m D G

3Dc→g* (Q)X~z,mF
2 ;Q2!J . ~35!
6-10
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QCD FACTORIZED DRELL-YAN CROSS SECTION AT . . . PHYSICAL REVIEW D 65 034006
Both perturbatively calculated short-distance hard pa

dŝab→cX
(F) /dpcT

2 dy and dŝab→g* (Q)X
(Dir ) /dQT

2dy, are free of

large logarithms. All potentially large lnm(QT
2/Q2) terms in

the regionQT
2@Q2 are resummed into the virtual photo

fragmentation functionsDc→g* (Q)X . The direct contribution
@first term on the right-hand side of Eq.~35!# represents the
production of lepton pairs at the distance scale of the h
collisions (;1/QT). The fragmentation contribution stand
for the sum of all leading logarithmic contributions from
distance scale at 1/QT to 1/Q.

We note here, in passing, that unlike the logarithmic ter
in the region of smallQT , the logarithmic terms at largeQT

are typical DGLAP logarithms associated with collinear co
tributions. At low QT , logarithmic contributions arise from
the collinearand the infrared regions. Correspondingly,
resummation formalisms relevant at smallQT , there are
leading logarithmic terms~including both collinear and in-
frared logarithms at all orders inas!, and next-to-leading
logarithmic terms~including only one of the two types o
logarithms!, and ‘‘next-to-next-to-leading’’ logarithmic
terms, and so forth. In our case, we do not have the typ
‘‘next-to-leading’’ logarithms that appear in resummatio
procedures at smallQT . Anything left over in the largeQT
region, after resummation of the leading logs of DGLA
type, is included in the direct terms.

Since we have in mind applications at largeQT but small
Q, it is important to consider the possible role of higher-tw
contributions proportional to inverse powers ofQ. Like
power corrections from target mass effects, power corr
tions in our case should appear in the form
m2/(energy exchange)2, with m;Q. SinceQT

2 sets the hard
scale, andQ2 acts as a mass threshold, the only dimensi
less ratios we expect to see areQ2/QT

2 and Q2/m2, but no
1/Q2 term. There can be three kinds of power correctio
power corrections to the partonic hard parts, suppresse
Q2/QT

2 ; power corrections to the fragmentation contrib
tions, suppressed byQ2/mF

2;Q2/QT
2 ; and power corrections

to the evolution kernels of the fragmentation functions, p
portional toQ2/m2. Sincem2 runs fromQ2 to mF

2 , the third
type could be significant,Q2/mmin

2 ;O(1). Although this
third variety is potentially important, the terms should
much smaller than the leading logarithmic contributions
long as ln(QT

2/Q2)@1.
Our modified factorization formula for the Drell-Ya

cross section in Eq.~35! is very similar to that for prompt
real photon production in Eq.~5!. However, theQ2 depen-
dence in the direct production term and differences in
fragmentation functions distinguish the Drell-Yan virtu
photon production from prompt real photon production.

The key difference between our modified factorizati
formula in Eq.~35! and the conventional factorization fo
mula in Eq.~2! resides in the way the logarithmic contribu
tions from final-state parton splitting are handled. Instead
one perturbative series in powers ofas in the conventional
approach, we have two perturbative expansions in our m
fied factorization formula: one for the direct and one for t
fragmentation contribution. All coefficient functions in th
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new perturbative expansions are free of large logarithms.
large logarithms in the conventional perturbative expans
are resummed into the fragmentation functions. In the res
this section we demonstrate the difference by comparing
two factorization formulas explicitly order by order in pow
ers ofas .

According to the conventional factorization approach, t
lowest order partonic contributions to virtual photon produ
tion are provided by the quark-gluon Compton and qua
antiquark annihilation diagrams at orderaemas :

dsAB→g* (Q)X
(C2LO)

dQT
2dy

5(
a,b

E dx1fa/A~x1 ,m!E dx2fb/B~x2 ,m!

3Fdŝab→g* (Q)X
(C2LO)

dQT
2dy

~x1 ,x2 ,Q,QT ,y;m!G . ~36!

The superscript (C2LO) stands for the leading order con
ventional perturbative calculation.

In our modified factorization approach, Eq.~35!, there are
two perturbative expansions corresponding to the direct
fragmentation contributions, respectively. Each perturbat
series has its own leading order contributions. Because
subtraction term in Eq.~34! starts atO(as

2), the LO direct
contribution is the same as the LO conventional contribut
in Eq. ~36!,

dsAB→g* (Q)X
(Dir 2LO)

dQT
2dy

5(
a,b

E dx1fa/A~x1 ,m!E dx2fb/B~x2 ,m!

3Fdŝab→g* (Q)X
(Dir 2LO)

dQT
2dy

~x1 ,x2 ,Q,QT ,y;m!G . ~37!

The LO partonic hard partdŝab→g* (Q)X
(Dir 2LO) /dQT

2dy equals

dŝab→g* (Q)X
(C2LO) /dQT

2dy in Eq. ~36!.
The virtual photon fragmentation functions are of ord

aem @12#, and the partonic hard partsdŝab→cX
(F) /dpcT

2 dy in

Eq. ~35! start at orderas
2 . The LO fragmentation contribu

tions to the Drell-Yan cross section would seem therefore
be of orderO(aemas

2), one power ofas higher than the LO
direct contributions in Eq.~37!. However, the large loga
rithms from the virtual photon fragmentation functions a
proportional to ln(mF

2)}1/as(mF), meaning that the LO frag-
mentation contributions to the Drell-Yan cross section can
viewed as effectivelyO(aemas) terms, of the same order a
the LO direct contribution:

dsAB→g* (Q)X
(F2LO)

dQT
2dy

5(
a,b

E dx1fa/A~x1 ,m!E dx2fb/B~x2 ,m!

3(
c
E dz

z2

dŝab→cX
(F2LO)

dpcT

2 dy
S x1 ,x2 ,pc5

Q̂

z
;mF ,m D

3Dc→g* (Q)X~z,mF
2 ;Q2!. ~38!
6-11
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In our modified factorization formalism, the LO contributio
to the Drell-Yan cross section at largeQT is equal to the sum
of the LO terms of the two perturbative expansions:

dsAB→g* (Q)X
(LO)

dQT
2dy

5
dsAB→g* (Q)X

(Dir 2LO)

dQT
2dy

1
dsAB→g* (Q)X

(F2LO)

dQT
2dy

. ~39!

The LO direct and fragmentation contributions are found
Eq. ~37! and Eq.~38!, respectively.

At NLO, aemas
2 , in the conventional fixed-order ap

proach, the Drell-Yan cross section has the same form as
in Eq. ~36! but with superscripts (C2LO) replaced by (C
2NLO). According to our modified factorization formalism
the NLO term should be the sum of the NLO terms inboth
the direct and fragmentation contributions in Eq.~35!. The
NLO direct contribution is

dsAB→g* (Q)X
(Dir 2NLO)

dQT
2dy

5(
a,b

E dx1fa/A~x1 ,m!E dx2fb/B~x2 ,m!

3F dŝab→g* (Q)X
(C2NLO)

dQT
2dy

~x1 ,x2 ,Q,QT ,y;m!

2(
c
E dz

z2

dŝab→cX
(F2LO)

dpcT

2 dy
S x1 ,x2 ,pc5

Q̂

z
;mF ,m D

3Dc→g* (Q)X
(0)

~z,mF
2 ;Q2!G . ~40!

The subtraction term is a consequence of the definition of
direct contribution in Eq.~34!. The subtraction term is als
necessary to remove the logarithmic terms from the conv
tional NLO expression in Eq.~40!, to avoid double counting
03400
at

e

n-

These logarithmic contributions have been included in
LO fragmentation contribution to the Drell-Yan cross secti
in Eq. ~39!.

We would need NLO fragmentation contributions to com
plete the calculation of the NLO contribution:

dsAB→g* (Q)X
(F2NLO)

dQT
2dy

5(
a,b

E dx1fa/A~x1 ,m!E dx2fb/B~x2 ,m!

3(
c
E dz

z2

dŝab→cX
(F2NLO)

dpcT

2 dy
S x1 ,x2 ,pc5

Q̂

z
;mF ,m D

3Dc→g* (Q)X~z,mF
2 ;Q2!. ~41!

The virtual-photon fragmentation functions include the
orders resummation of the logarithmic terms, and they
the same as those for the LO contribution in Eq.~38!. The
O(aS

3) partonic hard partsdŝab→cX
(F2NLO)/dpcT

2 dy are defined in

Sec. III C and will be presented elsewhere.
The NLO contribution to the Drell-Yan cross section

large transverse momentum is

dsAB→g* (Q)X
(NLO)

dQT
2dy

[
dsAB→g* (Q)X

(Dir 2NLO)

dQT
2dy

1
dsAB→g* (Q)X

(F2NLO)

dQT
2dy

, ~42!

where the NLO direct and fragmentation contributions a
found in Eqs.~40! and ~41!, respectively.

In our modified factorization formalism, the LO and NLO
contributions are different from those in the convention
formalism because the virtual photon fragmentation fu
tions include all orders of the large leading logarithmic co
tributions. The difference is better seen if we rewrite our L
and NLO results in the following form:
dsAB→g* (Q)X

dQT
2dy

[
dsAB→g* (Q)X

(LO)

dQT
2dy

1
dsAB→g* (Q)X

(NLO)

dQT
2dy

~43!

5(
a,b

E dx1fa/A~x1 ,m!E dx2fb/B~x2 ,m!H dŝab→g* (Q)X
(C2LO)

dQT
2dy

~x1 ,x2 ,Q,QT ,y;m!

1
dŝab→g* (Q)X

(C2NLO)

dQT
2dy

~x1 ,x2 ,Q,QT ,y;m!J 1(
a,b

E dx1fa/A~x1 ,m!E dx2fb/B~x2 ,m!

3H (
c
E dz

z2

dŝab→cX
(F2LO)

dpcT

2 dy
S x1 ,x2 ,pc5

Q̂

z
;mF ,m D @Dc→g* (Q)X~z,mF

2 ;Q2!2Dc→g* (Q)X
(0)

~z,mF
2 ;Q2!#

1(
c
E dz

z2

dŝab→cX
(F2NLO)

dpcT

2 dy
S x1 ,x2 ,pc5

Q̂

z
;mF ,m DDc→g* (Q)X~z,mF

2 ;Q2!J . ~44!
6-12
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QCD FACTORIZED DRELL-YAN CROSS SECTION AT . . . PHYSICAL REVIEW D 65 034006
On the right-hand side of Eq.~44!, the first term is the pre-
diction of the conventional fixed-order factorization forma
ism in Eq.~2!; the second term is the difference between o
modified factorization formula and the conventional fixe
order factorization formula up to NLO.

To conclude this section, we emphasize that our modi
factorization formalism in Eq.~35! effectively reorganizes
the singleperturbative expansion of conventional QCD fa
torization,dŝab→g* (Q)X /dQT

2dy, in Eq. ~2!, into two pertur-

bative expansions,dŝab→g* (Q)X
(Dir ) /dQT

2dy and dŝab→cX
(F) /

dpcT

2 dy, plus the perturbatively calculated evolution kerne

The main advantage of this reorganization is that the n
perturbative expansions are evaluated at a single hard s
and are free of large logarithms. As shown in the next s
tion, the ratios of the NLO over the LO contributions in th
new perturbative expansions are smaller than the ra
evaluated in the conventional approach.

V. NUMERICAL RESULTS AND PREDICTIONS

In this section, we present numerical evaluations of
leading and next-to-leading order Drell-Yan cross section
large transverse momentum. We show the quantitative dif
ences between the predictions of the modified factoriza
formula of Eq.~35! and the conventional factorization fo
mula. We demonstrate the sensitivity of the cross sectio
the gluon distribution at lowQ2 and highQT .

We employ the CTEQ5M set of parton distributions@21#.
We use a two-loop expression for the strong coupl
strengthas , with the value ofLQCD specified by CTEQ5M,
and a one loop expression foraem with aem(MZ)51/128.
We chooseQ2 as the renormalization scale foraem. We
equate the renormalization and factorization scales and
hard scalem5m f5kAQT

21Q2 with constantk5O(1).
The normalMS factorization scheme removes the ultr

violet 1/e pole of the parton-level fragmentation function
along with the corresponding splitting functions for massl
partons, but the scheme does not guarantee that the frag
tation functions to a massive parton or to a photon w
non-vanishing invariant mass@12# will be positive. As a re-
sult, the virtual photon fragmentation functions calculated
the MS scheme can be negative in the region of largz
@12,17#. As long as the cross section is positive, a nega
fragmentation function is simply a particular separation
finite contributions between the coefficient function and
fragmentation function. It is not a problem in principle. Ne
ertheless, it is more appealing intuitively that the fragmen
tion functions be positive definite. Since the virtual phot
fragmentation functions are purely perturbative, it is possi
to preserve positivity of the fragmentation functions if w
require that the mass threshold constraints be respecte
every stage of the fragmentation~or bremsstrahlung radia
tion!.

As shown in Ref.@12#, the ultraviolet~UV! divergences of
the virtual photon fragmentation functions come from tw
sources:~1! elementary divergent diagrams associated w
the renormalization of the fields and coupling constants
QCD and QED, and~2! the loop momenta of the skeleto
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ladder diagrams. An invariant mass cutoff scheme is int
duced in Ref.@12# to render the fragmentation function
positive definite. In this scheme, all UV divergences asso
ated with the internal elementary divergent diagrams are
moved in the same way as the QCD and QED Lagrang
are renormalized~say, in theMS scheme!. The UV diver-
gences connected with loop momenta of the skeleton lad
diagrams and wave function renormalization of the comp
ite operators are removed by imposition of an invariant m
cut on the loop momenta. All running coupling constants
this scheme are renormalized in the same way as the re
malization of the Lagrangian. Use of the same invariant m
cutoff on the loop momenta of the skeleton ladder diagra
and the virtual diagrams due to the wave function renorm
ization of the composite operators ensures the infrared c
cellation between the real and the virtual diagrams@16#. In
this invariant mass cutoff scheme, a parton-to-virtual-pho
fragmentation functionDc→g* (Q)X(z,mF

2 ;Q2) can be viewed
as an inclusive rate for ‘‘decay’’ of the parton of flavorc and
squared invariant massmF

2 into a virtual photon of squared
invariant massQ2 and momentum fractionz @12#.

In our numerical calculations, we use the virtual phot
fragmentation functions in the invariant mass cutoff sche
of Ref. @12#. The invariant mass for quarkc in Fig. 3 to
decay into a virtual photon of invariant massQ and a mass-
less quark is

pc
25

1

z~12z!
QW T

21
Q2

z
. ~45!

The three-vectorQW T is perpendicular to the direction of th
parent quark’s momentum. The fragmentation scale is cho
to be the invariant mass of the fragmenting parton. For
ample, we choosemF

25pc
2 at lowest order. Equation~45!

shows that the mass threshold requires that the fragmenta
scale bemF

2>Q2/z @12,17#. If we keep the perturbative con
tributions to a high enough order, the cross section sho
not be sensitive to the choice of fragmentation scale. Ho
ever, since the fragmentation scale in this new schem
very different from the traditional scale in theMS scheme,
we test two choices for the fragmentation scale,

mF5kAQT
21Q2, ~46!

mF5kAQT
21Q2

z
. ~47!

The first choice is the same as that for the renormaliza
and factorization scales.

The second choice in Eq.~47! is motivated by the fact tha
the squared invariant mass of the fragmenting parton is
the order (QT

21Q2)/z, obtained as follows. For the gener
2→3 diagram in Fig. 3, with the final parton that recoi
againstpc assumed massless, we compute
6-13
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pc
252~pa1pb!•pc2~pa1pb!2

'2
t1u

z
. ~48!

To derive the second line, we use the approximationsQ2

!QT
2 and s,ut1uu/z. If we let mF

2;pc
2 , Eq. ~48! leads to

the fragmentation logarithm,

lnS mF
2

Q2/z
D ' lnS 2~ t1u!/z

Q2/z
D 5 lnS 2~ t1u!

Q2 D , ~49!

consistent with the logarithm in Eq.~7!. Since ut1uu
;O(QT

21Q2), we findmF
2;(QT

21Q2)/z.
The perturbatively calculated partonic parts in conve

tional perturbation theory,ŝab→g* (Q)X
(C2LO) and ŝab→g* (Q)X

(C2NLO) in
Eq. ~44!, are available and calculated in theMS scheme
@2,7#. The fragmentation contribution in Eq.~38! depends on
the leading order short-distance partonic parts,ŝab→cX

(F2LO) , and
on the virtual photon fragmentation functions. The parto
parts are

ŝab→cX
(F2LO)

dpcT

2 dy
5

p

2x1x2SU 1

g2
M̄ab→cXU2

~8p2!

3d„~x1PA1x2PB2pc!
2
…S as~m!

2p D 2

. ~50!

The functionsM̄ab→cX are the lowest order matrix elemen
for partonsa andb to produce a parton of flavorc, averaged
over the colors and spins of the partons in the initial sta
They are available in Ref.@13#.

To compare with data, we introduce the invariant diffe
ential cross section

E
d3sAB→ l 1 l 2X

d3Q
5

1

pE dQ2FdsAB→ l 1 l 2(Q)X

dQ2dQT
2dy

G
5

aem

3p2E dQ2

Q2 FdsAB→g* (Q)X

dQT
2dy

G .

~51!

The integration indQ2 is over a bin centered on the invaria
mass Q. The differential cross section
dsAB→ l 1 l 2X /dQ2dQT

2dy and dsAB→g* X /dQT
2dy are given

in Eq. ~1! and Eq.~43!, respectively. If the bin sizeDQ is
much smaller thanQ, the cross section can be approximat
as
03400
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-

FIG. 7. Drell-Yan cross section as a function ofQT at the Teva-
tron energyAS52.0 TeV and rapidityy50 for the mass intervals
~a! 2<Q<3 GeV and~b! 4<Q<5 GeV. Solid, dashed, dotted
and dot-dashed lines stand for the total, LO direct, NLO direct, a
resummed fragmentation contributions, respectively.
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FIG. 8. Drell-Yan cross section as a function ofQT at the LHC
energyAS514 TeV and rapidityy50 for the mass intervals~a!
2<Q<3 GeV and~b! 4<Q<5 GeV. Solid, dashed, dotted, an
dot-dashed lines stand for the total, LO direct, NLO direct, a
resummed fragmentation contributions, respectively.
03400
d

FIG. 9. Drell-Yan cross section as a function ofQT at the RHIC
proton-proton energyAS5500 GeV and rapidityy50 for the
mass intervals~a! 2<Q<3 GeV and~b! 4<Q<5 GeV. Solid,
dashed, dotted, and dot-dashed lines stand for the total, LO di
NLO direct, and resummed fragmentation contributions, resp
tively.
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E
d3sAB→ l 1 l 2X

d3Q
'

2aem

3p2

DQ

Q FdsAB→g* (Q)X

dQT
2dy

G . ~52!

The differential cross section through next-to-leading ord

FIG. 10. RatioRm in Eq. ~53! as a function ofQT at y50 and
the Tevatron energyAS52 TeV for virtual photon invariant mass
~a! 2 GeV and~b! 5 GeV. The curves are explained in the text
03400
r

for production of a virtual photon,dsAB→g* (Q)X /dQT
2dy, is

given in Eq.~43!.
Since we do not present the NLO partonic hard parts

FIG. 11. RatioRm in Eq. ~53! as a function ofQT at y50 and
the Tevatron energyAS52 TeV for virtual photon invariant mass
5 GeV. In ~a! we show the renormalization scale dependence w
the factorization and fragmentation scales fixed, and in~b! we dis-
play the factorization scale dependence with the renormaliza
and fragmentation scales fixed. The curves are explained furthe
the text.
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the fragmentation contributions in this paper, we use Eq.~43!

without thedŝab→cX
(F2NLO)/dpcT

2 dy term for the numerical cal-

culations of the Drell-Yan cross sections.
In Figs. 7, 8, and 9, we plot the differential cross secti

Ed3s/d3Q as a function of QT for pp̄→ l 1l 21X at

FIG. 12. RatioR(LO) in Eq. ~54! as a function ofQT at y50 and
three different collision energies for the mass intervals~a! 2<Q
<3 GeV and~b! 4<Q<5 GeV. The curves are explained in th
text.
03400
the Tevatron collider energyAS52.0 TeV, for pp→ l 1l 2

1X at the LHC energyAS514 TeV, and forpp→ l 1l 2

1X at the RHIC proton-proton energyAS5500 GeV. In
all three figures, the rapidityy50. The renormalization,
factorization, and fragmentation scales are set eq
with constant k51. The solid, dashed, dotted, an
dot-dashed lines represent the total, the LO direct,
NLO direct, and the resummed fragmentation contributio
respectively. We show results for virtual photo
invariant mass 2<Q<3 GeV and 4<Q<5 GeV. ~Note:
the solid curve represents the sum of the dashed, do
and dot-dashed lines.! To enhance the cross section
the smaller value of the invariant massQ is favored
as long as the lepton pairs can be identified experimenta

At the integrated luminosities of run I of the Fermila
collider, prompt real photons have been observed with val
of transverse momentum extending to 100 GeV and bey
@22#. Scaling to the massive lepton-pair case, we judge th
should be possible to examine cross sections in the same
sample out toQT of 30 GeV or more for virtual photon
invariant mass 2<Q<3 GeV. Values ofQT to 50 GeV or
so may be reached with 2 fb21 at run II.

To demonstrate the renormalization, factorization a
fragmentation scale dependence of the cross sections, w
troduce the ratio

Rm[E
dsAB→ l 1 l 2X

d3Q
~k!Y E

dsAB→ l 1 l 2X

d3Q
~k51!.

~53!

The denominator in Eq.~53! is obtained with all
three scales equal:m5m f5mF5AQT

21Q2. In Fig. 10,
we plot Rm as a function ofQT at the Tevatron energy
and y50, for Q52 GeV and 5 GeV, with different scale
choices. We first fix all three scales to be the same:m5m f

5mF5kAQT
21Q2, with k52 ~solid! andk51/2 ~dashed!.

The dotted lines correspond to the choicem5m f

5AQT
21Q2, andmF5A(QT

21Q2)/z, as defined in Eq.~47!.
As shown in Fig. 10, the scale dependence is not grea
yields an uncertainty of about 15% for all reasonable val
of QT at the Tevatron energy. The effect of the differe
choice for the fragmentation scale in Eq.~47! is also small.
The same features are preserved at the other coll
energies.

It is instructive to examine the scale dependences
served if the renormalization and factorization scales are
ied separately. In Fig. 11, we again plotRm as a function of
QT at the Tevatron energy withy50 andQ55 GeV. In the
denominator of Eq.~53!, all three scales are set equal:m
5m f5mF5AQT

21Q2. In Fig. 11~a!, we also fix m f5mF

5AQT
21Q2 in the numerator of Eq.~53!, but vary only the

renormalization scalem5kAQT
21Q2 with k52 ~solid! and

k51/2 ~dashed!. For Fig. 11~b!, we fix m5mF5AQT
21Q2
6-17
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EDMOND L. BERGER, JIANWEI QIU, AND XIAOFEI ZHANG PHYSICAL REVIEW D65 034006
in the numerator of Eq.~53!, but vary the factorization scale
m f5kAQT

21Q2 with k52 ~solid! and k51/2 ~dashed!.
Two observations may be made. The first is that variat
of the renormalization and factorization scales independe
produces much greater changes than when they are va
together. Second, the variations of the renormalizat
and factorization scales tend to compensate each o
resulting in the very modest dependence shown in Fig.
Having shown the results, we would argue nevertheless
the proper procedure is to keepm5m f . When parton
distributions are evolved, the renormalization scale inas of
the evolution kernels is chosen to bem f , meaning that
the only scale variation in the parton distributions is t
dependence onm f . In the calculation of the NLO hard parts
subtractions are made to remove collinear singularities. T
procedure introduces terms of the formas(m)Pi j log(mf),
with dependence in principle on both the renormalizati
and the factorization scales;Pi j is a splitting function.
However, these subtraction terms represent exactly th
contributions that are subsumed into them f evolution of the
parton distributions. Unless we choosem f5m, the use of
standard parton densities would result in spurious extra s
dependence.

To show the quantitative difference between the conv
tional fixed-order perturbative calculations and the calcu
tions with all-orders resummation of the large logarithm
terms, we introduce the ratios

FIG. 13. Ratio Rz in Eq. ~59! as a function ofzc at the
Tevatron energyAS52 TeV, y50, and Q52 GeV. The solid
and dashed lines correspond to transverse momentaQT55 and
50 GeV.
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R(LO)[FE
dsAB→ l 1 l 2X

(Dir 2LO)

d3Q

1E
dsAB→ l 1 l 2X

(F2LO)

d3Q
G Y FE

dsAB→ l 1 l 2X
(C2LO)

d3Q
G ~54!

for the LO contributions, and

R[FE
dsAB→ l 1 l 2X

(Dir 2LO)

d3Q
1E

dsAB→ l 1 l 2X
(Dir 2NLO)

d3Q

1E
dsAB→ l 1 l 2X

(F2LO)

d3Q
G Y FE

dsAB→ l 1 l 2X
(C2LO)

d3Q

1E
dsAB→ l 1 l 2X

(C2NLO)

d3Q
G . ~55!

The ratioR(LO) is the ratio of the LO contributions in the
two different factorization formalisms. Since the LO dire
contribution is the same as the LO term in the conventio
calculation, any deviation ofR(LO) from unity measures the
size of the logarithmic contributions. In Fig. 12, we plot th
ratio R(LO) as a function ofQT at different energies for 2
<Q<3 GeV and 4<Q<5 GeV. The solid, dashed, an
dotted lines represent the Tevatron, LHC, and RHIC en
gies. Owing to the threshold behavior of the fragmentat
function, the fragmentation contribution vanishes forQT
;Q, andR(LO)→1. The logarithmic contributions are ver
important at the LHC energy and less important at RH
energies. The reason for this energy dependence is the p
space penalty associated with the large invariant mass o
virtual photon. The large logarithm in the fragmentatio
function is proportional to ln(zmF

2 /Q2) for each power ofas .
Since the strong coupling strengthas(m) is proportional to
1/ln(m2/LQCD

2 ), the product

as~m!ln~z mF
2/Q2!}

ln~z mF
2/Q2!

ln~m2/LQCD
2 !

~56!

becomes of order unity only whenmF;m@Q2. Otherwise,
the combination in Eq.~56! is not large because of the fac
tors z andQ2 from the mass threshold.

The ratioR in Eq. ~55! measures the difference betwee
the conventional calculation up to NLO accuracy a
our resummed calculation, obtained from our modifi
factorization formalism without the NLO fragmentation
contributions. Without the NLO fragmentation contribution
Eds (F2NLO)/d3Q in the numerator, the ratioR does not
represent the entire ratio of the NLO contributions
the two different factorization approaches. Neverthele
this ratio does indicate some of the effects of QCD resu
mation.
6-18
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QCD FACTORIZED DRELL-YAN CROSS SECTION AT . . . PHYSICAL REVIEW D 65 034006
The difference between the numerator and the denom
tor of the ratioR in Eq. ~55! is determined entirely by the
second term in Eq.~44! without the NLO fragmentation con
tributions,

(
a,b,c

E dx1fa/A~x1 ,m!E dx2fb/B~x2 ,m!

3E dz

z2

dŝab→cX
(F2LO)

dpcT

2 dy
S x1 ,x2 ,pc5

Q̂

z
;mF ,m D

3@Dc→g* (Q)X~z,mF
2 ;Q2!2Dc→g* (Q)X

(0)
~z,mF

2 ;Q2!#. ~57!

This difference is proportional to the difference between
LO QED parton-to-virtual-photon fragmentation functio
Dc→g* (Q)X

(0) (z,mF
2 ;Q2) and the corresponding QCD evolve

parton-to-virtual-photon fragmentation function
Dc→g* (Q)X(z,mF

2 ;Q2). As shown in Ref.@12#, one of the
major differences between these fragmentation function
the behavior at largez:

Dc→g* (Q)X
(0)

~z→1,mF
2 ;Q2!Þ0

Dc→g* (Q)X~z→1,mF
2 ;Q2!50. ~58!

QCD evolution reduces the fragmentation function at largz
while it increases the fragmentation function at smallz. If the
cross section is dominated by the small~large! z region, the
numerator of the ratioR in Eq. ~55! is larger~smaller! than
the denominator calculated in fixed-order perturbat
theory.

Thez integration of the Drell-Yan cross section runs fro
zmin to 1. We introduce a cutoffzc to limit the integration to
the rangezmin to zc , and we define the ratio

Rz[E
dsAB→ l 1 l 2X

(F2LO)

d3Q
~zc!Y E

dsAB→ l 1 l 2X
(F2LO)

d3Q
~zc51!.

~59!

The cutoff zc can be betweenzmin and 1; Rz(zc5zmin)50,
and Rz(zc51)51. The shape of the ratioRz establishes
which region ofz dominates thez integration.

In Fig. 13, we plotRz as a function ofzc at the Tevatron
energy withQ52 GeV. The solid and dashed lines corr
spond to transverse momentaQT55 and 50 GeV. If the in-
tegrand for thez integration were independent ofz, the ratio
Rz would be proportional to (zc2zmin)/(12zmin), which cor-
responds to a straight line forRz . The shape ofRz in Fig. 13
shows that thez integration is dominated by the largez re-
gion.

Since thez dependence of the partonic cross section
Eq. ~38! tends to cancel the 1/z2 factor in thez integration,
thez integration for the Drell-Yan cross section is determin
mainly by the convolution of parton distributions and fra
mentation functions and by the shapes of these function

For a given collision energyAS, the transverse momen
tum QT5zpcT

}zxAS with x;x1;x2 for y.0. For a fixed

value of QT , a large ~small! z corresponds to the sma
03400
a-

e

is

n

n

~large! x region. Because the parton distributions and fra
mentation functions are both steeply falling functions of t
momentum fractions (x or z!, and the Drell-Yan cross sec
tion is proportional to two powers of parton distributions a
one power of fragmentation function, the convolution of p
ton distributions and fragmentation functions favors the co
bination of a smallx and largez. The fragmentation contri-
butions are dominated by the smallx and largez region. The
z integration over the difference between the QCD evolv
fragmentation function and the leading order QED fragm
tation function in Eq.~57! is dominated by the largez region.
The net contribution from this term is expected to be ne
tive, and the ratioR in Eq. ~55! should be less than one fo
QT@Q.

We plot the ratioR in Fig. 14 as a function ofQT at y
50 for 2<Q<3 GeV and 4<Q<5 GeV at different col-
lision energies. The solid, dashed, and dotted lines in Fig
correspond to the Tevatron energyAS52.0 TeV, the LHC
energyAS514 TeV, and the RHIC proton-proton energ
AS5500 GeV, respectively. The ratioR is less than one
when QT.Q, as expected. AsQT grows, zmin becomes
larger, and the fragmentation contributions are dominated
even larger values ofz. Consequently,R is a decreasing func
tion of the transverse momentumQT . The predicted distri-
bution inQT is steepened relative to the conventional exp
tation, with the steepening being greater for smallerAS. The
shape of the ratioR represents the effect of QCD evolutio
on the virtual photon fragmentation functions. AsQT→Q,
R→1, in keeping with the expectation that our modified fa
torization formula should yield the same cross section
conventional fixed-order perturbation theory whenQT;Q.
The apparent slight difference ofR from 1 nearQT5Q may
be attributed to the choice of fragmentation scalemF . If we
were to setmF

25QT
2/z, our result would be the same as th

conventional one whenQT5Q.
The main advantages of our modified factorization fo

mula in Eq.~35! are that the large logarithms are remov
from the coefficient functions of conventional factorizatio
and all perturbatively calculated coefficient functions a
evaluated at a single hard scale. The reliability of the per
bative calculations is enhanced. In order to demonstrate
benefit, we introduce the ratios

Rc[E
dsAB→ l 1 l 2X

(C2NLO)

d3Q
Y E

dsAB→ l 1 l 2X
(C2LO)

d3Q
, ~60!

RDir [E
dsAB→ l 1 l 2X

(Dir 2NLO)

d3Q
Y E

dsAB→ l 1 l 2X
(Dir 2LO)

d3Q
, ~61!

RF[E
dsAB→ l 1 l 2X

(F2NLO)

d3Q
Y E

dsAB→ l 1 l 2X
(F2LO)

d3Q
. ~62!

The subscriptsc, Dir , andF represent the conventional pe
turbative calculation, our direct contribution, and our fra
mentation contribution, respectively. Because the large lo
rithms are removed in the perturbatively calculat
6-19
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coefficient functions in the modified factorization formul
we expect the ratiosRDir andRF to be smaller than the ratio
Rc .

FIG. 14. RatioR in Eq. ~55! as a function ofQT at y50 and
mass intervals~a! 2<Q<3 GeV and~b! 4<Q<5 GeV. Solid,
dashed, and dotted lines are for the Tevatron energyAS
52.0 TeV, the LHC energyAS514 TeV, and the RHIC proton-
proton energyAS5500 GeV, respectively.
03400
FIG. 15. The ratios in Eqs.~60! and~61! as a function ofQT at
y50 and for the Tevatron energyAS52.0 TeV and mass intervals
~a! 2<Q<3 GeV and~b! 4<Q<5 GeV. Solid and dashed lines
are forRc andRDir , respectively.
6-20
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FIG. 16. The ratios in Eqs.~60! and~61! as a function ofQT at
y50 for the LHC energyAS514 TeV and mass intervals~a! 2
<Q<3 GeV and~b! 4<Q<5 GeV. Solid and dashed lines ar
for Rc andRDir , respectively.
03400
We compareRDir andRc in Figs. 15 and 16 at the Teva
tron and LHC energies. As expected,RDir is smaller than
Rc . We remind the reader that in our notation, NLO corr
sponds to the pureO(as

2) contribution and LO correspond
to pureO(as). Thus, the commonly definedK factor is ob-

FIG. 17. RatioRg in Eq. ~63! as a function ofQT at y50 at the
Tevatron energy~solid!, the LHC energy~dashed!, and the RHIC
proton-proton energy~dotted! for virtual photon invariant masses
~a! Q52 GeV and~b! Q55 GeV.
6-21
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tained by adding 1 to the ratios Figs. 15 and 16. The factoK
would be near 2.3 forQT;10 GeV ~near 1.9 for QT

;50 GeV) atAS52 TeV and 2<Q<3 GeV in the con-
ventional approach, but somewhat smaller,;2 and ;1.6,
for our direct contribution. The relatively smaller role of th
NLO term lends greater confidence in the reliability
the calculated Drell-Yan cross sections in our modifi
formalism.

The denominators are identical in the definitions
the ratios Rc and RDir in Eqs. ~60! and ~61!. The
difference between the solid and dashed curves in Figs
and 16 is therefore the ratio of the logarithm
piece in NLO to the leading-order direct contribution. T
figures show that a considerable fraction of the NLO corr
tion in conventional perturbative calculation
comes from logarithmic contributions associated w
bremsstrahlung radiation of the virtual photon. As not
above, the NLO fragmentation contributions are n
available yet, and, therefore, we do not show results h
for RF .

Taken at face value, the ratioR in Fig. 14 suggests tha
the cross section predicted in our modified formalis
is modestly less than that in the conventional appro
for QT.Q and that the shape of the predictedQT
distribution is steeper. However, we remind the reader
we have not included the NLO fragmentation contributio
When these are added in subsequent work, the predi
Drell-Yan cross sections from our modified factorizati
formula should be larger than those from the conventio
NLO perturbative ap-proach. Estimating the ratio of t
fragmentation contributions by the ratio of the dire
contributions, RF;RDir , we expect the Drell-Yan cros
sections, with the NLO fragmentation contribution
included, will be greater by 10% to 30% than the predic
totals in Figs. 7–9. For example, atAS52 TeV and 2<Q
<3 GeV, we estimate increases of 15% and 10%
QT59 and 39 GeV.

To demonstrate the relative size of gluon-initiated con
butions, we define the ratio

Rg5
dsAB→g* (Q)X~gluon initiated!

dQT
2dy

Y dsAB→g* (Q)X

dQT
2dy

.

~63!

The numerator includes the contributions from all parto
subprocesses with at least one initial-state gluon, and
denominator includes all subprocesses. In Fig. 17, we s
Rg as a function ofQT at y50 for the Tevatron energy
~solid!, the LHC energy~dashed!, and the RHIC proton-
proton energy~dotted! at Q52 GeV andQ55 GeV. We
confirm that gluon initiated subprocesses dominate
Drell-Yan cross section and that low mass Drell-Y
lepton-pair production at large transverse momentum is
excellent source of information on the gluon distribution@2#.
The falloff of Rg at very largeQT is related to the reduction
of phase space and the fact that cross sections are eval
at larger values of the partons’ momentum fractions. In
03400
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Tevatron case, quark-antiquark subprocesses are expect
~re!assert their dominance at very largeQT because of the
valence nature of the antiquark density in the incide
antiproton.

VI. CONCLUSIONS

In this paper we introduce a new factorization formalis
for the Drell-Yan cross section at largeQT . It incorporates
all-orders resummation of large logarithmic contributio
into parton-to-virtual photon fragmentation functions.
addition to the logarithmic contributions, our expressi
for the cross section includes the usualnon-logarithmic
contributions, referred to often asdirect contributions, in
both leading O(as) and higher orders. This modifie
factorization formula agrees with the conventional fixe
order QCD expression whenQT

2;Q2. The difference
between the modified factorization formula and t
conventional formula is determined by QCD evolution
the virtual photon fragmentation functions. Our modificati
reorganizes thesingleperturbative expansion of convention
QCD factorization intotwo expansions plus the perturba
tively calculated parton-to-virtual photon fragmentatio
functions. The new expansions are evaluated at a single
scale and are free of large lnm(QT

2/Q2) terms whenQT
2@Q2.

The ratio of the next-to-leadingO(as
2) to leading order

O(as) contributions is smaller in the new expansion than
the conventional case. The reliability of the predictions
enhanced.

As shown in Fig. 12, the contributions from the logarit
mic terms are important. They can be as large as 70%
the non-logarithmic contributions at the LHC energie
At RHIC energies, the logarithmic contributions are smal
because phase space at large transverse momentu
limited and the penalty associated with large invaria
massQ is felt more strongly. In Fig. 7, 8, and 9, we prese
predictions through next-to-leading order at energies
interest for experiments at the Fermilab Tevatro
Brookhaven’s RHIC, and the CERN Large Hadron Collid
Resummation somewhat steepens the shape of the pred
QT spectrum relative to the conventional fixed-ord
approach. However, at the order in perturbation theory
which we work, it has only a modest effect on the norm
ization. We confirm that the Drell-Yan cross section at lar
QT remains an excellent source of constraints on the gl
parton density.
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