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QCD factorized Drell-Yan cross section at large transverse momentum
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We derive a new factorization formula in perturbative quantum chromodynamics for the Drell-Yan massive
lepton-pair cross section as a function of the transverse momeQtuof the pair. WherQ+ is much larger
than the pair’s invariant magsg, this factorization formula systematically resums the logarithmic contributions
of the typea’snlnm(Q$/Q2) to all orders in the strong couplings. WhenQ+~Q, our formula yields the same
Drell-Yan cross section as conventional fixed order QCD perturbation theory. We show that resummation is
important when the collision energyS is large enough an®;>Q, and we argue that perturbative expansions
are more stable and reliable in terms of the modified factorization formula.
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I. INTRODUCTION processes. Similar to prompt photon production, the lowest-
order virtual photon “Compton” subprocesg:+q— y* +q

The study of massive lepton-pair production in hadronicdominates th&)+ distribution whenQ;>Q/2, and the next-
collisions(the Drell-Yan procegshas been a valuable pursuit to-leading order contributions preserve the fact that@he
for many year$1]. The process is an excellent laboratory for distributions are dominated by gluon initiated partonic sub-
theoretical and experimental investigations of strong interacprocesses$2].
tion dynamics, and it is a channel for discovery of quarko- If both physically measured quantiti€@andQ- are large,
nium states and intermediate vector bosons. In the Drell-Yathe cross section for lepton pairs of invariant m&ssand
process, the massive lepton pair is produced via the decay ¢fansverse momentui® can be factored systematically in
an intermediate virtual photop* . Within the context of per- QCD perturbation theory and expressed &$|
turbative quantum chromodynami¢®CD), the Drell-Yan
cross section in a collision between hadroAsand B,
A(P,)+B(Pg)—y* [—I1(Q)]+X, can be expressed in doap_.,*@x
terms of the cross section for production of an unpolarized  gQ2dy _32,:; f dxl%’A(Xl"“)J' dXobors(X2, )
virtual photon of the same invariant md&y:

d(}abﬁ'y*(Q)X
dO'ABHIJfI‘(Q)X: Qem dUABHy*(Q)x. ) dQ%dy
dQ®dQfdy  |37Q?/ dQidy

(X11X2!Q!Qle;1u“)' (2)

The sumZ, j, runs over all parton flavorsp, 4 and ¢y, g are

The variable, Qr, andy are the invariant mass, transverse normal parton distributions; and is the renormalization and

momentum, and rapidity of the pair. The symbo$tands for o T o
an inclusive sum over final states that recoil against the virthe factorization scale. The functiafory, ..+ (q)x/dQrdyin
tual photon. An integration has been performed over the anEd- (2) represents the short-distance physics of the collision
gular distribution in the lepton-pair rest frame. Because thénd is calculable perturbatively in terms of a power series in
leptons can be detected and measured without restrictiongs(«)- The leading order and next-to-leading order contri-
massive lepton-pair production as well as inclusive virtualPutions are availablE2,7]. The scaleu is of the order of the
photon production defined in E€L) are entirely inclusive. ~ energy exchange in the reactiqu- yQ*+ Q%.

Precise knowledge of the gluon parton distribution in There is a phase space penalty associated with the finite
nucleons is critical for reliable predictions of the signals andmass of the virtual photon, and the Drell-Yan factor
backgrounds for many important reactions studied at the Feren/(3mQ?%) <107 3/Q? renders the production rates for
milab Tevatron and CERN Large Hadron CollidéHC). It massive lepton pairs small at large valuespand Q+. In
was pointed out recently that the transverse momentum disrder to enhance the Drell-Yan cross section while keeping
tribution of massive lepton pairs produced in hadronic colli-the dominance of the gluon initiated subprocesses, it is use-
sions is an advantageous source of constraints on the gludul to study lepton pairs with low invariant mass and rela-
distribution [2], free from the experimental and theoretical tively large transverse momenf&]. With the large trans-
complications of photon isolation that beset studies ofverse momentun@+ setting the hard scale of the collision,
prompt photon productiof3,4]. Other than the difference the invariant mass of the virtual phot@ can be small, as
between a virtual and a real photon, the Drell-Yan proces$ong as the process can be identified experimentally, and the
and prompt photon production share the same partonic sulmumerical valueQ>Aqcp. For example, the cross section
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for Drell-Yan production was measured by the CERN UAlperturbatively in a power series of;. However, unlike the
Collaboration [8] for virtual photon mass Q parton-to-hadron fragmentation functions, the parton-to-
e[2m,,2.5 GeV. virtual-photon fragmentation functions are calculable pertur-

When Qy is very different fromQ while both are much  batively if Q*>Agcp [12].
larger thanA o¢p, the calculation of massive lepton-pair pro- In addition to the logarithmic contributions, the Drell-Yan
duction becomes a two-scale problem in QCD perturbatioréross section includes larg@n+logarithmic contributions, in
theory_ The Corresponding short-distance partonic partS, Capartl.cular, the |ea.d|ng order COHtI’IbutIOI’]S: referred tO.C.)ften
culated in conventional fixed-order QCD perturbation theoryaS direct contributions. In Sec. IV, we derive our modified
include potentially large terms proportional to the logarithmfactorization formula for massive lepton-pair production, Eq.
of the ratio of these two physical scales. As a result, thd32), in which both logarithmic and non-logarithmic contri-
higher-order corrections in powers af are not necessarily butions are ful!y included. Th.IS moc_i|f|ed factorization for-
small. The ratiarN-9/ o-© [« a X (large logarithmy] can be ”_‘“'a aﬁreeszwnhzthe coEvenuhon?l flxgc:]—or_der QCD expres-
of order 1, and the convergence of the conventional pertur§I0n W gnQT~Q (or when the logarithmic contrlbl_Jtlons
bative expansion in powers af is possibly impaired. are less importapt We show that at the next-to-leading or-

2 " der, the difference between the modified factorization for-

WhenQT<'Q N th? DreII-Yan(orW gndZ) lransverse o, ja and the conventional factorization formula is com-
mome_ntum distributions calculated in flx_ed-order QCD PElpletely determined by QCD evolution of the virtual photon
turbation theory are known not to be reliah@. After all- - 3gmentation functions. Our modified factorization formal-
orders resummation of the large @H(QF) terms is per-  ism reorganizes thsingleperturbative expansion of conven-
formed, predictions for the transverse momentumtional QCD factorization intotwo perturbative expansions
distributions become consistent with data f@3<Q? plus the perturbatively calculated parton-to-virtual photon
[10,11]. Similarly, whenQ2>Q?, the region of phase space fragmentation functions. The main advantage of this reorga-
of interest in this paper, the perturbatively calculated shorthization is that the new perturbative expansions are evalu-
distance partonic partslr . /dQ2dy in Eq. (2), re- ated at a single hard scale and are free of large logarithmic

: 1 ab—= o (QX - KT ’ terms forQ;=Q.
ceive one power of the logarithm f@f/Q ) at every order of In Sec. V, we present our predictions for the cross sections
as beyond the leading order. At sufficiently largg;, the - P P

fficients of th rurbati on dn will h for massive lepton-pair production at energies of interest for
coefnicients of tné perturbative €xpansion a will have experiments at the Fermilab Tevatron, Brookhaven’s Relativ-

large logarithmic terms, and thege high order correcti(_)n?stic Heavy lon ColliderRHIC), and the CERN Large Had-
may not be smqll. In order to -der|\'/e rel|able2QC2:D pred|c-r0n Collider(LHC). We include both leading order and next-
tions, resummation of the logarithmic termS(@7/Q°) must 4, |0ading order direct short-distance contributions and the
be considered. . , . .. resummed logarithmic contributions. The resummed large
The purpose of this paper is to modify the factorization|oaithmic contributions change the shape of the predicted
formL_JIa In Eq.(2) SO that resummation of the Iggarlthmlc Q+ spectrum of the Drell-Yan cross section but, at the order
contributions can be included naturally wh@f>Q?. Atthe perturbation theory at which we work, they have only a
same time, the modified factorization formula should remainyggest effect on the normalization. We confirm that after the
effectively the same as the conventional factorization for‘large logarithmic terms are resummed to all ordergirthe
mula in Eq.(2) whenQ7~Q?. Drell-Yan cross section at larg; remains an excellent

In Sec. II, we review the general structure of the Drell- source of contraints on the gluon parton density. Our conclu-
Yan cross section, and we identify where the large logarithmsjons are summarized in Sec. VI.

arise wherQ?>Q?> A cp. We show that whe@? is fixed

and Q?/Q{—0, the Drell-Yan cross section behaves simi- || MASSIVE LEPTON PAIR PRODUCTION AT FIXED

larly to the cross section for prompt real photon production ORDER

[2]. The large logarithmic contributions to the Drell-Yan ) o _ _ _

cross section at higldy come from partonic processes that N hadronic collisions, massive lepton-pair production

fall into the two-stage generic pattern of fragmentation conProceeds through partonic hard-scattering processes involv-

tributions: (1) short-distance production of a parton of mo- iNg initial-state quarks and gluons. If the lepton-pair’s invari-

mentump,, and (2) fragmentation of this parton into the ant masQ and its transverse momentu@y are both much

observed virtual photon. larger thanA ocp, the partonic hard scattering at a d!stance
In Sec. IIl we show that the I?(Q%/Qz) logarithmic con- scale betweer®(1/Q) qnd O(1/Q+) can be systematically

tributions to the Drell-Yan cross section can be resummed@ctored from the physics at the scale of hadron wave func-

systematically to all orders in,. We demonstrate that these 10NS, O(L/Aqcp). In this situation, the cross section can be

resummed logarithmic contributions have the same factore@*Pressed in the factored form of E@). Corrections to tge

form as those for single hadron production at large transvers@XPression in Eq(2) are suppressed by powers &/ Q

momentum, with the parton-to-hadron fragmentation funcOr Agcr/QF. The predictive power of Eq2) relies on the

tions replaced by the fragmentation functions for a parton td/niversalityof the parton distributions and threliability of

a virtual photon of invariant mas®. As for single hadron the partonic cross sections.

production, the short-distance production of the parton is The  short-distance  partonic  cross  sections,

evaluated at a single hard scate Qt), and it is calculable d&abay*(Q)x/dQ%y in Eq. (2), can be calculated in prin-
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q ey g Y subprocesses shown in Fig. 1, sumntaderaged over the
colors and spins of the final-stafi@itial-state partons. They
are available in Ref[13]. As long asQ7 is large, the LO
coefficient functions in Eq4) are well behaved, even when
Q%-0.
@) The calculation of the perturbative coefficient functions at
, orderO(ag), known as the next-to-leading ord@&LO) con-
Y tribution, involve all 2-3 partonic subprocesses with the
virtual photon in the final state as well as the-2 diagrams
in Fig. 1 with one-loop corrections. After renormalization,
g q g o q the loop momentum integrations for the-2 diagrams at
(b) order O(aﬁ) yield renormalization scaley{) dependence
and logarithmic terms in the coefficient functioHézb)Hy*X.
FIG. 1. Feynman diagrams for the LO contribution to the Drell- |ntegration over the phase space of the extra parton in the
Yan cross sectionta) quark-antiquark annihilatio+q—y*+g  final state of the 2»3 subprocesses leads to a collinear di-
and(b) Comptong+q— y* +q subprocesses. vergence when this parton is collinear to either incoming
parton. QCD factorization and subtraction of the collinear
ciple order by order in QCD perturbation theory in a powerdivergence results in factorization scalg] dependence

series of the strong couplings: and logarithmic terms in the coefficient functions at this or-
. . der. Consequently, the coefficient functidﬁ%L X display
doap . (Q)x _ E H O (X1, X2,Q,Q7.Y: )( as(ﬂ)) logarithmic dependence on the ratios of the following mo-
dQidy  ico bTytXITTZIeET M\ T27 ) mentum scalesu, ¢, Qp, andQ [2,7].
3 Since we are interested in identifying the logarithms of

the ratioQ%/Q?, with Q2> Q?, we concentrate on the part of
The reliability of QCD perturbative calculations depends onthe Drell-Yan cross section that diverges whenq%le)
the behavior of the coefficient functio T))H)/*X iNnEq.(3).  —o with Q2>AéCD_ According to the QCD factorization
At lowest order,0(«?), the only partonic subprocess for theorem, the perturbatively calculated partonic cross sections

virtual photon production ig+qg— vy*. The incoming par- d&abay*(Q)x/indyin Eq. (2) should be analytic functions
tons are assumed to be collinear to their respective incomingf Q% andQ?. Therefore, we expect the logarithmic behavior
hadrons if power suppressed corrections are neglectedf the Drell-Yan cross section as (@%/QZ)HOO with Q?
Therefore, the lowest order coefficient funCtidﬂé%)ﬂy*x > Adcp fixed to be connected closely to logarithmic diver-
« 5(Q7), vanishes ifQ+#0. gences associated with the massless pho@h=0) in the

At order O(a), both quark-antiquark annihilatio,+¢q  case of prompt real photon production. .
—9y*+g, and “Compton,” g+q— y*+q, subprocesses Other than the non-vanishing invariant mass, production
contribute to the Drell-Yan cross section, with the recoil of Of & virtual photon and a real photon share the same parton-
the final-state parton balancing the transverse momentum dgvel Feynman diagrams. However, the QCD factorization
the lepton pair. These partonic subprocesses, known as tfgrmula for the production of a real photo@f=0) is dif-
22 subprocesses, are shown in Fig&) and 1b). They  ferent from that in Eq(2),
are often referred to as the leading ordle®) contributions
to the Drell-Yan cross section with finite transverse momen-  99aB - yx =3 f Xy Baya(X )f AXabe/(Xa s 1t)
tum. The corresponding leading order coefficient functions  dQ2dy &b 1Panl L 2¢Pb/Bin2. K
are

. X[dag%@yx d&g';ayxl .
abﬂy*x_eq 2X1XZSE abﬂy*X (87T ) dQTdy dQTdy

Wheredc}g%l)yx/dQ-zrdy represents the direct production of

). (4)  the real photon at a short-distance scal®¢i/Q;), and

Aem

2

X 8((X1Pa+X,Pg— Q)z)(

~(F) -
The incoming parton flavorsab” can be eitherqq for the doab-px _ dzdoap-.ox
quark-antiquark annihilation agq for the Compton subpro- ~ dQdy ¢ J 2 dpﬁTdy
cess, ancg, is quark’s fractional charge. In E¢4), g5 and (6)

aem are the strong coupling constant and the fine structure ) o

constant of QED, respectivelf2, and Pg are the momenta 'S the fragmentation cpntnbunon to the prompt photon cross
of the colliding hadrons, an8=(P+ Pg)? is the square of section. The functiomo,y, ,.x/d pﬁTdy in Eq. (6) represents
the total collision energy. The expressiofid,;, .«x|? in  short-distance production of a parton of flaver and
Eq. (4) are the squares of the matrix elements of the partonicf)cﬂyx(z,,uﬁ) is a fragmentation function for partoa to

Q
pcz?vlulzz) DCHyX(Zilu“IZ:)
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q
a Pe .
Y
(a) b
FIG. 3. A generic diagram of the lowest order-3 subprocess
that contributes to the Drell-Yan cross section with large final-state
g logarithmic terms wheiQ?< Q2.
(b)

photon radiation. Since we are interested mainly in the struc-
ture of the final state in the region where a photon becomes
collinear to a quark, this subprocess is typical of the generic
FIG. 2. Feynman diagrams that illustrate situations in which they_, 3 subprocess in Fig. 3, and conclusions drawn from it
photon can become collinear to a quark(@ the initial state and -3 pe applied to other subprocesses suckjgsind qq’
(b) the final state. scattering. For the phase space integrals of the diagrams in
Fig. 2, we use the exact forms in R¢L5]. The logarithmic
fragment into a real photon with photon momentutn  contributions have the form
=27 p.; M is the fragmentation scale.
The fragmentation contribution arises because there are
collinear singularities associated with the region of phase In
space in which the real photon is parallel to one or more of
the final-state partongl3,14. Because the real photon is The functiong(s,t,u,Q?) is given in Ref.[2]. It is well-
massless, the parent parton, which fragments into the reglapaved a©?—0. The parton-level Mandelstam variables
photon and other collinear partons, can propagate for a Iong’t,u are defined as=(p;+p,)2 t=(p;—Q)2, and u

time. Consequently, quantum interference between the pro-, ., _ ~y2 The function A= (t+u)2—4Q%s,, with s
duction of the parent parton and the physics associated witl;(pz Q)" uncti (t+u) Q%sy, Wi 2

; : = (p1+po—Q)%=s+t+u—Q3? s, is the square of the in-
the fragmentation(or decqy of the_ parton is suppressed. va(rﬁalnt Fr:12ass Z)f the two final-statze partonsqthat recoil against
Therefore, the fragmentation contribution to prompt photo
production can be further factored as in Eg). Because the
transverse momentui®+ is large, all logarithmic collinear
divergences associated with the massless photon arise fr

S+ Q2_Sz+

Mostu.Q?)
—————|g(s,t,u,Q?).
s+Q2—52—)\g

In the limit Q?<|t+u|, the generic logarithm from the
0%H)Iitting of a quark into a photon can be approximated as

final-state partons that are parallel to the observed real pho- 2_ 2(a O2\/[ —
ton. Such logarithmic divergences are all absorbed into the |n SJFQ—SZH\ — n[ZQ (s— Q) ~(t+u)]
fragmentation functions. These functions are nonperturbative s+Q%*—s,—\ 2(=(t+u))
in nature.
Unlike prompt photon production, it is not necessary to —(t+u)
introduce fragmentation functions to absorb final-state col- ——ln T : @)

linear singularities for the Drell-Yan cross section. Because
the photon is off-shell, its large invariant ma@sregulates 14 gerive the second line we ugf<|t+u| ands~|t+ul.
the singularity. This finite mass regularization leads to 3Since |t+u|~O(Q2+Q2) the logarithm takes the form
logarithmic dependence of the Drell-Yan cross section on th?n[(Q$+Q2)IQ2]~In[TQ$/Q2]’ and the limit ofQ2<|t+u] is
invariant m f the virtual photd@. If Q is lar nough ) ' L .
ana ass of the virtual photd@. If Q is large enoug effectively the same a@2<Q$. The logarithmic contribu-

and Qy, the only other physically observed momentumt. to the Drell-Y: tion b . tant
scale, is not too large, the logarithmic termé‘(@?r/Qz) are lons 02 1€ Drefl-yan cross section become more importan
0\{yhenQ is chosen to be small.

small, and no resummation of the logarithms is necessary f L -
In principle, we can resum these large but finite loga-

a reliable prediction of the cross section. rithms into parton-to-virtual-photon fragmentation functions
When Q? is chosen to be small, so as to enhance the P P 9 '

) - t as the logarithmic divergen in real photon pr ion
Drell-Yan cross section, and when the collision enet@y Just as the logarithmic divergences in real photon productio

. ; : re resummed into real-photon fragmentation functions. Be-
and Q1 become large, it is necessary to examine the size o

. L 27 _“cause the logarithms in the Drell-Yan case are finite, @Ad
the final-state logarithmic contributions and ascertain 2 .
) N . is much larger tham 5¢p, the parton-to-virtual-photon frag-
whether resummation of these logarithmic terms is war-

ranted. mentation functions should be calculable perturbatiy&Rj.

The explicit form of NLO contributions to the Drell-Yan
cross section from a 23 partonic subprocesg+q

—>y*(Q)+q’+a’ [2] provides an example of the logarith-
mic terms under discussion. The relevant Feynman diagrams In this section, we derive the resummed logarithmic con-
are shown in Figs. @) and 2b) for initial- and final-state tributions to the Drell-Yan cross section whem_$>Q2.

Ill. FRAGMENTATION CONTRIBUTIONS TO THE
DRELL-YAN CROSS SECTION
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strahlung contributions should have the same general fac-
tored form that is present in single hadron or prompt photon
production[12]:

do'®) dz| dol) A
—abo (X > f_ — 20X ()Xo, Pe=QIZ; i)

dQidy 2% | dp; dy

2.~2
FIG. 4. Sketch of the fragmentation contribution to low mass XDCHY*X(Z’MF ;Q). ®
Drell-Yan lepton-pair production at higQ- .

_ _ o . Superscript(F) indicates the fragmentation contribution, the
Since we are interested mainly in the cross section alQéw  sum > runs over all parton flavors, angs is the fragmen-
we ignore contributions from the intermediate vector bosoniion scale defined below. The four vect in Eq. (8) is
Z defined to beQ* but with Q? set to be zero.

The partonic cross sectionsg,y, .cx/d pgTdy in Eq. (8),

represent the inclusive production of a parton of flacor

) ) These partonic cross sections are evaluated at a single hard
As demonstrated in Sec. Il, the Drell-Yan cross section agcak_;.chNQT_ Exact perturbative expressions for the par-

:arge- Lransverse Irgorrzllenztu]l@T re;]:elves %Otim'a”y Iargg tonic cross sections depend on how the fragmentation func-
Org].aw rr]nlc 'Fermls h(QT Q_) r(l)mt € pﬁl_rto PNase space i iqng DCHY*X(Z,ME;QZ) are defined(or depend on the
which the virtual photon is almost collinear to one or more . i< ¢'the schem@l12].

final-state partons. Since at least one final-state parton is 5q ¢, single hadror(or prompt photoh production, all
needed t‘.) ba!ance the V|'rtual photons transverse momentur]}ﬂge logarithms from the integration over the distance scale
the logarithmic contributions can arise only at NLO and be-from O(1/p, ) [or O(1/Q)] to O(1/Q), where the virtual

T 1

yond. . . .
Because of the logarithms, the coefficient functions in EqP0ton is produced, are resummed into the fragmentation

(3) might be large, and resummation of the logarithmic conJunctions. The main difference for the production of a virtual
' photon, a hadron, or a real photon is the difference in the

tributions might be needed. As long & is much larger . )

thanAéCD, all coefficient functions in Eq.3) are calculable fragmentation functions.
in principle order by order in QCD perturbation theory.
Therefore, resummation of the logarithm&'(@%/Q?) is ac- B. Parton-to-virtual-photon fragmentation functions

tually areorganizationof the perturbative expansion in Eq. The fragmentation function for a parton of flavointo a

(3), such that all coefficient functions in the reorganized per-; . al photon of invariant mas® is defined as a probability

turbative expansions are evaluated at a single hard scale a'agnsity for finding the virtual photon with fractianof the
free of any large Ioganthms. L arent parton’s momentum. Because of the universality of
The energy exchangze n the hard (:20”'5'2” is of the ordel,gmentation functions, virtual photon fragmentation func-
of yQ7+Q"~Qr+0(Q/Q7). WhenQ7>Q*, the partonic  tjons can be derived in a process independent 2y or
hard collision should not be sensitive to the sc@& at  extracted from a specific physical process. In this section, we
which the virtual photon is produced. If we neglect powerderive the virtual photon fragmentation functions by resum-
corrections of the orde@? Q7 the partonic hard collisions ming the leading logarithmic contributions to the Drell-Yan
are effectively independent @2, except for the logarithmic cross section at large transverse momentum.
dependence l?(Q%/QZ) from the final-state bremsstrahlung  In order to resum the large logarithmic contributions to
production of the virtual photon. Therefore, other than thethe Drell-Yan cross section to all orders and to extract the
appearance of the virtual photon’s ma3sto regulate the virtual photon fragmentation functions, we must identify all
final-state collinear divergences, the potentially large logasources and the pattern of these logarithmic contributions.
rithmic contributions at larg€+ have the same structure as Consider a nonsinglet fragmentation of a quark into a virtual
the fragmentation contributions to prompt real photon pro-photon, shown in Fig. 5. The virtual photon is produced from
duction. They can be separated into two stagé&sproduc-  bremsstrahlung of a quaror an antiquark The quark(or
tion of a parton of momenturp, at a very short distance antiquark itself is produced either in the hard collision, as
(~1/pCT~ 1/Q+), and(2) production of the lepton-pair via a shown in Fig. %a), or from the fragmentation of another
virtual photon of invariant mas€ through bremsstrahlung duark, as shown in Fig.(B) or Fig. 5c). In a physical gauge
(or fragmentation from the parton produced at the first (Such as the light-cone gaugehe leading large logarithmic
Stage_ This two-stage production, shown in F|g 3orin gen.contrlbutlons of the SUb.procelsseS n Flg 5 come fI’O!’n the
eral in Fig. 4, shares the same generic pattern of the frag?art of the phase space in which the daughter quark’s invari-
mentation production of a single partiole.g., a hadron of ant massk; is much smaller than that of the parent quark
massM,, or a real photohat large transverse momentum ki2+1. In this situation, we can neglect all contributions sup-
Qr. If we neglect the power suppressed quantum interferpressed by powers <latf/ki2Jr 1 - The “decay” rate(or the frag-
ence between these two stages, the fragmenté&iobrems-  mentation functionof the parent quark into a daughter quark

A. Logarithmic contributions to the Drell-Yan cross section
at large Q+
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! Y
a Pe ! a kaO
+
b b
(2)
4+ o o +4 L]

©)

FIG. 5. Scattering amplitudes that provide large logarithmic
contributions to the Drell-Yan cross section via quark fragmenta
tion.

plus massless partons is dominated by logarithmic contrib
tions that are proportional to Ik{ ,/k’). The leading loga-
rithmic contributions from the general fragmentation dia-

gram in Fig. 4 arise from the region of strong ordering in the

invariant masses of the fragmentation partons in Figo@:
> .. kE >k L >k [12)

With the strong ordering approximation, the leading loga-

rithmic contributions from the non-singlet fragmentation in
Fig. 5 can be factored into the hard production of a quark o
momentump, convoluted with a sum of all-orders fragmen-
tation ladder diagrams, as shown in Fig. 6. By comparing th
factored cross section in E(B) with the factored expression
in Fig. 6, and summing the ladder diagrams to all orders, on
obtains the leading contributions to the nonsinglet quark-to
virtual-photon fragmentation functiori§2]:

Dy ex(Z.P%:Q%)
f p: d_kg(
Q2%/z kg
k2

Sl dk?
i+1_ 1
1.

21z k|2

Pem (0)
2m Jao

(Z,kS;QZ))

=l
zi+1 4

as

2

Tem (0)

oy (21,65 Q) (9)

" |
The superscript NS’ represents the non-singlet contribu-
tion; the upper limit of integration i3, ,=pZ2; and the
lower limit of integration,Q?%/z, is the mass thresholtbr
minimum invariant maggor the quark to produce the virtual
photon of invariant mas® [12]. The leading-order quark-to-
quark splitting functiorP{”) (2) is the same as the leading-
order quark-to-quark splitting function of the Dokshitzer-

u_
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FIG. 6. Factored non-singlet quark-to-virtual-photon fragmenta-
tion contributions to the Drell-Yan cross section.

Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution
equationg 16]. In deriving Eq.(9), we include the diagrams
with quark wave function renormalization in addition to the
ladder diagrams shown in Fig. 6. The function
ygoly*(z,kz;QZ) in Eq. (9) is the lowest order QED splitting
function for a quark to fragment into a virtual photon
[12,17], defined below.

Since the invariant mass of the parent quqﬁ(, can be
very large in high energy collisions, the resummed logarith-
mic contributions, given by the second term on the right-
hand side of Eq(9), can be important for the Drell-Yan cross
Section at lowQ?. From Eq.(8) and the fact that the partonic
hard parts are evaluated at a single hard seaﬂlgT~QT,

we conclude that all leading large logarithmic contributions
at highQ+ are included in the virtual photon fragmentation
functions. Resummation of the large logarithmic contribu-
tions is equivalent to the derivation of the virtual photon
fragmentation functions in Eq(9). Unlike the parton-to-
adron fragmentation functions, the virtual photon fragmen-

{1ation functions in Eq(9) have no dependence on any non-

erturbative momentum scale. The virtual photon’s non-
anishing invariant mass removes the final-state collinear
singularities that appear in the parton-to-hadfnreal pho-

?on) fragmentation functions. Therefore, all parton-to-virtual-

photon fragmentation functions should be free of collinear
singularities, and they are calculable in principle perturba-
tively to all orders inag [12].

By reorganizing the second term on the right-hand side of
Eqg. (9), one may derive an integral equation for the non-
singlet quark-to-virtual-photon fragmentation function:

2
DNS (z Z.QZ): pﬁ dko %em (0) (z kZ.QZ)
q—y*x(Z P @z k2 | 27 Yg—y* (£ %0
+f"5 k) as (1d2 ) (2
2 2| 2 ’ q—aq\ _,
Q%z k z Z z

XDy (2 KEQ). (10

Carrying out the sum over all-orders logarithmic contribu-
tions in EQ.(9) is equivalent to solving the integral equation
in Eq. (10).

We introduce fragmentation scalg: and letu2=p?, the
square of the invariant mass of the parent quark in(EQ).
One can derive an evolution equation by applyjrgd/du2
to both sides of Eq(10):
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d a
2 NS 2. __em_ (o 2.
'U“Fd_quﬁy*x(Z”U‘F'Qz)_Eyfqu*(z’”F’Qz)
HE
1 !
as (192 ) (2
21, 7/ q—q 7/
NS .
XDg= wx(Z uf Q).

(11)
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The superscript EP” represents the leading power approxi-
mation. With this strictly leading power quark-to-photon
QED evolution kernel, the evolution equation in E#j2) for

the parton-to-virtual-photon fragmentation functions is ex-
actly the same as that for the parton-to-real-photon fragmen-

Because the quark can interact directly with the virtual photation functiond 13]. Under the strict leading power approxi-

ton, the evolution equation in E¢L1) has an inhomogeneous
term.

mation, the only difference between virtual and real photon
fragmentation functions is the boundary condition for the

By extending the simple ladder diagrams in Fig. 6 to gen-€volution equations. For real photon fragmentation func-

eral ladder diagram4.8], one can derive evolution equations
for the singlet quark-to-virtual-photon and gluon-to-virtual-
photon fragmentation functiorj42],

IU’IZZ_ZDCH)/*X(ZUU“IZ: 'QZ)
dug
Zem
2

) ’yCHy*(Z,,U,E: y g iQZ)

ag 1dz’ z
|53 L?F’H’(

X Dd—w*X(Z,!/-LIZ: ;Qz)v

N

wherec,d=q,q,g. In Eq. (12), the evolution kernel®._. 4
are evaluated at a single hard scalg,, and can be calcu-
lated perturbatively as a power seriesdg. QCD correc-
tions to the QED quark-to-virtual-photon splitting function
Yc—y* Can be evaluated in principle order-by-orderaig.
Calculating the lowest order quark-to-virtual-photon lad-

2

12

tions, a set of unknown non-perturbative input fragmentation
functionsD_, ,x(2) is needed at a given scadé (~ afew
GeV) [19]. On the other hand, no non-perturbative input
fragmentation functions are needed to solve the evolution
equations in Eq(12). Instead, the mass threshold for produc-
tion of a timelike virtual photon of invariant magsimposes

a natural boundary condition for all flavocs

De .+ x(z,u2<Q%2,Q%)=0. (16)

The strict leading-power approximation might be too se-
vere in the threshold regiofl2]. Because its mass is non-
zero, the virtual photon can have both transverse and longi-
tudinal polarization modes. The QED evolution kernel in Eq.
(13) is a sum of evolution kernels for a quark to fragment
into either transvers€T) or longitudinal (L) polarization
modes[12,17],

0 0
Y (2KQ) =29 (2 KR+ 7 (2 K5Q2),

der diagram in Fig. 6, we obtain the leading order quark-to-

virtual-photon QED evolution kern¢ll2,17],

5

1+(1-2)?
z

QZ

Ll @
ZI2

z

0
79 (zk%QY) =€l

fe-9)

(13

The @ function is a consequence of the mass threshold. The

gluon-to-virtual-photon evolution kernel vanishes at the
same order

(0)
Yo—y

«(2K%5Q%)=0, (14
because the gluon does not interact directly with the virtua
photon.

It is important to note that if we work in the strict leading
power (or leading twist approximation, we would dropoth
the power corrections to the fragmentation functions as wel
as power corrections to the evolution kernels of the fragmen
tation functions. That is, we would neglect ti®(Q?/k?)
term in Eq.(13),

(17)
with
1(1+(1-2)*
ygﬁygz,kz;qz):egz(%)
s (2 Q_z)
xlzkzlak ol (18)
r _ 2 2
At cewer-ofd 7 [ - ).
(19

The factor 2 in Eq(17) represents the two transverse polar-

zation states of the virtual photon. Under the strict leading
Lower approximation, Eq19) vanishes. In this strict limit,

only transversely polarized virtual photons are produced
through the fragmentation processes, and there are no loga-

ithmic contributions to the production of longitudinally po-
arized virtual photons. Furthermore, without tB¢Q?/k?)

term in Eq.(18), the evolution kernet/gzy*(z,kz;Qz) gives
T
the wrong threshold behavior. Instead of being zero at the
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threshold wherk?=Q?/z, the leading power evolution ker- tation functions provide the resummed contributions to the
nel YéL_',:;*O)(ZaKZJQZ) is finite and proportional to 2/ It is  Production of a longitudinally polarized virtual phot§h2].
x

large if zis small.
In general, there can be two types of power corrections to C. Calculation of the partonic hard parts
the leading power virtual photon fragmentation functions. T4 getermine the fragmentation contributions to the Drell-
Power suppressed contributio®{Q?/ u2) to the fragmen-  van cross section,
tation functions are one typéype |, as defined in Ref11]),
and power corrections contributions to the evolution kernels dgg\l (X
(or the slopesof the fragmentation functions are the other ———~

2
type (known as type . For example, consider the lowest dQrdy
order contribution to the quark-to-virtual-photon fragmenta-
tion function from the evolution kernel in E¢18), => f dxlg{)a,A(xl,,u)f dXo pp(Xa, 1)
a,b
2 dk2<a ) o5
0) 2.42y— | #F em| (0) 2.2 dz| dogy .cx R
Do xx(Z s =f — 5= «(Z,K"; B P =0Q/z
N e e e EAICAtep xS J |y e e Qi)
1/1+(1-2)?
_g2 Zem 22727 XD . wx(z,12:Q?), 21
SR HES o2 i2i Q) @
zu? Q? we must evaluate the partonic hard patés)_.,/dp: dyin
x| In 2| |17 z ME (20 Eqg. (21). Although these are calculable perturbatively, exact

expressions depend on how the parton distributions and frag-
mentation functions are definddr the choice of factoriza-
tion schemg In this subsection, we provide a self-consistent
é)rocedure for the calculation of the partonic hard parts.

The (1- Q2/z,u§) term results from the power suppressed
Q?/zk? term in the evolution kernel, and it is clear that this

term is as important as the logarithmic term in the threshold /o separate the procedure into four steis:instead of
rggiop. The term proportional to 1 in this (—l(z;)zlg,u,z:) CoM-  considering the hadronic proceas- B— v* (Q)X, we apply
bination is not power suppressed KY(Q/uf). In the  the factored formula in Eq(21) to a partonic process’
threshold region, the virtual photon fragmentation functionst ' ¢’ with an on-shell final-state partoa’; (2) we

are dominated by the longitudinally polarized componentexpand both sides of the factored formula for the partonic
particularly whenz is small[12]. The type-Il power correc- process order by order iag; (3) we calculate the partonic

tions are not necessarily small and could provide paveer- . 2 ;
o . cross sectioo .. x/dp-,dy, and parton-to-parton dis-
suppresseaontributions to physical observablgkl]. Tarb'—ox 0P Y P P

In the rest of our discussion, we keep the leading powetributions and fragmentation functions order by orderin
suppressed terms in the QED evolution kernels in @8 arAld (4) we extract the short-distance partonic hard parts
when we calculate our parton-to-virtual-photon fragmentado,,_..x/d pﬁTdy by comparing both sides of the perturba-
tion functions. As shown in Ref.12], the inhomogeneous tively expanded factored formula at the same ordewgf

QED evolution kernels in Eq12) dominate the scale depen- By applying the fragmentation expression in E8) to
dence of the fragmentation functions, and therefore, we nge partonic processex +b’ —c'X, we obtain the follow-

glect the power corrections to the QCD evolution kernelsing schematic formula:

P._g4in Eqg. (12). With the inclusion of power corrections in

the evolution kernels, the resummation discussed here is no

longer a simple one-scale problem in QCD perturbation Oty ot = 2 ¢a/a,®¢b/b,®(}gilc®DC%,_ (22)
theory. More detailed discussions of the virtual-photon frag- ab.c

mentation functions can be found in REf2].

_In summary, the all-orders resummation of the large logaThe symbol® represents the convolutions over momentum
rithmic contributions to the low mass Drell-Yan cross sectionfractionsx; , x,, andzin Eq. (22). [In Eq.(22) and in the rest

is equivalent to a sum of all logarithmic contributions to the of the equations of this subsection, we omit the inclusive
virtual photon fragmentation functions, achieved by solutionsymbo|x for reasons of notational simplicify.

of the evolution equations in Eq12). The evolution equa-  ~ To produce a parton with large transverse momentum, a
tions for the virtual photon fragmentation functions have they .2 partonic process is required at the parton level, at mini-
same functional forms as those for real photon fragmentatiof,,m of the ordeiO(a?). Expanding both sides of the fac-

functions[13]. However, the differences in both boundary {;ed formula Eq(22) order by order ina, we define the
conditions and the inhomogeneous terms due to the NOMsllowing perturbative expansions:

vanishing ofQ? lead to many differences between the real
and virtual photon fragmentation functions. One major dif- n
ference is that the virtual photon fragmentation functions are Torry = 2 oM (“S(“)) (23)
purely perturbative. In addition, the virtual photon fragmen- abimer ey Tarb el 2 ’
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~ (F) (n) as(p) distance hard parts depend on the definitions of parton-level
Tab—c™ 22 Hab—c om | (24 parton distributions and fragmentation functions. The par-
"= tonic hard parts are fixed uniquely once we fix the parton-
ag(w)\" level parton distributions and fragmentation functions. In or-

¢a/a'£n§o ¢g;;(;—:) , (25)  der to use available conventional parton distributions, we

have little choice other than to select the parton-level parton
N distributions in either the modified minimal subtraction
D, =3 D ,(“5(“)) _ 26)  (MS) or deep inelastic scatterir@IS) schem¢[20].

T oAso 9\ 2w In the partonic cross sectiom{}) ., the parton momen-

tum p, is assumed to be masslegg=0, and, therefore, a
We substitute these four perturbative expansions into Egp state collinear singularity arises. Within the usual QCD
(22) and obtain aD(a?), factorization framework, there is freedom to choose any fac-
torization scheme to remove the final-state collinear singu-
(27)  larities of the partonic cross section and absorb all possible
finite differences into the non-perturbative fragmentation
functions. Different choices for the factorization scheme lead
tb finite differences between the extracted non-perturbative

(2) _ (0) (0) 2 (0)
Tarb!—cr = 2 Boyn © by ©HE ®D

a/a’ c—c'”

Since the zeroth order parton distributions and fragmentatio
functions ares functions, Eq.(27) yieldsHZ) =42

ab—c™ Tap—c O fragmentation functions. However, owing to the non-zero in-

do(F-LO) da("o) variant mass of t_he virtua_l photon, the part_on-to-virtual-

abmc _ -"a (28) photon fragmer)t_atlon functions do not have final-state _col-

deTdy dpgTdy linear singularities. They are completely perturbative.

Therefore, the parton-to-virtual-photon fragmentation func-

at leading order. tions cannot uniquely fix the definition of the parton-to-
Expanding Eq(22) to NLO, we write parton fragmentation functions. As a consequence of the dif-
ference in the invariant masses of the parton and the virtual
e _ 2 69 90 oH® op© photon, an extra constraint has to be introduced to specify

Tarb' o'~ atar ® Pojp @Hab.c®De e the parton-to-parton fragmentation functidDS?Lc. We can

choose a scheme for defining the parton-level fragmentation

+ 2 ¢$; E’?%,(@HE{%LC@D(C(EC, functions so as to remove the final-state collinear singulari-

ties in the partonic cross sections]) ., with n=3. The
finite differences between schemes cannot be completely ab-
sorbed into theperturbative parton-to-virtual-photon frag-
mentation functions.
Finite differences associated with the choice of scheme
+ 2 ¢$a)‘, f)%r@@HSDLC Dgl)c,. for the parton-level fragmentation functions correspond to
- non-logarithmic contributions to the Drell-Yan cross section.
(29) Fo.r the Iogz_irithmic contributions to the Drell-Yan fragmen—
tation functions, we can choose parton-level fragmentation
Using the zeroth order parton distributions and fragmentatioiunctions in theMS scheme or in any other scheme when
functions, forda{,"N-9)/dp? dy, we obtain calculating the partonic short-distance hard parts in(E§).
T The perturbatively calculated partonic hard parts

dofy)o/dp: dy will be the same as those for inclusive

single hadror{or prompt photohproduction if the same fac-
torization scheme is used. The non-logarithmic differences
_2 H® op® (30) caused by the dif_ferent _choices o_f th_e factorization schemes
ab—c’ = e/ —er can be absorbed into thfrect contributions to the Drell-Yan
cross section, defined and discussed in the next section.
In Eq. (30), H{) . is the leading order contribution calcu-
lated in Eq.(28). The partonic cross section’s) . and all
parton-level parton distributions and fragmentation functions
are perturbatively calculable with proper regulators. The sub-
traction terms in Eq(30) remove the collinear singularities In this section, we derive our modified factorization for-
associated with the massless partons. Following the sanmmaula for the Drell-Yan cross section including resummation
procedure, we can derive the short-distance partonic haradf the logarithmic contributions. Particularly at leading order,
parts for the fragmentation contributions in EQ1) at all  but also at all higher orders in perturbation theory, there are
orders inas. significant contributions to the cross section that are not in-
Equation(30) shows that beyond the leading order, thecluded in the fragmentation terms. It is essential that the full
exact expressions for the perturbatively calculated shortfactorization formula include all non-logarithmic contribu-

0 1 2 0
+ 2 o0 @i, oHE @D

c—c’

3) _ (3 (1) (2) (1) (2)
HE) =0 .~ > ba1a®Harp e bE bpp®@Hap e
a/ ’

IV. DRELL-YAN CROSS SECTION WITH RESUMMED
FRAGMENTATION CONTRIBUTIONS
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tions order by order inxg, while retaining the all orders dePin

resummation of the logarithmic contributions. —A QXN Xy %0, D, Q1Y e s )
We use the wordlirect to designate the non-logarithmic dQidy A=1 APy

contributions to the Drell-Yan cross section. This use of the n

term is the same as its use in prompt photon production. At ><( as(pm) 33)

leading order the direct terms in the Drell-Yan cross section 2w |’

are those supplied by the short dista@l/Q+) 2-parton to . o

2-parton Compton and annihilation subprocesses. Howevewheren=1 becayse the leading order contrlbutlgns to Drell-
there is an additional component at higher orders. The direcfan cross section are of orded(aemas). Since the
contribution must also absorb the finite non-logarithmic dif-fragmentation  contributions do;';Ly* (Q)X/dQ$dy and

ferences in the partonic hard patt}) . associated With g, . o, /dQ3dy share the same large logarithmic
the ambiguity in definition of the parton-level fragmentation tgrms; IF(Q%/Q?), the direct contributions should be free of

functions, as discussed in the last section. This second COMyrge logarithms order by order i, . Therefore, the coeffi-
ponent accounts for the non-logarithmic terms over the diséient functionsy™ in Eq 3(33) are evalluated at a
X .

tance intervalO(1/Q) to O(1/Q). The logarithmic terms . ab—y*(Q) . .
are included in the fragmentation functions. The physics o ﬁggﬁrgiidcizﬂﬁ)ﬁt%g,ir?ng t(g%)pg rtg)r(bzté\tls dei(c?%r:a‘s'\?vgl]lc?r
our direct term is very similar to that represented by Yhe behaved perturbativel Weq substitutepEQS) (24), (26)
term in the Collins, Soper, and Sterm@@S9 formalism[9] (33 | 9[ Eq.(32) y-d btai ’ ’ ’
for resummation at smafD+ . and(33) into Eq. and obtain

To be precise, wealefinethe direct contribution as the

. (n) M
difference Yabﬂy*(Q)X_HabHy*(Q)X
n
(Dir) (F) - H D™ . (34
doag .y @x_ 90y @x  9%a8y*(Q)x mz:2 ; ab-ex®De- (x| (34
dQ¥dy dQt dy dQidy .
! ! ! FunctionsD{". 7« are the coefficient functions for the

perturbatively calculated parton-to-virtual-photon fragmenta-
tion functiong[12]. The subtraction term in E§34) removes
:E de1¢a/A(X1,M) the logarithmic contributions included in the coefficient
ab functions H,p, ,+()x that are calculated in conventional

do(Pin fixed-order perturbation theory. As remarked above, the di-
xf A% Xas 1) M (31)  rect contributions defined in E434) absorb the finite non-
dQrdy logarithmic differences in the partonic hard pa$) .. If

H{Y .. is larger in one scheme and more is included in the
. ) i fragmentation contributions, then more will be subtracted
The parton level direct term is obtained from the factorediom the direct contributions. Any non-compensated differ-
formulas in Eqs(2) and (2), ences will be higher order corrections dn.
We substitute Eq32) into Eq.(31) and derive a modified
factorization formula for the Drell-Yan cross section@¢

=Q:

d&(?)ir) (QX
ab— y*

—(X11X21Q=QT1y;lu‘1[u’F)
dQtdy

~ doas_ y*(Q)x
_ doap_ (@x “TAB- Y (QX

dQ.%.dy (leXZ:QaQT:Y:M) dQ-zrdy
d3éZLy*(Q)X :2 fdxlfﬁa/A(Xl'M)f dXoPure(X2, 1)
- W(le)(Z!QlQT!y;MHU“F)v (32) ab
Qrdy 4500
x[M(x1 X2,Q.Qr i tr o 12)
R d 2d L 1 1 1 1 1

with  doly) . ox/dQ3dy given in Eq. (8 and Qrdy
d&abﬂy*(Q)X/dQ%y calculated in conventional fixed-order dz| dol) oy Q
QCD perturbation theory. SiNCBTp, . % ()x/dQ%dy and + = f? dp2 dy X1, X2, Pe= 2 e
da;'l s x/d Qidy are calculable perturbatively, the direct !
contributions dop") . o x/dQidy in Eq. (32), should also <0 . a5
be calculable perturbatively. They have the perturbative ex- ey (@x(ZuE Q%) ¢ -

pansion
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Both perturbatively calculated short-distance hard partspew perturbative expansions are free of large logarithms. The
o(F) 2 ~ (Dir) 2 large logarithms in the conventional perturbative expansion
doab_'CX/dPCTdy and daab_.'y*(Q)X/dQTdyé azre free _Of areg resugmmed into the fragmentation Fi‘)unctions. In thg rest of
large logarithms. All potentially large MQ7/Q%) terms in  this section we demonstrate the difference by comparing the
the regionQ%>Q? are resummed into the virtual photon two factorization formulas explicitly order by order in pow-
fragmentation function®_, ,« q)x . The direct contribution ers of as.
[first term on the right-hand side of E(B5)] represents the According to the conventional factorization approach, the
production of lepton pairs at the distance scale of the harépwest order partonic contributions to virtual photon produc-
collisions (~1/Q;). The fragmentation contribution stands tion are provided by the quark-gluon Compton and quark-
for the sum of all leading logarithmic contributions from a @ntiquark annihilation diagrams at ordegmas:
distance scale at Q4 to 1/Q. (C-LO)

i i i ithmi doae . (@x
We note here, in passing, that unlike the logarithmic termsf = 2 dX; Paya(Xq ,M)f dX, (X, 1)
in the region of smalQ+, the logarithmic terms at larg®@+ dQrdy b
are typical DGLAP logarithms associated with collinear con- 45(€-L0)
tributions. At low Qt, logarithmic contributions arise from ‘Tabﬂy*(Q)X(X %,,Q,Q7.y: 1) |. (36)
the collinearand the infrared regions. Correspondingly, in dQ2dy S A

resummation formalisms relevant at sm&l, there are
leading logarithmic termsincluding both collinear and in-

frare(_j Iogarithms _at aII.orders iers), and next-to-leading In our modified factorization approach, E§5), there are
logarithmic terms(including only one of the two types of y, hertyrbative expansions corresponding to the direct and
logarithms, and “next-to-next-to-leading”  logarithmic  fragmentation contributions, respectively. Each perturbation
terms, and so forth. In our case, we do not have the type oderies has its own leading order contributions. Because the
‘next-to-leading” logarithms that appear in resummation sybtraction term in Eq(34) starts atO(«?2), the LO direct

procedures at smaldy. Anything left over in the larg®Qt  contribution is the same as the LO conventional contribution
region, after resummation of the leading logs of DGLAPin Eq. (36),

type, is included in the direct terms.

The superscript @ —LO) stands for the leading order con-
ventional perturbative calculation.

Since we have in mind applications at laiQe but small dU(ADBIS;%)X B

Q, it is important to consider the possible role of higher—twistw az;) J Xm¢a/A(leM)f dXz (X2, 1)

contributions proportional to inverse powers @ Like T '

power corrections from target mass effects, power correc- do(Pir—LO)

tions in our case should appear in the form of [“;;W

m?/(energy exchang®) with m~ Q. SinceQ? sets the hard dQrdy

scale, andQ? acts as a mass threshold, the only dimension- . ~ (Dir—LO 2

less ratios we expect to see ap&/Q? and Q% u?, but no Tb(ec_l‘l_% partonlzc hgrd parﬂa;béy*(é)xl dQrdy equals

1/Q? term. There can be three kinds of power correctionsd%an_. yx(g)x/dQ7dY in Eq. (36).

power corrections to the partonic hard parts, suppressed by The virtual photon fragmentation functions are of order

Q2/Q2; power corrections to the fragmentation contribu- ¢em [12], and the partonic hard parthrgFt,LCx/dpdey in

tions, suppressed 92/ u2~Q?/QZ; and power corrections Eq. (35) start at orderr?. The LO fragmentation contribu-

to the evolution kernels of the fragmentation functions, pro-tions to the Drell-Yan cross section would seem therefore to

portional toQ?% u2. Sinceu? runs fromQ? to u2, the third  be of orderO(aema?), one power ofa higher than the LO

type could be significanthl,uzmin~O(1). Although this  direct contributions in Eq(37). However, the large loga-

third variety is potentially important, the terms should berithms from the virtual photon fragmentation functions are

much smaller than the leading logarithmic contributions agroportional to Inﬁﬁ)ocllas(,up), meaning that the LO frag-

long as InQ%/Q2)>1. mentation contributions to the Drell-Yan cross section can be
Our modified factorization formula for the Drell-Yan viewed as effectivelYO( @) terms, of the same order as

cross section in Eq35) is very similar to that for prompt the LO direct contribution:

real photon production in Eq5). However, theQ? depen- (F-LO)

dence in the direct production term and differences in the do—AB—»y*(Q)X

fragmentation functions distinguish the Drell-Yan virtual dQ%dy

photon production from prompt real photon production.

(X11X21Q1QT=y;lu‘) . (37)

The key difference between our modified factorization
formula in Eq.(35) and the conventional factorization for- :;) f dX1¢a/A(X1'M)f dX;Ppia(X2, )
mula in Eqg.(2) resides in the way the logarithmic contribu- '
tions from final-state parton splitting are handled. Instead of dz d(}ng;Lc?() o)
one perturbative series in powers @f in the conventional X 22 a0 | XuX2Pe= e
approach, we have two perturbative expansions in our modi- ¢ z° dpgdy
fied factorization formula: one for the direct and one for the
fragmentation contribution. All coefficient functions in the XDcﬂy*(Q)X(ZaMIZZ;QZ)- (38
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In our modified factorization formalism, the LO contribution These logarithmic contributions have been included in the
to the Drell-Yan cross section at lar@¥; is equal to the sum LO fragmentation contribution to the Drell-Yan cross section

of the LO terms of the two perturbative expansions: in Eq. (39).
_ We would need NLO fragmentation contributions to com-
dU&LBO ) 7% (Q)X dogDB'fyl;%)X dcrffB;L;)(Q)x @9 plete the calculation of the NLO contribution:
dQ%dy dQ'zrdy dQ%dy (F-=NLO)
dUAB—>y*(Q)X
The LO direct and fragmentation contributions are found in dQ%dy

Eq. (37) and Eq.(38), respectively.

At NLO, aemai, in the conventional fixed-order ap-
proach, the Drell-Yan cross section has the same form as that = ;) f dX1¢a/A(X1,,u,)f dX2Pp/(X2,1t)
in Eq. (36) but with superscripts@—LO) replaced by C '
—NLO). According to our modified factorization formalism, do(F~NLO) A
. dz Oab—cX Q
the NLO term should be the sum of the NLO termshioth X f = xl,xz,pc=;;,u,: Ny
the direct and fragmentation contributions in Eg5). The ¢ J z¢ dp;dy
NLO direct contribution is 2
4o Dir~NLO) XD yx (x(Z, 1F Q7). (41)
AB— y* (Q)X
dQ$dy The virtual-photon fragmentation functions include the all

orders resummation of the logarithmic terms, and they are
the same as those for the LO contribution in E88). The

=> fdxl¢a/A(XlrM)f dXo /(X , 1)
a,b

O(a3) partonic hard partdo{, N59/d pz, dy are defined in
do(C-NLO) Sec. Ill C and will be presented elsewhere.
‘Tabav*(Q)X(X X2,Q,07.Y: The NLO contribution to the Drell-Yan cross section at
T 2. ke .Y M) .
dQsdy large transverse momentum is
. (NLO) (Dir —NLO) (F-NLO)
dzdoli~tQ o) done—y @x _ 9aB— () N doas— v (@x (42)
_ " =—: 2 2 2 !

= ZZ dp(z:_l_dy X11X27pC z yME M dQTdy dQTdy dQTdy

where the NLO direct and fragmentation contributions are
(0) 2.02 found in Egs.(40) and(41), respectively.
8 DCHW(Q)X(Z’MF Q )] ' 40 In our m%dified factorizationpformali)s/m, the LO and NLO
contributions are different from those in the conventional
The subtraction term is a consequence of the definition of théormalism because the virtual photon fragmentation func-
direct contribution in Eq(34). The subtraction term is also tions include all orders of the large leading logarithmic con-
necessary to remove the logarithmic terms from the convertributions. The difference is better seen if we rewrite our LO
tional NLO expression in Eq40), to avoid double counting. and NLO results in the following form:

(LO) (NLO)
do—ABH'y*(Q)X: doag”, QX da—AB%y*(Q)X (43
dQfdy dQfdy dQfdy
5(C-LO)
b— y* X
=2 fdxld’a/A(Xla/-L)fdx2¢b/B(X21M) a—;(Q)(lexz,Q,QT,Y;M)
ab dQsdy
de(C~NLO)
b— % (Q)X
a—zy(Q)(lexzaQaQT'Y?ﬂ) +2 fXmd’a/A(leﬂ)jdde’b/B(XzaM)
dQrdy a,b
dzdol, R Q -
- abmer —_=. . RN 2.A2
X{ 2 22 dpgTdy X11X2!pc_ Z yME M [DC—>7*(Q)X(ZUU'F iQ ) DC_W*(Q)X(Z!/-LFlQ )]
dz dod, %" ( Q
— Xy X9 Pe=— i p o b | Do z,12:Q%) 4. 44
chz dpgTdy 1:X2,Pe = T HE c—y*@x(Z, 1E;Q%) (44)
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On the right-hand side of Eq44), the first term is the pre- ladder diagrams. An invariant mass cutoff scheme is intro-
diction of the conventional fixed-order factorization formal- duced in Ref.[12] to render the fragmentation functions
ism in Eq.(2); the second term is the difference between oumositive definite. In this scheme, all UV divergences associ-
modified factorization formula and the conventional fixed-ated with the internal elementary divergent diagrams are re-
order factorization formula up to NLO. moved in the same way as the QCD and QED Lagrangian

To conclude this section, we emphasize that our modifiecire renormalizedsay, in theMS schemg The UV diver-
factorization formalism in Eq(35) effectively reorganizes gences connected with loop momenta of the skeleton ladder
the single perturbative expansion of conventional QCD fac- diagrams and wave function renormalization of the compos-
torization,do,, . - (Q)X/dQ$dy, in Eq. (2), into two pertur-  ite operators are removed by impo;ition of an invariant mass
bative expansions,d&;'f)i)y*(Q)X/dQ$dy and da—gT)LcX/ cqt on the loop momenta..AII running coupling constants in
dpﬁ dy, plus the perturbatively calculated evolution kernels.th's.scr.]eme are renorma_hzed in the same way as _the renor-

T 7 i T malization of the Lagrangian. Use of the same invariant mass
The main advantage of this reorganization is that the newyioff on the loop momenta of the skeleton ladder diagrams
perturbative expansions are evaluated at a single hard scaigq the virtual diagrams due to the wave function renormal-
and are free of large logarithms. As shown in the next secization of the composite operators ensures the infrared can-
tion, the ratios of the NLO over the LO contributions in the g|jation between the real and the virtual diagrdibg]. In
new perturbative expansions are smaller than the ratiogs jnvariant mass cutoff scheme, a parton-to-virtual-photon
evaluated in the conventional approach. fragmentation functiorDC_,y*(Q)X(z,,u,Z: :Q?) can be viewed

as an inclusive rate for “decay” of the parton of flavoand
V. NUMERICAL RESULTS AND PREDICTIONS squared invariant mas@ﬁ into a virtual photon of squared

. . . . invariant mas€Q? and momentum fractiom [12].
In this section, we present numerical evaluations of the In our numerical calculations, we use the virtual photon

leading and next-to-leading order Drell-Yan cross section ragmentation functions in the invariant mass cutoff scheme

large transverse momentum. We show the quantitative differge o ¢ [12]. The invariant mass for quark in Fig. 3 to

ences between the predictions of the modified factorizatiijecay into a virtual photon of invariant magsand a mass-
formula of Eq.(35) and the conventional factorization for- less quark is

mula. We demonstrate the sensitivity of the cross section to
the gluon distribution at lovQ? and highQ+ .

We employ the CTEQ5M set of parton distributidrg]. ) 1 ., Q?
We use a two-loop expression for the strong coupling pc:Z(l_Z)QT+ 7 (45)
strengthas, with the value ofA ocp specified by CTEQ5M,
and a one loop expression far,, with ag (M) =1/128.

We chooseQ? as the renormalization scale fare,. We  The three-vectof); is perpendicular to the direction of the
equate the renormalization and factorization scales and Spbrent quark’s momentum. The fragmentation scale is chosen
hard scaleu= u;= K\/QT2+Q2 with constantk=0(1). to be the invariant mass of the fragmenting parton. For ex-

The normalMS factorization scheme removes the ultra-ample, we chooseﬁ::pg at lowest order. Equatior4b)
violet 1/e pole of the parton-level fragmentation functions shows that the mass threshold requires that the fragmentation
along with the corresponding splitting functions for masslesscale bqﬁ%Qz/z [12,17. If we keep the perturbative con-
partons, but the scheme does not guarantee that the fragmaributions to a high enough order, the cross section should
tation functions to a massive parton or to a photon withnot be sensitive to the choice of fragmentation scale. How-
non-vanishing invariant mag4 2] will be positive. As a re-  ever, since the fragmentation scale in this new scheme is
SUlt,t_he virtual phOtOﬂ fragmentation functions calculated invery different from the traditional scale in tnTS Scheme’
the MS scheme can be negative in the region of large we test two choices for the fragmentation scale,

[12,17. As long as the cross section is positive, a negative

fragmentation function is simply a particular separation of

finite contributions between the coefficient function and the pe=Kk\QF+ Q% (46)
fragmentation function. It is not a problem in principle. Nev-

ertheless, it is more appealing intuitively that the fragmenta-

tion functions be positive definite. Since the virtual photon Q7 +Q?
fragmentation functions are purely perturbative, it is possible ME=K N,
to preserve positivity of the fragmentation functions if we

require that the mass threshold constraints be respected at

every stage of the fragmentatigor bremsstrahlung radia- The first choice is the same as that for the renormalization
tion). and factorization scales.

As shown in Ref[12], the ultravioletUV) divergences of The second choice in E¢47) is motivated by the fact that
the virtual photon fragmentation functions come from twothe squared invariant mass of the fragmenting parton is of
sources:(1) elementary divergent diagrams associated witithe order Q2+ Q?)/z, obtained as follows. For the generic
the renormalization of the fields and coupling constants i2—3 diagram in Fig. 3, with the final parton that recoils
QCD and QED, and?2) the loop momenta of the skeleton againstp, assumed massless, we compute

(47)
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p2=2(pa+Po)-Pe— (Pat Pp)>

[y
(—]

t+u

[

To derive the second line, we use the approximatiQfs

Edo/d’Q(pb/GeV?)

<Q2 ands<|t+ul/z. If we let u2~p?2, Eq. (48) leads to -2
the fragmentation logarithm, 10
-3
wE —(t+u)/z —(t+u) 10
In QZ/ ~In QT = T 1 (49) 4
z z -
10
consistent with the logarithm in Eq(7). Since |t+u] -5
~0(Q%+Q?), we find ué~(Q%+Q?)/z. 10
The perturbatively calculated partonic parts in conven- -6
tional perturbation theorya;%;b?)(@x and O-;EI;?()))X in 10

Eq. (44), are available and calculated in thd¢S scheme
[2,7]. The fragmentation contribution in E¢38) depends on -7

the leading order short-distance partonic part§, -9 , and 10
on the virtual photon fragmentation functions. The partonic
parts are
e N I P L R |
2 - 2 S 72Mab4>CX (877 ) (1)
dpc dy <X1X2S[g )
-1
N
2 as(#) 2 .O 10
X 8((X1Pa+X%2Pg—=Pc)?) > . (50) o
™ ~
O -2
_ o 10
The functionsM ., ,.x are the lowest order matrix elements “\
for partonsa andb to produce a parton of flavar, averaged _8 -3
over the colors and spins of the partons in the initial state 10
They are available in Ref13].
To compare with data, we introduce the invariant differ- -4
ential cross section 10
-5
Ed3O'ABﬂI+I‘X: Ej 4Q? doag_i+1-(Q)x 10
d°Q m dQ*dQidy 6
10
:aemf LQZ doag_ y* (Q)x .7
3n?) Q% | dQidy 10

(51)

The integration irdQ? is over a bin centered on the invariant
mass Q. The differential cross sections
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L 40ev<O< 56V e
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2 5 _ FIG. 7. Drell-Yan cross section as a function@f at the Teva-
doag_i+1-x/dQ?dQ7dy and doap_.,xx/dQ7dy are given  tron energyyS=2.0 TeV and rapidityy=0 for the mass intervals

in Eq. (1) and Eq.(43), respectively. If the bin sizAQ is (s 2<Q=<3 GeV and(b) 4<Q<5 GeV. Solid, dashed, dotted,
much smaller thai@, the cross section can be approximatedand dot-dashed lines stand for the total, LO direct, NLO direct, and
as resummed fragmentation contributions, respectively.
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FIG. 9. Drell-Yan cross section as a function@f at the RHIC
FIG. 8. Drell-Yan cross section as a function®@f at the LHC  proton-proton energy/S=500 GeV and rapidityy=0 for the
energy/S=14 TeV and rapidityy=0 for the mass interval&) mass intervalda) 2<Q<3 GeV and(b) 4<Q=<5 GeV. Solid,
2=<Q=<3 GeV and(b) 4<Q=<5 GeV. Solid, dashed, dotted, and dashed, dotted, and dot-dashed lines stand for the total, LO direct,
dot-dashed lines stand for the total, LO direct, NLO direct, andNLO direct, and resummed fragmentation contributions, respec-
resummed fragmentation contributions, respectively. tively.
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FIG. 11. RatioR,, in Eq. (53) as a function olQ+ aty=0 and
FIG. 10. RatioR, in Eq. (53) as a function oQ; aty=0 and  the Tevatron energy/§ 2 TeV for virtual photon invariant mass
the Tevatron energ)@ 2 TeV for virtual photon invariant mass 5 GeV. In(a) we show the renormalization scale dependence with
(@) 2 GeV and(b) 5 GeV. The curves are explained in the text. the factorization and fragmentation scales fixed, antbjrwe dis-
play the factorization scale dependence with the renormalization
3 and fragmentation scales fixed. The curves are explained further in
Ed OaB-ItI-x _ 2aemAQ the text.

d®Q 372 Q

do—ABH'y*(Q)X

dQidy

(52

for production of a virtual photordoABﬂy*(Q)X/indy, is
given in Eq.(43).
The differential cross section through next-to-leading order Since we do not present the NLO partonic hard parts for
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text.

the fragmentation contributions in this paper, we use(&8).

without theda,~8x”/dp dy term for the numerical cal-

culations of the Drell-Yan cross sections.
In Figs. 7, 8, and 9, we plot the differential cross sectionrenormalization scalg. = K\/QT2+Q2 with k=2 (solid) and

Ed®c/d3Q as a function ofQ; for pp—I*l~+X at

PHYSICAL REVIEW D 65 034006

the Tevatron collider energy/S=2.0 TeV, for pp—I|*l-
+X at the LHC energyy/S=14 TeV, and forpp—I|*l-
+X at the RHIC proton-proton energyS=500 GeV. In
all three figures, the rapidity=0. The renormalization,
factorization, and fragmentation scales are set equal,
with constant k=1. The solid, dashed, dotted, and
dot-dashed lines represent the total, the LO direct, the
NLO direct, and the resummed fragmentation contributions,
respectively. We show results for virtual photon
invariant mass Q<3 GeV and 4&<Q=<5 GeV. (Note:
the solid curve represents the sum of the dashed, dotted,
and dot-dashed lines.To enhance the cross sections,
the smaller value of the invariant ma<3 is favored
as long as the lepton pairs can be identified experimentally.
At the integrated luminosities of run | of the Fermilab
collider, prompt real photons have been observed with values
of transverse momentum extending to 100 GeV and beyond
[22]. Scaling to the massive lepton-pair case, we judge that it
should be possible to examine cross sections in the same data
sample out toQ; of 30 GeV or more for virtual photon
invariant mass Q=<3 GeV. Values ofQ to 50 GeV or
so may be reached with 2  at run II.
To demonstrate the renormalization, factorization and
fragmentation scale dependence of the cross sections, we in-
troduce the ratio

d N d -

R#EE OAB—It] X(K)/E OAB—1t] X(K:].).
d®Q d®Q

(53

The denominator in Eq.(53) is obtained with all

three scales equalu= wi=ug= \/QT2+Q2. In Fig. 10,

we plot R, as a function ofQy at the Tevatron energy
andy=0, for Q=2 GeV and 5 GeV, with different scale
choices. We first fix all three scales to be the sape: u

= ur=k\JQZ+Q?, with k=2 (solid) and x=1/2 (dashedl

The dotted lines correspond to the choice= u¢
=JQ%+ Q2 andur=\(Q3+Q?)/z, as defined in Eq47).

As shown in Fig. 10, the scale dependence is not great. It
yields an uncertainty of about 15% for all reasonable values
of Q; at the Tevatron energy. The effect of the different
choice for the fragmentation scale in E¢.7) is also small.
The same features are preserved at the other collider
energies.

It is instructive to examine the scale dependences ob-
served if the renormalization and factorization scales are var-
ied separately. In Fig. 11, we again pR}, as a function of
Q+ at the Tevatron energy with=0 andQ=5 GeV. In the
denominator of Eq(53), all three scales are set equal:
=ui=pr=\Q2+ Q2. In Fig. 11(a), we also fix u;= ur
= \/QTZ-‘FQZ in the numerator of Eq53), but vary only the

x=1/2 (dashedl For Fig. 11b), we fix u=ur= Q%+ Q?

034006-17



EDMOND L. BERGER, JIANWEI QIU, AND XIAOFEI ZHANG PHYSICAL REVIEW D65 034006

(Dir—L0)
o ! i £ R(LO)— EM
9 b A d*Q
0 X 01'=5Gev ,"
- A (F-LO) (C-L0)
0.8 - 4 +Ed0-ABHI+I’X Ed‘TABMﬂ*x
: _ ‘.' d3Q d3Q (54)
07 F ceeeeeen Qr=50GeV f
2 or the LO contributions, an
06 | , for the LO contrib d
0.5 _ ‘." 4o Dir—LO) 4o Dir—NLO)
04 b i R AB=ITIX AB—I*1-X
TF d*Q d*Q
03 | K doFLO) ] do(C Lo
C T E TaB—I+1—X E TAB-I+1—X
0.2 d3Q d3Q
01t doss 7
: ] +E 3 : (59)
0 Lo Ll Lokl Lol Lid ] Ll Ll Ll L1l Ll L) LAl d Q

0 010.2030405060.70809 1
The ratioR-9) s the ratio of the LO contributions in the
z_(GeV) two different factorization formalisms. Since the LO direct
contribution is the same as the LO term in the conventional
FIG. 13. RatioR, in Eq. (59 as a function ofz, at the  calculation, any deviation dR-®) from unity measures the
Tevatron energyyS=2 TeV, y=0, and Q=2 GeV. The solid size of the logarithmic contributions. In Fig. 12, we plot the
and dashed lines correspond to transverse mom@pta5 and ratio R(t©) as a function ofQ; at different energies for 2
50 GeV. <Q=3 GeV and 4Q=<5 GeV. The solid, dashed, and
dotted lines represent the Tevatron, LHC, and RHIC ener-
gies. Owing to the threshold behavior of the fragmentation
in the numerator of E(53), but vary the factorization scale function, the fragmentation contribution vanishes Qr

o=k Q2T Q2 with k=2 (solid) and k=1/2 (dashedt ~~Q.and R(L®) 1. The logarithmic contributions are very
Two observations may be made. The first is that variatiorimpor'.[ant 'I?ktu the LHCfenir.gy and Iedss |m80rtant' athRHIhC
of the renormalization and factorization scales independentlgnerg'es' e reason for this energy dependence Is the phase

produces much greater changes than when they are vari pace penalty associated with th_e Iarge invariant mass Qf the
.2 .. _virtual photon. The large logarithm in the fragmentation
together. Second, the variations of the renormalizatio T : 2~
unction is proportional to Ir(ug/Q°) for each power ofrg.

and factorization scales tend to compensate each other, . . .
resulting in the very modest dependence shown in Fig. 1§§|nce2th(3 strong coupling strengay(x.) is proportional to
/In(u7AGep), the product

Having shown the results, we would argue nevertheless tha
the proper procedure is to keep=u;. When parton
distributions are evolved, the renormalization scalexinof | 2102
the evolution kernels is chosen to he, meaning that ad(p)In(z p21Q?) e N(z ue/ Q%) (56)
the only scale variation in the parton distributions is the ° F In(,uZ/AéCD)
dependence op; . In the calculation of the NLO hard parts,

subtractions are made to remove collinear singularities. Thigacomes of order unity only wheme~ x> Q2. Otherwise

procedure introduces terms of the foray(u)Pijlog(is),  the combination in Eq(56) is not large because of the fac-
with dependence in principle on both the renormalizationgrs z and Q2 from the mass threshold.
and the factorization ScaIeSF;’i]— is a Sp|ltt|ng function. The ratioR in Eq (55) measures the difference between
However, these subtraction terms represent exactly thos@e conventional calculation up to NLO accuracy and
contributions that are subsumed into the evolution of the  our resummed calculation, obtained from our modified
parton distributions. Unless we choogg= u, the use of factorization formalismwithout the NLO fragmentation
standard parton densities would result in spurious extra scaleontributions. Without the NLO fragmentation contributions
dependence. Edo(F~NLO)/d3Q in the numerator, the rati®R does not
To show the quantitative difference between the convenrepresent the entire ratio of the NLO contributions in
tional fixed-order perturbative calculations and the calculathe two different factorization approaches. Nevertheless,
tions with all-orders resummation of the large logarithmicthis ratio does indicate some of the effects of QCD resum-
terms, we introduce the ratios mation.
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The difference between the numerator and the denomindtarge x region. Because the parton distributions and frag-
tor of the ratioR in Eq. (55) is determined entirely by the mentation functions are both steeply falling functions of the
second term in Eg44) without the NLO fragmentation con- momentum fractionsX or z), and the Drell-Yan cross sec-

tributions, tion is proportional to two powers of parton distributions and
one power of fragmentation function, the convolution of par-
ton distributions and fragmentation functions favors the com-

a%c f dxld)a’A(Xl"“)f Xz borp(Xz. 1) bination of a smalk and largez. The fragmentation contri-

butions are dominated by the smalénd largez region. The

z integration over the difference between the QCD evolved

fragmentation function and the leading order QED fragmen-

tation function in Eq(57) is dominated by the largeregion.
(57) The net contribution from this term is expected to be nega-

tive, and the ratidR in Eq. (55) should be less than one for

This difference is proportional to the difference between theQm> Q- ot th I f .
LO QED parton-to-virtual-photon fragmentation functions oV\flgrF)Zitcgfsragzvgn'(:jlgégj; %elilngttlodr:ﬁ?a%Tnigl

0) 2.2 ; = == = -
D=y (gx(Z:#47:Q%) and the corresponding QCD evolved lision energies. The solid, dashed, and dotted lines in Fig. 14

parton-to-wrtua;l-.phzoton frag.mentatlon functions correspond to the Tevatron energig=2.0 TeV, the LHC
Do y*(x(Z, g Q7). As shown in Ref[12], one of the _
279 : . energy /S=14 TeV, and the RHIC proton-proton energy
major differences between these fragmentation functions Sz~ . i
. i JYS=500 GeV, respectively. The rati® is less than one
the behavior at large:
when Q1>Q, as expected. ALt grows, z,,, becomes
© (z—1,u2:Q%)#0 larger, and the fragmentation contributions are dominated by
e (QX R even larger values & ConsequentlyRis a decreasing func-
D. . 71.42:02)=0. 58 tIOI’! of_the tr.ansverse momenyu@rr. The predlct.ed distri-
ey (@x(Z= L Q) (58) bution in Q-+ is steepened relative to the conventional expec-

QCD evolution reduces the fragmentation function at large tation, with the steepening being greater for smailgr The
while it increases the fragmentation function at sraalf the ~ shape of the ratid represents the effect of QCD evolution
cross section is dominated by the snitdrge z region, the 0N the virtual photon fragmentation functions. R&—Q,
numerator of the ratidR in Eq. (55) is larger(smallej than ~R—1, in keeping with the expectation that our modified fac-
the denominator calculated in fixed-order perturbationtorization formula should yield the same cross section as
theory. conventional fixed-order perturbation theory wh@r~ Q.
Thezintegration of the Drell-Yan cross section runs from The apparent slight difference Bffrom 1 nearQ:=Q may
Zmin 10 1. We introduce a cutoff, to limit the integration to ~ be attributed to the choice of fragmentation scale. If we

dz dofy

22 dp; dy

Xl’Xz’pC:;;lb{’F M

. 0 .
X[De_ye(@x(Z.#8:Q2)=DL , o)x(2.1E: Q)]

the rangez,,, to z;, and we define the ratio were to set,LLﬁ:Q%/z, our result would be the same as the
conventional one whe®:=Q.

d‘T(AFB;Lﬁ)rx da(AFB__h?)I,X The main advantages of our modified factorization for-

R=E— 77— c)/ E—rr—(2=1). mula in Eq.(35) are that the large logarithms are removed

d"Q d*Q (59 from the coefficient functions of conventional factorization

and all perturbatively calculated coefficient functions are

The cutoffz, can be betweea,;, and 1;R,(z.=2;)=0 evaluated at a single hard scale. The reliability of the pertur-
and Rz(zczcl)=1. The shapem"gf the ’ratiztch establishes  bative calculations is enhanced. In order to demonstrate this

which region ofz dominates the integration. benefit, we introduce the ratios

In Fig. 13, we plotR, as a function oz, at the Tevatron

. . . (C—NLO) (C—LO)

energy withQ=2 GeV. The solid and dashed lines corre- B doag . 1+1-x doag . 1+1-x
spond to transverse momer@=5 and 50 GeV. If the in- Re= d%Q E d3Q ' (60
tegrand for thez integration were independent gfthe ratio
R, would be propo.rtion.al toZ;,— zmin)/ (1= Zmin), vyhich cor- 4o DI ~NLO) DI LO)
responds to a straight line f&,. The shape oR, in Fig. 13 R. —E OAB—I+1-X E O AB—I+1-X 61)
shows that thez integration is dominated by the largere- Dir— d%Q d3Q '
gion.

Since thez dependence of the partonic cross section in doFNLO) do(F~LO)
Eq. (38) tends to cancel the #7 factor in thez integration, R.=E TABI+1—X £ TAB-I1+1-X 62
thezintegration for the Drell-Yan cross section is determined F d3Q d3Q '

mainly by the convolution of parton distributions and frag-

mentation .function_s gnd by the shapes of these functions. 14 subscripts, Dir, andF represent the conventional per-
For a given collision energy/S, the transverse momen-  yrative calculation, our direct contribution, and our frag-

tum Qr=2zp, < 2x\/S with x~x;~X, for y=0. For a fixed mentation contribution, respectively. Because the large loga-

value of Q;, a large (small) z corresponds to the small rithms are removed in the perturbatively calculated
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FIG. 14. RatioR in Eq. (55) as a function ofQ; aty=0 and 0 5 10 15 20 25 30 35 40 45 S0
mass intervalda) 2<Q<3 GeV and(b) 4=Q=<5 GeV. Solid,
dashed, and dotted lines are for the Tevatron enexdy Q (GeV)
=2.0 TeV, the LHC energy/S=14 TeV, and the RHIC proton- T

proton energy\/§= 500 GeV, respectively.

o ) . - o FIG. 15. The ratios in Eqg60) and(61) as a function oQ+ at
CoeffICIen'[ funCtIOHS n the mOdIerd faCtOnZauOn fOI’mu|a, y:O and for the Tevatron energﬁ: 2.0 TeV and mass intervals

we expect the ratioRp;, andRg to be smaller than the ratio (3) 2<Q<3 GeV and(b) 4<Q<5 GeV. Solid and dashed lines
R.. are forR; andRp;, , respectively.
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FIG. 17. RatioR, in Eq. (63) as a function oRQr aty=0 at the
0 5 10 15 20 25 30 35 40 45 50 Tevatron energysolid), the LHC energy(dasheg, and the RHIC

proton-proton energydotted for virtual photon invariant masses
=2 GeV and(b) Q=5 GeV.
QT (GeV) @Q eV and(b) Q e

We compareRp;, andR; in Figs. 15 and 16 at the Teva-
FIG. 16. The ratios in Eqg60) and(61) as a function oQ; at  tron and LHC energies. As expectelp;, is smaller than
y=0 for the LHC energyyS=14 TeV and mass interval@) 2 R.. We remind the reader that in our notation, NLO corre-
<Q=3 GeV and(b) 4<Q=<5 GeV. Solid and dashed lines are sponds to the puré)(ai) contribution and LO corresponds
for R, andRp;, , respectively. to pureO(ay). Thus, the commonly defined factor is ob-
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tained by adding 1 to the ratios Figs. 15 and 16. The fa¢tor Tevatron case, quark-antiquark subprocesses are expected to
would be near 2.3 forQ;~10 GeV (near 1.9 forQ; (re)assert their dominance at very lar@y because of the
~50 GeV) atyS=2 TeV and 2<Q<3 GeV in the con- Vvalence nature of the antiquark density in the incident
ventional approach, but somewhat smaller2 and~1.6,  antiproton.

for our direct contribution. The relatively smaller role of the

NLO term lends greater confidence in the reliability of

the calculated Drell-Yan cross sections in our modified VI. CONCLUSIONS

formalism. . _ o .
The denominators are identical in the definitions of N this paper we introduce a new factorization formalism

the ratios R, and Rp;, in Egs. (60) and (61). The for the Drell-Yan cross section at Iarg@}_r. It.incorpo_rate_s
difference between the solid and dashed curves in Figs. 18ll-orders resummation of large logarithmic contributions
and 16 is therefore the ratio of the |ogarithmic into parton'tO'Virtual photon fragmentation functions. In
piece in NLO to the leading-order direct contribution. The addition to the logarithmic contributions, our expression
figures show that a considerable fraction of the NLO correcfor the cross section includes the usuabr-logarithmic
tion in conventional perturbative calculations contributions, referred to often adirect contributions, in
comes from logarithmic contributions associated withboth leading O(«g) and higher orders. This modified
bremsstrahlung radiation of the virtual photon. As notedfactorization formula agrees with the conventional fixed-
above, the NLO fragmentation contributions are notorder QCD expression wherQ$~Q2. The difference
available yet, and, therefore, we do not show results hergetween the modified factorization formula and the
for Re. o conventional formula is determined by QCD evolution of
Taken at face value, the ratR in Fig. 14 suggests that ne virtual photon fragmentation functions. Our modification
the cross section predicted in our modified formalismeeqsrganizes theingleperturbative expansion of conventional
is modestly less than that in the conventional approaclhcp factorization intotwo expansions plus the perturba-

for Q;>Q and that the shape of the predictélr ey calculated parton-to-virtual photon fragmentation

distribution IS steeper. However, we remmd the regder tha1tunctions. The new expansions are evaluated at a single hard
we have not included the NLO fragmentation contributions. 5 > P
s&ale and are free of Iarge”l(QT/Qz) terms whenQ:>Q“.

When these are added in subsequent work, the predicte . | 5 .
Drell-Yan cross sections from our modified factorization |N€ ratio of the next-to-leadin@(as) to leading order
formula should be larger than those from the conventionaP(as) contributions is smaller in the new expansion than in
NLO perturbative ap-proach. Estimating the ratio of thethe conventional case. The reliability of the predictions is
fragmentation contributions by the ratio of the directenhanced.

contributions, R.~Rp;, , we expect the Drell-Yan cross As shown in Fig. 12, the contributions from the logarith-
sections, with the NLO fragmentation contributions mic terms are important. They can be as large as 70% of
included, will be greater by 10% to 30% than the predictedthe non-logarithmic contributions at the LHC energies.
totals in Figs. 7-9. For example, @6=2 TeV and 2<Q At RHIC energies, the logarithmic contributions are smaller
<3 GeV, we estimate increases of 15% and 10% abecause phase space at large transverse momentum is

Q=9 and 39 GeV. limited and the penalty associated with large invariant
To demonstrate the relative size of gluon-initiated contri-massQ is felt more strongly. In Fig. 7, 8, and 9, we present
butions, we define the ratio predictions through next-to-leading order at energies of

interest for experiments at the Fermilab Tevatron,
Brookhaven’s RHIC, and the CERN Large Hadron Collider.
d (gluon initiated / d Resummation somewhat steepens the shape of the predicted
_d9nB—y@x'9 TAB- QX Qr spectrum relative to the conventional fixed-order
dQ%dy dQ—zrdy approach. However, at the order in perturbation theory at
(63 which we work, it has only a modest effect on the normal-

) o _ization. We confirm that the Drell-Yan cross section at large
The numerator includes the contributions from all partonicq_ remains an excellent source of constraints on the gluon
subprocesses with at least one initial-state gluon, and thgarton density.

denominator includes all subprocesses. In Fig. 17, we show
Ry as a function ofQy at y=0 for the Tevatron energy
(solid), the LHC energy(dasheg, and the RHIC proton-
proton energy(dotted at Q=2 GeV andQ=5 GeV. We
confirm that gluon initiated subprocesses dominate the Work in the High Energy Physics Division at Argonne
Drell-Yan cross section and that low mass Drell-YanNational Laboratory is supported by the U.S. Department
lepton-pair production at large transverse momentum is aof Energy, Division of High Energy Physics, Contract
excellent source of information on the gluon distributj@h ~ W-31-109-ENG-38. The research of J.-W. Qiu and X.-F.
The falloff of Ry at very largeQ+ is related to the reduction Zhang at lowa State University is supported in part by
of phase space and the fact that cross sections are evaluathe U.S. Department of Energy under Grant No. DE-FGO02-
at larger values of the partons’ momentum fractions. In the87ER40731.
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