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Fragmentation functions for lepton pairs
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We calculate the fragmentation function for a light quark to decay into a lepton pair to leading order in the
QCD coupling constant. In the formal definition of the fragmentation function, a QED phase must be included
in the eikonal factor to guarantee QED gauge invariance. We find that the longitudinal polarization fraction is
a decreasing function of the factorization scale, in accord with the intuitive expectation that the virtual photon
should behave more and more like a real photon as the transverse momentum of the fragmenting quark
increases.
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The QCD factorization theorems for inclusive single- In the case of a light hadrdd, the fragmentation function
particle production 1] guarantee that the differential cross D;_ cannot be calculated using perturbative methods.
section at sufficiently large transverse momentyhas the  However, oncd;_ 4(z, #o) has been measured as a function
approximate scaling behaviato/d P$~ 1/P$. The scaling of z at some initial scalewqy, the Altarelli-Parisi equations
part of the differential cross section for producing the par-can be used to evolve it to other scajesAn analysis of the
ticle H with momentumP has the form fragmentation functions for light hadrons has recently been

used to obtain a high-precision determination of the QCD
1 . coupling constanf4].
dU[H(P)]:Ei fo dzdo{i(P/2),u]Di_n(z,p), (1) In the case of a heavy quarkonium statethe fragmen-
tation functions can be calculated using perturbation theory
up to a few nonperturbative constants. The nonrelativistic

where the_ sum is over .partomgand do is t.he_ differential QCD (NRQCD) factorization formalisn{5] can be used to
cross section for producing an on-shell partavith momen- express the fragmentation function in the form

tum P/z. The fragmentation functio®,_, gives the prob-

ability for a virtual parton with invariant mass of ordarto

decay into a state that includes a partielevith the fraction D .y(z,p)=2, diH(Qa)n(ZwU“)(Om! (3)

z of the longitudinal momentum of the parton. Thedepen- n

dence of the fragmentation functions is governed by

Altarelli-Parisi evolution equations whose kernels can be calwhere the sum is over color and angular momentum states of
culated using perturbation theory. Large logarithmg@ofP+  aQQ pair and the constan(@ﬁ) are called NRQCD matrix

in do- can be summed up by taking of order P+ /z. elements. The coefficienth . qq)  of the NRQCD matrix

The factorization formuldl) can serve as an operational elements can be calculated using perturbation theory. The
definition of the fragmentation functions. However, the frag-first explicit calculations were the coefficients <@1(1so)>
mentation functions can also be given formal definitions asn the fragmentation functions fay— 7, andc— 7, and the
vacuum-to-vacuum matrix elements of operators that involvepefficients of<01(351)> in the fragmentation functions for
projections onto asymptotic states that include the particle g— J/4 andc—J/y [6,7]. They were calculated by Braaten,
Curci, Furmanski, and Petronzio defined them as matrix elcheung, and Yuan using the operational definition of the
ements of bilocal operators in the light-cone ga{@e Col-  fragmentation functions provided by the factorization theo-
lins and Soper introduced gauge-invariant definitions of theem (1). The first explicit calculations using the formal defi-
fragmentation functiong3]. They are defined as matrix ele- nition of the fragmentation functions were carried out by Ma
ments of nonlocal gauge-invariant operators that involve 48]. The formal definition is particularly useful for calculat-
path-ordered exponential of the gluon field called an eikonajng the fragmentation functions beyond leading orderin
factor: [9].

The factorization theorems for inclusive single-hadron
production can be applied equally well to photon production
and to lepton-pair production. They imply that at sufficiently
largeQ+, whereQr is the transverse momentum of the pho-
whereT? is a generator of the appropriate representation ofon or lepton pair, the differential cross section has the ap-
the gauge group. In the light-cone gauyEAi:O, the eiko-  proximate scaling behavioda/dQ$~ 1/Q‘T‘. The scaling
nal factor collapses to 1 and the definition reduces to that gpart of the differential cross section has the fotf). At
Curci, Furmanski, and Petronzio. leading order in the QED interaction, only a photon term

6=Pexp{igf dIn“AiTa), 2
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FIG. 2. Feynman diagrams for the fragmentation function
D+ - at leading order invs.

FIG. 1. The class of Feynman diagrams that in the light-congyegative lepton, and the lepton pair, respectively. The factor
gauge for QED gives the contribution to the production of leptony s the 4x 1 Dirac spinor associated with the blob in Fig. 1,
pairs gssociated with fragmentation of the light quarét leading  fom which the virtual quark emerges. If we choose a cova-
order inas. riant gauge for QED, the numerator factor in the photon

. propagator reduces ©,,=9,,. However, if we square the
needs to be added to the sum over pario$ie fragmenta- matrix element(4) and integrate over phase space, isolating
tion functionsD,,_.,, andDg_, ,, for real photons are nonper- those terms with the proper scaling behavior at l&@ge we
turbative, and only their evolution witly is calculable in  will not get the correct fragmentation function. The reason is
perturbation theory. The same is true of the fragmentatiorthat in a covariant gauge, there are diagrams that do not have
functions for a lepton pair with invariant ma@scomparable the topology of Fig. 1, but still contribute to the scaling part
to the scaleA associated with nonperturbative effects in of the cross section. In order to extract the complete scaling
QCD. On the other hand, i is much larger than\, the  contribution, it is necessary to use a light-cone gauge in
fragmentation functionD, ;+- and Dy +- are com- which the numerator of the photon propagator has the form

pletely calculable using perturbative QCD. Qiu and Zhang Q,n,+n,Q

have recently introduced formal definitions for “virtual pho- Gu=0u— =, (5)
ton fragmentation functionsD,_,,» and Dy_, « that are n-Q

equivalent to fragmentation functions for lepton pat8].  \heren is the light-like vector that defines the longitudinal

In this paper, we calculate the fragmentation functionmomentum fraction of th&"| = pair: z=n-Q/n- k. Note that
Dg-+- for a quark to decay into a lepton pair with large the n,Q, term in Eq.(5) does not contribute to the matrix
invariant mass at leading order in QCD perturbation theoryelement(4), because the leptons are on-shell. However, the
We calculate the fragmentation function using both dimenQMnV term does contribute, because the decaying quark is
sional regularization and an upper limit on the invariant maswirtual. The calculations of the fragmentation functions for
of the fragmenting quark. We find that the fragmentationc— 7.,J/# in Ref.[7] involved diagrams with the topology
function defined by dimensional regularization has unphysiof Fig. 1, except they had a virtual gluon instead of a virtual
cal behavior except at asymptotic values of the factorizatiophoton. The authors calculated the diagram using the light-
scale. The fragmentation function defined by the upper limiccone gauge propagator for the gluon. In a calculation using
on the invariant mass gives a longitudinal polarization fracthe formal definition, the contributions corresponding to the
tion that decreases as the factorization scale increases, @lditional terms in the light-cone gauge propagator come
accord with the intuitive expectation that the virtual photonfrom diagrams in which the virtual gluon is emitted by a
should behave more and more like a real photon as the trangluon field from the eikonal facta(2).

verse momentum of the fragmenting parton increases. If the_ fragmentation fu_n(_:t_ion _fo_r a lepton pair is calcu_-
The fragmentation function fog—1+1~ can be calcu- lated using the formal definition, it is necessary to generalize

lated using the operational definition provided by the factor—the QCD eikonal factor in Ed2) to include a phase from the

o . . hoton field. In the fragmentation function for a quark with
ization _theorem, asin _Ref@B,?]. The Feynman diagrams for (Fa)lectric chargee,, the egikonal factor becomes q
producing a lepton pair with large transverse momen@m a
include some with the topology shown in Fig. 1, where the . ava -
blob represents the parts of the diagram that involve the pro- 527)9)“{ 'gf din“A,T +|eqef din®A, | (6)
duction of the virtual quark. The terms in the matrix element
that corresponding to the fragmentation of a light quark withAt leading order inas, theq—1"1" fragmentation function
electric charges, have the form is given by the square of the sum of the Feynman diagrams
in Fig. 2. The circles represent quark operators, and the
1_ —iG,,— double lines represent the ei_konal factor. A ponvenient set'of
M=Fu(k')(leqen)r—zu(ql)(—le)’,,)v(qZ), F_eynm_an rules for Calcula_tlng_ fragmentation functions is
given in Ref.[3]. The contributions that correspond to the
(4) additional term in the light-cone gauge propagd®rfor the
photon are provided by the diagram in Fig. 2b in which the
wherek, k', q,, g,, andQ=q,+q, are the momenta of the virtual photon is emitted by a photon field from the eikonal
virtual quark, the final-state quark, the positive lepton, thefactor (6).
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In the calculation of the fragmentation function fqgr Q2+Qf Qf
—1717, the integral over the relative momenta of the lepton = 5 + 1—5
pair for fixed total momentunQ gives the tensor—g*”

+Q#Q.V/Q2' In Ref. [10], Qiu and Zhang decomp_ose_d this This implies the lower limis>Q?/z. The functionsf,(z) in
tensor into two terms that correspond to the polarization ten—Eq (8) are given by

sors for virtual photons that are transversely and longitudi-~
nally polarized with respect to the direction of the momen-

(10

tum of the lepton pair in a particular frame: fo(z)= ;_[z(l—z)]ffwdyﬂ, (12
I'(l-e) 1z yn
Q Q" n“n’+ntn* , _
—g*’+ —Qz—: —g*’+ — wherey=s/Q“. They can be evaluated analytically:
v L v I'(h—1+e¢)
Q*QY n#n’+n#n — = " n-1pq_ €
n o ) ) 7 fh(2) ) 2" (1-2)"" (12

The functionf,(z) in Eq. (8) has a pole ire. This ultraviolet
divergence is cancelled by the renormalization of the com-

The frame chosen in Ref10] is the one in which the per- qjte gperator in the definition of the fragmentation func-
pendicular momenta of the decaying quark and the leptoyyy, The renormalized fragmentation function in the modi-

pair arek; =—Q, /zandQ =0. In this frame, the second & inimal subtraction\IS) scheme is

tensor on the right side of E7) can be expressed aSe ,

where the polarization vectore{* is proportional to s o (4me 7)€ o

(n-Q)%n*—Q?n*. This choice for the decomposition into Dqﬂ|+|—(Z,M)=Dél|+|—(Z)— _—

transverse and longitudinal contributions is rather artificial,

but we will adopt it in order to compare our results with idy

those of Ref[10]. X JZ VPqﬁy(Z/Y)DwI*I*(y)’ (13
We proceed to calculate the fragmentation functions from

the square of the sum of the two Feynman diagrams in FiQNhereP

wheren is a conjugate light-like vector satisfyirrg-ﬁ=2.

€ 2

is the splitting function

2. We use dimensional regularization in-2¢ space-time =y
dimensions to regularize ultraviolet divergences. The frag- 1+(1—2)2
mentation function can be expressed as an integral over the qoy=———"—> (14)
invariant masQ? of the lepton pair: z
Cela? dQ? [ 4mp?\2€ andD,_,+ - is the fragmentation function for a photon to
Dﬂm,(z): 6?72 2 ( o2 ) decay into a lepton pair:
2 2\ €
2(1-2)+(1- 02 _Ca(dQydmaT
x{ 2 [21(2)—fo(2)] Dyrni-(2) =3~ 0%\ Q2 8(1-z). (19
N 2(1—z)f g The coefficientC is given in Eq.(9). Our final result for the
2 22), ®) MS fragmentation function is obtained by taking the limit
e—0 in Eq. (13):
whereC is a constant that reduces to 1 &s 0:
O (2 eéazf dQ*([1+(1-2)?
1 - Zyp)= 2 2
(1—6)22?(5) d 67 ) Q7| z
C= : 9 2 2(1-z
2\ /1 © o [ I G
(1-2¢) 1—§E r 57 € (1-2)Q Z

(16)
In Eq. (8), there is an implicit lower limit orQ? that is large
enough that a perturbative calculation of the QCD correcThe two terms in the integrand correspond to transversely
tions would be reliable. The two terms in the integrand cor-and longitudinally polarized photons, respectively.
respond to transversely and longitudinally polarized photons, In Ref.[10], Qiu and Zhang defined their fragmentation
respectively. The function§,(z) can be expressed as inte- functions by imposing the constraist< 7 on the invariant
grals over the perpendicular compone@ts of the momen- mass of the decaying quark, which sets the upper limit
tum of the lepton pair. Equivalently, they can be expressed as: #2/Q? on the integral in Eq(11). This eliminates ultra-
integrals over the invariant massof the decaying quark, violet divergences, so we can set0. The results for the
which is related taQ, by light-cone energy conservation: integrals are then
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2 -6
f(z)zl Z’u':_l O(u2—Q%z) (17) L e A A At satas ko
0 z\ o7 ME : 5 =10 GeV]
- Q= 5CGeV -
2 Pe i ]
ZE S ol ]
(@)= O(ng—Q%z), (18 or .
I ]
2 o 3
fz(z)zz(l——g> O(ui—Q%z). (19 350 ]
ZjE o F 1
'U - -
The resulting expression for the fragmentation function is O ol i
2 2 2 i ]
e;a“ [ dQ : ; A
Dq_>|+|*(Z,MF)=#fFe(/-hz:_QZ/Z) 5L . o I—_
1+(1-2)2( zu? Q2 0 0.1020304050607 0809 1
x{ In Q2—1+ Iﬁ) (a) z

—4
2(1—2) Q2 X1O _IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII|IIII|IIII|IIII_
+ 1- 5|t (20 _ e = 50 GeV ]
z Zug 6 H Q= 5 GeV+
This result has been confirmed by Qiu and Zhptgj. If we 3 ]
take the formal limitu2>Q?/z in Eq. (20), the # function a4 f .
becomes 1 and the resulting expression differs from(E®). 3 ]
only in the argument of the logarithm and in the coefficient T .
of thezterm. The arguments of the logarithm are the same if OI, r ]
we make the identificatiowﬁz,uz/(z(l—z)). This can be o i .
understood by examining the expressid0) for the invari- O - 0 s
ant mass of the decaying virtual quark. It suggests that the .
scale u of dimensional regularization should be identified ]
not with a cutoff on the invariant mass of the virtual quark, -2 -
but with a cutoff on the perpendicular moment@n of the EETINTTTE FRUTINETNL FRRT] PV PPERL FRUTE FUUTH FAAY
lepton pair. The difference between the coefficients ofzhe 0 010203040506070809 1
term comes from thezf,(z) term in Eq.(8), which reduces (b) z

to z in the limit e—0. On the other hand, if we impose an
invariant-mass cutofjur and sete=0, this term vanishes.
Taking the limitu>Q with zfixed in Eq.(20) corresponds
simpl_y to an alternative_ ultraviolet cutoff. The fra_lgmentation curves are the fragmentation function@0) defined by the
function should then differ from E(16) by a finite renor- ;i ariant-mass cutoffie . The dashed curves are the fragmentation

malization of the composite operator in the definition of thefnctions(16) defined by dimensional regularization with renormal-
fragmentation function. This finite renormalization corre-jzation scaleu?=z(1—2)u2.

sponds to adding the term ez to the splitting function
P4, in Eq. (13).

One advantage of the fragmentation functi{@f) defined . A . .
by an upper limit on the invariant mass is that it builds in part_ c_’f Its range as can be seen in F'g_' ??ZASl' 't_ remains
threshold effects and the constraints of energy conservatioRoSitive only 'fHF>eXp£1p' As z—0, itis negative for all
associated with the decay of a virtual quark with invariant/e » diverging like Ingu#/Q?)/z. For large enough values of
massug . This might be useful for quantitative applications #¢/Q as in Fig. 3b, the two fragmentation functions look
of the fragmentation function. In Fig. 3, we compare thesimilar except that one vanishes for Q% u2 and the other
differential fragmentation function®)?dD(z)/dQ? corre-  becomes negative in that region. If we keegfixed in Eq.
sponding to Eq(20) with invariant mass cutofitg and Eq.  (16) instead ofurg, the fragmentation function still exhibits
(16) with renormalization scalwzzz(l—z),u,zz. We sete, unphysical behavior. It is positive-definite jf>Q, but it
=+% and a=13;. We chooseQ=5 GeV and consider 2 diverges like Ing%Q?3/z as z—0 and like In(u?/[(1
values ofur: ug=10 GeV in Fig. 3a angee=50 GeVin  —2)Q?]) asz— 1. We conclude that the fragmentation func-
Fig. 3b. The fragmentation function defined by uf is 0 tion (16) defined by dimensional regularization is of little
below the threshold az=Q2/,u§ and is positive for larger practical use. It is essential to take into account threshold
values ofz. The fragmentation function defined by dimen- effects in some way, such as by imposing an upper limit on
sional regularization has unphysical negative values ovethe invariant mass as in EGRO).

FIG. 3. The differential fragmentation functid@?dD(z)/dQ?
for g—1*1~ for a lepton pair with invariant mag3=5 GeV as a
function ofzfor (a) ug=10 GeV andb) ug=50 GeV. The solid
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If the QED phase in the eikonal fact) is omitted in the <1078
formal definition of the fragmentation functiomgﬂm_ is ' o Mr|= 1'0 GleV ]
given by the square of the Feynman diagram in Fig. 2a. The 14 Q= 5GeVT]

resulting expression is not gauge invariant, but it is indepen-
dent of the gauge parameter for covariant gauges. Using di-
mensional regularization, we obtain

[o4]
LI I L L L L L L L LB L L Y L

o0, (1= SB[ 4 47

N - 2 2 2
a1l 6 Q Q 5 RTINS

2(1-2)+(1-e)Z?
x{ 2 [2f1(2)—2(2)] 4
2
1-z 2 s .

+?[Z fo(Z)_4Zf1(Z)+4f2(Z)]]- o bbb b b b Y
0 0.1020304050607 0809 1
(21 (@) z
The two terms in the integrand correspond to transversely x10 TP e
and longitudinally polarized photons, respectively. The trans- 7 H s = 50 GeV
verse term is identical to that in E¢L6). This follows from ' Q= 5GeVv]
the fact that the Feynman rule for the emission of a virtual e 3
photon from the eikonal line in Fig. 2b is proportionalrtt, I ]
which is orthogonal to the transverse tensor in &g. Thus 5 5 3
the omission of the diagram in Fig. 2b can only affect the N ]
longitudinal term. With dimensional regularization, the func- £t E
tion fy(z) vanishes, as is evident from Ed.2). The function DI' 3 3
f1(2) has a pole ire. In the transverse term, the pole can be © .
removed by the renormalizatidd3). However, there is also el 5 3
a pole in the longitudinal term that is not removed by renor- :
malization of the composite operator. This failure of renor- 1 3
malization is the signal that the definition of the fragmenta- 1
tion function that omits the QED phase in the eikonal factor 0 Mnlinbinn b LTI rre ke bt L
is inconsistent. 0 0.1 020304050607 0809 1
In Fig. 4, we compare the transverse and longitudinal con- (b) z

tributions to the fragmentation functid@0) calculated using
an invariant-mass cutoff. We choo§g=5 GeV and con-
sider 2 values ofur: wup=10 GeV in Fig. 4a andug
=50 GeV in Fig. 4b. The dashed curves labeleandL are
the transverse and longitudinal contributions given by th
two terms in Eq.(20). Their sum is the solid curve. The
longitudinal polarization dominates just above the threshol
at z= Q2/,u,2:, because the longitudinal term increases lin- . ]
early in Z_Qzlmz: while the transverse term increases qua—the ratio of the second moments of the fragmentatlonAfunc-
dratically. The transverse polarization dominates at lage tions. The reason is that the hard-scattering cross sedtion
because the longitudinal term vanishegzatl. scales like 1/Q1/z)?, and this weights the fragmentation
We can define a longitudinal polarization fractignby  function by z2. The longitudinal polarization fraction fa®
dividing the longitudinal fragmentation probability by the =5 GeV defined by the ratio of the second moments de-
total fragmentation probability for lepton pairs of invariant creases from¢é=0.43 at ug=10 GeV to 0.15 atup
massQ?. The fragmentation probability is proportional to the =50 GeV and to 0.08 gt=250 GeV.
integral overz of dD(z)/dQ?. The longitudinal polarization An important observable in lepton pair production is the
fraction for Q=5 GeV decreases fronf=0.56 at up angular distribution of the momentum of one of the leptons
=10 GeV to 0.34 atup=50 GeV and to 0.23 afur in the rest frame of the lepton pair. The angular distribution
=250 GeV. This is in accord with the intuition that the is proportional to ¥ a cos6, whered is the angle between
virtual photon should behave more and more like a real phothe momentung; of the negative lepton and some quantiza-
ton asur increases. tion axis. The polarization variable is related to the frac-
The longitudinal polarization fraction defined by the ratio tion ¢ of lepton pairs that come from longitudinally polarized
of fragmentation probabilities decreases rather slowly withvirtual photons bya=(1—3¢)/(1+¢&). The fraction¢ de-
Mg . However a more relevant measure of the polarization igpends on the choice of quantization axis. The choice adopted

FIG. 4. The differential fragmentation functid@?dD(z)/dQ?
for g—1*1~ for a lepton pair with invariant mag3=5 GeV as a
function of z for the invariant-mass cutoffe@) ur=10 GeV and
(b) ug=50 GeV. The solid curve is the total fragmentation func-
Sion. The dashed curves label@hndL are the contributions from
Jransverse and longitudinal virtual photons.

034005-5



ERIC BRAATEN AND JUNGIL LEE PHYSICAL REVIEW D65 034005

in Ref.[10] is rather artificial, because it requires specifying The NRQCD factorization approach predicts that the 1

the transverse momentum of the fragmenting quark which igjuarkonium states should become increasingly transversely
not easily observed. In the case of a hadron collider, a morgolarized as their transverse momentuRy increases
physical choice for the quantization axis is the direction of[11,12. Quantitative predictions of the polarization of the
the momentunQ of the lepton pair in the rest frame of the (29) [13,14, I3/ [15], and Y (2S) [16] indicate that the
colliding hadrons. In this case, the longitudinal polarizationjncrease in the polarization should set in at valueB-pthat
vectoref’ is a linear combination of and the total momen- 4re accessible at the Tevatron. The present data on the polar-

tum K of the colliding hadrons: ization of J/¢ and y(2S) from the CDF Collaboratiofi17]
Q2K¥— (K- Q)Q* seem to indicate a decrease in the transverse polarization at
= _ (22) large P1, although in both cases the discrepancy with the
[(K-Q)2-K?Q?1Y1Q?]"2 prediction is significant only in the largeBt bin. The argu-

ment that the tranverse polarization 3/ or (2S) should
increase withP¢ is completely analogous to the correspond-
ing argument for lepton pairs, except that it involves a virtual
gluon instead of a virtual photon. There are many effects that
%ould dilute the transverse polarization or delay the onset of
the predicted increase. However no plausible mechanisms

The contribution to the fragmentation function from longitu-
dinally polarized virtual photons can be obtained by replac
ing the lepton tensor g*”+ Q*Q"/Q? by el‘e/ . The result-
ing expression for the fragmentation function depend
explicitly onk, =k-n:

e2a? dQ? 2(1-2) have been identified that could make it decrease With
Dg—q+1m) (Zpp)= 6(‘? T2 We expect that more accurate measurements from Run Il of

the Tevatron will reveal the increase in transverse polariza-
X fo(z, e 1Q,QlK,), (23 tion predicted by NRQCD.

In conclusion, we have calculated the fragmentation func-
wheref, is a function ofz, ug/Q, andQ/k., : tion for a light quark to decay into a lepton pair to leading
(2, e 1Q.Q/K, ) order in ag. For renormalizability and for QED gauge in-

25HRRIN * variance, it is essential to include a QED phase in the eikonal

2,-2d _ k. )22 factor in the formal definition of the fragmentation function.
ol 2=y (Qlke )] Berger, Gordon, and Klasdi8] have shown that the distri
= V2 [2+ (1 4y —y2)(0lk, ) 22— 4(07K, 2" erger, Gordon, and Klas¢n8] have shown that the distri-
Yo lz + + bution of the transverse momentu@y of lepton pairs in

(24 hadron collisions is dominated by parton processes initiated

In the limit k, >Q, this reduces to Eq19). The complete Y gluons if Qr>Q/2. The Qr distribution can therefore
fragmentation function summed over polarizations is indeProvide useful constraints on the parton distribution for glu-

pendent ofQ/k.. and is given by Eq(20): ons. Our fragmentation function fay—I|*1~ may be useful
i for calculating theQ distribution in the limitQ; > Q.

eZaZ QZ
Dgoi+i-(z, ):q—zJ —5 0(u2—Q%z)
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