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Fragmentation functions for lepton pairs
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We calculate the fragmentation function for a light quark to decay into a lepton pair to leading order in the
QCD coupling constant. In the formal definition of the fragmentation function, a QED phase must be included
in the eikonal factor to guarantee QED gauge invariance. We find that the longitudinal polarization fraction is
a decreasing function of the factorization scale, in accord with the intuitive expectation that the virtual photon
should behave more and more like a real photon as the transverse momentum of the fragmenting quark
increases.
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The QCD factorization theorems for inclusive singl
particle production@1# guarantee that the differential cros
section at sufficiently large transverse momentumPT has the
approximate scaling behaviords/dPT

2;1/PT
4 . The scaling

part of the differential cross section for producing the p
ticle H with momentumP has the form

ds@H~P!#5(
i
E

0

1

dzdŝ@ i ~P/z!,m#Di→H~z,m!, ~1!

where the sum is over partonsi and dŝ is the differential
cross section for producing an on-shell partoni with momen-
tum P/z. The fragmentation functionDi→H gives the prob-
ability for a virtual parton with invariant mass of orderm to
decay into a state that includes a particleH with the fraction
z of the longitudinal momentum of the parton. Them depen-
dence of the fragmentation functions is governed
Altarelli-Parisi evolution equations whose kernels can be c
culated using perturbation theory. Large logarithms ofzm/PT

in dŝ can be summed up by takingm of orderPT /z.
The factorization formula~1! can serve as an operation

definition of the fragmentation functions. However, the fra
mentation functions can also be given formal definitions
vacuum-to-vacuum matrix elements of operators that invo
projections onto asymptotic states that include the particleH.
Curci, Furmanski, and Petronzio defined them as matrix
ements of bilocal operators in the light-cone gauge@2#. Col-
lins and Soper introduced gauge-invariant definitions of
fragmentation functions@3#. They are defined as matrix ele
ments of nonlocal gauge-invariant operators that involv
path-ordered exponential of the gluon field called an eiko
factor:

E5P expS igE dlnmAm
a TaD , ~2!

whereTa is a generator of the appropriate representation
the gauge group. In the light-cone gaugenmAm

a 50, the eiko-
nal factor collapses to 1 and the definition reduces to tha
Curci, Furmanski, and Petronzio.
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In the case of a light hadronH, the fragmentation function
Di→H cannot be calculated using perturbative metho
However, onceDi→H(z,m0) has been measured as a functi
of z at some initial scalem0, the Altarelli-Parisi equations
can be used to evolve it to other scalesm. An analysis of the
fragmentation functions for light hadrons has recently be
used to obtain a high-precision determination of the QC
coupling constant@4#.

In the case of a heavy quarkonium stateH, the fragmen-
tation functions can be calculated using perturbation the
up to a few nonperturbative constants. The nonrelativis
QCD ~NRQCD! factorization formalism@5# can be used to
express the fragmentation function in the form

Di→H~z,m!5(
n

di→(QQ̄)n
~z,m!^On

H&, ~3!

where the sum is over color and angular momentum state
a QQ̄ pair and the constants^On

H& are called NRQCD matrix
elements. The coefficientsdi→(QQ̄)n

of the NRQCD matrix
elements can be calculated using perturbation theory.
first explicit calculations were the coefficients of^O1(1S0)&
in the fragmentation functions forg→hc andc→hc and the
coefficients of̂ O1(3S1)& in the fragmentation functions fo
g→J/c andc→J/c @6,7#. They were calculated by Braaten
Cheung, and Yuan using the operational definition of
fragmentation functions provided by the factorization the
rem ~1!. The first explicit calculations using the formal defi
nition of the fragmentation functions were carried out by M
@8#. The formal definition is particularly useful for calcula
ing the fragmentation functions beyond leading order inas
@9#.

The factorization theorems for inclusive single-hadr
production can be applied equally well to photon product
and to lepton-pair production. They imply that at sufficien
largeQT , whereQT is the transverse momentum of the ph
ton or lepton pair, the differential cross section has the
proximate scaling behaviords/dQT

2;1/QT
4 . The scaling

part of the differential cross section has the form~1!. At
leading order in the QED interaction, only a photon te
©2002 The American Physical Society05-1
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ERIC BRAATEN AND JUNGIL LEE PHYSICAL REVIEW D65 034005
needs to be added to the sum over partonsi. The fragmenta-
tion functionsDq→g andDg→g for real photons are nonper
turbative, and only their evolution withm is calculable in
perturbation theory. The same is true of the fragmenta
functions for a lepton pair with invariant massQ comparable
to the scaleL associated with nonperturbative effects
QCD. On the other hand, ifQ is much larger thanL, the
fragmentation functionsDq→ l 1 l 2 and Dg→ l 1 l 2 are com-
pletely calculable using perturbative QCD. Qiu and Zha
have recently introduced formal definitions for ‘‘virtual pho
ton fragmentation functions’’Dq→g* and Dg→g* that are
equivalent to fragmentation functions for lepton pairs@10#.

In this paper, we calculate the fragmentation functi
Dq→ l 1 l 2 for a quark to decay into a lepton pair with larg
invariant mass at leading order in QCD perturbation theo
We calculate the fragmentation function using both dim
sional regularization and an upper limit on the invariant m
of the fragmenting quark. We find that the fragmentati
function defined by dimensional regularization has unphy
cal behavior except at asymptotic values of the factoriza
scale. The fragmentation function defined by the upper li
on the invariant mass gives a longitudinal polarization fr
tion that decreases as the factorization scale increase
accord with the intuitive expectation that the virtual phot
should behave more and more like a real photon as the tr
verse momentum of the fragmenting parton increases.

The fragmentation function forq→ l 1l 2 can be calcu-
lated using the operational definition provided by the fact
ization theorem, as in Refs.@6,7#. The Feynman diagrams fo
producing a lepton pair with large transverse momentumQT
include some with the topology shown in Fig. 1, where t
blob represents the parts of the diagram that involve the
duction of the virtual quark. The terms in the matrix eleme
that corresponding to the fragmentation of a light quark w
electric chargeeq have the form

M5
1

k2ū~k8!~ ieqegm!G
2 iGmn

Q2
ū~q1!~2 iegn!v~q2!,

~4!

wherek, k8, q1 , q2, andQ5q11q2 are the momenta of the
virtual quark, the final-state quark, the positive lepton,

FIG. 1. The class of Feynman diagrams that in the light-co
gauge for QED gives the contribution to the production of lep
pairs associated with fragmentation of the light quarkq at leading
order inas .
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negative lepton, and the lepton pair, respectively. The fac
G is the 431 Dirac spinor associated with the blob in Fig.
from which the virtual quark emerges. If we choose a co
riant gauge for QED, the numerator factor in the phot
propagator reduces toGmn5gmn . However, if we square the
matrix element~4! and integrate over phase space, isolat
those terms with the proper scaling behavior at largeQT , we
will not get the correct fragmentation function. The reason
that in a covariant gauge, there are diagrams that do not h
the topology of Fig. 1, but still contribute to the scaling pa
of the cross section. In order to extract the complete sca
contribution, it is necessary to use a light-cone gauge
which the numerator of the photon propagator has the fo

Gmn5gmn2
Qmnn1nmQn

n•Q
, ~5!

wheren is the light-like vector that defines the longitudin
momentum fraction of thel 1l 2 pair: z5n•Q/n•k. Note that
the nmQn term in Eq.~5! does not contribute to the matri
element~4!, because the leptons are on-shell. However,
Qmnn term does contribute, because the decaying quar
virtual. The calculations of the fragmentation functions f
c→hc ,J/c in Ref. @7# involved diagrams with the topology
of Fig. 1, except they had a virtual gluon instead of a virtu
photon. The authors calculated the diagram using the lig
cone gauge propagator for the gluon. In a calculation us
the formal definition, the contributions corresponding to t
additional terms in the light-cone gauge propagator co
from diagrams in which the virtual gluon is emitted by
gluon field from the eikonal factor~2!.

If the fragmentation function for a lepton pair is calc
lated using the formal definition, it is necessary to genera
the QCD eikonal factor in Eq.~2! to include a phase from the
photon field. In the fragmentation function for a quark wi
electric chargeeq , the eikonal factor becomes

E5P expS igE dlnmAm
a Ta1 ieqeE dlnmAm D . ~6!

At leading order inas , theq→ l 1l 2 fragmentation function
is given by the square of the sum of the Feynman diagra
in Fig. 2. The circles represent quark operators, and
double lines represent the eikonal factor. A convenient se
Feynman rules for calculating fragmentation functions
given in Ref. @3#. The contributions that correspond to th
additional term in the light-cone gauge propagator~5! for the
photon are provided by the diagram in Fig. 2b in which t
virtual photon is emitted by a photon field from the eikon
factor ~6!.

e

FIG. 2. Feynman diagrams for the fragmentation functi
Dq→ l 1 l 2 at leading order inas .
5-2
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FRAGMENTATION FUNCTIONS FOR LEPTON PAIRS PHYSICAL REVIEW D65 034005
In the calculation of the fragmentation function forq
→ l 1l 2, the integral over the relative momenta of the lept
pair for fixed total momentumQ gives the tensor2gmn

1QmQn/Q2. In Ref. @10#, Qiu and Zhang decomposed th
tensor into two terms that correspond to the polarization t
sors for virtual photons that are transversely and longitu
nally polarized with respect to the direction of the mome
tum of the lepton pair in a particular frame:

2gmn1
QmQn

Q2 5S 2gmn1
nmn̄n1n̄mnn

2
D

1S QmQn

Q2 2
nmn̄n1n̄mnn

2
D , ~7!

where n̄ is a conjugate light-like vector satisfyingn•n̄52.
The frame chosen in Ref.@10# is the one in which the per
pendicular momenta of the decaying quark and the lep
pair arek'8 52Q' /z andQ'8 50. In this frame, the secon
tensor on the right side of Eq.~7! can be expressed aseL

meL
n ,

where the polarization vectoreL
m is proportional to

(n•Q)2n̄m2Q2nm. This choice for the decomposition int
transverse and longitudinal contributions is rather artific
but we will adopt it in order to compare our results wi
those of Ref.@10#.

We proceed to calculate the fragmentation functions fr
the square of the sum of the two Feynman diagrams in
2. We use dimensional regularization in 422e space-time
dimensions to regularize ultraviolet divergences. The fr
mentation function can be expressed as an integral ove
invariant massQ2 of the lepton pair:

Dq→ l 1 l 2
(0)

~z!5
Ceq

2a2

6p2 E dQ2

Q2 S 4pm2

Q2 D 2e

3H 2~12z!1~12e!z2

z2 @z f1~z!2 f 2~z!#

1
2~12z!

z2 f 2~z!J , ~8!

whereC is a constant that reduces to 1 ase→0:

C5

~12e!22eGS 1

2D
~122e!S 12

2

3
e DGS 1

2
2e D . ~9!

In Eq. ~8!, there is an implicit lower limit onQ2 that is large
enough that a perturbative calculation of the QCD corr
tions would be reliable. The two terms in the integrand c
respond to transversely and longitudinally polarized photo
respectively. The functionsf n(z) can be expressed as int
grals over the perpendicular componentsQ' of the momen-
tum of the lepton pair. Equivalently, they can be expresse
integrals over the invariant masss of the decaying quark
which is related toQ' by light-cone energy conservation:
03400
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Q21Q'

2

z
1

Q'
2

12z
. ~10!

This implies the lower limits.Q2/z. The functionsf n(z) in
Eq. ~8! are given by

f n~z!5
1

G~12e!
@z~12z!#2eE

1/z

`

dy
~y21/z!2e

yn
, ~11!

wherey5s/Q2. They can be evaluated analytically:

f n~z!5
G~n211e!

G~n!
zn21~12z!2e. ~12!

The functionf 1(z) in Eq. ~8! has a pole ine. This ultraviolet
divergence is cancelled by the renormalization of the co
posite operator in the definition of the fragmentation fun
tion. The renormalized fragmentation function in the mo
fied minimal subtraction (MS) scheme is

Dq→ l 1 l 2
MS

~z,m!5Dq→ l 1 l 2
(0)

~z!2
~4pe2g!e

e

eq
2a

2p

3E
z

1dy

y
Pq→g~z/y!Dg→ l 1 l 2~y!, ~13!

wherePq→g is the splitting function

Pq→g5
11~12z!2

z
, ~14!

and Dg→ l 1 l 2 is the fragmentation function for a photon t
decay into a lepton pair:

Dg→ l 1 l 2~z!5
Ca

3p E dQ2

Q2 S 4pm2

Q2 D e

d~12z!. ~15!

The coefficientC is given in Eq.~9!. Our final result for the
MS fragmentation function is obtained by taking the lim
e→0 in Eq. ~13!:

Dq→ l 1 l 2
MS

~z,m!5
eq

2a2

6p2 E dQ2

Q2 H F11~12z!2

z

3S ln
m2

~12z!Q2 21D2zG1
2~12z!

z J .

~16!

The two terms in the integrand correspond to transvers
and longitudinally polarized photons, respectively.

In Ref. @10#, Qiu and Zhang defined their fragmentatio
functions by imposing the constraints,mF

2 on the invariant
mass of the decaying quark, which sets the upper limiy
,mF

2/Q2 on the integral in Eq.~11!. This eliminates ultra-
violet divergences, so we can sete50. The results for the
integrals are then
5-3
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ERIC BRAATEN AND JUNGIL LEE PHYSICAL REVIEW D65 034005
f 0~z!5
1

z S zmF
2

Q2 21D u~mF
22Q2/z!, ~17!

f 1~z!5 ln
zmF

2

Q2 u~mF
22Q2/z!, ~18!

f 2~z!5zS 12
Q2

zmF
2 D u~mF

22Q2/z!. ~19!

The resulting expression for the fragmentation function is

Dq→ l 1 l 2~z,mF!5
eq

2a2

6p2 E dQ2

Q2 u~mF
22Q2/z!

3H 11~12z!2

z S ln
zmF

2

Q2 211
Q2

zmF
2 D

1
2~12z!

z S 12
Q2

zmF
2 D J . ~20!

This result has been confirmed by Qiu and Zhang@10#. If we
take the formal limitmF

2@Q2/z in Eq. ~20!, the u function
becomes 1 and the resulting expression differs from Eq.~16!
only in the argument of the logarithm and in the coefficie
of thez term. The arguments of the logarithm are the sam
we make the identificationmF

25m2/„z(12z)…. This can be
understood by examining the expression~10! for the invari-
ant mass of the decaying virtual quark. It suggests that
scalem of dimensional regularization should be identifie
not with a cutoff on the invariant mass of the virtual qua
but with a cutoff on the perpendicular momentumQ' of the
lepton pair. The difference between the coefficients of thz
term comes from theez f1(z) term in Eq.~8!, which reduces
to z in the limit e→0. On the other hand, if we impose a
invariant-mass cutoffmF and sete50, this term vanishes
Taking the limitmF@Q with z fixed in Eq.~20! corresponds
simply to an alternative ultraviolet cutoff. The fragmentati
function should then differ from Eq.~16! by a finite renor-
malization of the composite operator in the definition of t
fragmentation function. This finite renormalization corr
sponds to adding the term2ez to the splitting function
Pq→g in Eq. ~13!.

One advantage of the fragmentation function~20! defined
by an upper limit on the invariant mass is that it builds
threshold effects and the constraints of energy conserva
associated with the decay of a virtual quark with invaria
massmF . This might be useful for quantitative application
of the fragmentation function. In Fig. 3, we compare t
differential fragmentation functionsQ2dD(z)/dQ2 corre-
sponding to Eq.~20! with invariant mass cutoffmF and Eq.
~16! with renormalization scalem25z(12z)mF

2 . We seteq

51 2
3 and a5 1

137. We chooseQ55 GeV and consider 2
values ofmF : mF510 GeV in Fig. 3a andmF550 GeV in
Fig. 3b. The fragmentation function defined bys,mF

2 is 0
below the threshold atz5Q2/mF

2 and is positive for larger
values ofz. The fragmentation function defined by dime
sional regularization has unphysical negative values o
03400
t
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e
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t
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part of its range as can be seen in Fig. 3. Asz→1, it remains
positive only if mF.exp(1)Q. As z→0, it is negative for all
mF , diverging like ln(zmF

2/Q2)/z. For large enough values o
mF /Q as in Fig. 3b, the two fragmentation functions loo
similar except that one vanishes forz,Q2/mF

2 and the other
becomes negative in that region. If we keepm fixed in Eq.
~16! instead ofmF , the fragmentation function still exhibits
unphysical behavior. It is positive-definite ifm.Q, but it
diverges like ln(m2/Q2)/z as z→0 and like ln„m2/@(1
2z)Q2#… asz→1. We conclude that the fragmentation fun
tion ~16! defined by dimensional regularization is of littl
practical use. It is essential to take into account thresh
effects in some way, such as by imposing an upper limit
the invariant mass as in Eq.~20!.

FIG. 3. The differential fragmentation functionQ2dD(z)/dQ2

for q→ l 1l 2 for a lepton pair with invariant massQ55 GeV as a
function ofz for ~a! mF510 GeV and~b! mF550 GeV. The solid
curves are the fragmentation functions~20! defined by the
invariant-mass cutoffmF . The dashed curves are the fragmentati
functions~16! defined by dimensional regularization with renorma
ization scalem25z(12z)mF

2 .
5-4
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FRAGMENTATION FUNCTIONS FOR LEPTON PAIRS PHYSICAL REVIEW D65 034005
If the QED phase in the eikonal factor~6! is omitted in the
formal definition of the fragmentation function,Dq→ l 1 l 2

(0) is
given by the square of the Feynman diagram in Fig. 2a.
resulting expression is not gauge invariant, but it is indep
dent of the gauge parameter for covariant gauges. Using
mensional regularization, we obtain

Dq→ l 1 l 2
(0)

~z!5
Ceq

2a2

6p2 E dQ2

Q2 S 4pm2

Q2 D 2e

3H 2~12z!1~12e!z2

z2 @z f1~z!2 f 2~z!#

1
12z

2z2 @z2f 0~z!24z f1~z!14 f 2~z!#J .

~21!

The two terms in the integrand correspond to transvers
and longitudinally polarized photons, respectively. The tra
verse term is identical to that in Eq.~16!. This follows from
the fact that the Feynman rule for the emission of a virt
photon from the eikonal line in Fig. 2b is proportional tonm,
which is orthogonal to the transverse tensor in Eq.~7!. Thus
the omission of the diagram in Fig. 2b can only affect t
longitudinal term. With dimensional regularization, the fun
tion f 0(z) vanishes, as is evident from Eq.~12!. The function
f 1(z) has a pole ine. In the transverse term, the pole can
removed by the renormalization~13!. However, there is also
a pole in the longitudinal term that is not removed by ren
malization of the composite operator. This failure of ren
malization is the signal that the definition of the fragmen
tion function that omits the QED phase in the eikonal fac
is inconsistent.

In Fig. 4, we compare the transverse and longitudinal c
tributions to the fragmentation function~20! calculated using
an invariant-mass cutoff. We chooseQ55 GeV and con-
sider 2 values ofmF : mF510 GeV in Fig. 4a andmF
550 GeV in Fig. 4b. The dashed curves labeledT andL are
the transverse and longitudinal contributions given by
two terms in Eq.~20!. Their sum is the solid curve. Th
longitudinal polarization dominates just above the thresh
at z5Q2/mF

2 , because the longitudinal term increases l
early in z2Q2/mF

2 while the transverse term increases qu
dratically. The transverse polarization dominates at largz,
because the longitudinal term vanishes atz51.

We can define a longitudinal polarization fractionj by
dividing the longitudinal fragmentation probability by th
total fragmentation probability for lepton pairs of invaria
massQ2. The fragmentation probability is proportional to th
integral overz of dD(z)/dQ2. The longitudinal polarization
fraction for Q55 GeV decreases fromj50.56 at mF
510 GeV to 0.34 atmF550 GeV and to 0.23 atmF
5250 GeV. This is in accord with the intuition that th
virtual photon should behave more and more like a real p
ton asmF increases.

The longitudinal polarization fraction defined by the ra
of fragmentation probabilities decreases rather slowly w
mF . However a more relevant measure of the polarizatio
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the ratio of the second moments of the fragmentation fu

tions. The reason is that the hard-scattering cross sectiondŝ
scales like 1/(QT /z)2, and this weights the fragmentatio
function by z2. The longitudinal polarization fraction forQ
55 GeV defined by the ratio of the second moments
creases fromj50.43 at mF510 GeV to 0.15 atmF
550 GeV and to 0.08 atmF5250 GeV.

An important observable in lepton pair production is t
angular distribution of the momentum of one of the lepto
in the rest frame of the lepton pair. The angular distributi
is proportional to 11a cos2u, whereu is the angle between
the momentumq1 of the negative lepton and some quantiz
tion axis. The polarization variablea is related to the frac-
tion j of lepton pairs that come from longitudinally polarize
virtual photons bya5(123j)/(11j). The fractionj de-
pends on the choice of quantization axis. The choice adop

FIG. 4. The differential fragmentation functionQ2dD(z)/dQ2

for q→ l 1l 2 for a lepton pair with invariant massQ55 GeV as a
function of z for the invariant-mass cutoffs~a! mF510 GeV and
~b! mF550 GeV. The solid curve is the total fragmentation fun
tion. The dashed curves labeledT andL are the contributions from
transverse and longitudinal virtual photons.
5-5
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ERIC BRAATEN AND JUNGIL LEE PHYSICAL REVIEW D65 034005
in Ref. @10# is rather artificial, because it requires specifyi
the transverse momentum of the fragmenting quark whic
not easily observed. In the case of a hadron collider, a m
physical choice for the quantization axis is the direction
the momentumQ of the lepton pair in the rest frame of th
colliding hadrons. In this case, the longitudinal polarizati
vectoreL

m is a linear combination ofQ and the total momen
tum K of the colliding hadrons:

eL
m5

Q2Km2~K•Q!Qm

@~K•Q!22K2Q2#1/2@Q2#1/2
. ~22!

The contribution to the fragmentation function from longit
dinally polarized virtual photons can be obtained by repl
ing the lepton tensor2gmn1QmQn/Q2 by eL

meL
n . The result-

ing expression for the fragmentation function depen
explicitly on k15k•n:

Dq→( l 1 l 2)L
~z,mF!5

eq
2a2

6p2 E dQ2

Q2

2~12z!

z2

3 f 2~z,mF /Q,Q/k1!, ~23!

where f 2 is a function ofz, mF /Q, andQ/k1 :

f 2~z,mF /Q,Q/k1!

5E
1/z

mF
2 /Q2dy

y2

@z2y~Q/k1!2#2

@z1~11y2yz!~Q/k1!2#224~Q/k1!2 .

~24!

In the limit k1@Q, this reduces to Eq.~19!. The complete
fragmentation function summed over polarizations is in
pendent ofQ/k1 and is given by Eq.~20!:

Dq→ l 1 l 2~z,mF!5
eq

2a2

6p2 E dQ2

Q2 u~mF
22Q2/z!

3H 11~12z!2

z
ln

zmF
2

Q2 2zS 12
Q2

zmF
2 D J .

~25!

In the frame defined byK50, k1 is the sum of the energy
and momentum of an on-shell quark produced by some h
scattering. A reasonable choice formF is the transverse mo
mentum of that quark, give or take a factor of 2.
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The NRQCD factorization approach predicts that the 122

quarkonium states should become increasingly transver
polarized as their transverse momentumPT increases
@11,12#. Quantitative predictions of the polarization of th
c(2S) @13,14#, J/c @15#, andY(2S) @16# indicate that the
increase in the polarization should set in at values ofPT that
are accessible at the Tevatron. The present data on the p
ization of J/c andc(2S) from the CDF Collaboration@17#
seem to indicate a decrease in the transverse polarizatio
large PT , although in both cases the discrepancy with t
prediction is significant only in the largestPT bin. The argu-
ment that the tranverse polarization ofJ/c or c(2S) should
increase withPT is completely analogous to the correspon
ing argument for lepton pairs, except that it involves a virtu
gluon instead of a virtual photon. There are many effects t
could dilute the transverse polarization or delay the onse
the predicted increase. However no plausible mechani
have been identified that could make it decrease withPT .
We expect that more accurate measurements from Run
the Tevatron will reveal the increase in transverse polar
tion predicted by NRQCD.

In conclusion, we have calculated the fragmentation fu
tion for a light quark to decay into a lepton pair to leadin
order in as . For renormalizability and for QED gauge in
variance, it is essential to include a QED phase in the eiko
factor in the formal definition of the fragmentation functio
Berger, Gordon, and Klasen@18# have shown that the distri
bution of the transverse momentumQT of lepton pairs in
hadron collisions is dominated by parton processes initia
by gluons if QT.Q/2. The QT distribution can therefore
provide useful constraints on the parton distribution for g
ons. Our fragmentation function forq→ l 1l 2 may be useful
for calculating theQT distribution in the limitQT @ Q.
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