Are there ν_{μ} or ν_{τ} in the flux of solar neutrinos on Earth?

C. Giunti*

INFN, Sezione di Torino and Dipartimento di Fisica Teorica, Universita` di Torino, Via P. Giuria 1, I–*10125 Torino, Italy* (Received 2 August 2001; published 10 January 2002)

Using the model independent method of Villante, Fiorentini, Lisi, Fogli, and Palazzo, and the rates measured in the SNO and Super-Kamiokande solar neutrino experiment, we calculate the amount of active v_u or v_τ present in the flux of solar neutrinos on Earth. We show that the probability of $v_e \rightarrow v_{\mu,\tau}$ transitions is larger than zero at 99.89% C.L. We find that the averaged flux of $\nu_{\mu,\tau}$ on Earth is larger than 0.17 times the ⁸B ν_e flux predicted by the BPB 2000 Standard Solar Model at 99% C.L. We discuss also the consequences of possible $v_e \rightarrow \bar{\nu}_{\mu,\tau}$ or $v_e \rightarrow \bar{\nu}_e$ transitions of solar neutrinos. We derive a model-independent lower limit of 0.52 at 99% C.L. for the ratio of the ${}^{8}B$ ν_e flux produced in the Sun and its value in the BPB 2000 Standard Solar Model.

DOI: 10.1103/PhysRevD.65.033006 PACS number(s): 26.65.+t, 14.60.Pq

The first results of the SNO solar neutrino experiment $[1]$ have beautifully confirmed the existence of the solar neutrino problem. A comparison of the neutrino flux measured through charged-current interactions in the SNO experiment with the flux measured through elastic scattering interactions in the Super-Kamiokande experiment $[2]$ shows evidence of the presence of active ν_{μ} or¹ ν_{τ} in the solar neutrino flux measured by the Super-Kamiokande experiment $[1,3]$. Such a presence represents a very interesting indication in favor of neutrino physics beyond the standard model, most likely neutrino mixing that generates oscillations between different flavors (see $|4|$).

The purpose of this paper is to quantify the amount of this flux of active ν_{μ} or ν_{τ} in a model-independent way in the framework of frequentist statistics.2

The authors of Refs. $[6,7]$ have noted that the response functions of the SNO and Super-Kamiokande (SK) experiments to solar neutrinos can be made approximately equal with a proper choice of the energy thresholds of the detected electrons. It turns out that given the threshold T_e^{SNO} $=6.75$ MeV, the two response functions are approximately equal for $T_e^{\text{SK}} = 8.60 \text{ MeV}$ [3]. In this case the SNO and Super-Kamiokande event rates normalized to the 2000 Bahcall-Pinsonneault-Basu (BPB 2000) standard solar model (SSM) prediction $[8]$ can be written in a model-independent way as $\lceil 3 \rceil$

$$
R_{\rm SNO} = f_{\rm B} \langle P_{\nu_e \to \nu_e} \rangle,\tag{1}
$$

$$
R_{SK} = f_B \langle P_{\nu_e \to \nu_e} \rangle
$$

+ $f_B \frac{\langle \sigma_{\nu_{\mu,\tau}} \rangle}{\langle \sigma_{\nu_e} \rangle} \langle P_{\nu_e \to \nu_{\mu,\tau}} \rangle,$ (2)

where f_B is the ratio of the ⁸B ν_e flux produced in the Sun and its value in the SSM [8], $\langle P_{\nu_e \to \nu_e} \rangle$ is the survival probability of solar v_e 's averaged over the common SNO and Super-Kamiokande response function,

$$
\frac{\langle \sigma_{\nu_{\mu,\tau}} \rangle}{\langle \sigma_{\nu_e} \rangle} = 0.152 \tag{3}
$$

is the ratio of the averaged $v_{\mu,\tau}$ and v_e cross sections in the Super-Kamiokande experiment, and $\langle P_{\nu_e \to \nu_{\mu,\tau}} \rangle$ is the averaged probability of $\nu_e \rightarrow \nu_{\mu,\tau}$ transitions.

Calling

$$
R_A = R_{SK} - R_{SNO},\tag{4}
$$

from Eqs. (1) and (2) we have

$$
R_A = f_B \frac{\langle \sigma_{\nu_{\mu,\tau}} \rangle}{\langle \sigma_{\nu_e} \rangle} \langle P_{\nu_e \to \nu_{\mu,\tau}} \rangle.
$$
 (5)

Therefore, R_A is the rate of $\nu_{\mu,\tau}$ -induced events in the Super-Kamiokande experiment, relative to the ν_e -induced rate predicted by the SSM.

Considering the data of the Super-Kamiokande experiment above the energy threshold $T_e^{\text{SK}} = 8.60 \text{ MeV}$ and the BPB 2000 standard solar model $[8]$, the measured values of $R_{\rm SNO}$ and $R_{\rm SK}$ are

$$
R_{\rm SNO}^{\rm exp} = 0.347 \pm 0.029,\tag{6}
$$

see Ref. $[1]$, and

$$
R_{SK}^{\exp} = 0.451 \pm 0.017,\tag{7}
$$

see Refs. $[2,3]$.

Adding in quadrature the uncertainties of $R_{\rm SNO}$ and $R_{\rm SK}$, for R_A we obtain

^{*}Electronic address: giunti@to.infn.it

¹In this paper the conjunction "or" is used as a logical inclusive disjunction (the sentence is true when either or both of its constituent propositions are true).

 2 Since the results that we obtain are not too close to physical boundaries for the quantities under discussion and we assume a normal distribution for the errors, the numerical values in the framework of Bayesian probability theory with a flat prior are close to those obtained here, but their meaning is different (see, for example, Ref. $[5]$).

FIG. 1. Confidence belts in the unified approach $[9]$ for a normal distribution with unit standard deviation. The regions between the solid, long-dashed, dotted and dash-dotted lines correspond, respectively, to 90% (1.64 σ), 99% (2.58 σ), 99.73% (3 σ) and 99.89% (3.06σ) C.L. The thick solid vertical line represents the measured value of $R_A^{\text{exp}}/\sigma_A^{\text{exp}}$ [Eq. (10)].

$$
R_A^{\text{exp}} = 0.104 \pm 0.034. \tag{8}
$$

The standard deviation of R_A^{exp} is

$$
\sigma_A^{\exp} = 0.034,\tag{9}
$$

and we have

$$
\frac{R_A^{\text{exp}}}{\sigma_A^{\text{exp}}} = 3.06 \pm 1.
$$
 (10)

Hence, the central value of R_A is 3.06 σ away from zero, implying an evidence of solar $v_e \rightarrow v_{\mu,\tau}$ transitions [1,3]. Our purpose is to quantify the probability of these transitions and possibly derive a lower limit.

The authors of Ref. $[1]$ calculate the probability of a fluctuation larger than the observed one assuming $R_A=0$: for normally distributed errors the probability of a fluctuation larger than 3.06σ from the mean is 0.11% .

Recently some frequentist methods have been proposed that allow us to obtain always meaningful confidence intervals with correct coverage for quantities like R_A that are bound to be positive by definition $[9-12]$. In particular, the unified approach proposed in Ref. $[9]$ has been widely publicized by the Particle Data Group $|13|$ and used by several experimental collaborations.

Using the unified approach we can derive confidence intervals for R_A . Figure 1 shows the confidence belts in the unified approach for a normal distribution with unit standard deviation for 90% (1.64 σ), 99% (2.58 σ), 99.73% (3 σ), and 99.89% (3.06 σ) C.L. One can see that the measured value (10) of $R_A^{\text{exp}}/\sigma_A^{\text{exp}}$ implies that

$$
0 < \frac{R_A}{\sigma_A^{\exp}} < 6.32 \quad \text{at} \quad 99.89\% \quad \text{C.L.,} \tag{11}
$$

i.e. active v_{μ} or v_{τ} are present in the solar neutrino flux on Earth at 99.89% C.L. Equation (11) implies that there is a 0.11% probability that the true value of $R_A / \sigma_A^{\text{exp}}$ is zero or larger than 6.32. This probability is the same as the probability of a fluctuation larger than 3.06σ calculated in Ref. [1] assuming $R_A = 0$. However, our result has been derived without making any assumption on the true unknown value of *RA* and has a well defined meaning in the framework of frequentist statistics: whatever the true value of R_A , the interval (11) belongs to a set of intervals that could be obtained in the same way from repeated measurements and have the property that 99.89% of these intervals cover the true value of $R_A / \sigma_A^{\rm exp}$.

In order to derive a lower limit for the averaged flux of $\nu_{\mu,\tau}$ on Earth, we consider in the following 99% confidence intervals. From Fig. 1 we obtain

$$
0.74 \le \frac{R_A}{\sigma_A^{\exp}} < 5.63 \qquad (99\% \text{ C.L.}), \tag{12}
$$

whose meaning is that there is a 99% probability that the interval (12) covers the true unknown value of $R_A / \sigma_A^{\text{exp}}$.

For $f_B \langle P_{\nu_e \to \nu_{\mu,\tau}} \rangle$, which gives the flux of active $\nu_{\mu,\tau}$ averaged over the common Super-Kamiokande and SNO response function, relative to the SSM ${}^{8}B$ ν_e flux, we find

$$
0.17 \le f_B \langle P_{\nu_e \to \nu_{\mu,\tau}} \rangle \le 1.26 \qquad (99\% \text{ C.L.}). \tag{13}
$$

Hence, we can say that the averaged flux of $v_{\mu,\tau}$ on Earth is larger than 0.17 times the ${}^{8}B \nu_e$ flux predicted by the standard solar model at 99% C.L. This is an evidence in favor of relatively large $\nu_e \rightarrow \nu_{\mu,\tau}$ transitions if f_B is not too large.

One could argue that it is possible to derive a more stringent lower limit for $f_B \langle P_{\nu_e \to \nu_{\mu,\tau}} \rangle$ by calculating a confidence belt without a left edge, instead of the one in Fig. 1 calculated in the unified approach. Such a procedure is not acceptable because it would lead to undercoverage if not chosen *a priori* independently from the data, as shown in Ref. $[9]$ for the case of upper limits. The correct procedure is to choose *a priori* a method like the unified approach that always gives sensible results and apply it to the data, as we have done here. *A priori* one could have chosen another method, as those presented in Refs. $[10-12]$, that may have even better properties than the unified approach $[14,15]$, but we have verified that the intervals $(11)–(13)$ do not change significantly.

Unfortunately, we cannot derive a model independent lower limit for the averaged $v_e \rightarrow v_{\mu,\tau}$ probability $\langle P_{\nu_e \to \nu_{\mu,\tau}} \rangle$, because f_B could be large. However, from Fig. 1 we can say that $R_A / \sigma_A^{\text{exp}} > 0$ at 99.89% C.L. [see Eq. (11)], and hence

$$
P_{\nu_e \to \nu_{\mu,\tau}} > 0 \quad \text{at} \quad 99.89\% \quad \text{C.L.} \tag{14}
$$

in the range of neutrino energies covered by the common SNO and Super-Kamiokande response function presented in Ref. $\lceil 3 \rceil$.

On the other hand, it is interesting to note that the relations (1) and (2) allow us to derive a model-independent lower limit for f_B , taking into account that

$$
\langle P_{\nu_e \to \nu_{\mu,\tau}} \rangle \le 1 - \langle P_{\nu_e \to \nu_e} \rangle. \tag{15}
$$

Using this inequality, from Eqs. (1) and (2) we obtain

$$
f_{\rm B} \ge \frac{\langle \sigma_{\nu_e} \rangle}{\langle \sigma_{\nu_{\mu,\tau}} \rangle} R_{\rm SK} - \left(\frac{\langle \sigma_{\nu_e} \rangle}{\langle \sigma_{\nu_{\mu,\tau}} \rangle} - 1 \right) R_{\rm SNO} \equiv f_{\rm B,min} . \quad (16)
$$

From Eqs. (3), (6) and (7), the experimental value of $f_{\text{B,min}}$ is

$$
f_{\rm B,min}^{\rm exp} = 1.031 \pm 0.197. \tag{17}
$$

Since the central value of $f_{\text{B,min}}^{\text{exp}}$ is 5.2 σ away from zero, we can calculate the resulting 99% C.L. interval for $f_{\text{B,min}}$ using the central intervals method (see $[13]$), which gives the same result as the unified approach far from the physical boundary $f_{\rm B,min}$ >0. Since in the central intervals method 99% C.L. corresponds to 2.58σ , we obtain the confidence interval

$$
0.52 < f_{\text{B,min}} < 1.54 \qquad (99\% \text{ C.L.}). \tag{18}
$$

Therefore, we can conclude that the SNO and Super-Kamiokande data imply the model-independent lower limit

$$
f_B > 0.52
$$
 (99% C.L.). (19)

This is very interesting information for the physics of the Sun.

So far we have not considered the possible existence of exotic mechanisms that produce $v_e \rightarrow \overline{v}_{\mu,\tau}$ or $v_e \rightarrow \overline{v}_e$ transitions (in addition to or in alternative to $\nu_e \rightarrow \nu_{\mu,\tau}$ transitions), such as resonant spin-flavor precession of Majorana neutrinos³ [16,17]. In this case, Eq. (2) must be replaced with

$$
R_{\rm SK} = f_{\rm B} \langle P_{\nu_e \to \nu_e} \rangle + f_{\rm B} \left[\frac{\langle \sigma_{\nu_{\mu,\tau}} \rangle}{\langle \sigma_{\nu_e} \rangle} \langle P_{\nu_e \to \nu_{\mu,\tau}} \rangle + \frac{\langle \sigma_{\nu_{\mu,\tau}} \rangle}{\langle \sigma_{\nu_e} \rangle} \langle P_{\nu_e \to \bar{\nu}_{\mu,\tau}} \rangle + \frac{\langle \sigma_{\nu_e} \rangle}{\langle \sigma_{\nu_e} \rangle} \langle P_{\nu_e \to \bar{\nu}_{\mu}} \rangle \right], \quad (20)
$$

and Eq. (5) with

$$
R_{A} = f_{B} \left[\frac{\langle \sigma_{\nu_{\mu,\tau}} \rangle}{\langle \sigma_{\nu_{e}} \rangle} \langle P_{\nu_{e} \to \nu_{\mu,\tau}} \rangle + \frac{\langle \sigma_{\bar{\nu}_{\mu,\tau}} \rangle}{\langle \sigma_{\nu_{e}} \rangle} \langle P_{\nu_{e} \to \bar{\nu}_{\mu,\tau}} \rangle + \frac{\langle \sigma_{\bar{\nu}_{e}} \rangle}{\langle \sigma_{\nu_{e}} \rangle} \langle P_{\nu_{e} \to \bar{\nu}_{e}} \rangle \right].
$$
\n(21)

Using the ${}^{8}B$ neutrino spectrum given in Ref. [18], the neutrino-electron elastic scattering cross section calculated in Ref. $[19]$, taking into account radiative corrections, and the Super-Kamiokande energy resolution given in Ref. [20], we obtain the following values for the ratios of the averaged cross sections in the Super-Kamiokande experiment for the threshold energy $T_e^{\text{SK}} = 8.60 \text{ MeV}$:

$$
\frac{\langle \sigma_{\bar{\nu}_{\mu,\tau}} \rangle}{\langle \sigma_{\nu_e} \rangle} = 0.114, \qquad \frac{\langle \sigma_{\bar{\nu}_e} \rangle}{\langle \sigma_{\nu_e} \rangle} = 0.120. \tag{22}
$$

Hence, we have the useful inequalities

$$
\frac{\langle \sigma_{\nu_{\mu,\tau}}^{\negthickspace} \rangle}{\langle \sigma_{\nu_e} \rangle} < \frac{\langle \sigma_{\nu_e}^{\negthickspace} \rangle}{\langle \sigma_{\nu_e} \rangle} < \frac{\langle \sigma_{\nu_{\mu,\tau}}^{\negthickspace} \rangle}{\langle \sigma_{\nu_e} \rangle}.
$$
\n(23)

The lower bound in Eq. (11) implies the existence of solar $\nu_e \rightarrow \nu_{\mu,\tau}$ or $\nu_e \rightarrow \overline{\nu}_{\mu,\tau}$ or $\nu_e \rightarrow \overline{\nu}_e$ transitions at 99.89% C.L. The inequalities in Eq. (12) imply that the quantity on the right-hand side of Eq. (21) is limited in the interval $(0.025, 0.19)$ at 99% C.L. Using the inequalities (23) , we obtain

0.17
$$
f_B[(P_{\nu_e \to \nu_{\mu,\tau}}) + \langle P_{\nu_e \to \bar{\nu}_{\mu,\tau}} \rangle + \langle P_{\nu_e \to \bar{\nu}_e} \rangle]
$$

< 1.67 (99% C.L.). (24)

Therefore, the averaged flux of $\nu_\mu, \nu_\tau, \vec{v}_\mu, \vec{v}_\tau$ and \vec{v}_e on Earth is larger than 0.17 times the ${}^{8}B \nu_{e}$ flux predicted by the BPB 2000 standard solar model at 99% C.L.

Let us derive now the most general model-independent lower limit for f_B (assuming only that the Super-Kamiokande and SNO events are produced by neutrinos or antineutrinos generated as v_e from ${}^{8}B$ decay in the Sun). Using the inequality

$$
\langle P_{\nu_e \to \nu_{\mu,\tau}} \rangle + \langle P_{\nu_e \to \bar{\nu}_{\mu,\tau}} \rangle + \langle P_{\nu_e \to \bar{\nu}_e} \rangle \le 1 - \langle P_{\nu_e \to \nu_e} \rangle
$$
\n(25)

and those in Eq. (23) , from Eqs. (1) and (20) we obtain again the limit in Eq. (16) . Therefore, Eq. (19) gives the most general model-independent lower limit for f_B following from the SNO and Super-Kamiokande data.

In conclusion, we have considered the model-independent relations $(1),(2)$ $[3,6,7]$ [and $(1),(20)$] and the rates measured in the SNO $[1]$ and Super-Kamiokande $[2]$ solar neutrino experiments in the framework of frequentist statistics. We have shown that the probability of $v_e \rightarrow v_{\mu,\tau}$ (and v_e $\rightarrow \bar{\nu}_{\mu,\tau}, \nu_e \rightarrow \bar{\nu}_e$) transitions is larger than zero at 99.89% C.L. in the range of neutrino energies covered by the common SNO and Super-Kamiokande response function. We have found that the flux of $\nu_{\mu,\tau}$ (and $\bar{\nu}_{\mu,\tau}, \bar{\nu}_e$) on Earth averaged over the common SNO and Super-Kamiokande response function is larger than 0.17 times the ${}^{8}B \nu_{\rho}$ flux predicted by the BPB 2000 standard solar model at 99% C.L. We have derived a model-independent lower limit of 0.52 at 99% C.L. for the ratio f_B of the ⁸B ν_e flux produced in the Sun and its value in the BPB2000 standard solar model [8].

³In the case of Majorana neutrinos the right-handed states are conventionally called antineutrinos.

- @1# SNO Collaboration, Q.R. Ahmad *et al.*, Phys. Rev. Lett. **87**, 071301 (2001).
- [2] SuperKamiokande Collaboration, S. Fukuda *et al.*, Phys. Rev. Lett. **86**, 5651 (2001).
- [3] G.L. Fogli, E. Lisi, D. Montanino, and A. Palazzo, Phys. Rev. D 64, 093007 (2001).
- [4] S.M. Bilenky, C. Giunti, and W. Grimus, Prog. Part. Nucl. Phys. 43, 1 (1999).
- [5] G. D'Agostini, CERN Yellow Report No. 99-03, 1999.
- @6# F.L. Villante, G. Fiorentini, and E. Lisi, Phys. Rev. D **59**, 013006 (1999).
- [7] G.L. Fogli, E. Lisi, A. Palazzo, and F.L. Villante, Phys. Rev. D **63**, 113016 (2001).
- [8] J.N. Bahcall, M.H. Pinsonneault, and S. Basu, Astrophys. J. **555**, 990 (2001).
- [9] G.J. Feldman and R.D. Cousins, Phys. Rev. D **57**, 3873 (1998).
- [10] S. Ciampolillo, Nuovo Cimento A 111, 1415 (1998).
- $[11]$ C. Giunti, Phys. Rev. D **59**, 053001 (1999).
- [12] M. Mandelkern and J. Schultz, J. Math. Phys. 41, 5701 (2000).
- [13] Particle Data Group, D.E. Groom et al., Eur. Phys. J. C 15, 1 (2000); URL: http://pdg.lbl.gov.
- [14] C. Giunti and M. Laveder, Int. J. Mod. Phys. C 12, 1155 $(2001).$
- $[15]$ C. Giunti and M. Laveder, hep-ex/0011069.
- [16] C.-S. Lim and W.J. Marciano, Phys. Rev. D 37, 1368 (1988).
- [17] E.K. Akhmedov, Phys. Lett. B 213, 64 (1988).
- [18] J.N. Bahcall *et al.*, Phys. Rev. C 54, 411 (1996).
- [19] J.N. Bahcall, M. Kamionkowski, and A. Sirlin, Phys. Rev. D **51**, 6146 (1995).
- [20] Super-Kamiokande Collaboration, M. Nakahata et al., Nucl. Instrum. Methods Phys. Res. A 421, 113 (1999).