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Scale of fermion mass generation
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Unitarity of longitudinal weak vector boson scattering implies an upper bound on the scale of electroweak
symmetry breaking,LEWSB[A8pv'1 TeV. Appelquist and Chanowitz@Phys. Rev. Lett.59, 2405 ~1987!#
have derived an analogous upper bound on the scale of fermion mass generation, proportional tov2/mf , by
considering the scattering of same-helicity fermions into pairs of longitudinal weak vector bosons in a theory
without a standard Higgs boson. We show that there is no upper bound, beyond that on the scale of electroweak
symmetry breaking, in such a theory. This result is obtained by considering the same process, but with a large
number of longitudinal weak vector bosons in the final state. We further argue that there is no scale of~Dirac!
fermion mass generation in the standard model. In contrast, there is an upper bound on the scale of Majorana-
neutrino mass generation, given byLMa j[4pv2/mn . In general, the upper bound on the scale of fermion
mass generation depends on the dimensionality of the interaction responsible for generating the fermion mass.
We explore the scale of fermion mass generation in a variety of excursions from the standard model: models
with fermions in nonstandard representations, a theory with higher-dimension interactions, a two-Higgs-
doublet model, and models without a Higgs boson.

DOI: 10.1103/PhysRevD.65.033004 PACS number~s!: 12.15.Ff
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I. INTRODUCTION

One of the main aspirations of particle physics this dec
is the elucidation of the mechanism that breaks the e
troweak gauge symmetry,SU(2)L3U(1)Y , down to the
gauge symmetry of electromagnetism,U(1)EM . An upper
bound on the scale of electroweak symmetry breaki
LEWSB'1 TeV, ensures that the physics of this mechani
is within reach of the CERN Large Hadron Collider, an
perhaps also the Fermilab Tevatron~if some or all of this
physics is much lighter than 1 TeV!. Additional high-energy
colliders, such as ane1e2 linear collider or am1m2 col-
lider, may be required to completely elucidate the mec
nism of electroweak symmetry breaking.

The upper bound on the scale of electroweak symm
breaking may be obtained by considering elastic scatterin
longitudinal weak vector bosons. In the absence of an
plicit model of electroweak symmetry breaking, this amp
tude grows quadratically with energy and violates unitarity
an energyLEWSB[A8pv'1 TeV, wherev5(A2GF)21/2

'246 GeV@1#. One interprets this as the scale before wh
the effective field theory of massive weak vector boso
must be subsumed by a deeper theory that contains a me
nism for electroweak symmetry breaking, thereby genera
the masses of the weak bosons.

Appelquist and Chanowitz observed that a similar ar
ment can be put forward for the scale of fermion mass g
eration @2#. The amplitude for scattering of a fermion
antifermion pair of the same helicity into a pair o
longitudinal weak vector bosons, in the absence of an
plicit model of fermion mass generation, is proportional
mfAs/v2, wheremf is the fermion mass andAs is the center-
of-mass energy. This amplitude violates unitarity at the sc
L f'v2/mf , which varies with each fermion, depending o
its mass, and is greater thanLEWSB for all known fermions.
This scale was interpreted as an upper bound on the sca
fermion mass generation.
0556-2821/2002/65~3!/033004~17!/$20.00 65 0330
e
c-

,

-

ry
of
x-

t

h
s
ha-
g

-
-

x-

le

of

Appelquist and Chanowitz noted that there is no kno
model of fermion mass generation that saturates the up
bound set byL f . This issue was revisited by Golden, with
similar conclusion@3#. Attempts to saturate this bound b
considering a two-Higgs-doublet model were also unsucc
ful @4,5#. However, we recently showed that a similar upp
bound on the scale of Majorana-neutrino mass generat
LMa j'v2/mn , can be naturally saturated in explicit mode
@6#. Given this set of results, one is led to ask whether
scaleL f is truly relevant for ordinary~Dirac! fermions.

In this paper we explore the scale of fermion mass g
eration in depth. We clarify the interpretation of the sca
L f , and we show why this scale is not relevant for standa
model fermions. Our principal results, which we elabora
upon in the body of the paper, may be summarized as
lows.

~1! In the standard model,1 there isno scale of fermion
mass generation. The Higgs boson mass is the scale of
troweak symmetry breaking, but it is not the scale of fermi
mass generation.

~2! The upper bound on the scale of fermion mass g
eration depends on the dimensionality of the interaction
sponsible for generating the fermion mass. The upper bo
is proportional to (vd23/mf)

1/(d24), whered.4 is the di-
mensionality of the interaction. This is less thanL f except
for d55, when it is equal to it. Ford<4, there is no upper
bound on the scale of fermion mass generation.

~3! If electroweak symmetry breaking is not driven via th
vacuum-expectation value of a Higgs field, one cannot de
an upper bound on the scale of fermion mass generation

1Throughout this paper, the standard model refers to theSU(2)L

3U(1)Y gauge theory spontaneously broken by the vacuu
expectation value of a Higgs-doublet field, including all terms
dimension four and less. We regard terms of dimension greater
four as beyond the standard model.
©2002 The American Physical Society04-1
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considering fermion-antifermion scattering into longitudin
weak vector bosons.

The remainder of the paper is organized as follows.
Sec. II we revisit the upper bound on the scale of el
troweak symmetry breaking,LEWSB, in order to prepare for
the discussion of the scale of fermion mass generation
Sec. III we show that there is no upper bound on the scal
fermion mass generation, by considering fermio
antifermion scattering into a large number of longitudin
weak vector bosons. In Sec. IV we show that there is
scale of fermion mass generation in the standard model
a Higgs boson. In Sec. V we show that the upper bound
the scale of Majorana-neutrino mass generation is pro
tional to v2/mn and can be naturally saturated in explic
models. In Sec. VI we consider an extension of the stand
model with fermions in non-standard representations of
gauge group, such that their masses arise via hig
dimension interactions. This allows us to study the up
bound on the scale of fermion mass generation in a m
general setting. In Sec. VII we return to the standard mo
with the usual fermion content, but including highe
dimension interactions. The two-Higgs-doublet model, in
limit that one doublet is much heavier than the weak sc
provides a specific example of such a theory and allows u
recover the results of Ref.@4# in a simple way. In Sec. VIII
we consider models without a Higgs field. We summar
our conclusions in Sec. IX.

II. SCALE OF ELECTROWEAK SYMMETRY BREAKING

We begin with the well-established upper bound on
scale of electroweak symmetry breaking. Consider
SU(2)L3U(1)Y Yang-Mills gauge theory. The weak vecto
bosons are massless due to the gauge symmetry. Now a
bare mass for theW andZ bosons:

L5MW
2 W1mWm

21
1

2

MW
2

cos2uW

ZmZm , ~1!

where the relationMW
2 5MZ

2cos2uW is made explicit. These
terms violate the gauge symmetry, so one should ques
why it is legitimate to add them. The answer is that the
terms correspond to the unitary-gauge expression of an
fective Lagrangian in which the gauge symmetry is nonl
early realized:

L5
v2

4
Tr~DmS!†DmS, ~2!

where DmS5]mS1 i (g/2)s•WmS2 i (g8/2)Ss3Bm and S
5exp(is•p/v) contains the Goldstone bosonsp i of the spon-
taneously broken gauge symmetry@7,8#. This effective field
theory is valid below the scale of electroweak symme
breaking, but not above. One may then calculate the sca
which this effective field theory breaks down,LEWSB. The
theory that subsumes this effective field theory and conta
the physics of electroweak symmetry breaking must occu
or below this scale. ThusLEWSB represents an upper boun
on the scale of electroweak symmetry breaking.
03300
l

n
-

In
of
-
l
o
th
n
r-

rd
e
r-
r

re
el

e
e,
to

e

e
n

d a

on
e
f-

-

y
at

s
at

The scale at which the effective field theory breaks do
may be calculated using unitarity. The zeroth-partial-wa
(J50) elastic scattering amplitude for longitudinal wea
vector bosons is proportional tos/v2, wheres is the square
of the center-of-mass energy andv5(A2GF)21/2 is the weak
scale.2 Applying the elastic unitarity conditionuRea0

0u<1/2
to theJ50, I 50 partial-wave amplitude3 yields the energy
at which the effective field theory breaks down@1,9#:

LEWSB[A8pv'1 TeV. ~3!

This is the upper bound on the scale of electroweak sym
try breaking.

In the standard model at energies above the Higgs bo
mass, the elastic scattering amplitude for longitudinal we
vector bosons receives an additional contribution from
exchange of the Higgs boson. This contribution cancels
term proportional tos/v2, leaving behind terms that ap
proach a constant at high energy. Thus the effective fi
theory of massive weak vector bosons is subsumed b
deeper theory containing a Higgs boson.

At energies above the Higgs boson mass, the Lagran
describing the theory has a linearly realizedSU(2)L
3U(1)Y gauge invariance, unlike the effective field theo
of massive weak vector bosons that operates below the H
boson mass. The Lagrangian of Eq.~2! is replaced by

L5~Dmf!†Dmf2l~f†f2v2/2!2, ~4!

where f is the Higgs-doublet field. One may recover th
effective field theory of massive weak vector bosons at
ergies less than the Higgs boson mass, Eq.~2!, by integrating
out the Higgs boson field,h, contained in the Higgs-double
field, f5S„0,(h1v)/A2….

The above considerations lead us to the following defi
tion: The scale of electroweak symmetry breaking is the m
mum energy at which the Lagrangian has a linearly realiz
SU(2)L3U(1)Y gauge invariance.In the standard model
the Higgs boson mass is the scale of electroweak symm
breaking.

The Higgs boson mass is proportional toAlv, wherel is
the Higgs-field self-coupling in Eq.~4!. Since the coupling is
bounded to be at most of order 4p, the upper bound on the
Higgs boson mass is approximatelyA4pv @10#. This is de-
rived by requiring that the Higgs boson mass be less than
ultraviolet cutoff of the theory. The upper bound on th
Higgs boson mass is parametrically the same as the u
bound on the scale of electroweak symmetry breaki

2In the standard model,v is the vacuum-expectation value of th
Higgs field. However, there is no Higgs field in the effective fie
theory of massive weak vector bosons. In the effective theory,v is
defined by Eq.~2!.

3Weak isospin,I, is an approximate globalSU(2) symmetry of
the effective field theory and is exact in the limit cosuW51. This
symmetry is manifest in this limit by the weak-vector-bos
masses, Eq.~1!, where W1,Z,W2 form an isotriplet. It is also
manifest in Eq.~2! in this limit (g850), where thep i form an
isotriplet.
4-2
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FIG. 1. Feynman diagrams that contribute

the amplitude forf f̄→VLVL in unitary gauge.
The middle diagram is absent ifV5W; the last
diagram is absent ifV5Z.
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LEWSB[A8pv, so the Higgs boson mass can saturate
bound within a factor of order unity. A detailed analys
shows that the upper bound on the Higgs boson mas
approximately 600 GeV@11#.

If there is no Higgs boson, then the effective field theo
of massive weak vector bosons simply ceases to provid
valid description of nature aboveLEWSB. In particular, the
theory that describes physics aboveLEWSB will not contain
longitudinal weak vector bosons as weakly coupled degr
of freedom. The standard model~and extensions thereof tha
decouple@12# when the mass of the additional physics
taken to infinity! is the unique theory that contains longit
dinal weak vector bosons as weakly coupled degrees of f
dom aboveLEWSB @13–15#. Since a theory of Goldston
bosonsS, but no Higgs boson, does not possess linea
realized gauge symmetry, the scale of electroweak symm
breaking typically saturatesLEWSB in such models. We con
sider strongly coupled models in Sec. VIII.

III. SCALE OF FERMION MASS GENERATION

The upper bound on the scale of fermion mass genera
derived by Appelquist and Chanowitz is based on a calc
tion of f 6 f̄ 6→VLVL ~whereVL is a longitudinal weak vec-
tor boson and the subscripts on the fermion and antiferm
indicate their helicities!, as shown in Fig. 1@2#. The fermion
mass is introduced via a bare mass term in the Lagrang

L52mf f̄ L f R1H.c., ~5!

where the subscripts indicate chirality. This term violates
gauge symmetry since, in the standard model,f L and f R
transform differently underSU(2)L3U(1)Y gauge transfor-
mations. Actually, Eq.~5! is the unitary-gauge expression
a Lagrangian in which the gauge symmetry is nonlinea
realized,

L52mfF̄LSS 0
1D f R1H.c., ~6!

whereFL is an SU(2)L-doublet fermion field whose lowe
component isf L . Since the fermion mass is not introduce
via a Yukawa coupling to the Higgs field, there is no diagra
corresponding to the exchange of a Higgs boson in ths
channel, as there would be in the standard model. The re
ing amplitude is proportional to the fermion mass and gro
linearly with energy. Applying the inelastic unitarity cond
tion ua0

0u<1/2 to theJ50, I 50, spin-zero, color-singlet am

plitude for f 6 f̄ 6→VLVL leads to an upper bound on th
scale of fermion mass generation@2,9#
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A3Ncmf

, ~7!

whereNc53 for quarks and unity for leptons.
However, Eq.~7! is not the strongest upper bound that o

can derive, given the above framework. By consider
f 6 f̄ 6→VL•••VL , with n particles in the final state, one ob
tains an upper bound on the scale of fermion mass genera
proportional to (vn/mf)

1/(n21). For arbitrarily largen, one
obtains an upper bound arbitrarily close to the weak scalv
for any value ofmf . We first derive this result, then discus
its implications.

The easiest way to derive this result is to consider
theory in the limit that the weak gauge coupling goes to ze
with v fixed. In this limit the weak vector bosons becom
massless, and the longitudinal weak vector bosons are re
sented by the Goldstone bosonss6,x contained in the field
S5exp(is•p/v), where s652(p17 ip2)/A2,x52p3.
The terms that grow with energy in the amplitudes are in
pendent of the weak gauge coupling, so they survive in
limit. Thus the high-energy behavior of amplitudes with lo
gitudinal weak vector bosons in the final state may be
tained from the amplitudes with the vector bosons repla
with the corresponding Goldstone bosons@times a factor ofi
(2 i ) for each outgoing~incoming! longitudinal weak vector
boson#. This is the Goldstone-boson equivalence theor
@1,14,16,17#.4

The fermion interacts with the Goldstone bosons via
interaction of Eq.~6!. Expanding theS field in powers of the
Goldstone-boson fields, we obtain an interaction such as
shown in Fig. 2, withn external Goldstone bosons. Th
Feynman rule for this interaction is proportional tomf /vn.
The amplitude forf 6 f̄ 6→p•••p is therefore proportiona
to mfAs/vn. The relevant unitarity condition on this inelast
amplitude is

s inel~2→n!<
4p

s
, ~8!

where s inel(2→n) is the total cross section forf 6 f̄ 6

→p•••p. This condition is derived in Appendix A. Sinc
the phase space for ann-particle final state is proportional to
sn22 at high energies, one finds that the unitarity conditio
Eq. ~8!, is violated at an energy proportional t
(vn/mf)

1/(n21), as stated above.
We see thatf 6 f̄ 6→VL•••VL , with n.2 particles in the

final state, leads to a stronger upper bound than Eq.~7!,

4The Goldstone-boson equivalence theorem is actually more
eral, being valid for finite weak gauge coupling@18#.
4-3
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which is based on the casen52. Thus the Appelquist-
Chanowitz bound is subsumed by this stronger bound, wh
is of the order of the weak scale,v, for n large, indepen-
dently ofmf . Since we already know that there must be n
physics at the weak scale, namely the physics of electrow
symmetry breaking, the consideration of fermio
antifermion scattering into longitudinal weak vector boso
does not reveal an additional scale. This claim is suppo
by the fact the upper bound is independent of the ferm
mass. Thus there is no upper bound on the scale of ferm
mass generation.

IV. STANDARD MODEL

The derivation in the previous section off 6 f̄ 6

→VL•••VL , with n particles in the final state, tacitly as
sumes that the longitudinal weak vector bosons are we
coupled degrees of freedom. As discussed in Sec. II, th
not true in general aboveLEWSB'A8pv. In order to justify
the calculation off 6 f̄ 6→VL•••VL aboveLEWSB, one must
specify the mechanism of electroweak symmetry break
such that the longitudinal weak vector bosons remain wea
coupled degrees of freedom aboveLEWSB. The unique
theory that contains longitudinal weak vector bosons
weakly coupled degrees of freedom to arbitrarily high en
gies is the standard model, with a Higgs boson@13–15#. In
this section we consider the scale of fermion mass genera
in the standard model.

First consider the model envisioned in Ref.@2#, in which
the weak-vector-boson masses are generated via an ex
model of spontaneous symmetry breaking, but fermions
given bare masses. As an example of this, one could ima
the standard Higgs model, but with the fermion Yukawa
teractions replaced by bare fermion masses, Eq.~5!. How-
ever, even in this scenario, the considerations of the prev
section continue to apply. The calculation off 6 f̄ 6

→VL•••VL , with n particles in the final state, continues
violate unitarity at the scale of electroweak symmetry bre
ing for largen. Thus unitarity of this process does not reve
an additional scale beyond that of electroweak symme
breaking.

The theory that is valid above the scale of electrowe
symmetry breaking necessarily has a linearly realized ga
invariance. Thus the fermion mass, Eq.~6!, must be de-
scribed by a Yukawa interaction5

5This interaction may be supplemented by additional interacti
of dimension greater than four that also contribute to the ferm
mass. We consider this possibility in Sec. VII.

FIG. 2. Feynman diagram for the interaction of a fermion withn
Goldstone bosons.
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L52yfF̄Lf f R1H.c. ~9!

This Lagrangian contains a Yukawa interaction of the f
mion with the Higgs boson and yields the diagram in Fig.
This diagram, when added to the diagrams in Fig. 1, can
the term that grows linearly with energy, leaving behi
terms that fall like an inverse power of energy at high ener
A similar cancellation occurs for all processes of the ty
f 6 f̄ 6→VL•••VL .

It is tempting to identify the scale of fermion mass ge
eration with the energy at which the amplitude forf 6 f̄ 6

→VLVL ceases to grow with energy, namely the Higgs bos
mass. However, the Higgs boson mass is the scale of e
troweak symmetry breaking, not the scale of fermion m
generation. The reason the amplitude forf 6 f̄ 6→VLVL
grows with energy below the Higgs boson mass is beca
the fermion mass is described in a theory with a nonlinea
realized gauge invariance, Eq.~6!. Above the Higgs mass
the amplitude forf 6 f̄ 6→VLVL falls off with energy and
unitarity is respected at all energies. Thus, in the stand
model there isno scale associated with fermion mass ge
eration. We will support this claim by considering extensio
of the standard model in which thereis a well-defined scale
of fermion mass generation. These models are discusse
Secs. V and VI.

A possible way to circumvent the above arguments is
introduce a Higgs doublet field, such that longitudinal we
vector bosons are weakly coupled above the weak scale
to forbid the Higgs field from coupling to fermions. This ca
be arranged, for example, by imposing the discrete symm
f→2f. However, this also has the consequence of forb
ding a gauge-invariant mass for the fermion, so the scale
fermion mass generation is moot. One might also consid
model with two Higgs doublets where only one doub
couples to fermions. Such a model is discussed in Sec.

In this section we have argued that there is no scale
fermion mass generation in the standard model. Howe
Yukawa couplings are not asymptotically free in general,
the energy at which a Yukawa coupling becomes strong a
indicates an upper bound on the scale of fermion mass g
eration. In the standard model, only the top-quark Yuka
coupling is not asymptotically free; all other Yukawa co
plings are asymptotically free by virtue of the fermion
gauge interactions. The top-quark’s Yukawa coupling is s
ficiently large that it eventually overwhelms the gauge int
actions, causing it to become strong at high energies. H
ever, formt5175 GeV, the energy at which the top-quark

s
n

FIG. 3. Additional diagram involving the exchange of a Hig

boson that contributes to the amplitude forf f̄→VLVL . This dia-
gram cancels the terms that grow with energy resulting from
diagrams in Fig. 1.
4-4
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FIG. 4. Feynman diagrams that contribute
the amplitude fornn→VLVL in unitary gauge.
The last diagram is absent ifV5Z.
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Yukawa coupling becomes strong is many orders of mag
tude above the Planck scale and is therefore irrelevant.
quark of mass in excess of about 225 GeV existed,
Yukawa coupling would become strong below the gran
unification scale@19–22#.

V. MAJORANA NEUTRINOS

Neutrinos are exactly massless in the standard mo
However, recent observations of neutrino oscillations in
cate that neutrinos have a small mass. We assume that
trino masses are Majorana, unlike the other known fermio
which carry an electric charge and are therefore forbidde
have Majorana masses. If there is noSU(2)L
3U(1)Y-singlet fermion fieldnR in nature, then neutrino
masses are necessarily Majorana. However, even if su
field exists, the gauge symmetry allows the Majorana m
termL52(MR/2)nR

TCnR1H.c. for this field, and there is no
reason why this mass should be small. Other known fer
ons acquire a mass only afterSU(2)L3U(1)Y is broken,
and thus their masses are of the order of the weak scale,v, or
less. Since a Majorana mass for thenR field is not protected
by the gauge symmetry, it is natural to assume that it wo
be much greater than the weak scale@23#. So even if thenR
field exists, it is likely to be heavy, in which case the lig
neutrinos are Majorana fermions.

We have recently shown that an upper bound on the s
of Majorana-neutrino mass generation may be derived
considering the processn6n6→VLVL , as shown in Fig. 4
@6#. This bound is similar to the Appelquist-Chanowi
bound on Dirac-fermion mass generation, Eq.~7!, which is
invalid for standard-model fermions, as we have argued
the previous two sections. Here we reconsider the up
bound on the scale of Majorana-neutrino mass genera
and show that it is valid. As with the case of Dirac fermion
the upper bound on the scale of Majorana-neutrino mass
eration was obtained by considering the processn6n6

→VLVL in the absence of any diagrams involving the e
change of a Higgs boson. This is because the Majora
neutrino mass was introduced via a bare mass term,

L52
1

2
mnnL

TCnL1H.c., ~10!

FIG. 5. Additional diagram involving the exchange of a Hig
boson that contributes to the amplitude fornn→VLVL . This dia-
gram cancels the term that grows with energy resulting from
diagrams in Fig. 4 ifV5W, but not if V5Z.
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whereC is the charge-conjugation matrix. However, by co
sideringn6n6→VL•••VL , with n particles in the final state
one finds that unitarity is violated at the weak scale,v, for n
large, independently of the neutrino mass. This is analog
to the situation for Dirac fermions discussed in Sec. III. Th
there is no additional upper bound, beyond that on the s
of electroweak symmetry breaking, implied by consideri
Majorana neutrinos scattering into longitudinal weak vec
bosons when the neutrino mass is introduced via a bare m
term, Eq.~10!.

In order to discover a new scale from the consideration
n6n6→VLVL , one must allow the neutrino to acquire
mass by coupling to the Higgs boson. This has two con
quences. First, the longitudinal weak vector bosons rem
weakly coupled up to arbitrarily high energies, justifying th
calculation of the diagrams in Fig. 4. Second, the proc
n6n6→VL•••VL , with n particles in the final state, doe
not lead to a stronger bound than the case withn52. If the
neutrino instead acquires its mass some other way, then
considerations of this section do not apply. This case
treated in Sec. VIII.

Above the scale of electroweak symmetry breaking,
Majorana-neutrino mass must be described by a gau
invariant term in the Lagrangian. In the Higgs model, t
lowest-dimension term available is the dimension-five int
action @24#

L5
c

M
~LTef!C~fTeL !1H.c., ~11!

whereL5(nL ,l L) is anSU(2)L doublet containing the left-
chiral neutrino and charged-lepton fields ande[ is2. We
will show that the scaleM may be interpreted as the scale
Majorana-neutrino mass generation;c is a dimensionless
constant. This term gives rise to a Majorana-neutrino m
mn5cv2/M when the neutral component of the Higgs fie
acquires a vacuum-expectation value^f0&5v/A2. It also
yields a Yukawa coupling of the Majorana neutrino to t
Higgs boson, thereby generating the additional contribut
to the amplituden6n6→VLVL shown in Fig. 5. However,
this diagram does not cancel the terms that grow w
energy,6 in contrast to the case of standard-model Dirac f
mions. Thus the upper bound on the scale of Majora
neutrino mass generation derived in Ref.@6# is parametri-
cally correct, although it did not include the contributio
from the Higgs-exchange diagram in Fig. 5.

6To be precise, the Higgs-exchange diagramdoescancel the term
that grows with energy inn6n6→WL

1WL
2 ; however, it does not

cancel this term inn6n6→ZLZL , nor in l 2n2→WL
2ZL or l 2l 2

→WL
2WL

2 @6#.
e

4-5
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FIG. 6. Feynman diagrams
that contribute to the amplitude
for nn→hh. Only the last dia-
gram grows with energy.
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Since the Higgs boson is present at energies above
scale of electroweak symmetry breaking, one finds that th
is another amplitude that grows with energy,n6n6→hh, as
shown in Fig. 6.7 Only the last diagram contributes to th
term that grows with energy, yielding the zeroth-partial-wa
amplitude~for As@mn ,mh)

a0S 1

A2
n6n6→ 1

A2
hhD ;7

cAs

16pM
;7

mnAs

16pv2
, ~12!

where the relationmn5cv2/M was used to obtain the fina
expression. This process grows with energy because th
teraction responsible for the last diagram in Fig. 6, Eq.~11!,
has a coefficient with dimensions of an inverse power
mass. In contrast, the processes involving longitudinal w
vector bosons in the final state grow with energy due to
longitudinal polarization vectors,em'pm/MV ~for p0@MV).

However, there is a sense in whichall processes that grow
with energy are related to the dimension-five interaction
Eq. ~11!. This can be made manifest by using the Goldsto
boson equivalence theorem, where the Goldstone bo
s6,x are contained in the Higgs doublet,f5„2 is1,(h1v
1 ix)/A2…. The terms that grow with energy in th
Goldstone-boson amplitudes all come from the interaction
Eq. ~11!, such as the last diagram in Fig. 6. It is in this sen
that all processes that grow with energy are related to
dimension-five interaction.
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The high-energy behavior of the amplitudes that gr
with energy are collected in Appendix B. The strongest up
bound on the scale of Majorana-neutrino mass generatio
obtained by applying the inelastic unitarity conditionua0u
<1/2 to the amplitude8

a0S 1

2
~n i 1n i 12n i 2n i 2!→ 1

2
~ZLZL1hh! D;2

mn i
As

8pv2
.

~13!

This yields the upper bound on the scale of Majoran
neutrino mass generation

LMa j[
4pv2

mn
. ~14!

This equation supersedes Eq.~10! of Ref. @6#. The upper
bounds onLMa j implied by a variety of neutrino-oscillation
experiments are listed in Table I.

In Ref. @6# we discussed two models that can saturate
upper bound on the scale of Majorana-neutrino mass gen
tion, Eq. ~14!: the ‘‘seesaw’’ model and a Higgs-triple
model. We first review the seesaw model@28,29#. In this
model, the dimension-five interaction of Eq.~11! is replaced
by the renormalizable interactions
TABLE I. Neutrino mass-squared differences from a variety of neutrino oscillation experiments and their
interpretations. They imply a lower bound ofmn>ADm2 on the mass of one of the two participating neutrino
species. The last column lists the corresponding upper bounds onLMa j , Eq. ~14!, which is the upper bound
on the scale of Majorana-neutrino mass generation.

Favored
Experiment channel~s! Dm2(eV2) LMa j (GeV),

LSND @25# n̄m→ n̄e
0.222.0 1.731015

Atmospheric@26# nm→nt (1.624)31023 1.931016

Solar @27#

MSW ~LMA ! ne→nm or nt (2210)31025 1.731017

MSW ~SMA! ne→ anything (328)31026 4.431017

MSW ~LOW! ne→nm or nt 7.631028 2.831018

Vacuum ne→ anything 1.4310210 6.431019

Just So2 ne→ anything 5.5310212 3.231020

7The amplitudes forn6n6→ZLh and l 2n2→WL
2h also grow with energy.

8The same bound may also be obtained by considering the amplitude

a0S12 ~ni1ni11ni2ni2!→ZLhD;2
mni

As

8pv2
.
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FIG. 7. Additional diagrams that contribute
when the Majorana neutrino acquires its mass v
a coupling to an SU(2)L-triplet Higgs field.
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L52yDL̄ef* nR2
1

2
MRnR

TCnR1H.c., ~15!

wherenR is an SU(2)L3U(1)Y-singlet fermion field. This
field has a Majorana mass term allowed by the gauge sy
metry, so it is natural to expect thatMR@v. The first term
yields a Dirac mass ofmD5yDv/A2. The mass eigenstate
of this model are a light Majorana neutrinon'nL of mass
mn'mD

2 /MR and a heavy Majorana neutrinoN'nR of ap-
proximate massMR . The fact thatmn!mD provides an at-
tractive explanation for why neutrinos are so much light
than the other known~Dirac! fermions. At energies above the
mass of the heavy neutrino,MR , the Feynman diagrams for
n6n6→ZLZL in Figs. 4 and 5 are augmented by diagrams
which the heavy neutrino is exchanged in thet andu chan-
nels. These diagrams cancel all terms that grow with energ9

The processn6n6→hh also ceases to grow with energ
because the last diagram in Fig. 6, which was responsible
the term that grows with energy, is not present. It is replac
by diagrams, similar to the first two diagrams in that figur
with the exchange ofN in the t and u channels. Thus the
scale of Majorana-neutrino mass generation in the see
model is the mass of the heavy neutrino,MR . This is be-
cause the Lagrangian aboveMR , Eq.~15!, is renormalizable.

Below MR , one integrates out the fieldnR and obtains the
nonrenormalizable interaction of Eq.~11!, with c/M5
2yD

2 /2MR . Thus we associate the scaleM with MR , which
is the scale of Majorana-neutrino mass generation in t
model, andc52yD

2 /2. The mass of the heavy neutrino
MR'mD

2 /mn'yD
2 v2/2mn , saturates~within a factor of order

unity! the upper bound on the scale of Majorana-neutri
mass generation, Eq.~14!, when the Yukawa coupling takes
its largest allowed value,yD&A8p @30–32#.

The Higgs-triplet model@33–37# introduces an SU(2)L-
triplet, Y51 Higgs field,F i , and the renormalizable interac
tion

L52yMLTes iCLF i1H.c., ~16!

which replaces the dimension-five interaction of Eq.~11!.
The usual Higgs-doublet field is also present in the mod
The vacuum-expectation value of the Higgs-triplet field mu
be much less than the weak scale, because the relationMW

2

.MZ
2cos2uW, which is satisfied experimentally, is obtained

the weak bosons acquire their mass dominantly from t
vacuum-expectation value of an SU(2)L doublet, but not a
triplet. The interaction of Eq.~16! generates a small
Majorana-neutrino mass,mn52yMu, when the neutral com-

9Similarly, all terms that grow with energy are cancelled i
l 2n2→WL

2ZL , etc.
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ponent of the Higgs field,F05(F11 iF2)/A2, acquires a
small vacuum-expectation valuêF0&5u/A2. This model
contains three neutral scalars, one singly charged scalar,
one doubly charged scalar. The term of Eq.~16! gives rise to
new interactions that yield the additional Feynman diagram
in Fig. 7 involving these Higgs scalars in the intermediat
state.10 The first diagram cancels the terms that grow wit
energy in n6n6→VLVL , the second diagram cancels the
term that grows with energy inl 2n2→WL

2ZL , and the third
diagram cancels the term that grows with energy inl 2l 2

→WL
2WL

2 .11 The processn6n6→hh also ceases to grow
with energy because the last diagram in Fig. 6, which wa
responsible for the term that grows with energy, is eliminate
and replaced by a diagram analogous to the first diagram
Fig. 7 ~with the VL replaced byh). Thus the scale of
Majorana-neutrino mass generation is the mass of the
Higgs scalars. This is because the theory above the mass
these scalars, Eq.~16!, is renormalizable.

The Higgs potential of the model is discussed in Appen
dix C. The triplet field has a mass term allowed by the gaug
symmetry,L52MT

2F i* F i , so it is natural for it to be much
heavier than the weak scale, in which case the Higgs scal
H0,H2,H22 have masses of approximatelyMT . The
unique renormalizable term in the potential linear in the trip
let field is L52M3fTes ifF i* 1H.c.12 In the limit MT

@v, the vacuum-expectation value of the triplet field isu
'M3v2/MT

2 , which is much less thanv. Since the Majorana
neutrino mass ismn52yMu, this model provides a natural
explanation of why neutrino masses are light. Solving for th
mass of the heavy Higgs scalars in terms of the neutrin
mass, one obtainsMT'2(M3 /MT)yMv2/mn . This respects
the upper bound on the scale of Majorana-neutrino mass g
eration, Eq.~14!, sinceM3 /MT&Ap ~see Appendix C! and
yM&A2p ~the analogue ofyD&A8p mentioned in the pre-
vious section!. The bound is saturated~within a factor of
order unity! when bothM3 /MT and yM attain their maxi-
mum values.

Below the mass of the heavy Higgs scalars,MT , one
integrates out the Higgs triplet field and obtains th
dimension-five interaction of Eq. ~11!, with c/M

10We imposeCP conservation in this model, in which case one o
the neutral scalars isCP odd and does not contribute to the ampli-
tudes.

11Terms that grow with energy are similarly cancelled inn6n6

→ZLh and l 2n2→WL
2h.

12This term is absent in the Majoron model@34,36#, in which the
CP-odd scalar is the Goldstone boson of spontaneously brok
lepton number. That model is ruled out by the measurement of theZ
width.
4-7
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52M3yM /MT
2 . Since we associateM, the scale of Majorana

neutrino mass generation, withMT , we are left with c
52M3yM /MT .

The study of these two models leads us to the follow
definition:The scale of fermion mass generation is the m
mum energy at which the fermion mass is generated b
renormalizable interaction.13 In the standard model the fer
mion mass is generated by a renormalizable interaction a
energies~above the Higgs boson mass!, so there is no scale
of fermion mass generation.14

VI. FERMIONS IN NONSTANDARD REPRESENTATIONS

With the fermion content of the standard model, the o
fermions that do not acquire their mass from a renorma
able interaction with the Higgs field are Majorana neutrin
Eq. ~11!. In this section we extend the fermion content of t
standard model to include fermions in nonstandard repre
tations of SU(2)L3U(1)Y , such that they acquire Dira
masses from nonrenormalizable interactions. This will de
onstrate that the results obtained for Majorana neutrino
the previous section are not peculiar to the Majorana na
of the fermions. Furthermore, by choosing the fermion r
resentation appropriately, we will be able to construct int
actions of arbitrary dimension to generate the fermion ma
This will allow us to study the consequences of unitarity in
more general setting.

Consider adding to the standard model anSU(2)L-triplet,
Y521 fermion fieldFL

ab and anSU(2)L-singlet, Y522
fermion field f R

22. As it stands, this model has gauge a
gravitational anomalies; however, it is possible to embed
model in an anomaly free model, as demonstrated explic
in Appendix D. The lowest-dimension interaction th
couples these fermions to the Higgs field (Y51/2) is

L52
c

M
F̄L

abfafb f R
221H.c., ~17!

which is the analogue of Eq.~9!, but is of dimension five,
like Eq. ~11!. TheSU(2)L-triplet field can be represented b
a symmetric two-index tensor inSU(2)L space,

FL
ab[S f L

0 1

A2
f L

2

1

A2
f L

2 f L
22 D . ~18!

13This renormalizable interaction may be supplemented by in
actions of dimension greater than four that also contribute to
fermion mass.

14Based on this definition, one could argue that the Higgs bo
mass is the scale of fermion mass generation in the standard m
As discussed in Secs. II and IV, we regard the Higgs boson mas
the scale of electroweak symmetry breaking, but not the scal
fermion mass generation.
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This Lagrangian gives rise to a Dirac massmf5cv2/2M for
the field f 22 when the neutral component of the Higgs fie
acquires a vacuum-expectation value^f0&5v/A2.15

The Feynman diagrams for the amplitudef 6
22 f 6

11

→VLVL are similar to those in Figs. 1 and 3. However, t
s-channel Higgs diagram of Fig. 3 does not cancel the te
that grows with energy, in contrast to the case of standa
model Dirac fermions. Thus the situation is analogous to
case of Majorana neutrinos discussed in the previous sec
This demonstrates that the results obtained there were
peculiar to the Majorana nature of the fermions, but inste
stem from the fact that the fermion mass is generated b
dimension-five interaction.

As in the previous section, one can use the Goldsto
boson equivalence theorem to calculate the high-energy
havior of the amplitude forf 6

22 f 6
11→VLVL ~as well as the

amplitude with oneVL replaced byh). The terms that grow
with energy all come from the dimension-five interactio
Eq. ~17!. This interaction yields a Feynman diagram simil
to the last diagram in Fig. 6. The resulting amplitude is p
portional tocAs/M'mfAs/v2, as in the case of Majoran
neutrinos. The strongest upper bound on the scale of ferm
mass generation comes from applying the inelastic unita
condition ua0u<1/2 to the amplitude16

a0S 1

A2
~ f 1

22 f 1
112 f 2

22 f 2
11!→ 1

2
~ZLZL1hh!D

;2
mfAs

4pA2v2
, ~19!

which is the analogue of Eq.~13!. This yields the upper
bound on the scale of Dirac-fermion mass generation

L5[
4pv2

A2mf

, ~20!

where the subscript indicates that the Dirac fermion mas
generated by a dimension-five interaction, Eq.~17!. This is
the analogue of Eq.~14!.

One can generalize this analysis to an interaction of a
trary dimension as follows. Consider the standard mo
with the addition of anSU(2)L (n11)-plet,FL

a•••b , with n
totally symmetric indices. Also add anSU(2)L-singlet field
f R

Q of hypercharge~and electric charge! Q.17 The lowest-

r-
e

n
el.
as
of

15One may generate Dirac masses for the other fields inFL
ab by

introducing the additionalSU(2)L-singlet fieldsf R
2 (Y521) and

f R
0 (Y50) and constructing the analogues of Eq.~17!, making use

of the Y521/2 field ef* .
16The same bound may also be obtained by considering the

plitude

a0S 1

A2
~ f 1

22 f 1
111 f 2

22 f 2
11!→ZLhD ;2

mfAs

4pA2v2
,

which is the analogue of the equation in footnote 8.
17The hypercharge of the fieldFL

a•••b is Y5Q1n/2. This model
4-8
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dimension interaction that generates a Dirac mass is
dimension-d interaction

L52
c

Md24
F̄L

a•••bfa
•••fb f R

Q1H.c., ~21!

whered5n13. The fieldsFL
2•••2[ f L

Q and f R
Q form a Dirac

mass term of massmf5c(v/A2)d23/Md24 when the neutral
component of the Higgs field acquires a vacuum-expecta
value ^f0&5v/A2.

Applying the unitarity conditionua0u<1/2 to the ampli-
tude for f 6

Q f̄ 6
Q→VLVL ~most easily calculated using th

Goldstone-boson equivalence theorem! again yields an uppe
bound on the scale of fermion mass generation that is
portional to v2/mf , like Eq. ~20!. However, the stronges
upper bound on the scale of fermion mass generation co
not from this process, but instead fromf 6

Q f̄ 6
Q→h•••h, with

n5d23 Higgs bosons in the final state. The relevant Fe
man diagram, shown in Fig. 8, is generated from
dimension-d interaction of Eq.~21!. The unitarity condition
on this inelastic amplitude is given in Eq.~8!, where
s inel(2→n) is the total cross section forf 6

Q f̄ 6
Q→h•••h. The

strongest bound on the scale of fermion mass generatio
obtained by considering the initial state (f 1

Q f̄ 1
Q7 f 2

Q f̄ 2
Q)/A2,

and summing over the cross sections obtained by repla
an even~upper sign! or odd~lower sign! number ofh’s in the
final state withZL’s ~or, via the equivalence theorem,x ’s!.
Hence, for a Dirac fermion whose mass is generated via
dimension-d interaction of Eq.~21!, the upper bound on the
scale of fermion mass generation is

Ld[4pkdS vd23

mf
D 1/(d24)

, ~22!

wherekd , given in Eq.~E9!, is a number of order unity. We
derive this result in Appendix E. The results forLd are listed
in Table II for a few values ofd.

The scaleM has the natural interpretation as the energy
which the effective field theory involving the dimension-d
interaction of Eq.~21! is subsumed by a deeper theory. F
example,M corresponds to the mass of the heavy neutrino
the seesaw model discussed in Sec. V. Since the ferm

has gauge and gravitational anomalies, but it can be embedded
anomaly-free model for some value ofQ, as we show explicitly for
the n52 case in Appendix D.

FIG. 8. Feynman diagram for the interaction of a fermion withn
Higgs bosons.
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acquires a mass mf5c(v/A2)d23/Md24 from the
dimension-d interaction, the scaleM is related to the fermion
mass by

M5F c

mf
S v

A2
D d23G 1/(d24)

. ~23!

Thus M respects the upper bound on the scale of ferm
mass generation, Eq. ~22!, provided that
c<A2(4pA2kd)d24. This condition corresponds to the con
vergence of the energy expansion, based on the interactio
Eq. ~21!, for E&M .

VII. HIGHER-DIMENSION INTERACTIONS

In the standard model, Dirac fermions acquire mass v
dimension-four interaction with the Higgs field, Eq.~9!. As
we argued in Sec. IV, there is no scale of fermion ma
generation in the standard model. However, it is likely th
the standard model is supplemented by higher-dimens
interactions, whose presence has not yet been revealed
due to the insufficient energy and/or accuracy of our exp
ments. In this section we consider the implications of high
dimension interactions on the scale of Dirac-fermion m
generation in the standard model. Our discussion applie
all models that reduce to the standard model when the m
of the physics beyond the standard model is taken to infin
~decoupling!.

The lowest-dimension interaction available to supplem
the standard model is of dimension five. With the usual f
mion content~no nR field!, there is only one such interaction
which we already encountered in Eq.~11!. This interaction
gives rise to a Majorana mass for the neutrino, but no ot
fermion masses. Thus we must consider interactions o
least dimension six in the case of Dirac fermions.

In contrast with interactions of dimension five, there are
large number of interactions of dimension six available w
the field content of the standard model@38#. However, there
is only one that contributes to fermion masses, given by

an

TABLE II. Upper bound on the scale of fermion mass gene
tion, Ld , for Dirac fermions that acquire a mass via the dimensio
d interaction of Eq.~21!.

d Ld

4 `

5 4p

A2

v2

mf

6
4p

61/4 S v3

mf
D 1/2

A A

d 4pkdSvd23

mf
D1/(d24)
4-9
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L52
c

M2
F̄Lf f Rf†f1H.c., ~24!

which was already considered by Golden@3#. This interac-
tion, in concert with the usual dimension-four interaction
Eq. ~9!, yields a Dirac fermion mass, when the neutral co
ponent of the Higgs field acquires a vacuum-expecta
value ^f0&5v/A2, of

mf5yf

v

A2
1

c

M2 S v

A2
D 3

. ~25!

This interaction also affects the coupling of the Higgs bos
to the fermion, thereby affecting the contribution of the d
gram in Fig. 3 tof f̄→VLVL . The resulting zeroth-partial
wave amplitude grows with energy like

a0~ f 6 f̄ 6→VLVL!'
c

M2
vAs, ~26!

which exceeds the unitarity bound at an energy of order

L'
M2

cv
'

v2

mf2yfv/A2
, ~27!

where we have used Eq.~25!. This is an upper bound on th
scale of new physics.

In the standard model, wheremf5yfv/A2, the upper
bound on the scale of new physics implied by Eq.~27! is
infinity. For Eq. ~27! to imply a scale of new physics, on
would need to know not only that the fermion has a m
mf , but also that the dimension-four Yukawa coupling of t
fermion, Eq.~9!, differs from the standard-model valueyf

5A2mf /v.18 Let us imagine that this Yukawa coupling
very small, such that the fermion acquires its mass do
nantly from the dimension-six interaction in Eq.~24!. The
upper bound on the scale of new physics implied by Eq.~27!
is then proportional tov2/mf .

However, as we saw in the previous section, when a
mion acquires a mass via a dimension-six interaction
stronger upper bound can be obtained by considering
unitarity of the processf 6 f̄ 6→VLVLVL . One finds

a0~ f 6 f̄ 6→VLVLVL!'
c

M2
As, ~28!

which exceeds the unitarity bound of Eq.~8! at an energy of
order

L2'
M2

c
'

v3

mf2yfv/A2
, ~29!

18This could be inferred by measuring the coupling of the Hig
boson to the fermion and equating it toA2yf23mf /v. Only if yf

5A2mf /v will this coupling acquire the standard-model valu
2mf /v.
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where we have used Eq.~25!. If we imagine that the Yukawa
coupling is very small, such that the fermion acquires
mass dominantly from the dimension-six interaction in E
~24!, then the upper bound on the scale of new physics
proportional to (v3/mf)

1/2.
In general, both the dimension-four interaction of Eq.~9!

and the dimension-six interaction of Eq.~24! contribute to
the fermion mass. In keeping with our definition of the sca
of fermion mass generation presented at the end of Sec
we regard Eq.~29! as an upper bound on the scale of ne
physics, not an upper bound on the scale of fermion m
generation. Since the fermion mass is generated in part
renormalizable interaction at all energies~above the Higgs
boson mass!, there is no scale of fermion mass generation,
in the case of the standard model.

As a specific example of a model with a decoupling lim
consider a model with two Higgs-doubletY51 fields, with a
discrete symmetryf1→2f1 such that onlyf2 couples to a
given fermion. The most general scalar potential for t
model may be written as@39#19

V~f1 ,f2!5m11
2 f1

†f11m22
2 f2

†f22m12
2 @f1

†f21f2
†f1#

1
1

2
l1~f1

†f1!21
1

2
l2~f2

†f2!2

1l3~f1
†f1!~f2

†f2!1l4~f1
†f2!~f2

†f1!

1
1

2
l5@~f1

†f2!21~f2
†f1!2#, ~30!

where thel i ’s are real, and where the discrete symmetry
softly broken by the term proportional tom12

2 . The coupling
of a fermionf to the Higgs fieldf2 is given by a dimension-
four Yukawa interaction

L52yfF̄Lf2f R1H.c., ~31!

whereFL is an SU(2)L-doublet fermion field whose lowe
component isf L .

We study the decoupling limit in a simple way, by inte
grating out one of the Higgs-doublet fields. A convenie
way to accomplish this is to first make a rotation in Higg
doublet-field space such that the mass matrix is diago
Thus we define fieldsF,f, given by

S F

f D 5S cosa sina

2sina cosa D S f1

f2
D , ~32!

where the anglea is chosen to eliminate the off-diagona
term in the mass matrix, proportional tom12

2 .20 The resulting
scalar potential is

s 19We imposeCP symmetry for simplicity. This does not affect th
generality of our arguments.

20The anglea is standard notation in two-Higgs-doublet mode
@39#.
4-10
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V~f,F!52m2f†f1M2F†F1•••

1l̃6@~f†f!~f†F!1H.c.#, ~33!

where we have suppressed all quartic interactions exce
term, linear inF, which is induced by the rotation in Higgs
field space. This is the unique term linear inF; its coefficient
l̃6 is a linear combination of thel i ’s in Eq. ~30!.21 We now
consider the decoupling limitM2@m2 and integrate out the
Higgs fieldF. In so doing the Yukawa interaction of Eq.~31!
becomes, for energies less thanM,

L52yfcosaF̄Lf f R2yfsinaF̄LF f R1H.c.

52yf8F̄Lf f R2
c

M2
F̄Lf f Rf†f1H.c., ~34!

where yf85yfcosa and c52yf l̃6sina. This interaction is
exactly of the form of the standard model plus t
dimension-six term of Eq.~24!, whereM is identified with
the mass of the heavy Higgs field.

In Ref. @4#, the decoupling limit of a two-Higgs-double
model was studied in an attempt to find a model in which
scale of fermion mass generation saturates the Appelq
Chanowitz bound,L f'v2/mf . The mass of the heavy neu
tral Higgs scalar was identified as the scale of fermion m
generation. We instead consider it to be a scale of new p
ics; there is no scale of fermion mass generation since
fermion mass arises in part from a renormalizable inter
tion. This attempt to saturate the Appelquist-Chanow
bound with the mass of the heavy neutral Higgs scalar fai
and instead Ref.@4# identified the upper bound on the ma
of this particle to be proportional to (v3/mf)

1/2, as one would
expect if the fermion mass arose from a dimension-six in
action~see Table II!. This occurs because in the limit studie
in Refs.@4,5# one obtainsa→2p/2, in which caseyf8→0 in
Eq. ~34!. The fermion mass is therefore generated by
dimension-six interaction of Eq.~34!. Thus we reproduce the
results of Refs.@4,5# in a much simpler way.

It was also shown in Refs.@4,5# that the only limit in
which the mass of the heavy neutral Higgs scalarH can
saturate the Appelquist-Chanowitz bound,L f'v2/mf , is if
some of the quartic couplings are taken to grow with
heavy Higgs boson mass~nondecoupling!. We show in Ap-
pendix F that the two models studied in Refs.@4# and@5# are
not the same, although they both involve allowing one
more quartic couplings to grow with the heavy Higgs ma
However, these models are unphysical since the quartic
plings cannot exceedO(4p).

VIII. MODELS WITHOUT A HIGGS FIELD

The standard model~and extensions thereof! is the unique
theory in which the longitudinal weak vector bosons can
treated as weakly coupled degrees of freedom at ener

21l̃65
1
2 sin 2a$l31l41l51cos2a@l222(l31l41l5)#2l1sin2a%.
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above the scale of electroweak symmetry breaking. In
section we discuss the scale of fermion mass generatio
models without a Higgs field. We will see that the upp
bound on the scale of fermion mass generation depend
the dimensionality of the interaction responsible for gene
ing the fermion mass.

At energies aboveLEWSB[A8pv, the longitudinal weak
vector bosons cannot generally be treated as weakly cou
degrees of freedom. As discussed in Sec. III, at high ener
one may think of the longitudinal weak vector bosons
Goldstone bosons via the Goldstone-boson equivalence t
rem. The situation is analogous to QCD, where the pions
the Goldstone bosons of broken chiral symmetry. Consi
the processe1e2→p1p2. At energies less than the scale
chiral symmetry breaking,LxSB'1 GeV, one may treat the
pions as point particles, using the effective chiral Lagran
ian. However, above the scale of chiral symmetry breaki
it is invalid to treat the pions as point particles.22 In the same
way, the electroweak model ceases to be a useful descrip
of longitudinal weak vector bosons at energies above
scale of electroweak symmetry breaking if there is no Hig
field.

Consider fermion mass generation in a theory in wh
electroweak symmetry breaking is described by technico
@41,42#. Since the longitudinal weak vector bosons are n
weakly coupled aboveLEWSB, one cannot calculate ampli
tudes involving external longitudinal weak vector boso
perturbatively. However, one may still discuss the scale
fermion mass generation. At the weak scale the lowe
dimension interaction that generates a fermion mass
dimension-six interaction between technifermions and o
nary fermions, which yields a fermion mass when the te
nifermions condense. If the coefficient of this dimension-
interaction isc/M2, one obtains

mf'c
^T̄T&

M2
, ~35!

where ^T̄T& is the technifermion condensate. In extend
technicolor~ETC!, this dimension-six interaction is the low
energy approximation to the interaction of fermions a
technifermions via the exchange of extended-technico
gauge bosons of massMETC @43,44#. Since the theory above
METC is renormalizable, the scale of fermion mass gene
tion is METC . We identifyM with METC , andc with gETC

2 ,
the square of the ETC gauge coupling. Thus one obta
from Eq. ~35!

METC'S gETC
2 ^T̄T&

mf
D 1/2

. ~36!

22If one were to do so, one would conclude that the cross sec
for e1e2→p1p2 falls off like 1/s at high energies. In fact, this
cross section falls much more rapidly withs, due the structure of
the pion, which yields a form factor for the photon-pion interactio
The pion form factor,Fp(s), is believed to fall off like 1/s at large
s @40#. This yields a cross section that falls off like 1/s3.
4-11
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In a QCD-like model̂ T̄T&'v3. Thus Eq.~36! is the ana-
logue of the upper bound on the scale of fermion mass g
eration obtained in the model of Sec. VI in which a fermi
acquires a mass from a dimension-six interaction,L6
'(v3/mf)

1/2 ~see Table II!.
The scale of fermion mass generation,M, can be in-

creased for a fixed value ofmf if the technifermion conden
sate, evaluated atM, is enhanced. Such is the case in walki
technicolor@45–48#. This may also be described in terms
the dimensionality of the operator responsible for genera
the fermion mass. The composite operatorT̄T has a large
anomalous dimension,gm.1, which is assumed to be con
stant over the range of energiesv&E&M . Thus the four-
fermion operator responsible for generating the fermion m
has scaling dimension 62gm over this range. The fermion
mass is given by

mf'c
^T̄T&

M2 S M

v D gm

, ~37!

so the scale of fermion mass generation is related to
fermion mass by

M'S c
v32gm

mf
D 1/(22gm)

, ~38!

where we have used̂T̄T&'v3.23 This is the analogue o
Ld'(vd23/mf)

1/(d24), Eq. ~22!, for an interaction of scaling
dimensiond562gm .

A particularly interesting case of Eq.~37! occurs when the
physics atM is fine tuned such thatgm52 @49–51#. In this
case, the enhancement of the technifermion condensate
actly cancels the 1/M2 suppression of the four-fermion op
erator responsible for generating the fermion mass, lead
to mf5O(v), independently of the value ofM. Hence, there
is no upper bound on the scale of fermion mass genera
as also follows from Eq.~38!. The scaling dimension of the
composite operatorT̄T becomes 32gm51 in this case, the
same as that of a weakly coupled scalar field. It is natura
associate this fine-tuned limit with the emergence of a lig
composite scalar that acquires a small vacuum-expecta
value v!M and that has renormalizable Yukawa couplin
~unsuppressed byM ) to standard-model fermions@52#. At
energies less thanM, this composite scalar behaves like
Higgs boson, and the resulting theory reduces to the stan
model whenM is taken to infinity~decoupling!. Accordingly,
the considerations of Secs. IV and VII apply, where we c
cluded that there is no upper bound on the scale of ferm
mass generation, in agreement with the above argumen

IX. CONCLUSIONS

In this paper we studied the scale of fermion mass g
eration. We critically reexamined an upper bound on t
scale, due to Appelquist and Chanowitz@2#, obtained by con-

23This is the value of the condensate evaluated at the weak s
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sidering the processf 6 f̄ 6→VLVL , where the subscripts on
the fermions indicate helicity61/2, andVL5WL ,ZL denotes
longitudinal ~helicity zero! weak vector bosons. In the ab
sence of the Higgs boson, the amplitude for this proc
grows with energy and violates the unitarity bound at
energy of orderL f'v2/mf . We showed that there exists
stronger bound, proportional to (vn/mf)

1/(n21), obtained by
considering the processf 6 f̄ 6→VL•••VL with n.2 par-
ticles in the final state. For largen, this bound is arbitrarily
close to the upper bound on the scale of electroweak s
metry breaking, regardless of the fermion mass. Thus the
no upper bound on the scale of fermion mass generation

We further argued that the derivation of this bound
valid only if the longitudinal weak vector bosons are weak
coupled at energies above the scale of electroweak symm
breaking. This requires the existence of a Higgs doub
since the standard Higgs model~and extensions thereof tha
decouple when the mass of the additional physics is take
infinity! is the unique theory in which the longitudinal wea
bosons remain weakly coupled at high energy. Once
Higgs doublet is included in the theory, the upper bound
the scale of fermion mass generation depends only on
dimensionality of the operator responsible for generating
fermion mass. In the standard model, fermions acquire t
mass from a dimension-four interaction with the Higgs fie
which has a dimensionless Yukawa coupling. Thus there
no scale of fermion mass generation in the standard mod

Majorana neutrinos acquire their mass from an interact
of dimension five, with a coefficient with dimensions of a
inverse power of mass. This mass sets the scale
Majorana-neutrino mass generation. The amplitude
n6n6→VLVL grows with energy despite the inclusion of th
Higgs boson, because the neutrino acquires its mass fro
nonrenormalizable interaction. Applying the unitarity cond
tion to the amplitude, we derived an upper bound on
scale of Majorana-neutrino mass generation@6#

LMa j[
4pv2

mn
. ~39!

The upper bounds onLMa j implied by a variety of neutrino-
oscillation experiments are listed in Table I.

We considered extending the standard model by add
fermions in nonstandard representations ofSU(2)L
3U(1)Y such that they acquire a Dirac mass from an int
action of dimensiond. We showed that the strictest upp
bound on the scale of fermion mass generation is obtaine
applying the unitarity condition to the amplitude forf 6 f̄ 6

→VL•••VL , with n5d23 particles in the final state. Thi
upper bound is proportional to (vd23/mf)

1/(d24). For a fer-
mion that acquires mass via the dimension-d interaction of
Eq. ~21!, the upper bound on the scale of fermion mass g
eration is listed in Table II.

For a fermion that acquires its mass via an interaction
dimension four, the amplitude forf 6 f̄ 6→VLVL ceases to
grow with energy above the Higgs boson mass. This refle
the fact that the Higgs boson mass is the scale of electrow
symmetry breaking and that the fermion mass is generale.
4-12
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SCALE OF FERMION MASS GENERATION PHYSICAL REVIEW D65 033004
via a renormalizable interaction. However, the Higgs bos
mass is not the scale of fermion mass generation, as
denced by the fact that there is no cancellation of the te
that grows with energy for fermions that acquire their ma
via an interaction of dimensiond.4.

We defined the scale of fermion mass generation as
minimum energy at which the fermion mass is generated
a renormalizable interaction. In the standard model the
mion mass is generated by a renormalizable interaction a
energies~above the Higgs boson mass!, so there is no scale
of fermion mass generation.

We also considered extending the standard model
maintaining the same particle content but adding high
dimension interactions. For fermions other than Majora
neutrinos, the lowest-dimension interaction one can add i
dimension six. There is only one dimension-six interact
that affects the fermion mass. To learn of the presence of
interaction requires knowledge not only of the fermion ma
but of its interaction with the Higgs boson. This will be
goal of future experiments once the Higgs boson is disc
ered. We showed that a two-Higgs-doublet model gener
this dimension-six interaction when one of the Higgs do
blets is taken to be heavy and is integrated out.

Finally, we considered models without a Higgs field. T
processf 6 f̄ 6→VLVL cannot be used to derive an upp
bound on the scale of fermion mass generation because
longitudinal weak vector bosons are not weakly coup
above the scale of electroweak symmetry breaking. Ne
theless, one can discuss the scale of fermion mass gener
in specific models. We showed that the relation between
fermion mass and the scale of fermion mass generation
pends on the dimensionality of the interaction responsible
generating the fermion mass.

The most important conclusion of this study is that the
is no upper bound on the scale of~Dirac! fermion mass gen-
eration in the standard model. This is disappointing, beca
an upper bound on this scale would provide a target for
ture accelerators, in the same way that the upper boun
the scale of electroweak symmetry breaking,LEWSB

[A8pv'1 TeV, provides a target for the CERN Large Ha
ron Collider. This does not preclude the possibility that n
physics lies at accessible energies; it only says that~Dirac!
fermion masses do not imply a scale of new physics.
contrast, there is an upper bound on the scale of Majora
neutrino mass generation, Eq.~39!, and although this uppe
bound is beyond the reach of future accelerators, the fact
the upper bounds onLMa j lie near the grand-unification
scale ~see Table I! bolsters our belief in the relevance o
grand unification for physics beyond the standard model
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APPENDIX A

We derive the upper bound on the inelastic 2→n scatter-
ing cross section, Eq.~8!, from the unitarity of theS matrix,
S†S51. Writing S511 iT, one obtains

T†T52 ImT. ~A1!

Take the matrix element of this equation between ident
initial and final two-body states. Insert a complete set
intermediate states into the left-hand side of this equat
separating out explicitly the intermediate state which is id
tical to the initial and final states, to get

E dPS2uTel~2→2!u21(
n
E dPSnuTinel~2→n!u2

52 ImTel~2→2!, ~A2!

where dPSn indicatesn-body phase space and the sum
over all inelastic intermediate states. Define theJth partial-
wave 2→2 elastic amplitude

aJ5
1

32pE21

1

dz PJ~z!Tel~2→2!, ~A3!

wherez is the cosine of the scattering angle, to get

(
J

uaJu21
1

32p (
n
E dPSnuTinel~2→n!u25(

J
Im aJ .

~A4!

Using uaJu25(ReaJ)
21(Im aJ)

2 yields

(
J

~ReaJ!
21

1

32p (
n
E dPSnuTinel~2→n!u2

5(
J

Im aJ~12Im aJ!. ~A5!

If the elastic amplitude is dominated by a single partial wa
(J50 in the case studied in Sec. III!, one may remove the
summation overJ. The right-hand side is then bounde
above by 1/4, yielding

E dPSnuTinel~2→n!u2<8p, ~A6!

for all n. This implies the desired upper bound,

s inel~2→n!<
4p

s
. ~A7!

If there is more than onen-body intermediate state, then th
bound applies to the sum of the cross sections for each
termediate state.

APPENDIX B

We give the high-energy limit of the helicity amplitude
for same-helicity Majorana-neutrino and charged-lep
4-13
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FIG. 9. Feynman diagrams that contribute
the amplitude forln→WL

2ZL and l l →WL
2WL

2 in
unitary gauge.
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scattering into longitudinal weak vector bosons and Hig
bosons, in a theory in which the Majorana-neutrino mas
generated by the dimension-five interaction of Eq.~11!. The
relevant Feynman diagrams fornn scattering are shown in
Figs. 4–6; the diagrams forln and l l scattering are given in
Fig. 9. Our conventions are as follows. We use a chiral ba
for the Dirac matrices and spinors:

gm5S 0 sm

s̄m 0 D , ~B1!

where sm5(1,s i), s̄m5(1,2s i). The spinors for the in-
coming particles are chosen to be eigenstates of helicity
read

u1~p!5S AE2p j1

AE1p j1
D , u2~p!5S AE1p j2

AE2p j2
D ~B2!

v1~p!5S AE1p h1

2AE2p h1D , v2~p!5S AE2p h2

2AE1p h2D
~B3!

where pm5(E,p sinu cosf,p sinu sinf,p cosu) and the
Pauli spinorsj andh are defined as follows:

j15S cos
u

2

eifsin
u

2

D , j25S 2e2 ifsin
u

2

cos
u

2

D , h656j7 .

~B4!

In the amplitudes listed below, the first fermion has mom
tum along the directionu50,f50, and the second along th
directionu5p,f5p.

The zeroth partial-wave amplitudes, in the high-ene
limit, are

a0S 1

A2
n i 6n j 6→WL

1WL
2D ;0 ~B5!

a0S 1

A2
n i 6n j 6→ 1

A2
ZLZLD ;7

mn i
As

16pv2
d i j ~B6!
03300
s
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y

a0S 1

A2
n i 6n j 6→ZLhD ;2

mn i
As

8pA2v2
d i j ~B7!

a0S 1

A2
n i 6n j 6→ 1

A2
hhD ;7

mn i
As

16pv2
d i j ~B8!

a0~ l 2n i 2→WL
2ZL!;

mn i
As

8pA2v2
Uli* ~B9!

a0~ l 2n i 2→WL
2h!;2

mn i
As

8pA2v2
Uli*

~B10!

a0S 1

A2
l 2l 2→ 1

A2
WL

2WL
2D ;

As

8pv2 (
i 51

3

Uli
2mn i

,

~B11!

wherev5(A2GF)21/2 is the weak scale, the indicesi , j de-
note the three neutrino mass eigenstates, the subscrip
the neutrinos and charged leptons indicate helicity61/2, and
the subscript on the partial-wave amplitudes indicatesJ50.
The unitary matrixUli relates the neutrino weak and ma
eigenstates. Each amplitude grows linearly with energy,
is proportional to the Majorana-neutrino mass or a line
combination of masses.

APPENDIX C

In Sec. V we considered a model for Majorana neutri
masses involving a Higgs-doublet,Y51/2 field, f, and a
Higgs-triplet,Y51 field, F i . Here we discuss the scalar po
tential of this model.

The most general potential is@33–37#

V~f,F i !5m2f†f1MT
2F i* F i1l1~f†f!21l2~F i* F i !2

12l3~f†f!~F i* F i !1l4~F iF i !~F j* F j* !

22il5e i jkf†s ifF j* Fk

1~M3fTes ifF i* 1H.c.!. ~C1!
4-14
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SCALE OF FERMION MASS GENERATION PHYSICAL REVIEW D65 033004
Minimizing the potential such that the neutral component
the Higgs doublet acquires a vacuum-expectation va
^f0&5v/A2 and the neutral component of the Higgs tripl
F05(F11 iF2)/A2, acquires a vacuum-expectation val
^F0&5u/A2 yields

m21l1v21~l31l5!u222M3u50, ~C2!

MT
21l2u21~l31l5!v22M3v2/u50. ~C3!

In the limit that the mass of the Higgs-triplet field,MT , is
much greater thanv, the equation above impliesu
'M3v2/MT

2!v. Thus the small value of the vacuum
expectation value of the Higgs-triplet field,u, can be under-
stood as a consequence of the large value of the Higgs-tr
mass,MT @37#.

The mass matrix of the scalar fieldsA2 Ref0, A2 ReF0,
evaluated at the minimum of the potential, is

M 25S 2l1v2 2~l31l5!uv22M3v

2~l31l5!uv22M3v 2l2u21M3v2/u D .

~C4!

The eigenvalues of this matrix are the masses of the phys
scalar bosons, which must be positive. Evaluating the de
minant of this matrix in the limitMT@v@u gives

detM 252l1v2MT
224M3

2v2.0. ~C5!

This equation, along with the upper bound on the Higgs s
coupling,l1&2p @10,11#, implies the bound

M3

MT
&Ap, ~C6!

which was used in Sec. V.

APPENDIX D

The model presented in Sec. VI containing
SU(2)L-triplet, Y521 fermion field FL

ab , and an

TABLE III. SU(3)3SU(2)L3U(1)Y representations of an
anomaly-free model containing anSU(2)L-triplet, Y51 fermion
field (FR

c )ab and anSU(2)L-singlet,Y522 fermion field f R
22 .

SU(3) SU(2)L U(1)Y

(FR
c )ab 1 3 1

f R
22 1 1 22

3̄ 3 1/3

6̄ 3 21/3

1 1 0
3 1 2/3
3 1 21/3
3 1 24/3
6 1 4/3
6 1 1/3
6 1 22/3
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SU(2)L-singlet, Y522 fermion field f R
22 has gauge and

gravitational anomalies, and is therefore not a consis
theory. However, it is straightforward to embed this model
a theory with additional fermion fields such that it is free
all gauge and gravitational anomalies. The fermion cont
of this model is given in Table III, with the right-chiral fer
mion fields (FR

c )ab[Cg0FL*
ab and f R

22 indicated. One can
check explicitly that all anomalies cancel, including the d
creteSU(2)L anomaly@53#.

The model was constructed as follows.24 One is seeking a
chiral, anomaly-freeSU(3)3SU(2)L3U(1)Y theory con-
taining anSU(2)L triplet. The smallest group with chiral
anomaly-free irreducible representations isSO(10), and the
smallest representation containing anSU(2) triplet is the
126, which decomposes into the subgroupSU(4)3SU(2)
3SU(2) as

1265~6,1,1!1~10,3,1!1~10,1,3!1~15,2,2!. ~D1!

The (6,1,1) and (15,2,2) are real representations, and h
are automatically anomaly free. The 10 and10 of SU(4)
decompose into the subgroupSU(3)3U(1) as

1051~21!13~21/3!16~1/3!

1051~1!13̄~1/3!16̄~21/3!

and the 3 ofSU(2) decomposes into the subgroupU(1) as

35~1!1~0!1~21!. ~D2!

Consider the decompositionSO(10)→SU(4)3SU(2)
3SU(2)→SU(3)3SU(2)L3U(1)Y . We identify SU(2)L
with the firstSU(2) andU(1)Y with the diagonal subgroup
of theU(1)’s coming from the decomposition ofSU(4) and
the secondSU(2) @the hypercharge is thus the sum of th
two U(1) charges#. This yields the model in Table III.

APPENDIX E

We derive the upper bound on the scale of Dirac-ferm
mass generation, Eq.~22!, in a model in which the fermion
acquires a mass from the dimension-d interaction of Eq.
~21!. The bound is obtained by applying the inelastic unit
ity condition, Eq.~8! @Eq. ~A7! in Appendix A#, to the scat-
tering processf 6

Q f̄ 6
Q→h•••h and to the related processes

which some of theh’s are replaced byZL’s.
Begin with the dimension-d interaction of Eq.~21!,

L52
c

Md24
F̄L

a•••bfa
•••fb f R

Q1H.c., ~E1!

24See the tables in Ref.@54#. Our convention forU(1) charges is
21/2 of the convention used in that reference. In our convent
Q5T3L1Y, whereQ is the electric charge,Y is the hypercharge,
andT3L561/2 for SU(2)L doublets and 1,0,21 for SU(2)L trip-
lets.
4-15
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where there aren5d23 Higgs fields. Letf5@2 is1,(h
1v1 ix)/A2#, wheres1,x are the Goldstone bosons ass
ciated withW1,Z. Using the Goldstone-boson equivalen
theorem, we letx representZL , and multiply by a factor of
i for each outgoingZL . The interaction ofm neutral Gold-
stone bosons withn2m Higgs bosons is

L52
c

Md24 S 1

A2
D nS n

mD f̄ Qg5
mf Q~h!n2m~ ix!m, ~E2!

where f L
Q[FL

2•••2 . The fermion acquires a mass

m5
c

Md24 S v

A2
D n

, ~E3!

so the Feynman rule for thef̄ Qf Q(h)n2m(x)m vertex can be
written as@2 i (m/vn) i mn!g5

m#, where we have properly ac
counted for them identicalx ’s and then2m identicalh’s.

Consider the scattering process

2→n[
1

A2
~ f 1

Q f̄ 1
Q7 f 2

Q f̄ 2
Q !→ 1

A~n2m!!Am!
~h!n2m~x!m,

~E4!

where the upper~lower! sign corresponds to final states wi
an even~odd! number ofx ’s. The inelastic unitarity bound
Eq. ~8! @Eq. ~A7! in Appendix A, or, equivalently, Eq.~A6!#,
yields

S 1

~n21!! ~n22!! D S 1

~2p!3D n

~2p!4
p

2 S p

2
sD n22

3
1

~n2m!!m!

m2

v2n
2~n! !2s<8p, ~E5!

where the first five factors are fromn-body phase space
Summing over all 2→n processes withn2m h’s andm x ’s
~with m either even or odd!, using

(
m50,2, . . .

n S n
mD5 (

m51,3, . . .

n S n
mD52n21, ~E6!

gives

S 1

~n21!! ~n22!! D
3S 1

~2p!3D n

~2p!4
p

2 S p

2
sD n22 m2

v2n
2n!2n21s<8p.

~E7!

Defining Ld as the energy,As, at which this inequality is
saturated yields Eq.~22!,
03300
- Ld[4pkdS vd23

mf
D 1/(d24)

, ~E8!

where we have usedn5d23 and

kd[SA ~d25!!

2d25~d23!
D 1/(d24)

. ~E9!

APPENDIX F

In Refs. @4,5# a two-Higgs-doublet model was studied
the limit that the mass of the Higgs scalarH is large and one
or more quartic couplings grows with the mass of this Hig
scalar. The limits studied in those papers appear to be
same. Here we show that they are actually different lim
Nevertheless, they are both unphysical because they req
a dimensionless coupling to exceedO(4p).

The Higgs potential used in Ref.@4# is given in Eq.~30!.
In Ref. @5#, a different but physically equivalent parametr
zation of the Higgs potential is used@55#:

V~f1 ,f2!5l18~f1
†f12v1

2/2!21l28~f2
†f22v2

2/2!2

1l38@~f1
†f12v1

2/2!1~f2
†f22v2

2/2!#2

1l48@~f1
†f1!~f2

†f2!2~f1
†f2!~f2

†f1!#

1l58@Re~f1
†f2!2v1v2/2#21l68@ Im~f1

†f2!#2.

~F1!

The coefficients are labeledl i8 to distinguish them from the
coefficientsl i in Eq. ~30!. They are related to the paramete
of the Higgs potential given in Eq.~30! by

l152~l181l38!

l252~l281l38!

l352l381l48

l45
1

2
~l581l68!2l48

l55
1

2
~l582l68!

m11
2 52v1

2~l181l38!2v2
2l38

m22
2 52v2

2~l281l38!2v1
2l38

m12
2 5

1

2
v1v2l58 .

The limit studied in Ref.@5# corresponds to takingmH

large by lettingl58→` , since they are approximately relate
by
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mH
2 '

1

2
l58v2, ~F2!

where v5(A2GF)21/2 is the weak scale. In terms of th
parametrization of Eq.~30!, used in Ref.@4#, this limit cor-
responds tol45l55m12

2 /v1v2→`, as is evident from the
v.

e

D

v.

D

cl.

23
gy

03300
above relations. This differs from the limit studied in Re
@4#, which corresponds tol5→`, with l5sin2b andm12

2 sinb
fixed. In terms of the parametrization of Eq.~F1!, used in
Ref. @5#, this limit corresponds tol5852l68→`, with
l58sin2b fixed.
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