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Unitarity of longitudinal weak vector boson scattering implies an upper bound on the scale of electroweak
symmetry breakingA gywsg=87v~1 TeV. Appelquist and ChanowitPhys. Rev. Lett59, 2405 (1987)]
have derived an analogous upper bound on the scale of fermion mass generation, proportiéia} tdoy
considering the scattering of same-helicity fermions into pairs of longitudinal weak vector bosons in a theory
without a standard Higgs boson. We show that there is no upper bound, beyond that on the scale of electroweak
symmetry breaking, in such a theory. This result is obtained by considering the same process, but with a large
number of longitudinal weak vector bosons in the final state. We further argue that there is no $Batagf
fermion mass generation in the standard model. In contrast, there is an upper bound on the scale of Majorana-
neutrino mass generation, given IAyWajz4m;2/mV. In general, the upper bound on the scale of fermion
mass generation depends on the dimensionality of the interaction responsible for generating the fermion mass.
We explore the scale of fermion mass generation in a variety of excursions from the standard model: models
with fermions in nonstandard representations, a theory with higher-dimension interactions, a two-Higgs-
doublet model, and models without a Higgs boson.

DOI: 10.1103/PhysRevD.65.033004 PACS nuniderl12.15.Ff

[. INTRODUCTION Appelquist and Chanowitz noted that there is no known
model of fermion mass generation that saturates the upper
One of the main aspirations of particle physics this decad®ound set by\ ;. This issue was revisited by Golden, with a

is the elucidation of the mechanism that breaks the elecsimilar conclusion[3]. Attempts to saturate this bound by
troweak gauge symmetny5U(2) X U(1)y, down to the considering a two-Higgs-doublet model were also unsuccess-
gauge symmetry of electromagnetisth(1)ey. An upper  fyl [4,5]. However, we recently showed that a similar upper
bound on the scale of electroweak symmetry breakinghound on the scale of Majorana-neutrino mass generation,
Aewsg=1 TeV, ensures that the physics of this mechanismy . ~y%/m,, can be naturally saturated in explicit models
is within reach of the CERN Large Hadron Collider, and[6]. Given this set of results, one is led to ask whether the
perhaps also the Fermilab TevatrGhsome or all of this  gcaleA, is truly relevant for ordinaryDirac) fermions.

physics is much lighter than 1 TeVAdditional high-energy In this paper we explore the scale of fermion mass gen-
colliders, such as ae"e" linear collider or au™u~ col-  eration in depth. We clarify the interpretation of the scale
lider, may be required to completely elucidate the mechaxn ; and we show why this scale is not relevant for standard-
nism of electroweak symmetry breaking. model fermions. Our principal results, which we elaborate

The upper bound on the scale of electroweak symmetryjpon in the body of the paper, may be summarized as fol-
breaking may be obtained by considering elastic scattering qfys.
longitudinal weak vector bosons. In the absence of an ex- (1) In the standard modélthere isno scale of fermion
plicit model of electroweak symmetry breaking, this ampli- mass generation. The Higgs boson mass is the scale of elec-
tude grows quadratically with energy and violates unitarity atroweak symmetry breaking, but it is not the scale of fermion
an energyAgwsg=\8mv~1 TeV, wherev=(y2Gg) ?  mass generation.
~246 GeV[1]. One interprets this as the scale before which  (2) The upper bound on the scale of fermion mass gen-
the effective field theory of massive weak vector bosonsration depends on the dimensionality of the interaction re-
must be subsumed by a deeper theory that contains a mechgponsible for generating the fermion mass. The upper bound
nism for electroweak symmetry breaking, thereby generatings proportional to (4~ 3/m)¥@~4 whered>4 is the di-
the masses of the weak bosons. mensionality of the interaction. This is less thAn except
Appelquist and Chanowitz observed that a similar argufor d=5, when it is equal to it. Fod<4, there is no upper
ment can be put forward for the scale of fermion mass genpound on the scale of fermion mass generation.
eration [2]. The amplitude for scattering of a fermion-  (3) If electroweak symmetry breaking is not driven via the
antifermion pair of the same helicity into a pair of yacuum-expectation value of a Higgs field, one cannot derive

longitudinal weak vector bosons, in the absence of an exan upper bound on the scale of fermion mass generation by
plicit model of fermion mass generation, is proportional to

m¢+/s/v?, wheremy is the fermion mass angs is the center-

of-mass energy. This amplitude violates unitarity at the scale iThroughout this paper, the standard model refers toSté2),
A¢=~v?/m¢, which varies with each fermion, depending on XU(1)y gauge theory spontaneously broken by the vacuum-
its mass, and is greater tharysgfor all known fermions.  expectation value of a Higgs-doublet field, including all terms of
This scale was interpreted as an upper bound on the scale dimension four and less. We regard terms of dimension greater than
fermion mass generation. four as beyond the standard model.
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considering fermion-antifermion scattering into longitudinal  The scale at which the effective field theory breaks down
weak vector bosons. may be calculated using unitarity. The zeroth-partial-wave
The remainder of the paper is organized as follows. In(J=0) elastic scattering amplitude for longitudinal weak
Sec. Il we revisit the upper bound on the scale of elecvector bosons is proportional 8v?, wheres is the square
troweak symmetry breaking\gwsg, in order to prepare for of the center-of-mass energy ane (12Gg) ~?is the weak
the discussion of the scale of fermion mass generation. lgcale? Applying the elastic unitarity conditio¢Rea8|s1/2
Sec. Il we show that there is no upper bound on the scale ab the J=0, | =0 partial-wave amplitudeyields the energy

fermion mass generation, by considering fermion-at which the effective field theory breaks dofh9):
antifermion scattering into a large number of longitudinal

weak vector bosons. In Sec. IV we show that there is no Apwse=V8mv~1 TeV. 3
scale of fermion mass generation in the standard model with

a Higgs boson. In Sec. V we show that the upper bound ofhis is th_e upper bound on the scale of electroweak symme-
the scale of Majorana-neutrino mass generation is propoilry breaking.

tional to v2/m, and can be naturally saturated in explicit N the standard model at energies above the Higgs boson
models. In Sec. VI we consider an extension of the standarf"ass, the elastic scattering amplitude for longitudinal weak
model with fermions in non-standard representations of th&/ector bosons receives an additional contribution from the
gauge group, such that their masses arise via higheﬁxchange of the HIggS boson. This contribution cancels the
dimension interactions. This allows us to study the uppef€m proportional tos/v?, leaving behind terms that ap-
bound on the scale of fermion mass generation in a mor@roach a constant at high energy. Thus the effective field
general setting. In Sec. VIl we return to the standard modelheory of massive weak vector bosons is subsumed by a
with the usual fermion content, but including higher- deeper theory containing a Higgs boson.

dimension interactions. The two-Higgs-doublet model, in the At energies above the Higgs boson mass, the Lagrangian
limit that one doublet is much heavier than the weak scaledescribing the theory has a linearly realizeslu(2),
provides a specific example of such a theory and allows us t& U(1)y gauge invariance, unlike the effective field theory
recover the results of Ref4] in a simple way. In Sec. VIII  0f massive weak vector bosons that operates below the Higgs
we consider models without a Higgs field. We summarizeboson mass. The Lagrangian of Ef) is replaced by

our conclusions in Sec. IX.
L=(D*$)'D,p—N(p'p—0v%2)?, (4)

Il. SCALE OF ELECTROWEAK SYMMETRY BREAKING where ¢ is the Higgs-doublet field. One may recover the
We begin with the well-established upper bound on theeffective field theory of massive weak vector bosons at en-
scale of electroweak symmetry breaking. Consider arfrgies less than the Higgs boson mass, (B by integrating

SU(2), X U(1)y Yang-Mills gauge theory. The weak vector Qut the Higgs boson fieldy, contained in the Higgs-doublet
bosons are massless due to the gauge symmetry. Now addigld, $=2(0,(h+v)/2).

bare mass for th&V andZ bosons: . The above considerations lead us to the fo_llow_ing defi_ni.—
tion: The scale of electroweak symmetry breaking is the mini-
1 M2 mum energy at which the Lagrangian has a linearly realized
£:M\2,‘\,W+#W;+— W z+*z,, (1) SU(2). XU(1)y gauge invarianceln the standard model,
2 coS' by, the Higgs boson mass is the scale of electroweak symmetry
breaking.

where the relatioM{,=MZcosdy is made explicit. These — Tpe Higgs boson mass is proportionalfaw, where is
terms violate the gauge symmetry, so one should questiofhe Higgs-field self-coupling in Eq4). Since the coupling is
why it is legitimate to add them. The answer is that thesg,oynded to be at most of orderr4 the upper bound on the
terms correspond to the_unitary—gauge expression of an ehiggs boson mass is approximatelgrzo [10]. This is de-
fective Lagrangian in which the gauge symmetry is nonlin-jyeq by requiring that the Higgs boson mass be less than the
early realized: ultraviolet cutoff of the theory. The upper bound on the
»2 Higgs boson mass is parametrically the same as the upper
L= ZTr(D”E)TDMEv (2) bound on the scale of electroweak symmetry breaking,

BS — g i CWAES —i(a’ 3pu
vi/here D E/ J 2t+'| (g{[ﬁ)GGV\det I(gb /Z)EZ ?th and > 2In the standard mode, is the vacuum-expectation value of the
= exp(o-mlv) contains the Goldstone bosonsof the spon- Higgs field. However, there is no Higgs field in the effective field

taneous_ly bquen gauge symmefi8]. This effective field theory of massive weak vector bosons. In the effective theory,
theory is valid below the scale of electroweak symmetryqafined by Eq(2).

breaking, but not above. One may then calculate the scale abyyeak isospiny, is an approximate glob&U(2) symmetry of
which this effective field theory breaks dowNgwsg. The  the effective field theory and is exact in the limit agg=1. This
theory that subsumes this effective field theory and containgymmetry is manifest in this limit by the weak-vector-boson
the physics of electroweak symmetry breaking must occur ahasses, Eq(1), where W*,Z,W~ form an isotriplet. It is also
or below this scale. Thud g\ sgrepresents an upper bound manifest in Eq.(2) in this limit (g’ =0), where ther' form an
on the scale of electroweak symmetry breaking. isotriplet.
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f Vi f Vi f Vi . .
FIG. 1. Feynman diagrams that contribute to
+ + the amplitude forff—V V_ in unitary gauge.
The middle diagram is absent \f=W; the last
_ diagram is absent ¥/=2Z.

f i f o f Vi

Aewss= V8mv, so the Higgs boson mass can saturate this 87rv2

bound within a factor of order unity. A detailed analysis A= ——, (7)
shows that the upper bound on the Higgs boson mass is V3N

approximately 600 GeV11].

. : . hereN.= 3 for quarks and unity for leptons.
If there is no Higgs boson, then the effective field theoryW N .
of massive weak vector bosons simply ceases to provide a However, Eq(7) is not the strongest upper bound that one

valid description of nature abov&g\sg. In particular, the can derive, given the above framework. By considering

theory that describes physics abavgysgwill not contain ~ f=f=—V,---VL, with n particles in the final state, one ob-
longitudinal weak vector bosons as weakly coupled degreeins an upper bound on the scale of fermion mass generation
of freedom. The standard modeind extensions thereof that Proportional to ¢"/m;)"~1. For arbitrarily largen, one
decouple[12] when the mass of the additional physics is Obtains an upper bound arbitrarily close to the weak seale
taken to infinity is the unique theory that contains longitu- for any value ofm;. We first derive this result, then discuss
dinal weak vector bosons as weakly coupled degrees of fredls implications.

dom aboveAgysg [13-15. Since a theory of Goldstone The_easies_t way to derive this result is'to consider the
bosonsy, but no Higgs boson, does not possess linearlyheory in the limit that the weak gauge coupling goes to zero,
realized gauge symmetry, the scale of electroweak Symmet,\ylth v fixed. In this limit the weak vector bosons become

breaking typically saturate& gy sgin such models. We con- Massless, and the longitudinal weak vector bosons are repre-
sider strongly coupled models in Sec. VIII. sented by the Goldstone bosasis, y contained in the field

S=explo-mv), where s*=—(m'Fin?)/\2,x=—7°.
The terms that grow with energy in the amplitudes are inde-
lll. SCALE OF FERMION MASS GENERATION pendent of the weak gauge coupling, so they survive in this

The upper bound on the scale of fermion mass generatiofjhit: Thus the high-energy behavior of amplitudes with lon-

derived by Appelquist and Chanowitz is based on a calculagit_udinal weak vector bosons_ in the final state may be ob-
. = . o tained from the amplitudes with the vector bosons replaced
tion of f.f.—V,V_ (whereV, is a longitudinal weak vec-

. . _ ._with the corresponding Goldstone boso¢times a factor of
tor boson and the subscripts on the fermion and antifermio P g @

g . s - : —1i) for each outgoingincoming longitudinal weak vector
indicate their helicities as shown in Fig. 12]. The fermion rE)OS())r]. This is thge G%Idstone?bosoi equivalence theorem

mass is introduced via a bare mass term in the Lagrangianf1 14,16,17°
. The fermion interacts with the Goldstone bosons via the
L=—mf fr+H.C., (5) interaction of Eq(6). Expanding the field in powers of the
Goldstone-boson fields, we obtain an interaction such as that
shown in Fig. 2, withn external Goldstone bosons. The

where the subscripts indicate chirality. This term violates thq:eynman rule for this interaction is proportional g /o"

gauge symmetry since, in the standard model,and fg i — _ )
transform differently undeSU(2), X U(1)y gauge transfor- "€ amplitude fO“‘tftHW‘_' " IS the_r_efore PFO_PQYUOH?H_
mations. Actually, Eq(5) is the unitary-gauge expression of to mf_@/v”_. The relevant unitarity condition on this inelastic
a Lagrangian in which the gauge symmetry is nonlinearly@mplitude is

realized,

4
Oinel(2—N)< o €)

£=—mfFL2(2)fR+H.c., (6) _
where ai,e(2—n) is the total cross section fof.f.

—qr- - - . This condition is derived in Appendix A. Since

whereF | is an SU(2) -doublet fermion field whose lower the phase space for arparticle final state is proportional to

component isf; . Since the fermion mass is not introduced s"~2 at high energies, one finds that the unitarity condition,

via a Yukawa coupling to the Higgs field, there is no diagramEq. (8), is violated at an energy proportional to

corresponding to the exchange of a Higgs boson inghe (v"/m;)¥("~1) as stated above.

channel, as there would be in the standard model. The result- \ye see thaf f.—V_ -V, with n>2 particles in the

ing amplitude is proportional to the fermion mass and grows;ina| state, leads to a stronger upper bound than (2.

linearly with energy. Applying the inelastic unitarity condi-

tion |a|=<1/2 to theJ=0, | =0, spin-zero, color-singlet am-

plitude for f.f.—V, V_ leads to an upper bound on the “The Goldstone-boson equivalence theorem is actually more gen-

scale of fermion mass generatif® 9] eral, being valid for finite weak gauge coupliftg].
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FIG. 2. Feynman diagram for the interaction of a fermion with FIG. 3. Additional diagram involving the exchange of a Higgs

Goldstone bosons. boson that contributes to the amplitude fdr—V, V. This dia-

. . . gram cancels the terms that grow with energy resulting from the
which is based on the case=2. Thus the Appelquist- giagrams in Fig. 1.

Chanowitz bound is subsumed by this stronger bound, which
is of the order of the weak scale, for n large, indepen-
dently ofm; . Since we already know that there must be new
physics at the weak scale, namely the physics of electroweak
symmetry breaking, the consideration of fermion- This Lagrangian contains a Yukawa interaction of the fer-
antifermion scattering into longitudinal weak vector bosonsmion with the Higgs boson and yields the diagram in Fig. 3.
does not reveal an additional scale. This claim is supportedhis diagram, when added to the diagrams in Fig. 1, cancels
by the fact the upper bound is independent of the fermiorthe term that grows linearly with energy, leaving behind
mass. Thus there is no upper bound on the scale of fermiofgrms that fall like an inverse power of energy at high energy.

L=—y;F ¢fr+H.C. (9)

mass generation. A similar cancellation occurs for all processes of the type
ftfi—>VL' . 'V|_.
IV, STANDARD MODEL It is tempting to identify the scale of fermion mass gen-

o eration with the energy at which the amplitude forf ..

The derivation in the previous section of_.f. —V_ V| ceases to grow with energy, namely the Higgs boson
—V_---V_, with n particles in the final state, tacitly as- mass. However, the Higgs boson mass is the scale of elec-
sumes that the longitudinal weak vector bosons are weaklfroweak symmetry breaking, not the scale of fermion mass
coupled degrees of freedom. As discussed in Sec. II, this igeneration. The reason the amplitude fbrf.—V, V,
not true in general abov&gysg~ 8. In order to justify  grows with energy below the Higgs boson mass is because
the calculation of ..f. — V| ---V, aboveAgysg one must the fermion mass is described in a theory with a nonlinearly
specify the mechanism of electroweak symmetry breakingealized gauge invariance, E(5). Above the Higgs mass,
such that the longitudinal weak vector bosons remain weaklyhe amplitude forf . f.—V, V, falls off with energy and
coupled degrees of freedom above:-ysg The unique unitarity is respected at all energies. Thus, in the standard
theory that contains longitudinal weak vector bosons asnodel there isno scale associated with fermion mass gen-
weakly coupled degrees of freedom to arbitrarily high enereration. We will support this claim by considering extensions
gies is the standard model, with a Higgs bo$d8-15. In  of the standard model in which thei®a well-defined scale
this section we consider the scale of fermion mass generatiogf fermion mass generation. These models are discussed in
in the standard model. Secs. V and VI.

First consider the model envisioned in RE], in which A possible way to circumvent the above arguments is to
the weak-vector-boson masses are generated via an expligitroduce a Higgs doublet field, such that longitudinal weak
model of spontaneous symmetry breaking, but fermions argector bosons are weakly coupled above the weak scale, but
given bare masses. As an example of this, one could imaging forbid the Higgs field from coupling to fermions. This can
the standard Higgs model, but with the fermion Yukawa in-be arranged, for example, by imposing the discrete symmetry
teractions replaced by bare fermion masses, (Bg.How- ¢ — ¢. However, this also has the consequence of forbid-
ever, even in this scenario, the considerations of the previouging a gauge-invariant mass for the fermion, so the scale of
section continue to apply. The calculation df.f. fermion mass generation is moot. One might also consider a
— V-V, with n particles in the final state, continues to model with two Higgs doublets where only one doublet
violate unitarity at the scale of electroweak symmetry break<ouples to fermions. Such a model is discussed in Sec. VII.
ing for largen. Thus unitarity of this process does not reveal In this section we have argued that there is no scale of
an additional scale beyond that of electroweak symmetrjermion mass generation in the standard model. However,
breaking. Yukawa couplings are not asymptotically free in general, so

The theory that is valid above the scale of electroweakhe energy at which a Yukawa coupling becomes strong also
symmetry breaking necessarily has a linearly realized gaugédicates an upper bound on the scale of fermion mass gen-
invariance. Thus the fermion mass, E®), must be de- eration. In the standard model, only the top-quark Yukawa
scribed by a Yukawa interaction coupling is not asymptotically free; all other Yukawa cou-

plings are asymptotically free by virtue of the fermion’s
gauge interactions. The top-quark’s Yukawa coupling is suf-
SThis interaction may be supplemented by additional interactiondiciently large that it eventually overwhelms the gauge inter-
of dimension greater than four that also contribute to the fermioractions, causing it to become strong at high energies. How-
mass. We consider this possibility in Sec. VII. ever, form=175 GeV, the energy at which the top-quark’s
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14 VL 14 VL 14 VL
A FIG. 4. Feynman diagrams that contribute to
+ + the amplitude forvv—V V| in unitary gauge.
The last diagram is absent\f=Z.
v Vi v 1% v \%3

Yukawa coupling becomes strong is many orders of magniwhereC is the charge-conjugation matrix. However, by con-
tude above the Planck scale and is therefore irrelevant. If aideringv.v.—V - -V, with n particles in the final state,
guark of mass in excess of about 225 GeV existed, it®ne finds that unitarity is violated at the weak scalgfor n
Yukawa coupling would become strong below the grandarge, independently of the neutrino mass. This is analogous

unification scalg19-22. to the situation for Dirac fermions discussed in Sec. lll. Thus
there is no additional upper bound, beyond that on the scale
V. MAJORANA NEUTRINOS of electroweak symmetry breaking, implied by considering

Neutri " | in the standard q L/Iajorana neutrinos scattering into longitudinal weak vector
eutnnos are exactly massiess In the standard mo0ey,qq,ng \when the neutrino mass is introduced via a bare mass

However, recent observations of neutrino oscillations indi-term Eq.(10)
;:z_ate that neutrlnol\s/l h_ave a Sm?:(l rr:ﬁss.the lz(issumefz tha_t NEU-|n order to discover a new scale from the consideration of
rino masses are Majorana, unlike the other known fermions .v.—V,V,, one must allow the neutrino to acquire a

which carry an electric charge and are therefore forbidden tthass by coupling to the Higgs boson. This has two conse-

have Majorana masses. If there is n&U(2) quences. First, the longitudinal weak vector bosons remain
X U(1)y-singlet fermion fieldvg in nature, then neutrino \yeaiy coupled up to arbitrarily high energies, justifying the
masses are necessarily Majorana. However, even if such @c lation of the diagrams in Fig. 4. Second, the process
field exists, the gauge symmetry allows the Majorana mass, v.—V,---V,, with n particles in the final state, does
termL= _('VlR_/Z)VEC”RJr H.c. for this field, and there is N0 ot |ead to a stronger bound than the case with2. If the
reason why this mass should be small. Other known fermipering instead acquires its mass some other way, then the
ons acquire a mass only aft&U(2) X U(1)y is broken,  considerations of this section do not apply. This case is
and thus their masses are of the order of the weak scaté,  reated in Sec. VIII.

less. Since a Majorana mass for thgfield is not protected Above the scale of electroweak symmetry breaking, the
by the gauge symmetry, it is natural to assume that it wouldygjorana-neutrino mass must be described by a gauge-
be much greater than the weak sciél8]. So even if thevr  jnvariant term in the Lagrangian. In the Higgs model, the

field exists, it is likely to be heavy, in which case the light |owest-dimension term available is the dimension-five inter-
neutrinos are Majorana fermions. action[24]

We have recently shown that an upper bound on the scale
of Majorana-neutrino mass generation may be derived by c
considering the process.v.—V, V., as shown in Fig. 4 =T T
[6]. This bound is similar to the Appelquist-Chanowitz £ M(L €¢)C(¢ eL)+He, D
bound on Dirac-fermion mass generation, Eq), which is
invalid for standard-model fermions, as we have argued irWhereL=(vL 1) is anSU(2), doublet containing the left-
the previous two sections. Here we reconsider the UPPElhirg| neutrino and charged-lepton fields aeetio,. We

bound on the scale of Majorana-neutrino mass generatiofi| show that the scalé may be interpreted as the scale of
and show that it is valid. As with the case of Dirac ferm'ons’Majorana—neutrino mass generation;is a dimensionless

the upper bound on the scale of Majorana-neutrino mass gefynstant, This term gives rise to a Majorana-heutrino mass

eration was obtained by considering the process’. 1, _¢;,2/\ when the neutral component of the Higgs field
—V_V_ in the absence of any diagrams involving the €X-acquires a vacuum-expectation val(e®) =v/\2. It also
‘%ﬂelds a Yukawa coupling of the Majorana neutrino to the
Higgs boson, thereby generating the additional contribution
1 to the amplitudev.v.—V, V| shown in Fig. 5. However,
£=—§mvaCv,_+ H.c., (100  this diagram does not cancel the terms that grow with
energy’ in contrast to the case of standard-model Dirac fer-
v Vi mions. Thus the upper bound on the scale of Majorana-
neutrino mass generation derived in RE8] is parametri-
__{’__ cally correct, although it did not include the contribution
from the Higgs-exchange diagram in Fig. 5.

neutrino mass was introduced via a bare mass term,

v VL

FIG. 5. Additional diagram involving the exchange of a Higgs ©To be precise, the Higgs-exchange diagmescancel the term
boson that contributes to the amplitude fov—V,V, . This dia-  that grows with energy irv. v.—W, W ; however, it does not
gram cancels the term that grows with energy resulting from thecancel this term inv.v.—2,Z, , nor inl_v_—W_Z orl_I_
diagrams in Fig. 4 iV=W, but not if V=2Z. —W_W_ [6].
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v .--h v ch Vv .h v h )
- . FIG. 6. Feynman diagrams
" W N < + :' that contribute to the amplltyde
N * . for vv—hh. Only the last dia-
” e ” “h v “h v o gram grows with energy.

Since the Higgs boson is present at energies above the The high-energy behavior of the amplitudes that grow
scale of electroweak symmetry breaking, one finds that theraith energy are collected in Appendix B. The strongest upper
is another amplitude that grows with energy,v.—hh, as  bound on the scale of Majorana-neutrino mass generation is
shown in Fig. 6 Only the last diagram contributes to the obtained by applying the inelastic unitarity conditiday|
term that grows with energy, yielding the zeroth-partial-wave< 1/2 to the amplitud®
amplitude(for Vs>m,,m;,)

m, s
°
(13

1 1
~T c\s N:Lm”\/g (12) ao| 5 (Visvie —vi-vi-) = 5 (2, Z +hh) |~ —
167M 167v2’

8mv

1 1
ay| —=v+v+— —=hh

2" R

where the relatiom,=cv?/M was used to obtain the final
expression. This process grows with energy because the ifhis yields the upper bound on the scale of Majorana-
teraction responsible for the last diagram in Fig. 6, @4),  neutrino mass generation
has a coefficient with dimensions of an inverse power of
mass. In contrast, the processes involving longitudinal weak
vector bosons in the final state grow with energy due to the Apaj=
longitudinal polarization vectorg*~ p*/M, (for p°>M,)).

However, there is a sense in whiah processes that grow
with energy are related to the dimension-five interaction ofThis equation supersedes Ed.0) of Ref. [6]. The upper
Eq. (11). This can be made manifest by using the Goldstonebounds onA,; implied by a variety of neutrino-oscillation
boson equivalence theorem, where the Goldstone bosorsperiments are listed in Table I.
s*,x are contained in the Higgs doublet=(—is*,(h+v In Ref.[6] we discussed two models that can saturate the
+iy)/\2). The terms that grow with energy in the upper bound on the scale of Majorana-neutrino mass genera-
Goldstone-boson amplitudes all come from the interaction ofion, Eq. (14): the “seesaw” model and a Higgs-triplet
Eq. (11), such as the last diagram in Fig. 6. It is in this sensemodel. We first review the seesaw modéB,29. In this
that all processes that grow with energy are related to thisnodel, the dimension-five interaction of E41) is replaced
dimension-five interaction. by the renormalizable interactions

47rv?

mV

(14

TABLE I. Neutrino mass-squared differences from a variety of neutrino oscillation experiments and their
interpretations. They imply a lower bound mf,= /Am? on the mass of one of the two participating neutrino
species. The last column lists the corresponding upper bounds,gn, Eq.(14), which is the upper bound
on the scale of Majorana-neutrino mass generation.

Favored
Experiment channéd) Am?(eV?) Awaj (GeV)<
LSND [25] Ve 0.2-2.0 1.7 10"
Atmospherid[26] v, v, (1.6-4)x10°3 1.9x10'
Solar[27]
MSW (LMA) Ve—v, O v, (2-10)x10°° 1.7x10Y
MSW (SMA) ve— anything (3-8)x10°° 4.4x 10"
MSW (LOW) Ve— v, OF V, 7.6x1078 2.8x 108
Vacuum ve— anything 1.410 %0 6.4x 10%°
Just S8 ve— anything 5.5¢10 12 3.2x10%°

"The amplitudes fow. v.—Z h andl_v_—W,_h also grow with energy.
8The same bound may also be obtained by considering the amplitude

m, /s

8v?

1
8|5 M+t 1-vi-)—Zh|~—
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v Wi, Zg £ W, ¢ w;
o H- H-- FIG. 7. Additional diagrams that contribute
--------------- when the Majorana neutrino acquires its mass via
v

a coupling to an SU(2}triplet Higgs field.
v WIT, Zy,

_ 1 . ponent of the Higgs fieldp®= (d1+id?)/\2, acquires a
L=—ypLed" vp— 5 MgrgCrptH.c., (19 small vacuum-expectation valugb®)=u/+2. This model
contains three neutral scalars, one singly charged scalar, and
where v is an SU(2)_ X U(1)y-singlet fermion field. This ~one doubly charged scalar. The term of EXf) gives rise to
field has a Majorana mass term allowed by the gauge synfew interactions that yield the additional Feynman diagrams
metry, so it is natural to expect thiddg>v. The first term in Fig. 7 involving these Higgs scalars in the intermediate
yields a Dirac mass ofny=Yypv/+2. The mass eigenstates state!® The first diagram cancels the terms that grow with
of this model are a light Majorana neutrine=v, of mass energy inv.v.—V,V,, the second diagram cancels the
m,~m3/Mg and a heavy Majorana neutriid~ v of ap-  term that grows with energy ih.»_—W;, Z, , and the third
proximate mas#r. The fact thatm,<mjp provides an at-  diagram cancels the term that grows with energyl im_
tractive explanation fo_r why ne_utrinos are so much Iighter_,W[W[ 1 The processy.v.—hh also ceases to grow
than the other knothlra_c) fermions. At energies above the \yith energy because the last diagram in Fig. 6, which was
mass of the heavy neutrinMg, the Feynman diagrams for oqhonsiple for the term that grows with energy, is eliminated

vov.—Z Z inFigs. 4 and 5 are augmented by diagrams inand re ; : ;
. L . placed by a diagram analogous to the first diagram of
which the heavy neutrino is exchanged in thend u chan- Fig. 7 (with the V, replaced byh). Thus the scale of

nels. These diagrams cancel all terms that grow with er?ergyMajorana-neutrino mass generation is the mass of these

The processv.v.—hh also ceases to grow with energy . .
because the last diagram in Fig. 6, which was responsible fonggs scalars. This is because the theory above the mass of

the term that grows with energy, is not present. It is replacetjj'hese scz_alars, qu@_’ IS renormahzab_le. . .
by diagrams, similar to the first two diagrams in that figure, . '€ Higgs potential of the model is discussed in Appen-
with the exchange oN in the t and u channels. Thus the dix C. The triplet f'zeld_ has a mass term allowed by the gauge
scale of Majorana-neutrino mass generation in the seesafymmetry,L=—Mz®'™*®', so it is natural for it to be much
model is the mass of the heavy neutrifdg. This is be- heavier than the weak scale, in which case the Higgs scalars
cause the Lagrangian aboMes, Eq.(15), is renormalizable.  H°H™,H™~ have masses of approximatelyl;. The
Below My, one integrates out the fielgk and obtains the unique renormalizable term in the potential linear in the trip-
nonrenormalizable interaction of Eqa1l), with c¢/M= let field is £L=—Mgzp eo' p®™* +H.c!? In the limit M
—y%/ZMR. Thus we associate the scélewith Mg, which ~ >v, the vacuum-expectation value of the triplet fielduis
is the scale of Majorana-neutrino mass generation in thi$M3v2/M$, which is much less thanm. Since the Majorana
model, andc=—y%/2. The mass of the heavy neutrino, neutrino mass isn,=2yu, this model provides a natural
Mg~ m%/mv~y%v2/2my, saturategwithin a factor of order  explanation of why neutrino masses are light. Solving for the
unity) the upper bound on the scale of Majorana-neutrinamass of the heavy Higgs scalars in terms of the neutrino
mass generation, E¢14), when the Yukawa coupling takes mass, one obtainsl~2(M3/M+)yyv?/m,. This respects
its largest allowed valueyp=< 87 [30-34. the upper bound on the scale of Majorana-neutrino mass gen-
~ The Higgs-triplet mode[33-37 introduces an SU(2)  eration, Eq(14), sinceM3/M+=<\/m (see Appendix Cand
t_rlplet, Y =1 Higgs field,®', and the renormalizable interac- yu=+27 (the analogue ofp= 87 mentioned in the pre-
tion vious sectioi The bound is saturate@within a factor of
order unity when bothM3;/Mt andy,, attain their maxi-
mum values.

. . . — . Below the mass of the heavy Higgs scalaké;, one
which replaces the dimension-five interaction of Efjl). integrates out the Higgs triplgt fig% and ol;tains the

The usual Higgs-doublet field is also present in the model,,. T . . .
The vacuum-expectation value of the Higgs-triplet field mustd|men3|on five interaction of ~Eq.(11), with c/M

be much less than the weak scale, because the relisitipn

= M§CO§6W, which is sa_tisfied (_experimentally, is obtained if 1Oe imposeC P conservation in this model, in which case one of
the weak bosons acquire their mass dominantly from th@,. \eytral scalars i€ P odd and does not contribute to the ampli-
vacuum-expectation value of an SU(2dloublet, but not a  {,qes.

triplet. The interaction of Eq.(16) generates a small  1ierms that grow with energy are similarly cancelledsiny..
Majorana-neutrino massy, = 2yyu, when the neutral com- .7 h andl_»_—Wh.
12This term is absent in the Majoron mod&#,36], in which the
CP-odd scalar is the Goldstone boson of spontaneously broken
Similarly, all terms that grow with energy are cancelled in lepton number. That model is ruled out by the measurement ot the
l_v_—W_Z_, etc. width.

L=—-yyLTed'CLO'+H.c., (16)

033004-7



F. MALTONI, J. M. NICZYPORUK, AND S. WILLENBROCK PHYSICAL REVIEW D65 033004

. ) i This Lagrangian gives rise to a Dirac mang=cv?/2M for
=2Mgyw/M7. Since we associaté, the scale of Majorana-  he fieldf~~ when the neutral component of the Higgs field
neutrino mass generation, with;, we are left withc acquires a vacuum-expectation vaKu§°>=v/J§.15
=2M3yyu/Mr. _ The Feynman diagrams for the amplitude ~

The study of these two models leads us to the following .\ v/, are similar to those in Figs. 1 and 3. However, the
definition: The scale of fermion mass generation is the mini-g cpannel Higgs diagram of Fig. 3 does not cancel the term

mum energy at which _the3 fermion mass is generated by gat grows with energy, in contrast to the case of standard-
renormalizable interaction® In the standard model the fer- model Dirac fermions. Thus the situation is analogous to the

mion mass is generated by a renormalizable interaction at 8llase of Majorana neutrinos discussed in the previous section.
energiesabove the Higgs boson masso there is no scale  This demonstrates that the results obtained there were not

++
£

of fermion mass generatiofl. peculiar to the Majorana nature of the fermions, but instead
stem from the fact that the fermion mass is generated by a
VI. FERMIONS IN NONSTANDARD REPRESENTATIONS dimension-five interaction.

] ) As in the previous section, one can use the Goldstone-

With the fermion content of the standard model, the onlyhoson equivalence theorem to calculate the high-energy be-
fermions that do not acquire their mass from a renormalizyyior of the amplitude fof ;X" —V,V, (as well as the
able interaction with the Higgs field are Majorana neutrinos,amp"tude with onev, repIaEed Byn). The terms that grow
Eq. (12). In this section we extend the fermion content of the,yiih energy all come from the dimension-five interaction,
standard model to include fermions in nonstandard represelq (17). This interaction yields a Feynman diagram similar
tations of SU(2)_ X U(1)y, such that they acquire Dirac g the |ast diagram in Fig. 6. The resulting amplitude is pro-
masses from nonrenormalizable interactions. This will dems) oo tocys/M~m;slv?, as in the case of Majorana
onstrate that the results obtained for Majorana neutrinos "Eeutrinos. The strongest upper bound on the scale of fermion

the previous section are not peculiar to the Majorana naturg, o5 generation comes from applying the inelastic unitarity
of the fermions. Furthermore, by choosing the fermion rep'condition|ao|s1/2 to the amplitud®

resentation appropriately, we will be able to construct inter-
actions of arbitrary dimension to generate the fermion mass.
This will allow us to study the consequences of unitarity in a ao(
more general setting.

Consider adding to the standard modelSHu(2), -triplet,
Y= -1 fermion field Fﬁﬁ and anSU(2),-singlet,Y=—2 o mf\/§
fermion field f; . As it stands, this model has gauge and 4m\2v?’
gravitational anomalies; however, it is possible to embed this
model in an anomaly free model, as demonstrated explicitlhich is the analogue of Eq13). This yields the upper
in Appendix D. The lowest-dimension interaction that bound on the scale of Dirac-fermion mass generation
couples these fermions to the Higgs fieM=1/2) is

1 1
—(f;’fi*—f:’ff*)aE(ZLZL+hh)

V2

(19

Ao 47v? (20)
C — 5= ’
L=~ SR ¢t +H.C, (17) Vam;

where the subscript indicates that the Dirac fermion mass is
generated by a dimension-five interaction, EL7). This is
the analogue of Eq.14).

One can generalize this analysis to an interaction of arbi-
trary dimension as follows. Consider the standard model
with the addition of arSU(2), (n+ 1)—p|et,F,‘_’“'B, with n
o 1 totally symmetric indices. Also add &U(2), -singlet field
fQ of hypercharge(and electric chargeQ.}” The lowest-

which is the analogue of Eq9), but is of dimension five,
like Eq.(11). TheSU(2), -triplet field can be represented by
a symmetric two-index tensor i8U(2), space,

Ff= : (19

1%0ne may generate Dirac masses for the other fields/h by
introducing the additionabU(2), -singlet fieldsfr (Y=—1) and
f% (Y=0) and constructing the analogues of Etj7), making use

- 1 *
3This renormalizable interaction may be supplemented by interpflé_?ﬁgSamtlzbgslndderﬁa'y also be obtained by considering the am-

actions of dimension greater than four that also contribute to the

. plitude
fermion mass.
Y¥Based on this definition, one could argue that the Higgs boson i(f”f**+f"f**)—>z bl mf\/g
mass is the scale of fermion mass generation in the standard model. % NP - - A \2v?’

As discussed in Secs. Il and IV, we regard the Higgs boson mass as
the scale of electroweak symmetry breaking, but not the scale ofvhich is the analogue of the equation in footnote 8.
fermion mass generation. 1"The hypercharge of the field®*# is Y=Q+n/2. This model
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o h TABLE II. Upper bound on the scale of fermion mass genera-
f ok tion, A4, for Dirac fermions that acquire a mass via the dimension-
>'/. d interaction of Eq.(21).
f A d Ag
4 o)

FIG. 8. Feynman diagram for the interaction of a fermion with

Higgs bosons. 2

5 47 v

. . . . . . J2 my
dimension interaction that generates a Dirac mass is the A | o3| 12

dimensiond interaction 6 _”(U_)

61/4 mf

cC —
L=- FiPge.. . pPFR+H.c., (21
Mmd—4 pd—3\1(d—4)
Qarky| —
d K“( mf)

whered=n+ 3. The fieldsF? " ?=f2 andf3 form a Dirac

mass term of mass;=c(v/y/2)?3/M9~* when the neutral

component of the Higgs field acquires a vacuum-expectation

value (%) =v/2. acquires a mass my=c(v/+2)43/M9"* from the
Applying the unitarity conditionay/=<1/2 to the ampli- dimensiond interaction, the scal¥! is related to the fermion

tude for f3f2—V,V, (most easily calculated using the Mass by

Goldstone-boson equivalence theojegain yields an upper d=371/(d—4)

bound on the scale of fermion mass generation that is pro- cluwv

portional tov?/m;, like Eq. (20). However, the strongest E(E) ] : (23

upper bound on the scale of fermion mass generation comes

not from this process, but instead frofif2—h---h, with  Tpysm respects the upper bound on the scale of fermion

n:d—3 Higgs bosons in the_ final stlate. The relevant Feyninass generation, Eq. (22, provided that

man diagram, shown in Fig. 8, is generated from the;< /2(4:2x,)% 4. This condition corresponds to the con-

dimensiond interaction of Eq(21). The unitarity condition  \ergence of the energy expansion, based on the interaction of

on this inelastic amplitude is given in Ed8), where Eq. (21), for E<M.

ainel(2—n) is the total cross section fcﬁng—m- --h.The

stror?gest bound 9” the scaI(.a .o.f fermion miss generation is VII. HIGHER-DIMENSION INTERACTIONS

obtained by considering the initial staté¥(f%+ f2f°)/2,

and summing over the cross sections obtained by replacing In the standard model, Dirac fermions acquire mass via a

an even(upper sign or odd(lower sign number ofh’s in the dimension-four interaction with the Higgs field, E@®). As

final state withZ,’s (or, via the equivalence theorerg’s).  We argued in Sec. IV, there is no scale of fermion mass

Hence, for a Dirac fermion whose mass is generated via thgeneration in the standard model. However, it is likely that

dimensiond interaction of Eq(21), the upper bound on the the standard model is supplemented by higher-dimensions

scale of fermion mass generation is interactions, whose presence has not yet been revealed to us
due to the insufficient energy and/or accuracy of our experi-
pd-3) U(d-4) ments. In this section we consider the implications of higher-
AdE4WKd( ) , (22 dimension interactions on the scale of Dirac-fermion mass
my generation in the standard model. Our discussion applies to

all models that reduce to the standard model when the mass
wherexy, given in Eq.(E9), is a number of order unity. We of the physics beyond the standard model is taken to infinity
derive this result in Appendix E. The results fay are listed  (decoupling.
in Table 1l for a few values otl. The lowest-dimension interaction available to supplement

The scaleM has the natural interpretation as the energy athe standard model is of dimension five. With the usual fer-

which the effective field theory involving the dimensidn- mion contenino v, field), there is only one such interaction,
interaction of Eq.(21) is subsumed by a deeper theory. Forwhich we already encountered in Ed.1). This interaction
example M corresponds to the mass of the heavy neutrino irgives rise to a Majorana mass for the neutrino, but no other
the seesaw model discussed in Sec. V. Since the fermioiermion masses. Thus we must consider interactions of at

least dimension six in the case of Dirac fermions.

In contrast with interactions of dimension five, there are a
has gauge and gravitational anomalies, but it can be embedded in &ge number of interactions of dimension six available with
anomaly-free model for some value @f as we show explicitly for ~ the field content of the standard modi8B]. However, there
then=2 case in Appendix D. is only one that contributes to fermion masses, given by
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=— %EqufRdﬁm H.c., (24)

which was already considered by Goldg3]. This interac-
tion, in concert with the usual dimension-four interaction o

Eq. (9), yields a Dirac fermion mass, when the neutral com-
ponent of the Higgs field acquires a vacuum-expectatio

value( %) =v/2, of

v C

mi=yi—+— 25
fo\/E M2 (25)

el

PHYSICAL REVIEW D65 033004

where we have used E(R5). If we imagine that the Yukawa

coupling is very small, such that the fermion acquires its
mass dominantly from the dimension-six interaction in Eq.
(24), then the upper bound on the scale of new physics is

¢proportional to 03/my) Y2,

In general, both the dimension-four interaction of E9).

and the dimension-six interaction of E@4) contribute to

"the fermion mass. In keeping with our definition of the scale
of fermion mass generation presented at the end of Sec. V,
we regard Eq(29) as an upper bound on the scale of new
physics, not an upper bound on the scale of fermion mass
generation. Since the fermion mass is generated in part by a
renormalizable interaction at all energiesbove the Higgs

This interaction also affects the coupling of the Higgs bosomoson mass there is no scale of fermion mass generation, as
to the fermion, thereby affecting the contribution of the dia-ijn the case of the standard model.

gram in Fig. 3 toff_—>V|_V,_. The resulting zeroth-partial-
wave amplitude grows with energy like

— C
ao<fifﬁvaL)~WuJ§, (26)

which exceeds the unitarity bound at an energy of order

(27)

where we have used E5). This is an upper bound on the
scale of new physics.

In the standard model, whems;=yv/\2, the upper
bound on the scale of new physics implied by E2j7) is
infinity. For Eq. (27) to imply a scale of new physics, one

would need to know not only that the fermion has a mas
m; , but also that the dimension-four Yukawa coupling of the

fermion, Eq.(9), differs from the standard-model valyg
=2m;/v.*® Let us imagine that this Yukawa coupling is

S

As a specific example of a model with a decoupling limit,
consider a model with two Higgs-doublét=1 fields, with a
discrete symmetryb;— — ¢4 such that onlyp, couples to a
given fermion. The most general scalar potential for this
model may be written ag39]*°

V(d1,¢2)= m§1¢1¢1+ m§2¢£¢2_ miJ ¢I¢2+ ¢;¢1]
1 1
+ §K1(¢I¢1)2+ 57\2(¢;¢2)2
+N3(B1b1)(bob2) + Na( b1b2) (b5eh1)

1
+ SNl (b162) 2+ (83h0)7, (30

where the\;’s are real, and where the discrete symmetry is
softly broken by the term proportional miz. The coupling

of a fermionf to the Higgs fieldy, is given by a dimension-
four Yukawa interaction

very small, such that the fermion acquires its mass domi-

nantly from the dimension-six interaction in E(4). The
upper bound on the scale of new physics implied by Ead)
is then proportional t@?/m; .

Ez_nyL¢2fR+ H.C., (31)

whereF| is anSU(2),-doublet fermion field whose lower

However, as we saw in the previous section, when a fereomponent isf .
mion acquires a mass via a dimension-six interaction, a We study the decoupling limit in a simple way, by inte-
stronger upper bound can be obtained by considering thgrating out one of the Higgs-doublet fields. A convenient

unitarity of the proces$. f.—V,V,V, . One finds

— C
ao(ftft_)VLVLVL)"N’W\/gu (28)

which exceeds the unitarity bound of E&) at an energy of
order

v3

mf_ny/\/E,

L

c (29

way to accomplish this is to first make a rotation in Higgs-
doublet-field space such that the mass matrix is diagonal.
Thus we define fieldd, ¢, given by

o

( ):( $2

where the anglex is chosen to eliminate the off-diagonal
term in the mass matrix, proportional mﬁz.zo The resulting
scalar potential is

P
¢

cosa Sina
. (32
—sina cosa

18This could be inferred by measuring the coupling of the Higgs %We imposeC P symmetry for simplicity. This does not affect the

boson to the fermion and equating it {®y;—3m; /v. Only if y;
=\/2m; /v will this coupling acquire the standard-model value
- mf /U .

generality of our arguments.
2The anglea is standard notation in two-Higgs-doublet models
[39].
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V(g ®)=—u?p p+M?P D+ .. above the scale of electroweak symmetry breaking. In this
5 section we discuss the scale of fermion mass generation in
+ng[(PTh)(pTD)+H.cl, (33)  models without a Higgs field. We will see that the upper

bound on the scale of fermion mass generation depends on
where we have suppressed all quartic interactions excepttae dimensionality of the interaction responsible for generat-
term, linear in®, which is induced by the rotation in Higgs- ing the fermion mass.
field space. This is the unique term lineadm its coefficient At energies aboveé\ gy sg=\87v, the longitudinal weak
Xe is a linear combination of thk;’s in Eq. (30).2 We now  vector bosons cannot generally be treated as weakly coupled
consider the decoupling lim¥?> u? and integrate out the degrees of freedom. As discussed in Sec. Ill, at high energies
Higgs field®. In so doing the Yukawa interaction of E@1) = one may think of the longitudinal weak vector bosons as

becomes, for energies less thisin Goldstone bosons via the Goldstone-boson equivalence theo-
rem. The situation is analogous to QCD, where the pions are
L= —nyOSaEL¢fR—nyinaELq)fR+ H.c. the Goldstone bosons of broken chiral symmetry. Consider

the procese"e” — " 7. At energies less than the scale of
o c_ chiral symmetry breakingd ,sg~1 GeV, one may treat the
= _y;FL¢fR__2|:L¢fR¢T¢+ H.c., (34 pions as point particles, using the effective chiral Lagrang-
M ian. However, above the scale of chiral symmetry breaking,
_ it is invalid to treat the pions as point particiédn the same
where y; =y;cosa and c=—y¢\gSina. This interaction is way, the electroweak model ceases to be a useful description
exactly of the form of the standard model plus theof longitudinal weak vector bosons at energies above the
dimension-six term of Eq(24), whereM is identified with  scale of electroweak symmetry breaking if there is no Higgs
the mass of the heavy Higgs field. field.

In Ref. [4], the decoupling limit of a two-Higgs-doublet Consider fermion mass generation in a theory in which
model was studied in an attempt to find a model in which theslectroweak symmetry breaking is described by technicolor
scale of fermion mass generation saturates the Appelquisf41,42. Since the longitudinal weak vector bosons are not
Chanowitz boundA{~v?/m;. The mass of the heavy neu- weakly coupled above g\sg, One cannot calculate ampli-
tral Higgs scalar was identified as the scale of fermion mastudes involving external longitudinal weak vector bosons
generation. We instead consider it to be a scale of new phygerturbatively. However, one may still discuss the scale of
ics; there is no scale of fermion mass generation since thiermion mass generation. At the weak scale the lowest-
fermion mass arises in part from a renormalizable interacdimension interaction that generates a fermion mass is a
tion. This attempt to saturate the Appelquist-Chanowitzdimension-six interaction between technifermions and ordi-
bound with the mass of the heavy neutral Higgs scalar failedpary fermions, which yields a fermion mass when the tech-
and instead Ref4] identified the upper bound on the mass nifermions condense. If the coefficient of this dimension-six
of this particle to be proportional ta/m;)*?, as one would interaction isc/M?, one obtains
expect if the fermion mass arose from a dimension-six inter- o
action(see Table Il. This occurs because in the limit studied (TT)
in Refs.[4,5] one obtainsy— — /2, in which case/;—0 in m~c—r7 (35)

Eqg. (34). The fermion mass is therefore generated by the

dimension-six interaction of E¢34). Thus we reproduce the — . . .
results of Refs[4,5] in a muchqsil%pler way. P where (TT) is the technifermion condensate. In extended

It was also shown in Refd4,5] that the only limit in technicolor(ET(;), this dimensiqn-six in'geraction is t.he low-
which the mass of the heavy neutral Higgs scafacan energy ap_prOX|m_at|on to the interaction of ferm|ons_and
saturate the Appelquist-Chanowitz bourdy~uv2/m; , is if technifermions via the exchange pf extended-technicolor
some of the quartic couplings are taken to grow with the92uge bosons of maséerc [43,44. Since the theory above
heavy Higgs boson magaondecoupling We show in Ap- MET.C is renormal_lzablt_a, the gcale of fermion mass2 genera-
pendix F that the two models studied in Rd#} and[5] are  ton is Merc. We identifyM with Mgrc, andc with ggrc,
not the same, although they both involve allowing one orthe square of the ETC gauge coupling. Thus one obtains
more quartic couplings to grow with the heavy Higgs massfrom Eq. (35
However, these models are unphysical since the quartic cou- — 12
plings cannot excee®(4). , (TT)

Mgt~ gETCTf : (36)

VIIl. MODELS WITHOUT A HIGGS FIELD

The 'Stand'ard modtéhnd E).(tensmns thereds the unique 22t one were to do so, one would conclude that the cross section
theory in which the longitudinal weak vector bosons can ber rete —mta falls off like 1/s at high energies. In fact, this

treated as weakly coupled degrees of freedom at energi%%ss section falls much more rapidly wigh due the structure of

the pion, which yields a form factor for the photon-pion interaction.
5 The pion form factorF .(s), is believed to fall off like 1¢ at large
2I\ 6= 3SiN 2a{\3+ g+ s+ COSA Ny—2(N3+ N g+ Ns) |~ \ySirPar. s[40]. This yields a cross section that falls off likes/
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In a QCD-like modeKTT)~uv3. Thus Eq.(36) is the ana- sidering the procesk. f.—V, V. , where the subscripts on
logue of the upper bound on the scale of fermion mass gerthe fermions indicate helicity- 1/2, andV, =W, ,Z, denotes
eration obtained in the model of Sec. VI in which a fermionlongitudinal (helicity zerg weak vector bosons. In the ab-
acquires a mass from a dimension-six interactiory ~ sence of the Higgs boson, the amplitude for this process
~(v3/m;) Y2 (see Table I\. grows with energy and violates the unitarity bound at an
The scale of fermion mass generativ, can be in- energy of orderA;~v?/m;. We showed that there exists a
creased for a fixed value afy; if the technifermion conden- stronger bound, proportional ta{/m)¥"~1), obtained by
sate, evaluated &1, is enhanced. Such is the case in walkingconsidering the procest. f.—V, -V, with n>2 par-
technicolor{45-48. This may also be described in terms of ticles in the final state. For large this bound is arbitrarily
the dimensionality of the operator responsible for generatingjose to the upper bound on the scale of electroweak sym-
the fermion mass. The composite operaldr has a large metry breaking, regardless of the fermion mass. Thus there is
anomalous dimensiony,,>1, which is assumed to be con- no upper bound on the scale of fermion mass generation.
stant over the range of energiessE<M. Thus the four- We further argued that the derivation of this bound is
fermion operator responsible for generating the fermion masegalid only if the longitudinal weak vector bosons are weakly
has scaling dimension-6y,, over this range. The fermion coupled at energies above the scale of electroweak symmetry

mass is given by breaking. This requires the existence of a Higgs doublet,
o since the standard Higgs modaind extensions thereof that

(TT) (M) 7m decouple when the mass of the additional physics is taken to
m~c="3 (7) : (37)  infinity) is the unique theory in which the longitudinal weak

bosons remain weakly coupled at high energy. Once the
%:iggs doublet is included in the theory, the upper bound on
the scale of fermion mass generation depends only on the
dimensionality of the operator responsible for generating the
p3 Ym\ V(2= vm) fermion mass. In the standard model, fermions acquire their
(c ) , (39 mass from a dimension-four interaction with the Higgs field,
which has a dimensionless Yukawa coupling. Thus there is
T 323 Thic i no scale of fermion mass generation in the standard model.
where we havﬁ(dlﬁ?(jTU”” > This is the analogue of  \jaigrana neutrinos acquire their mass from an interaction
Ag~(v"Imy) » EQ.(22), for an interaction of scaling ot gimension five, with a coefficient with dimensions of an
dimensiond=6—yy. inverse power of mass. This mass sets the scale for
A particularly interesting case of E(B7) occurs whenthe  \iaiorana-neutrino mass generation. The amplitude for
physics atV is fine tuned such thag,=2 [49-51. Inthis , ,, v/ v grows with energy despite the inclusion of the
case, the enhancemzent of the .technlfermlon condgnsate ®iggs boson, because the neutrino acquires its mass from a
actly cancels the M~ suppression of the four-fermion op- ,nrenormalizable interaction. Applying the unitarity condi-
erator responsible for generating the fermion mass, leadingy, to the amplitude, we derived an upper bound on the

to m;= O(v), independently of the vaIue_cM. Hence, there_ scale of Majorana-neutrino mass generafiéh
is no upper bound on the scale of fermion mass generation,

as also follows from Eq(38). The scaling dimension of the iy

composite operatof T becomes 3 y,,=1 in this case, the Amaj= m (39
same as that of a weakly coupled scalar field. It is natural to Y

associate this fine-tuned I|m.|t with the emergencc_e of a I'gh.t’rhe upper bounds ofty,,; implied by a variety of neutrino-
composite scalar that acquires a small vacuum expectatiogl. - ovion experiments are listed in Table |

valuev<M and that has renormalizable Yukgwa couplings We considered extending the standard model by adding
(unsuppressed bil) to standard-mode| fermion2]. At fermions in nonstandard representations &U(2),

energies less thah’rll, this clqmp?]sne scalar behavrc]es like a U(1)y such that they acquire a Dirac mass from an inter-
Higgs boson, andt e resulting theory re_duces tot _estandagi tion of dimensiond. We showed that the strictest upper

model wherM IS taken to infinity(decoupling. Accordingly, bound on the scale of fermion mass generation is obtained by
the considerations of Secs. IV and VII apply, where we con- , L . , —
cluded that there is no upper bound on the scale of fermio@PPIYing the unitarity condition to the amplitude forf .

mass generation, in agreement with the above argument. — ViV, V‘_’ith n=d—.3 partic'?? in t?/edji?al state. This
upper bound is proportional taf~3/m;)Y@~4). For a fer-

mion that acquires mass via the dimensibmteraction of
Eq. (21), the upper bound on the scale of fermion mass gen-

In this paper we studied the scale of fermion mass generation is listed in Table I.
eration. We critically reexamined an upper bound on this For a fermion that acquires its mass via an interaction of
scale, due to Appelquist and Chanowig, obtained by con- dimension four, the amplitude fof.f.—V V, ceases to
grow with energy above the Higgs boson mass. This reflects
the fact that the Higgs boson mass is the scale of electroweak
23This is the value of the condensate evaluated at the weak scalsymmetry breaking and that the fermion mass is generated

so the scale of fermion mass generation is related to th
fermion mass by

Mg

2

IX. CONCLUSIONS
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via a renormalizable interaction. However, the Higgs boson APPENDIX A
e eTin s SETETBN, 25,27 We cere e upper bounon th nlatic 8 scter-
. i ; . ing cross section, Ed8), from the unitarity of theS matrix,
that grows wnh energy for fgrmlons that acquire their massgfg_ 4 | Writing S=1+iT, one obtains
via an interaction of dimensiod>4.
We defined the scale of fermion mass generation as the T T=21mT. (A1)
minimum energy at which the fermion mass is generated by
a renormalizable interaction. In the standard model the ferTake the matrix element of this equation between identical
mion mass is generated by a renormalizable interaction at alhitial and final two-body states. Insert a complete set of
energiesabove the Higgs boson masso there is no scale intermediate states into the left-hand side of this equation,
of fermion mass generation. separating out explicitly the intermediate state which is iden-
We also considered extending the standard model bfical to the initial and final states, to get
maintaining the same particle content but adding higher-
dimension interactions. For fermions other than Majorana 2 , 2
neutrinos, the lowest-dimension interaction one can add is of dPSITei(2—2)] +; f dP S| Tinei(2—n)|
dimension six. There is only one dimension-six interaction
that affects the fermion mass. To learn of the presence of this =21ImTe(2—2), (A2)

interaction requires knowledge not only of the fermion maSSWheredPS] indicatesn-body phase space and the sum is

but of its interaction with the Higgs boson. This will be a . 7 . e Hbpart
goal of future experiments once the Higgs boson is discovoVer all inelastic intermediate states. Define &epartial-

ered. We showed that a two-Higgs-doublet model generate‘gave 2-2 elastic amplitude

this dimension-six interaction when one of the Higgs dou- 1 (1

blets is taken to be heavy and is integrated out. ajsz' dz Py(2)Te(2—2), (A3)
Finally, we considered models without a Higgs field. The -1

processf.f.—V,V, cannot be used to derive an UPPerhere; is the cosine of the scattering angle, to get
bound on the scale of fermion mass generation because the

longitudinal weak vector bosons are not weakly coupled 1

above the scale of electroweak symmetry breaking. Never- > a2+ Iom > J dPS|Tine(2—n)[2=2 Ima,.

theless, one can discuss the scale of fermion mass generationJ Ton J Ad

in specific models. We showed that the relation between the (A4)

fermion mass and the scale of fermion mass generation dgjsing|a,|2= (Rea,)2+ (Ima,)? yields

pends on the dimensionality of the interaction responsible for

generating the fermion mass. , 1 )
The most important conclusion of this study is that there ; (Reay)™+ oo > j dP§|Tinei(2—n)|

is no upper bound on the scale @irac) fermion mass gen- A

eration in the standard model. This is disappointing, because

an upper bound on this scale would provide a target for fu- :; Imay(1-Imay). (A5)

ture accelerators, in the same way that the upper bound on

the scale of electroweak symmetry breakind.ewss If the elastic amplitude is dominated by a single partial wave
= \8mv~1 TeV, provides a target for the CERN Large Had- (=0 in the case studied in Sec.)lllone may remove the
ron Collider. This does not preClUde the pOSSlblllty that NeWsymmation overJ. The right_hand side is then bounded
physics lies at accessible energies; it only says tbatc)  above by 1/4, yielding

fermion masses do not imply a scale of new physics. In

contrast, there is an upper bound on the scale of Majorana- )

neutrino mass generation, E@®9), and although this upper J dP§|Tinel(2—n)|*<8r, (AB)
bound is beyond the reach of future accelerators, the fact that

the upper bounds om,; lie near the grand-unification for all n. This implies the desired upper bound,

scale (see Table )l bolsters our belief in the relevance of

grand unification for physics beyond the standard model. 4_77

Tinel(2—N)< (A7)
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v Zy, v Zy, v Zy,
w-
v + ¢ + J
¢ OB OB Wi FIG. 9. Feynman diagrams that contribute to
the amplitude fot v—W_Z, andll =W W in
’ Wy ¢ Wi unitary gauge.
v + v
¢ W, ¢ W,
scattering into longitudinal weak vector bosons and Higgs 1 m, /s
bosons, in a theory in which the Majorana-neutrino mass is adl — v vz h|~— 2 S (B7)
. . X . . 0 i=Vjx L 2 Yij
generated by the dimension-five interaction of Edl). The V2 8m\2v
relevant Feynman diagrams fow scattering are shown in
Figs. 4—6; the diagrams fow andll scattering are given in m, s
Fig. 9. Our conventions are as follows. We use a chiral basis a iv- » Hihh s s (B9)
for the Dirac matrices and spinors: N2 2 16mp2
0 ot
yﬂ:(_f‘ 0) (B (I W[ Z,) LU (BY)
g a, Vi — ~—U:
B 0 i L4L 8202 I
where o#=(1,0"), o*=(1,—¢'). The spinors for the in-
coming particles are chosen to be eigenstates of helicity and m, /s
read - Vi *
ag(l _vi_—W_ h)~— -
0 i L 877_\/502 li
- JVE-p §+) - VE+p 5) (52 (B10)
u,(p)= , U_(p)=
CTOWESp & VE-p &
= = a ! I_I W W, s > UZm
— N ~ .
E+p B E_p n_ 0 \/E —1= \/E L YL 87T1)2 =1 Ity
veP=\ —JE-p 5./ v-P=| —JE+p 7 (B11)
B3 wherev =(\2Gg) Y2 is the weak scale, the indicég de-
_ : - . te the three neutrino mass eigenstates, the subscripts on
where p#=(E,psinfcos¢,psindsing,pcosd) and the no . S o
Pauli spinorst and 5 are defined as follows: the neutrinos and charge_d leptons |nd|qate he_l|¢1t_}/2, and
the subscript on the partial-wave amplitudes indicdte®.
0 . 0 The unitary matrixU;; relates the neutrino weak and mass
cos; —e"‘/’sinz eigenstates. Each amplitude grows linearly with energy, and
£, = L= =t Es is proportional to the Majorana-neutrino mass or a linear
igei O 4 b " combination of masses.
e ?sin- cos;
2
(B4) APPENDIX C

In the amplitudes listed below, the first fermion has momen-
tum along the directio=0,¢=0, and the second along the masses involving a Higgs-doubleY,= 1/2 field, ¢, and a

direction 6=, = . _ . _ Higgs-triplet,Y=1 field, ®'. Here we discuss the scalar po-
The zeroth partial-wave amplitudes, in the high-energytential of this model.

limit, are The most general potential [83—37

ao(%vi+v,-+—>wfwg)~o B5  V($P)=mPd gt MID* DIt (1) >+ No(D* D)
+203(TP)(PF D)+ N, (DD (DI* PI*)
( 1 L VME(S i —2ingelR ol pDI* DK
ol [ MEE T R T g2 (66) +(MadTed pd'* +H.c). (CD)

033004-14

In Sec. V we considered a model for Majorana neutrino



SCALE OF FERMION MASS GENERATION PHYSICAL REVIEW [®5 033004

TABLE Il SU(3)xSU(2). xXU(1)y representations of an SU(2) -singlet, Y=—2 fermion fieldfz~ has gauge and
anomaly-free model containing &U(2) -triplet, Y=1 fermion  gravitational anomalies, and is therefore not a consistent

field (FZ)*# and anSU(2),-singlet, Y = —2 fermion fieldfs . theory. However, it is straightforward to embed this model in
a theory with additional fermion fields such that it is free of
SUB3) SU(2). U(L)y all gauge and gravitational anomalies. The fermion content
(FS)# 1 3 1 of this model is given in Table 1lI, with the right-chiral fer-
= 1 1 5 mion fields ER)*#=C»°F{ *# andfg ~ indicated. One can
R .. . . . .
3 3 1/3 check explicitly that all anomalies cancel, including the dis-
— 3 _13 creteSU(2), anomaly[53].
6 The model was constructed as follof<One is seeking a
1 1 0 chiral, anomaly-freeSU(3)xSU(2), XU(1)y theory con-
3 1 2I3 taining anSU(2), triplet. The smallest group with chiral,
3 1 - 13 anomaly-free irreducible representationsSi€(10), and the
3 1 —4/3 smallest representation containing &tJ(2) triplet is the
6 1 413 126, which decomposes into the subgrdsip(4)x SU(2)
6 1 173 X SU(2) as
6 1 —2/3

126=(6,1,1)+(10,3,1)+(10,1,3+(15,2,2. (D1)

Minimizing the potential such that the neutral component ofrpe (6,1,1) and (15,2,2) are real representations, and hence
the Higgs doublet acquires a vacuum-expectation valug,e automatically anomaly free. The 10 ah@l of SU(4)
(¢%)=v/+2 and the neutral component of the Higgs triplet, decompose into the subgro@i(3)x U(1) as
O0=(d+id?)/2, acquires a vacuum-expectation value

(®°)=u/\2 yields 10=1(—1)+3(—1/3)+6(1/3)

m?+ X%+ (A3+N5)u?—2M3u=0, C2 o 3 B(
1%+ (Ng+ \s) 3 (€2 T0=1(1)+3(1/3)+ 6(— 1/3)

2 2 2 20—
M3 AU+ (gt hs)u™— Mav/u=0. €3 and the 3 ofSU(2) decomposes into the subgrougl) as
In the limit that the mass of the Higgs-triplet fiel] 1, is
much greater thanv, the equation above implies 3=(1)+(0)+(-1).
~Mgv?/M2<y. Thus the small value of the vacuum- _ -
expectation value of the Higgs-triplet field, can be under- Consider  the decompositionS (10)— SU(4) X SU(2)

stood as a consequence of the large value of the Higgs-triplef S U(2)—SU(3)xSU(2), X U(1)y. We identify SU(2),
mass M+ [37]. with the firstSU(2) andU(1)y with the diagonal subgroup

The mass matrix of the scalar field@ Re4®, 2 Red?, of theU(1)’s coming from the decomposition &U(4) and
evaluated at the minimum of the potential, is the secondSU(2) [the hypercharge is thus the sum of the

two U(1) charge§ This yields the model in Table IlI.

(D2)

2 2\ p0? 2(N3g+A5)uv —2Mgv
M= 2(N3+A5)uv—2Msv 2\ ,u2+Mgv?/u ) APPENDIX E
(C4) We derive the upper bound on the scale of Dirac-fermion

The eigenvalues of this matrix are the masses of the physic&12SS generation, E¢22), in a model in which the fermion
scalar bosons, which must be positive. Evaluating the dete@cdUires a mass from the dimensidrinteraction of Eq.
minant of this matrix in the limitM>v>u gives _(21). Thg_bound is obtained by applymg_the inelastic unitar-
ity condition, Eq.(8) [Eq. (A7) in Appendix A], to the scat-
detM 2=2x\,v°M3—4M3p2>0. (C5  tering proces$?f?—h---h and to the related processes in
which some of théh's are replaced by, ’s.

This equation, along with the upper bound on the Higgs self-  Begin with the dimensiomt interaction of Eq(21),
coupling,\ ;=<2 [10,1]], implies the bound

Ms L=—
M—TS T, (C6) Md*4

F& Pgpe. .. pPf3+H.c., (ED)

which was used in Sec. V.
%See the tables in Ref54]. Our convention fotJ (1) charges is
APPENDIX D —1/2 of the convention used in that reference. In our convention,
Q=Ts +Y, whereQ is the electric chargeY is the hypercharge,
The model presented in Sec. VI containing anandT, ==1/2 for SU(2), doublets and 1,6;1 for SU(2), trip-
SU(2), -triplet, Y=—1 fermion field F*, and an lets.
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where there arem=d—3 Higgs fields. Let¢p=[—is™,(h

+v+ix)/\2], wheres™, x are the Goldstone bosons asso-
ciated withw™,Z. Using the Goldstone-boson equivalence

theorem, we lejy represenZ, , and multiply by a factor of
i for each outgoingZ, . The interaction ofm neutral Gold-
stone bosons witihn—m Higgs bosons is

1\ n\—
—) (rr;)nyg“fQ<h>“m<ix>m, (E2)

N

wheref2=F?2""2_ The fermion acquires a mass

Cc

L=-aa

C

m= W (E3)

v )
\/5 1
so the Feynman rule for tHE2f(h)"~™(y)™ vertex can be
written as[ —i(m/v")i™n! y2'], where we have properly ac-

counted for tham identical y’s and then—m identicalh’s.
Consider the scattering process

1

V2

2—n=—(f2+ o)

1 -m¢\m
*(n—m)!\/ﬁ(h) 0™,

(E9)

where the uppeflower) sign corresponds to final states with
an even(odd number ofy’s. The inelastic unitarity bound,
Eq. (8) [Eq. (A7) in Appendix A, or, equivalently, EqA6)],
yields

ol ) 25
(=11 (n=2)!/| (27)2 (2m"5

2

m 2
Xm EZ(H!) s=8m,

T n—-2
7

(ES

where the first five factors are frombody phase space.
Summing over all 2-n processes witih—m h's andm x’s
(with m either even or odxl using
n
—on—-1
HE

(E6)

gives

1
((n—l)!(n—Z)!)

n - n-2 -2
) (277)4—<—s> E2n!2“—1ss877.
v

X(
(277)3
(Eﬂ

Defining A4 as the energyy/s, at which this inequality is
saturated yields Eq22),

PHYSICAL REVIEW D65 033004

03\ 1(d-4)
AdE4ﬂ'Kd( my ) ' (E®
where we have used=d—3 and
(d—5)1 1/(d—4)
= —_— . E9
" ( 2d5<d—3)) =9

APPENDIX F

In Refs.[4,5] a two-Higgs-doublet model was studied in
the limit that the mass of the Higgs scaldiis large and one

or more quartic couplings grows with the mass of this Higgs

scalar. The limits studied in those papers appear to be the

same. Here we show that they are actually different limits.

Nevertheless, they are both unphysical because they require

a dimensionless coupling to exceé&{4 ).

The Higgs potential used in Rg#] is given in Eq.(30).

In Ref. [5], a different but physically equivalent parametri-

zation of the Higgs potential is us¢@5]:

V(1 b2)=N1(S161—012)*+ N y($hbo—v5/2)°
+NL(Bld1— 0312+ (phbr—v5/2)]°
FNIL(B1B1) (B362) — ($1db2) (hheb)]

+ N[ RE(B1b2) — 0102217+ Ng[IM(B1 ) 1.
(F1)
The coefficients are labeled to distinguish them from the

coefficients\; in Eq. (30). They are related to the parameters
of the Higgs potential given in Eq30) by

N1=2(N1+Ag)
N2=2(Np+\3)

)\3:2)\é+)\£1

1
Na=5 (AEFAG) A

1 ! li
)\525()\5_)\6)
mf; = —vi(N+N5)—viN;

M5,= —v5(Aj+N5)—viN]

m%zz §U1U2)\é .
The limit studied in Ref[5] corresponds to takingny
large by letting\;— , since they are approximately related
by
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1
—\iv?,

5 (F2

m2~
where v=(2Gg) 2 is the weak scale. In terms of the
parametrization of Eq(30), used in Ref[4], this limit cor-
responds tO\4=)\5=m§2/vlv2—>oc, as is evident from the

PHYSICAL REVIEW [®5 033004

above relations. This differs from the limit studied in Ref.
[4], which corresponds ths— o, with A5sir’g3 andmfzsinﬁ
fixed. In terms of the parametrization of E@1), used in
Ref. [5], this limit corresponds to\i=—\{—o, with
\isir?g fixed.
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