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Identity of the imaginary-time and real-time thermal propagators for scalar bound states
in a one-generation Nambu-Jona-Lasinio model
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By rigorous reanalysis of the results, we have proved that the propagators at finite temperature for scalar
bound states in the one-generation fermion condensate scheme of electroweak symmetry breaking are in fact
identical in the imaginary-time and real-time formalisms. This dismisses the doubt about the possible discrep-
ancy between the two formalisms in this problem. The identity of the derived thermal transformation matrices
of the real-time matrix propagators for scalar bound states without and with a chemical potential and the ones
for the corresponding elementary scalar particles show the similarity of the thermodynamic property between
the two types of particles. Only one former inference is modified; i.e., when the two flavors of fermions have
unequal nonzero masses, the amplitude of the composite Higgs particle will decay instead of grow in time.
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Finite temperature field theory has been extensively re—iQ —p°+is7(p®, e=0., 7(p°=p%p°, )
searched owing to its application to the evolution of early
universe and the phase transition of nuclear mdtter3].  we obtain the propagator fap2 [10]:
However, demonstration of the equivalence of its two
formalisms—the imaginary-time and real-time formalisms F¢g(p)=—i2 m2 /2 (p2—4m3+ie)mZ
[2]—is often a puzzling problem and has been extensively ! T %/ % Q Q
studied[4-7]. In a recent paper on the Nambu-Goldstone
mechanisnj8] of dynamical electroweak symmetry breaking
at finite temperature based on the one-generation fermiognere

X[Kq(p)+Hqo(p)—iSq(p)], )

condensate schemi@ Nambu-—Jona-LasinigNJL) model | o o d4 ,
[9]], we calculated the propagators for scalar bound states So(P)=7(p”)4m dq(R)J’ 2 o(1°—mg)
. . . . (2)
from four-point amputated functions in the two formalisms
which seem to show different imaginary parts in their de- X SL(1+p)2=ma][sinfa(1°, uq) n(1°+p°)
nominatorq 10]. This difference is quite strange considering ) 0. 0 0
that the analytic continuation used in Rgf0] of the Mat- +sir? 619+ p° o) m(—19)1. )

subara frequency in the imaginary-time formalism was mad%q (3) is somehow different from Eq(3.29 in [10], but is

as the way leading to the causal Green functions obtained iﬂ'mlre general since in its derivation thé original fbfﬂl) of
the real-time formalism and that, in the fermion bubble dia—the analytic continuation is always kept; instead, [i],
gram approximation, the calculations of the four-point am- (1% was replaced by)(w|— @, + ;) OF 7(w; o — w;) OF +1
putated functions in a l_\IJL mod_el may be effectively rEduceddepending on the sign of the polpep)“f ina te’r)m. As will be

to the ones of two-point functionghough they have been geen |ater, Eq(3) is more suitable to a proof of the equiva-
subtracted through use .Of the 9ap equalitin12), a”‘?' LIS Jence of the two formalisms. It is indicated that, owing to the
accepted that a two-point function should be equivalent 'nfactorsn(IOerO) and7(—19) in the integrands' (p) in Eq.
the two formalisms. Therefore, we have to reexamine theag) does not contain any singularity Whepn—>0(.3 The zero-

whole calculations in Ref.10]. We eventually find that the ; : "
origin of the above difference is that we did not rigorously;:}ngsrature loop integrilo(p) is complex and can be writ

keep the general form of the analytic continuation and no )
explicitly separate the imaginary part of the zero-temperature Ko(P)=Kqr(p) +iKqi(p)- (4)
loop integral from relevant expressions. In this paper we will y applying the residue theorem of a compl&integral to

use the main results of the propagators for scalar boun . ; ; ;
; . . e first formula in Eq(3.27) in Ref.[10] we can obtain the
states obtained in Refl0], but correct some expressions imaginary part oK o(p):

which were not exact enough and complete a rigorous deri-

vation of the final results in both formalisms. Unless speci- do(R) REl
fied otherwise, the notation will be the same as that in Ref.  Kq;(p)= Q f [8(p°+ w1+ wg+p)
[10]. 167> J wQi@qi+p

First we discuss the neutral scalar bound stbge In the +8( po_le_wQHp)]. (5)

imaginary-time formalism, by means of the analytic continu-
ation of the Matrubara frequendy,, of ¢2, The 6 functions in Eq.(5) ensure thaKq;(p)#0 only if
p?=4mj . From Eq.(3) we can derive

*Electronic address: zhoubr@163bj.com So(P)=Rq(p)sinh(Bp°|/2) +Kqi(p), (6)
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whereRq(p) is given by Eq.(6.5) in Ref. [10]. Hence the Applying Egs.(8) and(10) to Eq.(6.10 in [10], we find that
physical causal propagat(2) for ¢g in the imaginary-time

0
! the physical propagatd]’is(p) for ¢g in the real-time for-
formalism becomes

malism is identical to the one in the imaginary-time formal-
0 0
ism expressed by E@7): i.e., F"RSS(p)zFI‘f’S(p). In addition,
the thermal transformation matr g which diagonalizes the
0
matrix propagatol #s®(p) (b,a=1,2) will be reduced to

r?g<p>=—i§ m2/{[K,+h—ir sinh(5]p°|/2)]p?

— 4[k.+h—ir sinh(B|p°/2)1}, @)

wherek, , h, k, , h are defined by Eq3.32 andr, T by Eq.
(6.3 in Ref.[10]. On the other hand, in the real-time formal-
ism, we must explicitly separate the imaginary parkef(p)
as Eq.(4) and this operation was ignored in REL0]; thus,

MS:

coshfg sinhfg
sinhdg coshfg |

1/2
the correct matrix propagatdF"’gba(p)(b,a:1,2) can be sinhfg=| ———— (12)
obtained from Eq(6.2) in Ref.[10] by the replacements exp(B|p°)—1
k—ke, k—k, HenceMg is identical to the thermal transformation matrix
of the matrix propagator for an elementary neutral scalar

r_ 2 _ _ 0 particle[2]. This fact implies that the scalar bound stdi%:

s—s'=2>m Koi =r CcoS 12), 8 X
% ol So(P)~KailP)] pp12) ® and an elementary neutral scalar particle have the same ther-

modynamic property.

~ ~ ~ By means of Eq.(4) which is different fromKg(p)
r_ 4 _ _ 0 Q
$—S _EQ: Mg Se(p) —Kqi(p)]=r cosh Bp7/2), =Kar(p)—iKqi(p) in Ref.[10] and Eq.(6), the equation to
determine the squared mass@g [Eq. (3.36 in Ref.[10]]
where the relation will be changed into
So(P) = KailP)=Re(p)cosiifpi2) ® 2 2_4(kr+h)(kr+h)+rrsinhz(ﬂ|p°|/2) 15
has been used. Correspondingly, we will have the replacer 43~ Pr= (k, +h)2+r2sint?(8|p/2) (12
ment P=p;
S/R:(pzs—4§)/(p2r—4?)—> To reproduce the mass inequalities 4)@, we must deter-

5 N mine the sign oRg(p) in r andr. In fact, Ro(p) given by
S'IR=(p?s’ —4s')/(p?r—4r)=cosiBp®?2). (10) Eq. (6.5 in Ref.[10] can be rewritten as

dl
Ro(p)= 2w2dQ(R)j 2 8(12=md) 8 (1 +p)?—ma]sin 26(1°, wg)sin 26(1°+ p°, o)

do(R) d?l 8(p°— wqi+ wgi+p) — (P’ — wo 1~ @gi+p)
- 2 0 —(wg— —wq)) (- (13
32 ©QIWQI+p | cosh B(wq+ ug)/2]cosh B(P~— woi— wo)/2]
|
The § functions in first equality of Eq(13) imply that bution in these cases; whefg <wgqp and p°>0 (p°
) 5 <0), the nonzero terms will be the secoftde third one if
Ro(p)=0, when Gsp“<4mg. (14 p2=4m2 and the fourttthe firsy one if p?<0. Considering

Then from the second equality in E(L3), by means of the the signs of these term_s and thadre integralzvariakz)les we
nonzero conditions of the fous functions in the integrand M& reach.thez conclusion th&,(p) <0, if p“>4mg and
that 8(p°— w 1+ @011 p) [5(po+wQ|1le+p)]¢0’ if p2 Ro(p)>0, if p7<0. In view of Eq.(14) we further have
=4m? and p°>0 (p°<0); 8(p°—wqi+ wqi+p) [S(P°

+wg— wg+p)]#0, if pP?<0 andp®<0 (p°>0), we can Ro(p)<0 or =0, if p?=0. (15)
see that whemnwg>wgq:, and p®>0 (p°<0), only the

first and secondthe third and fourthterms are nonzero if By this result together Wit o, (p) >0 andHo(p) >0 [11],
p?=4m3, but they cancel each other after integrating overwe will obtain from Eq.(12) the well-known mass inequali-
the variable cog=I-p/|l||p|; thus there is no nonzero contri- ties
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4(mQ)§“n< mj50$4(mQ)§1aX' (16) tion, the derivedVip is equal toMs given by Eq.(ll); thus,
s the thermal transformation matrix of the matrix propagator
The determination of the sign &, (p) will also change the for the neutral pseudoscalar bound st¢€els also the same

sign of the imaginary pam? of the energy of¢2 when 0 as the one for an elementary neutral scalar particle.
#my#mp#0 obtained in Ref[10]. In fact in the present Last, we dISCL.JSS the propagator for- charged scal_ar bound
casen®=b 0 \psi states¢ . In the imaginary-time formalism, by analytic con-
pi=b(p)/2p; with =
tinuation of the Matsubara frequen€y,,,

- ~ . Blp°
+h)r—(k, + h——
oo g s Qb o pu— PO e (pY), e=0,, (19
(pr)=4 Bl . (17
(k,+h)2+r?sint? we will obtain the physical causal propagator #r (and
2 lppiny ¢°) [10]:

#

If we setMp=amy(a>0), then we may write the factor, in I'? (p)=—il{(p?>+ie)[Kyp(p)+Hyup(P)]1+Eup(p)
Eq. (17), f=(k +h)r—(k+h)r=a?(1-a?)my{[Ky(p) _

+Hy(p)IRo(P)—[Kor(P) +Ho(p)IRu(P)}. In view of —i(p?=M?+ig)S,p(p)}, (20
Egs. (14) and (15) as well as the fact tham,2=mig should

where we express alternatively
obey the mass inequaliti¢$6), if a<1(mp<<my), then we

will have Ry(p)=0 and obtainf = a?(1— a?)m3[K,(p) 1 4dg(R) [ id*
+Hy(p)]Rp(p)<O0. Similarly, if a>1 (mp>my), we will Kup(p)= > 5 > 2
have Rp(p)=0 and get f=—a?(1—a?)m3[Kp(p) p+ie my+mp/ (27)

+Hp(p) ]Ry(p)<0. As a result, opposite to the inference in
Ref.[10], we always havé(p,)<0 and thuspi0<0 for posi-
tive energyp? . This means that when®my#mp#0, ¢2 (1Z=m§+ig)[(I+p)2—m3+ie]
will decay in time instead of the conclusion that its ampli-

tude will grow in time. This modification comes from the Which is actually equal to EC(5£1:3) in Ref.[10] and
fact that in the present calculation we have carefully sepa- _, 2

rated the imaginary pakq;(p) of the zero-temperature loop Sup(P) = ”(po)"’wde(R)J (2m)* 8(12=mg)él(1+p)?
integral from relevant expressions, e.¢Kq(p), Sg(p),

Su(p), etc., and determined the sign Bh(p). The same —m31[sirta(1°, wy) 7(1°+ p°)

correction is also applicable to the caseTef>0. WhenT .

=0, if my#mp, based on the results that p‘z<4mé, it (14 p° o) m(—1°)]. (22)
Kqi(p)=0, and ifp2>4mé, Kqi>0, obtained from Eq(5)

by direct calculation(instead ofKq;<<0 by assumption in
Ref. [10]) and the similar demonstration to the above, we
may conclude that the amplitude dx‘g will also decay in-

(m3—md)l-p—m3(p>+ie)

(21)

which differs from Eq.(5.28 in [10] and is the result of
rigorously keeping the general form of the right-hand side of
Eq. (19). By applying the residue theorem of complék
integral to Eq.(21), we may find the imaginary part of

stead grow in time. Kuo(p):
Next we turn to the neutral pseudoscalar bound sféte
The discussion is almost parallel to the oned. In the P2
imaginary-time formalism, by keeping the original form of KUDi(p)={1— ?MZ}AUD(p), (23
Eq. (1) and using Eq(6) we may change the physical causal (p)“+e
propagator forg% expressed by Eq4.8) in Ref.[10] into
2 Ayp( )—dQ(R) o’ S(p°+ wy + )+ 8(p°
y - % mg upl(P)= 1672 wUIwDI+p[ (P"+ wyi T wpi+p p
IP(p)=—i—— —— ——. (18
(p*+ie)[k,+h—ir sinh(g|p°|/2)] —wy~ wpi+p) |- (24)

In the real-time formalism, we only need in E.13 in
Ref. [10] simply to make the replacemenks—k,, s—s',
ands/r—s'/r=cosh|p°|/2) given by Eq.(8) and will ob-
0
tain the correct matrix propagatbr’r°3(p) (b,a=1,2) for
0
¢g. Then diagonalization of #P°3(p) (b,a=1,2) by the | _ 0N s
thermal transformation matriii , will lead to the physical Sup(P) = Aup(P)=Ruyp(p) 7(p7)sin

0
causal propagatd?i"(p) for qsg which is proved to satisfy

Noting that whenmy=mp=mg we will have Kyp;(p)
=Ayp(p) to be reduced t&q;(p) in Eq. (5. If we explic-
itly write Kyp(p) =Kypr(p) +1Kypi(p) and use the relation

0_
PP ey

2 2 _ . whereRyp(p) was given by Eq(6.21) in Ref.[10] and n
I'7P(p)=T"P(p); i.e., the physical causal propagator 5} =up— Hu=H4- is the chemical potential o, then Eq.
has an identical expression in the two formalisms. In addi{20) will be changed into
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(p)=—i/

—i(p?—=M?+ie)Ryp(p) 7(p°)sin

ry (p2+ie)[Kup:(p)+Hup(p)1+Eun(p)

0__
ﬁ(pz ) _

(26)

In the real-time formalism, it is indicated that in the expres-
sion for the matrix propagatdf? °3(p) (b,a=1,2) given
by Eqg.(6.19 in Ref.[10], the fact thatk ;p(p) is complex
was ignored. Now if taking this into account and noting Eq.
(23), we will obtain correct expression fdf¢ °3(p)(b,a
=1,2) from Eq.(6.19 in Ref.[10] and successive modified
results by means of the replacements

Kup(P)—Kupr(p),

Sup(P)—Sp(P)=Sup(P)—Ayup(p) (27)
and the derived relation
S{p(P)=Rup(p)cosh B(p°—w)/2],  (28)

VS 2up(P) — Rip(P)=Rup(p) n(p®)sint B(p°— w)/2].

It is proved that through diagonalization B °3(p) (b,a
=1,2) by the thermal transformation matiik: the resulting

physical propagatoF"Rr(p) will have an identical form to

I'? (p) in Eq. (26). This shows the equivalence of the two
formalisms once again. In additioll - will have the expres-
sion

coshdc e P*2sinhd.
Mc=| efr2sinh g, coshfc :
1/2
sinhgo—| ) 6(—p°)
¢ eﬂ(pofﬁ)_l eﬁ(*pOJr/J.)_l ' (29)
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Equation(29) shows that the thermal transformation matrix
M of the matrix propagator for the charged scalar bound
state¢~ with chemical potential is identical to the one for

an elementary charged scalar particle with chemical potential
w [noting thatM ¢ in Eq. (29) differs from usual oné2] by

a transpose since our original definition of the matrix
52 (p) (b,a=1,2) is just sd.

In conclusion, by means of keeping general expressions
of the analytic continuations of the Matsubara frequencies in
the imaginary-time formalism and separating explicitly the
imaginary parts of the zero-temperature loop integrals from
the relevant expressions, €.9So(P). So(P), Sup(p).
Sup(p), etc., we have reanalyzed the results in Ref] and
proved the identity of the physical causal propagators for
every scalar bound state in the two formalisms of thermal
field theory in the one-generation NJL model. This dismisses
the doubt about the possible discrepancy between the two
formalisms in this problem. Next the derived identity be-
tween the thermal transformation matrices of the matrix
propagators for scalar bound states and corresponding el-
ementary scalar particles including the case without and with
a chemical potential indicates the similarity of the thermody-
namic properties between these two types of particles, even
though these bound states could be linear combinations of
the scalar or pseudoscalar configurations of Ghéermions
with different flavors. The reanalysis has not changed the
main conclusions of the Nambu-Goldstone mechanism at fi-
nite temperature reached in R¢LO] except that the com-
posite Higgs bosorzbg will decay in time instead of its am-
plitude growing in time when the two flavors of fermions
have unequal nonzero masses.
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