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Identity of the imaginary-time and real-time thermal propagators for scalar bound states
in a one-generation Nambu–Jona-Lasinio model

Bang-Rong Zhou*
Department of Physics, the Graduate School of Chinese Academy of Sciences, Beijing 100039, China

~Received 7 August 2001; published 26 December 2001!

By rigorous reanalysis of the results, we have proved that the propagators at finite temperature for scalar
bound states in the one-generation fermion condensate scheme of electroweak symmetry breaking are in fact
identical in the imaginary-time and real-time formalisms. This dismisses the doubt about the possible discrep-
ancy between the two formalisms in this problem. The identity of the derived thermal transformation matrices
of the real-time matrix propagators for scalar bound states without and with a chemical potential and the ones
for the corresponding elementary scalar particles show the similarity of the thermodynamic property between
the two types of particles. Only one former inference is modified; i.e., when the two flavors of fermions have
unequal nonzero masses, the amplitude of the composite Higgs particle will decay instead of grow in time.
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Finite temperature field theory has been extensively
searched owing to its application to the evolution of ea
universe and the phase transition of nuclear matter@1–3#.
However, demonstration of the equivalence of its tw
formalisms—the imaginary-time and real-time formalism
@2#—is often a puzzling problem and has been extensiv
studied @4–7#. In a recent paper on the Nambu-Goldsto
mechanism@8# of dynamical electroweak symmetry breakin
at finite temperature based on the one-generation ferm
condensate scheme@a Nambu–Jona-Lasinio~NJL! model
@9##, we calculated the propagators for scalar bound st
from four-point amputated functions in the two formalism
which seem to show different imaginary parts in their d
nominators@10#. This difference is quite strange considerin
that the analytic continuation used in Ref.@10# of the Mat-
subara frequency in the imaginary-time formalism was m
as the way leading to the causal Green functions obtaine
the real-time formalism and that, in the fermion bubble d
gram approximation, the calculations of the four-point a
putated functions in a NJL model may be effectively reduc
to the ones of two-point functions~though they have bee
subtracted through use of the gap equation@11,12#!, and it is
accepted that a two-point function should be equivalen
the two formalisms. Therefore, we have to reexamine
whole calculations in Ref.@10#. We eventually find that the
origin of the above difference is that we did not rigorous
keep the general form of the analytic continuation and
explicitly separate the imaginary part of the zero-tempera
loop integral from relevant expressions. In this paper we w
use the main results of the propagators for scalar bo
states obtained in Ref.@10#, but correct some expression
which were not exact enough and complete a rigorous d
vation of the final results in both formalisms. Unless spe
fied otherwise, the notation will be the same as that in R
@10#.

First we discuss the neutral scalar bound statefS
0 . In the

imaginary-time formalism, by means of the analytic contin
ation of the Matrubara frequencyVm of fS

0,
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2 iVm→p01 i«h~p0!, «501 , h~p0!5p0/up0u, ~1!

we obtain the propagator forfS
0 @10#:

G
I

fS
0

~p!52 i(
Q

mQ
2 Y(

Q
~p224mQ

2 1 i«!mQ
2

3@KQ~p!1HQ~p!2 iSQ
I ~p!#, ~2!

where

SQ
I ~p!5h~p0!4p2dQ~R!E d4l

~2p!4
d~ l 22mQ

2 !

3d@~ l 1p!22mQ
2 #@sin2u~ l 0,mQ!h~ l 01p0!

1sin2u~ l 01p0,mQ!h~2 l 0!#. ~3!

Eq. ~3! is somehow different from Eq.~3.29! in @10#, but is
more general since in its derivation the original form~1! of
the analytic continuation is always kept; instead, in@10#,
h(p0) was replaced byh(v l2v l 1p) or h(v l 1p2v l) or 61
depending on the sign of the pole ofp0 in a term. As will be
seen later, Eq.~3! is more suitable to a proof of the equiva
lence of the two formalisms. It is indicated that, owing to t
factorsh( l 01p0) andh(2 l 0) in the integrand,SQ

I (p) in Eq.
~3! does not contain any singularity whenp→0. The zero-
temperature loop integralKQ(p) is complex and can be writ
ten by

KQ~p!5KQr~p!1 iK Qi~p!. ~4!

By applying the residue theorem of a complexl 0 integral to
the first formula in Eq.~3.27! in Ref. @10# we can obtain the
imaginary part ofKQ(p):

KQi~p!5
dQ~R!

16p2 E d3l

vQlvQl1p
@d~p01vQl1vQl1p!

1d~p02vQl2vQl1p!#. ~5!

The d functions in Eq.~5! ensure thatKQi(p)5” 0 only if
p2>4mQ

2 . From Eq.~3! we can derive

SQ
I ~p!5RQ~p!sinh~bup0u/2!1KQi~p!, ~6!
©2001 The American Physical Society01-1
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whereRQ(p) is given by Eq.~6.5! in Ref. @10#. Hence the
physical causal propagator~2! for fS

0 in the imaginary-time
formalism becomes

G
I

fS
0

~p!52 i(
Q

mQ
2 /$@kr1h2 ir sinh~bup0u/2!#p2

24@ k̃r1h̃2 i r̃ sinh~bup0u/2!#%, ~7!

wherekr , h, k̃r , h̃ are defined by Eq.~3.32! andr , r̃ by Eq.
~6.3! in Ref. @10#. On the other hand, in the real-time forma
ism, we must explicitly separate the imaginary part ofKQ(p)
as Eq.~4! and this operation was ignored in Ref.@10#; thus,

the correct matrix propagatorGfS
0ba(p)(b,a51,2) can be

obtained from Eq.~6.2! in Ref. @10# by the replacements

k→kr , k̃→ k̃r ,

s→s85(
Q

mQ
2 @SQ~p!2KQi~p!#5r cosh~bp0/2!, ~8!

s̃→ s̃85(
Q

mQ
4 @SQ~p!2KQi~p!#5 r̃ cosh~bp0/2!,

where the relation

SQ~p!2KQi~p!5RQ~p!cosh~bp0/2! ~9!

has been used. Correspondingly, we will have the repla
ment

S/R5~p2s24s̃!/~p2r 24r̃ !→

S8/R5~p2s824s̃8!/~p2r 24r̃ !5cosh~bp0/2!. ~10!
f
e

i-
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Applying Eqs.~8! and~10! to Eq.~6.10! in @10#, we find that

the physical propagatorG
R

fS
0

(p) for fS
0 in the real-time for-

malism is identical to the one in the imaginary-time forma

ism expressed by Eq.~7!: i.e., G
R

fS
0

(p)5G
I

fS
0

(p). In addition,
the thermal transformation matrixMS which diagonalizes the

matrix propagatorGfS
0ba(p) (b,a51,2) will be reduced to

MS5S coshuS sinhuS

sinhuS coshuSD ,

sinhuS5F 1

exp~bup0u!21
G 1/2

. ~11!

HenceMS is identical to the thermal transformation matr
of the matrix propagator for an elementary neutral sca
particle @2#. This fact implies that the scalar bound statefS

0

and an elementary neutral scalar particle have the same
modynamic property.

By means of Eq.~4! which is different from KQ(p)
5KQr(p)2 iK Qi(p) in Ref. @10# and Eq.~6!, the equation to
determine the squared mass offS

0 @Eq. ~3.36! in Ref. @10##
will be changed into

mf
S
0

2
5pr

254
~ k̃r1h̃!~kr1h!1 r̃ r sinh2~bup0u/2!

~kr1h!21r 2 sinh2~bup0u/2!
U

p5pr

. ~12!

To reproduce the mass inequalities offS
0 , we must deter-

mine the sign ofRQ(p) in r and r̃ . In fact, RQ(p) given by
Eq. ~6.5! in Ref. @10# can be rewritten as
RQ~p!52p2dQ~R!E d4l

~2p!4
d~ l 22mQ

2 !d@~ l 1p!22mQ
2 #sin 2u~ l 0,mQ!sin 2u~ l 01p0,mQ!

5
dQ~R!

32p2 E d3l

vQlvQl1p
H d~p02vQl1vQl1p!2d~p02vQl2vQl1p!

cosh@b~vQl1mQ!/2#cosh@b~p02vQl2mQ!/2#
2~vQl→2vQl!J . ~13!
-

The d functions in first equality of Eq.~13! imply that

RQ~p!50, when 0<p2,4mQ
2 . ~14!

Then from the second equality in Eq.~13!, by means of the
nonzero conditions of the fourd functions in the integrand
that d(p02vQl6vQl1p) @d(p01vQl7vQl1p)#5” 0, if p2

>4m2 and p0.0 (p0,0); d(p02vQl1vQl1p) @d(p0

1vQl2vQl1p)#5” 0, if p2,0 andp0,0 (p0.0), we can
see that whenvQl.vQl1p and p0.0 (p0,0), only the
first and second~the third and fourth! terms are nonzero i
p2>4mQ

2 , but they cancel each other after integrating ov
the variable cosx5lY•pY/ulYuupYu; thus there is no nonzero contr
r

bution in these cases; whenvQl,vQl1p and p0.0 (p0

,0), the nonzero terms will be the second~the third! one if
p2>4mQ

2 and the fourth~the first! one if p2,0. Considering
the signs of these terms and thatlY are integral variables we
may reach the conclusion thatRQ(p),0, if p2>4mQ

2 and
RQ(p).0, if p2,0. In view of Eq.~14! we further have

RQ~p!,0 or 50, if p2>0. ~15!

By this result together withKQr(p).0 andHQ(p).0 @11#,
we will obtain from Eq.~12! the well-known mass inequali
ties
1-2
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4~mQ!min
2 <mf

S
0

2
<4~mQ!max

2 . ~16!

The determination of the sign ofRQ(p) will also change the
sign of the imaginary partpi

0 of the energy offS
0 when 0

ÞmUÞmDÞ0 obtained in Ref.@10#. In fact in the present
casepi

0.b(pr)/2pr
0 with

b~pr !54

@~ k̃r1h̃!r 2~kr1h! r̃ #sinh
bup0u

2

~kr1h!21r 2 sinh2
bup0u

2

U
p25p

r
25m

fS
0

2

. ~17!

If we setMD5amU(a.0), then we may write the factor, in
Eq. ~17!, f 5( k̃r1h̃)r 2(kr1h) r̃ 5a2(12a2)mU

6 $@KUr(p)
1HU(p)#RD(p)2@KDr(p)1HD(p)#RU(p)%. In view of
Eqs. ~14! and ~15! as well as the fact thatpr

25mf
S
0

2
should

obey the mass inequalities~16!, if a,1(mD,mU), then we
will have RU(p)50 and obtainf 5a2(12a2)mU

6 @KUr(p)
1HU(p)#RD(p),0. Similarly, if a.1 (mD.mU), we will
have RD(p)50 and get f 52a2(12a2)mU

6 @KDr(p)
1HD(p)#RU(p),0. As a result, opposite to the inference
Ref. @10#, we always haveb(pr),0 and thuspi

0,0 for posi-
tive energypr

0 . This means that when 05” mUÞmD5” 0, fS
0

will decay in time instead of the conclusion that its amp
tude will grow in time. This modification comes from th
fact that in the present calculation we have carefully se
rated the imaginary partKQi(p) of the zero-temperature loo
integral from relevant expressions, e.g.,KQ(p), SQ(p),
SQ

I (p), etc., and determined the sign ofRQ(p). The same
correction is also applicable to the case ofT→0. WhenT
50, if mU5” mD , based on the results that ifp2,4mQ

2 ,
KQi(p)50, and ifp2>4mQ

2 , KQi.0, obtained from Eq.~5!
by direct calculation~instead ofKQi,0 by assumption in
Ref. @10#! and the similar demonstration to the above,
may conclude that the amplitude offS

0 will also decay in-
stead grow in time.

Next we turn to the neutral pseudoscalar bound statefP
0 .

The discussion is almost parallel to the one offS
0 . In the

imaginary-time formalism, by keeping the original form
Eq. ~1! and using Eq.~6! we may change the physical caus
propagator forfP

0 expressed by Eq.~4.8! in Ref. @10# into

G
I

fP
0

~p!52 i

(
Q

mQ
2

~p21 i«!@kr1h2 ir sinh~bup0u/2!#
. ~18!

In the real-time formalism, we only need in Eq.~6.13! in
Ref. @10# simply to make the replacementsk→kr , s→s8,
ands/r→s8/r 5cosh(bup0u/2) given by Eq.~8! and will ob-

tain the correct matrix propagatorGfP
0 ba(p) (b,a51,2) for

fP
0 . Then diagonalization ofGfP

0 ba(p) (b,a51,2) by the
thermal transformation matrixM P will lead to the physical

causal propagatorG
R

fP
0

(p) for fP
0 which is proved to satisfy

G
R

fP
0

(p)5G
I

fP
0

(p); i.e., the physical causal propagator forfP
0

has an identical expression in the two formalisms. In ad
02770
-

l

i-

tion, the derivedM P is equal toMS given by Eq.~11!; thus,
the thermal transformation matrix of the matrix propaga
for the neutral pseudoscalar bound statefP

0 is also the same
as the one for an elementary neutral scalar particle.

Last, we discuss the propagator for charged scalar bo
statesf7. In the imaginary-time formalism, by analytic con
tinuation of the Matsubara frequencyVm ,

2 iVm1mD2mU→p01 i«h~p0!, «501 , ~19!

we will obtain the physical causal propagator forf2 ~and
f1) @10#:

G I
f2

~p!52 i /$~p21 i«!@KUD~p!1HUD~p!#1EUD~p!

2 i ~p22M̄21 i«!SUD
I ~p!%, ~20!

where we express alternatively

KUD~p!5
1

p21 i«

4dQ~R!

mU
2 1mD

2 E id4l

~2p!4

3
~mD

2 2mU
2 !l •p2mU

2 ~p21 i«!

~ l 22mU
2 1 i«!@~ l 1p!22mD

2 1 i«#
~21!

which is actually equal to Eq.~5.25! in Ref. @10# and

SUD
I ~p!5h~p0!4p2dQ~R!E d4l

~2p!4
d~ l 22mU

2 !d@~ l 1p!2

2mD
2 #@sin2u~ l 0,mU!h~ l 01p0!

1sin2u~ l 01p0,mD!h~2 l 0!#. ~22!

which differs from Eq.~5.28! in @10# and is the result of
rigorously keeping the general form of the right-hand side
Eq. ~19!. By applying the residue theorem of complexl 0

integral to Eq. ~21!, we may find the imaginary part o
KUD(p):

KUDi~p!5F12
p2

~p2!21«2
M̄2GDUD~p!, ~23!

DUD~p!5
dQ~R!

16p2 E d3l

vUlvDl 1p
@d~p01vUl1vDl 1p!1d~p0

2vUl2vDl 1p!#. ~24!

Noting that whenmU5mD5mQ we will have KUDi(p)
5DUD(p) to be reduced toKQi(p) in Eq. ~5!. If we explic-
itly write KUD(p)5KUDr(p)1 iK UDi(p) and use the relation

SUD
I ~p!2DUD~p!5RUD~p!h~p0!sinh

b~p02m!

2
, ~25!

whereRUD(p) was given by Eq.~6.21! in Ref. @10# and m
5mD2mU[mf2 is the chemical potential off2, then Eq.
~20! will be changed into
1-3
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G I
f2

~p!52 i Y H ~p21 i«!@KUDr~p!1HUD~p!#1EUD~p!

2 i ~p22M̄21 i«!RUD~p!h~p0!sinh
b~p02m!

2 J .

~26!

In the real-time formalism, it is indicated that in the expre
sion for the matrix propagatorGf2ba(p) (b,a51,2) given
by Eq. ~6.19! in Ref. @10#, the fact thatKUD(p) is complex
was ignored. Now if taking this into account and noting E
~23!, we will obtain correct expression forGf2ba(p)(b,a
51,2) from Eq.~6.19! in Ref. @10# and successive modifie
results by means of the replacements

KUD~p!→KUDr~p!,

SUD~p!→SUD8 ~p!5SUD~p!2DUD~p! ~27!

and the derived relation

SUD8 ~p!5RUD~p!cosh@b~p02m!/2#, ~28!

AS82UD~p!2RUD
2 ~p!5RUD~p!h~p0!sinh@b~p02m!/2#.

It is proved that through diagonalization ofGf2ba(p) (b,a
51,2) by the thermal transformation matrixMC the resulting

physical propagatorGR
f2

(p) will have an identical form to

G I
f2

(p) in Eq. ~26!. This shows the equivalence of the tw
formalisms once again. In addition,MC will have the expres-
sion

MC5S coshuC e2bm/2 sinhuC

ebm/2 sinhuC coshuC D ,

sinhuC5F u~p0!

eb(p02m)21
1

u~2p0!

eb(2p01m)21
G 1/2

. ~29!

@1#@1# D.A. Kirzhnits and A.D. Linde, Phys. Lett.42B, 471~1972!; S.
Weinberg, Phys. Rev. D7, 2887 ~1973!; 9, 3357 ~1974!; L.
Dolan and R. Jackiw,ibid. 9, 3320 ~1974!; A.D. Linde, Rep.
Prog. Phys.42, 389~1979!; L. Girardello, M.T. Grisaru, and P
Salomonson, Nucl. Phys.B178, 331~1981!; B. deWitt, inFun-
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Equation~29! shows that the thermal transformation matr
MC of the matrix propagator for the charged scalar bou
statef2 with chemical potentialm is identical to the one for
an elementary charged scalar particle with chemical poten
m @noting thatMC in Eq. ~29! differs from usual one@2# by
a transpose since our original definition of the mat
Gf2

ba (p) (b,a51,2) is just so#.
In conclusion, by means of keeping general expressi

of the analytic continuations of the Matsubara frequencie
the imaginary-time formalism and separating explicitly t
imaginary parts of the zero-temperature loop integrals fr
the relevant expressions, e.g.,SQ

I (p), SQ(p), SUD
I (p),

SUD(p), etc., we have reanalyzed the results in Ref.@10# and
proved the identity of the physical causal propagators
every scalar bound state in the two formalisms of therm
field theory in the one-generation NJL model. This dismis
the doubt about the possible discrepancy between the
formalisms in this problem. Next the derived identity b
tween the thermal transformation matrices of the ma
propagators for scalar bound states and corresponding
ementary scalar particles including the case without and w
a chemical potential indicates the similarity of the thermod
namic properties between these two types of particles, e
though these bound states could be linear combination
the scalar or pseudoscalar configurations of theQ fermions
with different flavors. The reanalysis has not changed
main conclusions of the Nambu-Goldstone mechanism a
nite temperature reached in Ref.@10# except that the com-
posite Higgs bosonfS

0 will decay in time instead of its am
plitude growing in time when the two flavors of fermion
have unequal nonzero masses.
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