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In the context of a brane world and including an induced curvature term in the brane action, we obtain the
effective Lagrangian for the Goldstone bosdirsanong associated with the spontaneous breaking of the
translational invariance in the bulk. In addition to the branons, this effective action has Skyrmion-like solitonic
states which can be understood as holes in the brane. We study their main properties such as mass and size, the
Skyrmion-branon interaction, and their possible fermionic quantization. We also consider states where the
brane is wrapped around the extra dimensions and their relation with the brane-Skyrmions. Finally, we extend
our results to higher-dimensional branes, such as those appearing in M theory, where brane-Skyrmions could
also be present.
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[. INTRODUCTION metries in the four-dimensional space-time. Since the GB’s
are associated with the spontaneous breaking of some of
In recent years, the old Kaluza-Kle[d] idea of having those symmetries, the Higgs mechanism must take place.
extra dimensions has received a lot of attention. The maitdowever, the gauge bosdgraviphoton masses produced in
new idea that triggered this revival was the suggestion thathis way are very smalitypically M~ f2/Mp), so that one
our world could be a brane embedded in large extra dimenean advocate the equivalence theorgll] and neglect the
sions, in such a way that the standard fields are confined tgraviphoton masses for practical purposes.
live in the brane, but gravitons are free to move on the whole In addition to the branons, the brane can also support a
bulk D-dimensional spacf2]. Probably the most appealing new set of topological states. These states are defects that
property of this scenario is that the trDedimensional gravi- appear due to the nontrivial homotopies of the vacuum mani-
tational scaleM  could be as small as a few TeV, thus mak- fold [11]. In particular, the authors of this reference consid-
ing possible to have gravitational effects reachable in thered the case of string and monopole defects on the brane,
next generation of colliders. In fact many works have beercorresponding to nontrivial first and second homotopy
devoted recently to the study of the phenomenological impli-groups.
cations of the brane-world scenafi®)]. In addition, some of In this work we are interested in another kind of defect of
the old problems of the standard model can be reconsiderealtopological nature related to the Skyrme mddél. In this
in a completely new waysee[4], and references thergin model, the baryons are understood as topological solitons
Usually one assumes that the nBvdimensions are compac- that appear in the low-energy pion dynamics described by a
tified in someN-dimensional manifold with a typical size chiral Lagrangian, the baryon number being identified with
Rg . At low energies, the relevant degrees of freedom are théhe topological charge. This model has provided a very suc-
standard model fields on the brane and the gravitons with theessful description of baryon propertigg3]. In a recent
corresponding infinite tower of Kaluza-KleifKK) partners  work [14], two of us derived the effective action for the
(see, for instancg5] for a review of Kaluza-Klein theory brane GB or zero-mode branons starting from a Dirac-
and modelsand finally the brane’s own excitations or bran- Nambu-Goto-type action for the brane. This effective action
ons. The interactions of the graviton sector with the standarés formally similar to the chiral Lagrangians used for the
model fields have been analyzed in several pafirdHow-  low-energy description of the chiral dynamigks] or even
ever, the presence in the bulk of the brane in its ground statef the symmetry breaking sector of the standard model in the
typically spontaneously breaks some of the isometries of thetrongly coupled case 6] (see[17] for a review of effective
spaceB. The brane configurations obtained from the brane_agrangians and their applications to the standard model and
ground state by isometry transformations corresponding tgravitation. Therefore it is quite natural to wonder about the
the broken isometries(typically translations produce possibility of having chiral solitonéSkyrmions arising from
equivalent ground states and thus the parameters describitigis effective action. As we will show, the answer is positive.
these transformations can be considered as the Goldstome the following we will study in detail those brane-
boson(GB) fields of the isometry breakin@ero-mode bra- Skyrmions, their physical and geometrical interpretation,
nons. In fact, when the brane tension schle much smaller their main properties, and their relation to wrapped states.
than the fundamental one, the nonzero KK modes decouple The plan of the paper goes as follows. In Sec. Il we in-
from the GB modeg7] and then it is possible to make a troduce our setup and extend our previous results for the
low-energy effective description of the GB dynamii&. brane GB effective action starting from a generalized brane
The phenomenological effects of these branons have beettion that includes an induced scalar curvature term. This
considered if9]. term will be essential in order to determine the brane-
On the other hand, in the standard Kaluza-Klein approachSkyrmion size. In Sec. Ill we use the effective action to
the isometries of the spadare understood as gauge sym- obtain the vacuum equations for the brane. We also consider
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the effects of small deviations from the ideal symmetry TN
breaking pattern, which will give rise to small mass terms for
the branons. In Sec. IV we give the equations for the brane-
Skyrmions and compute their size and mass analytically in
terms of the different parameters. In Sec. V we give more
general numerical results. In Sec. VI we extend our analysis
to higher-dimensional brane-Skyrmions. This kind of solu-
tion could have some relevance for pure M theory beyond
the brane-world scenario. Section VIl is devoted to the inter-
actions between the brane-Skyrmions and branons and pos- Fig. 1. Brane with trivial topology inMs=M,XSt. The
sible fermionic quantization. The effect of the possible bra-ground state of the brane is represented on the left. On the right we
non masses on the brane-Skyrmions is considered in Segiot an excited state.

VIIl. In Sec. IX we consider another set of brane states

(wrapped statgsand study their relation to the brane- space(one of theM, coordinates being the time coordingte
Skyrmions. Finally, in Sec. X we set out the main results ofhoth in its ground statéflat bran@ and in an excited state

our work and the conclusions. (wavy brang.
Since the mechanism responsible for the creation of the
Il. THE EFFECTIVE ACTION FOR THE BRANONS brane is in principle unknown, we will assume that the brane

o ) ) dynamics can be described by an effective action. Thus, we
~ Let us start by fixing the notation and the main assumpyj|| consider the most general expression that is invariant
tions used in the work. We consider that the four-dimensionaj,nqer reparametrizations of the brane coordinates. Following
space-timeM, is embedded in #&-dimensional bulk space the philosophy of the effective Lagrangian technique, we
that for simplicity we will assume to be of the forfp il also organize the action as a series in the number of the
=M,XB, whereB is a givenN-dimensional compact mani- erivatives of the induced metric over a dimensional con-
fold so thatD=4+N. The brane lies alonyyl, and we ne-  stant, which can be identified with the brane tension stale

glect its contribution to the bulk gravitational field. The co- Therefore, up to second order in derivatives we find
ordinates parametrizing the pointshfy will be denoted by

(x*,y™, where the different indices run as=0,1,2,3 and . 4 )

m=1,2, ... N. The bulk spacé is endowed with a met- Sg= JM d*x\g(— 4N 2R+ ), (3
ric tensor that we will denote b, , with signature ¢, 4
-,—, ...,—,—). For simplicity, we will consider the fol-

. ] whered*x /g is the volume element of the brarie the in-
lowing ansatz:

duced curvature, andl an unknown dimensionless param-

~ 0 eter. Notice that the lowest-order term is the usual Dirac-

[ 9uu(¥) Nambu-Goto action that was the only one considerdd 4
MN= ~ : @ The brane-induced first di di
0 ~3L(y) The brane-induced curvature terms were first discussed in

this context in[18].

In the absence of the three-brane, this metric possesses anAS shown in[14], if the brane ground state ¥™(x)
isometry group that we will assume to be of the form = Yo', the presence of the brane will break spontaneously all
G(Mp)=G(M,) X G(B). The presence of the brane sponta-the B isometries, except those that leave the pdgtun-
neously breaks this symmetry down to some subgroughanged. In other words, the gro@(B) is spontaneously
G(M,) X H. Therefore, we can introduce the coset spice broken down to the isotropy groug(Y,) of the pointYq.
=G(Mp)/[G(M,)xH]=G(B)/H, where HCG(B) is a  We will denote by{, the Killing fields associated with the
suitable subgroup of(B). broken generators of the gro@B). The excitations of the
The position of the brane in the bulk can be parametrizedrane alongé,, correspond to the zero modes and they are
asYM=(x*Y™(x)), where we have chosen the bulk coordi- parametrized by the branon fields*(x) which can be un-
nates so that the first four are identified with the space-timglerstood as coordinates on the coset manifotdG(B)/H.
brane coordinates*. We assume the brane to be created at ahus, for a position-independent ground stefg, the action
certain point inB, i.e., Y™(x) =Y{', which corresponds to its of an element ofG(B) on B will map Y, into some other
ground state. The induced metric on the brane in such a stagoint with coordinates
is given by the four-dimensional components of the bulk

space metric, i.e.g,,=9,,=G,,. However, when brane _m . . _ o m N S N 5

excitations(branong are present, the induced metric is given YRO)=YE (Yo, ()= Yo+ k2 £a(Yo) m(x) +O(),

by @
9,,=39,YM3,YNGyN=0,,~d,Y"3,Y"g;,. (2  where we have set the appropriate normalization of the bra-

non fields and Killing fields wittk?=16a/M32 . When theB
For illustrative purposes we show a toy model in Fig. 1space is homogeneous, the isotropy group does not depend
where we have a one-brafgring) in anM3;=M,xS! bulk  on the particular point we choose, i.el(Yy)=H, and it is
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possible to prove thaB is diffeomorphic toK=G(B)/H,  This action has an extremum if
i.e., the number of GB’s equals the dimensionBofin that 1
case we can choose the coordinatesBaandK so that 58 7] =0= 5625\/35””5§M:0:>§’”f9m§;w

v

Re Spy™="f2o0y™ (5) —0vy™ (11)

7=

This is a set of equations whose solutigfi(x) determines

or the shape of the brane in its ground state for a given back-
1 ground metrioﬁw. In addition, the condition for the energy
Ym=f—25'$17“, (6) to be a minimum requires
52L© -4 = ~ -
where \Fgg'uv(ﬁné]mgp,v_nggé)ngmr(gmg,up)

, YY"y 4

U= f RB (7)
<0, (12

is the typical size oK in energy unitgnote that the coordi-

nates ork must be scalar fieldendRg is theB typical scale i.e., the eigenvalues of the above matrix should be negative.

in length units. However, in the general caBds not homo-  This implies that the static action should have a maximum

geneous and the number of GB’s will be smaller than theDashen condition If we focus only on the degrees of free-

dimension ofB. Notice that, sincer® are properly normal- dom associated with the branons, the previous conditions

ized scalar fields, th&/™ coordinates in Eq(6) must be take the form

normal and geodesic in a neighborhoodYgf and, in par-

ticular, they cannot be angular coordinates. 55(0): - fz\/?~,w(9 5. £m—0
According to the previous discussion, we can write the Sw 2K 99" ImBurEa ="
induced metric in terms of branon fields, thus using &.
we get 52L O 1 = -
- = _\/: V(9 Y
- 1 ; sriont a2 99" Iy
g,uv:g,uu__‘lhaﬂ(ﬂ-)a,uﬂa&vw (8) ~ ~ .
f ~ 20" 0r0,00mG,up) EnER<0.  (13)

whereh,,z(7) is defined as In order to obtain the explicit expression for the branon

mass matrix, let us consider the following simple case:
m n

~ J
h =f4g/ (Y — . 9
aﬁ( 77) gmn( (W))ﬁwa (977'3 ( )

(14)

Using these results, it is also possible to obtain the expansion
of the effective action in Eq(3) in terms of branongfor a  \where agairﬁw(x,Yo) corresponds to the ground state met-

detailed discussion see the Appendix ric in the symmetric case. Expanding this metric aroyfid
=Yg in terms of thew® fields and taking into account the
Ill. GROUND STATE OF THE BRANE conditions for the ground state of the brafis), the effec-
AND BRANON MASSES tive action is then given by

In the previous section we assumed that@{éM ) sym- 1 _
metry is exact, which implies that the branon fields are massSg= — f4J d4X\/§+ Ef d*x \/a[g’”haﬁ( w)d, 79,7k
less. However, in a real situation, such symmetry will be Ma M4
only approximately realized. In this case, we will expect the —M2 mmhl+ (15)
branons to acquire a mass that will measure the breaking of
the G(Mp) symmetry. In order to study these effects andyhereg# in the previous equation denotg&”(x,Y,) and
how the symmetry breaking affects the brane ground stat§ne mass matrix can be written as
we will relax the conditions imposed in the previous section
and Iet§w depend, not only on thecoordinates, but also on 5
they coordinates. We can consider for simplicity the lowest- Map=
order action, given by

wlp
k2

1 ~ -~ ~
_gﬂv(ﬁnamgp.v_ngg&ngvaﬁmg#p) >0

(16)

S.(;Pf[ W]:J d4xr O = _f4f d*x Fg(x,Y(x)). which must be positive definite, otherwise the brane ground
Y My state would not be stable. As an example and for further

(10 reference let us consider a background metric given by
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Gu=[1+0(y) 17,0, (7 M[ ] = — f XL (21)

where y,, are normal geodesic coordinates Br=S°, y?
=3.y2, and the functionr(y?) reaches its minimum value
aty=0 with ¢(0)=0. The ground state conditions imply

In general this expression will be divergent because of the
volume contribution coming from the lowest-order term
S 7], which reflects the fact that the brane has infinite

&m extension with finite tension. Therefore, in order to obtain a
I —==0 (18)  finite Skyrmion mass, we will subtract the vacuum energy
k M[O]; i.e.,
and 4 3 2 3
M m]=M[7]-M[0]=f*| d3g—Af2[ d3xgR
gmen M3 M3
M2 = 2&n0mai—2ﬁ>0. (19) —M[0]. (22)

In other words we are defining the mass of the brane-
Since in this case we haw'=ké) we obtain a diagonal Skyrmion as the mass of the brane with the topological de-
mass matrix with all the branons having the same mmass fect minus the mass of the brane in its ground state without
=4¢'(0) and thus the topological defect.

In order to simplify the calculations we will introduce
spherical coordinates on both spadds andK. In M, we
M2ﬂ2m25mn_2:m Sap- (200  denote the coordinategt,r,f,¢} with ¢$e[0,2m), @
e[0,7], andr €[0,). In these coordinates the background
metric is written as

IV. BRANE-SKYRMIONS 1

The branon fields introduced in the previous sections de- _ -1
scribe small oscillations of the brane around its ground state. 9ur=
Thus there is some similarity with the well-known chiral
Lagrangian approach in which a nonlinear sigma model —r?sirf( )

(NLSM) is used to describe the low-energy pion dynamics. ) ) )

Apart from pions, the NLSM can also be used to describdPn the coset manlfo-IdK, the spherical coordinates are de-
other nontrivial states in the hadron spectrum such as baryloted{x .0k bk} With ¢ e[0,2m), Oc[0,7], and xk

ons. For that purpose, the nontrivial topological structure of€ [0:7]. These coordinates are related to the physical branon
the coset spack plays a fundamental role. In fact, baryons fields (local normal geodesic coordinates i by

can be identified with certain topologically nontrivial maps
between thécompactifiedl spaceS® and the coset manifold

K known as Skyrmions.

Let us then consider static branon field configurations
with finite energy, which accordingly vanish at spatial infin-
ity. Thus, we can compactify the spatial dimensionsSto
and the static configurations will be mapping$:S°~K.  The coset metric in spherical coordinates is written as
Therefore, these mappings can be classified according to the
third homotopy group oK, i.e., m3(K). As a consequence, v?
mappings belonging to different nontrivial homotopy classes ho— v2sirP(xx) 25)
cannot be deformed in a continuous fashion from one to the apB Xk '
other. This implies that such configurations cannot evolve in v2sin(xk)sir’( )
time classically into the trivial vacuunr=0 and therefore . . . . .
they are stable states. For the sake of simplicity we will first, In spherical ‘?Oofd'”ates' the brang-_Skyrmlon W'ih wind-
consider the case in which we haie=3 extra dimensions MY Q“mber”w is given by the nontrivial mappingr*:S®
with B=S. In this case, sincB is a homogeneous space, we S defined from

, )

m1="0 SiNYkSiN 6xCOSPhy ,
To=v SiNxkSiNOxSin ¢y , (24

m3=0 SiN YK COSH .

have K~B=S3~SU(2), i.e., the coset manifold is also a b=
three-sphere. Thus, we will haves(S®)=Z and the map- Kew
pings can be classified by an integer number, usually referred 6. =0
to as the winding numben,,. We will also assume in the o
following that the background metric is flat, i.eﬁw xk=F(r), (26)
= 77/.LV N
For static configurations the brane-Skyrmion mass can bwith boundary conditiond=(0)=nym and F(«)=0. This
obtained directly from the effective Lagrangian as map is usually referred to as the hedgehog ansatz. In Fig. 2
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we plot on the right a Skyrmion-like one-brane configurationthe action, they are perfectly valid for performing the calcu-

in M3=M,xS!. In this particular dimension the brane- lations.

Skyrmion is not stabléas shown beloyy but it is still useful In order to calculate the brane-Skyrmion mass from

for illustrative purposes. Eq. (22, we need explicit expressions for the induced
Notice once again that the spherical coordinates we havmetric determinant and the scalar curvature. In these coordi-

introduced onK cannot be directly understood as branonnates the induced metric on the brane is given by the diago-

fields, although, thanks to the reparametrization invariance afial matrix

1
U2 ’ 2
-1+ f—4[F (r]
2
= , 2
Guv —{r2+ lf)—4sin2[F(r)]] @7
UZ
—{r2+ f—45ir72[F(r)] Sirf( 6)
|
and the corresponding square root of the determinant can be 1
easily found to be
—A(r)
g,lLV: _p2 i (30)
2 2
— 52
Jg=\/1+ l;—A[F’(r)]Z re+ I;—4sinz[F(r)])sin(6). p?sirf(6)
(28)  where
214 ’ 2
The induced scalar curvature can be obtained in a simple A(r)= L+ I TIF(r)] , (31)
way by introducing the isotropic coordinatds,p, 6, ¢} p'?
wherep is defined as
and the prime denotes thederivative. The scalar curvature
X for this metric turns out to be
p?=r2+ I;—4sin2[F(r)]. (29

2( 1 ) 2A(1) @)

R=——|1- — )
p2\ " A AX(r)pp’
The metric in these new coordinates is written in the isotro-

pic canonical form Thus we can writeéM 5 as a functional of(r). The actual

mass of the brane-Skyrmion with winding numbwgy, will
be obtained by minimizing the function® { F] (22) in the
space of functions(r) with the appropriate boundary con-

|
|

D i N ditions. This problem is in general rather complicated, but
we can obtain an upper bound to the mass by using a family

T TN of functions parametrized by a single parameter, and mini-

N~ A \_J/ mizing with respect to that parameter. In particular, it is very
useful to work with the Atiyah-Manton ansgft20]

TN T

N~ |~

F(r)=nym (33

1
11— —].
FIG. 2. Brane configurations withy,=1 in M3=M,X S, On Vit Lz/rz)
the right we plot a nonzero-size Skyrmion. On the left a zero-size
one-brane-Skyrmion is shown. It has the same mass and shape By¥ minimizing the brane-Skyrmion mass with respectiLto
the state built out of a wrapped soliton and a topologically trivial we will get M s=min_ Mg(L)=Mg(L,,) for different values
(world) brane. However, the topology is not the safsee Sec. IX of the parametek. Thus, we note the following.

026005-5



J. A. R. CEMBRANOS, A. DOBADO, AND A. L. MAROTO PHYSICAL REVIEW D65 026005

TABLE I. Values of the size,, and masdV g for the brane-Skyrmion witi,,= 1 for different values of
the A parameter.

N Size Mass

A=0 Ln,=0 Mg=272f*R3

A>0 Lm>0 22 fRE<M g<2m2f*R3(1+ 6N /R3f?)
—R3f2/6<\<0 L,=0 Mg=272F4R3(1+ 6N/R3f2)
A<—R2f/6 L,=0 Mg— — oo

For A=0 and using the ansatz above fo=1 we find the parameterdM and N of the two independent four-
that Mg(L) is minimized for L,,=0. The corresponding derivative terms the Skyrmion can be made stable. In our
mass is given by case, the Lagrangian contains an infinite number of terms,

which are responsible for the brane-Skyrmion stability. In
Ms=2m?f*Rg, (34)  fact, truncating the series and keeping only up to fourth-

. _ _ o _ _order terms, one obtains in our case
i.e., the brane-Skyrmion describes a pointlike particle with a

finite mass given by the volume of the extra dimensions (2.4) 4 \/: oo B
times the brane tensioff'. It can be shown(see the next Serrlml=5 " d*™xVghgpd, m ok m
section that this result is general, i.e., it is valid for any 4

parametrization of thd-(r) function and not only for the 1
Atiyah-Manton one. + —‘J d4X\/Ehth7§
For A>0, we find thatMg(L) is minimized for some 4v7 Mg
!_m>0 (nonzero-s_ize _brane—Skyrmi)Jrin this case, assum- X(Maﬂwaﬁuwﬁaﬂmvﬂé
ing that the contribution from the curvature term never be-
comes negative, it is possible to obtain the lower bound on + Nﬁﬂw“&%ﬁ(x,rr’/a“rr‘s), (37

the massM g>Mg(A=0)=272f*R3. An upper bound can B
be obtained by evaluatinl s in the limit L=0, simply as- where we have assumey,,=7,,. The correspondingv
suming that this limit is well defined so that we can commuteandN parameters in the chiral Lagrangian are then given by
the limit with the integration. Thus
— f*Rg R
poacal - - T 39
Ms<Ms(L=0)=27"1R}| 1465 |. (39
Rg This implies that the standamef and y Skyrme-model pa-

These results are general for any monotonic parametrizatiorr‘?‘meters are

and, in particular, we have checked numerically that they

hold for the Atiyah-Manton case. e2:i=L>0 y l
Finally, for A<0, we find again that the minimurivig 16N f4RE 2

corresponds to a zero-size brane-Skyrmion and the corre-

sponding mass is

1M—10 39
+W_Z>’ (39

A
Ry/?

A v
Mg=2m2f*R3| 1+ 6@). (36) %

When A<—R3f2/6 the brane-Skyrmion mass becomes
negative. In this case, using nonmonotonic parametrizations,
we have obtained the result that the mass is actually not .
bounded from below, since the curvature term can be made
arbitrarily large. As a consequence, in this last case only, the
brane-Skyrmion becomes unstable. These results are summa-
rized in Table I.
In Fig. 3 we show the brane-Skyrmion mass as a function
of N andL. We see that the minimum is displaced fram
:O When)\>0. 0 1 2 3 I
Notice that these results differ a lot from those obtained in L
the usual S(2) Skyrme model in quantum chromodynamics
(QCD) chiral dynamics[12,19. That model is based on a FIG. 3. Contour plot of the brane-Skyrmion mass as a function
fourth-order Lagrangian and only within a certain range ofof A\/(R3f2) andL/Rg.
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which means that the Skyrmion would not be stable if one Lm 510
had considered the truncated fourth-order Lagrangian only B
However, for the full Lagrangiawith \>—R3f%/6) we
have seen before that the brane-Skyrmion is stable. This
shows that the infinite number of higher-order terms are re- 4
sponsible for its stability. This, of course, could also be the

case in chiral dynamics. In this case, it is also possible to 3
compute theM andN parameters in the framework of large

N, quantum chromodynamid$or a review, se¢17]) 2

_ Ne o N (40)
19272 384m2’ -1 =0.5 0.5 1

A 4
me

which impliesM/N=—2. It is quite amazing to realize that
this is exactly the same relation found in the branon dynam- FIG. 4. Behavior of the brane-Skyrmion size wii},=1 when
ics. In particular, for MR3f2 is small.

N.=12m2f*Rg, (41  where the value of tha anda parameters are given in Table
Il. In Fig. 4, we show this nonanalytic behavior for the

we have the same answer in the two models, provided wBrane-Skyrmion size withy=1. . .
identify v=F ., F. being the pion decay constant. Thus for  The fact that the brane-Skyrmion acquires a nonzero size
N.=3 one can seR§=1/(2wf2) in such a way that the implies that its mass depends anin a nontrivial way. The
branon dynamics could reproduce the correct low-energ numerical calculation shows that the behavior of the brane-
pion scattering and give rise to a stable nucleon. We really dékyrmlon mass in the mentioned limit is of the form
not have any particular reason to understand why this simple

brane model works so well apart from having the same sym- [nw| ™ +3ny \<0
metry breaking pattern as the low-energy chiral dynamics. Mg 2 Wi Réfz ' '
Af4p3 B
V. NUMERICAL RESULTS 4nfRe | [nwlm 3Nyl b . >0,
2 R3f2 R3f2

As we saw in the previous section, x>0, the brane- (43)
Skyrmion size is different from zero and its mass cannot be

evaluated analytically although some bounds can be ohyhere the values of the parametérsand 8 are shown in
tained. For this reason, it is very interesting to obtain theraple || for different winding numbersy,. The nonanalytic
behavior of the brane-Skyrmion size and mass as a functiogenavior of the derivative with respect Xois plotted in Fig.

of \, at least numerically. As shown in the previous sections for n,,—=1. The numerical calculation for the Atiyah-
the contribution of the curvature term to the brane-Skyrmionyianton ansatz shows that the constamisndb depend on
mass depends ar/(Rgf%). Assuming that this contribution nin a nontrivial way, whereas the exponentsand 8 do

is small we have performed a numerical analysis in the casgot.

B=S® using the Atiyah-Manton parametrization. For the  An interesting conclusion that can be obtained from these

brane-Skyrmion size in the mentioned limit we find the fol- results is that the interaction between two classical brane-
lowing behavior:

1 8M
0 A<0 47rRBf2ﬁs
L «
= N 42 9.42
RB a , )\>O, ( )
Réf2 9.41
. -1 -0.5 0.5 1
TABLE II. Values of the constants, b, «, and g for different 9 39 2104
topological numbers, in the Atiyah-Manton ansatz. ' REf?
9.38
Topological 9.37
chargenyy a B a b 0 36
1 0.81 1.54 0.97 7.1 9.35
2 0.81 1.54 0.59 6.5
3 0.81 1.54 0.44 6.2 FIG. 5. Behavior of the derivative with respect 1o of the

brane-Skyrmion mass withy,=1 for small)\/(Réfz).
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Skyrmions with topological numbeny=1 is repulsive sider the Dirac-Nambu-Goto action for &hbrane:

when their sizes are nonzero, whereas they do not interact if

their sizes are exactly zero. The reason is that one can un- N+l N

derstand any=2 brane-Skyrmion as tway=1 brane- Sg=—f MN+ldtd x\/g. (44)
Skyrmions located at the same point. The energy ofrthe

=2 brane-Skyrmion is bigger than the energy of two braneFOr simplicity, we will takeg,,=7,, andK=SV, so that
Skyrmions withn,,=1 if their sizes are nonzero, whereas it y, C=My, ;¥ SV with D=2N Y1 The generalization of the

is the same if their sizes are exactly zero. hedgehog ansatz td dimensions with winding number,

Itis Important to notice that these numerical results havecan be written more easily in angular coordinates as follows:
been obtained with the hedgehog ansatz and the Atiyah-

Manton parametrization and therefore they are only estima- _ 0.2 0.2
tions of the true mass and size. In fact, it is known from the $=¢. $cel0.2m), ¢el0.2m),
standard Skyrme model for baryons that the hedgehog ansatz

i _ pi i i H—- _
is not appropriate for the description of the deuteron, corre- k= ¢+ 0k € [07], #'e[0m], i=1,...N=2,
sponding to anny=2 Skyrmion, since there is another
toroidal-like configuration with less energy in this topologi- xk=F(), xxelOnwm], re[0x=),

cal sector. ) ] )
where theK subindex refers to coordinates on tkemani-

VI. BRANE-SKYRMIONS IN HIGHER DIMENSIONS fold, the angular coordinates ¢y, do not carry any sub-
index, and the chiral angle functids(r) satisfies the bound-
In this section we will extend our previous discussion toary conditionsF(0)=ny, F()=0. Introducingp again
an arbitrary numbeN of space and compactified dimensions. as in Eq.(29), the induced metric takes the spherically sym-
We will start from the simplest case with=0. Let us con- metric form

—A(r)

- pZSinzaN,Z
quVZ —pzsinzﬂN_ZSinzﬁN_3 (45)

- pZSinzﬁN,z' N Sin201

whereA(r) is given in Eq.(31). For static configurations, the For N=2 it is possible to obtain a nontrivial bound fbts.
Dirac-Nambu-Goto actiofd4) provides the mass functional N=1 is a special case and will be studied later on. Let us
start from the inequality

MS=fN+1f dNX[de(gM)llz— def nM,,)m] (a+b)(N-1/2= (gN-14 pN-1y172 (48)
02 (N=1)12 which is valid forN=2 anda,b>0. We will also use
=fN+lﬂNJ dr| | r?+—sinfF(r)
f (a+b)Y%(c+d)Y2=ac+bd, (49)
v2 12
X 1+f—4F’(f)zl —rN_l), (46)  again fora,b,c,d>0. From Eq.(46) we obtain
. . . v N
where the total solid angle is given by MSZfNHQNJ dr(f_z) IS~ [F(r)]||F'(r)]. (50)
2’7TN/2
QN:I‘(N/Z)' “7) Sincev =Rgf? we have
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N 1N N1 ) For A<0 the brane-Skyrmion collapses, i.e,=0, and the
Ms=f RBQNJ dr|sil=*[F(r)]||F'(r)] mass of the brane-Skyrmion can be computed as inNthe
=3 case to find

M\
=fN+1REQNJ " dulsil 4w, (51) 2 (N+1)/2
0

Ms=2r(NT D) Rng) '
where in the last step we have definge F(r), assuming (57)
that F(r) is a monotonic function.

The total volume of th&" sphere with radiuig is given ~ Finally, for \<—R3f?/N(N—1), the brane-Skyrmion mass
by is negative and not bounded from below.

The previous generalization is appropriate fox3. For

fN“R’g'<1+N(N—1)

Vi(Re) = 2T RN=RNO, 52 the particular cas&l=2 it is possible to show that the cur-
n(Re)= T(N+1)/2) B "BN+1: (52) vature integrates to zero. This is because in this case we have
Accordingly, we can write the bound on the mass as . A'(r) .
T A2y
Ms=Msgn=|nw| N IRE Q1 1=y FN PV (Rg). A?(r)pp
(53

and
This is a lower bound foN=2. On_the otheLh_and, we can A 0 s 59
write the chiral angle asF(r)=F(r/L)=F(r) with r g=A(r)p=(p)"

=r/L, L being the typical brane-Skyrmion size. Thus, theThen, taking into account that-A vanishes whenever’ is
mass functional can be written as 2ero

112 (60)

p— ) S _ oo T A! 7T *
MS=fN“QNLfdﬂ[LzerrRéssz(r)](N 1z d2x R:_f ar [ a0 carion=-""| —o
v, \G] .9, As,zgr(p) &,
i RZ[dF\°
L2\ dr Therefore we can conclude that the two-brane-Skyrmion
is always pointlike. This can be understood by realizing that
Taking the limitL— 0 in the above integral, we find that it is in two dimensions the scalar curvature integral is related to

well defined andM s— Mg, i.e., zero-size brane-Skyrmions the Euler number of the surface, which is a topological in-
saturate the bound. Therefore the Skyrmion masdlis  variant and therefore size independent, i.e., unable to give

—(Lr_)'“]. (54)

=Mg,and the Skyrmion is pointlikel(,=0) for N=2. rise to a definite size for the brane-Skyrmion.
In the caseN=1, the inequalities above cannot be used

and the only bound is the trivial one, i.&45=0. It is pos- VIl. INTERACTION LAGRANGIAN

sible to show from Eq(54) that in this case the bound is AND FERMIONIC QUANTIZATION

saturated in the opposite limit—o. Accordingly, one- i . ) ) )
brane-Skyrmions in one extra dimension would be massless In this section we will study the interaction between the

and nonlocalized. brane-Skyrmions and the branons. For simplicity we will
Let us consider now the effect of the brane-induced curconsider only the caskl;=M ,x S* with E;W: 7, SO that
vatureR term, i.e., A #0. This curvature is given by K=SU(2). Then we can follow the well-known steps for

guantization of the standard chiral-dynamics Skyrn{ib8.
1 A'(r) It is possible to split the isometry group as G=SU(2),
p? N A(r)) * A(r)pp’ - (59 XSU(2)y and H corresponds to the isospin group
SU(2), +r. The parametrization of the coset is usually done
Following the same steps as in tNe=3 case, we obtain the in terms of an SU(2) matrixJ(x) and the Skyrmion is writ-
following results. Fom e (0) andny=1 we haveL,,>0 tenas
and the mass of the brane-Skyrmion is bounded in the range

(N-2)

R=—(N-1)

U(x)=exdiF (r)x272]=cosF(r) +i rXsinF(r)
2 r(N+1)/2

N+1pN
F(NTD2) Re=Ms 2
=+ \/1- —+irsinF(r), (61)
o 7 (N+1)/2 v

<2————fN*IRN
I'(N+1)/2) where 7 are the S(2) generators. From this expression we

can identify the Goldstone bosons fields'=vsinF(r)x.
1+N(N—-1)— 5| (56) The quantization of the isorotations of the Skyrmion solution
Rgf (which correspond to rotations in the compactified spBce

X
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=S’ in our caseg requires the well-known relatiod=1 B
whereJ and| are the spin and isospin indices. In principle U(x)=1+i—2§<ara+ coo=14iF ()X + ..., (66)
the allowed values of] are J=0,1/2,1,3/2... . As ex- r
plained by Witten[13], fermionic quantization is possible
because of the Wess-Zumino-WitteWZW) termkI™ with k Then we have
integer, which can be added to the Goldstone boson effective B
action. Fork even the Skyrmion is a boson, but foiodd it =y —x, (67)
is a fermion. For the S(2) case, the functional' has no r?
dynamics and becomes a topological invariant related to the
homotopy groupm4(SU(2))=Z,. Note that for a suitable and in particular for the Atiyah-Manton ansatz witk,= 1
compactification of the space-time this is the relevant groupve getB=L?7/2. By using the Lagrangiaits it is also
for the Goldstone boson map. A map belonging to the nonpossible to obtain the branon field produced by the brane-
trivial class could, for example, describe the creation of aSkyrmion field® and by comparison with the above results
Skyrmion—anti-Skyrmion pair followed by ar2rotation of ~ we arrive af21]
the Skyrmion and finally a Skyrmion—anti-Skyrmion annihi-
lation. In the fermionic case this field configuration must be a=— §772sz2= _ Evzw4|_4 (68)
) ; ) - m-
weighted with a—1 in the Feynman path integral. For an 3 3
adiabatic 27 rotation of the Skyrmion around some axis, the ) o .
WZW term contributesks to the action and €)X to the From this Lagran_glan it is p055|ble_, for example, to compute
amplitude, which can be understood as an ipl) factor, € Cross sections for producing a brane-Skyrmion—
Therefore both possibilities, bosonic and fermionic quantiza@ntibrane-Skyrmion pair from two branons.

tion of the Skyrmion, are open. In principle, this result can__ 1 he fermionic case can be studied in a similar way
also be extended to the more general caseSbfbrane- [21,19 although a consistent analysis would be more in-

Skyrmions considered in the last section, wheiéy volved, since it requires the quantization of the rotational
=My, xSV with D=2N+1 since 1(SN)='ZZ for N modes. This case will be considered elsewhere.
+ +

=3.
In order to study the low-energy interactions of the brane- VIll. BRANON MASS EFFECTS
Skyrmions with the branons, we have to obtain the appropri-
ate effective Lagrangian. This Lagrangian must GEB)
symmetric and the brane-Skyrmion should be described in i
by a complex field, because of its topological charge. Thus
for example, this field will be a complex scaldr for J=0
or a Dirac spinorW for J=1/2. For the scalar case the in-
variant Lagrangian with the lowest number of derivative
can be written as

As shown in Sec. lll, if the four-dimensional metric de-

ends on the extra coordinates, i.é,,,,,(x,y), the branon
ields acquire a mass. In order to study the effect of the
branon masses on the brane-Skyrmion, we will consider the
simple caseB=S? with A=0 and the background metric
Sgiven in Eq.(17). Remember that this metric corresponds to
branon fields with equal massas?=40¢"'(0). In order to

simplify the calculation, we will define a new functianas
L= a®* Dhg(m)d,m* " 7P (62)  follows: o(m2y?/4)=ca(y?). With this definition we have

(0)=0 ando’(0)=1. Using the spherical coordinates on

The couplinga can be obtained from the large distance be-K defined in Eq(24), we can write the background metric as

havior of the branon field in the brane-Skyrmion configura-

tion. The differential equation foF(r) obtained from the m2R2
Dirac—.Nambu-Goto action in the mentioned limit is the Euler "glw: 1+ o 4 Bsinz()(K)) Mw (69)
equation:
r2E"(r)+2rF’(r)— 2F(r)=0. (63) where we have used the relati¢n). Imposing the Skyrme
ansatz in Eq(26), the induced metric on the brane can be
The general solution of this equation is written as
B ds’=g,,,dx*dx"=B(r)dt?—A(r)dr?
F(r)y=Ar+ —. 64

(N=Ar+ 5 €4 —C(n)[d6?+sir(0)d¢?], (70
Since we are interested in those solutions in wii¢h) goes ~ Where
to zero ag goes to infinity,A has to be identically zero. This 2R2
means that the general behaviorFdfr) at large distances is B(r)=1+o . BSiI’TZ[F(I’)]),

B

FiN="73- €9 A(r)=B(n)+Rg[F'(N) ]2,

Therefore, in this limit, C(r)=r?B(r)+REsir[F(r)]. (7D)
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Following similar steps to those in the massless case, it is Ms_
possible to find a lower bound for the brane-Skyrmion mass;’ &

thus, 70
60
MS=47rf4f dr(C(r)JA(r)B(r)—r?) o
40
247rf4J dr[Rgsinz[F(r)]|F’(r)| 50
m2R2 1/2 20
x| 14| — Bsinz[F(r)]” } 10
2 4 6 3
>4w|nw|f4R§f dusirfu mRp
0
FIG. 6. Brane-Skyrmion maddl g as a function of the branon
~ zRé i vz massm in the caser(&) =& andny,=1. The thick continuous line
X|1+o 4 simu (72) represents the exact dependence; the dashed line, the approximated

havior whenRgm<1; and the continuous line, the asymptotic

Also in the same way as in the massless case, this low .
ehavior wherRgm>1.

bound coincides with the zero-size brane-Skyrmion mass.

Therefore, the presence of the branon masses does not aff%g}er one of the most interesting cases occurs when the

the brane-Skyrmion stability and again we get a pOInﬂ'kewrapped states are located at one point of the world brane

solution. The onI}/ dn‘ferenf:e from the mas~sless gasg 'S th"%Imd thus can be understood as world-brane excitations. Note
Fhe brane—S_kyrm|on mass increases due tatltentribution  hat as long as the relevant homotopy group is agaive

in the last line of Eq(72). _ _ also have antiwrapped states, which correspond to negative
_ Ifthe branon mass is small, inR4 units, we can expand  winding numbers. Thus a world brane can get excited by

a(§)=¢+0(&?) in Eq. (72 and obtain the result that the creating a wrapped-antiwrapped state at some given point. In
dependence of the brane-Skyrmion massmia quadratic at  Fig. 7 we show a single wrapped state at ésft) and bra-

first order, for anyz} function: non excited. On the left of Fig. 2 we show a wrapped state
(circle) located at one point of the world braf&raight line
3 2 ed3 3 L, for the caseN=1.
Ms=2[ny|m*t*Rg 1+ERBm ' (73 To study in more detail the main properties of these

wrapped states we concentrate now on a four-dimensional
In the opposite limit, when the contribution of the branonspace-timeM, embedded in a seven-dimensional bulk space
masses to the brane-Skyrmion mass is more important thahat we are assuming to Bd,=M,XB with M,=RX M3,
the topological contribution, the brane-Skyrmion massand B=S®. Now, unlike the brane-Skyrmion case, here the
strongly depends on the particular form of thefunction.  finite energy requirement does not lead to any compactifica-
Thus one can find tion of the world spacé ; because the brane is going to be
wrapped around, which is compact. However, for technical
reasons it is still useful to compactify ; to S® by adding the
spatial infinite point. The wrapped brane produces spontane-
(74) ous breaking of thé ; isometry group, which we assume to
be G(M;)=G(RXM3xS})=G(RXS}XG(M;) to the
Figure 6 shows these behaviors in the simple Gagg=¢.  G(RXS’)XH' group, whereH' is the isotropy group of
M3, which is assumed to be homogeneous. In the previous

1/2

_ [ m?R?
0'( 4Bsin2u>

Ms=4m|ny f4R§f dusirfu
0

IX. WRAPPED STATES

Y

In this section we are going to study another kind of state N
that can appear as topological excitations of the branes.
These states correspond to brane configurations wrapped T
around the compactified spacBswhich typically will be N Q}\
assumed to be&Y for Mp=My.1XB. A given wrapped
state is located at some well-defined point of the spdge T
The possibility of having this wrapped state is related to the e Q

homotopy groupmy(B) =Z, which is obviously the case for

B=S", but also for other spaces. In principle, wrapped states FIG. 7. Wrapped brane with topological number INiy=M,
can be present even when there is no world brane, i.e., whers. Its ground state is represented on the left and an excited state
we do not have a brane extended along the spage How-  on the right.
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expressionsR corresponds to the time coordinate. Thus, thewhereR’ is the induced curvature on the wrapped brane and

coset space is defined B¢’ =G(M3)/H’. In the simplest
caseM ;=S we haveK’=S0(4)/SO(3)%S® and thusk’

the volume term is now finite for fixed time. For small exci-
tations, the effective action becomes

~B~S°. Therefore the low-energy brane excitations can be

parametrized as Serd X]1=SPIX]+SRIX]+ - -

(81
where the effective action for the branons up@p?) is
nothing but the nonlinear sigma model corresponding to a
symmetry breaking patte@(M3z)—H':

II:B—K’,

y—m(y), (75

wherey are coordinates oB and 7 are coordinates oK'. (82
On the other hand, as long as the quotient spécandM

are both topologically equivalent 8, it is possible to de- £4

scribe the wrapped brane by giving its position on Mg SEX]= —f dtd3y\/§§ij§”s&rxi&sxj
spaceX' as a function ofy™, i.e., X'=X'(y™). In particular, 2 Jrxe

it is possible to choose the coordinates so that

SOXI-—14[  atey\g,
RXB

+>\f2fRXBdtd3y\/§_"F“e', (83

. 1.
X'(y)= = 8,7 (y)+---

3% (76)

whereR’ is the background curvature on the wrapped brane,
_ without excitations. Notice that,j, ... are M3 indices,
locally. In the following we will useX' instead ofr® to label ~ whereasr,s, ... are indices on th&x K’ manifold. This
the wrapped-brane points in terms of the brane paramgters effective action is again an expansion in powergpefd, X

Let us now rearrange the coordinates for convenience in or- g, g'/f, i.e., it is a low-energy expansion. For static con-

der to haveyM=(t,y™ X'(y)) wheret is the temporal coor- figurations the mass, to the lowest order, is given from Eq.
dinatet=x°. The bulk metric is then (80) again by

Goo 0 My=f4 J d*y\g'. (84)
~, B
Gun= ~Omn(Y)
~ . . . I_ .
0 ~9i(%) The minimum is found foiX'=0:
My=2m2f*R3, (85)

(77

(ot 0

0 —E]ij(x) ' which is proportional to thé8=S? volume as expected. In

this case we have the brane wrapped ardBimdgth the mini-

whereg/, is the background metric on the space-time mani-mal possible brane volume. For small enoughadding the
fold RXB, i.e., r,s=0,1,2,3. The induced metric on this curvature term does not change the picture very much:
manifold can be evaluated in a way similar to that in the
brane-Skyrmion case. Thus in the ground state the induced Mw:f“f d3y@—)\f2f d3y\Jg'R’.
metric on the wrapped brane is given by the four- B B
dimensional components of the bulk space metric, g&,,

=§;S=Grs. When branons are present, the induced metric i
given by

(86)

éince the scalar curvature on a three-sphefR’is —6/R2,
we find

9rs=0rs— 3 X'dXIg; (78) My=272f4R3

)
1+6@) . (87)

and the square root of the induced metric determinant can be L L
written as Thus the brane is still wrapped and minimizing its volume,

but we have a new contribution to the mass coming from the
brane curvature, which coincides with tBecurvature. This
result obviously applies to branes wrapped once arddind
The generalization to the cases where the brane is wrapped
nye Z times is straightforward, resulting just in a factor of
fwl in the above equation.

It is very interesting to realize that the value obtained for
the wrapped-state mass is exactly the same previously given
for the brane-Skyrmion mass in Table I, as the upper bound
for positive A and the exact value for negatiwe provided

. -~ o
\/EZ \E( 1- Eg,rsgij&rxlasxl—*— B (79

On the other hand, the action including the scalar curvatur
term is given by

SB:—f“f dtd?’yﬁﬂf?f dtd®yg'R’, (80)
RXB RXB
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\>—R3f2/6. The fact that our brane action is defined in anwhich describes three free scalags propagating on ars®

entirely geometrical way makes it possible to give a beautifumanifold. The corresponding spectrum is well kno{@#]

explanation of this fact. In order to have a graphical pictureand we have for each field

of this explanation it is useful to consider for a moment the

N=1 case. As we have already noticed, the brane-Skyrmion 1

is not stable in this case, but still we can ignore this fact and En, = R_B

use theN=1 geometry as an abstract representation of the

N=3 case. Notice, however, that wrapped states are stabiehe different states are labeled byn;(j;,m), n

even forN=1. _ =12,34..., ji=0,4,2...,n—1, mi=—Jji,—Ji
On the right of Fig. 2 we have represented a brane-11, . . j,. For a givenn; the degeneracy for each free

Skyrmion corresponding to a positive valuexafAccording  scalar is

to our previous discussion the brane-Skyrmion has a nonzero

size. This makes it possible to pass through the brane from n-1

one side to the other, showing the topological defect as some On= 2 (2j;+1)= nZ. (90

kind of hole in the brane. The mass of the brane-Skyrmion bi=0

has volume and curvature contributions. As long as both OE

n‘—1. (89)

them are positive, the curvature term avoids the generatiofy" the other hand, the diferent topological sectors are la-
of the singularities present in zero-size Skyrmions. Wken Peleéd by ny=0,£1,22,23,... and thecorresponding
goes to zero, the curvature contribution vanishes and thB'assesfor moderate negative) are

brane-Skyrmion collapses to zero size. The brane configura-
tion is then represented in the left side of Fig. 2. It is also
interesting that this picture could also represent a wrapped
state(circle) plus a world brandstraight ling. Thus we re-

alize that the Shape, size, anq (_:urvature are exaCtIy the Sangg that the degeneracy in this Cas@ris =2, Corresponding
for both configurations and this is the reason why the mass o[f0 the two different orientations W

the brane-Skyrmion equals the wrapped-state mass in this All the above discussion can be extended without any
case(notice that the brane-Skyrmion mass was defined as th&ifficulty to the general casép=RxM xSV with D

corresponding brane-Skyrmion configuration mass minus theZZNJr 1 where we can havii-brane wrapped states. In this
brane-world mass in order to have a finite vaJuee., it is )

. ) ) case we will have that the small oscillations over the ground
proportional to theB volume. In spite of this, the two con- g

state can be described dree scalars propagating on 8h

figurations are not the same because their topology is d'ﬁerr'nanifold. Then the energy spectrum for each field is

ent. The brane-Skyrmion is extended on both the compacti-

Mw=|nw|27%f*R3

A
1+6@) , (91

fied M3 space and the extra-dimensional sp&cebut the 1

wrapped states only around the extra dimension sfiace Eni=R—\/(ni—1)(ni—2+ N), (92
Thus, brane-Skyrmions are classified according to the homo- B

topy classes of the mappingé:M;— K, whereas wrapped \yheren,=1,2,3,4...,i=12,3... N. In this case, the de-

states are labeled by the number of times the brane WraRfsneracy for each free scalar is

around the extra dimensions. Another way to understand why

they are different is to realize that the brane-Skyrmion is (2n;+N—=3)(n;+N—23)!
made of a single piece, unlike the wrapped configuration, On,= (N—1)!(n,—1)!
which has two different piece@he wrapped brane and the o '
world brane. Thus they cannot be connected by a classicalrhe energy of the winding moddary(SV)=2Z] for small

process, although quantum tunneling could in priciple pronegative curvature parameter
duce transitions between one to the other. For small and

(93

negative\, the volume term still dominates but the curvature 2 p(N+1)/2
term produces a negative contribution to the mass. Both MW=|nW|mfN+1RS 1+N(N-1) ——
terms are proportional to the volume but the second one is ( ) Rgf

also proportional to the curvature and This result clearly (94
applies to the brane-Skyrmion and wrapped brane states si-

multaneously. Finally, for7\<—R§f2/6 the curvature term and aga'f?’“wzz' o
dominates and it is energetically favored for them to wrap, In addition to these states it is well known that, due to the

making the mass functional unbounded from below. compact nature oB, we always have the standard Kaluza-
Now we can consider excitationgbranons of the Klein spectrum for the particles or topologically trivial

wrapped ground state. For small excitations the relevant ad2ranes(in the sense oB) propagating along the compacti-

tion is fied dimensions. For example, fidr=1, we have, in addition
to the one-branesstringg wrapped onB=S!, the corre-
4 3 o sponding Kaluza-Klein spectrum, which is given by
SulXl=5 | diePy§'S (axiax
RXB i=1 |n’| o
Mkk="5""
—g'mg, Xig, X1, (88) K Rg 99
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wheren’ € Z andg,,, =2 except forgo=1. For the winding  variance by the bulk metric have also been considered.

state 7,(S')=Z] we have We have studied another different set of states corre-
) sponding to a brane wrapped on the extra-dimension $pace
Mw=|nw|27Rgf*. (96)  (wrapped statgsand we have analyzed their connection to

the brane-Skyrmion states.

Finally, we have also extended our study to the case of
higher dimensions where similar results hold. We understand
that this could have some relevance in the context of pure M
theory where solitonic five-branes are present which could

Thus we recover the well-known stringduality (exchange
of Kaluza-Klein and winding mode$y making the replace-
ments

ZWRBfZHi, wrap around five-dimensional spheres.
R We understand that the brane-Skyrmions and wrapped
, states studied in this paper are quite interesting objbctih
Nwen. 97 from the theoretical and perhaps from a more phenomeno-

logical point of view and thus we think that they deserve

Obviously, for highe this duality is not expected to apply, further research. Work is in progress in this direction.

since the degeneracy of the different kinds of stiteluza-
Klein and topological does not fit.
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respond to the Goldstone bosofisanong associated with
the spontaneous breaking of the compactified extra-
dimension isometries produced by the brane.

Assuming a very general form for the brane act{wol-
ume plus curvature tennit is possible to derive in a sys- (0) 2 (a)
tematic way the low-energy effective Lagrangian for the bra- Setd m]=Ser m]+ Sl w]+ Seil wl+ -+ (AL
nons, which has the typical form of a nonlinear sigma model
with well-defined arbitrary higher-derivative terms.

Under suitable assumptions about the third homotopy
group of the spacB, this effective action gives rise to a new Sg?f[ ml=—1f4 f d4x\/g. (A2)
kind of state corresponding to topological defects of the Mg
brane(brane-Skyrmionswhich are stable whenever the cur-
vature parametex is not too negative. The mass and the size
of the brane-Skyrmions can be computed in terms of th
brane tension scald), \, and the size of the spa&(Rg).
The brane-Skyrmions can be understood as some kind of 1
holes in the brane that make it possible to pass through thems{2)f 7r]= EJ d4X\/§haB(9M7T"‘(9"“7TB+)\f2J d*x\VgR.
along theB space. This is because in the core of the topo- Ma Ma
logical defect the symmetry is restablished. In the case con- (A3)
sidered here the broken symmetry is basically the tranleV

tonal v al th tra di _ Thus th e are assuming that the branon derivative terms are of the
lonal Symmetry along the extra dimensions. Thus the Coreé 0f, o 4rqer as those with metric derivatives. The fourth-order

the brane-Skyrmion plays the role of a window through theterm is obtained by expanding both the metric determinant
brane, which is a nice geometrical interpretation of this ob- “and the induced scalar curvature in branon fields:

ject. Forn=0 or negative the brane-Skyrmion collapses to
zero size and that window is closed.

Brane-Skyrmions can in principle be quantized as bosonss( [77]_
or fermions by adding a Wess-Zumino-Witten-like term to f4
the branon effective action. This is a very interesting possi-

For small brane excitations in a background me@r,jg;,
the effective actior(3) can be expanded in branon field de-
rivatives as follows:

where

The O(p?) contribution is the nonlinear sigma model corre-
ponding to a symmetry breaking patte@—H plus the
ackground scalar curvature term:

d4X\/Sha5h75( 07#77“&“773(9,,77’/&”775

bility since it provides a completely new way of introducing _2(9M7-,a,9v7-,ﬁ[7y777(9u775)
fermions on the brane. The low-energy effective Lagrangian A
describing the interactions between branons and brane- + — d4x\/Ehaﬁauﬁaavwﬁ(zﬁw_ﬁaw)
Skyrmions can also be obtained in a systematic way. This 2f2Jm,
opens the door for the study of the possible phenomenology \
of these states at the Large Hadron CollilddC) currently N 4 v
under construction at CERN. - ZJ d X\/EA“{& T AT N 0
The effects on the brane-Skyrmions of a possible small
branon mass due to explicit breaking of the translational in- X (g¢"gH7—gé7grm)}, (A4)
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where A3, =0,(3,m) T2 a,m*+T%0,m7,mP.

wB. . vp... (A6)
AT g2

D Ta,B...Vp.....+(9M7T—yDyTg§....Vp...

mles...oT. ..UT..AS
(A5) Notice thatu,v, ... areM, indices, whereag,B, . ..
and ng---w--- is an arbitrary tensor with indices in both are indices on th& manifold. Let us emphasize again that

e OT .. . . . . . .
spacedM, andK. HereD , is the covariant derivative iV 4 the ?bo"e (_affe_ctlve aC“OZ” IS an expansion in t_)ran_on figdds
metric) derivatives overf< and not an expansion in powers

with Christoffel symbols [;,) corresponding t@,,,, and ¢ - fie|gs, i.e., it is a low-energy effective action. The last
Dy refers to the covariant derivative i§ with Christoffel term in Eq(A4) is a total divergence, and therefore it does

symbols (") defined fromh,z(7). Thus, for example, not contribute to the branon equations of motion.
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