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Brane-Skyrmions and wrapped states
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In the context of a brane world and including an induced curvature term in the brane action, we obtain the
effective Lagrangian for the Goldstone bosons~branons! associated with the spontaneous breaking of the
translational invariance in the bulk. In addition to the branons, this effective action has Skyrmion-like solitonic
states which can be understood as holes in the brane. We study their main properties such as mass and size, the
Skyrmion-branon interaction, and their possible fermionic quantization. We also consider states where the
brane is wrapped around the extra dimensions and their relation with the brane-Skyrmions. Finally, we extend
our results to higher-dimensional branes, such as those appearing in M theory, where brane-Skyrmions could
also be present.
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I. INTRODUCTION

In recent years, the old Kaluza-Klein@1# idea of having
extra dimensions has received a lot of attention. The m
new idea that triggered this revival was the suggestion
our world could be a brane embedded in large extra dim
sions, in such a way that the standard fields are confine
live in the brane, but gravitons are free to move on the wh
bulk D-dimensional space@2#. Probably the most appealin
property of this scenario is that the trueD-dimensional gravi-
tational scaleMD could be as small as a few TeV, thus ma
ing possible to have gravitational effects reachable in
next generation of colliders. In fact many works have be
devoted recently to the study of the phenomenological im
cations of the brane-world scenario@3#. In addition, some of
the old problems of the standard model can be reconsid
in a completely new way~see@4#, and references therein!.
Usually one assumes that the newN dimensions are compac
tified in someN-dimensional manifoldB with a typical size
RB . At low energies, the relevant degrees of freedom are
standard model fields on the brane and the gravitons with
corresponding infinite tower of Kaluza-Klein~KK ! partners
~see, for instance,@5# for a review of Kaluza-Klein theory
and models! and finally the brane’s own excitations or bra
ons. The interactions of the graviton sector with the stand
model fields have been analyzed in several papers@6#. How-
ever, the presence in the bulk of the brane in its ground s
typically spontaneously breaks some of the isometries of
spaceB. The brane configurations obtained from the bra
ground state by isometry transformations corresponding
the broken isometries~typically translations! produce
equivalent ground states and thus the parameters descr
these transformations can be considered as the Golds
boson~GB! fields of the isometry breaking~zero-mode bra-
nons!. In fact, when the brane tension scalef is much smaller
than the fundamental one, the nonzero KK modes deco
from the GB modes@7# and then it is possible to make
low-energy effective description of the GB dynamics@8#.
The phenomenological effects of these branons have b
considered in@9#.

On the other hand, in the standard Kaluza-Klein approa
the isometries of the spaceB are understood as gauge sym
0556-2821/2001/65~2!/026005~15!/$20.00 65 0260
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metries in the four-dimensional space-time. Since the G
are associated with the spontaneous breaking of som
those symmetries, the Higgs mechanism must take pl
However, the gauge boson~graviphoton! masses produced in
this way are very small~typically M; f 2/M P!, so that one
can advocate the equivalence theorem@10# and neglect the
graviphoton masses for practical purposes.

In addition to the branons, the brane can also suppo
new set of topological states. These states are defects
appear due to the nontrivial homotopies of the vacuum ma
fold @11#. In particular, the authors of this reference cons
ered the case of string and monopole defects on the br
corresponding to nontrivial first and second homoto
groups.

In this work we are interested in another kind of defect
a topological nature related to the Skyrme model@12#. In this
model, the baryons are understood as topological solit
that appear in the low-energy pion dynamics described b
chiral Lagrangian, the baryon number being identified w
the topological charge. This model has provided a very s
cessful description of baryon properties@13#. In a recent
work @14#, two of us derived the effective action for th
brane GB or zero-mode branons starting from a Dir
Nambu-Goto-type action for the brane. This effective act
is formally similar to the chiral Lagrangians used for th
low-energy description of the chiral dynamics@15# or even
of the symmetry breaking sector of the standard model in
strongly coupled case@16# ~see@17# for a review of effective
Lagrangians and their applications to the standard model
gravitation!. Therefore it is quite natural to wonder about th
possibility of having chiral solitons~Skyrmions! arising from
this effective action. As we will show, the answer is positiv
In the following we will study in detail those brane
Skyrmions, their physical and geometrical interpretatio
their main properties, and their relation to wrapped state

The plan of the paper goes as follows. In Sec. II we
troduce our setup and extend our previous results for
brane GB effective action starting from a generalized bra
action that includes an induced scalar curvature term. T
term will be essential in order to determine the bran
Skyrmion size. In Sec. III we use the effective action
obtain the vacuum equations for the brane. We also cons
©2001 The American Physical Society05-1
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the effects of small deviations from the ideal symme
breaking pattern, which will give rise to small mass terms
the branons. In Sec. IV we give the equations for the bra
Skyrmions and compute their size and mass analytically
terms of the different parameters. In Sec. V we give m
general numerical results. In Sec. VI we extend our anal
to higher-dimensional brane-Skyrmions. This kind of so
tion could have some relevance for pure M theory beyo
the brane-world scenario. Section VII is devoted to the in
actions between the brane-Skyrmions and branons and
sible fermionic quantization. The effect of the possible b
non masses on the brane-Skyrmions is considered in
VIII. In Sec. IX we consider another set of brane sta
~wrapped states! and study their relation to the brane
Skyrmions. Finally, in Sec. X we set out the main results
our work and the conclusions.

II. THE EFFECTIVE ACTION FOR THE BRANONS

Let us start by fixing the notation and the main assum
tions used in the work. We consider that the four-dimensio
space-timeM4 is embedded in aD-dimensional bulk space
that for simplicity we will assume to be of the formMD
5M43B, whereB is a givenN-dimensional compact mani
fold so thatD541N. The brane lies alongM4 and we ne-
glect its contribution to the bulk gravitational field. The c
ordinates parametrizing the points inMD will be denoted by
(xm,ym), where the different indices run asm50,1,2,3 and
m51,2, . . . ,N. The bulk spaceMD is endowed with a met-
ric tensor that we will denote byGMN , with signature (1,
2,2, . . . ,2,2). For simplicity, we will consider the fol-
lowing ansatz:

GMN5S g̃mn~x! 0

0 2g̃mn8 ~y!
D . ~1!

In the absence of the three-brane, this metric possesse
isometry group that we will assume to be of the for
G(MD)5G(M4)3G(B). The presence of the brane spon
neously breaks this symmetry down to some subgr
G(M4)3H. Therefore, we can introduce the coset spaceK
5G(MD)/@G(M4)3H#5G(B)/H, where H,G(B) is a
suitable subgroup ofG(B).

The position of the brane in the bulk can be parametri
asYM5„xm,Ym(x)…, where we have chosen the bulk coord
nates so that the first four are identified with the space-t
brane coordinatesxm. We assume the brane to be created a
certain point inB, i.e.,Ym(x)5Y0

m , which corresponds to its
ground state. The induced metric on the brane in such a s
is given by the four-dimensional components of the b
space metric, i.e.,gmn5g̃mn5Gmn . However, when brane
excitations~branons! are present, the induced metric is give
by

gmn5]mYM]nYNGMN5g̃mn2]mYm]nYng̃mn8 . ~2!

For illustrative purposes we show a toy model in Fig.
where we have a one-brane~string! in an M35M23S1 bulk
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space~one of theM2 coordinates being the time coordinate!,
both in its ground state~flat brane! and in an excited state
~wavy brane!.

Since the mechanism responsible for the creation of
brane is in principle unknown, we will assume that the bra
dynamics can be described by an effective action. Thus,
will consider the most general expression that is invari
under reparametrizations of the brane coordinates. Follow
the philosophy of the effective Lagrangian technique,
will also organize the action as a series in the number of
derivatives of the induced metric over a dimensional co
stant, which can be identified with the brane tension scaf.
Therefore, up to second order in derivatives we find

SB5E
M4

d4xAg~2 f 41l f 2R1••• !, ~3!

whered4xAg is the volume element of the brane,R the in-
duced curvature, andl an unknown dimensionless param
eter. Notice that the lowest-order term is the usual Dir
Nambu-Goto action that was the only one considered in@14#.
The brane-induced curvature terms were first discusse
this context in@18#.

As shown in @14#, if the brane ground state isYm(x)
5Y0

m , the presence of the brane will break spontaneously
the B isometries, except those that leave the pointY0 un-
changed. In other words, the groupG(B) is spontaneously
broken down to the isotropy groupH(Y0) of the pointY0.
We will denote byja the Killing fields associated with the
broken generators of the groupG(B). The excitations of the
brane alongja correspond to the zero modes and they
parametrized by the branon fieldspa(x) which can be un-
derstood as coordinates on the coset manifoldK5G(B)/H.
Thus, for a position-independent ground stateY0

m , the action
of an element ofG(B) on B will map Y0 into some other
point with coordinates

Ym~x!5Ym
„Y0 ,pa~x!…5Y0

m1
1

k f2
ja

m~Y0!pa~x!1O~p2!,

~4!

where we have set the appropriate normalization of the b
non fields and Killing fields withk2516p/M P

2 . When theB
space is homogeneous, the isotropy group does not de
on the particular point we choose, i.e.,H(Y0)5H, and it is

FIG. 1. Brane with trivial topology inM35M23S1. The
ground state of the brane is represented on the left. On the righ
plot an excited state.
5-2
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possible to prove thatB is diffeomorphic toK5G(B)/H,
i.e., the number of GB’s equals the dimension ofB. In that
case we can choose the coordinates onB andK so that

pa5
v

RB
dm

a ym5 f 2dm
a ym ~5!

or

Ym5
1

f 2
da

mpa, ~6!

where

v5 f 2RB ~7!

is the typical size ofK in energy units~note that the coordi-
nates onK must be scalar fields! andRB is theB typical scale
in length units. However, in the general case,B is not homo-
geneous and the number of GB’s will be smaller than
dimension ofB. Notice that, sincepa are properly normal-
ized scalar fields, theYm coordinates in Eq.~6! must be
normal and geodesic in a neighborhood ofY0

m and, in par-
ticular, they cannot be angular coordinates.

According to the previous discussion, we can write t
induced metric in terms of branon fields, thus using Eq.~4!
we get

gmn5g̃mn2
1

f 4
hab~p!]mpa]npb ~8!

wherehab(p) is defined as

hab~p!5 f 4g̃mn8 „Y~p!…
]Ym

]pa

]Yn

]pb
. ~9!

Using these results, it is also possible to obtain the expan
of the effective action in Eq.~3! in terms of branons~for a
detailed discussion see the Appendix!.

III. GROUND STATE OF THE BRANE
AND BRANON MASSES

In the previous section we assumed that theG(MD) sym-
metry is exact, which implies that the branon fields are ma
less. However, in a real situation, such symmetry will
only approximately realized. In this case, we will expect t
branons to acquire a mass that will measure the breakin
the G(MD) symmetry. In order to study these effects a
how the symmetry breaking affects the brane ground st
we will relax the conditions imposed in the previous sect
and letg̃mn depend, not only on thex coordinates, but also on
they coordinates. We can consider for simplicity the lowe
order action, given by

Se f f
(0)@p#5E

M4

d4xL (0)52 f 4E
M4

d4xAg̃„x,Y~x!….

~10!
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This action has an extremum if

dSe f f
(0)@p#50⇒dAg̃5

1

2
Ag̃g̃mndg̃mn50⇒g̃mn]mg̃mn

50,;ym. ~11!

This is a set of equations whose solutionY0
m(x) determines

the shape of the brane in its ground state for a given ba
ground metricg̃mn . In addition, the condition for the energ
to be a minimum requires

d2L (0)

dYmdYnU
Y5Y0

5
2 f 4

4
Ag̃g̃mn~]n]mg̃mn22g̃rs]ng̃ns]mg̃mr!

,0, ~12!

i.e., the eigenvalues of the above matrix should be nega
This implies that the static action should have a maxim
~Dashen condition!. If we focus only on the degrees of free
dom associated with the branons, the previous conditi
take the form

dL (0)

dpa
5

2 f 2

2k
Ag̃g̃mn]mg̃mnja

m50,

d2L (0)

dpadpb
52

1

4k2
Ag̃g̃mn~]n]mg̃mn

22g̃rs]ng̃ns]mg̃mr!ja
mjb

n,0. ~13!

In order to obtain the explicit expression for the bran
mass matrix, let us consider the following simple case:

GMN5S g̃mn~x,y! 0

0 2g̃mn8 ~y!
D , ~14!

where againg̃mn(x,Y0) corresponds to the ground state me
ric in the symmetric case. Expanding this metric aroundym

5Y0
m in terms of thepa fields and taking into account th

conditions for the ground state of the brane~13!, the effec-
tive action is then given by

SB52 f 4E
M4

d4xAg̃1
1

2EM4

d4xAg̃@ g̃mnhab~p!]mpa]npb

2Mab
2 papb#1••• ~15!

where g̃mn in the previous equation denotesg̃mn(x,Y0) and
the mass matrix can be written as

Mab
2 5

1

2
g̃mn~]n]mg̃mn22g̃rs]ng̃ns]mg̃mr!

ja
mjb

n

k2
.0,

~16!

which must be positive definite, otherwise the brane grou
state would not be stable. As an example and for furt
reference let us consider a background metric given by
5-3
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g̃mn5@11s~y2!#hmn , ~17!

where ym are normal geodesic coordinates onB5S3, y2

5(mym
2 , and the functions(y2) reaches its minimum value

at y50 with s(0)50. The ground state conditions imply

]ms
ja

m

k
50 ~18!

and

Mab
2 52]n]ms

ja
mjb

n

k2
.0. ~19!

Since in this case we haveja
m5kda

m we obtain a diagona
mass matrix with all the branons having the same massm2

54s8(0) and thus

Mab
2 5m2dmn

ja
mjb

n

k2
5m2dab . ~20!

IV. BRANE-SKYRMIONS

The branon fields introduced in the previous sections
scribe small oscillations of the brane around its ground st
Thus there is some similarity with the well-known chir
Lagrangian approach in which a nonlinear sigma mo
~NLSM! is used to describe the low-energy pion dynami
Apart from pions, the NLSM can also be used to descr
other nontrivial states in the hadron spectrum such as b
ons. For that purpose, the nontrivial topological structure
the coset spaceK plays a fundamental role. In fact, baryon
can be identified with certain topologically nontrivial ma
between the~compactified! spaceS3 and the coset manifold
K known as Skyrmions.

Let us then consider static branon field configuratio
with finite energy, which accordingly vanish at spatial infi
ity. Thus, we can compactify the spatial dimensions toS3

and the static configurations will be mappingspa:S3→K.
Therefore, these mappings can be classified according to
third homotopy group ofK, i.e., p3(K). As a consequence
mappings belonging to different nontrivial homotopy class
cannot be deformed in a continuous fashion from one to
other. This implies that such configurations cannot evolve
time classically into the trivial vacuump50 and therefore
they are stable states. For the sake of simplicity we will fi
consider the case in which we haveN53 extra dimensions
with B5S3. In this case, sinceB is a homogeneous space, w
have K;B5S3;SU(2), i.e., the coset manifold is also
three-sphere. Thus, we will havep3(S3)5Z and the map-
pings can be classified by an integer number, usually refe
to as the winding numbernW . We will also assume in the
following that the background metric is flat, i.e.,g̃mn

5hmn .
For static configurations the brane-Skyrmion mass can

obtained directly from the effective Lagrangian as
02600
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M @p#52E d3xLe f f . ~21!

In general this expression will be divergent because of
volume contribution coming from the lowest-order ter
Se f f

(0)@p#, which reflects the fact that the brane has infin
extension with finite tension. Therefore, in order to obtain
finite Skyrmion mass, we will subtract the vacuum ener
M @0#; i.e.,

MS@p#5M @p#2M @0#5 f 4E
M3

d3xAg2l f 2E
M3

d3xAgR

2M @0#. ~22!

In other words we are defining the mass of the bra
Skyrmion as the mass of the brane with the topological
fect minus the mass of the brane in its ground state with
the topological defect.

In order to simplify the calculations we will introduc
spherical coordinates on both spacesM4 and K. In M4 we
denote the coordinates$t,r ,u,w% with fP@0,2p), u
P@0,p#, andr P@0,̀ ). In these coordinates the backgroun
metric is written as

g̃mn5S 1

21

2r 2

2r 2sin2~u!

D . ~23!

On the coset manifoldK, the spherical coordinates are d
noted $xK ,uK ,fK% with fKP@0,2p), uKP@0,p#, and xK
P@0,p#. These coordinates are related to the physical bra
fields ~local normal geodesic coordinates onK) by

p15v sinxKsinuKcosfK ,

p25v sinxKsinuKsinfK , ~24!

p35v sinxKcosuK .

The coset metric in spherical coordinates is written as

hab5S v2

v2sin2~xK!

v2sin2~xK!sin2~uK!
D . ~25!

In spherical coordinates, the brane-Skyrmion with win
ing numbernW is given by the nontrivial mappingpa:S3

→S3 defined from

fK5f,

uK5u,

xK5F~r !, ~26!

with boundary conditionsF(0)5nWp and F(`)50. This
map is usually referred to as the hedgehog ansatz. In Fi
5-4
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we plot on the right a Skyrmion-like one-brane configurati
in M35M23S1. In this particular dimension the brane
Skyrmion is not stable~as shown below!, but it is still useful
for illustrative purposes.

Notice once again that the spherical coordinates we h
introduced onK cannot be directly understood as bran
fields, although, thanks to the reparametrization invarianc
n

p

ro

iz
pe
ia

02600
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the action, they are perfectly valid for performing the calc
lations.

In order to calculate the brane-Skyrmion mass fro
Eq. ~22!, we need explicit expressions for the induc
metric determinant and the scalar curvature. In these coo
nates the induced metric on the brane is given by the dia
nal matrix
gmn5S 1

2H 11
v2

f 4
@F8~r !#2J

2H r 21
v2

f 4
sin2@F~r !#J

2H r 21
v2

f 4
sin2@F~r !#J sin2~u!

D , ~27!
e

-
ut
ily

ini-
ry
and the corresponding square root of the determinant ca
easily found to be

Ag5A11
v2

f 4
@F8~r !#2S r 21

v2

f 4
sin2@F~r !# D sin~u!.

~28!

The induced scalar curvature can be obtained in a sim
way by introducing the isotropic coordinates$t,r,u,w%
wherer is defined as

r2[r 21
v2

f 4
sin2@F~r !#. ~29!

The metric in these new coordinates is written in the isot
pic canonical form

FIG. 2. Brane configurations withnW51 in M35M23S1. On
the right we plot a nonzero-size Skyrmion. On the left a zero-s
one-brane-Skyrmion is shown. It has the same mass and sha
the state built out of a wrapped soliton and a topologically triv
~world! brane. However, the topology is not the same~see Sec. IX!.
be

le

-

gmn5S 1

2A~r !

2r2

2r2sin2~u!

D , ~30!

where

A~r !5
11~v2/ f 4!@F8~r !#2

r82
, ~31!

and the prime denotes ther derivative. The scalar curvatur
for this metric turns out to be

R52
2

r2 S 12
1

A~r ! D2
2A8~r !

A2~r !rr8
. ~32!

Thus we can writeMS as a functional ofF(r ). The actual
mass of the brane-Skyrmion with winding numbernW will
be obtained by minimizing the functionalMS@F# ~22! in the
space of functionsF(r ) with the appropriate boundary con
ditions. This problem is in general rather complicated, b
we can obtain an upper bound to the mass by using a fam
of functions parametrized by a single parameter, and m
mizing with respect to that parameter. In particular, it is ve
useful to work with the Atiyah-Manton ansatz@20#

F~r !5nWpS 12
1

A11L2/r 2D . ~33!

By minimizing the brane-Skyrmion mass with respect toL
we will get MS[minL MS(L)[MS(Lm) for different values
of the parameterl. Thus, we note the following.

e
as

l

5-5
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TABLE I. Values of the sizeLm and massMS for the brane-Skyrmion withnW51 for different values of
the l parameter.

l Size Mass

l50 Lm50 MS52p2f 4RB
3

l.0 Lm.0 2p2f 4RB
3,MS,2p2f 4RB

3(116l/RB
2 f 2)

2RB
2 f 2/6,l,0 Lm50 MS52p2f 4RB

3(116l/RB
2 f 2)

l,2RB
2 f 2/6 Lm50 MS→2`
h
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For l50 and using the ansatz above fornW51 we find
that MS(L) is minimized for Lm50. The corresponding
mass is given by

MS52p2f 4RB
3 , ~34!

i.e., the brane-Skyrmion describes a pointlike particle wit
finite mass given by the volume of the extra dimensio
times the brane tensionf 4. It can be shown~see the next
section! that this result is general, i.e., it is valid for an
parametrization of theF(r ) function and not only for the
Atiyah-Manton one.

For l.0, we find thatMS(L) is minimized for some
Lm.0 ~nonzero-size brane-Skyrmion!. In this case, assum
ing that the contribution from the curvature term never b
comes negative, it is possible to obtain the lower bound
the massMS.MS(l50)52p2f 4RB

3 . An upper bound can
be obtained by evaluatingMS in the limit L50, simply as-
suming that this limit is well defined so that we can comm
the limit with the integration. Thus

MS,MS~L50!52p2f 4RB
3S 116

l

RB
2 f 2D . ~35!

These results are general for any monotonic parametriza
and, in particular, we have checked numerically that th
hold for the Atiyah-Manton case.

Finally, for l,0, we find again that the minimumMS
corresponds to a zero-size brane-Skyrmion and the co
sponding mass is

MS52p2f 4RB
3S 116

l

RB
2 f 2D . ~36!

When l,2RB
2 f 2/6 the brane-Skyrmion mass becom

negative. In this case, using nonmonotonic parametrizati
we have obtained the result that the mass is actually
bounded from below, since the curvature term can be m
arbitrarily large. As a consequence, in this last case only,
brane-Skyrmion becomes unstable. These results are sum
rized in Table I.

In Fig. 3 we show the brane-Skyrmion mass as a funct
of l and L. We see that the minimum is displaced fromL
50 whenl.0.

Notice that these results differ a lot from those obtained
the usual SU~2! Skyrme model in quantum chromodynami
~QCD! chiral dynamics@12,19#. That model is based on
fourth-order Lagrangian and only within a certain range
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the parametersM and N of the two independent four
derivative terms the Skyrmion can be made stable. In
case, the Lagrangian contains an infinite number of ter
which are responsible for the brane-Skyrmion stability.
fact, truncating the series and keeping only up to four
order terms, one obtains in our case

Se f f
(2,4)@p#5

1

2EM4

d4xAg̃hab]mpa]mpb

1
1

4v4EM4

d4xAg̃habhgd

3~M]mpa]mpb]npg]npd

1N]mpa]npb]npg]mpd!, ~37!

where we have assumedg̃mn5hmn . The correspondingM
andN parameters in the chiral Lagrangian are then given

M5
2 f 4RB

4

32
, N5

f 4RB
4

16
. ~38!

This implies that the standarde2 and g Skyrme-model pa-
rameters are

e25
1

16N
5

1

f 4RB
4
.0, g5

1

2 S 11
M

N D5
1

4
.0, ~39!

FIG. 3. Contour plot of the brane-Skyrmion mass as a funct
of l/(RB

2 f 2) andL/RB .
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which means that the Skyrmion would not be stable if o
had considered the truncated fourth-order Lagrangian o
However, for the full Lagrangian~with l.2RB

2 f 2/6) we
have seen before that the brane-Skyrmion is stable. T
shows that the infinite number of higher-order terms are
sponsible for its stability. This, of course, could also be
case in chiral dynamics. In this case, it is also possible
compute theM andN parameters in the framework of larg
Nc quantum chromodynamics~for a review, see@17#!

M5
Nc

192p2
, N5

2Nc

384p2
, ~40!

which impliesM /N522. It is quite amazing to realize tha
this is exactly the same relation found in the branon dyna
ics. In particular, for

Nc512p2f 4RB
4 , ~41!

we have the same answer in the two models, provided
identify v5Fp , Fp being the pion decay constant. Thus f
Nc53 one can setRB

251/(2p f 2) in such a way that the
branon dynamics could reproduce the correct low-ene
pion scattering and give rise to a stable nucleon. We really
not have any particular reason to understand why this sim
brane model works so well apart from having the same s
metry breaking pattern as the low-energy chiral dynamic

V. NUMERICAL RESULTS

As we saw in the previous section, ifl.0, the brane-
Skyrmion size is different from zero and its mass cannot
evaluated analytically although some bounds can be
tained. For this reason, it is very interesting to obtain
behavior of the brane-Skyrmion size and mass as a func
of l, at least numerically. As shown in the previous secti
the contribution of the curvature term to the brane-Skyrm
mass depends onl/(RB

2 f 2). Assuming that this contribution
is small we have performed a numerical analysis in the c
B5S3 using the Atiyah-Manton parametrization. For th
brane-Skyrmion size in the mentioned limit we find the fo
lowing behavior:

Lm

RB
5H 0, l<0,

aS l

RB
2 f 2D a

, l.0,
~42!

TABLE II. Values of the constantsa, b, a, andb for different
topological numbersnW in the Atiyah-Manton ansatz.

Topological
chargenW a b a b

1 0.81 1.54 0.97 7.1
2 0.81 1.54 0.59 6.5
3 0.81 1.54 0.44 6.2
02600
e
ly.

is
-

e
o

-

e

y
o
le
-

e
b-
e
n
,
n

se

where the value of thea anda parameters are given in Tabl
II. In Fig. 4, we show this nonanalytic behavior for th
brane-Skyrmion size withnW51.

The fact that the brane-Skyrmion acquires a nonzero
implies that its mass depends onl in a nontrivial way. The
numerical calculation shows that the behavior of the bra
Skyrmion mass in the mentioned limit is of the form

MS

4p f 4RB
3

55
unWup

2
13unWuS l

RB
2 f 2D , l<0,

unWup
2

13unWuS l

RB
2 f 2D 2bS l

RB
2 f 2D b

, l.0,

~43!

where the values of the parametersb and b are shown in
Table II for different winding numbersnW . The nonanalytic
behavior of the derivative with respect tol is plotted in Fig.
5 for nW51. The numerical calculation for the Atiyah
Manton ansatz shows that the constantsa and b depend on
nW in a nontrivial way, whereas the exponentsa and b do
not.

An interesting conclusion that can be obtained from th
results is that the interaction between two classical bra

FIG. 4. Behavior of the brane-Skyrmion size withnW51 when
l/RB

2 f 2 is small.

FIG. 5. Behavior of the derivative with respect tol of the
brane-Skyrmion mass withnW51 for smalll/(RB

2 f 2).
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Skyrmions with topological numbernW51 is repulsive
when their sizes are nonzero, whereas they do not intera
their sizes are exactly zero. The reason is that one can
derstand anW52 brane-Skyrmion as twonW51 brane-
Skyrmions located at the same point. The energy of thenW
52 brane-Skyrmion is bigger than the energy of two bra
Skyrmions withnW51 if their sizes are nonzero, whereas
is the same if their sizes are exactly zero.

It is important to notice that these numerical results ha
been obtained with the hedgehog ansatz and the Atiy
Manton parametrization and therefore they are only esti
tions of the true mass and size. In fact, it is known from
standard Skyrme model for baryons that the hedgehog an
is not appropriate for the description of the deuteron, co
sponding to annW52 Skyrmion, since there is anothe
toroidal-like configuration with less energy in this topolog
cal sector.

VI. BRANE-SKYRMIONS IN HIGHER DIMENSIONS

In this section we will extend our previous discussion
an arbitrary numberN of space and compactified dimension
We will start from the simplest case withl50. Let us con-
e
l

02600
if
n-

-

e
h-
a-
e
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-

.

sider the Dirac-Nambu-Goto action for anN-brane:

SB52 f N11E
MN11

dt dNxAg. ~44!

For simplicity, we will takeg̃mn5hmn and K5SN, so that
MD5MN113SN with D52N11. The generalization of the
hedgehog ansatz toN dimensions with winding numbernW
can be written more easily in angular coordinates as follo

fK5f, fKP@0,2p!, fP@0,2p!,

uK
i 5u i , uK

i P@0,p#, u iP@0,p#, i 51, . . . ,N22,

xK5F~r !, xKP@0,nWp#, r P@0,̀ !,

where theK subindex refers to coordinates on theK mani-
fold, the angular coordinates onMN11 do not carry any sub-
index, and the chiral angle functionF(r ) satisfies the bound
ary conditionsF(0)5nWp, F(`)50. Introducingr again
as in Eq.~29!, the induced metric takes the spherically sym
metric form
gmn51
1

2A~r !

2r2

2r2sin2uN22

2r2sin2uN22sin2uN23

•

•

•

2r2sin2uN22•••sin2u1

2 ~45!
us

whereA(r ) is given in Eq.~31!. For static configurations, th
Dirac-Nambu-Goto action~44! provides the mass functiona

MS5 f N11E dNx@det~gmn!1/22det~hmn!1/2#

5 f N11VNE drS F r 21
v2

f 4
sin2F~r !G (N21)/2

3F11
v2

f 4
F8~r !2G 1/2

2r N21D , ~46!

where the total solid angle is given by

VN5
2pN/2

G~N/2!
. ~47!
For N>2 it is possible to obtain a nontrivial bound forMS .
N51 is a special case and will be studied later on. Let
start from the inequality

~a1b!(N21)/2>~aN211bN21!1/2, ~48!

which is valid forN>2 anda,b.0. We will also use

~a1b!1/2~c1d!1/2>ac1bd, ~49!

again fora,b,c,d.0. From Eq.~46! we obtain

MS> f N11VNE drS v

f 2D N

usinN21@F~r !#uuF8~r !u. ~50!

Sincev5RBf 2 we have
5-8
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MS> f N11RB
NVNE drusinN21@F~r !#uuF8~r !u

5 f N11RB
NVNE

0

nWp

duusinN21~u!u, ~51!

where in the last step we have definedu5F(r ), assuming
that F(r ) is a monotonic function.

The total volume of theSN sphere with radiusRB is given
by

VN~RB!5
2p (N11)/2

G„~N11!/2…
RB

N5RB
NVN11 . ~52!

Accordingly, we can write the bound on the mass as

MS>MSm[unWu f N11RB
NVN115unWu f N11VN~RB!.

~53!

This is a lower bound forN>2. On the other hand, we ca
write the chiral angle asF(r )5F̄(r /L)5F̄( r̄ ) with r̄
5r /L, L being the typical brane-Skyrmion size. Thus, t
mass functional can be written as

MS5 f N11VNLE dr̄H @L2r̄ 21RB
2sin2F̄~ r̄ !# (N21)/2

3F11
RB

2

L2 S dF̄

dr̄
D 2G 1/2

2~Lr̄ !N21J . ~54!

Taking the limitL→0 in the above integral, we find that it i
well defined andMS→MSm, i.e., zero-size brane-Skyrmion
saturate the bound. Therefore the Skyrmion mass isMS
5MSm and the Skyrmion is pointlike (Lm50) for N>2.

In the caseN51, the inequalities above cannot be us
and the only bound is the trivial one, i.e.,MS>0. It is pos-
sible to show from Eq.~54! that in this case the bound i
saturated in the opposite limitL→`. Accordingly, one-
brane-Skyrmions in one extra dimension would be mass
and nonlocalized.

Let us consider now the effect of the brane-induced c
vatureR term, i.e.,lÞ0. This curvature is given by

R52~N21!F ~N22!

r2 S 12
1

A~r ! D1
A8~r !

A2~r !rr8
G . ~55!

Following the same steps as in theN53 case, we obtain the
following results. ForlP(0,̀ ) andnW51 we haveLm.0
and the mass of the brane-Skyrmion is bounded in the ra

2p (N11)/2

G„~N11!/2…
f N11RB

N,MS

,2
2p (N11)/2

G„~N11!/2…
f N11RB

N

3S 11N~N21!
l

RB
2 f 2D . ~56!
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For l<0 the brane-Skyrmion collapses, i.e.,Lm50, and the
mass of the brane-Skyrmion can be computed as in thN
53 case to find

MS52
2p (N11)/2

G„~N11!/2…
f N11RB

NS 11N~N21!
l

RB
2 f 2D .

~57!

Finally, for l,2RB
2 f 2/N(N21), the brane-Skyrmion mas

is negative and not bounded from below.
The previous generalization is appropriate forN>3. For

the particular caseN52 it is possible to show that the cur
vature integrates to zero. This is because in this case we

R52
A8~r !

A2~r !rr8
~58!

and

g5A~r !r2~r8!2. ~59!

Then, taking into account that 1/AA vanishes wheneverr8 is
zero,

E
M2

d2xAgR52E
0

`

drE
0

2p

du
A8

A3/2
sgn~r8!5

p

AA
U

0

`

50.

~60!

Therefore we can conclude that the two-brane-Skyrm
is always pointlike. This can be understood by realizing t
in two dimensions the scalar curvature integral is related
the Euler number of the surface, which is a topological
variant and therefore size independent, i.e., unable to g
rise to a definite size for the brane-Skyrmion.

VII. INTERACTION LAGRANGIAN
AND FERMIONIC QUANTIZATION

In this section we will study the interaction between t
brane-Skyrmions and the branons. For simplicity we w
consider only the caseM75M43S3 with g̃mn5hmn so that
K.SU(2). Then we can follow the well-known steps fo
quantization of the standard chiral-dynamics Skyrmion@19#.
It is possible to split the isometry groupG as G5SU(2)L
3SU(2)R and H corresponds to the isospin grou
SU(2)L1R . The parametrization of the coset is usually do
in terms of an SU(2) matrixU(x) and the Skyrmion is writ-
ten as

U~x!5exp@ iF ~r !x̂ata#5cosF~r !1 i tax̂asinF~r !

56A12
p2

v2
1 i tax̂asinF~r !, ~61!

whereta are the SU~2! generators. From this expression w
can identify the Goldstone bosons fieldspa5vsinF(r)x̂a.
The quantization of the isorotations of the Skyrmion soluti
~which correspond to rotations in the compactified spaceB
5-9
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5S3 in our case! requires the well-known relationJ5I
whereJ and I are the spin and isospin indices. In princip
the allowed values ofJ are J50,1/2,1,3/2, . . . . As ex-
plained by Witten@13#, fermionic quantization is possibl
because of the Wess-Zumino-Witten~WZW! termkG with k
integer, which can be added to the Goldstone boson effec
action. Fork even the Skyrmion is a boson, but fork odd it
is a fermion. For the SU~2! case, the functionalG has no
dynamics and becomes a topological invariant related to
homotopy groupp4„SU(2)…5Z2 . Note that for a suitable
compactification of the space-time this is the relevant gro
for the Goldstone boson map. A map belonging to the n
trivial class could, for example, describe the creation o
Skyrmion–anti-Skyrmion pair followed by a 2p rotation of
the Skyrmion and finally a Skyrmion–anti-Skyrmion annih
lation. In the fermionic case this field configuration must
weighted with a21 in the Feynman path integral. For a
adiabatic 2p rotation of the Skyrmion around some axis, t
WZW term contributeskp to the action and (2)k to the
amplitude, which can be understood as an exp(i2pJ) factor.
Therefore both possibilities, bosonic and fermionic quanti
tion of the Skyrmion, are open. In principle, this result c
also be extended to the more general case ofSN brane-
Skyrmions considered in the last section, whereMD
5MN113SN with D52N11 sincepN11(SN)5Z2 for N
>3.

In order to study the low-energy interactions of the bra
Skyrmions with the branons, we have to obtain the appro
ate effective Lagrangian. This Lagrangian must beG(B)
symmetric and the brane-Skyrmion should be described
by a complex field, because of its topological charge. Th
for example, this field will be a complex scalarF for J50
or a Dirac spinorC for J51/2. For the scalar case the in
variant Lagrangian with the lowest number of derivativ
can be written as

Ls5aF* Fhab~p!]mpa]mpb. ~62!

The couplinga can be obtained from the large distance b
havior of the branon field in the brane-Skyrmion configu
tion. The differential equation forF(r ) obtained from the
Dirac-Nambu-Goto action in the mentioned limit is the Eu
equation:

r 2F9~r !12rF 8~r !22F~r !50. ~63!

The general solution of this equation is

F~r !5Ar1
B

r 2
. ~64!

Since we are interested in those solutions in whichF(r ) goes
to zero asr goes to infinity,A has to be identically zero. Thi
means that the general behavior ofF(r ) at large distances is

F~r !.
B

r 2
. ~65!

Therefore, in this limit,
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U~x!511 i
B

r 2
x̂ata1•••.11 iF ~r !x̂ata1•••. ~66!

Then we have

pa.v
B

r 2
x̂a, ~67!

and in particular for the Atiyah-Manton ansatz withnW51
we get B5L2p/2. By using the LagrangianLs it is also
possible to obtain the branon field produced by the bra
Skyrmion fieldF and by comparison with the above resu
we arrive at@21#

a52
8

3
p2v2B252

2

3
v2p4Lm

4 . ~68!

From this Lagrangian it is possible, for example, to comp
the cross sections for producing a brane-Skyrmio
antibrane-Skyrmion pair from two branons.

The fermionic case can be studied in a similar w
@21,19# although a consistent analysis would be more
volved, since it requires the quantization of the rotation
modes. This case will be considered elsewhere.

VIII. BRANON MASS EFFECTS

As shown in Sec. III, if the four-dimensional metric de
pends on the extra coordinates, i.e.,g̃mn(x,y), the branon
fields acquire a mass. In order to study the effect of
branon masses on the brane-Skyrmion, we will consider
simple caseB5S3 with l50 and the background metri
given in Eq.~17!. Remember that this metric corresponds
branon fields with equal masses:m254s8(0). In order to
simplify the calculation, we will define a new functions̃ as
follows: s̃(m2y2/4)5s(y2). With this definition we have
s̃(0)50 ands̃8(0)51. Using the spherical coordinates o
K defined in Eq.~24!, we can write the background metric a

g̃mn5F11s̃S m2RB
2

4
sin2~xK! D Ghmn , ~69!

where we have used the relation~7!. Imposing the Skyrme
ansatz in Eq.~26!, the induced metric on the brane can
written as

ds25gmndxmdxn5B~r !dt22A~r !dr2

2C~r !@du21sin2~u!df2#, ~70!

where

B~r !511s̃S m2RB
2

4
sin2@F~r !# D ,

A~r !5B~r !1RB
2@F8~r !#2,

C~r !5r 2B~r !1RB
2sin2@F~r !#. ~71!
5-10
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Following similar steps to those in the massless case,
possible to find a lower bound for the brane-Skyrmion ma
thus,

MS54p f 4E dr~C~r !AA~r !B~r !2r 2!

>4p f 4E drH RB
3sin2@F~r !#uF8~r !u

3F11s̃S m2RB
2

4
sin2@F~r !# D G1/2J

>4punWu f 4RB
3E

0

p

dusin2u

3F11s̃S m2RB
2

4
sin2uD G1/2

. ~72!

Also in the same way as in the massless case, this lo
bound coincides with the zero-size brane-Skyrmion ma
Therefore, the presence of the branon masses does not
the brane-Skyrmion stability and again we get a pointl
solution. The only difference from the massless case is
the brane-Skyrmion mass increases due to thes̃ contribution
in the last line of Eq.~72!.

If the branon mass is small, in 1/RB units, we can expand
s̃(j)5j1O(j2) in Eq. ~72! and obtain the result that th
dependence of the brane-Skyrmion mass onm is quadratic at
first order, for anys̃ function:

MS52unWup2f 4RB
3 S 11

3

16
RB

2m2D . ~73!

In the opposite limit, when the contribution of the bran
masses to the brane-Skyrmion mass is more important
the topological contribution, the brane-Skyrmion ma
strongly depends on the particular form of thes̃ function.
Thus one can find

MS54punWu f 4RB
3E

0

p

du sin2uF s̃S m2RB
2

4
sin2uD G1/2

.

~74!

Figure 6 shows these behaviors in the simple cases̃(j)5j.

IX. WRAPPED STATES

In this section we are going to study another kind of st
that can appear as topological excitations of the bran
These states correspond to brane configurations wrap
around the compactified spacesB which typically will be
assumed to beSN for MD5MN113B. A given wrapped
state is located at some well-defined point of the spaceMN .
The possibility of having this wrapped state is related to
homotopy grouppN(B)5Z, which is obviously the case fo
B5SN, but also for other spaces. In principle, wrapped sta
can be present even when there is no world brane, i.e., w
we do not have a brane extended along the spaceMN . How-
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ever, one of the most interesting cases occurs when
wrapped states are located at one point of the world br
and thus can be understood as world-brane excitations. N
that as long as the relevant homotopy group is againZ we
also have antiwrapped states, which correspond to nega
winding numbers. Thus a world brane can get excited
creating a wrapped-antiwrapped state at some given poin
Fig. 7 we show a single wrapped state at rest~left! and bra-
non excited. On the left of Fig. 2 we show a wrapped st
~circle! located at one point of the world brane~straight line!
for the caseN51.

To study in more detail the main properties of the
wrapped states we concentrate now on a four-dimensio
space-timeM4 embedded in a seven-dimensional bulk spa
that we are assuming to beM75M43B with M45R3M3
and B5S3. Now, unlike the brane-Skyrmion case, here t
finite energy requirement does not lead to any compactifi
tion of the world spaceM3 because the brane is going to b
wrapped aroundB, which is compact. However, for technica
reasons it is still useful to compactifyM3 to S3 by adding the
spatial infinite point. The wrapped brane produces sponta
ous breaking of theM7 isometry group, which we assume t
be G(M7)5G(R3M33S3)5G(R3S3)3G(M3) to the
G(R3S3)3H8 group, whereH8 is the isotropy group of
M3, which is assumed to be homogeneous. In the previ

FIG. 6. Brane-Skyrmion massMS as a function of the branon

massm in the cases̃(j)5j andnW51. The thick continuous line
represents the exact dependence; the dashed line, the approxim
behavior whenRBm!1; and the continuous line, the asymptot
behavior whenRBm@1.

FIG. 7. Wrapped brane with topological number 1 inM35M2

3S1. Its ground state is represented on the left and an excited s
on the right.
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expressions,R corresponds to the time coordinate. Thus,
coset space is defined byK85G(M3)/H8. In the simplest
caseM35S3 we haveK85SO(4)/SO(3)5S3 and thusK8
;B;S3. Therefore the low-energy brane excitations can
parametrized as

P:B→K8,

y→p~y!, ~75!

wherey are coordinates onB andp are coordinates onK8.
On the other hand, as long as the quotient spaceK8 andM3
are both topologically equivalent toS3, it is possible to de-
scribe the wrapped brane by giving its position on theM3
spaceXi as a function ofym, i.e., Xi5Xi(ym). In particular,
it is possible to choose the coordinates so that

Xi~y!5
1

f 2
da

i pa~y!1••• ~76!

locally. In the following we will useXi instead ofpa to label
the wrapped-brane points in terms of the brane parametey.
Let us now rearrange the coordinates for convenience in
der to haveYM5„t,ym,Xi(y)… wheret is the temporal coor-
dinatet5x0. The bulk metric is then

GMN5S g̃00 0

2g̃mn8 ~y!

0 2g̃i j ~x!

D
5S g̃rs8 ~y! 0

0 2g̃i j ~x!
D , ~77!

whereg̃rs8 is the background metric on the space-time ma
fold R3B, i.e., r ,s50,1,2,3. The induced metric on th
manifold can be evaluated in a way similar to that in t
brane-Skyrmion case. Thus in the ground state the indu
metric on the wrapped brane is given by the fou
dimensional components of the bulk space metric, i.e.,grs8

5g̃rs8 5Grs . When branons are present, the induced metri
given by

grs8 5g̃rs8 2] rX
i]sX

j g̃i j ~78!

and the square root of the induced metric determinant ca
written as

Ag85Ag̃8S 12
1

2
g̃8rsg̃i j ] rX

i]sX
j1••• D . ~79!

On the other hand, the action including the scalar curva
term is given by

SB52 f 4E
R3B

dtd3yAg81l f 2E
R3B

dtd3yAg8R8, ~80!
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whereR8 is the induced curvature on the wrapped brane a
the volume term is now finite for fixed time. For small exc
tations, the effective action becomes

Se f f@X#5Se f f
(0)@X#1Se f f

(2)@X#1••• ~81!

where the effective action for the branons up toO(p2) is
nothing but the nonlinear sigma model corresponding t
symmetry breaking patternG(M3)→H8:

Se f f
(0)@X#52 f 4E

R3B
dtd3yAg̃8, ~82!

Se f f
(2)@X#5

f 4

2 ER3B
dtd3yAg̃8g̃i j g̃8rs] rX

i]sX
j

1l f 2E
R3B

dtd3yAg̃8R̃8, ~83!

whereR̃8 is the background curvature on the wrapped bra
without excitations. Notice thati , j , . . . are M3 indices,
whereasr ,s, . . . are indices on theR3K8 manifold. This
effective action is again an expansion in powers ofp;] rX
;] rg8/ f , i.e., it is a low-energy expansion. For static co
figurations the mass, to the lowest order, is given from E
~80! again by

MW5 f 4E
B
d3yAg8. ~84!

The minimum is found forXi50:

MW52p2f 4RB
3 , ~85!

which is proportional to theB5S3 volume as expected. In
this case we have the brane wrapped aroundB with the mini-
mal possible brane volume. For small enoughl, adding the
curvature term does not change the picture very much:

MW5 f 4E
B
d3yAg82l f 2E

B
d3yAg8R8. ~86!

Since the scalar curvature on a three-sphere isR̃8526/RB
2 ,

we find

MW52p2f 4RB
3S 116

l

RB
2 f 2D . ~87!

Thus the brane is still wrapped and minimizing its volum
but we have a new contribution to the mass coming from
brane curvature, which coincides with theB curvature. This
result obviously applies to branes wrapped once aroundB.
The generalization to the cases where the brane is wrap
nWPZ times is straightforward, resulting just in a factor
unWu in the above equation.

It is very interesting to realize that the value obtained
the wrapped-state mass is exactly the same previously g
for the brane-Skyrmion mass in Table I, as the upper bo
for positive l and the exact value for negativel, provided
5-12
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l.2RB
2 f 2/6. The fact that our brane action is defined in

entirely geometrical way makes it possible to give a beaut
explanation of this fact. In order to have a graphical pictu
of this explanation it is useful to consider for a moment t
N51 case. As we have already noticed, the brane-Skyrm
is not stable in this case, but still we can ignore this fact a
use theN51 geometry as an abstract representation of
N53 case. Notice, however, that wrapped states are st
even forN51.

On the right of Fig. 2 we have represented a bra
Skyrmion corresponding to a positive value ofl. According
to our previous discussion the brane-Skyrmion has a non
size. This makes it possible to pass through the brane f
one side to the other, showing the topological defect as s
kind of hole in the brane. The mass of the brane-Skyrm
has volume and curvature contributions. As long as both
them are positive, the curvature term avoids the genera
of the singularities present in zero-size Skyrmions. Whel
goes to zero, the curvature contribution vanishes and
brane-Skyrmion collapses to zero size. The brane config
tion is then represented in the left side of Fig. 2. It is a
interesting that this picture could also represent a wrap
state~circle! plus a world brane~straight line!. Thus we re-
alize that the shape, size, and curvature are exactly the s
for both configurations and this is the reason why the mas
the brane-Skyrmion equals the wrapped-state mass in
case~notice that the brane-Skyrmion mass was defined as
corresponding brane-Skyrmion configuration mass minus
brane-world mass in order to have a finite value!, i.e., it is
proportional to theB volume. In spite of this, the two con
figurations are not the same because their topology is di
ent. The brane-Skyrmion is extended on both the compa
fied M3 space and the extra-dimensional spaceB, but the
wrapped states only around the extra dimension spacB.
Thus, brane-Skyrmions are classified according to the ho
topy classes of the mappingsP:M3→K, whereas wrapped
states are labeled by the number of times the brane w
around the extra dimensions. Another way to understand
they are different is to realize that the brane-Skyrmion
made of a single piece, unlike the wrapped configurati
which has two different pieces~the wrapped brane and th
world brane!. Thus they cannot be connected by a class
process, although quantum tunneling could in priciple p
duce transitions between one to the other. For small
negativel, the volume term still dominates but the curvatu
term produces a negative contribution to the mass. B
terms are proportional to the volume but the second on
also proportional to the curvature andl. This result clearly
applies to the brane-Skyrmion and wrapped brane state
multaneously. Finally, forl,2RB

2 f 2/6 the curvature term
dominates and it is energetically favored for them to wr
making the mass functional unbounded from below.

Now we can consider excitations~branons! of the
wrapped ground state. For small excitations the relevant
tion is

Se f f@X#5
f 4

2 ER3B
dtd3yAg̃8(

i 51

3

$] tX
i] tX

i

2g̃8mn]mXi]nXi%, ~88!
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which describes three free scalarsXi propagating on anS3

manifold. The corresponding spectrum is well known@22#
and we have for each field

Eni
5

1

RB
Ani

221. ~89!

The different states are labeled by (ni , j i ,mi), ni
51,2,3,4, . . . , j i50,1,2, . . . ,ni21, mi52 j i ,2 j i
11, . . . ,j i . For a givenni the degeneracy for each fre
scalar is

gni
5 (

j i50

ni21

~2 j i11!5ni
2 . ~90!

On the other hand, the different topological sectors are
beled by nW50,61,62,63, . . . and thecorresponding
masses~for moderate negativel) are

MW5unWu2p2f 4RB
3S 116

l

RB
2 f 2D , ~91!

so that the degeneracy in this case isgnW
52, corresponding

to the two different orientations.
All the above discussion can be extended without a

difficulty to the general caseMD5R3MN3SN with D
52N11 where we can haveN-brane wrapped states. In th
case we will have that the small oscillations over the grou
state can be described asN free scalars propagating on anSN

manifold. Then the energy spectrum for each field is

Eni
5

1

RB
A~ni21!~ni221N!, ~92!

whereni51,2,3,4, . . . ,i 51,2,3, . . . ,N. In this case, the de
generacy for each free scalar is

gni
5

~2ni1N23!~ni1N23!!

~N21!! ~ni21!!
. ~93!

The energy of the winding modes@pN(SN)5Z# for small
negative curvature parameter

MW5unWu
2p (N11)/2

G„~N11!/2…
f N11RB

NS 11N~N21!
l

RB
2 f 2D

~94!

and againgnW
52.

In addition to these states it is well known that, due to t
compact nature ofB, we always have the standard Kaluz
Klein spectrum for the particles or topologically trivia
branes~in the sense ofB) propagating along the compact
fied dimensions. For example, forN51, we have, in addition
to the one-branes~strings! wrapped onB5S1, the corre-
sponding Kaluza-Klein spectrum, which is given by

MKK5
un8u
RB

, ~95!
5-13
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wheren8PZ andgn852 except forg051. For the winding
states@p1(S1)5Z# we have

MW5unWu2pRBf 2. ~96!

Thus we recover the well-known stringT duality ~exchange
of Kaluza-Klein and winding modes! by making the replace
ments

2pRBf 2↔ 1

RB
,

nW↔n8. ~97!

Obviously, for higherN this duality is not expected to apply
since the degeneracy of the different kinds of state~Kaluza-
Klein and topological! does not fit.

X. SUMMARY AND CONCLUSIONS

In the brane-world scenario withf !MD ~brane tension
much smaller than the fundamental scale ofD-dimensional
gravity!, the relevant low-energy excitations of the brane c
respond to the Goldstone bosons~branons! associated with
the spontaneous breaking of the compactified ex
dimension isometries produced by the brane.

Assuming a very general form for the brane action~vol-
ume plus curvature term!, it is possible to derive in a sys
tematic way the low-energy effective Lagrangian for the b
nons, which has the typical form of a nonlinear sigma mo
with well-defined arbitrary higher-derivative terms.

Under suitable assumptions about the third homoto
group of the spaceB, this effective action gives rise to a ne
kind of state corresponding to topological defects of
brane~brane-Skyrmions! which are stable whenever the cu
vature parameterl is not too negative. The mass and the s
of the brane-Skyrmions can be computed in terms of
brane tension scale (f ), l, and the size of the spaceB (RB).
The brane-Skyrmions can be understood as some kin
holes in the brane that make it possible to pass through t
along theB space. This is because in the core of the to
logical defect the symmetry is restablished. In the case c
sidered here the broken symmetry is basically the tran
tional symmetry along the extra dimensions. Thus the cor
the brane-Skyrmion plays the role of a window through
brane, which is a nice geometrical interpretation of this o
ject. Forl50 or negative the brane-Skyrmion collapses
zero size and that window is closed.

Brane-Skyrmions can in principle be quantized as bos
or fermions by adding a Wess-Zumino-Witten-like term
the branon effective action. This is a very interesting pos
bility since it provides a completely new way of introducin
fermions on the brane. The low-energy effective Lagrang
describing the interactions between branons and bra
Skyrmions can also be obtained in a systematic way. T
opens the door for the study of the possible phenomeno
of these states at the Large Hadron Collider~LHC! currently
under construction at CERN.

The effects on the brane-Skyrmions of a possible sm
branon mass due to explicit breaking of the translational
02600
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variance by the bulk metric have also been considered.
We have studied another different set of states co

sponding to a brane wrapped on the extra-dimension spaB
~wrapped states! and we have analyzed their connection
the brane-Skyrmion states.

Finally, we have also extended our study to the case
higher dimensions where similar results hold. We underst
that this could have some relevance in the context of pure
theory where solitonic five-branes are present which co
wrap around five-dimensional spheres.

We understand that the brane-Skyrmions and wrap
states studied in this paper are quite interesting objects~both
from the theoretical and perhaps from a more phenome
logical point of view! and thus we think that they deserv
further research. Work is in progress in this direction.
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APPENDIX

For small brane excitations in a background metricg̃mn ,
the effective action~3! can be expanded in branon field d
rivatives as follows:

Se f f@p#5Se f f
(0)@p#1Se f f

(2)@p#1Se f f
(4)@p#1••• ~A1!

where

Se f f
(0)@p#52 f 4E

M4

d4xAg̃. ~A2!

The O(p2) contribution is the nonlinear sigma model corr
sponding to a symmetry breaking patternG→H plus the
background scalar curvature term:

Se f f
(2)@p#5

1

2EM4

d4xAg̃hab]mpa]mpb1l f 2E
M4

d4xAg̃R̃.

~A3!

We are assuming that the branon derivative terms are of
same order as those with metric derivatives. The fourth-or
term is obtained by expanding both the metric determin
and the induced scalar curvature in branon fields:

Se f f
(4)@p#5

21

8 f 4EM4

d4xAg̃habhgd~]mpa]mpb]npg]npd

22]mpa]npb]npg]mpd!

1
l

2 f 2EM4

d4xAg̃hab]mpa]npb~2R̃mn2R̃g̃mn!

1
l

f 2EM4

d4xAg̃Dm$]npaDj]
hpbhab

3~ g̃jng̃mh2g̃jhg̃nm!%, ~A4!
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where

DmTed . . . st . . .
ab . . . nr . . .[D̃mTed . . . st . . .

ab . . . nr . . . 1]mpgD̂gTed . . . st . . .
ab . . . nr . . .

~A5!

and Ted . . . st . . .
ab . . . nr . . . is an arbitrary tensor with indices in bot

spacesM4 andK. HereD̃r is the covariant derivative inM4

with Christoffel symbols (G̃rm
n ) corresponding tog̃mn , and

D̂g refers to the covariant derivative inK with Christoffel
symbols (Ĝgb

a ) defined fromhab(p). Thus, for example,
B
s.

D

s.

v
D
.

D

02600
Dr~]mpa!5]r~]mpa!2G̃rm
n ]npa1Ĝgb

a ]rpg]mpb.
~A6!

Notice thatm,n, . . . areM4 indices, whereasa,b, . . .
are indices on theK manifold. Let us emphasize again th
the above effective action is an expansion in branon fields~or
metric! derivatives overf 2 and not an expansion in power
of p fields, i.e., it is a low-energy effective action. The la
term in Eq.~A4! is a total divergence, and therefore it do
not contribute to the branon equations of motion.
d,
@1# T. Kaluza, Sitzungsber. K. Preuss. Akad. Wiss.K1, 966
~1921!; O. Klein, Z. Phys.37, 895 ~1926!.

@2# N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett.
429, 263~1998!; V.A. Rubakov and M.E. Shaposhnikov, Phy
Lett. 125B, 136 ~1983!.

@3# N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Rev.
59, 086004~1999!; I. Antoniadis, N. Arkani-Hamed, S. Di-
mopoulos, and G. Dvali, Phys. Lett. B436, 257 ~1998!; T.
Banks, M. Dine, and A. Nelson, J. High Energy Phys.06, 014
~1999!.

@4# A. Perez-Lorenzana, hep-ph/0008333.
@5# D. Bailin and A. Love, Rep. Prog. Phys.50, 1087~1987!.
@6# G. Giudice, R. Rattazzi, and J.D. Wells, Nucl. Phys.B544, 3

~1999!; E.A. Mirabelli, M. Perelstein, and M.E. Peskin, Phy
Rev. Lett.82, 2236~1999!.

@7# M. Bando, T. Kugo, T. Noguchi, and K. Yoshioka, Phys. Re
Lett. 83, 3601~1999!; J. Hisano and N. Okada, Phys. Rev.
61, 106003~2000!; R. Contino, L. Pilo, R. Rattazzi, and A
Strumia, J. High Energy Phys.06, 005 ~2001!.

@8# R. Sundrum, Phys. Rev. D59, 085009~1999!.
@9# T. Kugo and K. Yoshioka, Nucl. Phys.B594, 301 ~2001!; P.

Creminelli and A. Strumia,ibid. B596, 125 ~2001!.
@10# J.M. Cornwall, D.N. Levin, and G. Tiktopoulos, Phys. Rev.

10, 1145~1974!; B.W. Lee, C. Quigg, and H. Thacker,ibid. 16,
.

1519 ~1977!.
@11# G. Dvali, I.I. Kogan, and M. Shifman, Phys. Rev. D62,

106001~2000!.
@12# T.H.R. Skyrme, Proc. R. Soc. LondonA260, 127~1961!; Nucl.

Phys.31, 556 ~1962!.
@13# E. Witten, Nucl. Phys.B223, 422 ~1983!; B223, 433 ~1983!.
@14# A. Dobado and A.L. Maroto, Nucl. Phys.B592, 203 ~2001!.
@15# S. Weinberg, Physica A96, 327 ~1979!; J. Gasser and H.

Leutwyler, Ann. Phys.~N.Y.! 158, 142 ~1984!.
@16# A. Dobado and M.J. Herrero, Phys. Lett. B228, 495 ~1989!;

233, 505 ~1989!.
@17# A. Dobado, A. Go´mez-Nicola, A. L. Maroto, and J. R. Pela´ez,

Effective Lagrangians for the Standard Model~Springer-
Verlag, Heidelberg, 1997!.

@18# G. Dvali, G. Gabadadze, and M. Porrati, Phys. Lett. B485,
208 ~2000!.

@19# G.S. Adkins, C.R. Nappi, and E. Witten, Nucl. Phys.B228,
552 ~1983!.

@20# M.F. Atiyah and N.S. Manton, Phys. Lett. B222, 438 ~1989!.
@21# M.G. Clements and S.H. Henry Tye, Phys. Rev. D33, 1424

~1986!; A. Dobado and J. Terro´n, ibid. 45, 3090~1992!.
@22# N.D. Birrel and P.C.W. Davies,Quantum Fields in Curved

Space-time~Cambridge University Press, Cambridge, Englan
1982!.
5-15


