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Membranes wrapped on holomorphic curves
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We construct supergravity solutions dual to the twisted field theories arising Mhgr@ory membranes
wrap holomorphic curves in Calabi-Yaufolds. The solutions are constructed in an Abelian truncation of
maximal D=4 gauged supergravity and then uplifted @c=11. For fourfolds and fivefolds we find new
smooth AdS/conformal field theory examples and for all cases we analyze the nature of the singularities that
arise. Our results provide an interpretation of certain charged topological AdS black holes. We also present the
generalized calibration two-forms for the solutions.
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I. INTRODUCTION cycle fixed and implies that only the local geometry of the
holomorphic curve in the Calabi-Yau manifold is relevant
An interesting generalization of the AdS/conformal field [3]. In the IR, at energies small compared to the energy scale
theory (CFT) correspondencgl] is the construction of su- set by the inverse size of the two-cycle, the theory reduces to
pergravity solutions dual to the field theories that arise ora one-dimensional supersymmetric quantum mechanics. The
branes wrapping supersymmetric cycles. To preserve supesolutions we obtain describe the flow from the dual
symmetry it is necessary for the field theory to be twisted inAdS,-type UV region to the gravity dual descriptions of the
the sense that there is an identification of the spin connectiolR physics. For twistings corresponding to holomorphic
on the cycle with certain extern&-symmetry gauge fields curves in Calabi-Yau four- and fivefolds, we find an IR fixed
[2]. It was argued ih3] that this implies that dual supergrav- point with geometry AdSx3, when the curvature of the
ity solutions can be found in the appropriate gauged supetwo-cycle? is negative. Lifted td =11, these solutions are
gravity and then, ideally, uplifted to 10 or 11 dimensions.dual to a superconformal quantum mechanics and thus pro-
This two-step approach enables one to find highly nontriviavide new AdS/CFT examples. Interestingly, for the fivefold
supergravity solutions and has been further developed in @ase, the full lifted solution describing the flow from the UV
number of paperf4—11]. Here we will extend these inves- is an embedding into 11 dimensions of the supersymmetric
tigations by considering the theories that arise wherttopological” charged D=4 AdS black hole off14]. Our
M-theory membranes wrap two-cycles in Calabi-Yau two-,analysis thus indicates the proper interpretation of this solu-
three-, four- and fivefolds. tion. In addition we are able to lift the rotating generalization
For unwrapped membranes recall that there is a decowf the D=4 black hole discussed ifiL4] to obtain a new
pling limit in which one obtains & =3 N=8 super com-  supersymmetri® =11 solution that describes supersymmet-
formal field theory (SCFT) that is dual toM theory on ric waves on the wrapped membranes.
AdS,;x S', with the SO(8) isometries of the seven-sphere  Since theD =11 solutions describe the geometry arising
corresponding to the SO(8 R symmetries of the SCF[L]. ~ when membranes wrap the two-cycleand also preserve
When a membrane wraps a two-cydein a Calabi-Yau supersymmetry, on general grounds we would expect that a
n-fold it will preserve some supersymmetry if the two-cycle probe membrane wrapping the same cyElewill also be
is holomorphic. The relevant twisting mentioned above thensupersymmetric. Given that our backgrounds are static and
depends on the structure of the normal bundle of the cycle ilhave nonvanishing four-forms, this means that our solutions
the n-fold, as we shall discuss. The twistings we shall con-should admit generalized Kéer calibration two-formg15],
sider involve only the gauge fields of the maximal Abelianwhich we shall explicitly present.
subgroup U(1} of SO(8). As a consequence we are able  The solutions presented here for wrapped membranes and
to construct the solutions in a U(4)runcated version of in related work for other wrapped branes go well beyond the
D=4 N=8 gauged supergravityl2] and then use the re- intersecting brane solutions found using the “harmonic func-
sults of[13] to uplift to find D=11 solutions. tion rule” [16—18 or the “generalized harmonic function
The gauged supergravity solutions have an Atd§e re-  rule” [19,20. In[21,22 a set of more general Bogomol'nyi-
gion, specified more precisely below, that describes the U\Prasad-Sommerfiel(BPS equations were derived for cer-
physics of the decoupled =3 twisted field theory arising tain smoothed intersections of five-branes corresponding to
on the wrapped membranes. The appropriate decouplinfjve-branes wrapped on Riemann surfaces and some solu-
limit involves lettingl ,;— 0 while keeping the volume of the tions were found. Further solutions were presented in
[23,24. This approach was generalized to obtain BPS equa-
tions for five-branes wrapped on Klar four-cycles in six

*Email address: j.p.gauntlett@gmw.ac.uk dimensions and also to membranes wrapped on Riemann sur-
"Email address: n.kim@gmw.ac.uk faces in[25] where the connection with generalized calibra-
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coordinates that recasts our solutions into the form considwhere under thew and g indices ¢,; is symmetric and
ered in[25]. Similar coordinate transformations also exist for ¢g,= @15, G24= P13 ANd Po3= 14, While ¢11= do= a3
the wrapped five-brane solutions constructe@7ih = ¢4,=0. TheX, are then given by

The plan of the rest of the paper is as follows. In the next
section we recall the Abelian truncation N&=8 gauged su-
pergravity and how it relates ©© =11 supergravity. We then X, =exp—a,- ¢/2), (2.6)
present and analyze the BPS equations for membranes wrap-
ping two-cycles in Calabi-Yau two-, three-, four- and five-
folds. Section IV presents the generalizechiéa calibration  \yhere
and the coordinate transformations mentioned in the last
paragraph. Section V concludes.

a,=(1,1,0), a,=(1,-1,-1),

Il. S” REDUCTION AND U (1)* GAUGED SUPERGRAVITY

The S reduction of 11-dimensional supergravity gives _ .
rise tod=4, N=8 gauged SO(8) supergravity. We will use az=(-1,1-1), a,=(-1,-1,1. 2.7
the reduction ansatz presented [itB] which retains only
U(1)* gauge fields. The 11-dimensional metric is given by
As discussed irf13], this is the bosonic action af=4

2 _ N=2 gauged U(1) supergravity with the three axions set to
— A203 ~13 Irq, 24,2 2
ds’=A%ds;+ EZA ; Xo Tdut pe(ddat26A)] zero. Thus the reduction ansatz can be used to erdbet
(2.1  solutions with vanishing axions into solutions of 11-
dimensional supergravity. The same bosonic action can also
wheredsf1 is the four-dimensional metrick, andA,, with be obtained by truncatinh=8 gauged SO(8) supergravity
a=1,...,4, arescalars and one-forms, respectively, on theas in[12]. [This is where the peculiar index structuredf,
four-dimensional space, antl=3 ,X,u?. The coordinates comes from: these fields really parametrize a self-dual four-
we and ¢, parametrize a seven-sphere: the are con- form under S@8).] The correspondingy=8 fermionic su-
strained to satisfE ,u2=1 and O< ¢,< 2 are angles. The Persymmetry transformations can be written as follows.
four scalar fieldsX,,, satisfyingX;X,XsX,=1, deform the  First, note that th(N;S felzgwions consist of the gravitimév'ﬂ
round sphere metric generically breaking the SO(8) symmeand the spin-half fields™" wherel, J andK are SU(8)
try to U(1)* parametrized by rotations in the four angtgs. indices. Given the ansatz for the scalar and vector fields, the
In addition these directions are twisted by the four U(1)index! is equivalent to the pairc,i) wherea=1,...,4 as
gauge fieldsA,, . above andi=1,2. With this notation the variations of the
The four-form field strength is given in terms of the samegravitini are given by[12]
fields via

1 wio a N
G=12e2 (Xopg—AXo) e = 2 X, ™ dX ANk Y =V,e '—Ze§ Quphp e’
a e «a

2\/E e E -a -43/2 ai

_ 24 2 + e “F7%y,E

= §a) X, 2dp?/\(dp,+2eA)\*F,, (2.2 Nl r

where * is th_e Hodge dual operator on the four-dimensional + _1 > Qaﬁeéﬁ-J)IZFB’VWM yﬂeiiewi, (2.9
space andg, is the corresponding volume form. V2 ‘B

Reducing with this ansatz leads to a four-dimensional
theory with bosonic action
where(} .z is the matrix

1 1 . - -
L=—\-g R—E(M))Z—ZE faPF2-V|, (2.3
21 “ 1 1 1 1
where 111 1 -1 -1
Q== 1 -1 1 -1 (2.9
V= —4e?(cosh¢,,+ coshg,3+coshey,). (2.4
1 -1 -1 1

Here we have introduced a new basis for the constrained

scalar fieldsX,, in terms of a vector of scalar fields, s o
For the spin-1/2 fermions, one findssy® A 7%

b=(b12, P13, 610, (25 =06x" 6Pl + syP M 587+ sy Pl 57 €N with [12]

026003-2



MEMBRANES WRAPPED ON HOLOMORPHIC CURVES PHYSICAL REVIEW B5 026003

the above supergravity truncation keeps only Abelian gauge

Sy Pl=— x V4, op€’ €P) fields U(1Y'C SO(8). Wethus want to identify each of the
2 U(1) gauge fields in SO({® with the U(1) spin connection,
o and set the remaining U(1) gauge fields to zero. Note that
—e, S, 05, SL,s€ 25 92l Pl the restriction to Abelian gauged supergravity meansnfor
b2

=2, that we are considering twistings corresponding to non-
Lo generic Calabi-Yau r{+1)-folds for which the normal
+ 2 Q8 P P (2.10  bundle to the two-cycle is restricted to be only U(1) rather
° than the full Uf). A familiar Calabi-Yau threefold example
is provided by the resolved conifold.
The supergravity ansatz is completed by specifying scalar
fields consistent with the SO(2 X SO(8—2n) split. In each

The tensorX .4, selects a particulay depending onv and
B, and is defined by

l€agy| for a,B,y#1 case this is achieved by writing in terms of a single scalar
“ R field .
s - dgy  for a=1, (2.1 Requiring the fermionic variation®.8) and(2.10 to van-
aBy Suy for =1, ' ish with this ansatz leads to a set of BPS first-order differen-

tial equations for the metric functiorfisandg and the scalar
field ¢. These will be presented in the subsequent subsec-
tions. In all cases, we find that the Killing spina® satisfy

0 otherwise.

1. BPS EQUATIONS
3 _ai_ ai _ Afl2 _ai

Our strategy for constructing supersymmetiie- 11 so- Ve € =€ %, @33

lutions describing wrapped membranes is to first construcl hare Gal

four-dimensional BPS solutions of EqR.3) such that the

supersymmetry variation®.8) and(2.10 vanish. These are

then uplifted toD =11 using ansat2.1) and(2.2). For ori-

entation note that the vacuum AdSolution

is a constant spinor ang® points in the radial
dlrectlon and is defined using the orthonormal frame

eM=(efdt, %!, e 2 efdr), (3.9)

with (e',e?) giving an orthonormal frame fok. The first
(—dt2+dx2+dy?+dr?), (3.1  condition breaks half of the supersymmetry. In each case,
2e‘r there are then different additional restrictions, breaking more
supersymmetry. The second condition comes from rthe
with the gauge fields and the scalars set to zero, uplifts teomponent of the gravitino variatiof2.8). Otherwise the
AdS;x ', the supergravity dual of the SCFT for flat un- Killing spinors are independent of coordinates. As in previ-

ds?=

wrapped membranes. ous studie$3-7], it is necessary that the metric on the two-
To describe wrapped membranes, we take the ansatz fexcle is Einstein, which means that it has constant curvature.
the four-dimensional metric to be The cycle is either a sphereé,Syperbolic spacéi? or flat.
The Ricci tensor is given by
d?=e(—dt?+dr?)+9dsX(3), (3.2
R(X)ap=19ab, (3.9

whereds?(2) is the metric on the two-cycl®. The ansatz

for the gauge fields is determined as follows. First recall thatvherea andb are indices or®, and the volume of the cycle
the normal bundle to a holomorphic two-cycle in a Calabi-is normalized so that=1 for 3 =5?, 1=0 for 3 =R? and

Yau (n+1)-fold is U(n)CSO(2n). Moreover, for the |=—1 for3=H?. Since theD=4 Killing spinors are inde-
Calabi-Yau manifold to have only Sdft 1) holonomy, the pendent of the coordinates of the cycle, we can also take
U(1) spin connection ok must be identified with the diag- quotients of these spaces while preserving supersymmetry. In
onal U(1) factor in Uf). When a membrane probe wraps particular> can be a compact Riemann surface of any genus.
the two-cycle, the SO(8R symmetry of the normal direc- Before discussing the different cases let us comment on
tions of an unwrapped membrane in flat space is naturallyhe flat case] =0. The fact that we are considering gauge
split into SO(h) X SO(8—2n), reflecting the split of the fields corresponding to Calabi-Yau manifolds with nonge-
directions normal to the two-cycle within the Calabi-Yau neric normal bundles means thatdifis flat then the whole
manifold and the rest. The structure of the normal bundle ohormal bundle is in fact trivial. Thus the Calabi-Yau mani-
the Calabi-Yau manifold then automatically requires an idenfold is locally just flatC®"*, and in all cases we are simply
tification of the U(1) spin connection on the cycle with the considering the embedding of a flat M2-brane in flat space.
corresponding diagonal U(QU(n) CSO(2n) part of theR  The corresponding supergravity solution is then very well
symmetry: this is what is meant by “twisting.” The upshot of known and can be written in familiar form in terms of a
these observations is that in the supergravity ansatz the onlyarmonic function. For this case solutions to our BPS equa-
nonvanishing SO(8) gauge fields should lie intions simply correspond to a choice of harmonic function
U(n)C SO(2n) and we must identify the U(1) spin connec- preserving SO(8) X SO(8—2n) symmetry in the eight
tion of % in Eq. (3.2 with the diagonal U(1ZU(n). Now transverse dimensions. In fact it is straightforward to solve
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thel =0 BPS equations exactly by introducing isotropic co- &°
ordinates as in the Calabi-Yau fivefold case discussed below 3

As a consequence we shall not dwell on tke0 case in the B3 IR
following. Note that these solutions are the direct analogues? -5
of the D3-brane solutions given [i26]. ,

A. Calabi-Yau twofold 1.5

’ Uv AdS
For this case there is a natural split of SO(8) into :

SO(2)x SO(6). Thenonvanishing gauge fields are in the 1!
SO(2) gauge group and so we have 05 e —m - oo oo

I /G/S

2
Fi= Vol(%), Fp=F3=F,=0, (3.6 N

17 2e

. FIG. 1. Behavior of the flows for an’Sycle in a Calabi-Yau
where VoI) is the volume two-form on the two-cycle. The 0 fold.

scalar fields are given b= (¢, b, ) so thatX,=e 3%72
Xo=Xa=X,=e??

For a two-cycle in a Calabi-Yau twofold, we expect to
preserve eight supercharges. Demanding that the supersy
metry variations are zero, we find that, in addition to Eq.
(3.3), the Killing spinore® must satisfy

by one onR X 3. This limit specifies the UV behavior of the
membrane wrapped an, and is universal in the sense that,
05 we will see, it is present independent of the dimension of
the Calabi-Yau manifold and of the curvatureXbf The lead-

ing and subleading terms i are interpreted as either the
insertion of a boundary operator in the UV theory, due to the
curvature of the two-cycle, or the expectation value of this
operator[27].

,y12€ai:€ije"‘j for =1, ... 4, (3.7

where 1 and 2 are tangent space indices inddirections, ) . . -
as defined by the orthonormal frani@.4). Together these The behavior of th(ze solutions ;clre |Ilustrgted in F|g§. 1 and
conditions do indeed give eight independent Killing spinors 2 for the case of =S° and> =H?, respectively, for differ-

The variations then vanish provided we satisfy the pp<ent values ofC in Eqg.(3.9). These are interpreted as describ-
ing the flows from the UV region to gravity duals of the IR

equations A :
physics. In each case, we have noted whether the resulting
e | singularities encountered in the IR are of good or bad type
e '/ =— ——(e 3424 3¢P2) 4 312729 according to the criteria df3]. Recall that for “good” sin-
242 2\2e gularities the time component of the uplifted 11-dimensional
(11)

metric gy goes to zero for the strong form of “good” and
P ® o seny g 301220 to a constant for the weak form. For a “bad” singularg”
=55 ) e : is unbounded. The physical idea behind the criteria of good
singularities is that one expects that, as one goes to the IR,
fixed proper energies should correspond to smaller or nonin-
e/ =— i(e*?"/”z— e??) + I_e3q5/2729. (3.9 creasing energies in the dual field theory. The good singulari-
J2 J2e ties should correspond to different physical branches of the
dual IR quantum mechanics theory and the bad singularities
These equations can be partially integrated to give
0

(=]

| 1/2 |
9t P=C| 2897 ¢+ ;) I 5, (39 >

4 4

whereC is a constant. It is also straightforward to determine .7

the full asymptotic behavior of the solutions. In different .

limits, different terms in the BPS equatiof3.8) dominate. 3 P

For example, for large?9, the final terms proportional tb P UV AdS,

are small and the leading behavior, valid at smalk given 2 L7

by I/
1 &

ds’~ ! [—dt?+dr?+ds(3)] (3.10
2622 ' . GS IR | , , , , , . 29
0.5 1 1.5 2 2.5 3 3.5 4°
with ¢~cr+(1—3c?)r?, for an arbitrary constartt. This is FIG. 2. Behavior of the flows for akl2 cycle in a Calabi-Yau

almost AdS except that the metric oR'? has been replaced twofold.
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to nonphysical solutions. We shall return briefly to this in the e?
final section. 2.5
Explicitly, for both 3 =S? and3 =H? there is a bad sin- BS IR
gularity when é9—0 and € —«, where the BPS equations  »
are dominated by the final terms proportional .t6T his limit
is also universal, present whatever the dimension of the; ¢
Calabi-Yau manifold and the value of However, in all
cases, only foB, = S? is there a flow from the UV AdStype
region to this singularity.For either value of there is also a
good singularity when both?® and ¢ tend to zero, where
one can neglect the?® terms in the BPS equations. Fbr 0.5 k//‘

=1, the asymptotic solution has the form

UV AdS,

e?d
0.5 1 1.5 2 2.5 3
2 2\ 12 EPRT _ _ .
42— — 7 42+ 4e 7z FIG. 3. Behavior of the flows for an?ycle in a Calabi-Yau
ey Zz_zg threefold.
X[dZ2+ (22— 23)ds(3)], e |
e—ff/:__(e—¢/2+e¢/2)+ e¢/2—2g,
2 2e
22_22 1/2
e¢=( — 0) , (3.11) o |
e 'z e—fgr:__(e—¢/2+e¢/2)_ e¢/2—2g’
J2 2\2e

wherez, is a constant, such thay=0 and the solution is
valid only in leading order withe—z, from above. Forl

I
~f — BI2_ pl2 B12-2g
=—1 the solution has the same form but with—z3 re- e V2e(e e+ \/Eee : (3.14
placed byz5—z?, with z>0 and z—z, from below. In
terms of the paramete€ in Eq. (3.9), for X=§?, solutions To analyze these equations, one can introduce the vari-

with C<—\1/€? flow to the good singularity, while those gplesx=e?9"%, F=e&%* %2 which then satisfy
with C>—/1/€? flow to the bad singularity. FoB =H?,
whatever the value o€ all solutions flow to the good sin- dF F

ularity. — 3.1
g Y dx  2Fx+1/e? .19

B. Calabi-Yau threefold It is possible to solve this equation exactly, but the resulting

For this case, there is a natural split of SO(8) intoform is not very illuminating. It is anyway again straightfor-
SO(4)xSO(4). The diagonal U(1) gauge fields of ward to determine the asymptotic behavior of the solutions.
U(2)CSO(4) are nonvanishing and so we take For large % we have the AdStype region(3.10 de-

scribing the UV physics, now witlp~cr+1r2, wherec is
I an arbitrary constant. We have illustrated the flows to the IR
Fi=Fo=- 4_eV°|(E)’ Fs=F4=0, (312 and the resulting types of singularities in Figs. 3 and 4. As

P

where, as before, VoX) is the volume two-form on the

=Y

two-cycle. The scalar fields are given Ey: (¢,0,0), so that 5
X;=X,=€" %2 and X;=X,=e%2 We expect a theory with

four supercharges, and indeed find that setting the fermionic 3

variations to zero requires, in addition to E§.3), the pro- > s UV AdS

jections ‘
2
ylzeai =éled for a=1,2, ! j
. 0.5

Em:O for 0[23,4. (313) GS IR 2g
0.5 1 1.5 2 2.5 3 €

The variations then vanish provided we satisfy the BPS FIG. 4. Behavior of the flows for akl? cycle-in a Calabi-Yau
equations threefold.
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before, there are bad singularities in the regions of lafyje e e?
and small & where the BPS equatioti3.14) are dominated 3

by the terms proportional th There is a good singularity BS IR
only for 3 =H?, in the region of small €and &% where one  2-°
can neglect the® terms in Eq.(3.14). The asymptotic so- 5
lution is given by
1.5 UV AdS,
ro| Y2
dsz=(—) e 2 —dt?+dr’+e lrds?(2)], 1
r \_
o5}
12
Mo —2er
e?= a € (3.16 29
r 1 2 3 4 5
Wherero is a constant. FIG. 5. Behavior of the flows for anZS:ycIe in a Calabi-Yau

fourfold.

C. Calabi-Yau four-fold . . . . .
region, there is also, for the first time, an AdSH? fixed

In this case the SO(8) splits into SOBHO(2). The  point. Explicitly, there is an exact solution of E€3.19
only nonzero gauge fields are in the diagonal U(1) ingiven by
U(3)CSO(6) and so we have

1

! d=— > (—de+dr? ds?(H?
Fi=Fp=F3=— s Wol(X), F,=0, (3.17 _W(_ o+ Ir)whzﬁ(92 (H9),

with Vol(X) the volume two-form ork.. The scalar fields are et= 3. (3.20
given by ¢=(¢,¢,— ¢), so thatX;=X,=Xz=e *2 and
X,=€**2. Requiring the fermionic variations to vanish im- Tpis provides an example of “flow across dimensions” from

plies in addition to Eq(3.3) the projections a three-dimensional UV theory to a superconformal quantum
ot i1 mechanic_s_ IR fixed point. _ . N
Ve =¢€le, In addition, there are two regions of bad singularities at
both small 8% and large &. One is the universal bad singu-
ef=0 for a=2,3,4, (3.18 larity where the terms proportional toin Eqg. (3.19 domi-

nate. The other corresponds to a region where trel & #/2
which gives a theory with two supercharges, as expected. [FEmSs are proportional and dominate. There is also a region
addition, we find the BPS equations at small 8% and ¢ where one can neglect th&’€ terms and

which gives a good singularity. The asymptotic solution is

et = (3e’¢’2+e3"”2)+—| e?729, re 3
2 2\2e ds?=—| —dt+dr?+ 7 r2ds’(3)|,
r
e
—fNr— — ¢l2 b2y _ Pbl2—2g ]
e fg'= 3¢ 24 ¢ e , e
g 22 ( ) 2./2e 5
e—fd)r __ i(e—qs/z_ ,33¢/2)Jr I ebl2-29. (3.19 4
J2 3./2e
3HW
A\
As before it is straightforward to analyze the asymptotic AN
behavior. For large @ there is the UV Ad$type region 2 T~

(3.10 now with ¢~cr+ (31 +3c?)r? wherec is an arbitrary
constant. Fo, = S? there is only one other asymptotic re- 1
gion at small & and large &, where there is a bad singular-  |zg 1r

ity and the BPS equations are dominated by the terms pro 55 " NG 5 29
portional tol. The general flows are shown in Fig. 5. ) ‘ ) ‘
For 3=H? the situation is considerably more compli- FIG. 6. Behavior of the flows for ahi2 cycle in a Calabi-Yau

cated, as shown in Fig. 6. Aside from the UV Ag§pe  fourfold.
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9e2r8 =—1 can be generalized to include rotation while maintain-
ef= ar (3.2)  ing supersymmetry. In our conventions it is given by
. A 2 2
wherer is a constant. ds2= — = 2[dt+asmh20d<;/>]2 P gy Z_daz
p Ay 0
D. Calabi-Yau fivefold .
_ _ _ A, sini?o , )

For this case the diagonal U(1) of U@BO(8) is the —, 5 ladt=(r"+a%)de¢]*, 3.29

only nonvanishing gauge field giving rise to =p
F1=F2=Fs=F4= 8eVO|(E) (3.2 p?=r?+a’costty, E=1+2e%a?
where Vol®) is the volume two-form oix.. The scalar fields 1 2
are all zero so thaX;=1. The projections on the Killing A =r? \2er- 2 (1-2e%a?%)
spinors are exactly the same as in the Calabi-Yau fourfold 2v2er
case (3.3, (3.18, leading to preservation of two super- _ 2.2
charges. The BPS equations then read Ay=1+2ea’costto), (3.28
and
I
—fer —2
e ff'=—\2 e 2, 1+2e%a?)coshd
2\2e Alz—( ) [adt—(r’+a%)d¢]. (3.29
_ 2
8eZp
_ An interesting feature of this solution is that it is regular
—\2e (3.23

\/_ e . provided that the rotation parametesatisfiesa< \2e. We
_ . o _ can use this four-dimensional solution to obtain a new
We can find the general solution by first introducing a new=11 supersymmetric solution by uplifting using the ansatz

radial variable defined by (2.1) and(2.2). ThisD =11 solution can be interpreted as the
gravity dual corresponding to supersymmetric waves on
d_P:ezf (3.24) wrapped membranes. The bound on the angular momentum
dr ' ' parameter is reminiscent of the “stringy exclusion principle”

observed if28] and it would be interesting to explore this in
We then obtain, after absorbing an integration constant intgnore detail.

the definition of the coordinate
IV. GENERALIZED CALIBRATIONS

2 -2
( J2ep+ ) dt?+| \2ep+ ) dp? Our D=11 solutions correspond to the near-horizon ge-
\/_ ep \/_ep ometry of membranes wrapping holomorphic two-cycles in a
+p2dS(3). (3.2 Calabi-Yau f+1)-fold. Being supersymmetric we expect

that a probe membrane will be static and supersymmetric if it
Whenl=1 we obtain a bad IR singularity in the IR. When Wraps the same two-cycle, or more precisely a holomorphic

| = — 1 the solution interpolates from the Ag§/pe regionto  CYCle in the same homology class. In the languag¢15]

the superconformal AdS< H? fixed point in the IR specified IS means that we expect that tbe=11 solutions admit
by generalized Khaler two-form calibration«). A static, super-

symmetric probe brane then minimizes the pullback(bf
integrated over the two-cycle. The calibrati@ncan be con-
(—dt?+dr?)+ —dSZ(H ). (3.2  structed fromD =11 Killing spinorse via Qyn= €l yne.
Let us give an explicit expression fér for our solutions
and show that it is indeed a calibration. First it is useful to
introduce a slightly nonobviou® =11 orthonormal frame

ds’=

822

This IR fixed point is the gravity dual of a superconformal
guantum mechanics.

We note that wheh= —1 the full solution(3.25 is the eP=A3efdt,
supersymmetric magnetically charged “topological” AdS o
black hole discussed ifl4]. The term topological refers to el=A13g0el,
the unusual feature that black holes in AdS space can admit o
spatial sections that are flat or have constant negative curva- e?=AY3e9?, (4.7
ture. Here we see that this solution can be interpreted, after
being uplifted toD =11, as the gravity dual corresponding to era=A" " e'™X¥2y dr—2e X Ydu,],
wrapped membranes in a Calabi-Yau fivefold. It was also
observed in[14] that the four-dimensional solution with efe=\2e 1A MOX M2 (Ao, + 2€A,),
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where, as beforee! ande? define an orthonormal frame for

— —-1/2 —
the two-cycle. We then have, in all cases, pa=— 5 HaXq efeelomhrm,
Q=AY elNe?+ D ela/\etal. 4.2 2
= pi=— ?Mixi—l/ZefIZ, (46)
For the directionsa with vanishing gauge fields we find
d[AY%e’er«/\e?«]=0. Using this and the relevant BPS where a=1,...n labels the gauged directions arid
equations, we can show that =1,...,4-n the ungauged ones. One can then check using

the BPS equations that the frartie1) can be written as
d0=i,G, (4.3
ePa= A~ Vo= f2glf=9ng,
wherek=d/dt. This is one of the conditions satisfied by the é
generalized calibratiofand in fact follows from the spino-

rial constructioh. In addition, we note tha€ naturally de- efa=— A"V 12179y (dgpat2eAy),
fines an almost complex structudeon the ten-dimensional
spatial part of our solution. In the orthonormal frandesim- ePi:A—1/6e—f/2dpi

ply pairse! with e and e”« with e®«. Formally it can be

defined by raising one index d using the rescaled _ e
=10 spatial metric: efi=— A" Ppdg;. (4.7

- The D=11 metric(2.1) is then given b
ds?2=AY3f| elel+ e2e?+ D, elaglat >, ebug?e|. 23 g y

(4.4 ds%lz — A2B2Tqt24 A~ W3- f+2(f-g)/n
We have checked that it is in fact integralglgithout using "
the BPS equationsand so the ten-dimensional spatial part of X azl [dp+ pa(dat2eA,)?]+A29dSA(S)
our solutions in fact describes a complex manifold. This and
Eq. (4.3 establish thaf) is indeed a generalized calibration 4-n
[15]. Note that, in addition, as is easy to see in the orthonor- +A71’3eff21 (dp?+pZde?), (4.9
=

mal frame, the spatial part of our metric is Hermitian with
respect to this complex structure.
An alternative approach to finding solutions correspondwith the three-form potential
ing to membranes wrapping holomorphic curves in Calabi-
Yau (n+1)-folds was discussed if25]. Building on the
work of [21] and exploiting the existence of a generalized Apy= —dt/\
calibration an ansatz for the solutions was presented. The
BPS equations were derived but no solutions were given.
The ansatz has the form +Aef+2gV0|(2)} 4.9

n
- ez(ffg)/ng1 padpa/\(dd,+2eA,)

ds?=—H " 2"3dt2+ H("~3)Rg, odyAdyB + H"35,;dx'd X,

Comparing with Eq(4.5 we can then identify

Az=*H 1dtN\o, (4.5

— A —1ng—3f/n
wherey” with A=1,...,J+2 are real coordinates on a H=4""e (4.10
complex f+1)-fold with a Hermitian metrig,g (the ana-
logue of the original Calabi-Yau manifoldand x' with 1~ @n
=1,...,8-2n denote the remaining transverse directions.
The two-formw is related to the Hermitian metrigag by "
wap=J%a0cp WhereJ is the complex structure on then ( gAdeAdyBIA”né””{ez(fg)/"E [dpi+pa(dea
+1)-fold. Bothgag andw,g are functions of* andx' as is at
H. Supersymmetry then puts various constraintggg and
H, for instance implying that for fixea' the metricgug is +2eA,)?]+Aefm29d2(3)
Kahler.

To connect this work to our solutions, we would like to
show that they can be written in the fori#.5). Starting with  Given the arguments above that the spatial part of our solu-
our metric ansatz2.1), it is useful to introduce new coordi- tions describes a complex manifold with a Hermitian metric,
nates, we see thagug is indeed Hermitian. Since our solution is

. (4.1)
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supersymmetric, preserving 2 of the supersymmetry for and exploring some of their geometry. We now conclude by
n=1, 2, 3, 4 and 2* for n=5, we expect thaH andg,g  briefly discussing the interpretation of the flows from the UV
satisfy the conditions given if25]. One should note that in to the IR from the dual field theoryguantum mechanig¢s
general our ansat2.1) and (2.2) is not equivalent to the perspective. The motion of the wrapped membranes trans-
ansatz(4.5). It was only for the particular BPS solutions that verse to the two-cycle and tangent to the Calabi-Yau corre-

we were able to rewrite one as the other. spond to possible “Higgs branches” while motion that is also
transverse to the Calabi-Yau corresponds to “Coulomb
V. DISCUSSION branches.” Classically we do not expect Higgs branches for

) the case of membranes wrapping the two-sphere, as the cor-

We have presented BPS equations and constructed solkssponding scalar fields of the membrane theory, after twist-
tions of D =11 supergravity that are dual to the twisted theo-jng, will not have zero modes. On the other hand we do
ries arising on membranes wrapping holomorphic curves irsxpect them for the case of membranes wrapped on Riemann
Calabi-Yaun-folds. For the fourfolds and fivefolds we found surfaces with genug greater than 1. Naive|y then one would
exact conformal fixed points when the membrane wraps @xpect good singularities in the IR of the supergravity solu-
Riemann surface of genus>1. It would be interesting to  tjons corresponding to each physical branch. For the case of
determine the physical reason for such fixed points beingnembranes wrapping a two-sphere we thus interpret the
present only for these two cases. We also analyzed the BRgod singularities that arise for the Calabi-Yau twofold case
equations numerically and analyzed the types of singularitys corresponding to the Coulomb branch. For the remaining
encountered in the IR. For the fivefold case we managed tggzses withl=1 we see only bad singularities in the IR,
find the most general solutions and it would be nice if theywhich suggests that the Coulomb branches are not accessible
same could be achieved for the other cases. in the limits we are considering. For the=—1 cases we

In Sec. IV we elucidated some of the structure of thegways see a branch of good singularities which could corre-
solutions by presenting the generalized calibrations. In addispond to either Coulomb or Higgs branches or both. We ex-
tion a new set of coordinates was introduced that conneciSect that any conformal fixed point should appear at the
the SO|uti0nS W|th Other WOI’k in the “terature. It iS ||ke|y that junction between the two branches. However' for the four-
the analysis of this section can be applied to other supergrayp|q case we do have a fixed point but with good singularities
ity solutions describing wrapped branes that are obtained ugnly on one side. This suggests that in fact again only one
ing the technique of3]. _ ) ~branch is accessible in these solutions. It would naturally be

For the case of Calabi-Yau fivefolds when the scalar f'e|d$nteresting to investigate the gravity/field theory correspon-
are vanis.hing, we noted that the fo'ur—dimensional solutiorjence for the flows we have presented beyond these simple
interpolating from the UV Ad$ region to the IR Ad$  opservations. Perhaps the cleanest direction is to focus on the
X H, fixed point is in fact the “topological AdS black hole” syperconformal quantum mechanics at the IR fixed points
of [14]. For the Calabi-Yau fourfolds we numerically dem- that we found for membranes wrapping Riemann surfaces

onstrated a flow from the UV AdSregion to the IR AdS  wijth g>1 in Calabi-Yau fourfolds and fivefolds.
X H, fixed point. This can be similarly considered to be a

“topological AdS black hole” with scalar hair. By analogy ACKNOWLEDGMENTS
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