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Membranes wrapped on holomorphic curves

Jerome P. Gauntlett,* Nakwoo Kim,† Stathis Pakis,‡ and Daniel Waldram§
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We construct supergravity solutions dual to the twisted field theories arising whenM-theory membranes
wrap holomorphic curves in Calabi-Yaun-folds. The solutions are constructed in an Abelian truncation of
maximal D54 gauged supergravity and then uplifted toD511. For fourfolds and fivefolds we find new
smooth AdS/conformal field theory examples and for all cases we analyze the nature of the singularities that
arise. Our results provide an interpretation of certain charged topological AdS black holes. We also present the
generalized calibration two-forms for the solutions.
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I. INTRODUCTION

An interesting generalization of the AdS/conformal fie
theory ~CFT! correspondence@1# is the construction of su
pergravity solutions dual to the field theories that arise
branes wrapping supersymmetric cycles. To preserve su
symmetry it is necessary for the field theory to be twisted
the sense that there is an identification of the spin connec
on the cycle with certain externalR-symmetry gauge fields
@2#. It was argued in@3# that this implies that dual supergrav
ity solutions can be found in the appropriate gauged su
gravity and then, ideally, uplifted to 10 or 11 dimension
This two-step approach enables one to find highly nontriv
supergravity solutions and has been further developed
number of papers@4–11#. Here we will extend these inves
tigations by considering the theories that arise wh
M-theory membranes wrap two-cycles in Calabi-Yau tw
three-, four- and fivefolds.

For unwrapped membranes recall that there is a dec
pling limit in which one obtains aD53 N58 super com-
formal field theory ~SCFT! that is dual toM theory on
AdS43S7, with the SO(8) isometries of the seven-sphe
corresponding to the SO(8)R R symmetries of the SCFT@1#.
When a membrane wraps a two-cycleS in a Calabi-Yau
n-fold it will preserve some supersymmetry if the two-cyc
is holomorphic. The relevant twisting mentioned above th
depends on the structure of the normal bundle of the cycl
the n-fold, as we shall discuss. The twistings we shall co
sider involve only the gauge fields of the maximal Abeli
subgroup U(1)4 of SO(8)R . As a consequence we are ab
to construct the solutions in a U(1)4 truncated version of
D54 N58 gauged supergravity@12# and then use the re
sults of @13# to uplift to find D511 solutions.

The gauged supergravity solutions have an AdS4-type re-
gion, specified more precisely below, that describes the
physics of the decoupledD53 twisted field theory arising
on the wrapped membranes. The appropriate decoup
limit involves lettingl pl→0 while keeping the volume of the
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cycle fixed and implies that only the local geometry of t
holomorphic curve in the Calabi-Yau manifold is releva
@3#. In the IR, at energies small compared to the energy s
set by the inverse size of the two-cycle, the theory reduce
a one-dimensional supersymmetric quantum mechanics.
solutions we obtain describe the flow from the du
AdS4-type UV region to the gravity dual descriptions of th
IR physics. For twistings corresponding to holomorph
curves in Calabi-Yau four- and fivefolds, we find an IR fixe
point with geometry AdS23S when the curvature of the
two-cycleS is negative. Lifted toD511, these solutions are
dual to a superconformal quantum mechanics and thus
vide new AdS/CFT examples. Interestingly, for the fivefo
case, the full lifted solution describing the flow from the U
is an embedding into 11 dimensions of the supersymme
‘‘topological’’ charged D54 AdS black hole of@14#. Our
analysis thus indicates the proper interpretation of this so
tion. In addition we are able to lift the rotating generalizati
of the D54 black hole discussed in@14# to obtain a new
supersymmetricD511 solution that describes supersymm
ric waves on the wrapped membranes.

Since theD511 solutions describe the geometry arisi
when membranes wrap the two-cycleS and also preserve
supersymmetry, on general grounds we would expect th
probe membrane wrapping the same cycleS will also be
supersymmetric. Given that our backgrounds are static
have nonvanishing four-forms, this means that our soluti
should admit generalized Ka¨hler calibration two-forms@15#,
which we shall explicitly present.

The solutions presented here for wrapped membranes
in related work for other wrapped branes go well beyond
intersecting brane solutions found using the ‘‘harmonic fun
tion rule’’ @16–18# or the ‘‘generalized harmonic function
rule’’ @19,20#. In @21,22# a set of more general Bogomol’nyi
Prasad-Sommerfield~BPS! equations were derived for cer
tain smoothed intersections of five-branes correspondin
five-branes wrapped on Riemann surfaces and some s
tions were found. Further solutions were presented
@23,24#. This approach was generalized to obtain BPS eq
tions for five-branes wrapped on Ka¨hler four-cycles in six
dimensions and also to membranes wrapped on Riemann
faces in@25# where the connection with generalized calibr
tions was exploited. In order to clarify the connection of th
alternative approach with ours we will present a change
©2001 The American Physical Society03-1
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GAUNTLETT, KIM, PAKIS, AND WALDRAM PHYSICAL REVIEW D 65 026003
coordinates that recasts our solutions into the form con
ered in@25#. Similar coordinate transformations also exist f
the wrapped five-brane solutions constructed in@7#.

The plan of the rest of the paper is as follows. In the n
section we recall the Abelian truncation ofN58 gauged su-
pergravity and how it relates toD511 supergravity. We then
present and analyze the BPS equations for membranes w
ping two-cycles in Calabi-Yau two-, three-, four- and fiv
folds. Section IV presents the generalized Ka¨hler calibration
and the coordinate transformations mentioned in the
paragraph. Section V concludes.

II. S7 REDUCTION AND U „1…4 GAUGED SUPERGRAVITY

The S7 reduction of 11-dimensional supergravity giv
rise tod54, N58 gauged SO(8) supergravity. We will us
the reduction ansatz presented in@13# which retains only
U(1)4 gauge fields. The 11-dimensional metric is given b

ds25D2/3ds4
21

2

e2 D21/3(
a

Xa
21@dma

21ma
2~dfa12eAa!2#,

~2.1!

whereds4
2 is the four-dimensional metric,Xa andAa , with

a51, . . . ,4, arescalars and one-forms, respectively, on t
four-dimensional space, andD5(aXama

2 . The coordinates
ma and fa parametrize a seven-sphere: thema are con-
strained to satisfy(ama

251 and 0<fa,2p are angles. The
four scalar fieldsXa , satisfyingX1X2X3X451, deform the
round sphere metric generically breaking the SO(8) sym
try to U(1)4 parametrized by rotations in the four anglesfa .
In addition these directions are twisted by the four U(
gauge fieldsAa .

The four-form field strength is given in terms of the sam
fields via

G5A2e(
a

~Xa
2ma

22DXa!e42
1

A2e
(
a

Xa
21* dXa`dma

2

2
2A2

e2 (
a

Xa
22dma

2`~dfa12eAa!`* Fa , ~2.2!

where * is the Hodge dual operator on the four-dimensio
space ande4 is the corresponding volume form.

Reducing with this ansatz leads to a four-dimensio
theory with bosonic action

L5
1

2k2
A2gFR2

1

2
~]fW !222(

a
eaW a•fW Fa

22VG , ~2.3!

where

V524e2~coshf121coshf131coshf14!. ~2.4!

Here we have introduced a new basis for the constrai
scalar fieldsXa in terms of a vector of scalar fieldsfab

fW 5~f12,f13,f14!, ~2.5!
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where under thea and b indices fab is symmetric and
f345f12, f245f13 and f235f14, while f115f225f33
5f4450. TheXa are then given by

Xa5exp~2aW a•fW /2!, ~2.6!

where

aW 15~1,1,1!, aW 25~1,21,21!,

aW 35~21,1,21!, aW 45~21,21,1!. ~2.7!

As discussed in@13#, this is the bosonic action ofd54
N52 gauged U(1)4 supergravity with the three axions set
zero. Thus the reduction ansatz can be used to embedd54
solutions with vanishing axions into solutions of 1
dimensional supergravity. The same bosonic action can
be obtained by truncatingN58 gauged SO(8) supergravit
as in@12#. @This is where the peculiar index structure offab
comes from: these fields really parametrize a self-dual fo
form under SO(8).# The correspondingN58 fermionic su-
persymmetry transformations can be written as follow
First, note that theN58 fermions consist of the gravitinicm

I

and the spin-half fieldsx IJK where I, J and K are SU(8)
indices. Given the ansatz for the scalar and vector fields,
index I is equivalent to the pair (a,i ) wherea51, . . . ,4 as
above andi 51,2. With this notation the variations of th
gravitini are given by@12#

dcm
a i5¹mea i22e(

b
VabAb,me i j eb j

1
e

4A2
(
b

e2aW b•fW /2gmea i

1
1

2A2
(
b

VabeaW b•fW /2Fb,nlgnlgme i j ea j , ~2.8!

whereVab is the matrix

V5
1

2 S 1 1 1 1

1 1 21 21

1 21 1 21

1 21 21 1

D . ~2.9!

For the spin-1/2 fermions, one findsdxa i b j gk

5dxa gkdabe i j 1dxb a idbge jk1dxg b jdgaeki with @12#
3-2
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dxa b i52
1

A2
gm]mfabe i j eb j

2e(
gd

SabgVgde2aW d•fW /2e i j eb j

1(
d

VadeaW d•fW /2Fd mngmneb i . ~2.10!

The tensorSabg selects a particularg depending ona and
b, and is defined by

Sabg55
ueabgu for a,b,gÞ1,

dbg for a51,

dag for b51,

0 otherwise.

~2.11!

III. BPS EQUATIONS

Our strategy for constructing supersymmetricD511 so-
lutions describing wrapped membranes is to first const
four-dimensional BPS solutions of Eq.~2.3! such that the
supersymmetry variations~2.8! and~2.10! vanish. These are
then uplifted toD511 using ansatz~2.1! and ~2.2!. For ori-
entation note that the vacuum AdS4 solution

ds25
1

2e2r 2
~2dt21dx21dy21dr2!, ~3.1!

with the gauge fields and the scalars set to zero, uplifts
AdS43S7, the supergravity dual of the SCFT for flat un
wrapped membranes.

To describe wrapped membranes, we take the ansat
the four-dimensional metric to be

ds25e2 f~2dt21dr2!1e2gds2~S!, ~3.2!

whereds2(S) is the metric on the two-cycleS. The ansatz
for the gauge fields is determined as follows. First recall t
the normal bundle to a holomorphic two-cycle in a Cala
Yau (n11)-fold is U(n),SO(2n). Moreover, for the
Calabi-Yau manifold to have only SU(n11) holonomy, the
U(1) spin connection ofS must be identified with the diag
onal U(1) factor in U(n). When a membrane probe wrap
the two-cycle, the SO(8)R symmetry of the normal direc
tions of an unwrapped membrane in flat space is natur
split into SO(2n)3SO(822n), reflecting the split of the
directions normal to the two-cycle within the Calabi-Ya
manifold and the rest. The structure of the normal bundle
the Calabi-Yau manifold then automatically requires an id
tification of the U(1) spin connection on the cycle with th
corresponding diagonal U(1),U(n),SO(2n) part of theR
symmetry: this is what is meant by ‘‘twisting.’’ The upshot o
these observations is that in the supergravity ansatz the
nonvanishing SO(8) gauge fields should lie
U(n),SO(2n) and we must identify the U(1) spin conne
tion of S in Eq. ~3.2! with the diagonal U(1),U(n). Now
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the above supergravity truncation keeps only Abelian ga
fields U(1)4,SO(8). Wethus want to identify each of then
U(1) gauge fields in SO(2n) with the U(1) spin connection
and set the remaining U(1) gauge fields to zero. Note t
the restriction to Abelian gauged supergravity means, fon
>2, that we are considering twistings corresponding to n
generic Calabi-Yau (n11)-folds for which the normal
bundle to the two-cycle is restricted to be only U(1) rath
than the full U(n). A familiar Calabi-Yau threefold example
is provided by the resolved conifold.

The supergravity ansatz is completed by specifying sc
fields consistent with the SO(2n)3SO(822n) split. In each
case this is achieved by writingfW in terms of a single scala
field f.

Requiring the fermionic variations~2.8! and~2.10! to van-
ish with this ansatz leads to a set of BPS first-order differ
tial equations for the metric functionsf andg and the scalar
field f. These will be presented in the subsequent subs
tions. In all cases, we find that the Killing spinorsea i satisfy

g3ea i5ea i , ea i5e f /2e0
a i , ~3.3!

where e0
a i is a constant spinor andg3 points in the radial

direction and is defined using the orthonormal frame

em5~e fdt,egē1,egē 2,e fdr !, ~3.4!

with (ē1,ē 2) giving an orthonormal frame forS. The first
condition breaks half of the supersymmetry. In each ca
there are then different additional restrictions, breaking m
supersymmetry. The second condition comes from thr
component of the gravitino variation~2.8!. Otherwise the
Killing spinors are independent of coordinates. As in pre
ous studies@3–7#, it is necessary that the metric on the tw
cycle is Einstein, which means that it has constant curvat
The cycle is either a sphere S2, hyperbolic spaceH2 or flat.
The Ricci tensor is given by

R~S!ab5 lgab , ~3.5!

wherea andb are indices onS and the volume of the cycle
is normalized so thatl 51 for S5S2, l 50 for S5R2 and
l 521 for S5H2. Since theD54 Killing spinors are inde-
pendent of the coordinates of the cycle, we can also t
quotients of these spaces while preserving supersymmetr
particularS can be a compact Riemann surface of any gen

Before discussing the different cases let us comment
the flat case,l 50. The fact that we are considering gau
fields corresponding to Calabi-Yau manifolds with nong
neric normal bundles means that ifS is flat then the whole
normal bundle is in fact trivial. Thus the Calabi-Yau man
fold is locally just flatCd11, and in all cases we are simpl
considering the embedding of a flat M2-brane in flat spa
The corresponding supergravity solution is then very w
known and can be written in familiar form in terms of
harmonic function. For this case solutions to our BPS eq
tions simply correspond to a choice of harmonic functi
preserving SO(2n)3SO(822n) symmetry in the eight
transverse dimensions. In fact it is straightforward to so
3-3
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GAUNTLETT, KIM, PAKIS, AND WALDRAM PHYSICAL REVIEW D 65 026003
the l 50 BPS equations exactly by introducing isotropic c
ordinates as in the Calabi-Yau fivefold case discussed be
As a consequence we shall not dwell on thel 50 case in the
following. Note that these solutions are the direct analog
of the D3-brane solutions given in@26#.

A. Calabi-Yau twofold

For this case there is a natural split of SO(8) in
SO(2)3SO(6). Thenonvanishing gauge fields are in th
SO(2) gauge group and so we have

F152
l

2e
Vol~S!, F25F35F450, ~3.6!

where Vol(S) is the volume two-form on the two-cycle. Th
scalar fields are given byfW 5(f,f,f) so thatX15e23f/2,
X25X35X45ef/2.

For a two-cycle in a Calabi-Yau twofold, we expect
preserve eight supercharges. Demanding that the super
metry variations are zero, we find that, in addition to E
~3.3!, the Killing spinorea i must satisfy

g12ea i5e i j ea j for a51, . . . ,4, ~3.7!

where 1 and 2 are tangent space indices in theS directions,
as defined by the orthonormal frame~3.4!. Together these
conditions do indeed give eight independent Killing spino
The variations then vanish provided we satisfy the B
equations

e2 f f 852
e

2A2
~e23f/213ef/2!1

l

2A2e
e3f/222g,

e2 fg852
e

2A2
~e23f/213ef/2!2

l

2A2e
e3f/222g,

e2 ff852
e

A2
~e23f/22ef/2!1

l

A2e
e3f/222g. ~3.8!

These equations can be partially integrated to give

e2g1f5CS 2e2g2f1
l

e2D 1/2

1e2g2f1
l

e2 , ~3.9!

whereC is a constant. It is also straightforward to determi
the full asymptotic behavior of the solutions. In differe
limits, different terms in the BPS equations~3.8! dominate.
For example, for largee2g, the final terms proportional tol
are small and the leading behavior, valid at smallr, is given
by

ds2'
1

2e2r 2
@2dt21dr21ds2~S!#, ~3.10!

with f'cr1( l 2 1
2 c2)r 2, for an arbitrary constantc. This is

almost AdS4 except that the metric onR1,2 has been replace
02600
-
w.

s

m-
.

.
S

by one onR3S. This limit specifies the UV behavior of the
membrane wrapped onS, and is universal in the sense tha
as we will see, it is present independent of the dimension
the Calabi-Yau manifold and of the curvature ofS. The lead-
ing and subleading terms inf are interpreted as either th
insertion of a boundary operator in the UV theory, due to
curvature of the two-cycle, or the expectation value of t
operator@27#.

The behavior of the solutions are illustrated in Figs. 1 a
2 for the case ofS5S2 andS5H2, respectively, for differ-
ent values ofC in Eq. ~3.9!. These are interpreted as descri
ing the flows from the UV region to gravity duals of the I
physics. In each case, we have noted whether the resu
singularities encountered in the IR are of good or bad ty
according to the criteria of@3#. Recall that for ‘‘good’’ sin-
gularities the time component of the uplifted 11-dimensio
metric g00

(11) goes to zero for the strong form of ‘‘good’’ an
to a constant for the weak form. For a ‘‘bad’’ singularityg00

(11)

is unbounded. The physical idea behind the criteria of go
singularities is that one expects that, as one goes to the
fixed proper energies should correspond to smaller or no
creasing energies in the dual field theory. The good singul
ties should correspond to different physical branches of
dual IR quantum mechanics theory and the bad singular

FIG. 1. Behavior of the flows for an S2 cycle in a Calabi-Yau
two fold.

FIG. 2. Behavior of the flows for anH2 cycle in a Calabi-Yau
twofold.
3-4
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to nonphysical solutions. We shall return briefly to this in t
final section.

Explicitly, for both S5S2 andS5H2 there is a bad sin-
gularity when e2g→0 and ef→`, where the BPS equation
are dominated by the final terms proportional tol. ~This limit
is also universal, present whatever the dimension of
Calabi-Yau manifold and the value ofl. However, in all
cases, only forS5S2 is there a flow from the UV AdS4-type
region to this singularity.! For either value ofl there is also a
good singularity when both e2g and ef tend to zero, where
one can neglect the ef/2 terms in the BPS equations. Forl
51, the asymptotic solution has the form

ds252S z22z0
2

4e21z
D 1/2

dt21S 4e21z

z22z0
2D 1/2

3@dz21~z22z0
2!ds2~S!#,

ef5S z22z0
2

e21z
D 1/2

, ~3.11!

wherez0 is a constant, such thatz0>0 and the solution is
valid only in leading order withz→z0 from above. Forl
521 the solution has the same form but withz22z0

2 re-
placed byz0

22z2, with z0.0 and z→z0 from below. In
terms of the parameterC in Eq. ~3.9!, for S5S2, solutions
with C<2Al /e2 flow to the good singularity, while thos
with C.2Al /e2 flow to the bad singularity. ForS5H2,
whatever the value ofC all solutions flow to the good sin
gularity.

B. Calabi-Yau threefold

For this case, there is a natural split of SO(8) in
SO(4)3SO(4). The diagonal U(1) gauge fields o
U(2),SO(4) are nonvanishing and so we take

F15F252
l

4e
Vol~S!, F35F450, ~3.12!

where, as before, Vol(S) is the volume two-form on the
two-cycle. The scalar fields are given byfW 5(f,0,0), so that
X15X25e2f/2 andX35X45ef/2. We expect a theory with
four supercharges, and indeed find that setting the fermio
variations to zero requires, in addition to Eq.~3.3!, the pro-
jections

g12ea i5e i j ea i for a51,2,

ea i50 for a53,4. ~3.13!

The variations then vanish provided we satisfy the B
equations
02600
e

ic

S

e2 f f 852
e

A2
~e2f/21ef/2!1

l

2A2e
ef/222g,

e2 fg852
e

A2
~e2f/21ef/2!2

l

2A2e
ef/222g,

e2 ff852A2e~e2f/22ef/2!1
l

A2e
ef/222g. ~3.14!

To analyze these equations, one can introduce the v
ablesx5e2g2f, F5eg1f/2 which then satisfy

dF

dx
5

F

2FAx1 l /e2
. ~3.15!

It is possible to solve this equation exactly, but the result
form is not very illuminating. It is anyway again straightfo
ward to determine the asymptotic behavior of the solutio

For large e2g we have the AdS4-type region~3.10! de-
scribing the UV physics, now withf'cr1 lr 2, wherec is
an arbitrary constant. We have illustrated the flows to the
and the resulting types of singularities in Figs. 3 and 4.

FIG. 3. Behavior of the flows for an S2 cycle in a Calabi-Yau
threefold.

FIG. 4. Behavior of the flows for anH2 cycle-in a Calabi-Yau
threefold.
3-5
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before, there are bad singularities in the regions of largef

and small e2g where the BPS equations~3.14! are dominated
by the terms proportional tol. There is a good singularity
only for S5H2, in the region of small ef and e2g where one
can neglect the ef/2 terms in Eq.~3.14!. The asymptotic so-
lution is given by

ds25S r 0

r D 1/2

e22er@2dt21dr21e21r ds2~S!#,

ef5S r 0

4r D
1/2

e22er, ~3.16!

wherer 0 is a constant.

C. Calabi-Yau four-fold

In this case the SO(8) splits into SO(6)3SO(2). The
only nonzero gauge fields are in the diagonal U(1)
U(3),SO(6) and so we have

F15F25F352
l

6e
Vol~S!, F450, ~3.17!

with Vol(S) the volume two-form onS. The scalar fields are
given by fW 5(f,f,2f), so thatX15X25X35e2f/2 and
X45e3f/2. Requiring the fermionic variations to vanish im
plies in addition to Eq.~3.3! the projections

g12e1i5e i j e1i ,

ea i50 for a52,3,4, ~3.18!

which gives a theory with two supercharges, as expected
addition, we find the BPS equations

e2 f f 852
e

2A2
~3e2f/21e3f/2!1

l

2A2e
ef/222g,

e2 fg852
e

2A2
~3e2f/21e3f/2!2

l

2A2e
ef/222g,

e2 ff852
e

A2
~e2f/22e3f/2!1

l

3A2e
ef/222g. ~3.19!

As before it is straightforward to analyze the asympto
behavior. For large e2g there is the UV AdS4-type region

~3.10! now with f'cr1( 1
3 l 1 1

2 c2)r 2 wherec is an arbitrary
constant. ForS5S2 there is only one other asymptotic re
gion at small e2g and large ef, where there is a bad singula
ity and the BPS equations are dominated by the terms
portional tol. The general flows are shown in Fig. 5.

For S5H2 the situation is considerably more comp
cated, as shown in Fig. 6. Aside from the UV AdS4-type
02600
In

o-

region, there is also, for the first time, an AdS23H2 fixed
point. Explicitly, there is an exact solution of Eq.~3.19!
given by

ds25
1

6A3e2r 2
~2dt21dr2!1

1

2A3e2
ds2~H2!,

ef5A3. ~3.20!

This provides an example of ‘‘flow across dimensions’’ fro
a three-dimensional UV theory to a superconformal quant
mechanics IR fixed point.

In addition, there are two regions of bad singularities
both small e2g and large ef. One is the universal bad singu
larity where the terms proportional tol in Eq. ~3.19! domi-
nate. The other corresponds to a region where thel and e2f/2

terms are proportional and dominate. There is also a reg
at small e2g and ef where one can neglect the e3f/2 terms and
which gives a good singularity. The asymptotic solution i

ds25
r 0

3

r 3 F2dt21dr21
3

4
r 2ds2~S!G ,

FIG. 5. Behavior of the flows for an S2 cycle in a Calabi-Yau
fourfold.

FIG. 6. Behavior of the flows for anH2 cycle in a Calabi-Yau
fourfold.
3-6
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ef5
9e2r 0

3

8r
, ~3.21!

wherer 0 is a constant.

D. Calabi-Yau fivefold

For this case the diagonal U(1) of U(4),SO(8) is the
only nonvanishing gauge field giving rise to

F15F25F35F452
l

8e
Vol~S!, ~3.22!

where Vol(S) is the volume two-form onS. The scalar fields
are all zero so thatXi51. The projections on the Killing
spinors are exactly the same as in the Calabi-Yau four
case ~3.3!, ~3.18!, leading to preservation of two supe
charges. The BPS equations then read

e2 f f 852A2e1
l

2A2e
e22g,

e2 fg852A2e2
l

2A2e
e22g, ~3.23!

We can find the general solution by first introducing a n
radial variable defined by

dr

dr
5e2 f . ~3.24!

We then obtain, after absorbing an integration constant
the definition of the coordinatet,

ds252S A2er1
l

2A2er
D 2

dt21S A2er1
l

2A2er
D 22

dr2

1r2ds2~S!. ~3.25!

When l 51 we obtain a bad IR singularity in the IR. Whe
l 521 the solution interpolates from the AdS4 type region to
the superconformal AdS23H2 fixed point in the IR specified
by

ds25
1

8e2r 2
~2dt21dr2!1

1

4e2
ds2~H2!. ~3.26!

This IR fixed point is the gravity dual of a superconform
quantum mechanics.

We note that whenl 521 the full solution~3.25! is the
supersymmetric magnetically charged ‘‘topological’’ Ad
black hole discussed in@14#. The term topological refers to
the unusual feature that black holes in AdS space can a
spatial sections that are flat or have constant negative cu
ture. Here we see that this solution can be interpreted, a
being uplifted toD511, as the gravity dual corresponding
wrapped membranes in a Calabi-Yau fivefold. It was a
observed in@14# that the four-dimensional solution withl
02600
ld

to

l

it
a-
er

o

521 can be generalized to include rotation while mainta
ing supersymmetry. In our conventions it is given by

ds252
D r

J2r2
@dt1a sinh2udf#21

r2

D r
dr21

r2

Du
du2

1
Du sinh2u

J2r2
@adt2~r 21a2!df#2, ~3.27!

with

r25r 21a2cosh2u, J5112e2a2,

D r5r 2FA2er2
1

2A2er
~122e2a2!G 2

,

Du5112e2a2cosh2u, ~3.28!

and

A152
~112e2a2!coshu

8eJr2
@adt2~r 21a2!df#. ~3.29!

An interesting feature of this solution is that it is regul
provided that the rotation parametera satisfiesa,A2e. We
can use this four-dimensional solution to obtain a newD
511 supersymmetric solution by uplifting using the ans
~2.1! and~2.2!. ThisD511 solution can be interpreted as th
gravity dual corresponding to supersymmetric waves
wrapped membranes. The bound on the angular momen
parameter is reminiscent of the ‘‘stringy exclusion principl
observed in@28# and it would be interesting to explore this i
more detail.

IV. GENERALIZED CALIBRATIONS

Our D511 solutions correspond to the near-horizon g
ometry of membranes wrapping holomorphic two-cycles i
Calabi-Yau (n11)-fold. Being supersymmetric we expe
that a probe membrane will be static and supersymmetric
wraps the same two-cycle, or more precisely a holomorp
cycle in the same homology class. In the language of@15#
this means that we expect that theD511 solutions admit
generalized Ka¨hler two-form calibrationsV. A static, super-
symmetric probe brane then minimizes the pullback ofV
integrated over the two-cycle. The calibrationV can be con-
structed fromD511 Killing spinorse via VMN5 ēGMNe.

Let us give an explicit expression forV for our solutions
and show that it is indeed a calibration. First it is useful
introduce a slightly nonobviousD511 orthonormal frame

e05D1/3e fdt,

e15D1/3egē1,

e25D1/3egē 2, ~4.1!

era5D21/6@e fXa
1/2madr2A2e21Xa

21/2dma#,

efa5A2e21D21/6Xa
21/2ma~dfa12eAa!,
3-7
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where, as before,ē1 and ē2 define an orthonormal frame fo
the two-cycle. We then have, in all cases,

V5D1/3e fFe1`e21(
a

era`efaG . ~4.2!

For the directionsa with vanishing gauge fields we fin
d@D1/3e fera`efa#50. Using this and the relevant BP
equations, we can show that

dV5 i kG, ~4.3!

wherek5]/]t. This is one of the conditions satisfied by th
generalized calibration~and in fact follows from the spino
rial construction!. In addition, we note thatV naturally de-
fines an almost complex structureJ on the ten-dimensiona
spatial part of our solution. In the orthonormal frame,J sim-
ply pairs e1 with e2 and era with efa. Formally it can be
defined by raising one index ofV using the rescaledD
510 spatial metric:

ds̃25D1/3e fFe1e11e2e21(
a

eraera1(
a

efaefaG .
~4.4!

We have checked that it is in fact integrable~without using
the BPS equations! and so the ten-dimensional spatial part
our solutions in fact describes a complex manifold. This a
Eq. ~4.3! establish thatV is indeed a generalized calibratio
@15#. Note that, in addition, as is easy to see in the orthon
mal frame, the spatial part of our metric is Hermitian wi
respect to this complex structure.

An alternative approach to finding solutions correspo
ing to membranes wrapping holomorphic curves in Cala
Yau (n11)-folds was discussed in@25#. Building on the
work of @21# and exploiting the existence of a generaliz
calibration an ansatz for the solutions was presented.
BPS equations were derived but no solutions were giv
The ansatz has the form

ds252H22n/3dt21H (n23)/3gABdyAdyB1Hn/3d IJdxIdxJ,

A(3)56H21dt`v, ~4.5!

where yA with A51, . . . ,2n12 are real coordinates on
complex (n11)-fold with a Hermitian metricgAB ~the ana-
logue of the original Calabi-Yau manifold!, and xI with I
51, . . . ,822n denote the remaining transverse directio
The two-formv is related to the Hermitian metricgAB by
vAB5JC

AgCB where J is the complex structure on the (n
11)-fold. BothgAB andvAB are functions ofyA andxI as is
H. Supersymmetry then puts various constraints ongAB and
H, for instance implying that for fixedxI the metricgAB is
Kähler.

To connect this work to our solutions, we would like
show that they can be written in the form~4.5!. Starting with
our metric ansatz~2.1!, it is useful to introduce new coordi
nates,
02600
f
d

r-

-
i-

he
n.

.

ra52
A2

e
maXa

21/2e f /2e(g2 f )/n,

r i52
A2

e
m iXi

21/2e f /2, ~4.6!

where a51, . . . ,n labels the gauged directions andi
51, . . . ,42n the ungauged ones. One can then check us
the BPS equations that the frame~4.1! can be written as

era5D21/6e2 f /2e( f 2g)/ndra ,

efa52D21/6e2 f /2e( f 2g)/nra~dfa12eAa!,

er i5D21/6e2 f /2dr i ,

ef i52D21/6e2 f /2r idf i . ~4.7!

The D511 metric~2.1! is then given by

ds11
2 52D2/3e2 fdt21D21/3e2 f 12( f 2g)/n

3 (
a51

n

@dra
21ra

2~dfa12eAa!2#1D2/3e2gds2~S!

1D21/3e2 f (
i 51

42n

~dr i
21r i

2df i
2!, ~4.8!

with the three-form potential

A(3)52dt`F2e2( f 2g)/n(
a51

n

radra`~dfa12eAa!

1De f 12gVol~S!G . ~4.9!

Comparing with Eq.~4.5! we can then identify

H5D21/ne23 f /n ~4.10!

and

gABdyAdyB5D1/ne3 f /nFe2( f 2g)/n(
a51

n

@dra
21ra

2~dfa

12eAa!2#1De f 12gds2~S!G . ~4.11!

Given the arguments above that the spatial part of our s
tions describes a complex manifold with a Hermitian metr
we see thatgAB is indeed Hermitian. Since our solution
3-8
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supersymmetric, preserving 22n of the supersymmetry fo
n51, 2, 3, 4 and 224 for n55, we expect thatH and gAB
satisfy the conditions given in@25#. One should note that in
general our ansatz~2.1! and ~2.2! is not equivalent to the
ansatz~4.5!. It was only for the particular BPS solutions th
we were able to rewrite one as the other.

V. DISCUSSION

We have presented BPS equations and constructed
tions ofD511 supergravity that are dual to the twisted the
ries arising on membranes wrapping holomorphic curves
Calabi-Yaun-folds. For the fourfolds and fivefolds we foun
exact conformal fixed points when the membrane wrap
Riemann surface of genusg.1. It would be interesting to
determine the physical reason for such fixed points be
present only for these two cases. We also analyzed the
equations numerically and analyzed the types of singula
encountered in the IR. For the fivefold case we manage
find the most general solutions and it would be nice if t
same could be achieved for the other cases.

In Sec. IV we elucidated some of the structure of t
solutions by presenting the generalized calibrations. In a
tion a new set of coordinates was introduced that conn
the solutions with other work in the literature. It is likely th
the analysis of this section can be applied to other superg
ity solutions describing wrapped branes that are obtained
ing the technique of@3#.

For the case of Calabi-Yau fivefolds when the scalar fie
are vanishing, we noted that the four-dimensional solut
interpolating from the UV AdS4 region to the IR AdS2
3H2 fixed point is in fact the ‘‘topological AdS black hole
of @14#. For the Calabi-Yau fourfolds we numerically dem
onstrated a flow from the UV AdS4 region to the IR AdS2
3H2 fixed point. This can be similarly considered to be
‘‘topological AdS black hole’’ with scalar hair. By analog
with what was found for the fivefold case, it seems like
that a rotating version also exists. More generally, it see
likely that the flows to IR AdS fixed points considered
@3,6,5,7,8# will also have rotating generalizations.

The focus of the paper has been on finding new soluti
h
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and exploring some of their geometry. We now conclude
briefly discussing the interpretation of the flows from the U
to the IR from the dual field theory~quantum mechanics!
perspective. The motion of the wrapped membranes tra
verse to the two-cycle and tangent to the Calabi-Yau co
spond to possible ‘‘Higgs branches’’ while motion that is al
transverse to the Calabi-Yau corresponds to ‘‘Coulo
branches.’’ Classically we do not expect Higgs branches
the case of membranes wrapping the two-sphere, as the
responding scalar fields of the membrane theory, after tw
ing, will not have zero modes. On the other hand we
expect them for the case of membranes wrapped on Riem
surfaces with genusg greater than 1. Naively then one wou
expect good singularities in the IR of the supergravity so
tions corresponding to each physical branch. For the cas
membranes wrapping a two-sphere we thus interpret
good singularities that arise for the Calabi-Yau twofold ca
as corresponding to the Coulomb branch. For the remain
cases withl 51 we see only bad singularities in the IR
which suggests that the Coulomb branches are not acces
in the limits we are considering. For thel 521 cases we
always see a branch of good singularities which could co
spond to either Coulomb or Higgs branches or both. We
pect that any conformal fixed point should appear at
junction between the two branches. However, for the fo
fold case we do have a fixed point but with good singularit
only on one side. This suggests that in fact again only o
branch is accessible in these solutions. It would naturally
interesting to investigate the gravity/field theory correspo
dence for the flows we have presented beyond these sim
observations. Perhaps the cleanest direction is to focus on
superconformal quantum mechanics at the IR fixed po
that we found for membranes wrapping Riemann surfa
with g.1 in Calabi-Yau fourfolds and fivefolds.
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