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Nonperturbative renormalization in a scalar model within light-front dynamics
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Within the covariant formulation of light-front dynamics, in a scalar model with the interaction Hamiltonian
H52gc2(x)w(x), we calculate nonperturbatively the renormalized state vector of a scalar ‘‘nucleon’’ in a
truncated Fock space containing theN, Np andNpp sectors. The model gives a simple example of nonper-
turbative renormalization that is carried out numerically. Though the mass renormalizationdm2 diverges
logarithmically with increasing cutoffL, the Fock components of the ‘‘physical’’ nucleon are stable when
L→`.
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I. INTRODUCTION

Knowledge of the hadron properties within the framewo
of quantum chromo-dynamics~QCD! is one of the main is-
sues in strong interaction physics. Several approaches
been pursued in the last 20 years, in particular lattice ga
calculations. Among the alternatives to these calculatio
light-front dynamics~LFD! is of particular interest@1#. It has
proven successful in many phenomenological applicati
involving few-body systems in particle and nuclear physi
However, the application of LFD to field theoretical calcul
tions is still in its infancy@2#. The main issue to be solved
the renormalization procedure@3#. In perturbative calcula-
tions, the renormalization of the electron self-energy in QE
is already nontrivial in standard LFD in the sense tha
involves nonlocal counterterms@4#. This unpleasant featur
is, however, a direct consequence of the choice of a pre
ential direction, thez axis, in the determination of the quan
tization plane. This can be well understood in the covari
formulation of light-front dynamics~CLFD! @5#, as shown in
Ref. @6#. In this formulation, the state vector is defined on t
light-front surface given by the equationv•x50, wherev is
the four-vector withv250. The particular case wherev
5(1,0,0,21) corresponds to standard LFD. In the CLF
the counterterm needed to renormalize the electron s
energy in the first order perturbation expansion is sim
dependent on the orientation of the light front, defined by
four-vectorv.

We shall investigate in this article how the question
nonperturbative renormalization can be formulated in
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CLFD. We shall first derive the general eigenvalue equati
whose solutions are the Fock state components. As a
example, we shall illustrate our strategy with a simple mo
involving two coupled scalar particles; namely, the sca
‘‘nucleon’’ N radiates the scalar ‘‘pions’’p. In this simple
example, the Fock space is restricted toN, Np and Npp
states. Represented as a series of graphs in perturb
theory, it contains an infinite number of irreducible contrib
tions to the self-energy. They diverge and require renorm
ization. At a large value of the coupling constant this syst
cannot be solved perturbatively. We show how to determ
in a self-consistent manner, the nonperturbative mass co
terterm. This counterterm is then calculated numerica
Models involving two and three constituent bound sta
were also analyzed in@7#.

In a more general field-theoretical framework, in th
light-front Tamm-Dancoff approximation involving spin 1/
particles for instance, renormalization is not reduced to
introduction of a mass counterterm. In this case, one sho
introduce sector-dependent counterterms, as shown in
@8#. In the two-nucleon sector, for spin 1/2 particles, ad
tional box divergences appear@9#. These divergences and th
sector dependent counterterms are absent in the scalar m
restricted to the dressed ‘‘one-scalar-nucleon’’ system. The
fore, their analysis is beyond the scope of the present pa
In spite of that, the scalar model is still rather instructiv
since the renormalization considered here is not reduce
the perturbative one. We will consider a much larger co
pling constant, excluding the convergence of the perturba
series.

The plan of the article is as follows. In Sec. II we esta
lish the general equations of motion for the Fock comp
nents. In the truncated Fock space, the corresponding sy
of equations, which determine the Fock components and
mass renormalization, is detailed in Sec. III. The renorm
©2001 The American Physical Society16-1
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ization of the wave function and of the coupling constan
calculated in Secs. IV and V, respectively. Numerical resu
are presented and discussed in Sec. VI. We present our
clusions in Sec. VII.

II. EIGENSTATE EQUATION

We start with the general eigenstate equation for the s
vector @5#:

P̂2f~p!5M2f~p!, ~1!

where

P̂m5 P̂m
0 1 P̂m

int . ~2!

Here we have decomposed the momentum operatorP̂m into
two parts: the free one,P̂m

0 , and the interacting oneP̂m
int ,

given by

P̂m
0 5(

i
E di

†~kW !di~kW !km d3k,

P̂m
int5vmE Hint~x!d~v•x!d4x

5vmE
2`

1`

H̃ int~vt!
dt

2p
, ~3!

where we have denoted byH̃ int the Fourier transform of the
interaction Hamiltonian:

H̃ int~p!5E H int~x!exp~2 ip•x!d4x, ~4!

anddi
† (di) corresponds to the creation~destruction! operator

for the various particles under consideration. The explic
covariant formulation of LFD manifests itself in the fact th
P̂m

int in Eq. ~3! is proportional tovm and is determined by the
integral over the light-front planev•x50.
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The equations for the Fock components can be obtai
from Eq. ~1! by substituting there the Fock decompositio
for the state vectorf(p) and calculating the matrix elemen
of P̂2 in the Fock space. With the above expressions forP̂,
Eq. ~1! obtains the form

F ~ P̂0!21~v• P̂0!E H̃ int~vt!
dt

2p

1E H̃ int~vt!
dt

2p
~v• P̂0!Gf~p!5M2f~p!.

~5!

In order to simplify this equation, we can use the fact that
operators (v• P̂0) and*H̃ int(vt)dt commute. Indeed, from
the commutation relation@ P̂m ,P̂n#50 we get

@v• P̂,P̂n#5@v• P̂0,P̂n
01 P̂n

int#5@v• P̂0,P̂n
int#50.

Moreover, sincev250, we can replace (v• P̂0) by (v• P̂)
here and below. We thus obtain

~v• P̂0!E H̃ int~vt!f~p!dt5E ~v• P̂!H̃ int~vt!f~p!dt

5~v•p!E H̃ int~vt!f~p!dt,

and Eq.~5! is transformed to

2~v•p!E H̃ int~vt!
dt

2p
f~p!52@~ P̂0!22M2#f~p!.

~6!

The state vectorf(p) is now decomposed in Fock compo
nents according to
f~p!5~2p!3/2E f1~k1 ,p,vt!a†~kW1!u0&d (4)~k12p2vt!2~v•p!dt
d3k1

~2p!3/2A2«k1

1~2p!3/2E f2~k1 ,k2 ,p,vt!a†~kW1!b†~kW2!u0&d (4)~k11k22p2vt!2~v•p!dt
d3k1

~2p!3/2A2«k1

d3k2

~2p!3/2A2«k2

1~2p!3/2E f3~k1 ,k2 ,k3 ,p,vt!a†~kW1!b†~kW2!b†~kW3!u0&d (4)~k11k21k22p2vt!

32~v•p!dt
d3k1

~2p!3/2A2«k1

d3k2

~2p!3/2A2«k2

d3k3

~2p!3/2A2«k3

1•••, ~7!
6-2
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where«ki
5AkW i

21mi
2 andmi is the mass of the particlei of

momentumki . We introduce in Eq.~7! spinless particles o
two types: the ‘‘nucleon’’~with creation operatora†! and the
‘‘pion’’ ~with creation operatorb†). The state vector~7! rep-
resents the ‘‘dressed nucleon,’’ consisting of the ‘‘ba
nucleon’’ and the admixture of one, two, . . . , many pions.
Our dressed nucleon is also scalar; therefore the state v
~6! corresponds to zero total angular momentum. This me
that the Fock components are scalars and depend onl
scalar products of all available four-vectors.

The conservation law for the momenta in each Fock co
ponent has the form

k11k21•••1kn5p1vt.

Hence, the action of the operator (P̂0)22M2 in Eq. ~6! on
the state vectorf(p) is reduced to the multiplication of eac
Fock component by the factor ((ki)

22M252(v•p)t.
We introduce the notation

G~p!52~v•p!t̂f~p!,

wheret̂ is the operator that, acting on a given componentf i
of f, givestf i . G has therefore a Fock decomposition th
differs from Eq.~7! by the replacement of the wave function
f i by the vertex partsG i given by
02501
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G i[2~v•p!tf i5~s2M2!f i , ~8!

wheres5((ki)
2. We thus find the eigenvalue equation

1

2pE H̃ int~vt!
dt

t
G~p!52G~p![2l~M2!G~p!. ~9!

We introduce in Eq.~9! the factorl(M2) depending onM2.
The eigenvalueM2 is found from the conditionl(M2)51.
This equation is quite general and equivalent to the eig
state equation~1!.

III. EQUATION FOR THE FOCK COMPONENTS

A. System of coupled integral equations

For the simplified model we consider in this study, w
take the following interaction Hamiltonian:

H52gc2~x!w~x! ~10!

where the scalar fieldc with massm corresponds to the
scalar nucleon and the fieldw with massm corresponds to
the scalar pion.

The system of equations for these vertex parts is sho
graphically in Fig. 1. In order to write down this system
equations, it is enough to apply to the diagrams of Fig. 1
rules of the graph technique detailed in Ref.@5#. We thus find
G1~k1 ,p,vt1!5dm2E G1~k18 ,p,vt8!d (4)~k182p2vt8!u~v•k18!d~k81
22m2!d4k18

dt8

t82 i0

1g
1

~2p!3E G2~k18 ,k28 ,p,vt8!d (4)~k181k282p2vt8!u~v•k18!d~k81
22m2!

3d4k18u~v•k28!d~k28
22m2!d4k28

dt8

t82 i0
, ~11a!

G2~k1 ,k2 ,p,vt2!5gE G1~k18 ,p,vt8!d (4)~k182p2vt8!u~v•k18!d~k81
22m2!d4k18

dt8

t82 i0

1dm2E G2~k18 ,k2 ,p,vt8!d (4)~k181k22p2vt8!u~v•k18!d~k81
22m2!d4k18

dt8

t82 i0

1g
1

~2p!3E G3~k18 ,k2 ,k38 ,p,vt8!d (4)~k181k21k382p2vt8!u~v•k18!

3d~k81
22m2!d4k18u~v•k38!d~k83

22m2!d4k38
dt8

t82 i0
, ~11b!

G3~k1 ,k2 ,k3 ,p,vt3!5gE G2~k18 ,k2 ,p,vt8!d (4)~k181k22p2vt8!u~v•k18!d~k81
22m2!d4k18

dt8

t82 i0

1gE G2~k18 ,k3 ,p,vt8!d (4)~k181k32p2vt8!u~v•k18!d~k81
22m2!d4k18

dt8

t82 i0
. ~11c!
6-3
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The origin of the mass countertermdm2 in these equa-
tions is explained below. Since we truncate the Fock spac
three particles, we omit in the last equation~11c! the cou-
pling of G3 to the four-body componentG4. Note that our
approximation is not based on a perturbative expansion
terms of the coupling constant. It is based on a decomp
tion over intermediate states with an increasing numbe
particles. Once this number is fixed, we solve a nonpertu
tive problem in terms ofg. If we iterate the system~11!, i.e.,
expressG3 andG2 from the third and the second equatio
and substitute them in the first one, we get forG1 the sum of
the diagrams shown in Fig. 2. Of course, this series of gra
corresponds to all the irreducible contributions to the s
energy with intermediate states up toNpp. These contribu-
tions are iterated again, i.e., they appear repetitively on
nucleon line. In contrast to the case of the intermediate s
Np, which generates only one self-energy diagram show
Fig. 3, the number of irreducible contributions generated
the intermediate states up toNpp is infinite. The system of
equations~11! corresponds to the sum of all of them.

FIG. 1. Diagrammatical representation of the eigenvalue eq
tion projected onto the Fock components of the state vector~re-
stricted here toN53). For the sake of clarity, we remove all kine
matical variables.
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In the right-hand side of Eqs.~11a! and ~11b! we intro-
duced the countertermdm2 corresponding to the interactio
Hamiltonian H52dm2c2(x). This term provides mass
renormalization. The counterterm is not introduced, howev
in the third equation containing the three-body intermedi
state. At this point we have some freedom in the definition
the model Hamiltonian. In principle, the counterterm cou
also be introduced into the three-body intermediate st
since formally it does not increase the number of particles
the intermediate state. Our motivation in choosing t
Hamiltonian without the counterterm in the lastnth Fock
sector is the following. Consider, for example, the mass
erator2g2S(p2) in second order perturbation theory. It
given by the diagram of Fig. 3 with two particles (N andp)
in the intermediate state. The countertermdm2, which is
shown by a cross on the nucleon line~one particleN in the
intermediate state! just renormalizes this mass operator. S
one ‘‘pion’’ is deleted when the counterterm appears. The
fore, for the renormalization of the mass operator determi
by the sum of~an infinite number of! irreducible diagrams
with n particles in the intermediate state, one should cons
the graphs, with the counterterm insertions, withn21 par-
ticles in the intermediate states only@4#. These diagrams are
just those generated by the Hamiltonian without the coun
term in thenth Fock sector.

We can easily transform Eqs.~11! by performing the in-
tegrations which do not involve loops, keeping the loop
tegrals untouched. The result is the following:

a-

FIG. 2. Perturbative expansion, in terms of the pion-nucle
coupling constantg, of the nucleon self-energy.
G1~k1 ,p,vt1!5
dm2

2~v•p!t1
G1~k1 ,p,vt1!1g

1

~2p!3E G2~k18 ,k28 ,p,vt8!d (4)

3~k181k282p2vt8!u~v•k18!d~k81
22m2!d4k18 u~v•k28!d~k28

22m2!d4k28
dt8

t82 i0
, ~12a!

G2~k1 ,k2 ,p,vt2!5
g

2~v•p!t1
G1~p1 ,p,vt1!1

dm2

2~v•p!t2x1
G2~k1 ,k2 ,p,vt2!

1g
1

~2p!3E G3~k18 ,k2 ,k38 ,p,vt8!d (4)~k181k21k382p2vt8!u~v•k18!d~k81
22m2!

3d4k18u~v•k38!d~k38
22m2!d4k38

dt8

t82 i0
, ~12b!
6-4
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G3~k1 ,k2 ,k3 ,p,vt3!5
g

2~v•p!t28~12x2!
G2~k18 ,k2 ,p,vt28!1

g

2~v•p!t29~12x3!
G2~k19 ,k3 ,p,vt29!. ~12c!
.
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In Eqs. ~12a! and ~12b!, 2(v•p)t15k1
22p25m22p2→0

when p2→m2. Sincet1 is in the denominator, we keepp2

Þm2 and take the limitp2→m2 in the final equation. In Eq
~12b!, p15p2vt1 with 2(v•p)t25s122m2 and s125(k1
1k2)2. In Eq. ~12c! we use the notation

2~v•p!t285s128 2m2, 2~v•p!t295s129 2m2,

where

s128 5~k181k2!2, s129 5~k191k3!2,

andk18 ,k19 are determined by the conservation laws

k185k11k31vt282vt123, k195k11k21vt292vt123,

~13!

wherevt123 is the momentum of the spurion line enterin
the diagram. Everywhere we note thatxi5v•ki /v•p.

B. Reduction to two-particle Fock states

We consider first the approximation in which the sta
vector~7! contains only the bare nucleonN and the stateNp.
In this approximation, the system of equations for one- a
two-body Fock components is represented diagrammatic
in Fig. 4. It is easily obtained by omittingG3 in Eq. ~11c!,
together with the counterterm in the equation that determ
the last Fock sectorG2. This truncation of the Fock space
retaining the minimal number of components, is equival
to second order perturbation theory.

Rewritten in terms of the variablesqW andnW ~see Appendix
A!, this system of equations obtains the simple form

G15
dm0

2

m22p2
G11gE s~qW 8,p2!G2~qW 8,nW !

d3q8

~2p!3
,

~14a!

G2~qW ,nW !5
g

m22p2
G1 , ~14b!

where s(qW ,p2) is the integrand that determines the se
energyS(p2):

S~p2!5E s~qW 8,p2!
d3q8

~2p!3
,

FIG. 3. First order perturbative expansion of the nucleon s
energy.
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s~qW ,p2!5
1

2

As12

~s122p22 i0!

1

«~q,m!«~q,m!
,

~15!

with

s125~k11k2!25@«~qW ,m!1«~qW ,m!#2,

«~qW ,m!5Am21qW 2, ~16!

and similarly for«(qW ,m). SinceG1 does not depend on th
relative momentum, it follows from Eqs.~14! that G2(qW ,nW )
does not depend on the relative momentum either,
G2(qW ,nW )5const. Hence, we get

S 211
dm0

2

m22p2D G11gS~p2!G250,

g

m22p2
G12G250. ~17!

From Eq.~17! we find the eigenvalue equation:

p25m22dm0
22g2S~p2!. ~18!

The countertermdm0
2 is determined from the on-shell cond

tion p25m2, wherem is the physical mass of the nucleo
This gives

dm0
252g2S~m2!, ~19!

as expected in a second order calculation of mass renor
ization.

C. Solution for the three particle system

Consider now the system of equations that incorpora
the three-body Fock componentG3. It was shown graphi-
cally in Fig. 1. We can easily expressG3 throughG2. The
system of equations is thus transformed as shown in Fig
Its analytical representation has the form

f- FIG. 4. Diagrammatical representation of the eigenvalue eq
tion in first order perturbation theory.
6-5
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G15
dm2

m22p2
G11gE s~qW 8,p2!G2~qW 8,nW !

d3q8

~2p!3
,

~20a!

G2~qW ,nW !5
g

m22p2
G11

dm21g2S~s1!

~s122p2!xk1

G2~qW ,nW !

1g2E P~qW ,qW 8,nW ,p2!s~qW 8,p2!G2~qW 8,nW !
d3q8

~2p!3
.

~20b!

Each term in Eqs.~20! is represented by a graph on Fig. 5.
these equations,s is given by Eq.~16!, and

s15~k12vt!25m22xk1
~s122p2!,

xk1
5

v•k1

v•p
5

1

As12

@«~qW ,m!2nW •qW #.

In this equation,P(qW ,qW 8,nW ,p2) is the propagator of the sec
ond intermediate state:

P~qW ,qW 8,nW ,p2!

5E u@v•~k12k28!#d@~k12k28

1vt22vt9!22m2#
dt9

t92 i0

5
u@v•~k182k2!#

m22~k182k22vt8!2
. ~21!

Its expression in terms of the variablesqW ,qW 8,nW can be easily
calculated with the kinematics detailed in Appendix A.

The system of equations~20! can now be solved by two
independent methods.

~i! The first one consists in the elimination ofG1 in the
two equations in~20!. The result is an equation forG2 which,
at p25m2, obtains the form

FIG. 5. Same as Fig. 1, but where the last Fock sector (n53)
has been expressed in terms of the two-body one.
02501
G2~qW ,nW !52
g2

dm2E s~qW 8,p2!G2~qW 8,nW !
d3q8

~2p!3

1
g2S~s1!1dm2

~s122p2!xk1

G2~qW ,nW !

1g2E P~qW ,qW 8,nW ,p2!s~qW 8,p2!G2~qW 8,nW !
d3q8

~2p!3

[l~dm2!G2~qW ,nW !. ~22!

As in Eq. ~9!, we introduce in Eq.~22! the factorl(dm2).
The mass renormalizationdm2 will be found from the non-
perturbative conditionl(dm2)51.

~ii ! The second method consists in the direct eliminat
of G2 in the two equations~20!. We can indeed rewrite Eq
~20b! in the following form:

FG2~qW ,nW !2
dm21g2S~s1!

~s122p2!xk1

G2~qW ,nW !

2g2E P~qW ,qW 8,nW ,p2!s~qW 8,p2!G2~qW 8,nW !
d3q8

~2p!3G
5

g

m22p2
G1 . ~23!

After discretization of the momenta, this equation can
written schematically:

Ai j G2
j 5

g

m22p2
G1@1# i , ~24!

where@1# is the vector whose every component is 1, andAi j
is a two-dimensional matrix obtained after discretization
the momenta~index i for q,nW •qW and indexj for q8,nW •qW 8).
The vertex functionG2 can now be expressed in terms ofG1
after a simple matrix inversion:

G2
i 5

g

m22p2
G1Ai j

21@1# j . ~25!

After insertion in Eq.~20a!, we end up with an equation
involving G1 only. SinceG1 is a nonzero constant, it can b
removed from the equation, leading to an equation fordm2

generalizing Eq.~19!. In the perturbative limit, the matrixA
reduces to the unit matrix, and we therefore recover Eq.~19!
exactly.

IV. RENORMALIZATION OF THE WAVE FUNCTION

A. Nonperturbative case

We schematically rewrite the state vectorup&, given by
Eq. ~7!, as

up&5f1uN&1f2uNp&1f3uNpp&.
6-6
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It is normalized as follows@5#:

^p8up&52p0d (3)~pW 2pW 8!. ~26!

The Fock components are thus normalized in order to p
vide the condition~26!. Substituting the state vector~7! in
the left-hand side of Eq.~26!, we get, before normalization
of the Fock components,

^p8up&5Z 2p0d (3)~pW 2pW 8!, ~27!

where

Z5N11N21N3

with

N15f1
2 , ~28a!

N25
1

2~2p!3E f2
2~qW ,nW !

@«~q,m!1«~q,m!#

«~q,m!«~q,m!
d3q, ~28b!

N35
1

4~2p!6E f3
2~qW 1 ,qW 2 ,qW 3 ,nW !d (3)~qW 11qW 21qW 3!

3
@«~q1 ,m!1«~q2 ,m!1«~q3 ,m!#

«~q1 ,m!«~q2 ,m!«~q3 ,m!
d3q1 d3q2 d3q3 .

~28c!

FromG2 calculated with Eq.~22!, we can findf2 according
to

f2~qW ,nW !5
G2~qW ,nW !

s122m2
. ~29!

The calculation ofN2 is then straightforward. To calculat
N1 and N3 we should knowf1 and f3. The calculation of
f1 andf3 is explained in Appendix B. Note thatf1 does not
depend on any relative momentum.

The normalized state vector satisfying the condition~26!
obtains the form

up&5f1
renuN&1f2

renuNp&1f3
renuNpp&,

where

f1,2,3
ren 5f1,2,3/AZ. ~30!

We can introduce the creation operator of the new, co
posed field, directly creating the stateup&. It is written sche-
matically as

A†~pW !5f1
rena†1f2

rena†b†1f3
rena†b†b†, ~31!

so that up&5A†(pW )u0&. With the renormalized wave func
tions f ren, the vacuum expectation value of the commuta

^0u@A(pW ),A†(pW )#u0&52p0d (3)(pW 2pW 8), is the same as the
one-body operatorsa,a† ~except for the normalization facto
02501
-
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2p0). So the stateup&, which is a dressed state in terms
the bare operatorsa†,b†, can be interpreted, in this sense,
an elementary particle in terms of the operatorA†.

B. Perturbative case

The perturbative case is simply obtained from the prec
ing one by omittingf3. Taking into account that from Eq
~14! we haveG1 /(m22p2)5f1, we find G25gf1. Substi-
tuting it into Eq.~29!, we findf2 and then, by Eq.~28b!, we
obtainN2:

N25f1
2g2I 2

where

I 25
1

16p3E As

~s122m2!2

d3q

«~q,m!«~q,m!
. ~32!

We thus find the ratio

N2

N1
516pm2aI 2'0.38a ~33!

with a5g2/16pm2. The numerical value ofI 2 is given for
m50.94, m50.14. The integralI 2 is logarithmically diver-
gent for m→0. The two-body contribution is rapidly de
creasing, when the mass of the intermediate particle
creases.

V. RENORMALIZATION OF THE COUPLING CONSTANT

As mentioned above, the mass renormalization coun
termdm2 for the state vector incorporatingN andNp states
only is given by Eq.~19! and coincides with the perturbativ
result. For the state vector incorporating the statesN, Np and
Npp, it is determined by Eq.~22!. This renormalization
constant is infinite when the cutoff tends to infinity.

The coupling constant is also renormalized, although
renormalization is finite for the particular scalar system
are interested in the present study. We show below how
renormalization can be carried out. This renormalization i
by-product of the renormalization of the wave function fu
filled in the previous section. Let us consider first the case
the state vector containingN andNp states only.

A. Truncation to N and Np states

In this approximation, the normalization factorN2 is
given by Eq.~32!. We thus get

Z5N11N25f1
2Z1 with Z1511g2I 2 , ~34!

where I 2 is given by Eq.~32!. After renormalization the
wave functionf2 therefore turns into

f25
gf1

s2m2
→f2

ren5
g

AZ1~s2m2!
5

gren

s2m2
~35!

where we introduced the renormalized coupling constant
6-7
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gren5g/AZ1. ~36!

This value ofgren can also be represented as the residue
the two-body wave function ats5m2, i.e. the value of
G2(q,z) at the nonphysical value ofq corresponding tos
5m2.

One can alternatively definegren from thepN scattering
amplitude determined byN exchange in thes channel:

F5
g2

m22p2
1

g2

m22p2
@dm21g2S~p2!#

g2

m22p2
1•••

5
g2

m22p22dm22g2S~p2!
~37!

wherep25(k11k2)222(v•p)t. Near the polep25m2 we
get

F5
g2

~m22p2!@11g2dS~p2!/dp2up25m2#
5

gren
2

m22p2

~38!

where we introducedgren by Eq. ~36!, but with Z1 given by

Z1511g2
dS~p2!

dp2 U
p25m2

. ~39!

Taking Eqs.~15! for S one can easily check that Eqs.~34!
and ~39! determine the sameZ1.

Note that the renormalized coupling constantgren is finite
and it is always smaller than the bare valueg. When the bare
constantg tends to infinity, the constantgren remains finite,
however, but it reaches its maximal value. Expressed
terms ofa5g2/(16pm2) it has the form

a ren
max51/~16pm2I 2!.

It does not depend ong. According to Eq.~33!, its numerical
value form50.94 andm50.14 is:a ren

max51/0.3852.63.

B. Truncation to N, Np and Npp states

In this case the renormalized wave functions are given
Eq. ~30! with Z determined by Eqs.~27!,~28!. Note that the
renormalization constantZ can still be represented in th
form ~39! with S(p2) determined by all the irreducible con
tributions ~see Appendix C!.

Restricting ourselves to the system considered above
having found the renormalized state vectorup&, we can get
all the physical information~we can for example calculat
the electromagnetic form factors, if the particles a
charged!. So we do not need in practice to define and cal
late the renormalized coupling constantgren. However, it is
useful to calculate it for further generalization to the case
particles with spin, when the charge renormalization cons
will become infinite.

As we already mentioned, the standard definition of
coupling constant is the residue of the wave functionf2 at
02501
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s5m2, i.e., the value ofG2(q,z) at the nonphysical value o
q5 ik corresponding tos5m2. For a nonrelativistic bound
state calculation for instance, it is given byk5Amuebu,
whereeb is the binding energy of the bound state. In coo
dinate space it is the coefficient of the asymptotical behav
of the wave functionc(r→`)}exp(2kr). Since we calcu-
lateG2(q,z) numerically in the physical region forq, it is not
easy to find its interpolation into the nonphysical region n
merically with enough accuracy. However, we do not need
choose the renormalization points5m2; we can choose any
other renormalization point. We can define for instance
renormalized coupling constant as the value ofG2(q,z) at
q50:

g̃ren
2 5G2

ren~q50,z!. ~40!

Note thatG2(q50,z) does not depend onz. In the case of
N1Np intermediate statesG2 does not depend onq and the
renormalized coupling constantsg̃ren and gren coincide with
each other.

VI. NUMERICAL RESULTS

Both methods to solve Eqs.~11! are used to cross-chec
our results. For regularization purposes, we introduce a
off L, i.e. integrate in Eq.~22! over moduli of all the relative
three-momentaq until q<L. Note that this cutoff procedure
preserves rotational invariance. For the masses, we ch
the nucleon and pion massesm50.94 GeV andm50.14
GeV. The integration over the azimuthal angle is done a
lytically. The equation is reduced to a matrix form by di
cretizing the integral. Convergence of the integrals is alre
obtained for 30 points in the variableq and 15 points in the
variablez. The points inq were not taken equally spaced, b
with a spacing proportional toh2, whereh is the equal spac-
ing in the variableAq. In the first method, the eigenvalu
l(dm2) of the matrix is found numerically anddm2 is fixed
to getl[1 to less than 0.5%. For the second method,dm2

is calculated by a standard iteration procedure, starting fr
the perturbative result. Since both methods give identical
sults to less than 1% we quote only the results obtained w
the second method.

The results for the dimensionless coupling constanta
5g2/(16pm2)53 and for different values of the cutoff pa
rameterL are shown in Table I. We denote bydm2/dm0

2 the

TABLE I. Numerical results fora53, as a function of the cut-
off L.

L 1 5 10 50 100 200

dm0
2 21.234 23.67 24.82 27.54 28.71 29.88

dm2/dm0
2 1.095 1.052 1.040 1.025 1.022 1.02

N1 0.377 0.329 0.327 0.326 0.326 0.32
N2 0.441 0.455 0.456 0.458 0.458 0.45
N2 /N1 1.183 1.380 1.395 1.407 1.405 1.40
N3 0.182 0.216 0.217 0.216 0.216 0.21
^q& 0.366 0.538 0.565 0.588 0.591 0.59
6-8
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ratio of the valuedm2 found from Eq.~22!, to the perturba-
tive valuedm0

2 given by Eq.~19!. The valuesN1,2,3 denote
the contributions of the corresponding Fock sectors to
normalization of the state vector. In order to characterize
wave function quantitatively, we calculate also the avera
value of the~absolute! relative momentum̂q&, normalized
to the two-body Fock component:

^q&5
1

N2

1

2~2p!3E f2
2~qW ,nW !

@«~q,m!1«~q,m!#

«~q,m!«~q,m!
q d3q.

~41!

One clearly sees that althoughdm2 increases logarithmi-
cally, the contributions of the Fock componentsN1 ,N2 ,N3
as well as the average momentum^q& in the two-body Fock
component become stable afterL55. This means that we
have indeed found numerically the renormalized solution
the wave function.

One can see also that the nonperturbative value ofdm2 is
very close to the perturbative onedm0

2. We have checked tha
the functionG2(q,z) is almost constant, as expected for t
perturbative solution. The solution fordm2 remains very
close to the perturbative result also for higher values of
coupling constant. The results forL5200 and for differenta
between 1 and 1000 are shown in Table II. One can see
dm2 is very close to the perturbative value even for e
tremely large coupling constanta51000. As expected, the
three-body sector dominates when the coupling constan
creases. However, the ratioN2 /N1 is still close to its pertur-
bative value (N2 /N1)0, given by Eq.~33!.

The reason that the solution is close to the perturba
one lies in the superrenormalizability of the scalar theo
The third term in Eq.~22! converges and does not requi
any cutoff, whereas the first two terms are divergent a
dominate. Therefore, a very small departure ofdm2 from its
perturbative valuedm0

2 can accommodate a finite higher o
der correction. If the third term can be neglected, the eq
tion is approximately satisfied with the perturbative value
dm2. In order to show that it is indeed so, we introduce t
cutoff in the two divergent terms, but do not introduce it
the third, convergent one. The results fora53 are shown in
Table III. For small enough values ofL the two first terms
are suppressed, and the solution differs drastically from
perturbative one. WhenL increases, the solution becom
closer and closer to the perturbative one.

TABLE II. Same as Table I, but withL fixed to 200, anda
varied.

a 1 3 10 30 100 1000

dm2/dm0
2 1.011 1.019 1.029 1.035 1.040 1.04

N1 0.661 0.325 0.081 0.016 231023 331025

N2 0.292 0.457 0.366 0.186 0.068 831023

N3 0.047 0.218 0.553 0.798 0.930 0.99
N2 /N1 0.441 1.41 4.51 11.91 32.9 230
(N2 /N1)0 0.38 1.14 3.8 11.4 38 380
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We emphasize that the small deviation of the solut
from the perturbative one, even for very large values of
coupling constant, is just a property of the nonperturbat
Eq. ~22!, which includes the contributions~with one-, two-
and three-body intermediate states! to all orders ofg. This
result cannot be justified in any perturbative expansion
terms ofg.

VII. CONCLUSION

In a first attempt to address the question of nonpertur
tive renormalization in the CLFD, we have investigated
this study a simple, but nevertheless meaningful, mo
based on two scalar particles. This model is reminiscen
the structure of the physical nucleon in the low energy
gime, in terms of bare nucleons coupled to pions.

Using the nice features of the CLFD, we have first d
rived the general eigenstate equation that should be use
order to calculate any physical state vector. We empha
here that this equation is quite general and is not restricte
the case of scalar particles nor to the restricted Fock sp
we consider in this study. It should therefore also be u
when solving more complex systems such as QED or QC

The results we obtained for the simple scalar model, w
a restricted Fock space expansion up to three particles,
quite encouraging. We obtained, numerically, a renormali
solution using a simple mass counterterm. Surprisin
enough, this counterterm is not very different from the p
turbative, logarithmically divergent, mass counterterm, ev
for very large values of the coupling constant. We traced t
feature back to the nature of the scalar model we sta
from, which is superrenormalizable. This result, howev
does not imply that higher Fock states are negligible. We fi
that the first nontrivial Fock component gets larger and lar
as the coupling constant increases.

The direct generalization of this study is the investigati
of nonperturbative renormalization in scalar QED, followin
the study of perturbative renormalization in QED alrea
done in Ref.@6# in the CLFD. This will be the subject of a
forthcoming publication.
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TABLE III. Test calculation in which the cutoffL is introduced
only in the two first terms in Eq.~22! ~see text!, for a53.

L 0.1 1 10 100
dm2/dm0

2 36.3 1.55 1.07 1.03
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APPENDIX A: KINEMATICS

We show in this appendix how to express the propaga
~21! in terms of the variablesqW ,qW 8,nW .

The two-body wave function depends on the followi
four-vectors:

f5f~k1 ,k2 ,p,vt!, k11k25p1vt. ~A1!

We introduce the variables

qW 5L21~P!kW15kW12
PW

AP 2 Fk102
kW1•PW

AP 21P0
G , ~A2!

nW 5L21~P!vW /uL21~P!vW u5AP 2L21~P!vW /v•p,
~A3!

where

P5p1vt, ~A4!

and L21(P) is the Lorentz boost. The wave function und
the integral ~see the last diagram in Fig. 3! depends on
k18 ,k28 ,p,vt8, and, correspondingly, on the variable

qW 85L21~P8!kW18 , ~A5!

where

P85p1vt8. ~A6!

In order to obtainP(qW ,qW 8,nW ,p2), we should express the fou
momentak18 ,k2 ,vt8 in (k182k22vt8)2 in terms ofqW ,qW 8,nW .
Since under the Lorentz transformations and the rotation
the four-vectors the variablesqW ,qW 8,nW are rotated only, the
expression for the scalarP(qW ,qW 8,nW ,p2) does not depend on
the system of reference, and hence can be found in the m
convenient one. We find it in the system where

PW 85kW181kW285pW 1vW t850.

In this systemkW185qW 8 and k108 5«(qW 8,m). From the con-

servation law the vectorPW is expressed asPW 5kW11kW2

5vW (t2t8). We have

t5
s2p2

2~v•p!
, t85

s82p2

2~v•p!
, ~A7!

where As5«(qW ,m)1«(qW ,m), As85«(qW 8,m)1«(qW 8,m).
Since vW 5v0nW and v•p5v•(k181k28)5v0@«(qW 8,m)

1«(qW 8,m)#5v0As8, we find

PW 5nW
s2s8

2As8
, P05

s1s8

2As8
. ~A8!

One can check thatP 25s. According to Eqs.~A2! and~A5!,
the variablesqW and qW 8 are defined by different Lorent
02501
r

of

ost

boosts. From Eq.~A8! one can see that this difference is th
boost in the direction ofnW . This boost does not change th
unit vectornW .

Now let us findkW2. It is obtained by reverting to Eq.~A2!:

kW25L~P!~2qW !52qW 1
PW

AP 2 F«~qW ,m!2
qW •PW

AP 21P0
G .

~A9!

Equation~A9! is obtained from Eq.~A2! by replacingkW1 in
the right-hand side~RHS! by 2qW and by changing the sign
of PW .

Substituting here Eqs.~A8! for P, we find

kW252qW 1nW
s2s8

2Ass8
S «~qW ,m!2nW •qW

As2As8

As1As8
D , ~A10!

and similarly fork20:

k205
«~qW ,m!P0

AP 2
2

qW •PW
AP 2

5«~qW ,m!
s1s8

2Ass8
2nW •qW

s2s8

2Ass8
.

~A11!

From Eq.~A7! we get

vW t85nW
s82p2

2As8
, v0t85

s82p2

2As8
.

Substituting the above expressions for the four-momenta
(k182k22vt8)2, we find that the four-vector squared in th
denominator of the propagator~21! is expressed in terms o
the variablesqW ,qW 8,nW as follows:

~k182k22vt8!25F«~qW 8,m!2«~qW ,m!
s1s8

2Ass8
1nW •qW

s2s8

2Ass8

2
s82p2

2As8
G 2

2FqW 81qW 2nW
s2s8

2Ass8
S «~qW ,m!

2nW •qW
As2As8

As1As8
D 2nW

s82p2

2As8
G 2

. ~A12!

APPENDIX B: CALCULATION OF f1 AND f3

The Fock componentsf1 and f3 are calculated as fol-
lows. The wave functionf2 in Eq. ~28b! is related to the
vertex functionsG2 by Eq. ~29!. Having found the vertex
function G2(qW ,nW )5G2(q,z) numerically from Eq.~22!, we
then find by Eq.~29! the Fock componentf2.

With Eqs.~12a!, reduced to the first equation in Eq.~14!,
we expressG1 throughG2 in the limit p2→m2, and then find
the componentf1:

f152
g

dm2E S i~qW 8,p2!G2~qW 8,nW !
d3q8

~2p!3
. ~B1!
6-10
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With Eq. ~12c!, we expressG3 throughG2 and then findf3:

f3~qW 1 ,qW 2 ,qW 3 ,nW !5
gf2~q8,z8!

~s1232m2!~12x2!

1
gf2~q9,z9!

~s1232m2!~12x3!
. ~B2!

Heref2(q8,z8) is f2(k18 ,k2 ,p,vt28) represented through th
relative momentum, andf2(q9,z9) is f2(k19 ,k2 ,p,vt29).

The wave functionf2 in the RHS of Eq.~B2! depends on
the variables defined in the center of mass of the two-b
subsystem. We shall now express these variables in term
the three-body relative momentaqW 1 ,qW 2 ,qW 3.

The variable q8 is related to s128 by s128 5@«(q8,m)
1«(q8,m)#2. We thus get

q825@m41~m22s128 !222m2~m21s128 !#/~4s128 !,

where, by taking the first of Eqs.~13! squared,

s128 5s1232
s132m2

12x2
,

with

s1235@«~q1 ,m!1«~q2 ,m!1«~q3 ,m!#2,

s135~k11k3!25@«~q1 ,m!1«~q3 ,m!#22q2
2 ,

~B3!

x15
«~q1 ,m!2nW •qW 1

As123

,

x2,35
«~q2,3,m!2nW •qW 2,3

As123

.

We use the fact thatqW 11qW 21qW 350W .
The value ofz8 is found by comparing expressions~B3!

for x1 with

x15
«~q8,m!2z8q8

«~q8,m!1«~q8,m!
.

This gives

z85$«~q8,m!2x1@«~q8,m!1«~q8,mu!#%/q8,

wherex1 is given by Eq.~B3! in terms ofqW 1 ,qW 2 ,qW 3.
The values ofq9,z9 are found from the equations
m
g,
. L

02501
y
of

q925@m41~m22s129 !222m2~m21s129 !#/~4s129 !,

z95$«~q9,m!2x1@«~q9,m!1«~q9,m!#%/q9,

where

s129 5s1232
s122m2

12x3
,

with s125(k11k2)25@«(q1 ,m)1«(q2 ,m)#22q3
2.

APPENDIX C: PROOF OF EQ. „39…
IN THE GENERAL CASE

We show below that the renormalization constantZ can
still be represented in the form~39! with S(p2) determined
by all the irreducible contributions. In this case, the numb
of irreducible diagrams containing two- and three-body
termediate states is infinite. Some of them are shown in
2. Consider, for example, a contribution containingn succes-
sive intermediate states. The corresponding amplitude c
tains the factor 1/t i for any of these states. As in Eq.~15!,
any factor 1/t i turns into 1/(si2p2), wheresi is the invariant
energy of a given intermediate state andp is the external
incoming/outgoing momentum. So, indicating only the
factors, we represent this contribution toS(p2) as

Sn~p2!5E )
i 51, . . . ,n

1

si2p2
•••

where the ellipsis includes all the integrations with the c
responding measures. The derivative overp2 gives the factor
1/(si2p2)2.

Now consider graphs that are the same at the right t
given i th intermediate state and differ from each other by
contributions at the left to this state. The infinite sum of the
determines the amplitude of the virtual transition from t
initial stateN to the statesNp or Npp. It is the vertexG2 ~if
the statei is the two-body state!, or G3 ~if the statei is the
three-body state!. We can then take the sum over all th
contributions to the right of this given statei and again ob-
tain G2 or G3. So the result has the form

dS~p2!

dp2
5E G2

2

~si2p2!2
•••1E G3

2

~si2p2!2
•••

5E f2
2
•••1E f3

2
•••5N21N3

and, after extraction of the common factorN1, we recover
Eq. ~39!.
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