PHYSICAL REVIEW D, VOLUME 65, 025016

Nonperturbative renormalization in a scalar model within light-front dynamics
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Within the covariant formulation of light-front dynamics, in a scalar model with the interaction Hamiltonian
H=—gy?(x) o(x), we calculate nonperturbatively the renormalized state vector of a scalar “nucleon” in a
truncated Fock space containing tReN7 andN =7 sectors. The model gives a simple example of nonper-
turbative renormalization that is carried out numerically. Though the mass renormalizatidrdiverges
logarithmically with increasing cutoft, the Fock components of the “physical” nucleon are stable when
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I. INTRODUCTION CLFD. We shall first derive the general eigenvalue equation,
whose solutions are the Fock state components. As a first
Knowledge of the hadron properties within the frameworkexample, we shall illustrate our strategy with a simple model
of quantum chromo-dynamid€CD) is one of the main is- involving two coupled scalar particles; namely, the scalar
sues in strong interaction physics. Several approaches haveucleon” N radiates the scalar “pions’. In this simple
been pursued in the last 20 years, in particular lattice gaugexample, the Fock space is restrictedNpN# and N7
calculations. Among the alternatives to these calculationsstates. Represented as a series of graphs in perturbation
light-front dynamicgLFD) is of particular interesft1]. It has  theory, it contains an infinite number of irreducible contribu-
proven successful in many phenomenological applicationsions to the self-energy. They diverge and require renormal-
involving few-body systems in particle and nuclear physicsization. At a large value of the coupling constant this system
However, the application of LFD to field theoretical calcula- cannot be solved perturbatively. We show how to determine,
tions is still in its infancy{2]. The main issue to be solved is in a self-consistent manner, the nonperturbative mass coun-
the renormalization proceduf@]. In perturbative calcula- terterm. This counterterm is then calculated numerically.
tions, the renormalization of the electron self-energy in QED Models involving two and three constituent bound states
is already nontrivial in standard LFD in the sense that itwere also analyzed if7].
involves nonlocal countertermdg]. This unpleasant feature In a more general field-theoretical framework, in the
is, however, a direct consequence of the choice of a prefefight-front Tamm-Dancoff approximation involving spin 1/2
ential direction, the axis, in the determination of the quan- particles for instance, renormalization is not reduced to the
tization plane. This can be well understood in the covarianintroduction of a mass counterterm. In this case, one should
formulation of light-front dynamic$CLFD) [5], as shown in introduce sector-dependent counterterms, as shown in Ref.
Ref.[6]. In this formulation, the state vector is defined on the[8]. In the two-nucleon sector, for spin 1/2 particles, addi-
light-front surface given by the equatien x=0, wherew is  tional box divergences apped@]. These divergences and the
the four-vector withw?=0. The particular case wher@  sector dependent counterterms are absent in the scalar model
=(1,0,0,-1) corresponds to standard LFD. In the CLFD, restricted to the dressed “one-scalar-nucleon” system. There-
the counterterm needed to renormalize the electron selfore, their analysis is beyond the scope of the present paper.
energy in the first order perturbation expansion is simplyin spite of that, the scalar model is still rather instructive,
dependent on the orientation of the light front, defined by thesince the renormalization considered here is not reduced to
four-vectorw. the perturbative one. We will consider a much larger cou-
We shall investigate in this article how the question ofpling constant, excluding the convergence of the perturbative
nonperturbative renormalization can be formulated in theseries.
The plan of the article is as follows. In Sec. Il we estab-
lish the general equations of motion for the Fock compo-
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ization of the wave function and of the coupling constant is The equations for the Fock components can be obtained
calculated in Secs. IV and V, respectively. Numerical resultfrom Eq. (1) by substituting there the Fock decomposition
are presented and discussed in Sec. VI. We present our cofer the state vectos(p) and calculating the matrix elements
clusions in Sec. VIL. of P2 in the Fock space. With the above expressionsffor

Eqg. (1) obtains the form
Il. EIGENSTATE EQUATION

We start with the general eigenstate equation for the state
vector[5]:

(§%2+(w-ﬁ%J‘Hm%wr);%

PE9(p)=M*4(p), ® + [ Aon g o ﬁ°>}¢<p)=M2¢<p>.
where
)

pP,=P%+P. 2 o _

In order to simplify this equation, we can use the fact that the
Here we have decomposed the momentum opefa,;oilnto operators §-P° and f[H™(w7)dr commute. Indeed, from
two parts: the free oneP), and the interacting on®)",  the commutation relatiopP, ,P,]=0 we get
given by
i L [w-P,P,]=[w-P°P%+PM=[w-P°PM=0.
P3=§i) Jdi’r(k)di(k)k# d3k,

Moreover, sincew?=0, we can replaced- P°) by (w-P)

St int 4 here and below. We thus obtain
P, :‘”MJ H"™(x)8(w-x)d*x

H™(w7) 5— 3

—o 27T,

_ f dr (w-ﬁo)fF'i”t(wf)fﬁ(p)dT:f(w'ﬁ’)ﬁim(wTW(p)dT
— 0,

=(w‘P)f H"™(wr)p(p)dr,

where we have denoted By™ the Fourier transform of the
interaction Hamiltonian:

and Eq.(5) is transformed to
AfYp) = [ Hmooexp(—ip-x)dx, @

Sint dr —_[(DB0\2_ 2
andd] (d;) corresponds to the creati¢destructioh operator 2w p)j H o) 5 dP)= —[(PY*~M71¢(p).
for the various particles under consideration. The explicitly (6)
covariant formulation of LFD manifests itself in the fact that
ﬁ’i;j‘ in Eq. (3) is proportional tow,, and is determined by the The state vectoe(p) is now decomposed in Fock compo-
integral over the light-front plane-x=0. nents according to

d3k,

(27)32, /28kl

¢(p>:(2w>3’2f b1(ky,p,wn)a’(ky)|0) 8 (ky—p—w7)2(w-p)dr

d3k, d3k,

(2m)3%\[28, (2m)%%|28y,

+(2)3? f b3(ky Ko, k3,p,07)a’(ky)bT(Ko)bT(Ks)|0) 8 (ky+ kot ky— p— w7)

+<2w>3’2f ba(ky Kz, p,w7)al (k)b (kp)|0) 64 (ky + ky— p— w7)2(w-p)dT

d3k, a3k, d3ks

+o,
(2m)%2\ 28y (2m)%%\[2¢,, (2m)%2\|28,

X2(w-p)dr 7
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wheres, = VkZ+m? andm; is the mass of the particlieof I'=2(w-p)re=(s—M?)¢;, (8)
momentumk; . We introduce in Eq(7) spinless particles of
two types: the “nucleon’{with creation operatoa’) and the
“pion” (with creation operatob’). The state vectof7) rep- 1 (.. dr

resents the “dressed nucleon,” consisting of the “bare ﬂf H"(w7) —9(p)= —G(p)=—-X(M?G(p). (9
nucleon” and the admixture of one, two. ., many pions.

Our dressed nucleon is also scalar; therefore the state vectgye introduce in Eq(9) the factorx (M?) depending oM 2.

(6) corresponds to zero total angular momentum. This meanghe eigenvalueM? is found from the condition(M?)=1.

that the Fock components are scalars and depend only ofhis equation is quite general and equivalent to the eigen-

wheres=(Zk;)2. We thus find the eigenvalue equation

scalar products of all available four-vectors. state equatiorfl).
The conservation law for the momenta in each Fock com-
ponent has the form IIl. EQUATION FOR THE FOCK COMPONENTS
ki+kot+- - +ky=ptor. A. System of coupled integral equations

For the simplified model we consider in this study, we

. s 2_ 2
Hence, the action of the operatdP*—M* in Eq. (6) on take the following interaction Hamiltonian:

the state vectop(p) is reduced to the multiplication of each
Fock component by the factoEk;)?—M?=2(w-p)r. H=—gy?(X)o(x) (10
We introduce the notation
where the scalar fields with massm corresponds to the

gp)=2(w- p)}qS(p), scalar nucleon and the field with massu corresponds to
) the scalar pion.
wherer is the operator that, acting on a given compongnt The system of equations for these vertex parts is shown

of ¢, givest¢;. G has therefore a Fock decomposition thatgraphically in Fig. 1. In order to write down this system of
differs from Eq.(7) by the replacement of the wave functions equations, it is enough to apply to the diagrams of Fig. 1 the
¢; by the vertex part$’; given by rules of the graph technique detailed in R&f. We thus find

!

d
Fa(ky.prom) =0 [ T30k puor) 590G~ p=w) oo Kk 3= mP)ati—
7T —I

+g—f T5(kp k), p,07 ) (K, +ky—p—wr) (w-ki) (k' 2—m?)

(2m)®

!

X d*K, 0 w- ) 8(ky2— u?)d*K}

(113

' —i0’

!

d
Fz<k1,kz,p,mz>=9f 1(ki,p,w7)8(ki—p—wr')6(w-k;) 8(k'f— m?)d*ki——— ",0
7 —1

!

2 , " s@) 1! o k! 2o 4, 97
+om? | Pk g, pyw7) 69K +ho—p—wr) oo -k a(k T - mP)d'ki——
7' —i

1
+9WJ T'3(k] ko K, p,07") 8M(Ki+ kot ki—p—w7') 8(w-K})

’

d
x 5(k’§—m2)d4k16(w-ké)b‘(k’g—ﬂz)d“ké,—T_O, (11b)
7 —I

!

d
Ts(ky ki ks.P.075) =0 [ Talki kP r) 59K+ ko= wr’) B k) (K E =m0k
7T —1

!

, N, , , 2 o s 97
+9 | Iy(kiks,por)d(ki+ks—p—w7")8(w-k7)d(k'{—m*)d*k;——. (110

7 =i
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r, . Ty __ . r, _om? _ S b X L
—_— e .L/\/:' = + ] ‘,{’
AN Tt
o~
. rn __ - r, _om’ _
- — - = " _|_ ."Xf’
+ ...
T FIG. 2. Perturbative expansion, in terms of the pion-nucleon
+ 3 -7 coupling constang, of the nucleon self-energy.

In the right-hand side of Eq€118 and (11b we intro-

F3 - F2 - FZ -
= = —_——  + o duced the counterteriim? corresponding to the interaction
t_',: :EE E Hamiltonian H=—ém?y?(x). This term provides mass
renormalization. The counterterm is not introduced, however,
FIG. 1. Diagrammatical representation of the eigenvalue equain the third equation containing the three-body intermediate
tion projected onto the Fock components of the state ve®r  state. At this point we have some freedom in the definition of
stric_ted her_e tdN=3). For the sake of clarity, we remove all kine- the model Hamiltonian. In principle, the counterterm could
matical variables. also be introduced into the three-body intermediate state,

The origin of the mass counterterdm? in these equa- since formally it does not increase the number of particles in
tions is explained below. Since we truncate the Fock space th'€ intermediate state. Our motivation in choosing the
three partic'eS, we omit in the last equatimq the cou- Hamiltonian without the counterterm in the lasth Fock
pling of I'; to the four-body componerit,. Note that our ~ sector is the following. Consider, for example, the mass op-
approximation is not based on a perturbative expansion igrator —gs(p?) in second order perturbation theory. It is
terms of the coupling constant. It is based on a decomposgiven by the diagram of Fig. 3 with two particlebl @nd )
tion over intermediate states with an increasing number oin the intermediate state. The countertedm?, which is
particles. Once this number is fixed, we solve a nonperturbashown by a cross on the nucleon lif@ne particleN in the
tive problem in terms of). If we iterate the syster(ll), i.e., intermediate stajgust renormalizes this mass operator. So,
expressl’s andI', from the third and the second equations one “pion” is deleted when the counterterm appears. There-
and substitute them in the first one, we getlfqrthe sum of  fore, for the renormalization of the mass operator determined
the diagrams shown in Fig. 2. Of course, this series of graphBy the sum of(an infinite number ofirreducible diagrams
corresponds to all the irreducible contributions to the self-with n particles in the intermediate state, one should consider
energy with intermediate states upNar. These contribu- the graphs, with the counterterm insertions, with 1 par-
tions are iterated again, i.e., they appear repetitively on thécles in the intermediate states orfl§]. These diagrams are
nucleon line. In contrast to the case of the intermediate stateist those generated by the Hamiltonian without the counter-
N7, which generates only one self-energy diagram shown iterm in thenth Fock sector.

Fig. 3, the number of irreducible contributions generated by We can easily transform Eq§l1) by performing the in-
the intermediate states up kb7 is infinite. The system of tegrations which do not involve loops, keeping the loop in-
equationg11) corresponds to the sum of all of them. tegrals untouched. The result is the following:

om? 1 o )
Fl(kl,p,le):mrl(kl,p,le)+Q(ZT)3J [o(ky Ky, p,w7") 8¢

! ! ! 2 2\ A4 ’ 12 2\ 41,7 dT,
X(kitky=p—w7")0(w-k) o(k'T—m)dk; O(w-k3) (k" —p)d kz,—.oy (123
7' =i
g m?
rz(kl,kz,p,sz)Zmrl(Pl,p,le)+mrz(kl,kz,p,aﬂz)
+g(2—)3f T3(k} ko, ks, p, 07" ) 6W(kj+ky+ki—p—07') 8(w-k;) 8(k'3—m?)
ar
dr’
Xd“kia(w-ké)é(kéz—uz)d“ké,—.o, (12b)
7' =i
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9 g
F3(k1,k2,k3,p,w7'3)= ) Fz(k, ,kz,p,(x)T’)‘i‘ . Fz(k”,k:s,p,w’rﬁ). (120)
2(w-p) (1) Y20 p)(loxy) ’
|
In Egs. (128 and (12b), 2(w-p) i =ki—p?=m?—p?—0 R 1 N 1
when p?—m?. Sincer, is in the denominator, we kegp’ o(q,p?) =5

2 (s;,—p?—i0) e(d,me(q,u)’

#m? and take the limip?—m? in the final equation. In Eq. (15

(12b), p1=p— w7y With 2(w-p) 7,=S;,— M? and s;,=(k;
+k,)?. In Eq. (120 we use the notation with

. I _ ! 2 . n_ " 2 R R
PlopInms M 2o s, 10 (ko ko) 2= [e(,m) + (G, %,

e(g,m)=Vm?+qg?, (16)

and similarly fors(ﬁ,,u). Sincel’; does not depend on the

andky k] are determined by the conservation laws relative momentum, it follows from Eq$14) thatT',(q,n)
does not depend on the relative momentum either, i.e.,

I'»(g,n) =const. Hence, we get

where

si=(kit+ka)?  sio=(K{+ky)?,

ki=kit+kstor,— w73, Ki=kitk,+orh— w73,
(13

where w 71,3 is the momentum of the spurion line entering

om3
g0 27—
the diagram. Everywhere we note that w-k; /- p. ( 1+ m2_p2) F1+g2(pIT=0,

B. Reduction to two-particle Fock states g

We consider first the approximation in which the state mz_pzrl_rfo' (17)

vector(7) contains only the bare nucledhand the stat®l .

In this approximation, the system of equations for one- angcrom Eq.(17) we find the eigenvalue equation:

two-body Fock components is represented diagrammatically

in Fig. 4. It is easily obtained by omitting; in Eq. (110, p2=m?— smZ— g3 (p?). (18)
together with the counterterm in the equation that determines

the last Fock sectoF',. This truncation of the Fock space, e counterterndmj is determined from the on-shell condi-

retaining the minimal number of components, is equivalent;,, p2=m?, wherem is the physical mass of the nucleon.
to second order perturbation theory. '

o R This gives
Rewritten in terms of the variablesandn (see Appendix
A), this system of equations obtains the simple form 5m§= —g%3(m?), (19
r.— 5m§ I+ f (», 21 (», ﬁ) dq’ as expected in a second order calculation of mass renormal-
Y2 t 9] olq.pt2Aan (2m)3’ ization.
(149
C. Solution for the three particle system
i g9 Consider now the system of equations that incorporates
I's(g,n)= ry, 14b .
290 m?— p? ! (14 the three-body Fock componeht. It was shown graphi-

cally in Fig. 1. We can easily expredg throughI',. The
where o(q,p?) is the integrand that determines the self- SyStém of equations is thus transformed as shown in Fig. 5.

energys (p): Its analytical representation has the form
N dsql Fl - F2 - Fl 5m2 -
S 2 :J P /, 2 , -~ — Faalind Y2l ."\,:v’
(P%) (a’.p%) (2m)° —— T~ +
Iy - Iy -

Padbhgs s -

FIG. 3. First order perturbative expansion of the nucleon self- FIG. 4. Diagrammatical representation of the eigenvalue equa-
energy. tion in first order perturbation theory.
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Iy - Iy .- I, ,—6@3/
T = 7 "V\l\,\

+

FIG. 5. Same as Fig. 1, but where the last Fock seaterJ)
has been expressed in terms of the two-body one.

5m2 S A2 S~ *q’
rl:mZ_p2F1+gJ o(q’,p)I'2(q ,n)(27r)3’
(203
.. g om?+g%3(sy) . - -
Ty(Gn)=———I+ ——T5(q.n)
m=—p (S12= P%) Xk,
. R .o 3N/
+92J H(q,q’,n,pz)a(q’,pz)FZ(q’,n)(277)3-
(20b

Each term in Eq9.20) is represented by a graph on Fig. 5. In

these equations is given by Eq.(16), and

s1=(ky— CUT)ZZmZ_Xkl(Slz_ p%),

w -

Ky
p

1 R ..
=—[&(q,m)—n-q].
S12

X

In this equation]I(qg,q’,n,p?) is the propagator of the sec-
ond intermediate state:
1(q,q",n,p?)
=J Ol w- (kg —K3) 18l (k1 —k;
+ _ 7_// 2_m2
0Ty~ 0T") ]—7'"—i0
Olw- (ki —kz)]

- m?— (k;—kp— w2

(21)

Its expression in terms of the variablggy’,n can be easily
calculated with the kinematics detailed in Appendix A.
The system of equation®0) can now be solved by two
independent methods.
(i) The first one consists in the elimination Bf in the
two equations inf20). The result is an equation far, which,
at p2=m?, obtains the form

PHYSICAL REVIEW D 65 025016

d3/

2

- gf ) -
I's(g,n)=—— ".p)I5(q’,n
2(a,n) P o(q",p)I'x(q )(277)3
2 2
g2 (s;)+ m .
+ = ——T,(q.0)
(S12— P*) Xk,

d3/

+ ZJ 11(q,9',n,p%)a(q’,p)T5(q’,N

g (a,9",n,p%)a(q",p)I'2(q )(277)3
=\(8MA)T,(q,n). (22
As in Eq. (9), we introduce in Eq(22) the factor\ (dm?).
The mass renormalizatiodm? will be found from the non-
perturbative condition (m?)=1.

(iil) The second method consists in the direct elimination
of I', in the two equation$20). We can indeed rewrite Eq.
(20b) in the following form:

L. mP+ga(s) . - -
Ty(q,7)— —————T5(q,n)
(S12— P%) Xk,

3N/

N2 I _’,—)/,ﬁ’ 2 -’/, ZF -’/’ﬁ
gf (G RP7)o(d P AE ) s

g
m?— p2

r,. (23

After discretization of the momenta, this equation can be
written schematically:

g

m2— p2

A;TL= ry[17, (24)

where[ 1] is the vector whose every component is 1, &ad

is a two-dimensional matrix obtained after discretization of
the momentaindexi for g,n-q and indexj for q’,n-q’).
The vertex functiod, can now be expressed in termslof
after a simple matrix inversion:

Ih=—2—TWA; 1] (25)
m=—p

After insertion in Eqg.(20a, we end up with an equation
involving I'; only. Sincel’; is a nonzero constant, it can be
removed from the equation, leading to an equationdor
generalizing Eq(19). In the perturbative limit, the matria
reduces to the unit matrix, and we therefore recover(E®).

exactly.

IV. RENORMALIZATION OF THE WAVE FUNCTION
A. Nonperturbative case

We schematically rewrite the state vectg), given by
Eq. (7), as

P)=¢1IN)+ 2N 7) + 5| N7 ).

025016-6
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It is normalized as follow$5]: 2py)- So the statép), which is a dressed state in terms of
.. the bare operators',b', can be interpreted, in this sense, as
(p'|Py=2pos®(p—p’). (26)  an elementary particle in terms of the operatdr

The Fock components are thus normalized in order to pro-
vide the condition(26). Substituting the state vectdr) in
the left-hand side of Eq.26), we get, before normalization The perturbative case is simply obtained from the preced-

B. Perturbative case

of the Fock components, ing one by omitting¢s. Taking into account that from Eq.
o (14) we havel';/(m?—p?)=¢,, we findT',=g¢;. Substi-
(p'|p)=2Z2pes®(p—p"), (27)  tuting it into Eq.(29), we find ¢, and then, by Eq(28h), we
obtainN,:
where
No=$1g°l2
Z: N1+ N2+ N3
_ where
with
1 Js d’q
Ny=¢2, (28a l,= . 32
! ' 2 167T3 (512_ m2)2 8(q1m)8(q!/’b) ( )
- - [s(q m)+e(q,u)] , , .
N,= f d3q, We thus find the ratio
27 S(2m)? PN G meta ) (28h)
N>
—2 = 16mmPal ,~0.38 (33
Ny
Na= 42 )fJ $3(d1.02.03,1) (A1 + 0+ Ga) with a=g?/16mm?. The numerical value of, is given for
m=0.94, u=0.14. The integral , is logarithmically diver-
[e(qs,m)+e(gs,u)+e(qsz,u)] 3 3 gent for u—0. The two-body contribution is rapidly de-
d°q; d°g; d°gs. creasing, when the mass of the intermediate particle in-

e(dy,m)e(dy,u)e(ds, 1) creases

(280

FromI', calculated with Eq(22), we can findg, according V. RENORMALIZATION OF THE COUPLING CONSTANT

to As mentioned above, the mass renormalization counter-
N term ém? for the state vector incorporating andN 7 states
(G ﬁ):FZ(q,n) (29) only is given by Eq(19) and coincides with the perturbative
2 Syo— M? ' result. For the state vector incorporating the stated 7 and
N7, it is determined by Eq(22). This renormalization
The calculation ofN, is then straightforward. To calculate constant is infinite when the cutoff tends to infinity.

N; and N3 we should knowg, and ¢5. The calculation of The coupling constant is also renormalized, although its
¢, and ¢4 is explained in Appendix B. Note that; does not  renormalization is finite for the particular scalar system we
depend on any relative momentum. are interested in the present study. We show below how this
The normalized state vector satisfying the condit{@6) renormalization can be carried out. This renormalization is a
obtains the form by-product of the renormalization of the wave function ful-
filled in the previous section. Let us consider first the case of
[p)= ¢ IN)+ 5 INm) + ¢3" IN7 ), the state vector containing andN states only.
where

A. Truncation to N and N states

D = b123/\Z. (30 In this approximation, the normalization fact®t, is
given by Eq.(32). We thus get
We can introduce the creation operator of the new, com-

posed field, directly creating the staf®. It is written sche- Z=N;+N,=¢%Z, with Z;=1+¢?l,, (34
matically as
where |, is given by Eq.(32). After renormalization the
Af(p)=pmal+ patb+ pFMa’b b, (31)  wave functiong, therefore turns into
so that|p)=AT(p)|0). With the renormalized wave func- 99 ren_ g ~ Gren 35
tions ¢™", the vacuum expectation value of the commutator, ‘/’2_5_ m2 ) VZ1(s—m?) T s—m? (39

(O[[A(p),AT(p)]|0)=2pod®)(p—p’), is the same as the
one-body operatora,a’ (except for the normalization factor where we introduced the renormalized coupling constant
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Urer=0/ /Zl- (36) o '[ABLE I. Numerical results forw=3, as a function of the cut-

This value ofg,e, can also be represented as the residue of

the two-body wave function as=m?, i.e. the value of 1 ° 10 =0 100 200
I'>(g,z) at the nonphysical value af corresponding tcs om2 _1234 —367 —-482 —-754 —-871 -988
L2\ . : . . . .
=m- , , , om?/6m3  1.095 1.052 1.040 1.025 1.022 1.020
One can alternatively defing,, from the 7N scattering N, 0377 0329 0327 0326 0326 0.326
amplitude determined b exchange in the channel: N, 0441 0455 0456 0458 0458 0.458
gz 92 2 N, /Ny 1.183 1.380 1.395 1.407 1405 1.405
Fo ot [omP+ g2 (pH)] s - N3 0.182 0.216 0.217 0.216 0216 0.216
m?—p? m’—p m?—p (q) 0.366 0538 0.565 0588 0.591 0.593
g2
= 3 _ . .

m?— p2— sm?—g23.(p?) (37) s=m?, i.e., the value of',(q,z) at the nonphysical value of

gq=i« corresponding ts=m?. For a nonrelativistic bound
wherep?= (k;+k,)2—2(w-p) 7. Near the polep?=m? we  state calculation for instance, it is given by=\m|ey|,

get where e, is the binding energy of the bound state. In coor-
dinate space it is the coefficient of the asymptotical behavior
g2 grzen of the wave functiony(r—o)xexp(—«r). Since we calcu-
= = lateI"»(qg,z) numerically in the physical region fay, it is not
2_ 2 2 2 2 2_ 2 2
(m*=p9)[1+g°dZ(p*)/dp*[pe-re] m*—p 39 easy to find its interpolation into the nonphysical region nu-

merically with enough accuracy. However, we do not need to
choose the renormalization poist= m?; we can choose any
other renormalization point. We can define for instance the
d3(p?) renormalized coupling constant as the valuel'e{q,z) at

39 9g=0:

where we introduced,., by Eqg.(36), but with Z; given by

Z,=1+¢> 5

P™ e me ~

Oren=T51q=02). (40

Taking Eqgs.(15) for 3 one can easily check that Eq84)

and (39 determine the sama, . Note thatl',(q=0,z) does not depend on In the case of
Note that the renormalized coupling constgp, is finite N+ N7 intermediate stateE, does not depend amand the

and it is always smglle_:r_than the bare vagJeNhen the_ b_are renormalized coupling constangs,, and g,., coincide with
constantg tends to infinity, the constam., remains finite, o5ch other.

however, but it reaches its maximal value. Expressed in

terms ofa=g?/(16wrm?) it has the form
VI. NUMERICAL RESULTS

max__ 2
Aren — L(16mm°1 ). Both methods to solve Eq§ll) are used to cross-check

our results. For regularization purposes, we introduce a cut-
off L, i.e. integrate in Eq(22) over moduli of all the relative
three-momenta until g<L. Note that this cutoff procedure
preserves rotational invariance. For the masses, we choose
B. Truncation to N, Nz and Nzr7r states the nucleon and pion masses=0.94 GeV andu=0.14

In this case the renormalized wave functions are given byseV. The integration over the azimuthal angle is done ana-
Eq. (30) with Z determined by Eqs(27),(28). Note that the lytically. The equation is reduced to a matrix form by dis-
renormalization constar# can still be represented in the cretizing the integral. Convergence of the integrals is already
form (39) with 3 (p?) determined by all the irreducible con- obtained for 30 points in the variabteand 15 points in the
tributions (see Appendix € variablez. The points inq were not taken equally spaced, but

Restricting ourselves to the system considered above ariith a spacing proportional th?, whereh is the equal spac-
having found the renormalized state vecfp}, we can get ing in the variable\/a. In the first method, the eigenvalue
all the physical informatioriwe can for example calculate A(8m?) of the matrix is found numerically aném? is fixed
the electromagnetic form factors, if the particles areto get\=1 to less than 0.5%. For the second methém?
charged. So we do not need in practice to define and calcuis calculated by a standard iteration procedure, starting from
late the renormalized coupling constayg,. However, it is  the perturbative result. Since both methods give identical re-
useful to calculate it for further generalization to the case ofsults to less than 1% we quote only the results obtained with
particles with spin, when the charge renormalization constarthe second method.
will become infinite. The results for the dimensionless coupling constant

As we already mentioned, the standard definition of the=g%/(16mm?)=3 and for different values of the cutoff pa-
coupling constant is the residue of the wave functibnat  rameterL are shown in Table I. We denote iﬁynzlémg the

It does not depend og According to Eq(33), its numerical
value form=0.94 andu=0.14 is: aj.5*= 1/0.38=2.63.

025016-8



NONPERTURBATIVE RENORMALIZATION IN A SCALAR . .. PHYSICAL REVIEW D65 025016

TABLE Il. Same as Table I, but with. fixed to 200, anda TABLE Ill. Test calculation in which the cutoft is introduced
varied. only in the two first terms in Eq22) (see tex), for a=3.
o 1 3 10 30 100 1000 L 0.1 1 10 100

Sm?/ Sm? 36.3 1.55 1.07 1.03

sm?/émj  1.011 1.019 1.029 1.035  1.040 1.043 0
N; 0.661 0.325 0.081 0.016 >10°° 3x10°°
N, 0.292 0.457 0.366 0.186 0.068 x&0°° Wi hasi h h I deviati £ th luti
N 0047 0218 0553 0798 0930 0992 ehemp as'ge,t at the Smaf eV'a“?” of t |e S0 ‘f'?\”
N, /N, 0.441 141 451 11.91 329 230 romIF e pertur atl\{e pne, even for ve:cy harge values o t e
(N,/N)), 038 114 38 11.4 38 380 coupling constant, is just a property of the nonperturbative

Eq. (22), which includes the contributionsvith one-, two-
and three-body intermediate statés all orders ofg. This

ratio of the valuesm? found from Eq.(22), to the perturba- result cannot be justified in any perturbative expansion in
tive value SmZ given by Eq.(19). The valuesN; ,; denote  {€rms ofg.

the contributions of the corresponding Fock sectors to the

normalization of the state vector. In order to characterize the

wave function quantitatively, we calculate also the average VIl. CONCLUSION

value of the(absolute relative momentun{qg), normalized
to the two-body Fock component:

In a first attempt to address the question of nonperturba-
tive renormalization in the CLFD, we have investigated in
this study a simple, but nevertheless meaningful, model
J 624 ﬁ\[s(q,m)+s(q,,u)] 3 based on two scalar particles. This model is reminiscent of

2.0 e(q,m)e(q,u) qaq. the structure of the physical nucleon in the low energy re-
(41) gime, in terms of bare nucleons coupled to pions.

Using the nice features of the CLFD, we have first de-
rived the general eigenstate equation that should be used in
order to calculate any physical state vector. We emphasize
here that this equation is quite general and is not restricted to
the case of scalar particles nor to the restricted Fock space
we consider in this study. It should therefore also be used
when solving more complex systems such as QED or QCD.

The results we obtained for the simple scalar model, with
a restricted Fock space expansion up to three particles, are
quite encouraging. We obtained, numerically, a renormalized
solution using a simple mass counterterm. Surprisingly
qenough, this counterterm is not very different from the per-

. ; urbative, logarithmically divergent, mass counterterm, even
coupling constant. The results fb'f: 200 and for differentr for very large values of the coupling constant. We traced this
bet\z/vgen 1 and 1000 are shown in Table Il. One can see thgl, e pack to the nature of the scalar model we started
om” is very close to the perturbative value even for €Xfrom, which is superrenormalizable. This result, however,
tremely large coupllng_constamzt= 1000. As e_xpected, the_ does not imply that higher Fock states are negligible. We find
three-body sector dominates when the coupling constant iy o the first nontrivial Fock component gets larger and larger
creases. However, the rati, /N, is still close to its pertur- o< ihe coupling constant increases.
bative value N3/Ny)o, given by Eq.(33). _ The direct generalization of this study is the investigation
The reason that the solution is close to the perturbativgy nonperturbative renormalization in scalar QED, following

one Iie§ in the _superrenormalizability of the scalar theg)ry.the study of perturbative renormalization in QED already
The third term in Eq.(22) converges and does not requiré jone in Ref[6] in the CLFD. This will be the subject of a
any cutoff, whereas the first two terms are divergent an%rthcoming publication.

dominate. Therefore, a very small departuresof® from its
perturbative valueSm(z) can accommodate a finite higher or-
der correction. If the third term can be neglected, the equa-
tion is approximately satisfied with the perturbative value of
Sdm?. In order to show that it is indeed so, we introduce the One of the author§V.A.K.) is sincerely grateful for the
cutoff in the two divergent terms, but do not introduce it in warm hospitality of Laboratoire de Physique Corpusculaire,
the third, convergent one. The results for=3 are shown in  Universite Blaise Pascal, in Clermont-Ferrand, where this
Table Ill. For small enough values &f the two first terms  work was performed. This work was partially supported by
are suppressed, and the solution differs drastically from théhe grant No. 99-02-17263 of the Russian Fund for Basic
perturbative one. Wheh increases, the solution becomes Researches, and by the Russian-French “PICS” research
closer and closer to the perturbative one. contract No. 1172.

1
2(2m)3

1
<0I>:N—2

One clearly sees that althougim? increases logarithmi-
cally, the contributions of the Fock componems,N,,N5
as well as the average momentygq) in the two-body Fock
component become stable after5. This means that we
have indeed found numerically the renormalized solution fo
the wave function.

One can see also that the nonperturbative valugntt is
very close to the perturbative omné. We have checked that
the functionI'»(q,z) is almost constant, as expected for the
perturbative solution. The solution fafm? remains very
close to the perturbative result also for higher values of th
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boosts. From Eq(A8) one can see that this difference is the

We show in this append|x how to express the propagatopOOSt in the direction ofi. This boost does not change the

(22) in terms of the vanableq,q n.

The two-body wave function depends on the following

four-vectors:

b= d(ky, ko ,p,07),

We introduce the variables

k1+k2=p+w7'. (Al)

:Lil(P)El:E]_ ‘|1 (AZ)

P {k K- P
VP2 PP,
n=L"YP)o/|L Y P)w|=VPL YP)olw-p,
(A3)
where

P=p+wr, (A4)

andL~Y(P) is the Lorentz boost. The wave function under

the integral (see the last diagram in Fig.) 3lepends on
ki,k5,p,07', and, correspondingly, on the variable

q'=L"YP)kK], (A5)
where

=pt+towrt. (AB)

In order to obtaidI(q,q’,n,p?), we should express the four-

momentak; .k, w7’ in (ki —k,—w7')? in terms ofq,q’,n.

unit vectorn.
Now let us findIZz. It is obtained by reverting to E¢A2):

>

P
/P2

- >

. . . q-p
K,=L(P)(—q)=—q+ e(q,m)— W :
0

(A9)

Equation(A9) is obtained from Eq(A2) by replacingk; in
the right-hand sidéRHS) by —ﬁ and by changing the sign
of P.

Substituting here Eq$A8) for P, we find

. . .s—s \/— \/—
kKy=—g+n—— -n- A10
and similarly forks,q:
e(q )Py q-P . _s+s" . .s—¢
koo=——"=— M) =—n-q =
\/_ \/_ 24/ss 24/ss
(A11)
From Eq.(A7) we get
-, er _ p2 S' _ p2
w7 =

n—-—, =
205 T T o)y

Substituting the above expressions for the four-momenta into
(k;—k,—w7")?, we find that the four-vector squared in the
denominator of the propagat@1) is expressed in terms of

Since under the Lorentz transformaﬂons and the rotations ohe vanablesq q F as follows:

the four-vectors the vanableq,q n are rotated only, the
expression for the scal:H(q q ,n,pz) does not depend on

the system of reference, and hence can be found in the mogk; —k,— & 7')?=

convenient one. We find it in the system where

P =k +k2 p+wT =0.

In this systemk;=q’ andk;j,=&(q’,m). From the con-
servation law the vectorP is expressed asP= I21+ IZZ
=w(7—1'). We have

S/_p2

" 2(w-p)’

where \s=g(q,m)+e(d.u), VS =e(d'\m)+e(q’n).
Since o= won and w-p=ow-(k{t+k))= wo[s(q ,m)

+e(q’, 1) ]= woys’, we find

2
S—p ,

“20p) (A7)

? .s—¢s’ P s+¢s’
=n——, =,
20s Y os

One can check tha@?=s. According to Eqs(A2) and(A5),
the variablesq and q’ are defined by different Lorentz

(A8)

s+s’ . .s—¢'
,m)— +n-
’ 272
S N (e(q )
24s" a 2\/35 "
2
. oys—ys'| .s'—p?
—n-q\/— \/_ -n P (A12)
Js+As” 24s"

APPENDIX B: CALCULATION OF ¢; AND ¢;

The Fock components; and ¢ are calculated as fol-
lows. The wave functionp, in Eq. (28b) is related to the
vertex functionsI’, by Eq. (29). Having found the vertex
function Fz(a,ﬁ)zl"z(q,z) numerically from Eq.(22), we
then find by Eq(29) the Fock componenp,.

With Egs.(123a), reduced to the first equation in Ed.4),
we expresd’; throughI', in the limit p?>—m?, and then find
the componentp,:

d3/

9 -, ., . d%
¢1:_ﬁf %i(a',pA)T (g 'n)(ZT)s' (B1)
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With Eq. (12¢), we expresd’; throughI', and then findps:
g¢2(q',2")
(S123— M?)(1—X,)

gé2(q",2")
(S123— m?)(1— X3) .

$3(d1,02,03,n) =

(B2)

PHYSICAL REVIEW D65 025016
q"=[m*+ (u’—s],)%—2m?(u’+s;,)1/(4s],),

z'={e(q".m)=x4[e(q",m)+&(q", ) 1}/q",

where

S1p— M?

S":S _Te
12— S123 1-x;

Herep,(q’,2') is ¢o(Kq, Kz, p, wT5) represented through the with sy,= (ki +k,)?=[e(q.,m) +&(qy, 1) 1>— g3.

relative momentum, aneb,(q”,z") is ¢,(K7 ,ky,p,w7)).

The wave functionp, in the RHS of Eq(B2) depends on
the variables defined in the center of mass of the two-body
subsystem. We shall now express these variables in terms of

the three-body relative momenda,q,,ds.
The variableq’ is related tos;, by s;,=[=(g’,m)
+e(q’, ;)] We thus get

q'2=[m*+(u?—si)%—2m3(u+s),)1/(4s},),
where, by taking the first of Eq$13) squared,

S13— m2

ro__
S15=S123~ 1 X

with
S125=[&(qy, M) +&(qz,u) +&(qs,u) 1%,
S15= (kg +ks)?=[e(qs,m)+e(qs, 1) 12— g3,
. (B3)
_e(qg,m)—n-q

X - —7
' VS123

8(‘12,3,#)_5'&2,3

X e
23 VS123

We use the fact thail+ (324— ﬁ3= 0.
The value ofz’ is found by comparing expressiofB3)
for x; with

_ s(@.m)-2'g’
Ye(a mte(qp)

This gives
z2'={e(q"\;m)—x4[e(q",m)+e(q",mu)l}/q’",

wherex, is given by Eq.(B3) in terms ofq;,0,,0s.
The values ofy”,z"” are found from the equations

APPENDIX C: PROOF OF EQ. (39
IN THE GENERAL CASE

We show below that the renormalization constZntan

still be represented in the fori89) with 3 (p?) determined

by all the irreducible contributions. In this case, the number
of irreducible diagrams containing two- and three-body in-
termediate states is infinite. Some of them are shown in Fig.
2. Consider, for example, a contribution containmgucces-
sive intermediate states. The corresponding amplitude con-
tains the factor 1/, for any of these states. As in E(L5),

any factor 1#; turns into 1/§,— p?), wheres; is the invariant
energy of a given intermediate state apds the external
incoming/outgoing momentum. So, indicating only these
factors, we represent this contribution¥¢p?) as

2n(pz): i*ll_[

where the ellipsis includes all the integrations with the cor-
responding measures. The derivative opegives the factor
U(si—p?)>.

Now consider graphs that are the same at the right to a
givenith intermediate state and differ from each other by the
contributions at the left to this state. The infinite sum of them
determines the amplitude of the virtual transition from the
initial stateN to the state®N7 or N7ar. It is the vertex”, (if
the state is the two-body staje or I'; (if the statei is the
three-body staje We can then take the sum over all the
contributions to the right of this given stateand again ob-
tainI", or I';. So the result has the form

dwtf rs ff_
dp? (si—p?)? (si—p?)?

:f¢§...+f¢§...:|\]2+|\|3

and, after extraction of the common factdy, we recover
Eq. (39.
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