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Ultraviolet fixed point and generalized flow equation of quantum gravity
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A new exact renormalization group equation for the effective average action of Euclidean quantum gravity
is constructed. It is formulated in terms of the component fields appearing in the transverse-traceless decom-
position of the metric. It facilitates both the construction of an appropriate infrared cutoff and the projection of
the renormalization group flow onto a large class of truncated parameter spaces. The Einstein-Hilbert trunca-
tion is investigated in detail and the fixed point structure of the resulting flow is analyzed. Both a Gaussian and
a non-Gaussian fixed point are found. If the non-Gaussian fixed point is present in the exact theory, quantum
Einstein gravity is likely to be renormalizable at the nonperturbative level. In order to assess the reliability of
the truncation a comprehensive analysis of the scheme dependence of universal quantities is performed. We
find strong evidence supporting the hypothesis that 4-dimensional Einstein gravity is asymptotically safe, i.e.
nonperturbatively renormalizable. The renormalization group improvement of the graviton propagator suggests
a kind of dimensional reduction from 4 to 2 dimensions when spacetime is probed at sub-Planckian length
scales.
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I INTRODUCTION theory is that the “continuum limit"k— oo actually exists
after the “renormalization”—in the traditional sense of the

During the past decade, exact renormalization grougvord—of finitely many parameters in the action; only a finite
equations[1], in particular in the context of the effective number of generalized couplings Ity is undetermined and
average actiofi2], have become a powerful tool for the in- has to be taken from the experiment. This is the case for
vestigation of nonperturbative phenomena in both quanturperturbatively renormalizable theorip$], but there are also
field theory and in statistical physics. Those renormalizatiorperturbatively nonrenormalizable theories which admit a
group (RG) or flow equations may be regarded as the counfimit k—o. The “continuum” limit of those nonperturba-
terpart for the continuum of Wilson’s renormalization grouptively renormalizable theories is taken at a non-Gaussian
of iterated Kadanoff block spin transformations which hadfixed point of the RG flow. It replaces the Gaussian fixed
been formulated for discrete spin systems origingBy In  point which, at least implicitly, underlies the construction of
both cases the central idea is to “integrate out” all fluctua-perturbatively renormalizable theorifk]. Thus knowing its
tions with momenta larger than some cutkffand to take fixed point structure is crucial if one wants to assess whether
account of them by means of a modified dynamics for thea given model qualifies asfandamentatheory.
remaining fluctuation modes with momenta smaller tkan In this paper we shall use a formulation whdigis the
This modified dynamics is governed by a scale dependengffective average action’[2]. It is a coarse grained free
effective Hamiltonian or effective actio;,, whosek de-  €nergy functional which is constructed in close analogy with
pendence is described by a functional differential equationth® standard effective actiofi to which it reduces in the
the exact RG equation. limit of a vanishing infraredIR) cutoff, k—0. The Euclid-

In quantum field theory this general strategy can be ap€an functional integral for the generating functiolis
plied to both “effective” and “fundamental” theories. By Mmodified by adding an IR cutoff term,S to the classical
definition, an effective theory is valid only if all relevant action. It supplies a momentum dependent (nfasim
momenta of the process under consideration are close B«(P?) for a mode of the quantum field with momentym
some specific scalewhich characterizes the theory.Ili, is ~ The cutoff functionR,(p?) vanishes fop?>k?; hence the
the action of an effective theory at scalave can compute high-momentum modes get integrated out in the usual way.
cross sections for the scattering of particles with moment&or p°<k? it behaves asR,(p?) =k’ so that the small-
(or relevant momentum transfersf the order ofk, with all  momentum modes get suppressed in the path integral by a
quantum effects included, by simply evaluating tree dia- ~ mass termek® [2]. The scale dependent actibR is closely
grams OfI‘k_ Exact RG equations can be used in order torelated to the Legendre transform of the modified generating
evolvel', to a smaller scal&’ <k by further “coarse grain- functional W,. When regarded as a function kf I'y runs
ing.” along a RG trajectory in the space of all actions which starts

Flow equations may also be used for a complete quantiat I't=S and ends af'o=T'. In the simplest case, the exact
zation of fundamental theories. If the latter has the classicdRG equation which describes this trajectory has the follow-
actionSone imposes the initial conditiofiz=S at the ultra-  Ing Structure:

violet (UV) cutoff scalek, uses the exact RG equation to

computel’ for all k< k, and then sendk—0 andk— .

1
_ () -1
Loosely speaking, the defining property of a fundamental K= 3T Ri) K ARl (1.9
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HereI'{?) denotes the infinite dimensional matrix of secondmathematically consistent down to arbitrarily small length
functional derivatives of’, with respect to all dynamical scales. A proposal along these lines is Weinberg's
fields. “asymptotic safety” scenari¢16]. It assumes that there ex-
This construction is fairly straightforward for matter jsts 3 non-Gaussian RG fixed point at which fe o limit
fields, the inclusion of gauge fields introduces additionalggn pe taken, i.e. that the theory is “nonperturbatively renor-
complications though. Using background gauge techniquegygjizable” in Wilson’s sense. Asymptotic safety requires that
a _solu'uon to this problem was given in Re[§] for_Yang- the non-Gaussian fixed point is UV attractifiee. attractive
EA;LZ;QS?F% ?)?/d r;r(;s?se;ii[o?eﬂthfgrefgf]er-zg%. al\_/(;?:lgag':iin fl‘or k—o0) for finitely many parameters in the action, i.e. that
pov g ’ 9 & UV critical hypersurface is finite dimensional. This means

gravity, I' [ 9,,.9,,], depends not only on the “ordinary” . : .
dynamical metriaj,,,, but also on a background metig,, . that the RG trajectories along which the theory can flow as

The conventional effective actioh[g] is obtained as the ~ We send the cutofk to infinity are labeled by only finitely
—0 limit of the functionall' [g]=T",[g,g=g] with the two ~ Many parameters. There_fore the theory_ls_as predictive as any
metrics identified 8,9]. The motivation for this construction conventionally renormalizable theory; it is not plagued by

is that in this manneF [ g] becomes invariant under general the notorious increase of free parameters which is typical of
coordinate transformations. effective theories. The set of generalized couplings for which

Nonperturbative solutions to the above RG equatiorthe non-Gaussian fixed point is UV attractive should include
which do not require a small expansion parameter can bthe dimensionless Newton constaif, and cosmological
obtained by the method of “truncations.” This means thatconstant\.
one projects the RG flow from the infinite dimensional space Using thee expansion, Weinberg showed already long
of all actions onto some finite dimensional subspace which igigo that gravity in 2-& dimensions (&<e<1) is indeed
particularly relevant for the problem at hand. In this mannerasymptotically saf16]. Further progress in this direction, in
the functional RG equation becomes an ordinary differentiaparticular ford=4, was hampered by the lack of an efficient

equation for a finite set of generalized couplings which servggcylational scheme which could be used to search for non-
as coordinates on this subspace. In Réf.the RG flow of perturbative fixed points.

quantum general relativity was projected on the
2-dimensional subspace spanned by the invarifidt&/g
and fd%./gR. This so-called Einstein-Hilbert truncation
amounts to considering only functionals of the form

As a solution to this problem which does not rely on ¢he
expansion we propose to use the effective average action in
order to find nontrivial fixed points\, ,9,,...) of the
gravitational RG flow(The dots stand for the infinitely many
other couplings which parametrize a generic action func-

rk[g,m:(lawek)*lf ddx\/a{—R(g)Jrsz} tional) Using this approach, the caske=2+¢ was reana-
lyzed in a more general setting and, more importantly, it was
+ classical gauge fixing. (1.20  shown that the Einstein-Hilbert truncation predicts the exis-

tence of a non-Gaussian fixed point,(,g,) also in dimen-

Here G, and \ are the running Newton constant and cos-Sionsd>2, in particular ford=4 [6,13,17.
mological constant, respectively. More general and, there- The crucial question which arises is whether this result is
fore, more precise truncations would include higher powersin artifact of the truncation used, or if it correctly reflects a
of the curvature tensor as well as nonlocal tefd® which  property of the full theory. It is clear that in order to answer
are not present classically. this question one would like to include further invariants into

Quantum gravity is certainly a particularly interesting the truncation and to check whether the predictions stabilize.
topic where exact RG equations can lead to important new From the technical point of view such calculations are
insights. As quantized Einstein gravity is perturbatively non-extremely complicated so that in the present paper we shall
renormalizable a natural option is to consider it an effectiveuse a different method in order to get a first idea about the
field theory[11]. Already within this setting quantum effects reliability of the nontrivial fixed point. We are going to ana-
can be studied in a consistent and predictive way. In fact, inyze to what extent its location in the-g plane and its at-
Refs.[12,13 the running couplingss, and\, obtained in  tractivity properties(critical exponentsare scheme depen-
[6] were used to investigate how quantum gravity effectsdent. Here “scheme dependence” refers to the dependence
modify the structure of black holes, and[ib4] the implica- on the cutoff operatoiR, used in the derivation of the RG
tions for the cosmology of the Planck era in the very earlyequation.
Universe were studied. Along a different line of research it First of all, R, is a matrix in the space of irreducible
has been proposdd5] that there are strong quantum gravi- component fieldgsee below which is not uniquely deter-
tational effects also in the later stages of the cosmologicamined by the general principles. Hence we can vary it to
evolution which even might drive the cosmological constantsome extent. In fact, in the present paper we shall introduce
to zero dynamically; the effective average action would bea new cutoff(“cutoff of type B”) whose matrix structure is
an ideal tool for exploring such infrared effects. different from the original one of Ref6] (“cutoff of type

An even more intriguing possibility is that, despite its A" ). Either of these cutoffs is proportional to a “shape func-
perturbative nonrenormalizability, quantized gravity existstion” R(O)(p?/k?) which describes the “thinning out” of de-
nonperturbativelyas a fundamental theory. It would then be grees of freedom as we pass the threshidie k. Also this
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function can be varied in order to assess the scheme depefyund an appropriat®,[g]. Then there arises the computa-
dence of the fixed point properties. tional problem of evaluating the trace on the RHS of the RG
While in general only the critical exponents but not the equation for varioug,,,’s andg,,,’s. These metrics do not
location (\, 9, , .- . .) of thefixed point are expected to be coincide when we allow for an evolution of the gauge fixing
universal, i.e. scheme independ¢h8], we shall argue that sector. Even if we ignore this complication, the Hesdigf
the producg, A, is an observable quantity as well. For ob- ynder the trace is an extremely complicated nonminimal co-
servables th&k, dependence is a pure truncation artifact; inyariant matrix differential operator constructed from the cur-
an exact treatment &t dependencies cancel. The status ofyature tensor and covariant derivativls,. A priori, even
the Einstein-Hilbert truncation would be rather questionabl&or maximally symmetric backgrounds, not all derivatives
if the fixed point was present for some cutoffs but absent foip | are contracted to form powers of the covariant Laplacian
others. Instead, we find that it is actually there for all admis-DzzDMDu, and F(kZ) is not diagonal in the space of fields
sible cutoffs, and moreover that the observableh, i jth a definite helicity therefore. Hence standard heat kernel
scheme independent with & quite unexpected precision.  techniques or perhaps information about the spectrum?f
Our results strongly support the conjecture that the nonz.e of no help at this point.
Gaussian fixed point is present in the exact theory and is not |, this paper we outline a general strategy for tackling
a truncation artifact. Also another prerequisite of asymptotiGhese problems. It is based upon York's “transverse-traceless
safety turns out to be satisfied: we find that, for any cutoff,(TT) decomposition20] which is available orfalmosi ev-
the fixed point is UV attractive in both directions of theg ery spacetime manifold needed for our projection method.
plane. The idea is to decompose the fluctuatiop, into a trans-

Ultimately one would like to use more general truncations,erse  traceless tensht,, , a longitudinal-transverse tensor
than Eq.(1.2) in order to study the RG flow in a larger “

subspace. Typically this requires computations whose algdParametrized by a transverse vecif), a longitudinal-
braic complexity is quite formidable. Assume we make an'ongitudinal tenso(parametrized by a scalar), and a trace

ansatzl',= 3"_,g;(K)1; containingn diffeomorphism invari-  Pa (parametrized by another scal@). In the basis of the

ant functionald[g,,,,9,,]. In order to project the RG flow Ccomponent f|§|d§thzv’§”.5,¢}, all D,’s appear in powers
on then-dimensional space with coordinatesvge must in-  Of the Laplacian only, at least for the class of maximally
sert the ansatz into the RHS of the flow equatiarl). At symmetric backgrounds. The important point is that this de-
this point the nontrivial problem, both conceptually and com-composition can be used in order to simplify the structure of
putationally, is to expand the trace with respect to a complet&'.’ on essentially all backgrounds, not just on sphef@s.

set of actions{y;[9,,.9,,]}, in such a way that thé’s s? the TT decomposition boils down to the familiar decom-
retained in the ansatz are a subset of jhis. The coeffi- position ofh ,, with respect to pieces which are irreducible
cients of the remaining;'s, those not present ifi, are set ~under the isometry grougO(d+1). In some of the work

to zero by the truncation. In practice the projection on thefollowing the original papef6] this decomposition org

{I;} subspace is done by inserting a set of metggs,g,,  had been used alreafly9,21-23.] Compared ts? a certain

on both sides of Eq..1) which give a nonzero value only to complication arises, however, because the TT decomposition
specific linear combinations of thg’s. Provided one man- is nonorthogonal in general.

ages to compute the functional trace for sufficiently many The TT decomposition also helps in solving the first prob-
9,..0,, pairs one can then deduce the ordinary differentialem, the construction oRy, because\,S has a much sim-

equations for the generalized couplingéky. pler structure when expressed in terms of the component
For the Einstein-Hilbert truncation this procedure is fairly fields rather than the origindd ,, .

simple sinceiignoring the running of the gauge parameier This paper is organized as follows.

is sufficient to insert fog,,,=g,, the metric of a family of In the first part(Secs. Il and Il) we describe the construc-

spheresS! parametrized by their radius Their maximal tion of a new RG equation where the component fields
symmetry facilitates the calculations considerably. With {hlv,%f‘,&,dﬂf are used from the outset. Along the way we
kept as a free parameter, these metrics are general enoughdigcuss the problems related to a proper identification of
disentanglef d/g=r® and fd’gRer9=2, But already A,S. This part of the paper is meant to supply a set of tools
when we include invariants with four derivatives of the met-which will become indispensable in future investigations
ric this method fails: the spheres cannot distinguishwhen one includes further invariants into the truncati®? (
Jd%\JgR2crd4 from fd./gR,,R* rd~4, for instance.  terms[24], for instancg, if one adds matter fields, or if one
These remarks hint @at least two major problems which  allows for a running gauge fixing.
one faces in generalizations of the exact RG approach to As a first application, we revisit the Einstein-Hilbert trun-
gravity. (i) The momentum dependent “mass” term cation in the second part of the pag&ecs. IV and V. We
ASh,,,9,,] depends quadratically on the metric fluctua-introduce a new cutoffR, which is natural in the TT lan-
tion h,,, but also, viaR,=R,[g] on the backgroung,,, . guage, and we use an arbitrary gauge parameter. This allows
In general it is a quite nontrivial task to construct a cutofffor a nontrivial comparison of the resulting RG equations
operatorR,[g] which has the desired properties mentionedand their fixed point properties with those [6] whose cut-
above for a class of background metrigs, general enough off operatorRy has a rather different structure. We find both
for the projection on the truncation subspagig.Assume we a Gaussian and a non-Gaussian fixed point in th& ) sys-
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tem and we perform a detailed analysis of their properties, in I
particular of their scheme dependence. The chances for real- FeP[g]=659""D ~ ETBD#- (2.9
izing the asymptotic safety scenario in 4 dimensions will be
d|s|cusssed |\n/Ideta|I'. . he implicati f th Here D, denotes the covariant derivative constructed from
GaLTssizr?.fixedWSOiqu:/ ?()Sslghaé[ee:feitil\/rgpg;f;\?i?(?rf p(?o;agjar':(())rn (:i he ba_lckground r_netr_@w, yvhile we shal WriteDM_for the
lar . ; ; . ovariant derivative involving the quantum metrg,, . In
ge momenta. A kind of dimensional reduction from 4 to 2E :

. : . S o . g. (2.4) we introduced the constant
dimensions takes place in the vicinity of this fixed point. The
asymptotic form of the propagator suggests that when = (327r§)‘ 112 (2.6)
4-dimensional spacetime is probed by a very high-energetic '
graviton it appears to be effectively 2-dimensional.

Various technical results, needed in the present paper b
presented also with an eye towards future applicatj@d$
are relegated to a set of Appendixes.

At this point the reader who is mostly interested in the
results rather than their derivation can proceed directly to

hereG denotes the bare Newton constant. The Faddeev-
opov operator associated with the gauge fixiag) with
(2.5) takes the form

M[ %mg:gﬂpgﬂax( 7pVD0+ })/U'I/Dp)

Sec. V. _gp(rg_l”\D)\’)/a'va . (27)
Il. THE EXACT EVOLUTION EQUATION It enters the functional integrd®R.2) via the ghost action

A. Gauge fixing

~. _ d "~ - v
Following [6] we define a scale dependent modification of Sylh.C.Cig]= \/Ef d X\/E—CﬂM[ng h.gl,C"

the Euclidean functional integral for the generating func- (2.9
tional Z,, by using the background gauge fixing technique
[8,9]. For this purpose we decompose the integration variFurthermore,A, S and Sqo e are the cutoff and the source
able in the functional integral over all metricg,,,, into a  action, respectivelyA,S provides an appropriate infrared
fixed background metrig,,, and a fluctuation field,,, : cutoff for the integration variables an8gce introduces
o sources for the fields,,,, C* andC,, . Their explicit struc-
Yur(X) =G (X) 0 (X)) (2.1 ture will be discussed later on.

Then we replace the integration ovey,, by an integration
overh,,. With the Faddeev-Popov ghos¥* andC, the . ) } . )
generating functionaZ, may be written as For the calculations in the following sections it turns out
to be convenient to decompose the gravitational figlq
according to(see e.g[20])

B. Decomposition of the quantum fields

Z,| source$= J DhﬂvDCMDEM exd—S[g+h]—Syl h;q]
— o —a — 1 1
J— — T P DA T
_s,hc.cal h.,=hj,+D,&,+D,&,+D,D 5~ 59,,D°5+ 57,.4.
(2.9

_Aks[hvcyc;gj_ssourcg- (2.2 . . .. i
To obtain this “TT decomposition” one starts by splitting off
The first term in the exponentidd y]=S[g+h], is the clas-  the trace parh;’vzﬁqu/d from h,,. It involves a scalar
sical action which, for the moment, is assumed to be positivéield ¢. The remaining symmetric traceless tensor may be
definite. It is invariant under arbitrary general coordinatedecomposed further into a transverse compomér;tand a
transformationsSy; denotes the gauge fixing term longitudinal componerit!, . Introducing a transverse vector

1 field 3# and another scalar, the Iongitu@nal tensor can be
Sythigl=5_ f d’%vgg“'F,[9,h]F,[g,h]. (2.3  expressed by}, =hi}+htY with hiT=D,&,+D ¢, and

htt=D,D,5—3,,D?5/d thereby ending up with Eq2.9).
It corresponds to the gauge conditién,[g,h]=0. Linear ~ Thus the components df,, introduced by this transverse-
gauge conditions tracelesqTT) decomposition obey the relations

FuG.h]=2k F3P[g]hag, (24 g*hl,=0, D*hl,=0, D*},=0, ¢=g,h""

2.1
are particularly convenient. In the present paper we use the (210
harmonic gaugefor which This decomposition is valid for complete, closed Rie-
manniand spacegi.e. compact Riemannian manifolds with-
out boundary. As argued i 20], its domain of validity can
For the flow equation in the conformal gaug2D Liouville be extended to open, asymptotically flhtspaces, certain
guantum gravity see Refs[25,26]. assumptions concerning the asymptotic behavior of the fields
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being made. From now on we assume that the gravitationalality manifests itself in the appearance of terms where the
background belongs to one of these classes of spaces.  components gﬂ and & mix. But at least for Ein-

Obviouslyh ,, receives no contribution from tho%e and  stein spaces, Wher§w Cg,, with C a constant, we

o modes which satisfy the Killing equation find D,R*"=CD,g""=0 and therefore (hLT htty
D,%,+D,£,=0 2.11) —4Cfddx\/:a'D“§ =0. Thus{hw,h;{,,h;g,hrr} repre-
sents an orthogonal set of field components in this case.
and the scalar equation In order to determine the Jacobidnwhich appears in the
functional integral(2.2) after performing the transformation
EMEV&— EEWEZ&:O, (2.12 of integration variable$ , —>{hw ,gM ,0,¢} we proceed as

follows. We consider a Gaussran integral obgr, and reex-

. __press it in terms of the component field&/]:
respectively. Therefore such modes, referred to as unphysrcg[ . P el

EM and o modes, have to be excluded from the functional
integral. Considering the conformal Killing equation 1
f thexr{ (h h)}

_ _ 2
D,C,+D,C,— ag,”Dxckzo (2.13

. 1
=Jlf Dh;VDgﬂD&Dg{)exr{—zf dx\g

we recognize that the unphysical modes correspond to

constants or are related vig,=D ,o to proper conformal .

Killing vectors (PCKV's), i.e. solutions of Eq(2.13 which < hT hTW+E¢>2+(§ HMED &,

are Qot at the same time ordinary Killing vectdi§V's), my d wr s '

[27].
By virtue of the decompositiof2.9) the inner product on (2.19

the space of symmetric tensor fields may be decomposed

according té Here

<h(1)'h(2)>5 f ddX \/:h(l)_,up_‘lza'h(Z)

—2(g**D%+ R*Y) —2R¥\D,
M (&) = d—1
- d (L)TL(2)Tur — =, _ _
fd X@{hw s 2D,R* —5 (D)*+D,R¥D,

_ o3 murp2 .y prr) H2) 2.1
2ED(@ D+ R (2.18
—2¢R#D 5 is a Hermitian matrix differential operator. Since all func-
o tional integrals appearing in ER.15 are Gaussian they are

—287ReD 51 easily evaluated. This leads to the Jacobian
d—1 _ _
+oM —(D2)2+DMR’”DV)
J1=Nydefy7 oM7), (2.17
1
52+ Z (1) 5(2) s .
o dd) A (2.14 Here N represents an infinite constant which may be ab-

sorbed into the normalization of the meas@e,,,
From Eq. (2 14 we see that, for a general background met-  The notation adopted in E€R.17) has to be interpreted as
ric, only hw, hL and hTr form an orthogonal set, whereas follows. A prime at the determinant or the trace of an opera-

h. andh} are not orthogonal in general. This nonorthogo-tor A indicates that all unphysica, and & eigenmodes of
A, characterized by Eq€2.1)) and (2.12, are to be ex-
cluded from the calculation. A subscript at determinants or

°As a consequence of the linearity of the conformal Killing equa-traces describes on which kind of field the operatoacts.

tion we may add any Killing vectawhich is always transversao  \We use the subscript®), (1T) and (25T?) for spin-0 fields

its solutrons and 0btarn another solution. For _defrnrteness we t_here(}, transverse spin-1 fleldgf and symmetric transverse
fore define the PCKV’s to be purely longitudinal. Then there is a

T
one-to-one correspondence between the PCKV'’s and the noncort]r_aceless spin-2 ﬂeld$ repectlvely The subscript 10)
stant solutions of Eq(2.12. appearing in Eq(2. 17) refers to a ¢+ 1) X (d+1)-matrix

3A remark concerning our notation: If not indicated otherwise differential operator whose first columns act on traceless

each covariant derivative acts on everything that stands on the rlgh'tpln -1 fields¢” whereas the last column acts on spin-0 fields
of it. 0.
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Likewise we decompose the ghost and the antighost into Ll § _ —,
their orthogonal components according to (h=,h™5) = f d°xyg| D,D,o dg,w )

C,=Cl+D,7 CH=CT*+DH*; 2.1 S
wTn T Eul no (218 x(DMDV&—ag”“”DZa)
whereC, andC™# are the transverse components(f and
S PECT=0 D — d-1
C#: D*C,=0, DMCT/L_O_ In order to compute Lr;e :]aco- - Jddx\/a—&
bian J, induced by the change of variables,—{C,,, 7},

CH—{C™* 7} we write _ d . _
x| (D?)%+ d_—lDMR’”Dy)&. (2.23

DCHDC exy —(C,C
f WX )] Furthermore, the spectra of the operators in 221 do not

even contain zeros, since the potential zero modes coincide
=J, J’ DCT”DE;DM)? precisely with the aforementioned unphysical modes which
have to be excluded. For instancg is a zero mode of
A_ —D?—Ric if and only if & is a Killing vector.
xex;{—f dx\g{C,CT*+7(~D?) 7} Along the lines o{ltlined in the p?evious subsection, we
now determine the Jacobians for the transformation of inte-
(2.19 gration variables. We obtain

and perform the Grassmann functional integrals. The result is 35=[defyry(~ D2- Rig)] 2
J,=[detp,(—D*)]" % (2.20 d —12
J,=| detg, (D?) +ﬂDMR“VD ”
In this case the constarif mode represents an unphysical
mode which has to be excluded. =,
Js=defo)(—D?) (2.29

C. Momentum dependent redefinition of the component fields for the transformation§#—>§ﬂ, &—o and 7—>i 7,

It will prove convenient to introduce new variables of respectively.(The integration measures have been chosen
integration,¢,,, o, 7 and 7, by means of the momentum such that no additional infinite constants occur in the Jaco-

dependentnonloca) redefinitions bians) The square brackets appearing in the subscript
. (1] T]) atJ; indicate that the operator under consideration
&=+—D?—Ric &* acts on spin-one fields which are transverse only for certain

background metrics, because the property of transversality is

B — d — — = not necessarily transmitted frofit to £&*. However, at least
o=\ (D9)"+ d—1 D,.R*D,o for Einstein spaceg” is transverse as well.
After carrying out this change of integration variablésg,
— 5~ _ = . J; andJ, are the only Jacobians appearing in the generating
n=N-D%n  n=v-D77. (2.2 functional Z, sinceJ, andJs cancel.

Here the operatdric maps vectors onto vectors according to . .
D. The effective average action

(Ric v)":E’”vv. (2.22 By adding an infraredIR) cutoff A, S to the classical
action under the path integrdR.2) we obtain a scale-
Note that the transformation@.21) are well defined and dependent generating functiorl. The termA,Sis chosen
invertible since for any(physica) eigenmode the operators to depend on the fluctuation fields in such a way that their
under the square roots of E(R.21) have strictly positive eigenmodes with respect toeD? which correspond to large
eigenvalue$. eigenvaluep?>k? are not influenced, whereas contributions
This is due to the fact that these operators arise from théom eigenmodes with small eigenvalupd<k? are sup-
squares thT and hLL and from O _)(D“ﬂ) by shifting ~ Pressed. In this sens describes an effective theory at the
all covanant derlvatlves to the rlght Thus they cannot asscalek<k. For technical simplicity we implement the sup-
sume negative eigenvalues. For example, pression of the low-momentum modes by momentum-
dependent “mass” terms, i.e. by cutoffs which are quadratic
in the fluctuation fields:
“In order to make sure that the operators are indeed invertible we
Ie;;gnazzlijr:?e that their eigenvalues do not have zero as an accumu- ASh,C 6‘j= %(h,RE"’“’h}%—(aREhcy (2.25
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Here the operator® " and R " are constructed from the Z,[3,K,K:g]

covariant derivative with respect to the background metric,

N grav gh _ .
D,. NoteT thatR " andR g must not depend oﬁn_thequan :J1J3J4f Dh/TwauDo' D DCT“DEZDnDn
tum metricy,,, but only on the background metrig,, since

otherwise the cutoff cannot be quadratic. In order to provide

the desired behavior these operators must vanistpitk? xexd—S[g+h]— Syl hig]— Syl h,C,Cig]
—oo (in particular for k—0) and must behave a®; _ ~=_ ~ -
— Z k2 for p?/k?—0. (The meaning of the constag, will AN, C.C01 = Seourck N, C.CIKKiGTT - (2:29

be explained later.As a consequence, all modes Wit ¢ el as the scale- -dependent generating functional for the

2 -
<k” acquire a massk. connected Green’s functions,
At this stage of the discussion it is not necessary to

specify the explicit structure of the cutoff operators. We only
mention the following point. According to Appendix A,

R ¥ and R " can be chosen such that, at the level of the
component fields,

W, [J,K,K;gl=InZ,[J,K,K:g], (2.30

may be viewed as functionals of either the fundamental or
the component sources. Furthermore, we may derive
k-dependent classical fields for both fundamental and com-
h.C.C 5]- 2 R ponent fields in terms of functional derivatives ¥f,. In
AS 2 n5e, (1, (Ri £1§2§2> either case th&-dependent classical fields represent expec-
tation values(q) of quantum fieldsg, in the sense that all
degrees of freedom corresponding to momenta pith k2

2 " ,%az (1, (Rad gy 2 have been averaged out. The classical fundamental fields are
given by
(2.26

c P = () R
with the index setd;={h",&,0,¢}, 1,={C",CT,7,7}. In hu=(hu)=—=—, “
contrast to generic cutoffs which are defined in terms of the \/65‘]” \/:5KM
component fields from the outset, the struct(@e6) allows
us to return to the formulation in terms of the fundamental 1 sW,
fields, Eq.(2.29, in a straightforward way(See Appendix vi=(CH)= \/léi : (2.3)

A.) The set of operatorsiy) 4Ly (Ry) Yy introduced by

this realization of the cutoff may be fixed later on. Hermitic-

. . and the classical component fields are obtained as
ity demands that they satlsfyRQ()gzZl:(Rk);[lg2 and ! P I !

(R 0=~ (Ri 4, Furthermore, Ry ,,=0 if both = 1 oW, 232
1{CT, 7} and y,e{C", 7}, or if both ;{C", 7} and T G :
d/zE{CT,ﬂ. . H
A similar decomposition is applied $8,,ce The source Here we are making use of the shorthand notatjpn
terms are defined as =(h",£,0,¢,C",.C",5,9) for the quantum component
. . o o fields, J=(JuT, J§,JU,J¢,KCT KcT K5 K,,) for their
Ssource,C,C,J,K,K;g]=—(J,h)—(K,C)—(K,C) sources ande=(h",&,0,4,0",0",0, Q) for the classical

(2.27 component fields. We may reconstruct the classical funda-
mental fields fromep according to

with external sourceg””, K* andK for the fundamental
fieldsh

_ n2_ 124 n2_ 124
C, andC*, respectively. Proceedmgasdescrlbed h,,=h},+D,[-D?~Ric] ¥%,+D,[-D*-Ric] "%,

pvo
in Appendix A an alternative form d&,,.e.may be derived

1
from Eq. (2.27) where each component field is coupled to a + a@wqﬁ D,.D,
certain component of the fundamental sources. Then, in

o d-1 . _ —-1/2
(D24 —— DPR”ADX} T

terms of these “component source§,c.takes the form 1 [ d—1__ _ ]
— §9:D? (DH?+——D,R"Dy| @,
Ssouckh.C.CIKKTGI== 2 (3,.0— 2 (Kyy)  _ — = =
ourc A, el b U,u:v_; M( D2 )~ 1/29' ph=p T4 D”(—DZ)—WQ_
(2.33
- 2 (K. (2.28 _ . .
pe{CT 7} Performing akegendre transformation \bfy with respect
to J,,, K¥ andK, leads to the following scale-dependent
As a consequence, the functional modification of the effective action:
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Tl ho,0:g]= (30 +(K,0)+(K,0)— W J.K,K:g]. exp{~{[9,g,0,01}
(2.39 o F{ .
= | Dh,,DC*DC exg —Jh,C,C; +f ddx
Since Eqs(2.27), (2.28 imply f ® " S 9]
o A N VIR

(Z0)=(3)+(K,v)+(K.v) (239 o R R i
it is clear that Eq.(2.34 also would result from Legendre - K
transformingW, with respect to the component sources. De- + (Cu_vu)g
noting the corresponding Legendre transformhI'Efg?mp we g B _
have fﬁomTFT,Eag,vT,ﬁ,Q,amg”fk[ﬁ,v,U—;m where xexp[—A S h—-g+g,C-v,C—v;g]} (2.40
the arguments oF ©°™ andT', are related by Eq2.33. with

The effective average action prop€y,, is defined as the

difference betweeﬁk and the cutoff action with the classical - P : ~
fields inserted28,5): Sh,C,C;g]l=9g+h]+ Syl h;g]+Sef h,C,C;g].

(2.41
o ~ o L Equation(2.40 may be derived by inserting the definition of
I'{g,9,v,v]=T{9—0,v,v;9]-ASg—9g,v,v;9]. T into Eq.(2.2) and replacing the sources according to
(2.36
Here we expresseﬁw in terms of the classical counterpart ,u,]/:i ok Kb = — i & K =— i ﬁ
g, of the quantum metricy,,,=g,,+h,, which, by defi- \/§5H ' \/agv_ Tk \/ﬁ&,u'
nition, is given by e a (2.4
nggnv"'ﬁww (2.37) E. Derivation of the exact evolution equation

The exact renormalization group equation describes the
The main advantage of the background gauge is that ighange of the action functiondl, induced by a change in
makesl" a gauge invariant functional of its agrumef@$. It the scalek. It may be obtained as follows. Differentiating the
is invariant under general coordinate transformations of théunctional integral2.29 with respect ta=Ink leads to
form

1
- ath:ETr' [ 2 (61® §2>at(Rk)g14

Fk[(I)]:Fk[(I)+£uq)]l (I)E(g,uv 16/.“/10#11}_//,) (238) 1.62¢h
1
where., is the Lie derivative with respect to the generating + sz' > (@ PRy by |-
vector fieldu#(x). Since general coordinate invariance en- 1vecle
sures that no symmetry violating terms occur in the course of (2.43

the evolution ofl'y the class of consistent truncations is re- _ _
stricted to those which involve only invariant field combina- Here we used E¢(2.30 and adopted the matrix notation on
tions. This is important for practical applications of the evo-the RHS of Eq.(2.43 which, in turn, can be expressed in
lution equation. terms of the Hessian
We are mainly interested in the exclusively
g.,~dependent functional . . 1 5sz
(T (xy)=(-1)

_ Va(x)aly) 9¢i(X)d¢i(y)

I'{9]=I'{g,9.0,0]. (2.39 (2.44

In the limit k— O it coincides with the conventional effective With [1]=0 for commuting fieldsp; and[j]=1 for Grass-
action I'[g,,,], the generator of the 1Pl graviton Green’s mann fieldse; . Since the connected two point function

functions[8]: F[g]:IimkHOFk[g]. However, in order to de-

rive an exact evolution equation it is necessary to retain the (GR)ij (X, Y)=(xi(X) xj(¥)) = @i(X) @;(y)

dependence on the ghost fields ay)g . 1 S2W,
From the definition of the effective average action it fol- = : . (2.495
lows thatl", satisfies the integro-differential equation Ngx)a(y) 8TJ'(x) 8T (y)
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andT'(?) are inverse matrices in the sense that

- ) S8(X—2)
A%y Valy) (G (x ) (T2 (y,2)= &
f B k \/a(_Z)(Z 46

we may replace the expectation valygs(x) x;(y)) appear-
ing in Eq.(2.43 with (I'{®);; 1(x,y) + @i(x) ¢;(y). Then per-
forming a Legendre transformation according to E2}34)

and subtracting the cutoff actiod, S[h,v,v:g] vields the
desired exact renormalization group equation:

_ 1 _
ardg.guul=5Tr| 2 _ (FPlggo.o]

{1,426
+Rk>g§2&t(7zk)g2gl}
1 _
+ §Tr'[ 2 (MPlggoo]
1.2l

+ R g2, Ot R gy | (2.47
Here we wrote Rk){lle(Rk)<él><£z>* (Ry) A
E(Rk)<¢l><¢2> and introduced the index sets

1i={h"&a,0}, ={ vle0} (249

PHYSICAL REVIEW D65 025013

values ofk, the cutoff term in Eq(2.40 strongly suppresses

fluctuations with b,C,C) # (h,v,7) so that the main contri-
bution to the functional integral results from small fluctua-

tions about h,C,C)=(h,v,v). This field configuration cor-
responds to the global minimum of the total action in the
exponential of Eq(2.40. Performing a saddle point expan-
sion of the functional integral about this minimum leads to

_ ~ . 1 -
I'{9.9.v,v]=99-g.v,v;g]~ §|n Det' (S?+TR,)
(2.5

where the second term contains one-loop effects. K=ok
—o they amount to an often unimportant shift in the bare

parameters 06 which can be ignored usually. For finite
additional contributions from the determinant occur which

are suppressed by inverse powerskof25]. Therefore we
obtain the initial value fok— o:

I'il9,9,v,v]=99]+S;{9—9;9]+Si{g—9,v,v;9].
(2.52

At the level of the functionaFk[gM,,] this initial condition
boils down to

In a position space representation, the operators appearing
on the RHS of the flow equation are given by matrix ele-
ments whose traces are evaluated according to

rilgl=Sg]. (2.53

_ So far we assumed the fundamental action to be positive
f dddeY\/g(X)VQ(Y)((F(kz)JFRk)lev—T);i(‘?t(Rk)ﬁvT)f;' definite. However, the Einstein-Hilbert action, for instance,
(2.49 does not have this property which is due to the appearance of
a “wrong-sign” kinetic term associated with the conformal
for instance. The notation adopted for the matrix elements igactor. In such cases it is nevertheless possible to formulate a
similar to Eq.(2.44); for example, well-defined evolution equation if the signs of the cutoff op-
eratorsR, are properly adjustefi6]. We will return to this
point in the next section.

((F(kZ))UTvT)MXVy: 1 ) 1 fk .
aly) sv™(y) Ng(x) &v,,(x) _ o
(2.50 F. A special case: Einstein backgrounds

Before continuing we summarize the simplifications that

occur for Einstein backgrounds, for whi@y,,=Cg,, with

C a constant. In this case the decompositi@r®) of h,,, is

completely orthogonal. In fact, thanks to the Einstein condi-

tion, the%#-c‘r mixing terms in the inner produc®.14) van-

ish so thath),, h',7, hi' andh]', form an orthogonal set.
Furthermore, for Einstein spaces the Jacobians appearing

in the path integra(2.29 cancel, at least up to ainfinite)

constant which can be absorbed into the normalization of the

integration measure. This can be seen as follows:

By virtue of the properties oR, discussed above the traces
appearing in the flow equatiof2.47) are perfectly conver-

gent for all values ok<Kk.
Provided we impose the correct initial condition at the UV

scalek=k we can, in principle, determine the functional
integral (2.2) by integrating the flow equation from down

to k and lettingk— 0, k—oo after appropriate renormaliza-
tions. The initial conditionI'y can be obtained from the
integro-differential equation(2.40. For sufficiently large

025013-9
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)—1
- - —dc
=N; \/de{,r)(— D2~ C)\/defo,(~ D?) \/de(o)( -D%- ﬁ) =NoJ3 105 (2.54

. - . d—1 _ _
J1=N del(’lT,O)M(“'VE(fDgﬂDc‘rexp{—J ddeﬁ{—25#(D2+C)§M+&(T(D2)2+C DZ)&]

HereN; andN, are unimportant constants so tdatl;J, is  are needed in order to formulate the Ward identities. Setting

indeed field independent. B=7=0 in the argument of this more general functional we
Finally, for Einstein spaces the field redefinitions in theobtain the actiod’,[g,9,v,v] discussed in the present paper.
gravitational sector take the form (It would be straightforward to include th@, 7-sources also

in the new formulation of the flow equation, but we will not

— . — _  dc need them in the following.
gt=\—-D?-Cé¢*, o=+-D?\/-D?- =17 In [6] the Ward identities were used to test the consistency

of truncations of the form

(2.55 _ — A _
B . I'd9.9.v.0]1=T 9]+ T9,9]+Se{9—0:0]
As a consequencg, we fi-nd t.Hagg"= \/—.DZ—ZCDMQ’“. +Sy{9—0,v,0:0] (3.1)
Thus, transversality of* implies thaté* is transverse as _ .
well. with I',[ g] defined as in Eq(2.39. The termI’,[g,g] en-
codes the quantum corrections to the gauge fixing term. This
1Il. TRUNCATIONS AND CUTOFES interpretation ofl',[g,g] is obvious because fag#g the

purely gravitational part of Eq(3.1) implies I'[g,g9,0,0]

_ o _ - —I'f9,9,0,0]=T[9,9]+Sx{g—9g;g]. By definition,

In practical applications of the exact evolution equatmnfk[g’g]:o. In the ansatz3.1) the ghost dependence has
one encounters the problem of dealing with an infinite SySheen extracted in terms of the classigg|, thereby neglect-
tem of coupled differential equations since the evolutionjng the evolution of the ghost action. This guarantees that the

equation describes trajectories in an infinite dimensionajnitial condition (2.52 is satisfied automatically in the ghost

space of action functionals. In general it is impossible to find,, . |1 the gravitational sector it requirgﬁz s, [y=0.

an exact solution so that we are forced to rely on approXix. i ncations of the typ€3.1) the Ward identities demand
mations. A powerful nonperturbative approximation schemeh T ) ) ant f ional 4 th
is the truncation of the parameter space, i.e. only a finitéNat I 9] is @ gauge invariant functional @,, and they

number of couplings is considered. In this manner the renoryield a constraint equation fd#[g,g]. To lowest order, this
malization group flow ofI', is projected onto a finite- equation is solved by',=0 Vk=<k. In the Einstein-Hilbert
dimensional subspace of action functionals. In practice ong.,cation we go beyond this approximation and ﬁfﬁt
makes an ansatz fdf that comprises only a few couplings o g ith a constant of proportionality which vanisheskat
and inserts it on_both S'de.s of E@'M).’ the_zreby obtaining a . =k; it takes the running of the graviton’s wave function
truncated evolution equation. By projecting the RHS of this ormalization into accourtsee below

equanop onto the space of opergtors appearing on the LH% Inserting the ansat8.1) into the exact evolution equation
one arrives at a set of coupled differential equations for thq2_47) leads to a truncated renormalization group equation
couplings taken into account. which describes the evolution &, in the subspace of action

~ As discussed in Ref$25,29, Ward identities provide an  fnctionals spanned by E¢8.1). The equation governing the
important tool for judging the admissability and quantitative eyolution of the purely gravitational action

reliability of a given truncation; approximate solutions of the o
flow .e.quat.ion are not necessarily consi_stent with the Ward rk[g,gjzrk[g@o,o]=rk[g]+sgf[g—ggj+fk[g,gj
identities, in contrast to the exact solution. Therefore, only 3.2
those truncations which are indeed consistent with the Ward
identities, at least up to a certain degree of accuracy, will29s
yield reliable results. The Ward identities to be considered 1, @) 1
here are modified by additional terms coming from the cutoff &I'[9,9]1= 5Tr > (MPL9,91+ R0 5,0 R gyt
which are not present in the ordinary identities. Silg& fudach
vanishes ak— 0 the ordinary Ward identities are recovered 1
in this limit. + ETr’[ > (S@)g,9]

In Ref.[6] the modified Ward identities were derived for P1.pely
the gravitational effective average actibi[g,9,v,v;8,7]
where g and 7 are auxiliary sources for the Becchi-Rouet- +Ri) 5 R
Stora(BRY) variations of the graviton and the ghosts which e 2

A. A general class of truncations

(3.3
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Here I'{? and S{) are the Hessians of’,[g,g] and (Rk)%=zf_¢K2k2R(o)(—Bz/kz),
Sgi h,v,v;g] with respect to the gravitational and the ghost
component fields, respectively. They are taken at figxggl. (ROM 1= — (Ry)™s :ZETUTgﬂysz(O)(_Szlkz)

B. Specification of the cutoff ot —
P (Ri)go=— (Ri) gg= Z£°K2RO)(—D2/k?), 3.5

In order to obtain a tractable evolution equation for a
given truncation it is convenient to use a cutoff which is HereEk is defined as
adapted to this truncation but still has the general suppres-
sion properties described in Sec. 1l D. It is desirable to start P,=—D2+k?R(O)(—-D?/k?). (3.6)
from a definition ofA,S that brings about the correct sup-
pression of low-momentum modes for a class of truncationghe remaining cutoff operators not listed in E§.5) are set
and of gravitational backgrounds which is as large as posto zero. TheZ,’s are constants which, again by using Eq.
sible. (3.4), will be fixed in terms of the generalized couplings
A convenient, adapted cutoff can be found by the follow-appearing in the ansatz fdt,. The cutoff(3.5) is inspired
ing rule [6,21]. Given a truncation, we assume that @r by the R, used in[21] for SU.
=g the kinetic operators of all modes with a definite helicity  If Eq. (3.4) allows us to chooseZ{*>0 for all ¢

are of the form [{?);;=f;;(=D?k, ...) where{f;j} isa < {hT 7. ¢} and Z¢"=0 one obtains a positive definite
set of c-number functions and the indice$ refer to the A,S in the gravitational sector. In this case ex@{(9) is a
different types of fields(The difficulty of bringingT'{*) to  damped exponential which indeed suppresses the contribu-
this form is one of the main reasons for using the TT decomtions from the low-momentum modes. In the following sec-
position. At least for maximally symmetric spaces it allows tions we shall focus on the Einstein-Hilbert truncation Fgr

us to eliminate all covariant derivatives which do not appeakyhich suffers from the conformal factor problem: its kinetic

as a LapIaciarSZEE’“’Sﬂs,,.) Then we choose the cutoff term for ¢ is negative definite. As a consequence, By

in such a way that the structure forces us to work with aZ?*<0. Hence, in thep sector,
AS is negative definite and, at least at a naive level,
exp(—AS seems to enhance rather than suppress the low-
momentum modes. As we discussed in detail in R&fwe

is achieved. Here the functioR®©(y) y=—52/k2 de- nevertheless believe that the ru(®.4), i.e. allowing for

scribes the details of the mode suppression; it is required t§ <0, iS correct also in this case. We emphasize that the
satisfy the boundary conditions R®(0)=1 and RHS of the flow equation, contrary to the Euclidean path

Iimy RO)(y)=0, but is arbitrary otherwise. By virtue of integzral,ésfpg:fectly well-defined even 8 andI'y are not
e ) ) ) positive definite.
Eq. (3.4), the inverse propagator of a field mode with cova-" a¢ this point it should be mentioned that the situation with
riant momentum squarep’=-D? is given by p?  respect to the positivity of the action improves considerably
+k?RO(p?/k?) which equalsp? for p?>k? andp®+k? for by including higher-derivative terms i8 and the truncated
p?<k?. This means that the smaif modes, and only those, T, since these actions are bounded below, provided we
have acquired a massk which leads to the desired suppres- choose the correct sign in front of these higher-derivative
sion. terms. Furthermore, their quadratic forms are positive defi-

In the next section we shall see in detail that for the trunnijte at least for sufficiently large momenta, and so is the
cations used in the present paper we can comply with theutoff. For a study of the evolution equation fBf-gravity
above rule by using the following cutoff operator: we refer to[24].

As compared to the original papld], the cutoff(3.5) has
a rather different structure which is due to the fact that it is
formulated in terms of the component fields arising form the
o TT decomposition. Contrary to the original one of R,
(Rk)gz ZﬁfngﬂszR(o)( _ 52/k2), the new cytoff(3.5) is defined forall values ofa. This is one

of the main advantages of the new approach.

Note that in Refs[22,19 where the TT decomposition
was used or§’ the actual construction of the effective aver-
age action and its RG equation was omitted and has been

(T@+ Ry =fi;(—D2+k?RO(—DZ/K?) K, . ..)
(3.4)

vag L _pTRT —
(ROEHT =520 " 1 (@GP + g ) RO~ DIk,

(R)ss=Z 7 k*k?RO)(—D?/K?),

_ T 4
(Rk)qu:(Rk);; replaced by amd hocmodification of the standard one-loop
g determinants. N&\,S has been specified at the component
_ 2¢5, 2 \/ Pt =y N field level. Hence the scale dependent action constructed in
2K ( P d— 1D"R D,(=D%) ) P this manner has no reason to respect the general properties of

an effective average actidg2]. Despite the use of the com-
ponent fields if22,19 their cutoff seems to be more similar
' to the original one irf6] than to the new one of the present

— d — — —
- \/(D2)2+—d_1D#R'“’DV
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paper. In fact, it represents arrdependent generalization of

the cutoff in[6], in the sense that the latter is recovered from

the one of Refs[22,19 by settinga=1.
From now on we will refer to the cutoff used in the origi-
nal papel[6] and in[17,22,19 as the cutoff oftype A How-

ever, one has to keep in mind that the existence of a corre-

spondingA,S is guaranteed only fow=1, i.e. the case
considered in[6,17]. Furthermore the cutoff3.5 of the
present paper will be referred to as the cutiyfie B it is
defined for all values ot.

Each cutoff type contains the shape functR{?. A par-
ticularly suitable choice is the exponential shape function

RO(y)=y[expy)—1]"*. 3.7

In order to check the scheme independence of unlversa

quantities we employ a one-parameter “deformation” of Eq. %
(3.7), theclass of exponential shape functions

RO(y;s)=sylexpsy)—1] 7%,

with s parametrizing the profile dR(®) [19]. Another admis-
sible choice is the followinglass of shape functions with
compact support

(3.9

1, y=<b,
RO(y:b)=1 exf(y—1.5 'exd(b—y) '], b<y<l5,
0, y=1.5.
(3.9

Herebe[0,1.5) parametrizes the profile B(®).
For our analysis of the flow equation in Sec. V we shall
use both cutoff types with both classes of shape functions.
IV. THE EINSTEIN-HILBERT TRUNCATION

A. The ansatz

PHYSICAL REVIEW D65 025013

G—G=ZyiG, A=\, (4.3

aHZ,lea

so that its form agrees with that of the gravitational sector of
the ansatZ3.1) with

-1
F'[9.5]= 2 f AXNG T (F G o) (F27G,0)-

(4.9

Generally speaking also the gauge fixing parameter
should be treated as a running quantity,> . Fortunately
there is a simple shortcut which avoids an explicit computa-
tion of the corresponding-function. In fact, there are gen-
eral arguments showing that should have &IR attractive
\xed point ata, =0. This means that the initial condition

=0 leads toa,=0 for all k<k. Thus, even using the
truncatlon with a constant, we can take the correct “flow”

of the gauge fixing term into account simply by settiag

=0.

In Yang-Mills theory the existence of the fixed poinj
=0 has been demonstrated for a truncation containing a co-
variant gauge fixing29], while for the axial gauge a non-
perturbative proof is availablg30]. The following general
argumertt suggests that this fixed point should exist in any
gauge theory, including gravity30]. In the ordinary func-
tional integral, the limita— 0 corresponds to a sharp imple-
mentation of the gauge fixing condition, i.e. ex{%;) be-
comes proportional tod[F,]. The domain of the
IDh,,,-integration consists of thodg,,’s which satisfy the
gauge condition exactly; ,=0. Adding the IR cutoff ak
amounts to suppressing some of th)g-modes while retain-
ing the others. But since all of them satidfy, =0, it is clear
that a variation ofk cannot change the domain of the,,
integration. The delta-functiona[F,] continues to be
present for any value & if it was there originally. Hencex
vanishes for arbitrark.

In this section we use a simple truncation to derive the

renormalization group flow of the Newton and the cosmo-

logical “constant” by means of the truncated flow equation

(3.3. In our example we assume that, at the UV sdale
—oo, gravity is described by the classical Einstein-Hilbert
action ind dimensions,

_ 1 o
r@[g]=8[g]=ﬁf dix\g{~R(g)+ 21}, (4.1)

For the investigation of the evolution df,[g,g] towards

smaller scalek<k we consider a truncated action functional
of the following form:

I'[9,0]1=2k%Zyy f d%/g{—R(g)+ 2N}

ZNk o a
K2—= J dXNG G (F . Gap) (F579p0)-
4.2
Equation(4.2) is obtained fromS+ Sy by replacing

B. Projecting the flow equation

The k- dependent couplings in E4.3) satisfy the initial
COI’IdItIOﬂS)\k—)\ and Zy;=1 which |mpl|esGk—G Here
the UV scalek is taken to be large but finite. The evolution

of Zy, and N\, towards smaller scales may now be deter-
mined as follows. As a first step the ansédz?) is inserted
into both sides of the truncated flow equati@3). Then we
may setg,,=gd,,. As a consequence, the gauge fixing term
drops out from the LHS which then reads

ADLG81=26 | 4%~ R@ 02k 20 2]
(4.9
Performing a derivative expansion on the RHS we may ex-
tract those contributions which are proportional to the opera-

tors spanning the LHS, i.efd%+/g and fd%\/gR. Then,
comparing the coefficients of these operators yields a system

SWe are grateful to J. M. Pawlowski for a discussion of this point.
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of coupled differential equations fah, and, . It describes modes omitted here are the KV'F)(™), the solutions of
the projection of the renormalization group flow onto thethe scalar equatiof2.12 which are in one-to-one correspon-
two-dimensional subspace of the space of all action functiondence with the PCKV's T'"'™), and the constants
als which is spanned bydx+/g and [d%\/gR. (T'=0m=1)_As discussed in Sec. Il B, the fundamental fields
It is important to note that during this calculation we may obtain no contribution from these modes. Therefore they
insert any metricg,,, that is general enough to allow for a have to be excluded from E¢.8).
unique identification of the operatofsix\/g andd/gR. This exclusion is also of importance for the momentum
In practice it proves particularly convenient to exploit this dependent field redefinition@.21) because they would not
freedom by choosing the gravitational background to be’e well-defined otherwise, as can be seen e.g. from
maximally symmetric. Such spaces form a special class of

Einstein spaces and are characterized by Oim

* Dy(d,0)
&(X)=22 21 —TIm(x).

_ R _  R_ R
R,uvpa'ZM(g,upgvo'_g,uogvp)’ R[LV:agMV JAl(d!O)(Al(dio)_d__l
(4.6 4.9

with the curvature scalaR considered a constant number Equation(4.9) follows from inverting Eq.(2.21) and then
rather than a functional of the metric. In the following we inserting Eq.(4.8). The eigenvalues corresponding to the
restrict our considerations to maximally symmetric spacesnodes excluded, i.eAy(d,0)=0 and A;(d,0)=R/(d—1)
with positive curvature scald®®>0, i.e.d-spheress?. Ford  (see Table I in Appendix P would lead to a vanishing de-
fixed, S* is parametrized by the radius of the spheres, hominator in Eq(4.9). Similar arguments hold for the other
which is related to the curvature scalar and the volume in thééelds in Eq.(2.21).

usual way, We may now split the quantum fielgh into a part ¢,
spanned by the same set of eigenfunctiongraand a part
(d) ¢ containing the contributions from the remaining modes:
'l =
— d(d—-1) 2
R= | @G g (4m® @ B0 = o)+ (0,
1 Dy(d,0)

Before continuing with the evaluation of the RHS of the
flow equation we have to comment on the properties of fields
defined on spherical backgrounds. According to Appendix D,

¢o<x>=|=20 m; ST ™(X),

we may expand the quantum and classical component fields % Dy(d,0)

in terms of spherical harmonicg[,, T\, T'™, which form 6100= > 4 TM(x).

complete sets of orthogonal eigenfunctions with respect to =2 m=1

the corresponding covariant Laplacians. The expansions of (4.10

Nuws &, .C#’ C,, and their classical counFe_rparts can be M"The orthogonality of the spherical harmonics implies
ferred directly from Eq.(D3). The remaining component (b1, d0)=(0,do)=0 50 that(ch,d)="{cbg,bo)+{ b1, cb1)
fields are expanded according to Lo Lo - \ 070 bl
and in particulaK o, ¢)={o, ¢1). As a consequence, decom-
= D(d1) posing_qé accqrding to Eq(4:1@ ensures that any nonzero

£0=S 3 & TMx) term bilinear in the scalar fields is of such a form that the

® i~y &y SImiu i th scalars involved are spanned by the same set of eigenfunc-
tions. The same is true for the corresponding classical fields

= Dy(d0) b and ;.
o00=2 X o),
e C. Evaluation of the functional trace
©  Dy(d,0) Let us now return to the evaluation of the flow equation.
2)=2> > mmT™(X), On the RHS we need the operat{’)[g,g]. For our pur-
=1 m=1

poses it is sufficient to determine this operator ggt,
=0, It may be derived by expanding,[g,g] according

% D(d,0) to

7(x) =2, El T ™(X). (4.9

I=1 m= _ i — .
[[g+h,g]=T[9,g]+0O(h)+T'#*{h;g]+0O(h?)
Similar expansions hold for the associated classical fields. (4.1
Note that in Eq.(4.8) the summations dmot start atl o o
=1 for vectors and at=0 for scalars as in EqD3), but at  and retaining only the part quadraticfiy,, i.e. FE“a‘[h;@.
=2 for ¢, ando, and al =1 for the scalar ghost fields. The For our truncation it takes the form
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1 e Zaﬁw_
5% 0+~ 9" 00

1 I _ _
D2+ 7020,8,79""9,,(R=2\) +G"'R,, — 5;R",

FEUaC[F;gj: KzszJ ddx\/g—ﬁ,uv[ -

_ - _— _ __)—
-RYF o+ — [0“'D,D,— 5gDVDP]]hP” (4.12
whereg,,, is fixed but still arbitrary. In order tgpartially) diagonalize this quadratic form we insert the family of spherical

background m_etrics into E¢4.12 and decomposk,,, according to Eq(2.33. Then we use the classical analog of E410
to decomposeb as well. This leads to

_ 1 _ . 2 _ _ _
FE”aTh;gT:KZZNkf ddxx/a—z[EIW[—D2+AT(d)R—2)\k]hT’“’+E§M[_D2+Av(d.a)R—2a)\k]§”

_ _ _ — = | - R
+C52(d,a)(E[—D2+A52(d,a)R+Bsz(d,a))\k]5+2C33(d,a)¢1V—D2 _DZ_EE

+Cq(da) 2 @[—D*+Ag(d,a)R+ 851(d,a>fk]$) J (4.13
deldy. P}

Here theA’s, B’s, andC'’s are functions of the dimensional- tions(2.9), (4.10. In general the inclusion of higher deriva-
ity d and the gauge parameter The explicit expressions for tive terms like [d\gR? and of matter fields leads to
these coefficients can be found in Appendix F. similar mixings.

Note that this partial diagonalization simplifies further In order to determine the contributions from the ghosts
calculations considerably, and this is the main reason foappearing on the RHS of E¢3.3) we setg,,=g,, in S,
using the decompositiofi2.33 and specifying a concrete and assume th&,, corresponds to a spherical background.
background. In contrast to the case 1 considered ifi6], a  Then we decompose the ghost fields according to(£§3
complete diagonalization cannot be achieved by merely splitvhich leads to

ting off the trace part frormw since Eq.(4.12 contains

additional terms proportional to-1« which introduce mix- Sy 00, v59]= \/Ef ddx\/a[ﬂ - _g T

ings between the traceless S part apdTo be more precise, it

is the term/d+/gh,,,[g""D,D,— 6“D"D,]h*" that gives R

rise to such cross terms. E{ 23 Q]- (4.149

In terms of the component fields these cross terms boil
down to a purely scalas-¢ mixing term that vanishes for From now on the bars are omitted from the metric, the cur-
the spherical harmonic$'=%™=! and T'=%™. Since these Vvature and the operatoi3? and P,.. Note that the decom-
modes contribute toﬁ (but not to@) we cannot directly position of the ghosts is not really necessary, but it allows for

invert the associated matrix differential operatora comparison with the results_ obtamed[ihl]. :
At this point we can continue with the adaption of the

(T je i, .9} AS @way out, we splith according to cutoff to the operator§'?) and S{) of Egs. (4.13, (4.14).
Eq. (4.10 into ¢, and ¢,. This has the effect that only According to the rulg3.4) the st have to be chosen as
mixings between the scalars and ¢1 survive, which have
the same set of eigenfunctiod™ starting atl=2. Hence
the resulting matrix differential operator
(T, (i E.4y.7.4,) IS invertible, but since this addi-
tional split of ¢ affects the matrix structure of this operator it ZI‘(/’:L?: Cep(d,a)Css(d, @) Zyy,
leads to a slightly modified flow equation. In fact, on the
RHS of Eq.(3.3) the summation in the gravitational sector
now runs over the set of field§$h',& ¢q, 0, ¢}, with
(R 3960=(Ri) 3,6,= (Rid gg and (Ri) 56, = (Ri) g5

In the context of the Einstein-Hilbert truncation it is only
the o« dependence that introduces mixingsaoand the trace- _
less part ofﬁw and therefore necessitates the decomposi- ZU o' Eez\/z- (4.19

T = 2
2" =Zwe 2= Z

Z[Z_“=C32(d,a)ZNk,

zP0h= 21912 Cg,(d,a)Cey(d, @) Zy,
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Thus, forg=1g the nonvanishing entries of the matrix differ- (r(kZ)[g,g]+Rk)$ 7 :(r(kZ)[g,g]+Rk)$ 3
ential operatord’(?)+ Ry and S{y)+ R take the form oo e
:ZNkKZCsz(d,OZ)Csﬂd,a)[Pk

(TN 9,91+ Ritnr=Znik [ P+ Ar(d)R—2)\ ], +Ag(d,a@)R+Bgy(d, @)\ (],
(S19.91+ Riy7,m= — (S219,9]+ R, 757

2 —
(NPT.g1+ Rge=Z” L [Pict-Av(d a)R—2ak, - ﬁ[Pk_ g}

(S6[9.9]+ Rige = — (Si19,91+ Rid g
(T9.91+ Rigo=Zii’Coold, ) [ Pt Agp(d, @) R g o e

R
+Bgp(d,a)\i], =\/§[Pk—26}- (4.16

Here we set ${[00,0:9]),,,=(S$10.0]),,,, for

(NPL9,91+ R g,7= (1P19,91+ Rz, N TIP § _
Now we are in a position to write down the RHS of the
flow equation withg=g. We shall denote itS,(R) in the

=ZNkK2C32(d,a)ng(d,a)\/Ek following. In S (R) we need the inverse operatorE(kf)
+Ry) "t and S{)+R,) L. The inversion is carried out in
% A /Pk_ i Appendix B 1. Inserting the inverse operators iy R)
d—-1’ leads to

S(R)=Trasm) (Pt Ar(d)R—2),) " N] +Trn[ (Pt Au(d, @)R—- 2an) N

(Py+Ag(d)R—2) ) H(Py+Agy(d, ) R— 2afk)—1[ (Fgi(d,a)Py+Ags(d,a)R—2(a+ 1)\ N

R 1 R R
+Fal(da) VP Pk‘mm&t[zw(ﬁ Pk‘m‘v—Dz\/‘Dz‘a—l)m

R\ ! R\ 1

+ Tr(o)

- 2Tr( 1T)

1

1 W[ Znik®RO(A(d,0)/k?
* o7 2, DO d,o>+k2R<°>t([A.T;,o>/k2§+i\31(:,a;]m o] (4.17
Here we set
N=(2Zy) 1o Zyk*RO(~D?/K?)]
=[1— %nN(k)}sz(O)(—D2/k2)+D2R(°)'(—D2/k2),
Ny=2"19[k?RO)(~D?/k?)]=k?RO(—-D¥k?) +D?R®' (- D¥k?) (4.18
where
n(K)=—dn Zy (4.19

is the anomalous dimension of the operafat®x\/gR and the prime aR(® denotes the derivative with respect to the
argument. Furthermore, the neds andF’s introduced above are again functionsdénd «, tabulated in Appendix F.

In Eq. (4.17) we refined our notation concerning the primes at the traces. From now on one prime indicates the subtraction
of the contribution from the lowest eigenvalue, while two primes indicate that the modes corresponding to the lowest two
eigenvalues have to be excluded.
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The next step is to extract the contributions proportionallde\/g andfddx\/ﬁR by expandingS,(R) with respect taR
or r, respectively. Sincgd?x/gecr?, fd9%gRecrd=2, only terms of order? andr?~2 are needed. This leads to

Su(R)=Tras)[ (Px—2Ny) ™ NI+ Tr i [(Py— 2aN)” NI+ Trg)[( Pc—2)y) l-/\/]+Tr(o)[(Pk_2a:k)7l-/\/]

—2Tr(m[PkWOJ—ZTrzo,[PklNo]—R{ Ar(d) sy (Pe—2N) ~2N]+Ay(d, a) Tr o[ (Pe—2ak,) ~2N]

— 2 4
+ Aga(d) Trig)l (P 2N i) 2N+ Agy(d, @) Trig[ (P 2ah) ~2N]+ GTran[ Py “Nol+ Tro)[ Py *Ao]

f \/—5t( nik?)

+0O(r=9-2y, 4.2
szk -2\ (" ) (420

Here O(r <9~?) means that termsr" with powersn<d-—2 are neglected.

The term in Eq(4.20 proportional tody , arises from the last term in E¢4.17). Contrary to the other terms of EG.17),
its expansion does not contaikdependent powers of but is of the form=;. _ b,r ~2™ with {b,} a set ofr-independent
coefficients. As for comparing powers of this has the following consequence. Since, forra0 andd>0, —2m=d
—2 is satisfied only ifm=0 andd=2, and since-2m=d cannot be satisfied at all, this term contributes to the evolution
equation only in the two-dimensional case. Using &q7) the piece contributing, i.d,,-or°, may be expressed in terms of

the operatorf d?+/gR which yields the last term in Edq4.20.
The traces appearing in EGL.20 are evaluated in Appendix B 2 using heat kernel techniques. Then combining the result

with the LHS of the flow equation, E¢4.5), and comparing the coefficients of the invariafit’x /g and fd?x\/gR leads to
the desired system of coupled differential equationsZigx and\,.. We obtain

— 1 — — 1 1 ~ —
at<szxk>:<4K2>1<4w>d’zkd{§d<d—1><1>é,2<—2xk/k2>+d Do —2ah /k?) = = (k)| 5 d(d— 1) Do — 20 /K?)

+d @é,z(—Zafk/kz)}—Zd cb},,z(O)], (4.20)

W= — <2K2>—1<4w>—d’2kd—2[ Ca(d) DFp 1 (— 2N /KA +Co(d) DY, 1 (—2aN /k?)+C3(d) DF o — 2N /K?)
1 _ - _
+¢y4(d, a)q)d/z( 2a\, K2 — = ﬂN(k)[Cl(d)(Dd/z 1(— 2)\k/k2)+Cz(d)¢é/2—1(_2a}\k/k2)+Cs(d)

~ — ~ — 1
><<I>§,2<—zxk/k2>+c4<d,a)<1>§,2(—2axk/k2>]—2c2<d><1>é,21<0)+c5<d><1>§,2<0)+35d,2( 1- anm)

y 1 1
1-2N /K2 1—2ah /K>

] . (4.22

Here ®PF, &),ﬂ’ are cutoff-dependent “threshold” functions defined as

(1 f RO -yRYy)
PP(w)=4 I'(n) (y+RO(y)+w)P ,
L (1+w) P, n=0,
LF o RO n>0
PPw)=4 I'(n) (y+RO(y)+w)P’ ’ (4.23
L (1+w) P, n=0.
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The coefficients; are given by Ar(N,0x;a,d)=—2\+ (47) 1 929, {d(d—1)
@ d3—2d?—11d—12 @ d’-6 X D g — 2N +2d D —2a)
cy(d)= . Cy(d)=———,
1 12d-1) oo ~4dy(0)},
d®—4d2+7d-8 o |1
Ca(d)E—w, Ax(Ni, Ok a,d) =N —(4m) Ok Ed(d—l)
ad(d—2)—d—1 2(d+1) XL (=20 ) +d DL (—2an ]
Cda)=-——5— C(d=——7—. arel K el ~ 2@\
(4.24 (4.29

In Eq. (4.22 the terms proportional td , arise not only The correspondmg%—functmn _forgk may be determined as
from the last term of Eq(4.20, but also by evaluating the follows. Taking the scale derivative of EGL.25 leads to
“primed” traces, i.e., by subtracting the contributions com- _ . —Td_
ing from unphysical modes, see Appendix B 2 for details. All 79BN Qi d)=[d =2 mn(k)Jg. - (4.30
these contributions are obtained by expanding various func=or the anomalous dimensiony(k) we obtain from Eq.
tions f(R) with respect toR and retaining only the term of (4.22
zeroth orderf(0). As we agued above, these are the only
pieces off which may contribute to the evolution in the 7n(K)=0kB1(Ni; a,d) + 7n(K) gBa( N s @, d)
truncated parameter space. Furthermore, the heat kernel ex- (4.31
pansions of the traces corresponding to differentially con- . . .
strained fields introduce additional contributions , into with B, , B, functions ofi, d anda given by
Eq. (4.22.

In Appendix C we concentrate on the 4-dimensional caseBl(xk;a,d)E4(4w)1d’2( co(d) DL 1(— 2Ny
and compare our result f&,(R) and for the corresponding

RG flow of Zy, and A with the one of Ref[21] where a +Co(d) P 1 (—2any) +C3(d) D3 — 2N y)

cutoff of type B is used, too. ) N
+4(d, a)Pg(—2aN ) —2¢,(d) Dy, 1(0)

D. The system of flow equations forg, and A +C5(d)CI>§,2(O) +3684,

. . . . Bz()\k§a,d)5_2(477)l_d/2|Cl(d)&)élz1(_2)\k)
and the dimensionless, renormalized cosmological constant

Now we introduce the dimensionless, renormalized New-

ton constant X ! !

1-2N, 1-2ah,

9=k %G, =k 2Z;G (4.25

A=k~ 2\, (4.26) +Co(d) DG 1(—2aN) +Ca(d) DG —2My)

U +C4(d,a) D2(—2aN)+39,
whereG, denotes the corresponding dimensionful, renormal- a(d, @) D= 2ak) d.2

ized Newton constant at scale Inserting Eq.(4.26 into 1 1
d(ZniN ) leads to the relation X 1-2N¢ 1-2an | (4.32
INe=—(2— 77N(k)))\k+3277gkkzk_dat(Zkak)- Equation(4.31) may now be solved for the anomalous di-

(4.27) mension in terms ok, gy, « andd:

Then, by using Eq(4.21), we obtain the following differen- (k)= 9kBi(Ay; e d) _
tial equation for the dimensionless cosmological constant: 1-9iBo(Ng;a,d)

(4.33

_ . The system of coupled flow equatiots29), (4.30 is the
I0= BN G, d) main result of this section.
=A1(A,9k; a,d) + pn(K) Ax(N i, Ok s @, d)
(4.28 E. Comparing the cutoffs A and B

Let us compare the flow equatiori4.28, (4.30 of the
The B-function B, contains the quantitied; andA, which  present paper with those obtained in Réfl. Referencd6]

are defined as covers the case=1 only, and the cutoff used there has a
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different structure than the present one. In R6f, the A; S V. THE FIXED POINTS

for the cutoff A is formulated at the level of theomplete A. Fixed points, critical exponents, and nonperturbative

field h,,, ie., symbolically,A!(SxfhWRkh’”, whilg the _ renormalizability

cutoff B of the present paper is based upon a similar action

for the component fie|d5AkSocth RhT#7+ [ &R ( &* Because of its complexity it is impossible to solve the
g wvk .

+... system of flow equations fog, and \,, Egs. (4.28 and

Fo}az 1 the newp-function for\,, B, , agrees perfectly (4.30, exactly. Even a numerical solution would be a formi-
with the result in[6], whereas the coefficien,, B, in the dab!e task. However, it is possible to gain important mfpr-
B-function forgy, B,, do not coincide with the correspond- mation about the general structure of the RG flow by looking

ing results derived there. However, with both cutoffs thesedt its fixed point structure. _ .
coefficients are of the form Given a set ofg-functions corresponding to an arbitrary

set of dimensionless essential couplingky it is often pos-
o 1 L dd2 1 sible to predict the scale dependence of the couplings for
Bi(ha=1d)= 5 (4m) " Tk ey (d) Py 1(—2M) very small and/or very large scalésby investigating their
fixed points. The fixed points are those points in the space
spanned by the;gvhere all 8-functions vanish(The essen-

2

+e(d) DG —2Ny) +e3(d) D, 1(0) tial couplings are those combinations of the couplings ap-
pearing in the action functional that are invariant under point

+ey(d)D2,(0)}, transformations of the fieldsFixed points are characterized

by their stability properties. A given eigendirection of the
. linearized flow is said to be UV or IR attractiver stable if,
L _ = 1—d/21,d—2 for k— o or k— 0, respectively, the trajectories are attracted
Baha=1d)= =g (4m) T ey (d) towards the fixed point along this direction. The UV critical
hypersurface in the space of all couplings is defined to con-
~ ~, sist of all trajectories that run into the fixed point flor .
X Do 1(—2N) +ep(d) Pgp( — 2h )} In quantum field theory, fixed points play an important
(4.349  role in the modern approach to renormalization thg8ilyAt
a UV fixed point the infinite cutoff limit can be taken in a
In the present papefcutoff B) the coefficientse; are ob-  controlled way. As for gravity, Weinberfjl6] argued that a
tained as theory described by a trajectory lying orfiaite-dimensional
UV critical hypersurface of some fixed point is presumably
d*—13d2—24d+12 free from unphysical singularities. It is predictive since it
d(d—1) , depends only on &inite number of free(essentigl param-
eters. In Weinberg’s words, such a theoryasymptotically
safe Asymptotic safety has to be regarded as a generalized,
d*-2d*-d*-4d+2 nonperturbative version of renormalizability. It covers the
d(d—1) ' class of perturbatively renormalizable theories, whose infi-
nite cutoff limit is taken at the Gaussian fixed point; g0,
2 d+1 as _WeII as those_perturbatively nonre_normalizable th_e(_)ries
e,(d)=—24 (4.35 vv_hlch are descrlb_e_d by a RG trajectory on a f|n|'ge-
d dimensional UV critical hypersurface of a non-Gaussian
fixed point g.;# 0 and are nonperturbatively renormalizable

while in [6] (cutoff A) they are given by therefore[16].
Let us now consider the system of differential equations

ey(d)=d(d+1), e(d)=-6d(d-1), kagi(k) = Bi(9) (5.1)

e (d)=

ez(d): -6

es(d)=-4 q

es(d)=—4d, e,d)=—24. (4.36) for a set of dimensionless essential couplingsk)g(
={g,(k), . ..,a(k)}. We assume that,gis a fixed point of

Upon subtracting the coefficients in E@.35 from those in =9 (5., 1e fi(g,)=0foralli=1,... n. We linearize the
Eq. (4.36 we obtain Ae;=—Ae,=12(d?+2d—1)/(d(d RG flow about g which leads to

—1)) andAez= —Ae,= —24/M. Quite remarkably, the sum n

of the deviationsAe; vanishes not only in total but also ) — A

separately for the gravitational contributions, involvieg K AGi(K) 121 B (G(K) =) 62
ande,, and the contributions from the ghosts, which contain

e3 ande,. Obviously, this amounts to a shift from the gravi- where Bj;=4;8(g,) are the entries of the stability matrix
tational (p=1,n=d/2—1) sector to the {=2,n=d/2) sec- B=(Bj;). Diagonalizing B according to S BS=
tor as well as to a shift between the corresponding ghost diag(é, . . .,0,), S=(V%, ... V"), whereV' is the right
sectors. The simplicity of this result is somewhat mysteriouseigenvector oB with eigenvalue— 6, we have
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n
> ByVi=—4V|, 1=1,...n (5.9
=1
The general solution to E45.2) may be written as
n 0
I Ko| ™
6(K=g,i+ 2 C.vi(?) . (5.4
Here
n
€i=2, (S g (ko) (5.5

are arbitrary real parameters akglis a reference scale.
Obviously the fixed poing, is UV attractive(i.e. attrac-

PHYSICAL REVIEW D65 025013

are given in Egs(4.28 and(4.30), respectively. As we shall

see in subsection B, they have a trivial zero\gt=g, =0,
referred to as th&aussian fixed poinfThe analysis of sub-
section C reveals that there exists alsoom-Gaussian fixed
pointat A, #0, g, #0. In subsection C we study its cutoff
dependence and the cutoff dependence of the associated criti-
cal exponents employing the abog@efunctions of type B as

well as those of Refd.22,19 based on the cutoff type A,
with the families of shape function8.8) or (3.9) inserted.

B. The Gaussian fixed point

In this subsection we discuss the features of the Gaussian
fixed point (\, ,9,)=(0,0). In order to investigate the RG
flow in its vicinity we expand thgg-functions in powers ok
andg according to Eq(H5) of Appendix H and read off the

tive for k—x) only if all C, corresponding to negative, B-matrix. It takes the form

<0 are set to zero. Therefore the dimensionality of the UV —2 v

critical hypersurface equals the number of posittje-0. B:( ) (5.7)
Conversely, setting to zero &bt corresponding to positive 0 d-2

0,, g, becomes an IR attractive fixed poi@pproached in , ) ,

the limit k—0) with an IR critical hypersurface whose di- Here vy is ad-dependent parameter defined as
mensionality equals the number of negatie vg=(d—3)(4m)1" 9P (0). (5.9

In a slight abuse of language we shall refer to this as
the critical exponents Diagonalizing the matrix5.7) yields the(obviously univer-

Strictly speaking, the solutiofs.4) and its above interpre- sa) critical exponent¥; =2 and#,=2—d which are asso-
tation is valid only in such cases where all eigenvalues ciated with the eigenvectorg=(1,0)" and V?=(v4,1)".
— 6, are real, which is not guaranteed since the madils  Hence, for the linearized system obtained from &f) the
not symmetric in general. If complex eigenvalues occur ongplution (5.4) assumes the following form:
has to consider compleg,’s and to take the real part of Eq.
(5.4), see below. Then the real parts of the critical exponents
determine which directions in coupling constant space are
attractive or repulsive.

At this point it is necessary to discuss the impact a change k
of the cutoff scheme has on the scaling behavior. Since the gk:gko(k_
path integral fol", depends on the cutoff scheme, i.e. on the 0
A Schosen, itis clear that the couplings and their fixed point  sijnce the expanded8-function B, of Eq. (H5) is
values are scheme dependent. Hence a variation of the cutqff -independent up to terms of third order in the couplings
scheme, i.e. o}y, induces a change in the correspondingye can easily calculate also the next-to-leading approxima-

B-matrix. So one might naively expect that also its eigenval+ion for g, near the fixed point. In terms of the dimensionful
ues, the critical exponents, are scheme dependent. In fagjyantity G, this improved solution reads

this is not the case. According to the general theory of criti-
cal phenomena and a recent reanalysis in the framework of
the exact RG equationgl8] any variation of the cutoff
scheme can be generated by a specific coordinate transfakith
mation in the space of couplings with the cutoff held fixed.
Such transformations leave the eigenvalues ofBhmatrix 1
invariant, so that the critical behavior near the corresponding “d= — ﬁBl(O;a’d)
fixed point is universal. The positions of fixed points are
scheme dependent but thémonexistence and the qualita-
tive structure of the RG flow are universal features. There-
fore a truncation can be considered reliable only if it predicts 4 3 5
the same fixed point structure for all admissible choices of _(d —4d°+9d"°—8d-2 42 )q)z (0) (5.11)
Ry d(d—1)(d—2) & Far '

In the context of the Einstein-Hilbert truncation the space
of couplings is parametrized by, g\ and g=g. The ad-anda-dependent parameter. Fox|w Gy | @~ and
B-functions occurring in the two flow equations with the reference scale,=0 (which is admissible only for
trajectories lying on the IR critical hypersurface of the fixed
point) Eq. (5.10 yields

2 k d-2
g

Ko
Me= (Mg =™ va0ky) | 1

d-2
(5.9

Gi=Gy [1- waGi (kg *~k¥ 2] (510

(d+2)(d®*—6d%+3d—6)

=264t @ D2

Dgp-1(0)

INe= BN, 9k),  319k= By( Mk, 9k) (5.6)
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G=Go[1— wqGokd~ 2+ O(G2K2@-2)].  (5.12 In Ref.[22] a similar result was obtained with a cutoff of
type A, while the above calculation employed the cutoff B.
For the dimensionful cosmological constant we obtain, fromThe only difference between our result for the behavior of

Eq. (5.9, G, and the one obtained {122] lies in the slightly differing
value of oy which is a scheme dependent parameter. For the
M= N T 7aGi (K= KG). (513  cutoff type A w,=wff is given by(see[22)
. . 1
Apart from the different expression @y due to the new wg/*)zg[(lgpr 6a)(I)§(O)—(I)%(O)] (5.1

cutoff, the solutiong5.12 and (5.13 coincide ind=4 di-
mensions with those derived in RgB] by using a similar
approximation scheme, see Ed5.18 and (5.25 of this
reference.

Let us now analyze the scaling behavior nerg, (g,)
=(0,0). Sinced;=2>0 the V*-eigendirection, which coin-
cides with the\ direction, is IR repulsive(and thus UV . . .
attractive. For d<2, 6, is positive which implies that the acomparison of th'_s result with the one_for thF_" cutoff %?e B
Gaussian fixed point is UV attractive for any direction in the V& INSert a=1 ,Into Eg. (5.15 which vyields wy”
2-dimensional parameter space. =[1307(0)+79D5(0)]/(247). Using the exponential

For d>2 we haved,<0 so that thev? eigendirection is Shape functionR® with s=1 we have ®3(0)=?/6,

IR attractive(and UV repulsivi Hence, in this case both the ®3(0)=1 so thatw{?~1.33 for the cutoff type B, which
UV and the IR critical hypersurface of the Gaussian fixedlies rather close to the value{~1.19 obtained if6,22]
point are one-dimensional, i.e. they consist of a single trajecfor the cutoff type A. Furthermore, we haves(0)=2{(3)
tory. For the IR critical trajectory that hits the fixed point in where / denotes the zeta function, and thug~0.19 with
the limit k—0 we have both cutoffs.

so thatay=[®1(0)/®2(0)—18]/6 in this case, while, is
the same with both cutoffs. Fer=1, Eq.(5.16) boils down
to w{V=[2402(0)—d1(0)]/(67) which equals the result
obtained in the original papé6]. This is because fowr=1
the cutoff type A coincides with the one used in Réfl. For

fk= 4Gk N = 140 (5.19 C. The non-Gaussian fixed point

Now we turn to the nontrivial zeros of the set of

Egrlszt)j fflscif:etgls Tg)" gsgaueisdgkoftﬂévlﬁgikfggg?X Eq' B-functions{B) , B} given by Eqs(4.28, (4.30. Such non-
e dr2 ' “d . Gaussian fixed points\(, ,g, )# (0,0) satisfy the condition

is not a universal quantity. Therefore the slope of the distin-
guished trajectory5.14) is not fixed in a universal manner. e =2—d (5.17)
This is in accordance with the general expectation that the
eigenvalues oB should be universal, but not its eigenvec- which follows immediately from Eq(4.30.
tors.

For d+2 the parameter®},_,(0) and®?,(0) appear- 1. In 2+& dimensions
ing in wq are scheme dependent as well. Furthermoxgis As a warm up we consider the casedf 2+ dimen-

a function of the gauge parameter Hencewq is a nonuni-  sjons with 0<|e|<1 which can be dealt with analytically
versal quantity, too. In the most interesting casedef4  and for which the existence of a non-Gaussian fixed point

dimensions it takes the form has already been show6,6,32—34 In this case the con-
1 dition (5.17) takes the formmyy, = —& with
_ 1 2
04=5,-[1301(0) +(55+ 240)DZ(0)]. (519 0. (£)By(h, (): @2+ &)

M =T-g 0By, (o) m2ts) 1O

Since ®1(0) and ®5(0) are positive for any admissible _ . _
shape function we can infer from E¢p.15 thatw, is posi-  Solving Eq.(5.18 for g, (&) and expanding the result with
tive for all a>a, and negative for alle<a,. Here ¢,  '€SPECt tce leads to

=[—13D1(0)/P3(0)—55]/24 is a negative number of order _ _ L4 (s

unity. Thus, if we identify Einstein gravity with the theory 9:(2)=~[B:(A,(0);@ 9] "+ O(e%). (519
described by the IR critical trajectory of the Gaussian fixedryrthermore, expanding alg) (\, (¢),9, (¢); @,2+ &) with

point, Eq.(5.12 implies that Einstein gravity is antiscreen- regpect tae and equating equal powers afyields
ing for all &> «y, i.e. G, decreases &k increases. On the

other hand ifa<ag gravity would exhibit a screening be- A (8)=[B1(0;a,2)] *®}(0)e+O(e?). (5.20
havior. As argued in Sec. IV A, the gauge parameter should

be regarded as a scale dependent parameter in an exact trdat-particular we obtain\, (0)=0 which implies g, (¢)
ment where it is expected to approach the fixed point value= —[B;(0;@,2)] e+ O(&?).

a, =0. Settinge=0 from the outset we may conclude that  The parameterB;(0;«,2), i=1,2, may be obtained from
the physicalG, displays the antiscreening behavior found forthe zeroth order terms of the expansioBE\y;«,2+¢)
a> ay. =BO(\; @) +BP(\;a)e +O(e?) which take the form
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0 34 L 2 L fixed point and lead to a finite-dimensional UV critical hy-
B\ a)=— 3 (1=2M) " —5(1-2ah) persurface. 1124] we will discuss this point in detail.

32 i ; ;
+4q)%(_ 2N+ 6@%( —2an)— = 2. Location of the fixed point (e:4)

In d=4 dimensions, and for the cutoff A, the non-
Gaussian fixed point of the Einstein-Hilbert truncation was
BO(\ ;)= 1_7(1_2)\k)—1+ 1(1—260\071 first discussed ii17], and in Ref.[19] the « andR® de-

3 3 pendence of its projection (@,) onto theg direction has
~ ~ been investigated. However, since far=1 the cutoff of
—205(=2N) —3Pi(—2ahy).  (5:2D  type Ais introduced by amd hocmodification of the stan-

_ _ . 5 . dard one-loop determinants it is not clear whether it may be
Inserting A =0 into Eq.(5.2) and using that1(0)=11is  eypressed in terms of an actidnS, except for the case
scheme independe(#] yields =1 [6]. Since a specification af,S is indispensable for the
construction ofl",, the status of the results derived[it9)] is

Bl(O;oz,Z):B(lo)(O;a)= _ 38 somewhat unclear. In the following we determine the fixed

ER point properties using different cutoffs of type B, for which a
5 AS is known to exist, and compare them to the analogous
B,(0;@,2) =B (0;0)=6-5D%(0). (5.22  results for the cutoff A.

In a first attempt to determine the non-Gaussian fixed
In contrast to the universal quanti§{”(0;a), B’(0;a)  point we neglect the cosmological constant andiset\,
depends on the shape ®R© via d)f(O). However, =0, thereby projecting the renormalization group flow onto

B(zo)(o;a) does not enter the leading order termaf(¢) the one-dlmens!onal space parametrlze@.ljyl this case the
. : non-Gaussian fixed point is obtained as the nontrivial solu-
andg, (&), which may now be written as

tion of B4(09, ;a,d)=0. It is determined in Appendix H
3 with the result given by Eq(H2). In order to get a first
N, (8)=— §3q>i(o)g+(’)(82), impression of the position of, we insert the exponential
shape function withs=1 into Eq. (H2) and setd=4, «
=1. We obtaing, ~0.590.
(5.23 Assuming that for the combined-g system bottg, and
N\, are of the same order of magnitude @s above we
expand theg-functions about X, ,g,)=(0,0) and neglect
The leading order term ok, (e) is nonuniversal since it terms of higher orders in the couplings. Again in Appendix H
contains the scheme dependent paran{g0). This is not  we determine the non-Gaussian fixed point for the corre-
the case forg, (e) whose leading order contribution has a sponding system of differential equations. Inserting the shape
universal meaning. function (3.7) and settingd=4, «=1, we find (\, ,9,)
Let us now analyze the scaling behavior near the non~(0.287,0.751).
Gaussian fixed point5.23. One finds that the associated In order to determine theexact position of the non-

3
O, (e)= 3—88+(9(82).

B-matrix is of the form Gaussian fixed point\(, ,g,) we have to resort to numerical
1ow—13 methods. Given a starting value for the fixed point, e.g. one
o — i 1 -
oy e+ O(e?) —2(1)}(0)+(’)(s) of thg approximate solut|oqs aboye, the program we use d.e
B= 19 _ termines a numerical solution which is exact up to an arbi-
2 _ 2 trary degree of accuracy. Under the same conditions as
O(e") s+ 0(e%) above, i.es=1, d=4, we obtain
(5.29
From Eq. (5.24 we obtain the critical exponentg;=2 _
—[(12a—13)/19s + O(£2) and =&+ O(£2). 6, and 6, (N, g.)= (0.348,0.272 for a=1, 525
* 1 IJ% .

are scheme independent up to termsk?). 6, depends
on the gauge parameter. Fer=1 the critical exponents co-
incide with those following from thgg-functions of Ref[6],
where the cutoff type A is used. These findings nicely con- Next we study the gauge and scheme dependence of the
firm that, to lowest ordethe critical exponents are the same non-Gaussian fixed point. The scheme dependence is inves-
for the cutoffs A and B and are independent 6PR tigated by looking at thes dependence introduced via the
For >0 both critical exponents are positive. Hence thefamily of exponential shape functior{8.8) wheres param-
non-Gaussian fixed poir6.23 is UV attractive for all tra-  etrizes the profile oR(©.
jectories so that the condition for the asymptotic safety sce- Figure 1 showg), («,s) obtained from the approximation
nario is met. It is interesting to investigate whether this result\ ;=\, =0, while Figs. 2 and 3 display tHexac} functions
stabilizes in the sense that more general truncations includy, («,s) and\, («,s) resulting from the combineN-g sys-
ing higher powers of the curvature tensor reproduce thigem. In each of these figures the plot on the LHS8. Figs.

(0.339,0.344 for a=0.

025013-21



O. LAUSCHER AND M. REUTER PHYSICAL REVIEW D65 025013

FIG. 1. g, as a function o6 and a from the approximation,=\, =0, using(a) the cutoff type A, andb) the cutoff type B, with the
family of exponential shape functiorf8.8) inserted.

1,2,3a)] is obtained from the cutoff type A and the one on this reason. Therefore it is necessary to compare the gauges
the RHSJi.e. Figs. 1,2,8)] is obtained from the cutoff type «=0 and«=1 in order to judge whether the results ob-

B used in the present paper. tained by usinga=1 are a sensible approximation to the
Our results establish the existence of the non-Gaussiaphysical casexr=0. Here we see that this is indeed the case.
fixed point in a wide range of ands values. As expected, As for comparing different types of cutoffs, we recognize

the position of the fixed point turns out to Bei.e. scheme, from Fig. 1 that, in the approximation,=\, =0, thes de-
dependent, but the crucial point is that it exists for any of thependence of), is much weaker for type B than for type A.
cutoffs employed. This is one of the important results of ourContrary to this, both cutoffs yield nearly the same results
analysis because it gives a first hint at the reliability of thefor g, and\, if we consider the combinel-g system, see
Einstein-Hilbert truncation. Figs. 2 and 3. Furthermore, the scheme dependengg of

As for the @ dependenceg=0 is, in principle, the only  Fig. 2 is stronger than in Fig.(§), but much weaker than in
relevant case since according to Sec. Va5 0 is assumed  Fig. 1(a). Figure Xa) reproduces the result of R€fL9] ob-
to be the physical value of the gauge parameter. In practicahined from the cutoff A, see Fig. 2 of this reference.
calculationse=1 is often used instead, because this simpli- It should be noted that we are forced to restrict our con-
fies the evaluation of the flow equation considerably.24, siderations to shape functiorf8.8) with s=1. This is be-
for instance, all calculations are performed wit=1 for  cause fors<1 the numerical integrations are plagued by

FIG. 2. The exacy, as a function o anda from the combined -g system, usinda) the cutoff type A, andb) the cutoff type B, with
the family of exponential shape functio(3.8) inserted.
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FIG. 3. The exack, as a function ot and« from the combined -g system, usinga) the cutoff type A, andb) the cutoff type B, with
the family of exponential shape functiof3.8) inserted.

convergence problems which is due to the fact thad 44

dimensions the threshold functions ) and g, diverge in I'[on shell=— N T

the limit s—0, see als§19]. 871G\ Ak
Because the scakenters the flow equation viRy as a _ _ —

purely mathematical device it is clear that the functionsHere we used that, for dimensional reasofdixg=v/\§

k— X\, gy and their UV limits,, ,g, are scheme dependent Wherev is a finite, positive constant for any solution with a

and not directly observable therefore. It can be argued thdtnite four-volume. . . _

the productg, A, must be scheme independent, however. Quite remarkably, the universality of the prodggin . is

While k and, at a fixed value ok G, andrk cannot be confirmed by our results in a rather impressive manner, as is

measured separately, we may invert the funckienG, and illustrated in Figs. 4—7. Figure(d) contains several paramet-
ric plots of[\, (S),0, (s)] for various values ot, obtained

insert the resulk=k(G) into \. This leads to a relationship fLom the B-functions (4.28 and (4.30 which are based on

bet.ween Newtqn's constant and the cosmologica}l constanf o o\ toff type B. The hyperbolic shape of these plots is a
which, at least in principle, could be tested experlmentally;first hint at thes independence of the produgt\, . Its

Y=Y(G). In general this relation depeﬂds on the RG trajecirect confirmation is supplied by Fig. 5 which shows,
tory chosen(specified by its IR values, and Gy, for in- X, , andg, \, as functions offor «=0 [Figs. 5a),(b)] and
stance, but in the fixed point regime all trajectories approacha=1 [Figs. 5c),(d)], again using the cutoff type B. In Figs.

(5.27

M=\, k? andG, =g, /k? which gives rise to 5(a),(c) these functions are plotted in the range of values 1
=<s=<30 while Figs. Bb),(d) contain the sector corresponding
o 9.\, to 1=<s=<5 where the largest changesnp andg, occur. In
NG)= el (5.26 any of these figures the product af and g, is almost

constant for the whole range efvalues considered. Its uni-
o versal value is

Equation(5.26 is valid if \>m32, andG<m,?. (We define

the Planck mass in terms of the IR limit dB,, mp, N~ 0.12 for a=1,
=G, “2.) Assuming that andG have the status of observ- 91014 for a=0.
able quantities, Eq5.26) shows thag, A, must be observ-

able, and hence scheme independent, ®or a related dis- Obviously the difference between the physical case0
cussion seg33].) Below the Planck regime the function and the case preferred for technical reasens/1, is rather

A (G) becomes much more complicated them1/G (which smal!. . . .
follows already from dimensional analysisecause the di- _ !t iS reassuring to see that employing {Befunctions of
. . .. Refs.[22,19 which are based on the cutoff A we obtain

mensionful quantltleao_ and Gy e”t‘?f _epr|C|tI_y there: almost identical results. They are illustrated by means of Fig.

As for the universality ofg, \, , itis alio interesting to &'\ i showsg, , A, , andg, A, as functions of, 1<s
note that, for any, the productgA,=G\ is essentially <5 for =0 [Fig. 6a)] anda=1 [Fig. 6b)].
the inverse of the on shell value bf,. The stationary points |t js also interesting to compare the above results with
of Eq. (1.2) with g,,,=g,,, satisfy Einstein’s equatio®,,  those obtained from a different shape function. Figure 7 dis-
=—\¢Q,,. HenceR=4\,, so that from Eq(1.2) in four ~ plays the behavior of, , \, , and their product resulting
dimensions, from the B-functions(4.28 and(4.30 of the cutoff B, with

(5.28
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FIG. 4. (a) s-parametric plot of A, (s),09,(s)] in the range £s=<50 for various values of. Each curve starts on the leftst1, and
ends on the right &= 50. (b) a-parametric plot of A, («),9, («)] for various values o$. In both(a) and(b) the cutoff type B is used, with
the family of exponential shape functio(3.8) inserted.

the family of shape function®(®(y:b) with compact sup- 7(b) whereg, A, is nearly constant. Remarkably, the posi-
port, Eq.(3.9), inserted. Herébe[0,1.5) parametrizes the tion of these plateaus coincides quite precisely with those of
profile of these shape functions. In Fig.ay we present a the corresponding plateaus in Figs. 5 and 6 obtained with the
parametric plot of[\, (b),g,(b)] for =0 starting atb  other cutoffs. As for the quality of the Einstein-Hilbert trun-
=0 and ending ab=1.5. Furthermore, Fig.(B) shows the cation this result is rather encouraging.

productg, A, as a function ob for =0 anda=1. Forb For b>1.2 the curves in Fig. 7 have a rather strong and
<1.2, the parametric plot in Fig.(2 exhibits an approxi- erratich dependence. This is becalR®)(y;b) approaches a
mately linear behavior which leads tayg\, plateau in Fig.  sharp cutoff adb— 1.5, which introduces discontinuities into

e
3 0.
2 0.
1 0.

gs A 0.
0 A

s s
5 10 15 20 25 30 1.5 2 2.5 3 3.5 4 4.5 5

(@) (b)

3r 0.8t
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2F 0.6}
1.5¢
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1_
0.5¢
™ 0.2¢
of »
S s
5 10 15 20 25 30 1.5 2 2.5 3 3.5 4 4.5 5

(c) (d)

FIG. 5.9, , \,, andg, \, as functions ofs for (a) =0, 1<s<30, (b) =0, 1ss<5, (c) a=1, 1=s=<30, and(d) =1, 1<s
<5, using the cutoff type B with the family of exponential shape functi@®) inserted.
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FIG. 6.9, , \,, andg, A, as functions of for (&) «a=0, and(b) =1, using the cutoff type A with the family of exponential shape
functions(3.9) inserted.

the integrands of the threshold functiod and ®°. Al-  While we find a considerable scheme dependenag aind
ready forb=1.2 the B-functions start to “feel” the sharp M. Separately, their product is scheme independent at a quite
cutoff limit so that the results cannot be trusted beyond thigmazing level of accuracy, see Fig. 5. As for the reliability of
point. the Einstein-Hilbert truncation, we consider this result a

As for the « dependence of the fixed point, in Fig(b} h?ghly nontrivial confirmation of our e_lssumption that th_e re-
we present parametric plots pk, (a),g, (a)] for various ~ 9ion qf parametgr space v_vhere the fixed point occurs is wgll
fixed values ofs. Here we used the cutoff type B with the descrlb_ed t_)y this truncation ansatz so that th_e flxeq point
shape functiori3.8) inserted. These plots start at positions in also exists in thexacttheory and is not a truncation artifact.
the N-g plane which correspond t@e=0 and which are dif-
ferent for the distinct values. Asa—« all curves run into
the Gaussian fixed point. Before continuing our analysis of ttee=4 dimensional

To summarize(a) In 4 dimensions, the Einstein-Hilbert case we study the-dependence of the non-Gaussian fixed
truncation leads to a non-Gaussian fixed point with positivepoint. This is done by means of the parametric plots in Fig. 8
values of\, andg, for all admissible cutoffs, both of type which are obtained from th¢-functions of type B, Egs.

A and type B. The scheme independence of this prediction i§4.28 and (4.30, with the shape functiori3.8) with s=1

a nontrivial result(To emphasize this point we mention that inserted. Figure @) shows[ X, (d),g, (d)] in 2<d=<4 for

in higher dimensions, where the Einstein-Hilbert truncationa=1. Remarkably, this plot is almost identical with that in
is less reliable, the fixed point exists or does not exist deFig. 4 of Ref.[17] which was derived from thg-functions
pending on the cutoff chosdB1].) based on the cutoff type A.

(b) Universal quantities are strictly cutoff independent In order to gain information about the behavior of the
only in an exact treatment. Any truncation leads to a scheméxed point ind>4 we also plotted A, (d),g,(d)] in 2
dependence of these quantities. The extent of this schemed=<6, but this time fora=0, see Fig. &). Ford beyond
dependence is a measure for the reliability of the truncationd~5, the value ofg, increases significantly, whereas
The productg, A, is an example of a universal quantity. seems to approach a constant value.

3. Higher and lower dimensions

As g*M
0.34 b=1.5 0.25
0.32 0.225
0.2 f
0.3 b=1.2
0 28 0.175
0.15 o=0
0.26
0.125 o=1
0.24 ﬁ/\
_ b
b=0 0.2 0.4 0.6 0.8 1 1.2 \)1.4
ol3 0.4 0.5 0.6 0.7 0.8 7 5 075
€) )

FIG. 7. (a) b-parametric plot of A, (b),g, (b)] for =0, and(b) g, A, as a function ob for «=0 anda=1, using the cutoff type B
with the family of shape functions with compact supp@19 inserted.
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d=6

3 0.05 0.1 0.15 0.2 0.25

(@) (b)

FIG. 8. d-parametric plot of A, (d),g, (d)] for (8 =0, 2<d<6, and(b) a=1, 2<d=<4, using the cutoff type B with the exponential
shape function(3.8) with s=1 inserted.

"

However, this result might be a truncation artifact since it [\,
is plausible to assume that in higher dimensions the Einstein-
Hilbert truncation becomes less reliable. This is because with ' 9

+2{[ReC cog #"t)+Im Csin("t)|ReV

*

increasing dimensionalitd the number of terms which are +TReCsin(@" t)—ImC cog ¢ t)1Im Vie 't
relevant at the non-Gaussian fixed point and which are ne- [ n(o"t) 10"0)] } ’
glected in the Einstein-Hilbert truncation increases most (5.30

probably. At the non-Gaussian fixed point the scaling dimen-
sions of local invariants such afJg, [VgR JVgR?
f\/QRWRW, etc. are not known a priori. We only know that
with respect to the Gaussian fixed poaik local monomials

Heret= In(k/ky). Obviously the non-Gaussian fixed point is
UV (IR) attractive if6'=Re#;=Re#d,>0(<0). The imagi-
nary parts= 8" of the critical exponents do not influence the

zrﬁensmn igse;elﬁgfg;ggirgs'gﬁlsigl;h(:’r'lzncczq%rl:csrl]oﬂ%ssstability of the fixed point. They only give rise to a rotation
of the vector §,—\, ,0x—0, )" about the fixed point.

retain at least the relevant terms, whence it is clear that the In the case under consideration we have=0 which
nlum:)e(;_of terms ne?/d_ed |ndcre3§(;s with thle d|mten5|zn?rl1|ty implies that the non-Gaussian fixed point is UV attractive in
[In t'm?ns'on.s’ft g and J 9 Ié\re relevan an f both directions of X,g) space. All RG trajectories which
(curvature invariants are marging y analogy we Expect  \oach its basin of attraction spiral into the fixed point kor
that the description of the non-Gaussian fixed point, 100, re- ., "ty ,s “the Einstein-Hilbert truncation predicts all the

quires increasingly high powers of the curvature wilers ingredients which are necessary for the asymptotic safety

increased31]. scenario and the nonperturbative renormalizability of

4-dimensional quantum gravity. Clearly the dimensionality

of the UV critical hypersurface cannot be determined within
Let us now return to the 4-dimensional case and analyzéhe present approach. We shall come back to this question in

the critical behavior near the non-Gaussian fixed point. Irthe framework of a more general truncation including higher

order to get a first impression of its features we restrict ouderivative termg24].

considerations to the cutoff type B with the exponential As discussed in Sec. V A the critical exponents are uni-

shape functiori3.8) with s=1 and to the gauge=1. Inthis  versal in an exact treatment, in contrasgtpand\, . How-

case we have\ ,g,)=(0.348,0.272), see above. The cor- ever, in a truncated parameter space a scheme dependence is

4. The critical exponents (e4)

respondingB-matrix assumes the form expected to occur as an artifact of the truncation. Therefore
we may use this scheme dependence of the critical exponents
—~0.187 5.129 to judge the quality of our truncation. Also in this respect the
=( ) (5.29 Einstein-Hilbert truncation yields satisfactory results, which
—3.228 —2.907 we display in Figs. 9—11. First of all it should be noted that

the critical exponents obtained from our numerical analysis
It leads to a pair otomplexcritical exponentsd);= 6" +i6" have a nonzero imaginary part in any of the cases consid-
and 6,= 607 =0'—i6". For the real quantitie’ and ¢” we  ered. Figures 9—14) show their real partd’ while their
find 0’ =1.547 and#”=3.835.(In general we defing, as imaginary party” is depicted in Figs. 9—1h). Figures 9 and
the critical exponent with the positive imaginary part so that10 are derived from thg-functions(4.28 and(4.30 based
#">0.) The behavior ofA, and g, near the fixed point is on the cutoff B of the present paper, with the family of shape
described by the real part of E(.4) in this case. Using that functions(3.8) (in Fig. 9 and (3.9 (in Fig. 10 inserted. For
V2= (V1)*, and settingv’=V andC,=C, the general solu- comparison, Fig. 11 is obtained from th@functions of
tion to the linearized flow equation may then be written as Refs.[22,19 derived from the cutoff type A, with the family
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FIG. 9. (a) ' =Re#4, and(b) #”=1m 6, as functions of for various values o, using the cutoff type B with the family of exponential
shape function$3.8) inserted.

of shape function§3.8) inserted. The figures contain various vary with b which is caused by the sharp cutoff limit &s
plots for distinct values ofr, which describe thes or b de- — 1.5, see above. The position of the plateaus is nearly iden-
pendence ob’ and 6”. tical with those obtained above by using the same cutoff B,
The 6’ plots in Figs. %a) and 11a) for the cutoffs B and but the shape functio3.8). For a=1 we have#’'(b=0)
A, respectively, exhibit a similas dependence, and the same ~1.69 and#”(b=0)~2.56.
holds true for thed” plots in Figs. 9b) and 11b). Moreover, As discussed abovey=0 is assumed to be the physical
in the range ¥s<5 one recognizes a total variation of both value of the gauge parameter while in practical applications
0’ and 6” which is approximately of the order of magnitude a=1 is often preferred. For a further justification of this
of #' and ¢”, respectively. Fois>5 there remains only a approximation we compare the critical exponents obtained
rather weak dependence snsuch that the functiong’(s) from «=1 with those obtained from théhysica) gauge
and 6"(s) develop a plateau-like shape. Tedependence is «=0. The results are qualitatively the same, but quantita-
slightly stronger for the cutoff type B than for type A, and tively we find a relative deviation of about 10 to 20 percent.
the positions of the “plateaus” are different for both cutoff This has to be kept in mind when calculations are performed
types. Fora=1, for instance, we have’'(s=30)~1.56 and with a=1.
0"(s=30)~3.06 using type A, while employing type B To summarizeFor all admissible cutoffs, both of type A
yields ' (s=30)~1.75 andd”(s=30)~2.31. These differ- and type B, the non-Gaussian fixed point is UV attractive in
ences have to be interpreted as truncation artifacts. both directions of parameter space. It is characterized by a
The above results may now be compared with those fopair of complex conjugate critical exponents which leads to
the cutoff B with the shape functions with compact support,spiral-type trajectories in its vicinity. The exact critical expo-
Eq. (3.9, inserted. Our results are shown in Fig. 10. Remarknents are universal. Those obtained from the Einstein-Hilbert
ably, ¢’ is almost constant in the rangesb<<1.2. Further- truncation are approximately scheme independent, but their
more, the change if” is only very weak in this region and scheme dependence is stronger than thag,ok, . This
occurs mainly forb=0.4. Forb=<0.4 ¢” is almost constant might be related to the fact that tfie/gR? term neglected by
as well. In the region 12b<1.5 both#’ and §” strongly  the Einstein-Hilbert truncation i¢very weakly relevant at

0 0
2.2t
o=0 4.5 [_
0.2 0.4 0.6 0.8 1 1.2 7z ® [—
4_
1.8f
o=1
1.6f 3.5
1.4+ b
.4
1.2t

(a) (b)

FIG. 10. (a) #'=Re#,, and(b) 6"=Im 6, as functions ofb for «=0 anda=1, using the cutoff type B with the family of shape
functions with compact suppo¢8.9) inserted.
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the non-Gaussian fixed point. We shall come back to thigpropagator ird=2 dimensions. This means that, in a certain
point in Ref.[24]. sense, spacetime appears to be two-dimensional when it is
probed by a very high energetic graviton.

VI. THE GRAVITON PROPAGATOR AT LARGE Since, symbolicallyR=ddh, the propa_gato(6.3) yields
MOMENTA the curvature-curvature correlation function

The UV fixed point is characterized by an anomalous di-
mensionn= nn(d, .\ ) = —2. We can use this information (ROOR(y))ex Z
in order to determine the effective momentum dependence of (x=y)
the dressed graviton propagator for momenta in the fixe

. . . 2> 2 .
point regime, i.e. fop®>mp,. Expanding the truncatel; 1/(x—y)® behavior one finds at tree level. HeRestands for

about flat space and omitting the standard tensor structun?ﬁe curvature scalar or for any component of the Riemann or
we find the inverse propagatgi(p) ~t<Zy(k)p? The con-  Ricei tensor.

ventional dressed propaga@(p) contained in"=T"_, ob- Switching for a moment to spacetimes with a Lorentzian
tains fromG, in the limit k—0. Assuming that the actual Signature, it is interesting to look at the linearized gravita-
physical cutoff scale is the momentup? itself (which is  tional field produced very close to static source. Decom-.
indeed true fop2>k2>m2), thek evolution ofGy(p) stops posing x=(x%x), the relevant Green’s function for static

(6.4

ﬁjts short-distance singularity has to be contrasted with the

at the threshold= \/p2. Therefore problems reads
E(p)_lmZN(kZ \F)pZ(x(pZ)l—n/Z (61) gsta(X;y)EJl ‘dyog(XO,X;yO,y). (65)

becauseZy(k)«k™ 7 when n=—g,n Z is (approximately
constant. Ind dimensions, and forp#2—d, the Fourier
transform ofG(p) e 1/(p?)*~ 7 yields the following Euclid-
ean propagator in position space:

In our case this is the 3-dimensional Fourier transform of
1/|p|4, i.e.

1
Gsal Y)=(X(V2V2) Hy) == o= |x—y| (6

g(x;y)«= (6.2

provided |[x—y|<mp*. In an, admittedly somewhat naive,
Newtonian language this result would mean that a point mass
This is a standard result well known from the theory of criti- located aty=0 creates a gravitational potential which be-
cal phenomena, for instance. In the latter case it applies thaves asb(x)x|x| as long agx| is much smaller than the
large distances, while in quantum gravity we are interested iPlanck length. Probably this linear potential is related to a
the extreme short distance regime governed by the UV fixedimilar phenomenon shown by the renormalization group im-
point. However, as it stands E@.2) is not valid for the case proved Schwarzschild black hole which has been constructed
of interestd=4 andn=—2. For»= —2 the dressed propa- recently[13]. The radial geodesics in this spacetime, in a
gator isG(p) = 1/p* which, ind=4 dimensions, has the fol- fully relativistic treatment, experience a lindarepulsive
lowing representation in position space: “potential” close to the core of the black hole.

x—y|em2e

1 VIl. SUMMARY AND CONCLUSION

G(x;y)=— —In(u|x—y|). (6.3 _ _ _ _

8m On the formal side, the main result of this paper is the
construction of a new exact RG equation for the gravitational
Herew is an arbitrary constant with the dimension of a masseffective average action. It is formulated in terms of the com-
Usually in ordinary matter field theories on flat spacea 1/ ponent fields appearing in the TT decomposition of the met-
propagator is considered problematic because it is incompagic. It is defined on a sufficiently large class of background
ible with a positive spectral density. It is by no means cleargpacetimes so as to facilitate the projection of the RG flow
however, that the familiar notions of positivity, analyticity, onto very general truncated parameter spaces. It also helps in
and causality which are appropriate for Minkowski space arginding admissible IR cutoffs. A formalism of this kind is
of relevance to the situation under consideration. ler  mandatory for truncations including higher-derivative invari-
the “on shell” spacetimes of , have a large curvaturek®,  ants, matter fields, or a running gauge fixing, for instance. In

after all. a forthcoming papef24] we shall use this technology in
So let us assume that the improveme¢@tl) is indeed

correct and that in the fixed point regime, i.e. for distances————

much smaller than the Planck length, the effective graviton 6 the notation of Ref[13] the potential is linear ify=0. This
propagator has a logarithmic dependence on the distancgorresponds to the case:1/r which ignores the impact the back-
This result is quite remarkable because it implies a kind ofground curvature has on the cutoff identification, see (B®5) of
dimensional reduction from 4 to 2 dimensions. In fact, Eq.[13]. This is consistent with the fact that E@.3) is valid for a flat
(6.3 is precisely what one obtains from a standar@?1/ background.
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FIG. 11. (a) 8’ =Re#,, and(b) 8"=Im 6, as functions of for «=0 anda=1, using the cutoff type A with the family of exponential
shape function$3.8) inserted.

order to explore a more general truncation withRfnterm. For all cutoffs of type A and B the non-Gaussian fixed
In the present paper we analyzed the Einstein-Hilbert trunpoint is found to be UV attractive in both directions of the
cation with the new equation and a new cutoff. \-g plane. The linearized flow in its vicinity is always char-

After deriving the exact functional equation in Sec. Il, we acterized by a pair of complex conjugate critical exponents
discussed in Sec. lll a general strategy for constructing afeading to spiral-type trajectories which hit the fixed point
appropriate cutoff operator in the context of a class of trun{or k— 0. This is precisely the stability property needed for
cations which is still very general. In Sec. IV we specializedasymptoﬁC safety.
for the Einstein-Hilbert truncation and derived the nonpertur- By definition, universal quantities are scheme-, or cutoff-
bative B-functions which govern the RG evolution gf and  jndependent in an exact calculation. Truncations lead to a
Nk scheme dependence, however. We can use the degree of the

On the applied side, most of our results concern the nonscheme dependence as a measure for the reliability of the
Gaussian fixed point of tha-g system in 4 dimensions truncation. The critical exponents and, as we argued, the
which we analyzed in Sec. V. If this fixed point is actually productg, \, are universal quantities. The existence of fixed
present in the exact theory, its importance can hardly beoints is a universal feature of the RG flow, but not their
overestimated. Its existence would imply that in spite of itSprecise location in parameter space.
notorious perturbative nonrenormalizability quantum Ein-' The critical exponents were indeed found to be reasonably
stein gravity is most probably renormalizable at the nonperconstant for a wide range of shape parameters. The univer-
turbative level and thus qualifies as a fUndamembrO' Sa“ty properties og*)\* are much more impressive though
scopig quantum theory of gravity. Clearly the crucial \while we found a considerable scheme dependencg, of
question is whether the fixed point of the Einstein-Hilbertzng \, separately, their product is scheme independent at a
truncation is indeed genuine or merely a truncation artifact. gther amazing level of accuracy.

In order to get an impression of the reliability of the e pelieve that these results hardly can be a mathematical
Einstein-Hilbert truncation we investigated how its predic- accident, and we consider them a very nontrivial confirma-
tions chan_ge when we vary the cutof_f \{vhich is built into thetion of the hypothesis that the region of parameter space
RG equations. We used both the original cutoff of type A,\yhere the non-Gaussian fixed point is situated is well de-
formulated in terms oh,,,, and the new cutoff of type B scribed by the Einstein-Hilbert truncation. As a consequence,
which is natural in the TT approach; the cutoffs werethe fixed point should exist in the exact theory, too.
equipped with two different one-parameter families of shape  Apart from the renormalizability issue the nontrivial fixed
functions. point is also intriguing from a “phenomenological” point of

In 4 dimensions, we found that the Einstein-Hilbert trun-view_ Its relevance for the structure of black ho[es] and
cation leads to a non-Gaussian fixed point for all admissiblgnhe cosmology of the Planck efa4] has been pointed out
cutoffs, both of type A and B. The robustness of this predic-g|ready. Moreover, we saw in Sec. VI that the RG improve-
tion iS a nontriViaI I’esult Since in h|gher dimensions, f0r ment of the graviton propagator Suggests a k|nd Of dimen_
instance, where this truncation is less reliable, the fixed poingjonal reduction from 4 to 2 dimensions when spacetime is
is present for some cutoffs but absent for others. probed at sub-Planckian length scales.

Another consistency test successfully passed by the trun-
cation is that all cutoffs agree guositivevalues ofg, and

N\, - A negativeg, would probably be unacceptable for sta- ACKNOWLEDGMENTS

bility reasons, but there is no mechanism in the flow equation

which would exclude it on general grounds. In fagt,<O is We would like to thank C. Wetterich for many helpful
realized ford<2. discussions.
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APPENDIX A: THE TT DECOMPOSITION eigenvalues do not have zero as an accumulation point. Then

1. Pseudo-projectors for the TT decomposition D+ exists and the solution to EGA4) may be written as

In Sec. Il B we introduced the TT decomposition e,=(D " 15h),. (AB)
T L T ~.
hu=h,,+hg,+h) (A)  Here the operato maps tensors onto vectors according to
valid for arbitrary symmetric rank 2 tensors defined on either (~5h)u= _ SVAWthaB (A7)

closed or open, asymptotically flat Riemannidnspaces.
Hereh],, h., andh]', represent the transverse tracelessywith
longitudinal traceless and pure trace part, respectively, which
are mutually orthogonal. According to E¢R.9) these parts
may be expressed in terms of pure spin-2, spin-1 and spin-0
component fieldi;l;w %M o, ¢. In this subsection we show ) ) ) )
that the component fields can be obtained by applying certaiR€ing the operator that projects symmetric tensors onto their
operatorsll to the full field h,,. In the following these traceless part:
operators will be termed pseudo-projectors.

As a first step we express the longitudinal-transverse and ALS haﬁ_ v QWQ" (A9)
the pure trace part as d

1
( 8580+ 8585)— —gwg‘“ﬁ (A8)

N S E@ = Taking the covariant. div_erAgeEce qf the soluti@®), insert-
nv nv nev vEpT gony NC Ing Eq(A3), and USIHQDM§”—O ylelds
_ 1 — ~

h,TLru —g,qu p= 7”hTr (A2) DMS“:§D2&:DM(D_15h)“' (A10)

Here the operatok maps vectors onto longitudinal traceless This leads to the final result faf, andd in terms ofh,,,
tensors. Given a tensdr,, the equation i(¢),,,=h, o 1 — 1 _
solved by =2(D%) 'DXD *6h),=ENh,

s 1= &,=(D"Ysh),—D,(D?) D*(D Y3h),=(Qh),.
g,=&,+ EDMO' (A3) K reooH a (A11)

Hence the pseudo-projectolk which maph,,, onto the in-

where¢, is a transverse vector arida scalar. This solution dividual component fields are obtained as

is unique up to the addition of conformal Killing vectors

(CKV's), as discussed in Sec. Il B. We recover E2,9) by hT =(T-h)  =(Ah) . — (LD Y3h
inserting Eqs(A2), (A3) into Eq.(A1). Contrary toe, , the v= (rrh) 1, = (AR) = Juvs
scalar¢ is uniquely determined b, . B

Now taking the covariant diverggnce of HA\1) with Eq. &= Mrh),=(V- R'CQh)w
(AZ) inserted, and using the transversality requirement 3
D“hfwzo leads to o=II  h= \/(52)2+ ﬁﬁﬂﬁwﬁygh,

_ 1
(Dg),u,: - DV( h,tLV_ ag,u,v¢) (A4) (ﬁ:HTrhE@“thV . (A12)

Here we definedlI, ; and IT, | in terms of the redefined
fields ¢, ando which are related t@M ando by Eq.(2.21.
(De),= _EV(Lg)W_ (A5) Furthermore, the pseudo-projectors for the transverse de-
composition of arbitrary vector fields can be inferred from
As shown in Ref[20], D is a positive definite, Hermitian Egq. (A11). For C#=C"#+D#(—D?) 23 with D,C™*
operator mapping vectors onto vectors. Moreover, the equa=0 they are determined by
tion (De),=u, with an arbitrary given vectou, always

with the operatorD defined by

possesses solutioss, which are unique up to CKV'’s. How- n=1I,C=(-D? ¥D, C*,
ever, even if these CKV’s exist they cause no problems in
solving Eq.(A4) for &, , see Ref[20] for details. In order to C™=(II;C)*=C*-D* —D?D,C" (A13)

determine this solution we have to invé?t For this purpose

we assume thab (and any additional operator that needs to  Obviously I, + maps tensors onto vecto, ; andIl,

be inverted in the course of this discussitras a complete map tensors onto scalars, ablg maps vectors onto scalars.
set of orthogonal eigenfunctions and that the correspondinglence these operators cannot be projection operators in the

025013-30



ULTRAVIOLET FIXED POINT AND GENERALIZED . ..

usual sense. However, projection operat®nmnapping arbi-
trary h,,, onto h,, orh}\,, or arbitraryz,, onto their longi-
tudinal component can be constructed from tH&@i. Since

the II's map vectors and symmetric tensors onto their com-

PHYSICAL REVIEW D65 025013

K#=K&+D#(—D?) Y%K,

ponent fields they generate a kind of projection in a wider

sense of the word. Therefore we call tH&s pseudo-
projectors. Contrary tdl, 1, II, | , II;, andIl, , the opera-

tors Il and Il are genuine projection operators mapping

symmetric tensors and vectors onto th®i and T compo-
nent, respectively.

2. Construction of the cutoff and the source terms

In the present paper we need a formulation FQrwhich

allows for a description in terms of the fundamental as wel
as the component fields. The translation between the two
descriptions can be achieved by using the pseudo-projectors
for the construction of the cutoff and for an appropriate de-

composition of the source terms.

K#=K&+D#(—D?) V%K, (A16)
with D ,K4 =D ,K£:=0 yields
(KO)+(KC= 2 (Kpp+ 2 (K.
T ol
ye{C',n} ye{C' 7}
(A17)

The decomposition ofJ,h) is more involved. In analogy

IWith h,, in Eq. (A1) we decompose the sourdg, into its

grthogonal parts:

Starting from the definition of the cutoff in terms of the According to Eqs(A2), (A3) we write JILW as

fundamental fields, Eq2.25, we choose the cutoff opera-
torsR{™ andR " as

>

{.0efh T E0,¢)

> X

9,e{CT.7} 9pe{CT. 7}

_ T
R Y= Il él(Rk) AL

T _
Ry 15 (R, 0, 115,

(Al14)

Here((Rk)glﬁz)gle{aﬂ,ﬁzE{CT,,,} represents a block of the
more general matrix operat¢(R,) ¢1¢2)¢1v Upe{CT7CT ) for
which (Ry),,,,=0 if both 1€{CT, 9} andy, e {CT, 7}, or

if both ¢,e{C", 77} and y,e{C",77}. The operators
(Ry) (1l and (Ry) g0, Are required to satisfy the Hermiticity

i _ i _ T
conditions (Rk)(z{l—(Rk)% and Ozk)¢2¢l——(Rk)¢l¢2.
Furthermore, we sl r=Il;r, =1l 1, II,=II_, 11,
=Ty, Ngr=Tcr=I;, TL=IL =M, andIT}, II}, de-
note the Hermitian conjugates bf,, II,,. Hence the opera-
tors Il appearing in Eq(A14) can be inferred from Egs.
(A12), (A13).
Inserting Eq.(A14) into Eq. (2.25 leads to

ASh,C,C:g]
1

>

2 {1.0ehT £,0,0}

+ 2 X

91{CT 7} 9,e{CT, 7}

<H§lh’(Rk)§l§2H§2 h>

(TT5,C,(Ri)3,9,1M,5,C) (A15)

which can be rewritten in terms of the component fields. In

fact, applying Eqs(A12) and (A13) and using the relation
between the matrix operatorszﬁ)glﬁ2 and (Ry) A stated
above, we end up with Eq2.26).

Let us now consider the source terms in E227). De-
composing the sources for the ghost fields according to

_ 1T L T
Ju=3,,13,, 13, (A18)
L _ qLT LL
J;LV_‘]MV+JMV (Alg)
with
J}'=(Le),,=D,0,+D,0
uv pr— Huy v o
1 — 1
Ju»=>5(LDv),,=D,D,v— 1g,,D%v.
(A20)

Analogous to Eq(A2), the vector® ,+ D ,v/2 with D, 0#
=0 is unique up to CKV’s.

According to Eq(2.14) the inner productJ,h) may now
be decomposed as follows:

(3,hy=(IT,ATY+ (I ATy +(I5 hEEY + (3T h T,

(A21)
It is important to note that, for arbitrary nonvanishing
hy,. hil, hit, hl, we have

(I7h"),,#0, (I 7h"T),#0, II  h“"#0, IIhT"#0.
(A22)

This implies that the operatol, II, 1, Il , Il;, are
invertible if their action is restricted to fields of the tybéy,
h.. hi5, hl', respectively. Therefore the inner product of

Eqg. (A21) may be written as
(3,h)y =3 M7 7 ") + (35 T 7 0 £hT)
G | i | T BT VAR | ety | B

= X

= (A23)
{elhT £0,4}

(3.0
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Here we used EqA12) and introduced the source compo- Then combining the results of Eq§Al7) and (A23) we
nents eventually arrive at Eq(2.28).

hT = ((HTT )T\]T),U.V_ \]T,U,V
APPENDIX B: EVALUATING THE RHS OF THE

T L = - TRUNCATED FLOW EQUATION
((HL JY#=2+-D2—Ric 6#

In this section we present several rather lengthy calcula-
tions needed for the discussion of the Einstein-Hilbert trun-
cation in Sec. IV. In the following, all calculations are per-
1 formed Wit_h 9,.»=0,, Whereg,,, is assumed to <_:orrespond

tz ol (D22 d — S to a spherical background and the bars are omitted from the

Jo=(II H13-=2( (D*?+ D D, metric, the curvature and the operators.

N
D,+4(D"R)|v

. 1 —
+2(—D2—Ric)—1’2[(agWR—Rw

<D R“50E+ d‘Tl 1. Computation of the inverse operators(I'(?+R,) !

and (S +Ry)

\/ — » In Sec. IV we derived explicit expressions for the kinetic
(B3 D JR¥'D,v, operatord (V=T"{?)+ R, andS{y)=S{)+ Ry . They may be
represented as matrix differential operators acting on the col-
umn vectors k', &, ¢q,0,¢4,)" and ©',v',0,0)", respec-
tively. In this representation they take the form

=

3= )T =gy (A24)

(T®[g.9Dxrar 0 0 Ouvs
FOg.g1= 0 TPlg.9hz o0 Oz o1
0 0 (TP19.9D355, O1x2
02x1 O2x1 02x1 Ok
and
0 (S§19.9D)577 0 0
20,01 (S19.91), 0 0 0 .
0 0 0 (S%)09.9D)¢0
0 0 (S519.9) 00 0
where

TPlo.9)ee TPla.9D)s7
Q= =2 - . (B3)
(TN9.9Ds,s (TP19.9D3s

The entries of these matrices are given in Egl16). On the RHS of the flow equatiof3.3) these operators appear in terms

of their inverses, which are determined in the following. At this point it is important to note that, because of the maximally
symmetric background, all covariant derivatives contained in the oper@tysand (B2) appear as covariant Laplacians and
that the various entries areindependent otherwise. This implies that these entries@renutingdifferential operators which
allows for particularly simple manipulations. Therefore it is not difficult to verify that the inverse operators assume the form

[(TP[g.9Dm] 0 0 Ourr

~ 0 [(TPlg,9])z ]! 0 O1x2
(IPlg.gD "= = L (B4)

0 0 [(TP9.9D4,5,] " Owxz

Opx1 0251 0251 Q*

and
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0 [(SHra.9D)gm, 71 0 0
[(S2)0g,9]),m7] " 0 0 0
E2rg.gp = (B5)
0 0 0 [(SR9.9D)g0] *
0 0 [(SF9.9D) 00l * 0
with
o [FPTaa)(FPTa g (0] ] 1( (TP19.9D5.5, —(f£2)[g,g])¢lg) .
K = 0.91)5o 9.9 7171_ g.9 _;7 ~ - . B
k k k b0 k ¢q _(F(kZ)[g’g])gl? (F(kZ)[grg])E

Inserting these expressions into the RHS of the flow equd8®) leads to

1
SR=5T| > [T[0.9]+Rle)) ] a(RdaD

1 (2) T2
+t5 T {(TP0.0)5(TPLa.9D) 5,5,
ce{h’ & o}

~(TP19.9D5 3 HTP19,91+ RGNt R 3,9, + (TE19,91+ R G 3,5, 0( RULGD

—2(TP[9,9]+ RLAD 57 RLAD 5 41-Tr | 2 [(S§I0.91+ RLgD ] *a(RLADyy|  (BD)

yeloT 0}

where we used the relations

P 1 8Sy

Va(y) sv™(y) Vg(x) 8v,(x)

(SE)m, D"y = = (S, 757),y" =

o 1 58
(S)e0)y=— (S 0o)y = @ 520) o0 5000 (B9)

The trace of thep, term appearing in Eq(B7) may be easily evaluated since only the scalar eigenmddesnd T
contribute. We obtain

1
ST C(TPL0,01+ RiLD gy0] 2RI gy,

1 L Do -
=72 2, | IXVIOTMOOPIt-Asi(d,a) Rt Bsa(d a)hid 0l Zk RO = D) IT™(x)
é H Zyk®RO(A(d,0)/k?)] .
T 2Zy A(d,0)+K2RO(A(d,0)/k?) + Agy(d, @) R+ By (d, )Ny |

HereA,(d,0) is the eigenvalue with respect toD? corresponding td'™. Inserting also the remaining operators given in Eq.
(4.16 into Eq.(B7) finally leads to Eq(4.17).

2. Evaluation of the traces see e.g. Ref$35]. For our purposes we need the correspond-

ing expansions for operators acting on constrained fields,

In this part of the appendix we evaluate the traces appeai-e. fields satisfying appropriate transversality conditions.

ing in Eq. (4.20 by applying the asymptotic heat kernel In Appendix E these expansions are derived in detall

expansion. In its original form it has often been used to comfor LaplaciansD? acting on symmetric transverse traceless
pute traces of operators acting on unconstrained fieldgensors,
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on transverse vectors and on scalars, with the following re- Trom[W(— D?)]
sults:

= (47T)d/2( (d— 1)Qd/2[W]f d /g

e D2
Trasmyle” (57907

N (d+2)(d—3)+654,

dr2 1 ! Q 3 [VV]
=<47T(S'—+i8) fddx\/a[z(d—Z)(dJrl) 6d vt
(d+1)(d+2)(d—5+3845) . , xfddxng+O(r<d‘2)], (B15)
- 120d—1) (is—e)R+O(R%) ¢,
(810 Trio[W(—D?)]
Trmle” (57907 =(4'rr)_d/2( Qual W] j dx/g

d/i2 1
(477 (s+ig) fddxf +de/2—1[W]f ddX\/§R+O(r<d_2)]-
y d—1—(d+2)(dgd3)+66d’2(is—e)R+O(RZ)], (B16)

(B11) Here the set of functional®,[ W] is defined as

—(is—¢)D? o
Troyle ] Qn[W]EIimf ds(—is+e) "W(s).  (B1?)
. e\, 0Y ==

|
:(47T(S+i8)

dr2
fddx([ (is— 8)R+(9(R2)]
By virtue of the Mellin transformation we may now reex-
(B12) pressQ, in terms of W so that

The next step is to consider an arbitrary functd{z)
with a Fourier transform//(s). For such functiondV, we

1 ©
may express the trace of the operad(— D?) that results Qn[W]= WJ dz 27 'W(z), n>0;
from replacing the argument oV with —D? in terms of 0
W(s):
(=™ (= d™W(z)
. _ . Q [W] f dZ i“+“_1—,
TIW(—D?)]= Iimj ds W(s)Tr[ e~ (is=2)P*], " I'(m+n) dz"
e\,0Y =%
(B13) n<0, m>—n, me|N arbitrary. (B18)
We obtain the asymptotic expansion of W(—D?)] by in-  |n particular we obtairQo[ W]=W(0).
serting the heat kernel expansion fof &r15~#)°"] into Eq. Let us now consider the case where isolated eigenvalues
(B13). For Laplacians acting on the constrained fields conhave to be excluded from [[W(—D?)]. According to Ap-
sidered here they read as follows: pendix E such traces can be expressed as the difference be-
5 tween the complete trace [W(—D?)] and a term of the
Tras2)[W(—D7)] form =y ... ,1D1(d,S)W(A(d,s)). Herely, ... I, refer

1 to the modes to be omitted and(d,s) andD,(d,s) denote
=(47T)dlz(z(d—Z)(dJrl)Qd/z[W]f d’/g the corresponding eigenvalues oD? and their degrees of
degeneracy, respectively. Sineg(d,s)«R we may view
(d+1)(d+2)(d—5+38,,) W(A(d,s)) as a function oR. As outlined in Sec. IV such a
12(d—1) Quap—1[ W] function contributes to the evolution &, and\, only for
d=2, with the contribution given byV(0). Using the ex-
plicit expressions foD,(d,s) (see Table | in Appendix D
X j d%gR+ O(r<d2)], B14) @nd applying Eq.(4.7) we therefore obtain for the traces
relevant to the flow equation
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/ 2 2 3942 2 <d-2
Tran[W(=D?)]=Trup[W(=D?)]= 2—=W(0) | d’x\gR+O(r=¢"?),

" 5d,2 _
TrigW(— Dz)]:Tr(O)[W(_ D?)]- ZW(O)J dZX\/aR‘*‘ O(r=d-2),
’ 5d,2 _
Tr(g)[ W(—D?)]=Tr(o)[ W(— DZ)]—EW(O)f d2x\JgR+ O(r<9-2), (B19)
where the primes have to be interpreted as in Sec. IV.

The next step is to insert the expansions of the tracesStR), Eq.(4.20, and to compare the coefficients of the operators
fd%+/g and fd9%+/gR with those on the LHS, Eq4.5). This leads to the following differential equations:

_ 1 _ _
f9t(ZNk)\k):(4K2)_1(477)_d/2[§d(d— 1) Qaral (Ag—2N) ~*N]+d Quual (Ag—2ah i) " *N]—2d Qi A "Nol |,

(B20)
HZni=— <2K2>1<4w)d’2[ C1(d)Qarz- 1l (Ao— 2N 1) ~*N+¢2(d)Quiz— [ (Ag—2aN,) V]

+¢5(d)Qq/al (Ao =270 2N+ Ca(d, @) Qqral (Ao —2aN) “2N]=2¢5(d) Quro-1[ A "No]

+C5(d) Qual A 2No] +384.2 zzit:(igﬂ?ﬁ) - 2ZNT((kZZN—kk223¢fk | } . (B21)

Here the coefficients; are defined as in Eq4.24).
In Egs.(B20), (B21), the variousQ, may now be expressed in terms of the cutoff-dependent threshold fundtipasd
®P introduced in Eq(4.23. Using the relations

1 ~
Qul (Ag+€) P =KEO P DR(C/K?) — 5 (KO P DB c/K?)

Q[ (Ag+¢) PNl =K*"PT VD R(c/k?) (B22

we arrive at the differential equatiori4.21) and(4.22.

At this stage the following point should be mentioned. In order to achieve that the integrals(iB1&Zgactually converge
we have to demand th&®)(y) rapidly decreases as— *+ . However, since from now on its form for<0 does not play
a role any more we identifiR(®)(y) with its part for nonnegative arguments and assume RY3(y) is a smooth function
defined only fory=0 and endowed with the properties stated in Sec. Il B.

APPENDIX C: FLOW EQUATIONS IN FOUR DIMENSIONS

In this section we compare our results to those derived in [Ré&f.for thed=4 dimensional case. Insertimg=4 into Eq.
(4.17 we obtain for the RHSS, of the evolution equation
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1 0Py 1_, 2Py 1_, 0Py 1_, | &Py
Pt R—2)\, P+ R—2a\, Pt ——R—2a\, ko ohk
I 3 4 ] 2
L r
1 3P (A(4,0) 3Py .| 9Pk
+§|:EO Di(4,0 — |~ Tan| — x| To| — g
I Pi(A(4,0)— 3a—1)\k Py— Z_ P.— >
atZNk 1 Pk+ D2 , Pk+ D2
Zui | 21T 2 |T2"an 2a—1 —
Pk+ §R_2)\k Pk+ R—2a)\k
1 —
1 P (A(4,0)—A(4,0 1_, — a—1 _N e
+5 2| Di(40 e |~ 22T | [P 2| Pt —5—R—2ak,
Pr(A(4,0)— 3a_1)\k
a1 N 2 2 R
1| (1=3a) (3= a)P+ ——R|+4a(a+ | (P+D?)=3(1-a) VP Pk—3
R , R
x| Py Pk—g—\/ﬁf -D*- 3 (CY

with Py (A(4,0)=A,(4,0)+ k’RO(A,(4,0)/k?). Our result
(C1) agrees with Eq(3.22 of Ref.[21], up to a few(typo-
graphical errors occurring in Eq.3.22). To be more precise,
the prime at the Tgp-term in lines 1 and 4 of E(CY), the
factor D|(4,0) appearing in the first term of lines 3 and 5,

— _ _ 1 5.
Ihk= Ky (4) 2( k4[EQ%+ ﬂkEQ%}

and the factor 1/2 contained in the temR in line 7 are

mistakenly left out in the corresponding equation of Ref.

[21].

— 18, (17 X
TMKT = S0t | 5T ds
1, (47 .
+ | = gUit| 54T @ [A3 ]| [+ O (C

Expanding the flow equations fa\, and Zy,, Egs.

(4.21) and (4.22, with respect to\,, using the relation
ONk=Znrd(Znih) + Men(K) and setting, as ifi2d],

kk=2K"Znk, Zxk=Znk, m=dInZ=—nn(K),

P=2dP(0), qP=P"(0)
leads to

13 55
penmtomy ] BB

1., (25
gql-f' 2—4+a

+ 7 3|1+ Oy,

In this form the flow equations for the couplings are suitable
for a comparison with the corresponding results in Egs.
(4.6—(4.9 of Ref.[21]. Apart from the contributions from
matter fields, which are also considered there, the results
differ by a factor 60/24 in front of thq% terms. Presumably,
this deviation can be explained by a wrong sign introduced
in [21] for a certain term. This term is a contribution from
the ghosts produced by heat kernel expanding the last two
terms in line 3 of Eq(C1), and it carries the prefactor 30/24.
We may conclude that, apart from these corrections, our re-
sults agree with those if21], which is as it should be since
the same cutoff is used.

(C2

APPENDIX D: TENSOR SPHERICAL HARMONICS

In this section we introduce the spherical harmoﬁiﬁ%,
T'Mm andT'™ for symmetric transverse tracele$T) tensors

u
h,,, transverse(T) vectors £,, and scalars¢ on a

(C3
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TABLE |. Eigenvalues of— D2 and their degeneracy on tldesphere.

Eigenfunction Spirs EigenvalueA,(d,s) DegeneracyD,(d,s)
TLf],(x) 2 w_ (d+21)(d—=2)(I+d)(I-1)(2+d—1)(I+d—3)! =23, ...
d(d-1) 2(d=D)!1(1+21)!
) 1 I(1+d—1)—1_— I(1+d—1)(21+d—1)(1+d—3)! =12 ..
d(d—1) (d=2)1(1+1)!
Tm(x) 0 I(1+d—1)— (2+d-1)(1+d—2)! =01 ...
d(d—1) [1(d—1)!
d-dimensional spherical backgrourf. These harmonics *  Dy(d,0)
form complete sets of orthogonal eigenfunctions with respect Pd(X)= E 2 AimT™(X). (D3)
=0 m=1

to the covariant Laplacians acting &1? tensorsT vectors
and scalars, i.e. they satisfy

2T'm(x) A(d, 2)T'm(x)
D2T!(x)=A(d, D T(x),

D2T'M(x)=A,(d,0)T'™(x) (D1)

and, after proper normalization,

5|k5mn=f ddX\/a_(l(stZ))“Vp”Tngz
:f %G1 T T
(D2)

= f d¥xgT'mTe™,

Here  (Lesm)” ™ =(d~ 2)/(2d)(g"*"g" +g*7g™") and

Here the coefficient§h }, {£m} and{¢,} are countably
|nf|n|te sets of constants that are uniquely determined by
W, ¢, and ¢. Equatlon(DB) may now be used to expand

also any symmetric nofi? tensor and nontransverse vector
in terms of spherical harmonics since they may be expressed
in terms of ST? tensors,T vectors and scalars by using the
decompositiong2.9), (2.18), see e.g[36—-39.

In this context it is important to note that tte,(d,1)
=d(d+1)/2 modesT ;" and theD;(d,0)=d+1 modesT*"
satisfy the Killing equation(2.11) and the scalar equation
(2.12), respectively, and thaT®!=const. As discussed in
Sec. I B, arbitrary symmetric rank 2 tensors receive no con-
tribution from these modes. In the case of arbitrary vectors it
is the constant scalar mode that does not contribute. Such
modes have no physical meaning and have to be omitted
therefore.

APPENDIX E: HEAT KERNEL COEFFICIENTS FOR
DIFFERENTIALLY CONSTRAINED FIELDS

(1am)*"=(d—1)/d g*” are the unit matrices in the spaces
of ST? tensors and transverse vectors, respectively. In Eq. |n this part of the appendix we supply the tools necessary
(D1) the A(d,s)’s denote the eigenvalues with respect to for the evaluation of functional traces and we derive the heat
—D? wheres refers to the spin of the field under consider- kernel expansions for Laplacians acting on differentially
ation andl takes the values,s+1,s+2,....Furthermore, constrained fields.

the second upper index mlnmv Tlum and T'™, m, takes the As a first step we consider a functional trace of the form
degeneracy of the eigenvalues into account. It assumes val-

ues from one td,(d,s) with D|(d,s) the degree of degen-

eracy. In Ref.[3€|3§ ex)plicit exléres)sions fogr]A,(d,s) a%d Tr(S[C])[f(_DZ)]:f ddx\/§<x|f(_D2)|X>u1---usﬁl
D,(d,s) are derived which can be found in Table I. The

eigenvalues are expressed in terms of the curvature scalar :f AOX[ (F(—D2))#a- K1 s
R=d(d—1)/r? of the sphere with radius In Ref.[36] it is

Im Im
also shown that the spherical harmon‘lélg}, T, andT X(l(s[C]))vl...vS,ul...uséd(x_y)]x:y-

span the spaces &T? tensorsT vectors and scalars so that
we may expand arbitrary functlorhiv, ¢, and ¢ according
to

(ED)

Here f is an arbitrary smooth function whose argument is
replaced with the covariant Laplacian defined on the space of
spins fields with a possible symmetry and/or transversality
constraintC, as indicated by the subscrips[(C]) at the
trace. Note thaf inherits the matrix structure from the cor-
responding Laplacian. Furthermorggc;y denotes the unit
matrix in the space of independent field components. Given a

= Dy(d2)

(x)EEhT'm,

© D(d1)

§#<x>=|=21 m; EmT(X),
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closed Riemannian manifold {1,g) we now assume that ay(X;Q)=ap=1,
{U',j1 ...u(X¥)} is a complete set of orthonormal functions on
(M,g) spanning the space of fields under consideration. a(x;Q)=P,

Then by making use of the completeness relation

1
(Lgen) 89(x—y) a4(X;Q):ﬁ)(R’uvaBRﬂvaﬁ_ R,,R¥+D?R)1
(SICI) vy v vgpag g \/ﬁ

1., 1 1,

L +5P?+ =R, R*"+~D?P. (E6)
_ k k
—§§ Uk L 00UK L (y)

2 12°7» 6

Here 1 is the unit matrix in the space of field components,
+US L 00Uk L () (E2  and

Eqg. (ED can be written as

Treplf(—=D?)]

PEQ+%R1. (E7)

Furthermore,R ,, is the curvature operator defined as the
:f dix g Uk (X) commutator
o TR M

R,,~-1b,,D,J]=D,D,-D,D,. ES8
X(f(_DZ)),u.l...,u.svl...usutln.vs(x)' (E3) wv [ s ] M " ( )
Inserting the asymptotic expansi¢Bgb5) into Eq.(E1) we
Clearly if {Uil_._ﬂs(x)} is taken to be a complete set of obtain for the functional trace of the heat kernel
orthonormal eigenfunctions with respect to the covariant La-

; 21 1k X 1k _
placian such that—D UMl._.Ms(x)—AkUul_._Ms(x) Eqg. Tr[elt(D2+Q)]=<

a2
e boie 4 fddx Jo{trag—ittray(x; Q)
oils down to

i
4t
—t2tra,(x;Q)+ O(t)} (E9)
_D2)1= A
Trsreplf(=D)] ; FAW- ®)  \here tr is the matrix trace with respect to the tensor or
spinor indices.

In general the evaluation of such traces is a formidable Let us have a closer look at the coefficieats For arbi-
task and one has to resort to approximations. The most farary scalars¢, R,, vanishes sincd ,D,¢=D,D,¢. In
miliar such approximation is the “early time” expansion of the case of arbitrary spis-fields FM,__MS(X) with integer
the diagonal heat kerneék|e*“D2|x> for [t| —0. [We write  spins=1 we obtain
t=s+ie with Im(t)=&>0.] It has been discussed in many
reference$35]: s
a2 Raﬁ F,u,l .. '#S(X):izl Raﬁp,i'u F,u,l PRy ANy 1) I .,LLS(X)'

{ap(x;Q) —itay(x;Q) (E10

Hence, for scalars,a, receives no contribution from
R.sR «B while for fields with nonzero spin it amounts to a
nonvanishing contribution with adfx d®)-matrix structure.
For arbitrary vectors and rank-2 tensors we find, respectively,

. |
—it(D2+Q) |y = |
(xle %) (m

—ta,(x;Q)+0O(t%)}. (E5

Here Q is an arbitrary smooth matrix potential and thgs
are tensor polynomials proportional to thé&2-th power of
the curvature and endowed with the same matrix structure as
D2+ Q. They depend on the space of fields under consider-
ation. For operator®?+ Q acting on unconstrained fields,
i.e. fields with independent components, the first three coef- (RagR “?) uvpe=—RapyuR*7, 00e
ficients take the forfh ~Rup R, g, +2R

(RaﬁR a'B)/J,V: -R RD(B}’V'

aByu

R*8

vo*

(E11)

aByv aBup

"The restriction to closed Riemannian manifolds is done for the . . . .
sake of notational simplicity only. In principle, the results extend to FOM Now on we restrict our considerations to matrix po-

noncompact asymptotically flat Riemannian manifolds. tentialsQ of the formQ=qR1) with q a real constant, and
8n the context of the Einstein-Hilbert truncation performed in the W& assume that the metric corresponds to a maximally sym-

present paper we only need the coefficieagsr® and a,ocr ~2.  metric background®. Settinga,(x;qR1(s) =as(q) we ob-
However, for truncations containing invariants quadratic in the curdain ag(q)=ag= 1 anda,(q)=(1+6q)/6R1s, indepen-
vature we shall also neal,cr ~4, see[24]. dently of the spirs of the field. Here the dependence ®is
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totally encrypted in the unit matrig, . This is not the case for scalars, vectors and rank-2 tensors, respectively, with

for the CoefﬁCierﬂa4. Itis given by 1(0):11 (1(1)),11.1):9;.“/ and (1(2)),U.Vp(r: 9up9vo -
Up to this point we considered only unconstrained fields.
5d2—7d+6 For fields subject to constraints like transverse vectgrs
a,(q)= 360l drg=p 6%+ 18(112} Loy R%, and ST? tensorsh),, we cannot directly apply Eq$E6) or
[ d(d-1) (E12) (E13, (E14). However, the heat kernel coefficients féy,
and h/Tw can be computed from those of the unconstrained
i fields using the decomposition®.18, (2.9) for arbitrary
1 |5d®—7d2+6d—60 ) vectorse , and arbitrary symmetric tensors, , .
[aa(D)]ur= 355 2(d—1) +600+ 180 From Appendix D we can infer that the sets of orthonor-
. mal —D? eigenfunctions
x(l(l)),u,v R21 (El3)
{T"me{1,...D(dD}, 1=1,2,..}
1 |5d3-7d2+6d—120 ) |
[a4(q)]p.1/p0':3_60 dz(d—l) +6(X]+18m U{(A|(d,0))_l/2D’uTm|m
1 e{l,...D(d,0},1=12,..}
X(1 oo RE+ —————
x(gp.vgpo'_g,u.agvp)Rz (El4) and

{TihIme{1,...Dy(d,2)}, 1=23,..}

—-1/2
U[(Z(A,(d,l)— E)) (D, T"+D,T\"|me{l, ... Di(d,D}1=23,.. }

d—1 e 1
U[(A|(d,0)(TA|(d,O)—a)) (D#D,,— agWDz)T'm me{1,...D|(d,0},1=23,.. ]
1 Im
U ﬁgWT me{l,...Di(d,0)}, 1=01,... (E16

span the spaces all vectorse,, and ofall symmetric ten- T, ~it(D2+qR)
- A : resle ]

sorsh,,, respectively. Here thd'™'s are the normalized

spherical harmonics of ED2).

Now we insert these eigenfunctions into the trace formula = Tr(ZSTz)[e*it(DZWR)]
(E3) with f taken to be an exponential. Then we use the o,
commutation relations of Appendix G in order to pull the +Trm[e MO (d+Ddd-DI+aR)]
D,’s from the TT decomposition through the exponentials 024 [20(d- 1)+ qIR)
and to combine them to Laplacians. This leads to the follow- +Tryle MO [2Ad=1)+alR]

ing decomposition for the traced heat kernels of the uncon-
strained vectors and symmetric tensors in terms of the heat
kernels for the differentially constrained fields: —(d+1) e W@-DraR

+Trle” it(D2+qR)] _ e it@Id-1)+q)R

d(d+1)
T3

Tr(l)[e—it(02+q R)] —it/[d(d—1)]+ )R (E18

The last term of Eq(E17) and the last three terms of Eq.
=Tr(lT)[e“‘(D2+q R)]+Tr(o)[e—it(Dz+[(dq+1)/d]R)] (E19 arise from those spherical harmonid™ and T)"
which are not contained in the sets of eigenfuncti$b)
and (E16). To be more precise, the last term in E&17)
— e H(da+r /IR (E1?  comes from the constant eigenmatié! of the operatoiD?
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+(dg+1)/d R Furthermore, the last but second and the last d+1

but first term in Eq.(E18 take account of the eigenmodes tr 34(Q)|(25T2)=tf a4(q)|(25)—tr ay m+Q)
TO1=const andT*™ of the operatoD?+ (2/(d—1)+q)R, an
respectively. As discussed in Sec. Il B thié™s satisfy the )

scalar equatiori2.12) and are therefore in a one-to-one cor- —tra, erq —tr a4(q)|(0)
respondence with the PCKV’s &". The last term in Eq. (0)

(E18 comes from the eigenmodé’i‘m of the operatoD? 7 2
+((d+1)/(d(d—1))+Qq)R, which are the KV's ofs". + 842 4+ 59 R2+ 3 %44 R2. (E21)

These subtraction terms compensate for the corresponding
unphysical contributions contained in tbempletetraces for
the constrained fields on the RHS of E¢E17), (E18). This
can be seen as follows. Consider the functional trace of E
(E3). Omitting the contributions from the modes

The terms proportional to thé&'s originate from the subtrac-
tion terms on the RHS of Eq$E17), (E18) which are due to

%he unphysical eigenmodes. These terms have an expansion
of the form =7 _ jb,r ~2™, while the terms of the heat ker-

Uy, - - . .Ug . we denote the functional trace involving only nel expansion are of the forfdx g tra or=1. Compar-
. . . ! 2 n -

the remaining modes with {fe;)[f(—D)]. Then EQ-(E4) ing powers ofRx1/r2, only under the condition-2m=d

implies the following relation bet\éveen (Ifc'])[f(_D )] —n a given termb,,r 2™ contributes to d\/gtra,.

and thecompletetrace Tygicy)[f(—D)]: Hence forn, m fixed, the Seeley coefficients ay, for the

differentially constrained fields receive a contribution from a
B term of the formb,,r ~2™/(fd%+/g) at most for one specific
Tr(’s'[c']ﬁ[f(—D2)]=Tr(S[C])[f(—D2)]—k kE ; f(Ay). value Qf the dimensionalitg. In particqlar, the subtragtion
ek, - nf terms in Eqs(E17), (E18 do not contribute to ta,, while
(E19 tra, and tra, on the LHS of Eqs(E20), (E21) receive con-
tributions from terms of the forndy ,by/r? and 8y ,b, /1%,
This rule indeed yields the last term in E&17) and the last 944 bo/r%, respectively.
three terms in EQ(E1S). The matrix traces on the RHS of Eq&20), (E21) can
As the next step we insert the asymptotic expangie®)  Now be evaluated by using the heat kernel coefficients for the
into both sides of Eqs(E17) and (E18 and compare the (differentially) unconstrained fields. For scalars we have
coefficients ofR. This leads to the following Seeley coeffi- tra(d)=an(a)(1o)=1). For vectors the traces are evalu-

cients for the constrained fields: ated according to &,(q)=g*"Tay(q)],, so that we obtain
from Egs.(E6), (E13

trag| 11y =1r aol (1)~ tr ol 0y » trag|,y=d
1+6q
dg+1 1 tray(q)|()= g dR
tray(q)|am=trax(q)|q)—tray d + §5d,2R,
(0)
. 1 [5d®-7d*+ 6d—60+60d
ras(@l)= 355 dd—1) q
dg+1
tra (q)|am=tras(q)|q)—tray d
(0) +180dg?| R2. (E22
1
2 2
+70021+20) R%+ 57 844 R%, In order to determine t, for symmetric tensor fields we
have to symmetrize the heat kernel for unconstrained rank-2
(E20  tensors according to
—is(D2+qR) vpo 1 —is(D2+qR) vpo
tr ag| (2s12)=1r a|(25) — tr @o| (11) — 2trag| (o) (x|e |x)rre |(25):Z{(X|e [X)“7%7 2

4 <X| e*is(D2+qR)|X>V,up0'| @

d+1
tray(q)|esm =trax(q)| g —traz —+CI) _is(D2 o
( ) (29) d(d—1) an +<x|e is(D +qR)|X>u p|(2)

2 +{x e*iS(DZJqu) x)vrop
—trag gy +a|| —traxdlp (] ) |((é);3)
(0)
n 25 R before we can apply EQE9) with Egs.(E6) and(E14). This
d2 R
2" leads to
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TABLE Il. Heat kernel coefficients.

Field tr ag tr a,(q) tr a,(q)
(d+1)(d+2)(d—5+3 8y2) (d+1)(5d*—22d3—83d%— 3920 — 228+ 14405, ,+ 32403 4) =2
ST? (d—2)(d+1) 12(d—1) 720d(d—1)2
tensor 2 (d—2)(d+1) (d+1)(d+2)(d—5+3 8,.) (d—2)(d+1)
+ R 2 R2.1 42 2
q 2 +q 120d-1) R“+q 7 R

5d%—12d3— 47d2— 186d + 180+ 3608, ,+ 7208
(d+2)(d—3)+6 55, d.2 442

\-I/-ector d-1 6d R 360d%(d—1)
+q(d—1)R +q(d+2)(d—3)+6 6d'2R2+q2d_1R2
6d 2
502—7d+6 . .

scalar 1 Sl Sead R iR R

! 1 [5d*—2d®—d2—114d - 240

[an(q)],u.vp(r|(28):Z([an(q)],u.vp(r|(2)+[an(q)]v,up(r|(2) tr a4(q)|(25): ﬁ) d(d_l)
+[an(Q)]MV(Tp|(2)+[an(q)]vp,opl(Z)) +60CI(1+3q)d(d+1) R2. (E25)

(E24) Finally we insert the matrix traces Eq&22), (E25 and

tray|(o)=an/(0) into Egs. (E20), (E21) and determine the
heat kernel coefficients for transverse vectors &Td ten-
sors. The results are summarized in Table II.

Let us add a final remark concerning the applicability of
the asymptotic expansiofiEs). Since it is valid only in the

1 limit |t|—O0 it is clear that it cannot be integrated over

tr ol (25)= >d(d+1) Re(t)=s or Im(t) = & term by term, in general. However, this
is possible if the heat kernel is integrated against a “test”
function which suppresses large valuessobr . This is
indeed the case for our application of the asymptotic expan-
sion presented in Appendix B 2.

and in particular {2s)) yvpo= (99906 T 9uc9.,)/2. FoOr ten-
sors the matrix traces are computed according ta, tr
=0""9"[an(q)]..ps Which yields

1+6q
tray(q)| g = Td((ﬂ' DR

APPENDIX F: VARIOUS COEFFICIENTS

In this appendix we define the coefficient functions which appear in @qs3—(4.20 of Sec. IV C and in Eq(B9) of
Appendix B 1:

d(d—3)+4 a(d—-2)—-1 a(d—4)
AT(d)EW, Av(d.a)ET, ASl(d'a)EZa(d—l)—(d—Z)'
a(d—2)—2 d—4 a(d—2)-2

(d—2)(d+2)a2+(d2—lOd+8)a+2(d—2)

ASSE ’

d?a
2ad 2ad
Bsi(d,a)= Bso(d,a)=

S 2a(d—1)—(d—2)’ a(d—2)—2(d—1)’
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 2a(d-1)-(d-2) d-2 d-12(d-1)-a(d-2)

CSl(d7a):_4(d_l)_2a(d_2) d—1’ CSZ( !a): d2 a ’
(d-2)(a—1) d-2

Cos(d, )= Eq(d,a)=— ——[2a(d—1)—(d—2)],

a(d=2)-2(d-1)’ 4ad?

2[a(d—2)—2(d—1)][2a(d—1)— (d—2)]

Fa(d,a)=- o

4(d—2)(d—1)(a—1)?

Fs(d,a)= 92
o

(F1)
APPENDIX G: COMMUTATION RELATIONS FOR A MAXIMALLY SYMMETRIC BACKGROUND

In the following we summarize the commutation relations which were used in order to derivé.Egj.of Sec. IV C, and
Eqgs.(E17) and(E18 of Appendix E. They are valid for the class of maximally symmetric backgrounds:

— — . R.

D,.D.&* =43¢ (G
D%(D,2,+D,8,-D,| D7+ TN |g,4 D, | B2+ S DR 2 G2
(DLé,+DE,)=D, dd=1) §&,+D, dd=1) &L (G2

a o — — ~ | — R\. .
(D,£,+D,&,)(D*E"+ DY) =—2&,| D+ ;) &*+ cov. divergence (G3)

e e [ R}
D,s=D"D,D,6=D, +E o (G4

== 1_ ). (== 1_ —\[—, 2R}
DMDV_agMVD o= DMDV_agIU’D +m [ (GH)
D,D,5— E@ D25 D"D’”—EE’”DZA)=d_—1&_2 _2+i &+ cov. divergence (G6)
pmrE dvAY d d d-1 '

(Bﬂgv"‘ SV%#)GX}:( D2)(DH“E"+DVgr)= —2¢

o

—, R p(BZ (d+ 1R} i
+ )X +d(d—1) &*+cov. divergence

(G7)
_ . L — R|. _
(D,&) exp(D?) D*o=—& D2exp< 2+ 5/ o+ cov. divergence (G8)
5.5, 15,525 x| 5457 2357 6= = 2657 574" |exd D7+ 2R |- cov.
Dy Hg’” o |expD?) ag o=—q 7 +T1 ex + a-1 o+ cov. divergence.
(G9)
|
APPENDIX H: APPROXIMATE SOLUTIONS FOR THE determineg, from the conditionzy, =2—d alone. Solving
FIXED POINT this equation forg,, leads to
In the following we determine the approximate formula
for the position of the non-Gaussian fixed point discussed in 9. = 2-d (H1)
Sec. VC. In a first approximation we s&{=\, =0 and * Bi(\y ;a,d)—(d—=2)By(\, ;a,d)
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which, for\, =0, boils down to
2—d di2—1 1 ~1
9y = (4m) ki(d) ®gjo-1(0) +ko(d) P-4 (0)
+Ka(d, @) D3,(0)+Ky(d,a) D2,(0)
1 ]—1

1_2)\k— 1_2(1)\k (HZ)
. K4 ared- and @-dependent coefficients defined

+36q7

Herekq, ..
as

d*—4d%-9d’-12

Kl =""oqa=1
 (d—2)(d*-13d*-24d+12)
k2(d)= 24d(d—1) '
_ d*-4d*+9d°-8d-2
ks(dsa)=————q@—1y
-2)a,
(d—2)(d*—4d3+5d2—8d+2)
Ka(d, )=~ 4d(d—1)
) 2
—(d 5 ) a. (H3)

Employing the exponential shape functi¢®8) with s=1,
and settingd=4 and a=1, for instance, Eq(H2) yields

0,~0.590. Here we used that for this shape function

P1(0)=m2/6, 2(0)=1, ®1(0)=1, ®3(0)=1/2.

PHYSICAL REVIEW D65 025013

B)\()\k ,gk;a,d)= _2)\k+ vy d gk+[2d(d_ 1+ Za)
X (4m) Y2 0F,(0)— (d—2) o]k i

1
+ Ed(d+ 1)(d—2)
X (4m)1 oy dg,(0) gi+ O(g%),

By(N. Gk @,d)=(d—2) gy— (d—2) wg g+ O(°).
(H5)

Here vy and wy are defined as in Eq$5.8) and(5.11), and
O(g®) stands for terms of third and higher orders in the
couplings g(k)=\ and g(k)=g,. Now g, is obtained as
the nontrivial solution tgBy= 0, which reads

_ -1
Jx = g

2—d
= (Am ¥ Hiy(d) Pgp1(0)

+kg(d,a) ®Z,(0)} 2. (H6)

Inserting Eq.(H6) into B, and neglecting also the terms
quadratic in the couplings the conditiggy =0 leads to

Vdd

Za)d

_d(d-2)(d-3)
-

+ks(d,a) ®3,(0)} L.

A

D3,(0){ky(d) @F,_1(0)

(H7)

As a different approximation scheme, we determineysing the shape functiof3.8) with s=1 we obtain from

(N4 ,9,) from a set of Taylor-expande@-functions. Using

d
—®P(—2aN) =2ap PPI(—2a))),
d\y

d . ~
——PR(—2aN)=2ap DT~ 2a)),
dhy
(Ha)

we expand thegB-functions(4.28 and (4.30 aboutg,= A
=0 and obtain

Egs.(H6) and(H7) in d=4 dimensions

(187 55 a\7!
9%\ 14" 2ar T 7]

3772+55+ -1
24" ¢

which vyields ¢, ,g9,)=(0.287,0.751) fora=1, for in-
stance.

1
x*=§<3>< 1 (He)
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