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Ultraviolet fixed point and generalized flow equation of quantum gravity
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~Received 10 August 2001; published 26 December 2001!

A new exact renormalization group equation for the effective average action of Euclidean quantum gravity
is constructed. It is formulated in terms of the component fields appearing in the transverse-traceless decom-
position of the metric. It facilitates both the construction of an appropriate infrared cutoff and the projection of
the renormalization group flow onto a large class of truncated parameter spaces. The Einstein-Hilbert trunca-
tion is investigated in detail and the fixed point structure of the resulting flow is analyzed. Both a Gaussian and
a non-Gaussian fixed point are found. If the non-Gaussian fixed point is present in the exact theory, quantum
Einstein gravity is likely to be renormalizable at the nonperturbative level. In order to assess the reliability of
the truncation a comprehensive analysis of the scheme dependence of universal quantities is performed. We
find strong evidence supporting the hypothesis that 4-dimensional Einstein gravity is asymptotically safe, i.e.
nonperturbatively renormalizable. The renormalization group improvement of the graviton propagator suggests
a kind of dimensional reduction from 4 to 2 dimensions when spacetime is probed at sub-Planckian length
scales.

DOI: 10.1103/PhysRevD.65.025013 PACS number~s!: 11.10.Hi, 04.60.2m, 11.10.Jj, 11.15.Tk
u
e
-

tu
io
un
up
ad

a

th

e

io

ap

t
e

n

t

n
ic

to

ta

e
ite

for

a

ian
ed
of

ther

ith

ay.

by a

ting

rts
ct
w-
I. INTRODUCTION

During the past decade, exact renormalization gro
equations@1#, in particular in the context of the effectiv
average action@2#, have become a powerful tool for the in
vestigation of nonperturbative phenomena in both quan
field theory and in statistical physics. Those renormalizat
group ~RG! or flow equations may be regarded as the co
terpart for the continuum of Wilson’s renormalization gro
of iterated Kadanoff block spin transformations which h
been formulated for discrete spin systems originally@3#. In
both cases the central idea is to ‘‘integrate out’’ all fluctu
tions with momenta larger than some cutoffk, and to take
account of them by means of a modified dynamics for
remaining fluctuation modes with momenta smaller thank.
This modified dynamics is governed by a scale depend
effective Hamiltonian or effective action,Gk , whosek de-
pendence is described by a functional differential equat
the exact RG equation.

In quantum field theory this general strategy can be
plied to both ‘‘effective’’ and ‘‘fundamental’’ theories. By
definition, an effective theory is valid only if all relevan
momenta of the process under consideration are clos
some specific scalek which characterizes the theory. IfGk is
the action of an effective theory at scalek we can compute
cross sections for the scattering of particles with mome
~or relevant momentum transfers! of the order ofk, with all
quantum effects included, by simply evaluating thetree dia-
grams ofGk . Exact RG equations can be used in order
evolveGk to a smaller scalek8,k by further ‘‘coarse grain-
ing.’’

Flow equations may also be used for a complete qua
zation of fundamental theories. If the latter has the class
actionSone imposes the initial conditionG k̂5S at the ultra-
violet ~UV! cutoff scalek̂, uses the exact RG equation
computeGk for all k, k̂, and then sendsk→0 and k̂→`.
Loosely speaking, the defining property of a fundamen
0556-2821/2001/65~2!/025013~44!/$20.00 65 0250
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theory is that the ‘‘continuum limit’’k̂→` actually exists
after the ‘‘renormalization’’—in the traditional sense of th
word—of finitely many parameters in the action; only a fin
number of generalized couplings inG0 is undetermined and
has to be taken from the experiment. This is the case
perturbatively renormalizable theories@4#, but there are also
perturbatively nonrenormalizable theories which admit
limit k̂→`. The ‘‘continuum’’ limit of those nonperturba-
tively renormalizable theories is taken at a non-Gauss
fixed point of the RG flow. It replaces the Gaussian fix
point which, at least implicitly, underlies the construction
perturbatively renormalizable theories@1#. Thus knowing its
fixed point structure is crucial if one wants to assess whe
a given model qualifies as afundamentaltheory.

In this paper we shall use a formulation whereGk is the
‘‘effective average action’’@2#. It is a coarse grained free
energy functional which is constructed in close analogy w
the standard effective actionG to which it reduces in the
limit of a vanishing infrared~IR! cutoff, k→0. The Euclid-
ean functional integral for the generating functionalW is
modified by adding an IR cutoff termDkS to the classical
action. It supplies a momentum dependent (mass)2-term
Rk(p2) for a mode of the quantum field with momentump.
The cutoff functionRk(p2) vanishes forp2@k2; hence the
high-momentum modes get integrated out in the usual w
For p2!k2 it behaves asRk(p2)}k2 so that the small-
momentum modes get suppressed in the path integral
mass term}k2 @2#. The scale dependent actionGk is closely
related to the Legendre transform of the modified genera
functional Wk . When regarded as a function ofk, Gk runs
along a RG trajectory in the space of all actions which sta
at G k̂5S and ends atG05G. In the simplest case, the exa
RG equation which describes this trajectory has the follo
ing structure:

k ]kGk5
1

2
Tr@~Gk

(2)1Rk!
21k ]kRk#. ~1.1!
©2001 The American Physical Society13-1



nd
l

r
na
ue

n
’’

al

io
b

a
c

h
e

tia
rv

he

n

s
r

er

g
e
n
iv
s
,

ct

rl

i-
ic
an
b

ts
st
e

th
g’s
-

or-
at

at
ns
as

any
by
l of
ich
de

ng

n
nt
on-

n in

y
nc-

as
is-

t is
a

er
to
ize.
re
hall
the
-

-
nce

e

to
uce

c-

O. LAUSCHER AND M. REUTER PHYSICAL REVIEW D65 025013
HereGk
(2) denotes the infinite dimensional matrix of seco

functional derivatives ofGk with respect to all dynamica
fields.

This construction is fairly straightforward for matte
fields, the inclusion of gauge fields introduces additio
complications though. Using background gauge techniq
a solution to this problem was given in Refs.@5# for Yang-
Mills theory and in Refs.@6,7# for gravity. Leaving the
Faddeev-Popov ghosts aside, the effective average actio
gravity, Gk@gmn ,ḡmn#, depends not only on the ‘‘ordinary
dynamical metricgmn but also on a background metricḡmn .
The conventional effective actionG@g# is obtained as thek
→0 limit of the functionalGk@g#[Gk@g,ḡ5g# with the two
metrics identified@8,9#. The motivation for this construction
is that in this mannerGk@g# becomes invariant under gener
coordinate transformations.

Nonperturbative solutions to the above RG equat
which do not require a small expansion parameter can
obtained by the method of ‘‘truncations.’’ This means th
one projects the RG flow from the infinite dimensional spa
of all actions onto some finite dimensional subspace whic
particularly relevant for the problem at hand. In this mann
the functional RG equation becomes an ordinary differen
equation for a finite set of generalized couplings which se
as coordinates on this subspace. In Ref.@6# the RG flow of
quantum general relativity was projected on t
2-dimensional subspace spanned by the invariants*ddxAg
and *ddxAgR. This so-called Einstein-Hilbert truncatio
amounts to considering only functionals of the form

Gk@g,ḡ#5~16pGk!
21E ddxAg$2R~g!12l̄k%

1classical gauge fixing. ~1.2!

Here Gk and l̄k are the running Newton constant and co
mological constant, respectively. More general and, the
fore, more precise truncations would include higher pow
of the curvature tensor as well as nonlocal terms@10# which
are not present classically.

Quantum gravity is certainly a particularly interestin
topic where exact RG equations can lead to important n
insights. As quantized Einstein gravity is perturbatively no
renormalizable a natural option is to consider it an effect
field theory@11#. Already within this setting quantum effect
can be studied in a consistent and predictive way. In fact
Refs. @12,13# the running couplingsGk and l̄k obtained in
@6# were used to investigate how quantum gravity effe
modify the structure of black holes, and in@14# the implica-
tions for the cosmology of the Planck era in the very ea
Universe were studied. Along a different line of research
has been proposed@15# that there are strong quantum grav
tational effects also in the later stages of the cosmolog
evolution which even might drive the cosmological const
to zero dynamically; the effective average action would
an ideal tool for exploring such infrared effects.

An even more intriguing possibility is that, despite i
perturbative nonrenormalizability, quantized gravity exi
nonperturbativelyas a fundamental theory. It would then b
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mathematically consistent down to arbitrarily small leng
scales. A proposal along these lines is Weinber
‘‘asymptotic safety’’ scenario@16#. It assumes that there ex

ists a non-Gaussian RG fixed point at which thek̂→` limit
can be taken, i.e. that the theory is ‘‘nonperturbatively ren
malizable’’ in Wilson’s sense. Asymptotic safety requires th
the non-Gaussian fixed point is UV attractive~i.e. attractive
for k→`) for finitely many parameters in the action, i.e. th
its UV critical hypersurface is finite dimensional. This mea
that the RG trajectories along which the theory can flow

we send the cutoffk̂ to infinity are labeled by only finitely
many parameters. Therefore the theory is as predictive as
conventionally renormalizable theory; it is not plagued
the notorious increase of free parameters which is typica
effective theories. The set of generalized couplings for wh
the non-Gaussian fixed point is UV attractive should inclu
the dimensionless Newton constant,g, and cosmological
constant,l.

Using the« expansion, Weinberg showed already lo
ago that gravity in 21« dimensions (0,«!1) is indeed
asymptotically safe@16#. Further progress in this direction, i
particular ford54, was hampered by the lack of an efficie
calculational scheme which could be used to search for n
perturbative fixed points.

As a solution to this problem which does not rely on the«
expansion we propose to use the effective average actio
order to find nontrivial fixed points (l* ,g* , . . . ) of the
gravitational RG flow.~The dots stand for the infinitely man
other couplings which parametrize a generic action fu
tional.! Using this approach, the cased521« was reana-
lyzed in a more general setting and, more importantly, it w
shown that the Einstein-Hilbert truncation predicts the ex
tence of a non-Gaussian fixed point (l* ,g* ) also in dimen-
sionsd.2, in particular ford54 @6,13,17#.

The crucial question which arises is whether this resul
an artifact of the truncation used, or if it correctly reflects
property of the full theory. It is clear that in order to answ
this question one would like to include further invariants in
the truncation and to check whether the predictions stabil

From the technical point of view such calculations a
extremely complicated so that in the present paper we s
use a different method in order to get a first idea about
reliability of the nontrivial fixed point. We are going to ana
lyze to what extent its location in thel-g plane and its at-
tractivity properties~critical exponents! are scheme depen
dent. Here ‘‘scheme dependence’’ refers to the depende
on the cutoff operatorRk used in the derivation of the RG
equation.

First of all, Rk is a matrix in the space of irreducibl
component fields~see below! which is not uniquely deter-
mined by the general principles. Hence we can vary it
some extent. In fact, in the present paper we shall introd
a new cutoff~‘‘cutoff of type B’’ ! whose matrix structure is
different from the original one of Ref.@6# ~‘‘cutoff of type
A’’ !. Either of these cutoffs is proportional to a ‘‘shape fun
tion’’ R(0)(p2/k2) which describes the ‘‘thinning out’’ of de-
grees of freedom as we pass the thresholdp25k2. Also this
3-2
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function can be varied in order to assess the scheme de
dence of the fixed point properties.

While in general only the critical exponents but not t
location (l* ,g* , . . . ) of thefixed point are expected to b
universal, i.e. scheme independent@18#, we shall argue tha
the productg* l* is an observable quantity as well. For o
servables theRk dependence is a pure truncation artifact;
an exact treatment allRk dependencies cancel. The status
the Einstein-Hilbert truncation would be rather questiona
if the fixed point was present for some cutoffs but absent
others. Instead, we find that it is actually there for all adm
sible cutoffs, and moreover that the observableg* l* is
scheme independent with a quite unexpected precision.

Our results strongly support the conjecture that the n
Gaussian fixed point is present in the exact theory and is
a truncation artifact. Also another prerequisite of asympto
safety turns out to be satisfied: we find that, for any cuto
the fixed point is UV attractive in both directions of thel-g
plane.

Ultimately one would like to use more general truncatio
than Eq. ~1.2! in order to study the RG flow in a large
subspace. Typically this requires computations whose a
braic complexity is quite formidable. Assume we make
ansatzGk5( i 51

n gi(k)I i containingn diffeomorphism invari-
ant functionalsI i@gmn ,ḡmn#. In order to project the RG flow
on then-dimensional space with coordinates gi we must in-
sert the ansatz into the RHS of the flow equation~1.1!. At
this point the nontrivial problem, both conceptually and co
putationally, is to expand the trace with respect to a comp
set of actions,$g j@gmn ,ḡmn#%, in such a way that theI i ’s
retained in the ansatz are a subset of theg j ’s. The coeffi-
cients of the remainingg j ’s, those not present inGk , are set
to zero by the truncation. In practice the projection on
$I i% subspace is done by inserting a set of metricsgmn ,ḡmn

on both sides of Eq.~1.1! which give a nonzero value only t
specific linear combinations of theI i ’s. Provided one man-
ages to compute the functional trace for sufficiently ma
gmn ,ḡmn pairs one can then deduce the ordinary differen
equations for the generalized couplings gi(k).

For the Einstein-Hilbert truncation this procedure is fai
simple since~ignoring the running of the gauge parameter! it
is sufficient to insert forgmn5ḡmn the metric of a family of
spheresSd parametrized by their radiusr. Their maximal
symmetry facilitates the calculations considerably. Withr
kept as a free parameter, these metrics are general enou
disentangle*ddxAg}r d and *ddxAgR}r d22. But already
when we include invariants with four derivatives of the m
ric this method fails: the spheres cannot distingu
*ddxAgR2}r d24 from *ddxAgRmnRmn}r d24, for instance.

These remarks hint at~at least! two major problems which
one faces in generalizations of the exact RG approach
gravity. ~i! The momentum dependent ‘‘mass’’ ter
DkS@hmn ,ḡmn# depends quadratically on the metric fluctu
tion hmn , but also, viaRk[Rk@ ḡ# on the backgroundḡmn .
In general it is a quite nontrivial task to construct a cut
operatorRk@ ḡ# which has the desired properties mention
above for a class of background metricsḡmn general enough
for the projection on the truncation subspace.~ii ! Assume we
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found an appropriateRk@ ḡ#. Then there arises the comput
tional problem of evaluating the trace on the RHS of the R
equation for variousgmn’s and ḡmn’s. These metrics do no
coincide when we allow for an evolution of the gauge fixin
sector. Even if we ignore this complication, the HessianGk

(2)

under the trace is an extremely complicated nonminimal
variant matrix differential operator constructed from the c
vature tensor and covariant derivativesDm . A priori, even
for maximally symmetric backgrounds, not all derivativ
Dm are contracted to form powers of the covariant Laplac
D2[DmDm, andGk

(2) is not diagonal in the space of field
with a definite helicity therefore. Hence standard heat ker
techniques or perhaps information about the spectrum ofD2

are of no help at this point.
In this paper we outline a general strategy for tackli

these problems. It is based upon York’s ‘‘transverse-trace
~TT! decomposition’’@20# which is available on~almost! ev-
ery spacetime manifold needed for our projection meth
The idea is to decompose the fluctuationhmn into a trans-
verse, traceless tensorhmn

T , a longitudinal-transverse tenso

~parametrized by a transverse vectorĵm), a longitudinal-
longitudinal tensor~parametrized by a scalarŝ), and a trace
part ~parametrized by another scalarf). In the basis of the
component fields$hmn

T ,ĵm,ŝ,f%, all Dm’s appear in powers
of the Laplacian only, at least for the class of maxima
symmetric backgrounds. The important point is that this
composition can be used in order to simplify the structure
Gk

(2) on essentially all backgrounds, not just on spheres.@On
Sd the TT decomposition boils down to the familiar decom
position ofhmn with respect to pieces which are irreducib
under the isometry groupSO(d11). In some of the work
following the original paper@6# this decomposition onSd

had been used already@19,21–23#.# Compared toSd a certain
complication arises, however, because the TT decompos
is nonorthogonal in general.

The TT decomposition also helps in solving the first pro
lem, the construction ofRk , becauseDkS has a much sim-
pler structure when expressed in terms of the compon
fields rather than the originalhmn .

This paper is organized as follows.
In the first part~Secs. II and III! we describe the construc

tion of a new RG equation where the component fie

$hmn
T ,ĵm,ŝ,f% are used from the outset. Along the way w

discuss the problems related to a proper identification
DkS. This part of the paper is meant to supply a set of to
which will become indispensable in future investigatio
when one includes further invariants into the truncation (R2

terms@24#, for instance!, if one adds matter fields, or if on
allows for a running gauge fixing.

As a first application, we revisit the Einstein-Hilbert trun
cation in the second part of the paper~Secs. IV and V!. We
introduce a new cutoffRk which is natural in the TT lan-
guage, and we use an arbitrary gauge parameter. This al
for a nontrivial comparison of the resulting RG equatio
and their fixed point properties with those of@6# whose cut-
off operatorRk has a rather different structure. We find bo
a Gaussian and a non-Gaussian fixed point in the (g,l) sys-
3-3
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O. LAUSCHER AND M. REUTER PHYSICAL REVIEW D65 025013
tem and we perform a detailed analysis of their properties
particular of their scheme dependence. The chances for
izing the asymptotic safety scenario in 4 dimensions will
discussed in detail.

In Sec. VI we investigate the implications of the no
Gaussian fixed point for the effective graviton propagato
large momenta. A kind of dimensional reduction from 4 to
dimensions takes place in the vicinity of this fixed point. T
asymptotic form of the propagator suggests that wh
4-dimensional spacetime is probed by a very high-energ
graviton it appears to be effectively 2-dimensional.

Various technical results, needed in the present paper
presented also with an eye towards future applications@24#,
are relegated to a set of Appendixes.

At this point the reader who is mostly interested in t
results rather than their derivation can proceed directly
Sec. V.

II. THE EXACT EVOLUTION EQUATION

A. Gauge fixing

Following @6# we define a scale dependent modification
the Euclidean functional integral for the generating fun
tional Zk by using the background gauge fixing techniq
@8,9#. For this purpose we decompose the integration v
able in the functional integral over all metrics,gmn , into a
fixed background metricḡmn and a fluctuation fieldhmn :

gmn~x!5ḡmn~x!1hmn~x!. ~2.1!

Then we replace the integration overgmn by an integration
over hmn . With the Faddeev-Popov ghostsCm and C̄m the
generating functionalZk may be written as

Zk@sources#5E DhmnDCmDC̄m exp†2S@ ḡ1h#2Sgf@h;ḡ#

2Sgh@h,C,C̄;ḡ#

2DkS@h,C,C̄;ḡ#2Ssource‡. ~2.2!

The first term in the exponential,S@g#5S@ ḡ1h#, is the clas-
sical action which, for the moment, is assumed to be posi
definite. It is invariant under arbitrary general coordina
transformations.Sgf denotes the gauge fixing term

Sgf@h;ḡ#5
1

2aE ddxAḡ ḡmnFm@ ḡ,h#Fn@ ḡ,h#. ~2.3!

It corresponds to the gauge conditionFm@ ḡ,h#50. Linear
gauge conditions

Fm@ ḡ,h#5A2k F m
ab@ ḡ#hab , ~2.4!

are particularly convenient. In the present paper we use
harmonic gauge1 for which

1For the flow equation in the conformal gauge~2D Liouville
quantum gravity! see Refs.@25,26#.
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ab@ ḡ#5dm

b ḡagD̄g2
1

2
ḡabD̄m . ~2.5!

Here D̄m denotes the covariant derivative constructed fro
the background metricḡmn , while we shall writeDm for the
covariant derivative involving the quantum metricgmn . In
Eq. ~2.4! we introduced the constant

k[~32pḠ!21/2 ~2.6!

where Ḡ denotes the bare Newton constant. The Fadde
Popov operator associated with the gauge fixing~2.4! with
~2.5! takes the form

M@g,ḡ#n
m5ḡmrḡslD̄l~grnDs1gsnDr!

2ḡrsḡmlD̄lgsnDr . ~2.7!

It enters the functional integral~2.2! via the ghost action

Sgh@h,C,C̄;ḡ#52A2E ddxAḡ C̄mM@ ḡ1h,ḡ#n
mCn.

~2.8!

Furthermore,DkS and Ssource are the cutoff and the sourc
action, respectively.DkS provides an appropriate infrare
cutoff for the integration variables andSsource introduces
sources for the fieldshmn , Cm andC̄m . Their explicit struc-
ture will be discussed later on.

B. Decomposition of the quantum fields

For the calculations in the following sections it turns o
to be convenient to decompose the gravitational fieldhmn

according to~see e.g.@20#!

hmn5hmn
T 1D̄mĵn1D̄nĵm1D̄mD̄nŝ2

1

d
ḡmnD̄2ŝ1

1

d
ḡmnf.

~2.9!

To obtain this ‘‘TT decomposition’’ one starts by splitting o
the trace parthmn

Tr [ḡmnf/d from hmn . It involves a scalar
field f. The remaining symmetric traceless tensor may
decomposed further into a transverse componenthmn

T and a
longitudinal componenthmn

L . Introducing a transverse vecto

field ĵm and another scalarŝ, the longitudinal tensor can b
expressed byhmn

L 5hmn
LT1hmn

LL with hmn
LT[D̄mĵn1D̄nĵm and

hmn
LL[D̄mD̄nŝ2ḡmnD̄2ŝ/d thereby ending up with Eq.~2.9!.

Thus the components ofhmn introduced by this transverse
traceless~TT! decomposition obey the relations

ḡmnhmn
T 50, D̄mhmn

T 50, D̄mĵm50, f5ḡmnhmn.
~2.10!

This decomposition is valid for complete, closed Ri
manniand spaces~i.e. compact Riemannian manifolds with
out boundary!. As argued in@20#, its domain of validity can
be extended to open, asymptotically flatd spaces, certain
assumptions concerning the asymptotic behavior of the fie
3-4



n

sic
a

s

et
s
o

the

n

c-
e

b-

s
ra-

or

e

s
lds

a

er
a

co

se
rig
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being made. From now on we assume that the gravitatio
background belongs to one of these classes of spaces.

Obviouslyhmn receives no contribution from thoseĵm and
ŝ modes which satisfy the Killing equation

D̄mĵn1D̄nĵm50 ~2.11!

and the scalar equation

D̄mD̄nŝ2
1

d
ḡmnD̄2ŝ50, ~2.12!

respectively. Therefore such modes, referred to as unphy
ĵm and ŝ modes, have to be excluded from the function
integral. Considering the conformal Killing equation

D̄mCn1D̄nCm2
2

d
ḡmnD̄lC l50 ~2.13!

we recognize that the unphysicalŝ modes correspond to
constants or are related viaCm5D̄mŝ to proper conformal
Killing vectors ~PCKV’s!, i.e. solutions of Eq.~2.13! which
are not at the same time ordinary Killing vectors~KV’s !,
@27#.2

By virtue of the decomposition~2.9! the inner product on
the space of symmetric tensor fields may be decompo
according to3

^h(1),h(2)&[E ddxAḡhmn
(1)ḡmrḡnshrs

(2)

5E ddxAḡH hmn
(1)Th(2)Tmn

22ĵm
(1)~ ḡmnD̄21R̄mn!ĵn

(2)

22ĵm
(1)R̄mnD̄nŝ (2)

22ĵm
(2)R̄mnD̄nŝ (1)

1ŝ (1)S d21

d
~D̄2!21D̄mR̄mnD̄nD

3ŝ (2)1
1

d
f (1)f (2)J . ~2.14!

From Eq.~2.14! we see that, for a general background m
ric, only hmn

T , hmn
L andhmn

Tr form an orthogonal set, wherea
hmn

LT andhmn
LL are not orthogonal in general. This nonorthog

2As a consequence of the linearity of the conformal Killing equ
tion we may add any Killing vector~which is always transversal! to
its solutions and obtain another solution. For definiteness we th
fore define the PCKV’s to be purely longitudinal. Then there is
one-to-one correspondence between the PCKV’s and the non
stant solutions of Eq.~2.12!.

3A remark concerning our notation: If not indicated otherwi
each covariant derivative acts on everything that stands on the
of it.
02501
al

al
l

ed

-

-

nality manifests itself in the appearance of terms where
components ĵm and ŝ mix. But at least for Ein-
stein spaces, whereR̄mn5Cḡmn with C a constant, we
find D̄mR̄mn5CD̄mḡmn[0 and therefore ^hLT,hLL&
54C*ddxAḡŝ D̄mĵm50. Thus $hmn

T ,hmn
LT ,hmn

LL ,hmn
Tr % repre-

sents an orthogonal set of field components in this case.
In order to determine the JacobianJ1 which appears in the

functional integral~2.2! after performing the transformatio
of integration variableshmn→$hmn

T ,ĵm ,ŝ,f% we proceed as
follows. We consider a Gaussian integral overhmn and reex-
press it in terms of the component fields@27#:

E DhmnexpF2
1

2
^h,h&G

5J1E Dhmn
T DĵmDŝ Df expF2

1

2E ddxAḡ

3H hmn
T hTmn1

1

d
f21~ ĵm ,ŝ !M (m,n)S ĵn

ŝ
D J G .

~2.15!

Here

M (m,n)[S 22~ ḡmnD̄21R̄mn! 22R̄mlD̄l

2D̄lR̄ln
d21

d
~D̄2!21D̄lR̄lrD̄r

D
~2.16!

is a Hermitian matrix differential operator. Since all fun
tional integrals appearing in Eq.~2.15! are Gaussian they ar
easily evaluated. This leads to the Jacobian

J15NAdet(1T,0)8 M (m,n). ~2.17!

Here N represents an infinite constant which may be a
sorbed into the normalization of the measureDhmn .

The notation adopted in Eq.~2.17! has to be interpreted a
follows. A prime at the determinant or the trace of an ope
tor A indicates that all unphysicalĵm and ŝ eigenmodes of
A, characterized by Eqs.~2.11! and ~2.12!, are to be ex-
cluded from the calculation. A subscript at determinants
traces describes on which kind of field the operatorA acts.
We use the subscripts(0), (1T) and (2ST2) for spin-0 fields
ŝ, transverse spin-1 fieldsĵm and symmetric transvers
traceless spin-2 fieldshmn

T , repectively. The subscript (1T,0)
appearing in Eq.~2.17! refers to a (d11)3(d11)-matrix
differential operator whose firstd columns act on traceles
spin-1 fieldsĵn whereas the last column acts on spin-0 fie
ŝ.
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Likewise we decompose the ghost and the antighost
their orthogonal components according to

C̄m5C̄m
T1D̄mĥ̄, Cm5CTm1D̄mĥ ~2.18!

whereC̄m
T andCTm are the transverse components ofC̄m and

Cm: D̄mC̄m
T50, D̄mCTm50. In order to compute the Jaco

bian J2 induced by the change of variablesC̄m→$C̄m
T ,ĥ̄%,

Cm→$CTm,ĥ% we write

E DCmDC̄mexp@2^C̄,C&#

5J2E DCTmDC̄m
TDĥDĥ̄

3expF2E ddxAḡ$C̄m
TCTm1 ĥ̄~2D̄2!ĥ%G .

~2.19!

and perform the Grassmann functional integrals. The resu

J25@det(0)8 ~2D̄2!#21. ~2.20!

In this case the constantĥ mode represents an unphysic
mode which has to be excluded.

C. Momentum dependent redefinition of the component fields

It will prove convenient to introduce new variables
integration,jm , s, h̄ and h, by means of the momentum
dependent~nonlocal! redefinitions

jm[A2D̄22Ric ĵm

s[A~D̄2!21
d

d21
D̄mR̄mnD̄nŝ

h̄[A2D̄2ĥ̄, h[A2D̄2ĥ. ~2.21!

Here the operatorRic maps vectors onto vectors according

~Ric v !m5R̄mnvn . ~2.22!

Note that the transformations~2.21! are well defined and
invertible since for any~physical! eigenmode the operator
under the square roots of Eq.~2.21! have strictly positive
eigenvalues.4

This is due to the fact that these operators arise from
squares ofhmn

LT andhmn
LL and from (D̄mĥ̄)(D̄mĥ) by shifting

all covariant derivatives to the right. Thus they cannot
sume negative eigenvalues. For example,

4In order to make sure that the operators are indeed invertible
also assume that their eigenvalues do not have zero as an acc
lation point.
02501
to

is

e

-

^hLL,hLL&5E ddxAḡS D̄mD̄nŝ2
1

d
ḡmnD̄2ŝ D

3S D̄mD̄nŝ2
1

d
ḡmnD̄2ŝ D

5
d21

d E ddxAḡŝ

3S ~D̄2!21
d

d21
D̄mR̄mnD̄nD ŝ. ~2.23!

Furthermore, the spectra of the operators in Eq.~2.21! do not
even contain zeros, since the potential zero modes coin
precisely with the aforementioned unphysical modes wh
have to be excluded. For instance,jm is a zero mode of
2D̄22Ric if and only if jm is a Killing vector.

Along the lines outlined in the previous subsection, w
now determine the Jacobians for the transformation of in
gration variables. We obtain

J35@det(1[T])8 ~2D̄22Ric!#21/2

J45Fdet(0)8 S ~D̄2!21
d

d21
D̄mR̄mnD̄nD G21/2

J55det(0)8 ~2D̄2! ~2.24!

for the transformationsĵm→jm , ŝ→s and ĥ̄→h̄, ĥ→h,
respectively.~The integration measures have been cho
such that no additional infinite constants occur in the Ja
bians.! The square brackets appearing in the subsc
(1,@T#) at J3 indicate that the operator under considerati
acts on spin-one fields which are transverse only for cer
background metrics, because the property of transversali
not necessarily transmitted fromĵm to jm. However, at least
for Einstein spacesjm is transverse as well.

After carrying out this change of integration variables,J1 ,
J3 andJ4 are the only Jacobians appearing in the genera
functionalZk sinceJ2 andJ5 cancel.

D. The effective average action

By adding an infrared~IR! cutoff DkS to the classical
action under the path integral~2.2! we obtain a scale-
dependent generating functionalZk . The termDkS is chosen
to depend on the fluctuation fields in such a way that th
eigenmodes with respect to2D̄2 which correspond to large
eigenvaluesp2@k2 are not influenced, whereas contributio
from eigenmodes with small eigenvaluesp2!k2 are sup-
pressed. In this senseZk describes an effective theory at th
scalek, k̂. For technical simplicity we implement the sup
pression of the low-momentum modes by momentu
dependent ‘‘mass’’ terms, i.e. by cutoffs which are quadra
in the fluctuation fields:

DkS@h,C,C̄;ḡ#5
1

2
^h,R k

gravh&1^C̄,R k
ghC&. ~2.25!

e
mu-
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Here the operatorsR k
grav andR k

gh are constructed from the
covariant derivative with respect to the background met
D̄m . Note thatR k

grav andR k
gh must not depend on the quan

tum metricgmn but only on the background metricḡmn since
otherwise the cutoff cannot be quadratic. In order to prov
the desired behavior these operators must vanish forp2/k2

→` ~in particular for k→0) and must behave asRk
→Z kk

2 for p2/k2→0. ~The meaning of the constantZk will
be explained later.! As a consequence, all modes withp2

!k2 acquire a mass}k.
At this stage of the discussion it is not necessary

specify the explicit structure of the cutoff operators. We on
mention the following point. According to Appendix A
R k

grav and R k
gh can be chosen such that, at the level of t

component fields,

DkS@h,C,C̄;ḡ#5
1

2 (
z1 ,z2PI 1

^z1 ,~Rk!z1z2
z2&

1
1

2 (
c1 ,c2PI 2

^c1 ,~Rk!c1c2
c2&

~2.26!

with the index setsI 1[$hT,j,s,f%, I 2[$C̄T,CT,h̄,h%. In
contrast to generic cutoffs which are defined in terms of
component fields from the outset, the structure~2.26! allows
us to return to the formulation in terms of the fundamen
fields, Eq.~2.25!, in a straightforward way.~See Appendix
A.! The set of operators (Rk)z1z2

, (Rk)c1c2
introduced by

this realization of the cutoff may be fixed later on. Hermiti
ity demands that they satisfy (Rk)z2z1

5(Rk)z1z2

† and

(Rk)c2c1
52(Rk)c1c2

† . Furthermore, (Rk)c1c2
[0 if both

c1P$CT,h% and c2P$CT,h%, or if both c1P$C̄T,h̄% and
c2P$C̄T,h̄%.

A similar decomposition is applied toSsource. The source
terms are defined as

Ssource@h,C,C̄,J,K,K̄;ḡ#52^J,h&2^K̄,C&2^K,C̄&
~2.27!

with external sourcesJmn, Km and K̄m for the fundamental
fieldshmn , C̄m andCm, respectively. Proceeding as describ
in Appendix A, an alternative form ofSsourcemay be derived
from Eq. ~2.27! where each component field is coupled to
certain component of the fundamental sources. Then
terms of these ‘‘component sources,’’Ssourcetakes the form

Ssource@h,C,C̄,J,K,K̄;ḡ#52 (
zPI 1

^Jz ,z&2 (
cP$CT,h%

^K̄c ,c&

2 (
cP$C̄T,h̄%

^Kc ,c&. ~2.28!

As a consequence, the functional
02501
,

e

o

e

e

l

in

Zk@J,K,K̄;ḡ#

5J1J3J4E Dhmn
T DjmDs Df DCTmDC̄m

TDh Dh̄

3exp†2S@ ḡ1h#2Sgf@h;ḡ#2Sgh@h,C,C̄;ḡ#

2DkS@h,C,C̄;ḡ#2Ssource@h,C,C̄,J,K,K̄;ḡ#‡ ~2.29!

as well as the scale-dependent generating functional for
connected Green’s functions,

Wk@J,K,K̄;ḡ#5 ln Zk@J,K,K̄;ḡ#, ~2.30!

may be viewed as functionals of either the fundamenta
the component sources. Furthermore, we may de
k-dependent classical fields for both fundamental and co
ponent fields in terms of functional derivatives ofWk . In
either case thek-dependent classical fields represent exp
tation valueŝ q& of quantum fieldsq, in the sense that al
degrees of freedom corresponding to momenta withp2.k2

have been averaged out. The classical fundamental fields
given by

h̄mn[^hmn&5
1

Aḡ

dWk

dJmn
, v̄m[^C̄m&5

1

Aḡ

dWk

dKm
,

vm[^Cm&5
1

Aḡ

dWk

dK̄m

, ~2.31!

and the classical component fields are obtained as

w i[^x i&5
1

Aḡ

dWk

dJ i
. ~2.32!

Here we are making use of the shorthand notationx

[(hT,j,s,f,C̄T,CT,h̄,h) for the quantum componen
fields, J[(JhT,Jj ,Js ,Jf ,KC̄T,K̄CT,K h̄ ,K̄h) for their
sources andw[(h̄T,j̄,s̄,f̄,v̄T,vT,%̄,%) for the classical
component fields. We may reconstruct the classical fun
mental fields fromw according to

h̄mn5h̄mn
T 1D̄m@2D̄22Ric#21/2j̄n1D̄n@2D̄22Ric#21/2j̄m

1
1

d
ḡmnf̄1D̄mD̄nF ~D̄2!21

d21

d
D̄rR̄rlD̄lG21/2

s̄

2
1

d
ḡmnD̄2F ~D̄2!21

d21

d
D̄rR̄rlD̄lG21/2

s̄,

v̄m5 v̄m
T1D̄m~2D̄2!21/2%̄, vm5vTm1D̄m~2D̄2!21/2%.

~2.33!

Performing a Legendre transformation onWk with respect
to Jmn , Km and K̄m leads to the following scale-depende
modification of the effective action:
3-7
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G̃k@ h̄,v,v̄;ḡ#5^J,h̄&1^K̄,v&1^K,v̄&2Wk@J,K,K̄;ḡ#.

~2.34!

Since Eqs.~2.27!, ~2.28! imply

^J,w&5^J,h̄&1^K̄,v&1^K,v̄& ~2.35!

it is clear that Eq.~2.34! also would result from Legendr
transformingWk with respect to the component sources. D

noting the corresponding Legendre transform byG̃k
comp we

have G̃k
comp@ h̄T,j̄,s̄,f̄,vT,v̄T,%,%̄;ḡ#[G̃k@ h̄,v,v̄;ḡ# where

the arguments ofG̃k
comp and G̃k are related by Eq.~2.33!.

The effective average action proper,Gk , is defined as the

difference betweenG̃k and the cutoff action with the classica
fields inserted@28,5#:

Gk@g,ḡ,v,v̄#[G̃k@g2ḡ,v,v̄;ḡ#2DkS@g2ḡ,v,v̄;ḡ#.

~2.36!

Here we expressedh̄mn in terms of the classical counterpa
gmn of the quantum metricgmn[ḡmn1hmn which, by defi-
nition, is given by

gmn[ḡmn1h̄mn . ~2.37!

The main advantage of the background gauge is tha
makesGk a gauge invariant functional of its agruments@6#. It
is invariant under general coordinate transformations of
form

Gk@F#5Gk@F1LuF#, F[~gmn ,ḡmn ,vm,v̄m! ~2.38!

whereLu is the Lie derivative with respect to the generati
vector fieldum(x). Since general coordinate invariance e
sures that no symmetry violating terms occur in the cours
the evolution ofGk the class of consistent truncations is r
stricted to those which involve only invariant field combin
tions. This is important for practical applications of the ev
lution equation.

We are mainly interested in the exclusive
gmn-dependent functional

Ḡk@g#[Gk@g,g,0,0#. ~2.39!

In the limit k→0 it coincides with the conventional effectiv
action G@gmn#, the generator of the 1PI graviton Green

functions@8#: G@g#5 lim
k→0

Ḡk@g#. However, in order to de-

rive an exact evolution equation it is necessary to retain
dependence on the ghost fields andḡmn .

From the definition of the effective average action it fo
lows thatGk satisfies the integro-differential equation
02501
-

it

e

-
of

-

e

exp$2Gk@g,ḡ,v,v̄#%

5E DhmnDCmDC̄mexpF2S̃@h,C,C̄;ḡ#1E ddx

3H ~hmn2gmn1ḡmn!
dGk

dh̄mn

1~Cm2vm!
dGk

dvm

1~C̄m2 v̄m!
dGk

d v̄m
J G

3exp$2DkS@h2g1ḡ,C2v,C̄2 v̄;ḡ#% ~2.40!

with

S̃@h,C,C̄;ḡ#[S@ ḡ1h#1Sgf@h;ḡ#1Sgh@h,C,C̄;ḡ#.

~2.41!

Equation~2.40! may be derived by inserting the definition o
Gk into Eq. ~2.2! and replacing the sources according to

Jmn5
1

Aḡ

dG̃k

dh̄mn

, Km52
1

Aḡ

dG̃k

d v̄m

, K̄m52
1

Aḡ

dG̃k

dvm
.

~2.42!

E. Derivation of the exact evolution equation

The exact renormalization group equation describes
change of the action functionalGk induced by a change in
the scalek. It may be obtained as follows. Differentiating th
functional integral~2.29! with respect tot[ ln k leads to

2] tWk5
1

2
Tr8F (

z1 ,z2PI 1

^z1^ z2&] t~Rk!z1z2G
1

1

2
Tr8F (

c1 ,c2PI 2

^c1^ c2&] t~Rk!c1c2G .
~2.43!

Here we used Eq.~2.30! and adopted the matrix notation o
the RHS of Eq.~2.43! which, in turn, can be expressed
terms of the Hessian

~ G̃k
(2)! i j ~x,y![~21! [ j ]

1

Aḡ~x!ḡ~y!

d2G̃k

dw i~x!dw j~y!

~2.44!

with @ j #50 for commuting fieldsw j and @ j #51 for Grass-
mann fieldsw j . Since the connected two point function

~Gk! i j ~x,y![^x i~x!x j~y!&2w i~x!w j~y!

5
1

Aḡ~x!ḡ~y!

d2Wk

dJ i~x!dJ j~y!
~2.45!
3-8
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and G̃k
(2) are inverse matrices in the sense that

E ddyAḡ~y!~Gk! i j ~x,y!~ G̃k
(2)! j l ~y,z!5d i

l
d~x2z!

Aḡ~z!
~2.46!

we may replace the expectation values^x i(x)x j (y)& appear-

ing in Eq.~2.43! with (G̃k
(2)) i j

21(x,y)1w i(x)w j (y). Then per-
forming a Legendre transformation according to Eq.~2.34!
and subtracting the cutoff actionDkS@ h̄,v,v̄;ḡ# yields the
desired exact renormalization group equation:

] tGk@g,ḡ,v,v̄#5
1

2
Tr8F (

z1 ,z2P Ī 1

~Gk
(2)@g,ḡ,v,v̄#

1Rk!z1z2

21 ] t~Rk!z2z1G
1

1

2
Tr8F (

c1 ,c2P Ī 2

~Gk
(2)@g,ḡ,v,v̄#

1Rk!c1c2

21 ] t~Rk!c2c1G . ~2.47!

Here we wrote (Rk)z1z2
[(Rk) ^z1&^z2& , (Rk)c1c2

[(Rk) ^c1&^c2& and introduced the index sets

Ī 1[$h̄T,j̄,s̄,f̄%, Ī 2[$v̄T,vT,%̄,%%. ~2.48!

In a position space representation, the operators appea
on the RHS of the flow equation are given by matrix e
ments whose traces are evaluated according to

E ddxddyAḡ~x!Aḡ~y!„~Gk
(2)1Rk!vTv̄T

21
…mx
ny
„] t~Rk! v̄TvT…ny

mx ,

~2.49!

for instance. The notation adopted for the matrix element
similar to Eq.~2.44!; for example,

„~Gk
(2)! v̄TvT…

mx
ny5

1

Aḡ~y!

d

dvTn~y!

1

Aḡ~x!

dGk

d v̄m
T~x!

.

~2.50!

By virtue of the properties ofRk discussed above the trace
appearing in the flow equation~2.47! are perfectly conver-
gent for all values ofk< k̂.

Provided we impose the correct initial condition at the U
scale k5 k̂ we can, in principle, determine the function
integral ~2.2! by integrating the flow equation fromk̂ down
to k and lettingk→0, k̂→` after appropriate renormaliza
tions. The initial conditionG k̂ can be obtained from the
integro-differential equation~2.40!. For sufficiently large
02501
ing
-

is

values ofk, the cutoff term in Eq.~2.40! strongly suppresse

fluctuations with (h,C,C̄)Þ(h̄,v,v̄) so that the main contri-
bution to the functional integral results from small fluctu

tions about (h,C,C̄)5(h̄,v,v̄). This field configuration cor-
responds to the global minimum of the total action in t
exponential of Eq.~2.40!. Performing a saddle point expan
sion of the functional integral about this minimum leads t

Gk@g,ḡ,v,v̄#5S̃@g2ḡ,v,v̄;ḡ#2
1

2
ln Det8~S̃(2)1Rk!

~2.51!

where the second term contains one-loop effects. Fork5 k̂
→` they amount to an often unimportant shift in the ba

parameters ofS̃ which can be ignored usually. For finitek̂,
additional contributions from the determinant occur whi

are suppressed by inverse powers ofk̂ @25#. Therefore we

obtain the initial value fork̂→`:

G k̂@g,ḡ,v,v̄#5S@g#1Sgf@g2ḡ;ḡ#1Sgh@g2ḡ,v,v̄;ḡ#.

~2.52!

At the level of the functionalḠk@gmn# this initial condition
boils down to

Ḡ k̂@g#5S@g#. ~2.53!

So far we assumed the fundamental action to be posi
definite. However, the Einstein-Hilbert action, for instanc
does not have this property which is due to the appearanc
a ‘‘wrong-sign’’ kinetic term associated with the conform
factor. In such cases it is nevertheless possible to formula
well-defined evolution equation if the signs of the cutoff o
eratorsRk are properly adjusted@6#. We will return to this
point in the next section.

F. A special case: Einstein backgrounds

Before continuing we summarize the simplifications th
occur for Einstein backgrounds, for whichR̄mn5Cḡmn with
C a constant. In this case the decomposition~2.9! of hmn is
completely orthogonal. In fact, thanks to the Einstein con
tion, theĵm-ŝ mixing terms in the inner product~2.14! van-
ish so thathmn

T , hmn
LT , hmn

LL andhmn
Tr form an orthogonal set.

Furthermore, for Einstein spaces the Jacobians appea
in the path integral~2.29! cancel, at least up to an~infinite!
constant which can be absorbed into the normalization of
integration measure. This can be seen as follows:
3-9
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J15NAdet(1T,0)8 M (m,n)5S E DĵmDŝexpF2E ddxAḡH 22ĵm~D̄21C!ĵm1ŝS d21

d
~D̄2!21C D̄2D ŝJ G D 21

5N1Adet(1T)8 ~2D̄22C!Adet(0)8 ~2D̄2!Adet(0)8 S 2D̄22
d C

d21D5N2J3
21J4

21 . ~2.54!
he

on
ys
ion
na
n
x

m
it
o

on
s

hi
LH
th

ve
he
ar
nl
a
w
re
o

ed

r

t-
ch

ting
e
r.

t

ncy

his

s

the
t

n

n
ion
HereN1 andN2 are unimportant constants so thatJ1J3J4 is
indeed field independent.

Finally, for Einstein spaces the field redefinitions in t
gravitational sector take the form

jm5A2D̄22Cĵm, s5A2D̄2A2D̄22
d C

d21
ŝ.

~2.55!

As a consequence, we find thatD̄mjm5A2D̄222CD̄mĵm.
Thus, transversality ofĵm implies thatjm is transverse as
well.

III. TRUNCATIONS AND CUTOFFS

A. A general class of truncations

In practical applications of the exact evolution equati
one encounters the problem of dealing with an infinite s
tem of coupled differential equations since the evolut
equation describes trajectories in an infinite dimensio
space of action functionals. In general it is impossible to fi
an exact solution so that we are forced to rely on appro
mations. A powerful nonperturbative approximation sche
is the truncation of the parameter space, i.e. only a fin
number of couplings is considered. In this manner the ren
malization group flow ofGk is projected onto a finite-
dimensional subspace of action functionals. In practice
makes an ansatz forGk that comprises only a few coupling
and inserts it on both sides of Eq.~2.47!, thereby obtaining a
truncated evolution equation. By projecting the RHS of t
equation onto the space of operators appearing on the
one arrives at a set of coupled differential equations for
couplings taken into account.

As discussed in Refs.@25,29#, Ward identities provide an
important tool for judging the admissability and quantitati
reliability of a given truncation; approximate solutions of t
flow equation are not necessarily consistent with the W
identities, in contrast to the exact solution. Therefore, o
those truncations which are indeed consistent with the W
identities, at least up to a certain degree of accuracy,
yield reliable results. The Ward identities to be conside
here are modified by additional terms coming from the cut
which are not present in the ordinary identities. SinceDkS
vanishes ask→0 the ordinary Ward identities are recover
in this limit.

In Ref. @6# the modified Ward identities were derived fo
the gravitational effective average actionGk@g,ḡ,v,v̄;b,t#
whereb and t are auxiliary sources for the Becchi-Roue
Stora~BRS! variations of the graviton and the ghosts whi
02501
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are needed in order to formulate the Ward identities. Set
b5t50 in the argument of this more general functional w
obtain the actionGk@g,ḡ,v,v̄# discussed in the present pape
~It would be straightforward to include theb, t-sources also
in the new formulation of the flow equation, but we will no
need them in the following.!

In @6# the Ward identities were used to test the consiste
of truncations of the form

Gk@g,ḡ,v,v̄#5Ḡk@g#1Ĝk@g,ḡ#1Sgf@g2ḡ;ḡ#

1Sgh@g2ḡ,v,v̄;ḡ# ~3.1!

with Ḡk@g# defined as in Eq.~2.39!. The termĜk@g,ḡ# en-
codes the quantum corrections to the gauge fixing term. T

interpretation ofĜk@g,ḡ# is obvious because forḡÞg the
purely gravitational part of Eq.~3.1! implies Gk@g,ḡ,0,0#

2Gk@g,g,0,0#5Ĝk@g,ḡ#1Sgf@g2ḡ;ḡ#. By definition,

Ĝk@g,g#50. In the ansatz~3.1! the ghost dependence ha
been extracted in terms of the classicalSgh, thereby neglect-
ing the evolution of the ghost action. This guarantees that
initial condition ~2.52! is satisfied automatically in the ghos

sector. In the gravitational sector it requiresḠ k̂5S, Ĝ k̂50.
For truncations of the type~3.1! the Ward identities demand

that Ḡk@g# is a gauge invariant functional ofgmn and they

yield a constraint equation forĜk@g,ḡ#. To lowest order, this

equation is solved byĜk50 ;k< k̂. In the Einstein-Hilbert

truncation we go beyond this approximation and setĜk
}Sgf with a constant of proportionality which vanishes atk
5 k̂; it takes the running of the graviton’s wave functio
normalization into account~see below!.

Inserting the ansatz~3.1! into the exact evolution equatio
~2.47! leads to a truncated renormalization group equat
which describes the evolution ofGk in the subspace of action
functionals spanned by Eq.~3.1!. The equation governing the
evolution of the purely gravitational action

Gk@g,ḡ#[Gk@g,ḡ,0,0#5Ḡk@g#1Sgf@g2ḡ;ḡ#1Ĝk@g,ḡ#

~3.2!

reads

] tGk@g,ḡ#5
1

2
Tr8F (

z1 ,z2P Ī 1

~Gk
(2)@g,ḡ#1Rk!z1z2

21 ] t~Rk!z2z1G
1

1

2
Tr8F (

c1 ,c2P Ī 2

~Sgh
(2)@g,ḡ#

1Rk!c1c2

21 ] t~Rk!c2c1G .
~3.3!
3-10
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Here Gk
(2) and Sgh

(2) are the Hessians ofGk@g,ḡ# and

Sgh@ h̄,v,v̄;ḡ# with respect to the gravitational and the gho
component fields, respectively. They are taken at fixedḡmn .

B. Specification of the cutoff

In order to obtain a tractable evolution equation for
given truncation it is convenient to use a cutoff which
adapted to this truncation but still has the general supp
sion properties described in Sec. II D. It is desirable to s
from a definition ofDkS that brings about the correct sup
pression of low-momentum modes for a class of truncati
and of gravitational backgrounds which is as large as p
sible.

A convenient, adapted cutoff can be found by the follo
ing rule @6,21#. Given a truncation, we assume that forḡ
5g the kinetic operators of all modes with a definite helic
are of the form (Gk

(2)) i j 5 f i j (2D̄2,k, . . . ) where$ f i j % is a
set of c-number functions and the indicesi , j refer to the
different types of fields.~The difficulty of bringingGk

(2) to
this form is one of the main reasons for using the TT deco
position. At least for maximally symmetric spaces it allow
us to eliminate all covariant derivatives which do not app
as a LaplacianD̄2[ḡmnD̄mD̄n .) Then we choose the cuto
in such a way that the structure

~Gk
(2)1Rk! i j 5 f i j „2D̄21k2R(0)~2D̄2/k2!,k, . . . …

~3.4!

is achieved. Here the functionR(0)(y), y52D̄2/k2, de-
scribes the details of the mode suppression; it is require
satisfy the boundary conditions R(0)(0)51 and
lim

y→`
R(0)(y)50, but is arbitrary otherwise. By virtue o

Eq. ~3.4!, the inverse propagator of a field mode with cov
riant momentum squarep252D̄2 is given by p2

1k2R(0)(p2/k2) which equalsp2 for p2@k2 andp21k2 for
p2!k2. This means that the small-p2 modes, and only those
have acquired a mass}k which leads to the desired suppre
sion.

In the next section we shall see in detail that for the tru
cations used in the present paper we can comply with
above rule by using the following cutoff operator:

~Rk! h̄Th̄T
mnab

5
1

2
Z k

h̄Th̄T
k2~ ḡmaḡnb1ḡmbḡna!k2R(0)~2D̄2/k2!,

~Rk!j̄j̄
mn

5Z k
j̄ j̄k2ḡmnk2R(0)~2D̄2/k2!,

~Rk!s̄s̄5Z k
s̄s̄k2k2R(0)~2D̄2/k2!,

~Rk!f̄s̄5~Rk!s̄f̄
†

5Z k
f̄s̄k2FAS P̄k1

d

d21
D̄mR̄mnD̄n~2D̄2!21D P̄k

2A~D̄2!21
d

d21
D̄mR̄mnD̄nG ,
02501
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~Rk!f̄f̄5Z k
f̄f̄k2k2R(0)~2D̄2/k2!,

~Rk! v̄TvT
mn

52~Rk!vTv̄T
mn

5Z k
v̄TvT

ḡmnk2R(0)~2D̄2/k2!,

~Rk!%̄%52~Rk!%%̄5Z k
%̄%k2R(0)~2D̄2/k2!. ~3.5!

Here P̄k is defined as

P̄k[2D̄21k2R(0)~2D̄2/k2!. ~3.6!

The remaining cutoff operators not listed in Eq.~3.5! are set
to zero. TheZk’s are constants which, again by using E
~3.4!, will be fixed in terms of the generalized coupling
appearing in the ansatz forGk . The cutoff ~3.5! is inspired
by theRk used in@21# for Sd.

If Eq. ~3.4! allows us to chooseZ k
zz.0 for all z

P$h̄T,j̄,s̄,f̄% and Z k
f̄s̄50 one obtains a positive definit

DkS in the gravitational sector. In this case exp(2DkS) is a
damped exponential which indeed suppresses the cont
tions from the low-momentum modes. In the following se
tions we shall focus on the Einstein-Hilbert truncation forGk
which suffers from the conformal factor problem: its kinet
term for f̄ is negative definite. As a consequence, Eq.~3.4!

forces us to work with aZ k
f̄f̄,0. Hence, in thef sector,

DkS is negative definite and, at least at a naive lev
exp(2DkS) seems to enhance rather than suppress the
momentum modes. As we discussed in detail in Ref.@6# we
nevertheless believe that the rule~3.4!, i.e. allowing for

Z k
f̄f̄,0, is correct also in this case. We emphasize that

RHS of the flow equation, contrary to the Euclidean pa
integral, is perfectly well-defined even ifS and Gk are not
positive definite.

At this point it should be mentioned that the situation w
respect to the positivity of the action improves considera
by including higher-derivative terms inS and the truncated
Gk since these actions are bounded below, provided
choose the correct sign in front of these higher-derivat
terms. Furthermore, their quadratic forms are positive d
nite at least for sufficiently large momenta, and so is
cutoff. For a study of the evolution equation forR2-gravity
we refer to@24#.

As compared to the original paper@6#, the cutoff~3.5! has
a rather different structure which is due to the fact that it
formulated in terms of the component fields arising form t
TT decomposition. Contrary to the original one of Ref.@6#,
the new cutoff~3.5! is defined forall values ofa. This is one
of the main advantages of the new approach.

Note that in Refs.@22,19# where the TT decomposition
was used onSd the actual construction of the effective ave
age action and its RG equation was omitted and has b
replaced by anad hocmodification of the standard one-loo
determinants. NoDkS has been specified at the compone
field level. Hence the scale dependent action constructe
this manner has no reason to respect the general properti
an effective average action@2#. Despite the use of the com
ponent fields in@22,19# their cutoff seems to be more simila
to the original one in@6# than to the new one of the prese
3-11
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paper. In fact, it represents ana-dependent generalization o
the cutoff in@6#, in the sense that the latter is recovered fro
the one of Refs.@22,19# by settinga51.

From now on we will refer to the cutoff used in the orig
nal paper@6# and in@17,22,19# as the cutoff oftype A. How-
ever, one has to keep in mind that the existence of a co
spondingDkS is guaranteed only fora51, i.e. the case
considered in@6,17#. Furthermore the cutoff~3.5! of the
present paper will be referred to as the cutofftype B; it is
defined for all values ofa.

Each cutoff type contains the shape functionR(0). A par-
ticularly suitable choice is the exponential shape function

R(0)~y!5y@exp~y!21#21. ~3.7!

In order to check the scheme independence of unive
quantities we employ a one-parameter ‘‘deformation’’ of E
~3.7!, theclass of exponential shape functions,

R(0)~y;s!5sy@exp~sy!21#21, ~3.8!

with s parametrizing the profile ofR(0) @19#. Another admis-
sible choice is the followingclass of shape functions wit
compact support:

R(0)~y;b!5H 1, y<b,

exp†~y21.5!21exp@~b2y!21#‡, b,y,1.5,

0, y>1.5.

~3.9!

HerebP@0,1.5) parametrizes the profile ofR(0).
For our analysis of the flow equation in Sec. V we sh

use both cutoff types with both classes of shape function

IV. THE EINSTEIN-HILBERT TRUNCATION

A. The ansatz

In this section we use a simple truncation to derive
renormalization group flow of the Newton and the cosm
logical ‘‘constant’’ by means of the truncated flow equati
~3.3!. In our example we assume that, at the UV scalek̂
→`, gravity is described by the classical Einstein-Hilbe
action ind dimensions,

Ḡ k̂@g#5S@g#5
1

16pḠ
E ddxAg$2R~g!12l̄%. ~4.1!

For the investigation of the evolution ofGk@g,ḡ# towards
smaller scalesk, k̂ we consider a truncated action function
of the following form:

Gk@g,ḡ#52k2ZNkE ddxAg$2R~g!12l̄k%

1k2
ZNk

a E ddxAḡ ḡmn~F m
abgab!~F n

rsgrs!.

~4.2!

Equation~4.2! is obtained fromS1Sgf by replacing
02501
e-

al
.

l
.

e
-

t

Ḡ→Gk[ZNk
21Ḡ, l̄→l̄k , a→ZNk

21a ~4.3!

so that its form agrees with that of the gravitational sector
the ansatz~3.1! with

Ĝk@g,ḡ#5k2
ZNk21

a E ddxAḡ ḡmn~F m
abgab!~F n

rsgrs!.

~4.4!

Generally speaking also the gauge fixing parametea
should be treated as a running quantity,a→ak . Fortunately
there is a simple shortcut which avoids an explicit compu
tion of the correspondingb-function. In fact, there are gen
eral arguments showing thata should have a~IR attractive!
fixed point ata* 50. This means that the initial conditio
a k̂50 leads toak50 for all k< k̂. Thus, even using the
truncation with a constanta, we can take the correct ‘‘flow’’
of the gauge fixing term into account simply by settinga
50.

In Yang-Mills theory the existence of the fixed pointa*
50 has been demonstrated for a truncation containing a
variant gauge fixing@29#, while for the axial gauge a non
perturbative proof is available@30#. The following general
argument5 suggests that this fixed point should exist in a
gauge theory, including gravity@30#. In the ordinary func-
tional integral, the limita→0 corresponds to a sharp imple
mentation of the gauge fixing condition, i.e. exp(2Sgf) be-
comes proportional to d@Fm#. The domain of the
*Dhmn-integration consists of thosehmn’s which satisfy the
gauge condition exactly,Fm50. Adding the IR cutoff atk
amounts to suppressing some of thehmn-modes while retain-
ing the others. But since all of them satisfyFm50, it is clear
that a variation ofk cannot change the domain of thehmn

integration. The delta-functionald@Fm# continues to be
present for any value ofk if it was there originally. Hencea
vanishes for arbitraryk.

B. Projecting the flow equation

The k-dependent couplings in Eq.~4.3! satisfy the initial
conditions l̄ k̂5l̄ and ZNk̂51 which impliesGk̂5Ḡ. Here
the UV scalek̂ is taken to be large but finite. The evolutio
of ZNk and l̄k towards smaller scales may now be det
mined as follows. As a first step the ansatz~4.2! is inserted
into both sides of the truncated flow equation~3.3!. Then we
may setgmn5ḡmn . As a consequence, the gauge fixing te
drops out from the LHS which then reads

] tGk@ ḡ,ḡ#52k2E ddxAḡ@2R̄~ ḡ!] tZNk12] t~ZNkl̄k!#.

~4.5!

Performing a derivative expansion on the RHS we may
tract those contributions which are proportional to the ope
tors spanning the LHS, i.e.*ddxAg and *ddxAgR. Then,
comparing the coefficients of these operators yields a sys

5We are grateful to J. M. Pawlowski for a discussion of this poi
3-12
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of coupled differential equations forZNk andl̄k . It describes
the projection of the renormalization group flow onto t
two-dimensional subspace of the space of all action funct
als which is spanned by*ddxAg and*ddxAgR.

It is important to note that during this calculation we m
insert any metricḡmn that is general enough to allow for
unique identification of the operators*ddxAg and*ddxAgR.
In practice it proves particularly convenient to exploit th
freedom by choosing the gravitational background to
maximally symmetric. Such spaces form a special class
Einstein spaces and are characterized by

R̄mnrs5
R̄

d~d21!
~ ḡmrḡns2ḡmsḡnr!, R̄mn5

R̄

d
ḡmn

~4.6!

with the curvature scalarR̄ considered a constant numb
rather than a functional of the metric. In the following w
restrict our considerations to maximally symmetric spa
with positive curvature scalarR̄.0, i.e.d-spheresSd. For d
fixed, Sd is parametrized by the radiusr of the spheres,
which is related to the curvature scalar and the volume in
usual way,

R̄5
d~d21!

r 2
, E ddxAḡ5

GS d

2D
G~d!

~4pr 2!d/2. ~4.7!

Before continuing with the evaluation of the RHS of th
flow equation we have to comment on the properties of fie
defined on spherical backgrounds. According to Appendix
we may expand the quantum and classical component fi
in terms of spherical harmonicsTmn

lm , Tm
lm , Tlm, which form

complete sets of orthogonal eigenfunctions with respec
the corresponding covariant Laplacians. The expansion
hmn

T , f, Cm, C̄m and their classical counterparts can be
ferred directly from Eq.~D3!. The remaining componen
fields are expanded according to

jm~x!5(
l 52

`

(
m51

Dl (d,1)

j lmTm
lm~x!,

s~x!5(
l 52

`

(
m51

Dl (d,0)

s lmTlm~x!,

h~x!5(
l 51

`

(
m51

Dl (d,0)

h lmTlm~x!,

h̄~x!5(
l 51

`

(
m51

Dl (d,0)

h̄ lmTlm~x!. ~4.8!

Similar expansions hold for the associated classical field
Note that in Eq.~4.8! the summations donot start at l

51 for vectors and atl 50 for scalars as in Eq.~D3!, but at
l 52 for jm ands, and atl 51 for the scalar ghost fields. Th
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modes omitted here are the KV’s (Tm
l 51,m), the solutions of

the scalar equation~2.12! which are in one-to-one correspon
dence with the PCKV’s (Tl 51,m), and the constants
(Tl 50,m51). As discussed in Sec. II B, the fundamental fiel
obtain no contribution from these modes. Therefore th
have to be excluded from Eq.~4.8!.

This exclusion is also of importance for the momentu
dependent field redefinitions~2.21! because they would no
be well-defined otherwise, as can be seen e.g. from

ŝ~x!5(
l 52

`

(
m51

Dl (d,0) s lm

AL l~d,0!S L l~d,0!2
R̄

d21
D

Tlm~x!.

~4.9!

Equation ~4.9! follows from inverting Eq.~2.21! and then
inserting Eq.~4.8!. The eigenvalues corresponding to th
modes excluded, i.e.L0(d,0)50 and L1(d,0)5R̄/(d21)
~see Table I in Appendix D!, would lead to a vanishing de
nominator in Eq.~4.9!. Similar arguments hold for the othe
fields in Eq.~2.21!.

We may now split the quantum fieldf into a partf1
spanned by the same set of eigenfunctions ass, and a part
f0 containing the contributions from the remaining mode

f~x!5f0~x!1f1~x!,

f0~x!5(
l 50

1

(
m51

Dl (d,0)

f lmTlm~x!,

f1~x!5(
l 52

`

(
m51

Dl (d,0)

f lmTlm~x!.

~4.10!

The orthogonality of the spherical harmonics impli
^f1 ,f0&5^s,f0&50 so that ^f,f&5^f0 ,f0&1^f1 ,f1&
and in particular̂ s,f&5^s,f1&. As a consequence, decom
posingf according to Eq.~4.10! ensures that any nonzer
term bilinear in the scalar fields is of such a form that t
scalars involved are spanned by the same set of eigenf
tions. The same is true for the corresponding classical fie
f̄0 and f̄1.

C. Evaluation of the functional trace

Let us now return to the evaluation of the flow equatio
On the RHS we need the operatorGk

(2)@g,ḡ#. For our pur-
poses it is sufficient to determine this operator atgmn

5ḡmn . It may be derived by expandingGk@g,ḡ# according
to

Gk@ ḡ1h̄,ḡ#5Gk@ ḡ,ḡ#1O~ h̄!1Gk
quad@ h̄;ḡ#1O~ h̄3!

~4.11!

and retaining only the part quadratic inh̄mn , i.e. Gk
quad@ h̄;ḡ#.

For our truncation it takes the form
3-13
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Gk
quad@ h̄;ḡ#5k2ZNkE ddxAḡ h̄mnH 2F1

2
dr

mds
n 1

122a

4a
ḡmnḡrsGD̄21

1

4
@2dr

mds
n 2ḡmnḡrs#~R̄22l̄k!1ḡmnR̄rs2ds

mR̄ r
n

2R̄ r
n

s
m 1

12a

a
@ ḡmnD̄rD̄s2ds

mD̄nD̄r#J h̄rs ~4.12!

whereḡmn is fixed but still arbitrary. In order to~partially! diagonalize this quadratic form we insert the family of spheri
background metrics into Eq.~4.12! and decomposeh̄mn according to Eq.~2.33!. Then we use the classical analog of Eq.~4.10!
to decomposef̄ as well. This leads to

Gk
quad@ h̄;ḡ#5k2ZNkE ddxAḡ

1

2 H h̄mn
T @2D̄21AT~d!R̄22l̄k#h̄

Tmn1
2

a
j̄m@2D̄21AV~d,a!R̄22al̄k#j̄

m

1CS2~d,a!S s̄@2D̄21AS2~d,a!R̄1BS2~d,a!l̄k#s̄12CS3~d,a!f̄1A2D̄2A2D̄22
R̄

d21
s̄

1CS1~d,a! (
f̄P$f̄0 ,f̄1%

f̄@2D̄21AS1~d,a!R̄1BS1~d,a!l̄k#f̄ D J . ~4.13!
l-
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Here theA’s, B’s, andC’s are functions of the dimensiona
ity d and the gauge parametera. The explicit expressions fo
these coefficients can be found in Appendix F.

Note that this partial diagonalization simplifies furth
calculations considerably, and this is the main reason
using the decomposition~2.33! and specifying a concret
background. In contrast to the casea51 considered in@6#, a
complete diagonalization cannot be achieved by merely s

ting off the trace part fromh̄mn since Eq.~4.12! contains
additional terms proportional to 12a which introduce mix-
ings between the traceless part andf. To be more precise, i

is the term*ddxAḡh̄mn@ ḡmnD̄rD̄s2ds
mD̄nD̄r#h̄rs that gives

rise to such cross terms.
In terms of the component fields these cross terms

down to a purely scalars̄-f̄ mixing term that vanishes fo
the spherical harmonicsTl 50,m51 and Tl 51,m. Since these

modes contribute tof̄ ~but not to s̄) we cannot directly
invert the associated matrix differential operat

„(Gk
(2)) i j …i , j P$h̄T,j̄,s̄,f̄% . As a way out, we splitf̄ according to

Eq. ~4.10! into f̄0 and f̄1. This has the effect that only

mixings between the scalarss̄ and f̄1 survive, which have
the same set of eigenfunctionsTlm starting atl 52. Hence
the resulting matrix differential operato
„(Gk

(2)) i j …i , j P$h̄T,j̄,f̄0 ,s̄,f̄1% is invertible, but since this addi

tional split off affects the matrix structure of this operator
leads to a slightly modified flow equation. In fact, on t
RHS of Eq.~3.3! the summation in the gravitational sect
now runs over the set of fields$h̄T,j̄,f̄0 ,s̄,f̄1%, with
(Rk) f̄0f̄0

[(Rk) f̄1f̄1
[(Rk) f̄f̄ and (Rk) s̄f̄1

[(Rk) s̄f̄ .
In the context of the Einstein-Hilbert truncation it is on

thea dependence that introduces mixings off̄ and the trace-
less part ofh̄mn and therefore necessitates the decomp
02501
r

it-

il
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tions ~2.9!, ~4.10!. In general the inclusion of higher deriva
tive terms like *ddxAgR2 and of matter fields leads to
similar mixings.

In order to determine the contributions from the gho
appearing on the RHS of Eq.~3.3! we setgmn5ḡmn in Sgh
and assume thatḡmn corresponds to a spherical backgroun
Then we decompose the ghost fields according to Eq.~2.33!
which leads to

Sgh@0,v,v̄;g#5A2E ddxAgH v̄m
TF2D22

R

dGvTm

1%̄F2D222
R

dG%J . ~4.14!

From now on the bars are omitted from the metric, the c
vature and the operatorsD2 and Pk . Note that the decom-
position of the ghosts is not really necessary, but it allows
a comparison with the results obtained in@21#.

At this point we can continue with the adaption of th
cutoff to the operatorsGk

(2) and Sgh
(2) of Eqs. ~4.13!, ~4.14!.

According to the rule~3.4! the Zk’s have to be chosen as

Z k
h̄Th̄T

5ZNk , Z k
j̄ j̄5

2

a
ZNk ,

Z k
f̄1s̄

5CS2~d,a!CS3~d,a!ZNk ,

Z k
s̄s̄5CS2~d,a!ZNk ,

Z k
f̄0f̄05Z k

f̄1f̄15CS2~d,a!CS1~d,a!ZNk ,

Z k
v̄TvT

5Z k
%̄%5A2. ~4.15!
3-14
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Thus, forg5ḡ the nonvanishing entries of the matrix diffe
ential operatorsGk

(2)1Rk andSgh
(2)1Rk take the form

~Gk
(2)@g,g#1Rk! h̄Th̄T5ZNkk

2@Pk1AT~d!R22l̄k#,

~Gk
(2)@g,g#1Rk!j̄j̄5ZNkk

2
2

a
@Pk1AV~d,a!R22al̄k#,

~Gk
(2)@g,g#1Rk!s̄s̄5ZNkk

2CS2~d,a!@Pk1AS2~d,a!R

1BS2~d,a!l̄k#,

~Gk
(2)@g,g#1Rk!f̄1s̄5~Gk

(2)@g,g#1Rk!s̄f̄1

5ZNkk
2CS2~d,a!CS3~d,a!APk

3APk2
R

d21
,

02501
~Gk
(2)@g,g#1Rk!f̄0f̄0

5~Gk
(2)@g,g#1Rk!f̄1f̄1

5ZNkk
2CS2~d,a!CS1~d,a!@Pk

1AS1~d,a!R1BS1~d,a!l̄k#,

~Sgh
(2)@g,g#1Rk! v̄TvT52~Sgh

(2)@g,g#1Rk!vTv̄T

5A2FPk2
R

dG ,
~Sgh

(2)@g,g#1Rk!%̄%52~Sgh
(2)@g,g#1Rk!%%̄

5A2FPk22
R

dG . ~4.16!

Here we set (Sgh
(2)@0,v,v̄;g#)c1c2

[(Sgh
(2)@g,g#)c1c2

for

c1 ,c2P Ī 2.
Now we are in a position to write down the RHS of th

flow equation withg5ḡ. We shall denote itSk(R) in the
following. In Sk(R) we need the inverse operators (Gk

(2)

1Rk)
21 and (Sgh

(2)1Rk)
21. The inversion is carried out in

Appendix B 1. Inserting the inverse operators intoSk(R)
leads to
e

traction
est two
Sk~R!5Tr(2ST2)@„Pk1AT~d!R22l̄k…
21N#1Tr(1T)8 @„Pk1AV~d,a!R22al̄k…

21N#

1Tr(0)9 F„Pk1AS3~d!R22l̄k…
21

„Pk1AS4~d,a!R22al̄k…
21H „FS1~d,a!Pk1AS5~d,a!R22~a11!l̄k…N

1FS2~d,a!APkAPk2
R

d21

1

2ZNk
] tFZNkSAPkAPk2

R

d21
2A2D2A2D22

R

d21D G J G
22Tr(1T)F S Pk2

R

d D 21

N0G22Tr8(0)F S Pk22
R

d D 21

N0G
1

1

2ZNk
(
l 50

1 FDl~d,0!
] t@ZNkk

2R(0)
„L l~d,0!/k2

…#

L l~d,0!1k2R(0)
„L l~d,0!/k2

…1AS1~d,a!R1BS1~d,a!l̄k
G . ~4.17!

Here we set

N5~2ZNk!
21] t@ZNkk

2R(0)~2D2/k2!#

5F12
1

2
hN~k!Gk2R(0)~2D2/k2!1D2R(0)8~2D2/k2!,

N05221] t@k2R(0)~2D2/k2!#5k2R(0)~2D2/k2!1D2R(0)8~2D2/k2! ~4.18!

where

hN~k![2] tln ZNk ~4.19!

is the anomalous dimension of the operator*ddxAgR and the prime atR(0) denotes the derivative with respect to th
argument. Furthermore, the newA’s andF ’s introduced above are again functions ofd anda, tabulated in Appendix F.

In Eq. ~4.17! we refined our notation concerning the primes at the traces. From now on one prime indicates the sub
of the contribution from the lowest eigenvalue, while two primes indicate that the modes corresponding to the low
eigenvalues have to be excluded.
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The next step is to extract the contributions proportional to*ddxAg and*ddxAgR by expandingSk(R) with respect toR
or r, respectively. Since*ddxAg}r d, *ddxAgR}r d22, only terms of orderr d and r d22 are needed. This leads to

Sk~R!5Tr(2ST2)@~Pk22l̄k!
21N#1Tr(1T)8 @~Pk22al̄k!

21N#1Tr(0)9 @~Pk22l̄k!
21N#1Tr(0)9 @~Pk22al̄k!

21N#

22Tr(1T)@Pk
21N0#22Tr(0)8 @Pk

21N0#2RH AT~d!Tr(2ST2)@~Pk22l̄k!
22N#1AV~d,a!Tr(1T)8 @~Pk22al̄k!

22N#

1AS3~d!Tr(0)9 @~Pk22l̄k!
22N#1AS4~d,a!Tr(0)9 @~Pk22al̄k!

22N#1
2

d
Tr(1T)@Pk

22N0#1
4

d
Tr(0)8 @Pk

22N0#

2
dd,2

4p E d2xAg
] t~ZNkk

2!

ZNk~k222l̄k!
J 1O~r ,d22!. ~4.20!

HereO(r ,d22) means that terms}r n with powersn,d22 are neglected.
The term in Eq.~4.20! proportional todd,2 arises from the last term in Eq.~4.17!. Contrary to the other terms of Eq.~4.17!,

its expansion does not containd-dependent powers ofr, but is of the form(m50
` b2mr 22m with $b2m% a set ofr-independent

coefficients. As for comparing powers ofr, this has the following consequence. Since, for allm>0 andd.0, 22m5d
22 is satisfied only ifm50 andd52, and since22m5d cannot be satisfied at all, this term contributes to the evolu
equation only in the two-dimensional case. Using Eq.~4.7! the piece contributing, i.e.b2m50r 0, may be expressed in terms o
the operator*ddxAgR which yields the last term in Eq.~4.20!.

The traces appearing in Eq.~4.20! are evaluated in Appendix B 2 using heat kernel techniques. Then combining the
with the LHS of the flow equation, Eq.~4.5!, and comparing the coefficients of the invariants*ddxAg and*ddxAgR leads to
the desired system of coupled differential equations forZNK and l̄k . We obtain

] t~ZNkl̄k!5~4k2!21~4p!2d/2kdH 1

2
d~d21!Fd/2

1 ~22l̄k /k2!1d Fd/2
1 ~22al̄k /k2!2

1

2
hN~k!F1

2
d~d21!F̃d/2

1 ~22l̄k /k2!

1d F̃d/2
1 ~22al̄k /k2!G22d Fd/2

1 ~0!J , ~4.21!

] tZNk52~2k2!21~4p!2d/2kd22H c1~d! Fd/221
1 ~22l̄k /k2!1c2~d!Fd/221

1 ~22al̄k /k2!1c3~d!Fd/2
2 ~22l̄k /k2!

1c4~d,a!Fd/2
2 ~22al̄k /k2!2

1

2
hN~k!@c1~d!F̃d/221

1 ~22l̄k /k2!1c2~d!F̃d/221
1 ~22al̄k /k2!1c3~d!

3F̃d/2
2 ~22l̄k /k2!1c4~d,a!F̃d/2

2 ~22al̄k /k2!#22c2~d!Fd/221
1 ~0!1c5~d!Fd/2

2 ~0!13dd,2S 12
1

2
hN~k! D

3F 1

122l̄k /k2
2

1

122al̄k /k2G J . ~4.22!

HereFn
p , F̃n

p are cutoff-dependent ‘‘threshold’’ functions defined as

Fn
p~w![H 1

G~n!
E

0

`

dy yn21
R(0)~y!2yR(0)8~y!

„y1R(0)~y!1w…

p
, n.0,

~11w!2p, n50,

F̃n
p~w![H 1

G~n!
E

0

`

dy yn21
R(0)~y!

„y1R(0)~y!1w…

p
, n.0,

~11w!2p, n50.

~4.23!
025013-16
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The coefficientsci are given by

c1~d![
d322d2211d212

12~d21!
, c2~d![

d226

6d
,

c3~d![2
d324d217d28

2~d21!
,

c4~d,a![2
ad~d22!2d21

d
, c5~d![2

2~d11!

d
.

~4.24!

In Eq. ~4.22! the terms proportional todd,2 arise not only
from the last term of Eq.~4.20!, but also by evaluating the
‘‘primed’’ traces, i.e., by subtracting the contributions com
ing from unphysical modes, see Appendix B 2 for details.
these contributions are obtained by expanding various fu
tions f (R) with respect toR and retaining only the term o
zeroth order,f (0). As we argued above, these are the on
pieces of f which may contribute to the evolution in th
truncated parameter space. Furthermore, the heat kerne
pansions of the traces corresponding to differentially c
strained fields introduce additional contributions}dd,2 into
Eq. ~4.22!.

In Appendix C we concentrate on the 4-dimensional c
and compare our result forSk(R) and for the corresponding
RG flow of ZNk and l̄k with the one of Ref.@21# where a
cutoff of type B is used, too.

D. The system of flow equations forgk and lk

Now we introduce the dimensionless, renormalized Ne
ton constant

gk[kd22Gk[kd22ZNk
21Ḡ ~4.25!

and the dimensionless, renormalized cosmological const

lk[k22l̄k ~4.26!

whereGk denotes the corresponding dimensionful, renorm
ized Newton constant at scalek. Inserting Eq.~4.26! into
] t(ZNkl̄k) leads to the relation

] tlk52„22hN~k!…lk132p gkk
2k2d] t~ZNkl̄k!.

~4.27!

Then, by using Eq.~4.21!, we obtain the following differen-
tial equation for the dimensionless cosmological constan

] tlk5bl~lk ,gk ;a,d!

[A1~lk ,gk ;a,d!1hN~k!A2~lk ,gk ;a,d!

~4.28!

The b-function bl contains the quantitiesA1 andA2 which
are defined as
02501
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A1~lk ,gk ;a,d![22lk1~4p!12d/2gk$d~d21!

3Fd/2
1 ~22lk!12d Fd/2

1 ~22alk!

24d Fd/2
1 ~0!%,

A2~lk ,gk ;a,d![lk2~4p!12d/2gkH 1

2
d~d21!

3F̃d/2
1 ~22lk!1d F̃d/2

1 ~22alk!J .

~4.29!

The correspondingb-function for gk may be determined a
follows. Taking the scale derivative of Eq.~4.25! leads to

] tgk5bg~lk ,gk ;a,d![@d221hN~k!#gk . ~4.30!

For the anomalous dimensionhN(k) we obtain from Eq.
~4.22!

hN~k!5gkB1~lk ;a,d!1hN~k!gkB2~lk ;a,d!
~4.31!

with B1 , B2 functions oflk , d anda given by

B1~lk ;a,d![4~4p!12d/2H c1~d!Fd/221
1 ~22lk!

1c2~d!Fd/221
1 ~22alk!1c3~d!Fd/2

2 ~22lk!

1c4~d,a!Fd/2
2 ~22alk!22c2~d!Fd/221

1 ~0!

1c5~d!Fd/2
2 ~0!13dd,2

3F 1

122lk
2

1

122alk
G J ,

B2~lk ;a,d![22~4p!12d/2H c1~d!F̃d/221
1 ~22lk!

1c2~d!F̃d/221
1 ~22alk!1c3~d!F̃d/2

2 ~22lk!

1c4~d,a! F̃d/2
2 ~22alk!13dd,2

3F 1

122lk
2

1

122alk
G J . ~4.32!

Equation~4.31! may now be solved for the anomalous d
mension in terms oflk , gk , a andd:

hN~k!5
gkB1~lk ;a,d!

12gkB2~lk ;a,d!
. ~4.33!

The system of coupled flow equations~4.28!, ~4.30! is the
main result of this section.

E. Comparing the cutoffs A and B

Let us compare the flow equations~4.28!, ~4.30! of the
present paper with those obtained in Ref.@6#. Reference@6#
covers the casea51 only, and the cutoff used there has
3-17
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different structure than the present one. In Ref.@6#, theDkS
for the cutoff A is formulated at the level of thecomplete
field hmn , i.e., symbolically,DkS}*hmnR kh

mn, while the
cutoff B of the present paper is based upon a similar ac
for the component fields:DkS}*hmn

T Rkh
Tmn1*jmR kj

m

1•••.
For a51 the newb-function forlk , bl , agrees perfectly

with the result in@6#, whereas the coefficientsB1 , B2 in the
b-function forgk , bg , do not coincide with the correspond
ing results derived there. However, with both cutoffs the
coefficients are of the form

B1~lk ;a51,d!5
1

3
~4p!12d/2kd22$e1~d!Fd/221

1 ~22lk!

1e2~d!Fd/2
2 ~22lk!1e3~d!Fd/221

1 ~0!

1e4~d!Fd/2
2 ~0!%,

B2~lk ;a51,d!52
1

6
~4p!12d/2kd22$e1~d!

3F̃d/221
1 ~22lk!1e2~d!F̃d/2

2 ~22lk!%.

~4.34!

In the present paper~cutoff B! the coefficientsei are ob-
tained as

e1~d!5
d4213d2224d112

d~d21!
,

e2~d!526
d422d32d224d12

d~d21!
,

e3~d!524
d226

d
, e4~d!5224

d11

d
~4.35!

while in @6# ~cutoff A! they are given by

e1~d!5d~d11!, e2~d!526d~d21!,

e3~d!524d, e4~d!5224. ~4.36!

Upon subtracting the coefficients in Eq.~4.35! from those in
Eq. ~4.36! we obtain De152De2512(d212d21)/„d(d
21)… andDe352De45224/d. Quite remarkably, the sum
of the deviationsDei vanishes not only in total but als
separately for the gravitational contributions, involvinge1
ande2, and the contributions from the ghosts, which cont
e3 ande4. Obviously, this amounts to a shift from the grav
tational (p51,n5d/221) sector to the (p52,n5d/2) sec-
tor as well as to a shift between the corresponding gh
sectors. The simplicity of this result is somewhat mysterio
02501
n

e

st
.

V. THE FIXED POINTS

A. Fixed points, critical exponents, and nonperturbative
renormalizability

Because of its complexity it is impossible to solve t
system of flow equations forgk and lk , Eqs. ~4.28! and
~4.30!, exactly. Even a numerical solution would be a form
dable task. However, it is possible to gain important info
mation about the general structure of the RG flow by look
at its fixed point structure.

Given a set ofb-functions corresponding to an arbitrar
set of dimensionless essential couplings gi(k), it is often pos-
sible to predict the scale dependence of the couplings
very small and/or very large scalesk by investigating their
fixed points. The fixed points are those points in the sp
spanned by the gi where allb-functions vanish.~The essen-
tial couplings are those combinations of the couplings
pearing in the action functional that are invariant under po
transformations of the fields.! Fixed points are characterize
by their stability properties. A given eigendirection of th
linearized flow is said to be UV or IR attractive~or stable! if,
for k→` or k→0, respectively, the trajectories are attract
towards the fixed point along this direction. The UV critic
hypersurface in the space of all couplings is defined to c
sist of all trajectories that run into the fixed point fork→`.

In quantum field theory, fixed points play an importa
role in the modern approach to renormalization theory@3#. At
a UV fixed point the infinite cutoff limit can be taken in
controlled way. As for gravity, Weinberg@16# argued that a
theory described by a trajectory lying on afinite-dimensional
UV critical hypersurface of some fixed point is presumab
free from unphysical singularities. It is predictive since
depends only on afinite number of free~essential! param-
eters. In Weinberg’s words, such a theory isasymptotically
safe. Asymptotic safety has to be regarded as a generali
nonperturbative version of renormalizability. It covers t
class of perturbatively renormalizable theories, whose i
nite cutoff limit is taken at the Gaussian fixed point g* i50,
as well as those perturbatively nonrenormalizable theo
which are described by a RG trajectory on a finit
dimensional UV critical hypersurface of a non-Gauss
fixed point g* iÞ0 and are nonperturbatively renormalizab
therefore@16#.

Let us now consider the system of differential equatio

k ]kgi~k!5bi~g! ~5.1!

for a set of dimensionless essential couplings g(k)
[$g1(k), . . . ,gn(k)%. We assume that g* is a fixed point of
Eq. ~5.1!, i.e. bi(g* )50 for all i 51, . . . ,n. We linearize the
RG flow about g* which leads to

k ]kgi~k!5(
j 51

n

Bi j „gj~k!2g* j… ~5.2!

where Bi j [] jbi(g* ) are the entries of the stability matri
B5(Bi j ). Diagonalizing B according to S21BS5
2diag(u1 , . . . ,un), S5(V1, . . . ,Vn), whereVI is the right
eigenvector ofB with eigenvalue2u I we have
3-18
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(
j 51

n

Bi j Vj
I52u IVi

I , I 51, . . . ,n. ~5.3!

The general solution to Eq.~5.2! may be written as

gi~k!5g* i1(
I 51

n

CIVi
I S k0

k D u I

. ~5.4!

Here

CI[(
j 51

n

~S21! I j gj~k0! ~5.5!

are arbitrary real parameters andk0 is a reference scale.
Obviously the fixed pointg* is UV attractive~i.e. attrac-

tive for k→`) only if all CI corresponding to negativeu I
,0 are set to zero. Therefore the dimensionality of the
critical hypersurface equals the number of positiveu I.0.
Conversely, setting to zero allCI corresponding to positive
u I , g* becomes an IR attractive fixed point~approached in
the limit k→0) with an IR critical hypersurface whose d
mensionality equals the number of negativeu I .

In a slight abuse of language we shall refer to theu I ’s as
the critical exponents.

Strictly speaking, the solution~5.4! and its above interpre
tation is valid only in such cases where all eigenvalue
2u I are real, which is not guaranteed since the matrixB is
not symmetric in general. If complex eigenvalues occur o
has to consider complexCI ’s and to take the real part of Eq
~5.4!, see below. Then the real parts of the critical expone
determine which directions in coupling constant space
attractive or repulsive.

At this point it is necessary to discuss the impact a cha
of the cutoff scheme has on the scaling behavior. Since
path integral forGk depends on the cutoff scheme, i.e. on t
DkS chosen, it is clear that the couplings and their fixed po
values are scheme dependent. Hence a variation of the c
scheme, i.e. ofRk , induces a change in the correspondi
B-matrix. So one might naively expect that also its eigenv
ues, the critical exponents, are scheme dependent. In
this is not the case. According to the general theory of cr
cal phenomena and a recent reanalysis in the framewor
the exact RG equations@18# any variation of the cutoff
scheme can be generated by a specific coordinate tran
mation in the space of couplings with the cutoff held fixe
Such transformations leave the eigenvalues of theB-matrix
invariant, so that the critical behavior near the correspond
fixed point is universal. The positions of fixed points a
scheme dependent but their~non!existence and the qualita
tive structure of the RG flow are universal features. The
fore a truncation can be considered reliable only if it predi
the same fixed point structure for all admissible choices
Rk .

In the context of the Einstein-Hilbert truncation the spa
of couplings is parametrized by g15l and g25g. The
b-functions occurring in the two flow equations

] tlk5bl~lk ,gk!, ] tgk5bg~lk ,gk! ~5.6!
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are given in Eqs.~4.28! and~4.30!, respectively. As we shal
see in subsection B, they have a trivial zero atl* 5g* 50,
referred to as theGaussian fixed point.The analysis of sub-
section C reveals that there exists also anon-Gaussian fixed
point at l* Þ0, g* Þ0. In subsection C we study its cuto
dependence and the cutoff dependence of the associated
cal exponents employing the aboveb-functions of type B as
well as those of Refs.@22,19# based on the cutoff type A
with the families of shape functions~3.8! or ~3.9! inserted.

B. The Gaussian fixed point

In this subsection we discuss the features of the Gaus
fixed point (l* ,g* )5(0,0). In order to investigate the RG
flow in its vicinity we expand theb-functions in powers ofl
andg according to Eq.~H5! of Appendix H and read off the
B-matrix. It takes the form

B5S 22 ndd

0 d22D . ~5.7!

Herend is a d-dependent parameter defined as

nd[~d23!~4p!12d/2Fd/2
1 ~0!. ~5.8!

Diagonalizing the matrix~5.7! yields the~obviously univer-
sal! critical exponentsu152 andu2522d which are asso-
ciated with the eigenvectorsV15(1,0)T and V25(nd,1)T.
Hence, for the linearized system obtained from Eq.~H5! the
solution ~5.4! assumes the following form:

lk5~lk0
2ndgk0

!S k0

k D 2

1ndgk0S k

k0
D d22

,

gk5gk0S k

k0
D d22

. ~5.9!

Since the expandedb-function bg of Eq. ~H5! is
lk-independent up to terms of third order in the couplin
we can easily calculate also the next-to-leading approxim
tion for gk near the fixed point. In terms of the dimensionf
quantityGk this improved solution reads

Gk5Gk0
@12vdGk0

~k0
d222kd22!#21 ~5.10!

with

vd[2
1

d22
B1~0;a,d!

522~4p!12d/2H ~d12!~d326d213d26!

6d~d21!~d22!
Fd/221

1 ~0!

2S d424d319d228d22

d~d21!~d22!
12a DFd/2

2 ~0!J ~5.11!

a d- anda-dependent parameter. Fork!uvdGk0
u21/(d22) and

with the reference scalek050 ~which is admissible only for
trajectories lying on the IR critical hypersurface of the fix
point! Eq. ~5.10! yields
3-19
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Gk5G0@12vdG0kd221O~G0
2k2(d22)!#. ~5.12!

For the dimensionful cosmological constant we obtain, fr
Eq. ~5.9!,

l̄k5l̄k0
1ndGk0

~kd2k0
d!. ~5.13!

Apart from the different expression ofvd due to the new
cutoff, the solutions~5.12! and ~5.13! coincide ind54 di-
mensions with those derived in Ref.@6# by using a similar
approximation scheme, see Eqs.~5.18! and ~5.25! of this
reference.

Let us now analyze the scaling behavior near (l* ,g* )
5(0,0). Sinceu152.0 theV1-eigendirection, which coin-
cides with thel direction, is IR repulsive~and thus UV
attractive!. For d,2, u2 is positive which implies that the
Gaussian fixed point is UV attractive for any direction in t
2-dimensional parameter space.

For d.2 we haveu2,0 so that theV2 eigendirection is
IR attractive~and UV repulsive!. Hence, in this case both th
UV and the IR critical hypersurface of the Gaussian fix
point are one-dimensional, i.e. they consist of a single tra
tory. For the IR critical trajectory that hits the fixed point
the limit k→0 we have

l̄k5ndGkk
d⇔lk5ndgk ~5.14!

for sufficiently small values ofk @31#, with Gk given by Eq.
~5.12!. SinceFd/2

1 (0) depends on the shape functionR(0), nd

is not a universal quantity. Therefore the slope of the dis
guished trajectory~5.14! is not fixed in a universal manne
This is in accordance with the general expectation that
eigenvalues ofB should be universal, but not its eigenve
tors.

For dÞ2 the parametersFd/221
1 (0) andFd/2

2 (0) appear-
ing in vd are scheme dependent as well. Furthermore,vd is
a function of the gauge parametera. Hencevd is a nonuni-
versal quantity, too. In the most interesting case ofd54
dimensions it takes the form

v45
1

24p
@13F1

1~0!1~55124a!F2
2~0!#. ~5.15!

Since F1
1(0) and F2

2(0) are positive for any admissibl
shape function we can infer from Eq.~5.15! that v4 is posi-
tive for all a.a0 and negative for alla,a0. Here a0

[@213F1
1(0)/F2

2(0)255#/24 is a negative number of orde
unity. Thus, if we identify Einstein gravity with the theor
described by the IR critical trajectory of the Gaussian fix
point, Eq.~5.12! implies that Einstein gravity is antiscreen
ing for all a.a0, i.e. Gk decreases ask increases. On the
other hand ifa,a0 gravity would exhibit a screening be
havior. As argued in Sec. IV A, the gauge parameter sho
be regarded as a scale dependent parameter in an exact
ment where it is expected to approach the fixed point va
a* 50. Settinga50 from the outset we may conclude th
the physicalGk displays the antiscreening behavior found f
a.a0.
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In Ref. @22# a similar result was obtained with a cutoff o
type A, while the above calculation employed the cutoff
The only difference between our result for the behavior
Gk and the one obtained in@22# lies in the slightly differing
value ofa0 which is a scheme dependent parameter. For
cutoff type A,v4[v4

(A) is given by~see@22#!

v4
(A)5

1

6p
@~1816a!F2

2~0!2F1
1~0!# ~5.16!

so thata05@F1
1(0)/F2

2(0)218#/6 in this case, whilen4 is
the same with both cutoffs. Fora51, Eq.~5.16! boils down
to v4

(A)5@24F2
2(0)2F1

1(0)#/(6p) which equals the resul
obtained in the original paper@6#. This is because fora51
the cutoff type A coincides with the one used in Ref.@6#. For
a comparison of this result with the one for the cutoff type
we insert a51 into Eq. ~5.15! which yields v4

(B)

5@13F1
1(0)179F2

2(0)#/(24p). Using the exponentia
shape functionR(0) with s51 we have F1

1(0)5p2/6,
F2

2(0)51 so thatv4
(B)'1.33 for the cutoff type B, which

lies rather close to the valuev4
(A)'1.19 obtained in@6,22#

for the cutoff type A. Furthermore, we haveF2
1(0)52z(3)

wherez denotes the zeta function, and thusn4'0.19 with
both cutoffs.

C. The non-Gaussian fixed point

Now we turn to the nontrivial zeros of the set o
b-functions$bl ,bg% given by Eqs.~4.28!, ~4.30!. Such non-
Gaussian fixed points (l* ,g* )Þ(0,0) satisfy the condition

hN* 522d ~5.17!

which follows immediately from Eq.~4.30!.

1. In 2¿« dimensions

As a warm up we consider the case ofd521« dimen-
sions with 0,u«u!1 which can be dealt with analytically
and for which the existence of a non-Gaussian fixed po
has already been shown@16,6,32–34#. In this case the con-
dition ~5.17! takes the formhN* 52« with

hN* 5
g* ~«!B1„l* ~«!;a,21«…

12g* ~«!B2„l* ~«!;a,21«…
. ~5.18!

Solving Eq.~5.18! for g* («) and expanding the result with
respect to« leads to

g* ~«!52@B1„l* ~0!;a,2…#21«1O~«2!. ~5.19!

Furthermore, expanding alsobl„l* («),g* («);a,21«… with
respect to« and equating equal powers of« yields

l* ~«!5@B1~0;a,2!#21F1
1~0!«1O~«2!. ~5.20!

In particular we obtainl* (0)50 which implies g* («)
52@B1(0;a,2)#21«1O(«2).

The parametersBi(0;a,2), i 51,2, may be obtained from
the zeroth order terms of the expansionsBi(lk ;a,21«)
5Bi

(0)(lk ;a)1Bi
(1)(lk ;a)«1O(«2) which take the form
3-20
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B1
(0)~lk ;a!52

34

3
~122lk!

212
2

3
~122alk!

21

14F1
2~22lk!16F1

2~22alk!2
32

3
,

B2
(0)~lk ;a!5

17

3
~122lk!

211
1

3
~122alk!

21

22F̃1
2~22lk!23F̃1

2~22alk!. ~5.21!

Insertinglk50 into Eq. ~5.21! and using thatF1
2(0)51 is

scheme independent@6# yields

B1~0;a,2!5B1
(0)~0;a!52

38

3
,

B2~0;a,2!5B2
(0)~0;a!5625F̃1

2~0!. ~5.22!

In contrast to the universal quantityB1
(0)(0;a), B2

(0)(0;a)

depends on the shape ofR(0) via F̃1
2(0). However,

B2
(0)(0;a) does not enter the leading order term ofl* («)

andg* («), which may now be written as

l* ~«!52
3

38
F1

1~0!«1O~«2!,

g* ~«!5
3

38
«1O~«2!. ~5.23!

The leading order term ofl* («) is nonuniversal since i
contains the scheme dependent parameterF1

1(0). This is not
the case forg* («) whose leading order contribution has
universal meaning.

Let us now analyze the scaling behavior near the n
Gaussian fixed point~5.23!. One finds that the associate
B-matrix is of the form

B5S 221
12a213

19
«1O~«2! 22F1

1~0!1O~«!

O~«2! 2«1O~«2!
D .

~5.24!

From Eq. ~5.24! we obtain the critical exponentsu152
2@(12a213)/19#«1O(«2) and u25«1O(«2). u1 and u2
are scheme independent up to terms ofO(«2). u1 depends
on the gauge parameter. Fora51 the critical exponents co
incide with those following from theb-functions of Ref.@6#,
where the cutoff type A is used. These findings nicely co
firm that, to lowest order,the critical exponents are the sam
for the cutoffs A and B and are independent of R(0).

For «.0 both critical exponents are positive. Hence t
non-Gaussian fixed point~5.23! is UV attractive for all tra-
jectories so that the condition for the asymptotic safety s
nario is met. It is interesting to investigate whether this res
stabilizes in the sense that more general truncations inc
ing higher powers of the curvature tensor reproduce
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fixed point and lead to a finite-dimensional UV critical h
persurface. In@24# we will discuss this point in detail.

2. Location of the fixed point (dÄ4)

In d54 dimensions, and for the cutoff A, the non
Gaussian fixed point of the Einstein-Hilbert truncation w
first discussed in@17#, and in Ref.@19# the a and R(0) de-
pendence of its projection (0,g* ) onto theg direction has
been investigated. However, since foraÞ1 the cutoff of
type A is introduced by anad hocmodification of the stan-
dard one-loop determinants it is not clear whether it may
expressed in terms of an actionDkS, except for the casea
51 @6#. Since a specification ofDkS is indispensable for the
construction ofGk , the status of the results derived in@19# is
somewhat unclear. In the following we determine the fix
point properties using different cutoffs of type B, for which
DkS is known to exist, and compare them to the analogo
results for the cutoff A.

In a first attempt to determine the non-Gaussian fix
point we neglect the cosmological constant and setlk5l*
50, thereby projecting the renormalization group flow on
the one-dimensional space parametrized byg. In this case the
non-Gaussian fixed point is obtained as the nontrivial so
tion of bg(0,g* ;a,d)50. It is determined in Appendix H
with the result given by Eq.~H2!. In order to get a first
impression of the position ofg* we insert the exponentia
shape function withs51 into Eq. ~H2! and setd54, a
51. We obtaing* '0.590.

Assuming that for the combinedl-g system bothg* and
l* are of the same order of magnitude asg* above we
expand theb-functions about (lk ,gk)5(0,0) and neglect
terms of higher orders in the couplings. Again in Appendix
we determine the non-Gaussian fixed point for the cor
sponding system of differential equations. Inserting the sh
function ~3.7! and settingd54, a51, we find (l* ,g* )
'(0.287,0.751).

In order to determine theexact position of the non-
Gaussian fixed point (l* ,g* ) we have to resort to numerica
methods. Given a starting value for the fixed point, e.g. o
of the approximate solutions above, the program we use
termines a numerical solution which is exact up to an ar
trary degree of accuracy. Under the same conditions
above, i.e.s51, d54, we obtain

~l* ,g* !5H ~0.348,0.272! for a51,

~0.339,0.344! for a50.
~5.25!

Next we study the gauge and scheme dependence o
non-Gaussian fixed point. The scheme dependence is in
tigated by looking at thes dependence introduced via th
family of exponential shape functions~3.8! wheres param-
etrizes the profile ofR(0).

Figure 1 showsg* (a,s) obtained from the approximation
lk5l* 50, while Figs. 2 and 3 display the~exact! functions
g* (a,s) andl* (a,s) resulting from the combinedl-g sys-
tem. In each of these figures the plot on the LHS@i.e. Figs.
3-21
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FIG. 1. g* as a function ofs anda from the approximationlk5l* 50, using~a! the cutoff type A, and~b! the cutoff type B, with the
family of exponential shape functions~3.8! inserted.
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1,2,3~a!# is obtained from the cutoff type A and the one o
the RHS@i.e. Figs. 1,2,3~b!# is obtained from the cutoff type
B used in the present paper.

Our results establish the existence of the non-Gaus
fixed point in a wide range ofa ands values. As expected
the position of the fixed point turns out to bes, i.e. scheme,
dependent, but the crucial point is that it exists for any of
cutoffs employed. This is one of the important results of o
analysis because it gives a first hint at the reliability of t
Einstein-Hilbert truncation.

As for thea dependence,a50 is, in principle, the only
relevant case since according to Sec. IV A,a50 is assumed
to be the physical value of the gauge parameter. In prac
calculationsa51 is often used instead, because this simp
fies the evaluation of the flow equation considerably. In@24#,
for instance, all calculations are performed witha51 for
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this reason. Therefore it is necessary to compare the ga
a50 and a51 in order to judge whether the results o
tained by usinga51 are a sensible approximation to th
physical casea50. Here we see that this is indeed the ca

As for comparing different types of cutoffs, we recogni
from Fig. 1 that, in the approximationlk5l* 50, thes de-
pendence ofg* is much weaker for type B than for type A
Contrary to this, both cutoffs yield nearly the same resu
for g* andl* if we consider the combinedl-g system, see
Figs. 2 and 3. Furthermore, the scheme dependence ofg* in
Fig. 2 is stronger than in Fig. 1~b!, but much weaker than in
Fig. 1~a!. Figure 1~a! reproduces the result of Ref.@19# ob-
tained from the cutoff A, see Fig. 2 of this reference.

It should be noted that we are forced to restrict our co
siderations to shape functions~3.8! with s>1. This is be-
cause fors,1 the numerical integrations are plagued
FIG. 2. The exactg* as a function ofs anda from the combinedl-g system, using~a! the cutoff type A, and~b! the cutoff type B, with
the family of exponential shape functions~3.8! inserted.
3-22
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FIG. 3. The exactl* as a function ofs anda from the combinedl-g system, using~a! the cutoff type A, and~b! the cutoff type B, with
the family of exponential shape functions~3.8! inserted.
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convergence problems which is due to the fact that ind54
dimensions the threshold functions inbl and bg diverge in
the limit s→0, see also@19#.

Because the scalek enters the flow equation viaRk as a
purely mathematical device it is clear that the functio
k°lk ,gk and their UV limitsl* ,g* are scheme depende
and not directly observable therefore. It can be argued
the productg* l* must be scheme independent, howev
While k and, at a fixed value ofk, Gk and l̄k cannot be
measured separately, we may invert the functionk°Gk and
insert the resultk5k(G) into l̄k . This leads to a relationship
between Newton’s constant and the cosmological cons
which, at least in principle, could be tested experimenta
l̄5l̄(G). In general this relation depends on the RG traj
tory chosen~specified by its IR valuesl̄0 and G0, for in-
stance!, but in the fixed point regime all trajectories approa
l̄k5l* k2 andGk5g* /k2 which gives rise to

l̄~G!5
g* l*

G
. ~5.26!

Equation~5.26! is valid if l̄@mPl
2 andG!mPl

22 . ~We define
the Planck mass in terms of the IR limit ofGk , mPl

[G0
21/2.! Assuming thatl̄ andG have the status of observ

able quantities, Eq.~5.26! shows thatg* l* must be observ-
able, and hence scheme independent, too.~For a related dis-
cussion see@33#.! Below the Planck regime the functio
l̄(G) becomes much more complicated thanl̄}1/G ~which
follows already from dimensional analysis! because the di-
mensionful quantitiesl̄0 andG0 enter explicitly there.

As for the universality ofg* l* , it is also interesting to
note that, for anyk, the productgklk5Gkl̄k is essentially
the inverse of the on shell value ofGk . The stationary points
of Eq. ~1.2! with ḡmn5gmn satisfy Einstein’s equationGmn

52l̄k gmn . HenceR54l̄k , so that from Eq.~1.2! in four
dimensions,
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Gk@on shell#52
v

8pGkl̄k

52
v

8pgklk
. ~5.27!

Here we used that, for dimensional reasons,*d4xAg5v/l̄k
2

wherev is a finite, positive constant for any solution with
finite four-volume.

Quite remarkably, the universality of the productg* l* is
confirmed by our results in a rather impressive manner, a
illustrated in Figs. 4–7. Figure 4~a! contains several parame
ric plots of @l* (s),g* (s)# for various values ofa, obtained
from the b-functions ~4.28! and ~4.30! which are based on
the cutoff type B. The hyperbolic shape of these plots i
first hint at thes independence of the productg* l* . Its
direct confirmation is supplied by Fig. 5 which showsg* ,
l* , andg* l* as functions ofs for a50 @Figs. 5~a!,~b!# and
a51 @Figs. 5~c!,~d!#, again using the cutoff type B. In Figs
5~a!,~c! these functions are plotted in the range of values
<s<30 while Figs. 5~b!,~d! contain the sector correspondin
to 1<s<5 where the largest changes inl* andg* occur. In
any of these figures the product ofl* and g* is almost
constant for the whole range ofs values considered. Its uni
versal value is

g* l* 'H 0.12 for a51,

0.14 for a50.
~5.28!

Obviously the difference between the physical casea50
and the case preferred for technical reasons,a51, is rather
small.

It is reassuring to see that employing theb-functions of
Refs. @22,19# which are based on the cutoff A we obta
almost identical results. They are illustrated by means of F
6 which showsg* , l* , andg* l* as functions ofs, 1<s
<5, for a50 @Fig. 6~a!# anda51 @Fig. 6~b!#.

It is also interesting to compare the above results w
those obtained from a different shape function. Figure 7 d
plays the behavior ofg* , l* , and their product resulting
from theb-functions~4.28! and ~4.30! of the cutoff B, with
3-23
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FIG. 4. ~a! s-parametric plot of@l* (s),g* (s)# in the range 1<s<50 for various values ofa. Each curve starts on the left ats51, and
ends on the right ats550. ~b! a-parametric plot of@l* (a),g* (a)# for various values ofs. In both~a! and~b! the cutoff type B is used, with
the family of exponential shape functions~3.8! inserted.
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the family of shape functionsR(0)(y;b) with compact sup-
port, Eq. ~3.9!, inserted. HerebP@0,1.5) parametrizes th
profile of these shape functions. In Fig. 7~a! we present a
parametric plot of@l* (b),g* (b)# for a50 starting atb
50 and ending atb51.5. Furthermore, Fig. 7~b! shows the
productg* l* as a function ofb for a50 anda51. For b
<1.2, the parametric plot in Fig. 7~a! exhibits an approxi-
mately linear behavior which leads to ag l plateau in Fig.
* *

02501
7~b! whereg* l* is nearly constant. Remarkably, the pos
tion of these plateaus coincides quite precisely with those
the corresponding plateaus in Figs. 5 and 6 obtained with
other cutoffs. As for the quality of the Einstein-Hilbert trun
cation this result is rather encouraging.

For b.1.2 the curves in Fig. 7 have a rather strong a
erraticb dependence. This is becauseR(0)(y;b) approaches a
sharp cutoff asb→1.5, which introduces discontinuities int
FIG. 5. g* , l* , andg* l* as functions ofs for ~a! a50, 1<s<30, ~b! a50, 1<s<5, ~c! a51, 1<s<30, and~d! a51, 1<s
<5, using the cutoff type B with the family of exponential shape functions~3.8! inserted.
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FIG. 6. g* , l* , andg* l* as functions ofs for ~a! a50, and~b! a51, using the cutoff type A with the family of exponential shap
functions~3.8! inserted.
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the integrands of the threshold functionsFn
p and F̃n

p . Al-
ready for b*1.2 the b-functions start to ‘‘feel’’ the sharp
cutoff limit so that the results cannot be trusted beyond
point.

As for the a dependence of the fixed point, in Fig. 4~b!
we present parametric plots of@l* (a),g* (a)# for various
fixed values ofs. Here we used the cutoff type B with th
shape function~3.8! inserted. These plots start at positions
the l-g plane which correspond toa50 and which are dif-
ferent for the distincts values. Asa→` all curves run into
the Gaussian fixed point.

To summarize:~a! In 4 dimensions, the Einstein-Hilber
truncation leads to a non-Gaussian fixed point with posit
values ofl* andg* for all admissible cutoffs, both of type
A and type B. The scheme independence of this predictio
a nontrivial result.~To emphasize this point we mention th
in higher dimensions, where the Einstein-Hilbert truncat
is less reliable, the fixed point exists or does not exist
pending on the cutoff chosen@31#.!

~b! Universal quantities are strictly cutoff independe
only in an exact treatment. Any truncation leads to a sche
dependence of these quantities. The extent of this sch
dependence is a measure for the reliability of the truncat
The productg l is an example of a universal quantit
* *
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While we find a considerable scheme dependence ofg* and
l* separately, their product is scheme independent at a q
amazing level of accuracy, see Fig. 5. As for the reliability
the Einstein-Hilbert truncation, we consider this result
highly nontrivial confirmation of our assumption that the r
gion of parameter space where the fixed point occurs is w
described by this truncation ansatz so that the fixed p
also exists in theexacttheory and is not a truncation artifac

3. Higher and lower dimensions

Before continuing our analysis of thed54 dimensional
case we study thed-dependence of the non-Gaussian fix
point. This is done by means of the parametric plots in Fig
which are obtained from theb-functions of type B, Eqs.
~4.28! and ~4.30!, with the shape function~3.8! with s51
inserted. Figure 8~b! shows@l* (d),g* (d)# in 2<d<4 for
a51. Remarkably, this plot is almost identical with that
Fig. 4 of Ref.@17# which was derived from theb-functions
based on the cutoff type A.

In order to gain information about the behavior of th
fixed point in d.4 we also plotted@l* (d),g* (d)# in 2
<d<6, but this time fora50, see Fig. 8~a!. For d beyond
d'5, the value ofg* increases significantly, whereasl*
seems to approach a constant value.
FIG. 7. ~a! b-parametric plot of@l* (b),g* (b)# for a50, and~b! g* l* as a function ofb for a50 anda51, using the cutoff type B
with the family of shape functions with compact support~3.9! inserted.
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FIG. 8. d-parametric plot of@l* (d),g* (d)# for ~a! a50, 2<d<6, and~b! a51, 2<d<4, using the cutoff type B with the exponentia
shape function~3.8! with s51 inserted.
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However, this result might be a truncation artifact since
is plausible to assume that in higher dimensions the Einst
Hilbert truncation becomes less reliable. This is because w
increasing dimensionalityd the number of terms which ar
relevant at the non-Gaussian fixed point and which are
glected in the Einstein-Hilbert truncation increases m
probably. At the non-Gaussian fixed point the scaling dim
sions of local invariants such as*Ag, *AgR, *AgR2,
*AgRmnRmn, etc. are not known a priori. We only know tha
with respect to the Gaussian fixed pointall local monomials
R,R2, . . . are relevant or marginal if their canonical ma
dimension does not exceedd. A sensible truncation should
retain at least the relevant terms, whence it is clear that
number of terms needed increases with the dimensionalitd.
@In 4 dimensions,*Ag and *AgR are relevant and the
(curvature)2 invariants are marginal.# By analogy we expec
that the description of the non-Gaussian fixed point, too,
quires increasingly high powers of the curvature whend is
increased@31#.

4. The critical exponents (dÄ4)

Let us now return to the 4-dimensional case and ana
the critical behavior near the non-Gaussian fixed point.
order to get a first impression of its features we restrict
considerations to the cutoff type B with the exponent
shape function~3.8! with s51 and to the gaugea51. In this
case we have (l* ,g* )5(0.348,0.272), see above. The co
respondingB-matrix assumes the form

B5S 20.187 5.129

23.228 22.907D . ~5.29!

It leads to a pair ofcomplexcritical exponentsu1[u81 iu9
andu25u1* [u82 iu9. For the real quantitiesu8 andu9 we
find u851.547 andu953.835. ~In general we defineu1 as
the critical exponent with the positive imaginary part so th
u9.0.! The behavior oflk and gk near the fixed point is
described by the real part of Eq.~5.4! in this case. Using tha
V25(V1)* , and settingV1[V andC1[C, the general solu-
tion to the linearized flow equation may then be written a
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gk
D 5S l*

g*
D 12$@ReC cos~u9t !1Im C sin~u9t !#ReV

1@ReC sin~u9 t !2Im C cos~u9 t !#Im V%e2u8t.

~5.30!

Here t[ ln(k/k0). Obviously the non-Gaussian fixed point
UV ~IR! attractive ifu8[Reu15Reu2.0(,0). The imagi-
nary parts6u9 of the critical exponents do not influence th
stability of the fixed point. They only give rise to a rotatio
of the vector (lk2l* ,gk2g* )T about the fixed point.

In the case under consideration we haveu8.0 which
implies that the non-Gaussian fixed point is UV attractive
both directions of (l,g) space. All RG trajectories which
reach its basin of attraction spiral into the fixed point fork
→`. Thus, the Einstein-Hilbert truncation predicts all th
ingredients which are necessary for the asymptotic sa
scenario and the nonperturbative renormalizability
4-dimensional quantum gravity. Clearly the dimensional
of the UV critical hypersurface cannot be determined with
the present approach. We shall come back to this questio
the framework of a more general truncation including high
derivative terms@24#.

As discussed in Sec. V A the critical exponents are u
versal in an exact treatment, in contrast tog* andl* . How-
ever, in a truncated parameter space a scheme depende
expected to occur as an artifact of the truncation. Theref
we may use this scheme dependence of the critical expon
to judge the quality of our truncation. Also in this respect t
Einstein-Hilbert truncation yields satisfactory results, whi
we display in Figs. 9–11. First of all it should be noted th
the critical exponents obtained from our numerical analy
have a nonzero imaginary part in any of the cases con
ered. Figures 9–11~a! show their real partu8 while their
imaginary partu9 is depicted in Figs. 9–11~b!. Figures 9 and
10 are derived from theb-functions~4.28! and ~4.30! based
on the cutoff B of the present paper, with the family of sha
functions~3.8! ~in Fig. 9! and~3.9! ~in Fig. 10! inserted. For
comparison, Fig. 11 is obtained from theb-functions of
Refs.@22,19# derived from the cutoff type A, with the family
3-26
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FIG. 9. ~a! u85Reu1, and~b! u95Im u1 as functions ofs for various values ofa, using the cutoff type B with the family of exponentia
shape functions~3.8! inserted.
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of shape functions~3.8! inserted. The figures contain variou
plots for distinct values ofa, which describe thes or b de-
pendence ofu8 andu9.

The u8 plots in Figs. 9~a! and 11~a! for the cutoffs B and
A, respectively, exhibit a similars dependence, and the sam
holds true for theu9 plots in Figs. 9~b! and 11~b!. Moreover,
in the range 1<s<5 one recognizes a total variation of bo
u8 andu9 which is approximately of the order of magnitud
of u8 and u9, respectively. Fors.5 there remains only a
rather weak dependence ons, such that the functionsu8(s)
andu9(s) develop a plateau-like shape. Thes dependence is
slightly stronger for the cutoff type B than for type A, an
the positions of the ‘‘plateaus’’ are different for both cuto
types. Fora51, for instance, we haveu8(s530)'1.56 and
u9(s530)'3.06 using type A, while employing type B
yields u8(s530)'1.75 andu9(s530)'2.31. These differ-
ences have to be interpreted as truncation artifacts.

The above results may now be compared with those
the cutoff B with the shape functions with compact suppo
Eq. ~3.9!, inserted. Our results are shown in Fig. 10. Rema
ably, u8 is almost constant in the range 0<b<1.2. Further-
more, the change inu9 is only very weak in this region and
occurs mainly forb*0.4. Forb&0.4 u9 is almost constan
as well. In the region 1.2,b,1.5 bothu8 and u9 strongly
02501
r
t,
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vary with b which is caused by the sharp cutoff limit asb
→1.5, see above. The position of the plateaus is nearly id
tical with those obtained above by using the same cutoff
but the shape function~3.8!. For a51 we haveu8(b50)
'1.69 andu9(b50)'2.56.

As discussed above,a50 is assumed to be the physic
value of the gauge parameter while in practical applicatio
a51 is often preferred. For a further justification of th
approximation we compare the critical exponents obtain
from a51 with those obtained from the~physical! gauge
a50. The results are qualitatively the same, but quant
tively we find a relative deviation of about 10 to 20 perce
This has to be kept in mind when calculations are perform
with a51.

To summarize:For all admissible cutoffs, both of type A
and type B, the non-Gaussian fixed point is UV attractive
both directions of parameter space. It is characterized b
pair of complex conjugate critical exponents which leads
spiral-type trajectories in its vicinity. The exact critical exp
nents are universal. Those obtained from the Einstein-Hilb
truncation are approximately scheme independent, but t
scheme dependence is stronger than that ofg* l* . This
might be related to the fact that the*AgR2 term neglected by
the Einstein-Hilbert truncation is~very weakly! relevant at
e
FIG. 10. ~a! u85Reu1, and ~b! u95Im u1 as functions ofb for a50 anda51, using the cutoff type B with the family of shap
functions with compact support~3.9! inserted.
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the non-Gaussian fixed point. We shall come back to
point in Ref.@24#.

VI. THE GRAVITON PROPAGATOR AT LARGE
MOMENTA

The UV fixed point is characterized by an anomalous
mensionh[hN(g* ,l* )522. We can use this information
in order to determine the effective momentum dependenc
the dressed graviton propagator for momenta in the fi
point regime, i.e. forp2@mPl

2 . Expanding the truncatedGk

about flat space and omitting the standard tensor struct
we find the inverse propagatorG̃k(p)21}ZN(k)p2. The con-
ventional dressed propagatorG̃(p) contained inG[Gk50 ob-
tains from G̃k in the limit k→0. Assuming that the actua
physical cutoff scale is the momentump2 itself ~which is
indeed true forp2.k2@mPl

2 ), thek evolution ofG̃k(p) stops
at the thresholdk5Ap2. Therefore

G̃~p!21}ZN~k5Ap2!p2}~p2!12h/2 ~6.1!

becauseZN(k)}k2h when h[2] tln ZN is ~approximately!
constant. Ind dimensions, and forhÞ22d, the Fourier
transform ofG̃(p)}1/(p2)12h/2 yields the following Euclid-
ean propagator in position space:

G~x;y!}
1

ux2yud221h
. ~6.2!

This is a standard result well known from the theory of cr
cal phenomena, for instance. In the latter case it applie
large distances, while in quantum gravity we are intereste
the extreme short distance regime governed by the UV fi
point. However, as it stands Eq.~6.2! is not valid for the case
of interest,d54 andh522. Forh522 the dressed propa
gator isG̃(p)51/p4 which, in d54 dimensions, has the fol
lowing representation in position space:

G~x;y!52
1

8p2
ln~mux2yu!. ~6.3!

Herem is an arbitrary constant with the dimension of a ma
Usually in ordinary matter field theories on flat space a 1p4

propagator is considered problematic because it is incom
ible with a positive spectral density. It is by no means cle
however, that the familiar notions of positivity, analyticit
and causality which are appropriate for Minkowski space
of relevance to the situation under consideration. Fork→`
the ‘‘on shell’’ spacetimes ofGk have a large curvature}k2,
after all.

So let us assume that the improvement~6.1! is indeed
correct and that in the fixed point regime, i.e. for distanc
much smaller than the Planck length, the effective gravi
propagator has a logarithmic dependence on the dista
This result is quite remarkable because it implies a kind
dimensional reduction from 4 to 2 dimensions. In fact, E
~6.3! is precisely what one obtains from a standard 1p2
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propagator ind52 dimensions. This means that, in a certa
sense, spacetime appears to be two-dimensional when
probed by a very high energetic graviton.

Since, symbolically,R5]]h, the propagator~6.3! yields
the curvature-curvature correlation function

^R~x!R~y!&}
1

~x2y!4
. ~6.4!

Its short-distance singularity has to be contrasted with
1/(x2y)6 behavior one finds at tree level. HereR stands for
the curvature scalar or for any component of the Riemann
Ricci tensor.

Switching for a moment to spacetimes with a Lorentzi
signature, it is interesting to look at the linearized gravi
tional field produced very close to astatic source. Decom-
posing x[(x0,x), the relevant Green’s function for stati
problems reads

Gstat~x;y![E
2`

`

dy0G~x0,x;y0,y!. ~6.5!

In our case this is the 3-dimensional Fourier transform
1/upu4, i.e.

Gstat~x;y!5^xu~¹2¹2!21uy&52
1

8p
ux2yu ~6.6!

provided ux2yu!mPl
21 . In an, admittedly somewhat naive

Newtonian language this result would mean that a point m
located aty50 creates a gravitational potential which b
haves asF(x)}uxu as long asuxu is much smaller than the
Planck length. Probably this linear potential is related to
similar phenomenon shown by the renormalization group
proved Schwarzschild black hole which has been constru
recently @13#. The radial geodesics in this spacetime, in
fully relativistic treatment, experience a linear6 repulsive
‘‘potential’’ close to the core of the black hole.

VII. SUMMARY AND CONCLUSION

On the formal side, the main result of this paper is t
construction of a new exact RG equation for the gravitatio
effective average action. It is formulated in terms of the co
ponent fields appearing in the TT decomposition of the m
ric. It is defined on a sufficiently large class of backgrou
spacetimes so as to facilitate the projection of the RG fl
onto very general truncated parameter spaces. It also hel
finding admissible IR cutoffs. A formalism of this kind i
mandatory for truncations including higher-derivative inva
ants, matter fields, or a running gauge fixing, for instance
a forthcoming paper@24# we shall use this technology in

6In the notation of Ref.@13# the potential is linear ifg50. This
corresponds to the casek}1/r which ignores the impact the back
ground curvature has on the cutoff identification, see Eq.~4.35! of
@13#. This is consistent with the fact that Eq.~6.3! is valid for a flat
background.
3-28
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FIG. 11. ~a! u85Reu1, and~b! u95Im u1 as functions ofs for a50 anda51, using the cutoff type A with the family of exponentia
shape functions~3.8! inserted.
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order to explore a more general truncation with anR2 term.
In the present paper we analyzed the Einstein-Hilbert tr
cation with the new equation and a new cutoff.

After deriving the exact functional equation in Sec. II, w
discussed in Sec. III a general strategy for constructing
appropriate cutoff operator in the context of a class of tr
cations which is still very general. In Sec. IV we specializ
for the Einstein-Hilbert truncation and derived the nonpert
bativeb-functions which govern the RG evolution ofgk and
lk .

On the applied side, most of our results concern the n
Gaussian fixed point of thel-g system in 4 dimensions
which we analyzed in Sec. V. If this fixed point is actua
present in the exact theory, its importance can hardly
overestimated. Its existence would imply that in spite of
notorious perturbative nonrenormalizability quantum E
stein gravity is most probably renormalizable at the nonp
turbative level and thus qualifies as a fundamental~micro-
scopic! quantum theory of gravity. Clearly the crucia
question is whether the fixed point of the Einstein-Hilb
truncation is indeed genuine or merely a truncation artifa

In order to get an impression of the reliability of th
Einstein-Hilbert truncation we investigated how its pred
tions change when we vary the cutoff which is built into t
RG equations. We used both the original cutoff of type
formulated in terms ofhmn , and the new cutoff of type B
which is natural in the TT approach; the cutoffs we
equipped with two different one-parameter families of sha
functions.

In 4 dimensions, we found that the Einstein-Hilbert tru
cation leads to a non-Gaussian fixed point for all admiss
cutoffs, both of type A and B. The robustness of this pred
tion is a nontrivial result since in higher dimensions, f
instance, where this truncation is less reliable, the fixed p
is present for some cutoffs but absent for others.

Another consistency test successfully passed by the t
cation is that all cutoffs agree onpositivevalues ofg* and
l* . A negativeg* would probably be unacceptable for st
bility reasons, but there is no mechanism in the flow equa
which would exclude it on general grounds. In fact,g* ,0 is
realized ford,2.
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For all cutoffs of type A and B the non-Gaussian fixe
point is found to be UV attractive in both directions of th
l-g plane. The linearized flow in its vicinity is always cha
acterized by a pair of complex conjugate critical expone
leading to spiral-type trajectories which hit the fixed po
for k→`. This is precisely the stability property needed f
asymptotic safety.

By definition, universal quantities are scheme-, or cuto
independent in an exact calculation. Truncations lead t
scheme dependence, however. We can use the degree o
scheme dependence as a measure for the reliability of
truncation. The critical exponents and, as we argued,
productg* l* are universal quantities. The existence of fix
points is a universal feature of the RG flow, but not th
precise location in parameter space.

The critical exponents were indeed found to be reasona
constant for a wide range of shape parameters. The un
sality properties ofg* l* are much more impressive thoug
While we found a considerable scheme dependence ofg*
andl* separately, their product is scheme independent
rather amazing level of accuracy.

We believe that these results hardly can be a mathema
accident, and we consider them a very nontrivial confirm
tion of the hypothesis that the region of parameter sp
where the non-Gaussian fixed point is situated is well
scribed by the Einstein-Hilbert truncation. As a consequen
the fixed point should exist in the exact theory, too.

Apart from the renormalizability issue the nontrivial fixe
point is also intriguing from a ‘‘phenomenological’’ point o
view. Its relevance for the structure of black holes@13# and
the cosmology of the Planck era@14# has been pointed ou
already. Moreover, we saw in Sec. VI that the RG improv
ment of the graviton propagator suggests a kind of dim
sional reduction from 4 to 2 dimensions when spacetime
probed at sub-Planckian length scales.
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APPENDIX A: THE TT DECOMPOSITION

1. Pseudo-projectors for the TT decomposition

In Sec. II B we introduced the TT decomposition

hmn5hmn
T 1hmn

L 1hmn
Tr ~A1!

valid for arbitrary symmetric rank 2 tensors defined on eit
closed or open, asymptotically flat Riemanniand spaces.
Here hmn

T , hmn
L and hmn

Tr represent the transverse tracele
longitudinal traceless and pure trace part, respectively, wh
are mutually orthogonal. According to Eq.~2.9! these parts
may be expressed in terms of pure spin-2, spin-1 and sp
component fieldshmn

T , ĵm , ŝ, f. In this subsection we show
that the component fields can be obtained by applying cer
operatorsP to the full field hmn . In the following these
operators will be termed pseudo-projectors.

As a first step we express the longitudinal-transverse
the pure trace part as

hmn
L 5~L«!mn[D̄m«n1D̄n«m2

2

d
ḡmnD̄l«l,

hmn
Tr 5

1

d
ḡmnf,f[ḡmnhmn

Tr . ~A2!

Here the operatorL maps vectors onto longitudinal tracele
tensors. Given a tensorhmn

L , the equation (L«)mn5hmn
L is

solved by

«m[ĵm1
1

2
D̄mŝ ~A3!

whereĵm is a transverse vector andŝ a scalar. This solution
is unique up to the addition of conformal Killing vecto
~CKV’s!, as discussed in Sec. II B. We recover Eq.~2.9! by
inserting Eqs.~A2!, ~A3! into Eq. ~A1!. Contrary to«m , the
scalarf is uniquely determined byhmn .

Now taking the covariant divergence of Eq.~A1! with Eq.
~A2! inserted, and using the transversality requirem
D̄mhmn

T 50 leads to

~D«!m52D̄nS hmn2
1

d
ḡmnf D ~A4!

with the operatorD defined by

~D«!m[2D̄n~L«!mn . ~A5!

As shown in Ref.@20#, D is a positive definite, Hermitian
operator mapping vectors onto vectors. Moreover, the eq
tion (D«)m5um with an arbitrary given vectorum always
possesses solutions«m which are unique up to CKV’s. How-
ever, even if these CKV’s exist they cause no problems
solving Eq.~A4! for «m , see Ref.@20# for details. In order to
determine this solution we have to invertD. For this purpose
we assume thatD ~and any additional operator that needs
be inverted in the course of this discussion! has a complete
set of orthogonal eigenfunctions and that the correspond
02501
r

,
h

-0

in

d

t

a-

n

g

eigenvalues do not have zero as an accumulation point. T
D 21 exists and the solution to Eq.~A4! may be written as

«m5~D 21d̃h!m . ~A6!

Here the operatord̃ maps tensors onto vectors according

~ d̃h!m52D̄nLmn
abhab ~A7!

with

Lmn
ab[

1

2
~dm

adn
b1dm

bdn
a!2

1

d
ḡmnḡab ~A8!

being the operator that projects symmetric tensors onto t
traceless part:

Lmn
abhab5hmn2

1

d
ḡmnf. ~A9!

Taking the covariant divergence of the solution~A6!, insert-
ing Eq. ~A3!, and usingD̄mĵm50 yields

D̄m«m5
1

2
D̄2ŝ5D̄m~D 21d̃h!m . ~A10!

This leads to the final result forĵm and ŝ in terms ofhmn :

ŝ52~D̄2!21D̄m~D 21d̃h!m[Jh,

ĵm5~D 21d̃h!m2D̄m~D̄2!21D̄n~D 21d̃h!n[~Vh!m .
~A11!

Hence the pseudo-projectorsP which maphmn onto the in-
dividual component fields are obtained as

hmn
T 5~PTTh!mn[~Lh!mn2~LD 21d̃h!mn ,

jm5~PLTh!m[~A2D̄22RicVh!m ,

s5PLLh[A~D̄2!21
d

d21
D̄mR̄mnD̄nJh,

f5PTrh[ḡmnhmn . ~A12!

Here we definedPLT and PLL in terms of the redefined
fieldsjm ands which are related toĵm andŝ by Eq. ~2.21!.

Furthermore, the pseudo-projectors for the transverse
composition of arbitrary vector fields can be inferred fro
Eq. ~A11!. For Cm5CTm1D̄m(2D̄2)21/2h with D̄mCTm

50 they are determined by

h5PLC[~2D̄2!21/2D̄mCm,

CTm5~PTC!m[Cm2D̄m~2D̄2!21D̄nCn. ~A13!

Obviously PLT maps tensors onto vectors,PLL and PTr
map tensors onto scalars, andPL maps vectors onto scalars
Hence these operators cannot be projection operators in
3-30
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usual sense. However, projection operatorsP mapping arbi-
trary hmn onto hmn

L or hmn
Tr , or arbitrary«m onto their longi-

tudinal component can be constructed from them@20#. Since
the P’s map vectors and symmetric tensors onto their co
ponent fields they generate a kind of projection in a wid
sense of the word. Therefore we call theP’s pseudo-
projectors. Contrary toPLT , PLL , PTr andPL , the opera-
tors PTT and PT are genuine projection operators mappi
symmetric tensors and vectors onto theirST2 andT compo-
nent, respectively.

2. Construction of the cutoff and the source terms

In the present paper we need a formulation forGk which
allows for a description in terms of the fundamental as w
as the component fields. The translation between the
descriptions can be achieved by using the pseudo-projec
for the construction of the cutoff and for an appropriate d
composition of the source terms.

Starting from the definition of the cutoff in terms of th
fundamental fields, Eq.~2.25!, we choose the cutoff opera
tors R k

grav andR k
gh as

R k
grav5 (

z1 ,z2P$hT,j,s,f%

Pz1

† ~Rk!z1z2
Pz2

,

R k
gh5 (

q̄1P$C̄T,h̄%
(

q2P$CT,h%

Pq̄1

†
~Rk!q̄1q2

Pq2
.

~A14!

Here„(Rk) q̄1q2
…q̄1P$C̄T,h̄%,q2P$CT,h% represents a block of th

more general matrix operator„(Rk)c1c2
…c1 ,c2P$C̄T,h̄,CT,h% for

which (Rk)c1c2
[0 if both c1P$CT,h% andc2P$CT,h%, or

if both c1P$C̄T,h̄% and c2P$C̄T,h̄%. The operators
(Rk)z1z2

and (Rk)c1c2
are required to satisfy the Hermiticit

conditions (Rk)z2z1
5(Rk)z1z2

† and (Rk)c2c1
52(Rk)c1c2

† .

Furthermore, we setPhT[PTT , Pj[PLT , Ps[PLL , Pf

[PTr , PC̄T[PCT[PT , Ph̄[Ph[PL , and Pz
† , Pc

† de-
note the Hermitian conjugates ofPz , Pc . Hence the opera
tors P appearing in Eq.~A14! can be inferred from Eqs
~A12!, ~A13!.

Inserting Eq.~A14! into Eq. ~2.25! leads to

DkS@h,C,C̄;ḡ#

5
1

2 (
z1 ,z2P$hT,j,s,f%

^Pz1
h,~Rk!z1z2

Pz2
h&

1 (
q̄1P$C̄T,h̄%

(
q2P$CT,h%

^Pq̄1
C̄,~Rk!q̄1q2

Pq2
C& ~A15!

which can be rewritten in terms of the component fields.
fact, applying Eqs.~A12! and ~A13! and using the relation
between the matrix operators (Rk) q̄1q2

and (Rk)c1c2
stated

above, we end up with Eq.~2.26!.
Let us now consider the source terms in Eq.~2.27!. De-

composing the sources for the ghost fields according to
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Km5KC̄T
m

1D̄m~2D̄2!21/2K h̄ ,

K̄m5K̄CT
m

1D̄m~2D̄2!21/2K̄h ~A16!

with D̄mKC̄T
m

5D̄mK̄CT
m

50 yields

^K̄,C&1^K,C̄&5 (
cP$CT,h%

^K̄c ,c&1 (
cP$C̄T,h̄%

^Kc ,c&.

~A17!

The decomposition of̂J,h& is more involved. In analogy
with hmn in Eq. ~A1! we decompose the sourceJmn into its
orthogonal parts:

Jmn5Jmn
T 1Jmn

L 1Jmn
Tr . ~A18!

According to Eqs.~A2!, ~A3! we write Jmn
L as

Jmn
L 5Jmn

LT1Jmn
LL ~A19!

with

Jmn
LT5~LQ!mn5D̄mQn1D̄nQm ,

Jmn
LL5

1

2
~LD̄y!mn5D̄mD̄ny2

1

d
ḡmnD̄2y.

~A20!

Analogous to Eq.~A2!, the vectorQm1D̄my/2 with D̄mQm

50 is unique up to CKV’s.
According to Eq.~2.14! the inner product̂J,h& may now

be decomposed as follows:

^J,h&5^JT,hT&1^JL,hLT&1^JL,hLL&1^JTr,hTr&.
~A21!

It is important to note that, for arbitrary nonvanishin
hmn

T , hmn
LT , hmn

LL , hmn
Tr , we have

~PTThT!mnÞ0, ~PLThLT!mÞ0, PLLhLLÞ0, PTrh
TrÞ0.
~A22!

This implies that the operatorsPTT , PLT , PLL , PTr are
invertible if their action is restricted to fields of the typehmn

T ,
hmn

LT , hmn
LL , hmn

Tr , respectively. Therefore the inner product
Eq. ~A21! may be written as

^J,h&5^JT,PTT
21PTThT&1^JL,PLT

21PLThLT&

1^JL,PLL
21PLLhLL&1^JTr,PTr

21PTrh
Tr&

5 (
zP$hT,j,s,f%

^Jz ,z&. ~A23!
3-31
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Here we used Eq.~A12! and introduced the source comp
nents

JhT
mn[„~PTT

21!†JT
…

mn5JTmn,

Jj
m[„~PLT

21!†JL
…

m52A2D̄22Ric̄um

12~2D̄22Ric̄!21/2F S 1

d
ḡmnR̄2R̄mnD D̄n1

1

d
~D̄mR̄!Gy,

Js[~PLL
21!†JL52S ~D̄2!21

d

d21
D̄mR̄mnD̄nD 21/2

3D̄aR̄abub1
d21

d

3A~D̄2!21
d

d21
D̄mR̄mnD̄ny,

Jf[~PTr
21!†JTr5

1

d
ḡmnJmn

Tr . ~A24!
02501
Then combining the results of Eqs.~A17! and ~A23! we
eventually arrive at Eq.~2.28!.

APPENDIX B: EVALUATING THE RHS OF THE
TRUNCATED FLOW EQUATION

In this section we present several rather lengthy calcu
tions needed for the discussion of the Einstein-Hilbert tru
cation in Sec. IV. In the following, all calculations are pe
formed withgmn5ḡmn whereḡmn is assumed to correspon
to a spherical background and the bars are omitted from
metric, the curvature and the operators.

1. Computation of the inverse operators„Gk
„2…¿Rk…

À1

and „Sgh
„2…¿Rk…

À1

In Sec. IV we derived explicit expressions for the kine

operatorsG̃k
(2)[Gk

(2)1Rk andS̃gh
(2)[Sgh

(2)1Rk . They may be
represented as matrix differential operators acting on the
umn vectors (h̄T,j̄,f̄0 ,s̄,f̄1)T and (v̄T,vT,%̄,%)T, respec-
tively. In this representation they take the form
s
imally

nd

e form
G̃k
(2)@g,g#5S ~ G̃k

(2)@g,g# ! h̄Th̄T 0 0 0132

0 ~ G̃k
(2)@g,g# !j̄j̄ 0 0132

0 0 ~ G̃k
(2)@g,g# !f̄0f̄0

0132

0231 0231 0231 Qk

D ~B1!

and

S̃gh
(2)@g,g#5S 0 ~S̃gh

(2)@g,g# ! v̄TvT 0 0

~S̃gh
(2)@g,g# !vTv̄T 0 0 0

0 0 0 ~S̃gh
(2)@g,g# !%̄%

0 0 ~S̃gh
(2)@g,g# !%%̄ 0

D ~B2!

where

Qk[S ~ G̃k
(2)@g,g# !s̄s̄ ~ G̃k

(2)@g,g# !f̄1s̄

~ G̃k
(2)@g,g# !f̄1s̄ ~ G̃k

(2)@g,g# !f̄f̄

D . ~B3!

The entries of these matrices are given in Eq.~4.16!. On the RHS of the flow equation~3.3! these operators appear in term
of their inverses, which are determined in the following. At this point it is important to note that, because of the max
symmetric background, all covariant derivatives contained in the operators~B1! and~B2! appear as covariant Laplacians a
that the various entries arex-independent otherwise. This implies that these entries arecommutingdifferential operators which
allows for particularly simple manipulations. Therefore it is not difficult to verify that the inverse operators assume th

~ G̃k
(2)@g,g# !215S †~ G̃k

(2)@g,g# ! h̄Th̄T‡
21 0 0 0132

0 †~ G̃k
(2)@g,g# !j̄j̄‡

21 0 0132

0 0 †~ G̃k
(2)@g,g# !f̄0f̄0

‡

21 0132

0231 0231 0231 Q k
21

D ~B4!

and
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~S̃gh
(2)@g,g# !215S 0 †~S̃gh

(2)@g,g# ! v̄TvT‡
21 0 0

†~S̃gh
(2)@g,g# !vTv̄T‡

21 0 0 0

0 0 0 †~S̃gh
(2)@g,g# !%̄%‡

21

0 0 †~S̃gh
(2)@g,g# !%%̄‡

21 0

D ~B5!

with

Q k
215†~ G̃k

(2)@g,g# !s̄s̄~ G̃k
(2)@g,g# !f̄1f̄1

2~ G̃k
(2)@g,g# !f̄1s̄

2
‡

21S ~ G̃k
(2)@g,g# !f̄1f̄1

2~ G̃k
(2)@g,g# !f̄1s̄

2~ G̃k
(2)@g,g# !f̄1s̄ ~ G̃k

(2)@g,g# !s̄s̄

D . ~B6!

Inserting these expressions into the RHS of the flow equation~3.3! leads to

Sk~R!5
1

2
Tr8F (

zP$h̄T,j̄,f̄0%

†~Gk
(2)@g,g#1Rk@g# !zz‡

21] t~Rk@g# !zzG1
1

2
Tr8†$~ G̃k

(2)@g,g# !s̄s̄~ G̃k
(2)@g,g# !f̄1f̄1

2~ G̃k
(2)@g,g# !f̄1s̄

2
%21$~Gk

(2)@g,g#1Rk@g# !s̄s̄] t~Rk@g# !f̄1f̄1
1~Gk

(2)@g,g#1Rk@g# !f̄1f̄1
] t~Rk@g# !s̄s̄

22~Gk
(2)@g,g#1Rk@g# !f̄1s̄] t~Rk@g# !f̄1s̄%‡2Tr8F (

cP$vT,%%

†~Sgh
(2)@g,g#1Rk@g# !c̄c‡

21] t~Rk@g# !c̄cG ~B7!

where we used the relations

„~Sgh
(2)! v̄TvT… ny

mx 52„~Sgh
(2)!vTv̄T…ny

mx5
1

Ag~y!

d

dvTn~y!

1

Ag~x!

dSgh

d v̄m
T~x!

„~Sgh
(2)!%̄%… y

x 52„~Sgh
(2)!%%̄…y

x5
1

Ag~y!

d

d%~y!

1

Ag~x!

dSgh

d%̄~x!
. ~B8!

The trace of thef0 term appearing in Eq.~B7! may be easily evaluated since only the scalar eigenmodesT01 and T1m

contribute. We obtain

1

2
Tr8„@~Gk

(2)@g,g#1Rk@g# !f0f0
#21] t~Rk@g# !f0f0

…

5
1

2ZNk
(
l 50

1

(
m51

Dl (d,0) E ddxAg~x!Tlm~x!@Pk1AS1~d,a!R1BS1~d,a!l̄k#
21] t@ZNkk

2R(0)~2D2/k2!#Tlm~x!

5
1

2ZNk
(
l 50

1 FDl~d,0!
] t@ZNkk

2R(0)
„L l~d,0!/k2

…#

L l~d,0!1k2R(0)
„L l~d,0!/k2

…1AS1~d,a!R1BS1~d,a!l̄k
G . ~B9!

HereL l(d,0) is the eigenvalue with respect to2D2 corresponding toTlm. Inserting also the remaining operators given in E
~4.16! into Eq. ~B7! finally leads to Eq.~4.17!.
ea
el
m
ld

d-
lds,
ns.
tail
ss
2. Evaluation of the traces

In this part of the appendix we evaluate the traces app
ing in Eq. ~4.20! by applying the asymptotic heat kern
expansion. In its original form it has often been used to co
pute traces of operators acting on unconstrained fie
02501
r-

-
s,

see e.g. Refs.@35#. For our purposes we need the correspon
ing expansions for operators acting on constrained fie
i.e. fields satisfying appropriate transversality conditio
In Appendix E these expansions are derived in de
for LaplaciansD2 acting on symmetric transverse tracele
tensors,
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on transverse vectors and on scalars, with the following
sults:

Tr(2ST2)@e2(is2«)D2
#

5S i

4p~s1 i«! D
d/2E ddxAgH 1

2
~d22!~d11!

2
~d11!~d12!~d2513dd,2!

12~d21!
~ is2«!R1O~R2!J ,

~B10!

Tr(1T)@e2(is2«)D2
#

5S i

4p~s1 i«! D
d/2E ddxAg

3H d212
~d12!~d23!16dd,2

6d
~ is2«!R1O~R2!J ,

~B11!

Tr(0)@e2(is2«)D2
#

5S i

4p~s1 i«! D
d/2E ddxAgH 12

1

6
~ is2«!R1O~R2!J .

~B12!

The next step is to consider an arbitrary functionW(z)
with a Fourier transformW̃(s). For such functionsW, we
may express the trace of the operatorW(2D2) that results
from replacing the argument ofW with 2D2 in terms of
W̃(s):

Tr@W~2D2!#5 lim
«↘0

E
2`

`

ds W̃~s!Tr@e2(is2«)D2
#.

~B13!

We obtain the asymptotic expansion of Tr@W(2D2)# by in-
serting the heat kernel expansion for Tr@e2(is2«)D2

# into Eq.
~B13!. For Laplacians acting on the constrained fields c
sidered here they read as follows:

Tr(2ST2)@W~2D2!#

5~4p!2d/2H 1

2
~d22!~d11!Qd/2@W#E ddxAg

1
~d11!~d12!~d2513dd,2!

12~d21!
Qd/221@W#

3E ddxAgR1O~r ,d22!J , ~B14!
02501
-

-

Tr(1T)@W~2D2!#

5~4p!2d/2H ~d21!Qd/2@W#E ddxAg

1
~d12!~d23!16dd,2

6d
Qd/221@W#

3E ddxAgR1O~r ,d22!J , ~B15!

Tr(0)@W~2D2!#

5~4p!2d/2H Qd/2@W#E ddxAg

1
1

6
Qd/221@W#E ddxAgR1O~r ,d22!J .

~B16!

Here the set of functionalsQn@W# is defined as

Qn@W#[ lim
«↘0

E
2`

`

ds~2 is1«!2nW̃~s!. ~B17!

By virtue of the Mellin transformation we may now reex
pressQn in terms ofW so that

Qn@W#5
1

G~n!
E

0

`

dz zn21W~z!, n.0;

Qn@W#5
~21!m

G~m1n!
E

0

`

dz zm1n21
dmW~z!

dzm
,

n<0, m.2n, mPuN arbitrary. ~B18!

In particular we obtainQ0@W#5W(0).
Let us now consider the case where isolated eigenva

have to be excluded from Tr@W(2D2)#. According to Ap-
pendix E such traces can be expressed as the differenc
tween the complete trace Tr@W(2D2)# and a term of the
form ( l P$ l 1 , . . . ,l n%Dl(d,s)W„L l(d,s)…. Herel 1 , . . . ,l n refer

to the modes to be omitted andL l(d,s) andDl(d,s) denote
the corresponding eigenvalues of2D2 and their degrees o
degeneracy, respectively. SinceL l(d,s)}R we may view
W„L l(d,s)… as a function ofR. As outlined in Sec. IV such a
function contributes to the evolution ofZNk and l̄k only for
d52, with the contribution given byW(0). Using the ex-
plicit expressions forDl(d,s) ~see Table I in Appendix D!
and applying Eq.~4.7! we therefore obtain for the trace
relevant to the flow equation
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Tr(1T)8 @W~2D2!#5Tr(1T)@W~2D2!#2
3dd,2

8p
W~0!E d2xAgR1O~r ,d22!,

Tr(0)9 @W~2D2!#5Tr(0)@W~2D2!#2
dd,2

2p
W~0!E d2xAgR1O~r ,d22!,

Tr(0)8 @W~2D2!#5Tr(0)@W~2D2!#2
dd,2

8p
W~0!E d2xAgR1O~r ,d22!, ~B19!

where the primes have to be interpreted as in Sec. IV.
The next step is to insert the expansions of the traces intoSk(R), Eq.~4.20!, and to compare the coefficients of the operat

*ddxAg and*ddxAgR with those on the LHS, Eq.~4.5!. This leads to the following differential equations:

] t~ZNkl̄k!5~4k2!21~4p!2d/2H 1

2
d~d21! Qd/2@~A022l̄k!

21N#1d Qd/2@~A022al̄k!
21N#22d Qd/2@A 0

21N0#J ,

~B20!

] tZNk52~2k2!21~4p!2d/2H c1~d!Qd/221@~A022l̄k!
21N#1c2~d!Qd/221@~A022al̄k!

21N#

1c3~d!Qd/2@~A022l̄k!
22N#1c4~d,a!Qd/2@~A022al̄k!

22N#22c2~d! Qd/221@A 0
21N0#

1c5~d! Qd/2@A 0
22N0#13dd,2F ] t~ZNkk

2!

2ZNk~k222l̄k!
2

] t~ZNkk
2!

2ZNk~k222al̄k!
G J . ~B21!

Here the coefficientsci are defined as in Eq.~4.24!.
In Eqs.~B20!, ~B21!, the variousQn may now be expressed in terms of the cutoff-dependent threshold functionsFn

p and

F̃n
p introduced in Eq.~4.23!. Using the relations

Qn@~A01c!2pN#5k2(n2p11)Fn
p~c/k2!2

1

2
hN~k!k2(n2p11)F̃n

p~c/k2!

Qn@~A01c!2pN0#5k2(n2p11)Fn
p~c/k2! ~B22!

we arrive at the differential equations~4.21! and ~4.22!.
At this stage the following point should be mentioned. In order to achieve that the integrals in Eq.~B17! actually converge

we have to demand thatR(0)(y) rapidly decreases asy→6`. However, since from now on its form fory,0 does not play
a role any more we identifyR(0)(y) with its part for nonnegative arguments and assume thatR(0)(y) is a smooth function
defined only fory>0 and endowed with the properties stated in Sec. III B.

APPENDIX C: FLOW EQUATIONS IN FOUR DIMENSIONS

In this section we compare our results to those derived in Ref.@21# for thed54 dimensional case. Insertingd54 into Eq.
~4.17! we obtain for the RHSSk of the evolution equation
025013-35
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Sk~R!5
1

2
Tr(2ST2)F ] tPk

Pk1
2

3
R22l̄k

G1
1

2
Tr(1T)8 F ] tPk

Pk1
2a21

4
R22al̄k

G1
1

2
Tr(0)9 F ] tPk

Pk1
a21

2
R22al̄k

G1
1

2
Tr(0)9 F ] tPk

Pk22l̄k
G

1
1

2 (
l 50

1 FDl~4,0!
] tPk„L l~4,0!…

Pk„L l~4,0!…2
4a

3a21
l̄k
G2Tr(1T)F ] tPk

Pk2
R

4
G2Tr(0)8 F ] tPk

Pk2
R

2
G

1
] tZNk

ZNk H 1

2
Tr(2ST2)F Pk1D2

Pk1
2

3
R22l̄k

G1
1

2
Tr(1T)8 F Pk1D2

Pk1
2a21

4
R22al̄k

G
1

1

2 (
l 50

1 FDl~4,0!
Pk„L l~4,0!…2L l~4,0!

Pk„L l~4,0!…2
4a

3a21
l̄k
G2

1

4a
Tr(0)9 F H @Pk22l̄k#FPk1

a21

2
R22al̄kG J 21

3H S ~123a!F ~32a!Pk1
a21

2
RG14a~a11!l̄kD ~Pk1D2!23~12a!2APkAPk2

R

3

3FAPkAPk2
R

3
2A2D2A2D22

R

3G J GJ ~C1!
,

5,

ef

ble
qs.

ults
,
ed

two
.
re-
with Pk„L l(4,0)…[L l(4,0)1k2R(0)
„L l(4,0)/k2

…. Our result
~C1! agrees with Eq.~3.22! of Ref. @21#, up to a few~typo-
graphical! errors occurring in Eq.~3.22!. To be more precise
the prime at the Tr(1T)8 -term in lines 1 and 4 of Eq.~C1!, the
factor Dl(4,0) appearing in the first term of lines 3 and
and the factor 1/2 contained in the term}R in line 7 are
mistakenly left out in the corresponding equation of R
@21#.

Expanding the flow equations forZNkl̄k and ZNk , Eqs.
~4.21! and ~4.22!, with respect tol̄k , using the relation
] tl̄k5ZNk

21] t(ZNkl̄k)1l̄khN(k) and setting, as in@21#,

kk[2k2ZNk , Zk[ZNk , hk[] tln Zk[2hN~k!,

qn
p[2Fn

p~0!, q̃n
p[F̃n

p~0! ~C2!

leads to

] tkk5~4p!22k2H 13

24
q1

11S 55

24
1a Dq2

2

1hkF1

8
q̃1

11S 25

24
1a D q̃2

2G J 1O~ l̄k!, ~C3!
02501
.

] tl̄k5kk
21~4p!22H k4F1

2
q2

11hk

5

2
q̃2

1G
1l̄kk

2F2
13

24
q1

11S 17

24
1a Dq2

2

1hkX2 1

8
q̃1

11S 47

24
1a D q̃2

2CG J 1O~ l̄k
2!. ~C4!

In this form the flow equations for the couplings are suita
for a comparison with the corresponding results in E
~4.6!–~4.9! of Ref. @21#. Apart from the contributions from
matter fields, which are also considered there, the res
differ by a factor 60/24 in front of theq2

2 terms. Presumably
this deviation can be explained by a wrong sign introduc
in @21# for a certain term. This term is a contribution from
the ghosts produced by heat kernel expanding the last
terms in line 3 of Eq.~C1!, and it carries the prefactor 30/24
We may conclude that, apart from these corrections, our
sults agree with those in@21#, which is as it should be since
the same cutoff is used.

APPENDIX D: TENSOR SPHERICAL HARMONICS

In this section we introduce the spherical harmonicsTmn
lm ,

Tm
lm andTlm for symmetric transverse traceless (ST2) tensors

hmn
T , transverse~T! vectors jm , and scalarsf on a
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TABLE I. Eigenvalues of2D̄2 and their degeneracy on thed-sphere.

Eigenfunction Spins EigenvalueL l(d,s) DegeneracyDl(d,s)

Tmn
lm (x) 2

l~l1d21!22

d~d21!
R̄

~d11!~d22!~l1d!~l21!~2l1d21!~l1d23!!

2~d21!!~l11!!
l 52,3, . . .

Tm
lm(x) 1

l~l1d21!21

d~d21!
R̄

l~l1d21!~2l1d21!~l1d23!!

~d22!!~l11!!
l 51,2, . . .

Tlm(x) 0
l~l1d21!

d~d21!
R̄

~2l1d21!~l1d22!!

l!~d21!!
l 50,1, . . .
e

es
E
o
r-

v
-

e
ca

at

by
d
or
sed
e

n

on-
s it
uch
tted

ary
eat
lly

rm

is
e of
lity

r-

n a
d-dimensional spherical backgroundSd. These harmonics
form complete sets of orthogonal eigenfunctions with resp
to the covariant Laplacians acting onST2 tensors,T vectors
and scalars, i.e. they satisfy

2D̄2Tmn
lm ~x!5L l~d,2!Tmn

lm ~x!,

2D̄2Tm
lm~x!5L l~d,1!Tm

lm~x!,

2D̄2Tlm~x!5L l~d,0!Tlm~x! ~D1!

and, after proper normalization,

d lkdmn5E ddxAḡ~1(2ST2)!
mnrsTmn

lm Trs
kn

5E ddxAḡ~1(1T)!
mnTm

lmTn
kn

5E ddxAḡTlmTkn. ~D2!

Here (1(2ST2))
mnrs5(d22)/(2d)(ḡmrḡns1ḡmsḡnr) and

(1(1T))
mn5(d21)/d ḡmn are the unit matrices in the spac

of ST2 tensors and transverse vectors, respectively. In
~D1! the L l(d,s)’s denote the eigenvalues with respect t
2D̄2 wheres refers to the spin of the field under conside
ation andl takes the valuess,s11,s12, . . . . Furthermore,
the second upper index atTmn

lm , Tm
lm and Tlm, m, takes the

degeneracy of the eigenvalues into account. It assumes
ues from one toDl(d,s) with Dl(d,s) the degree of degen
eracy. In Ref. @36# explicit expressions forL l(d,s) and
Dl(d,s) are derived which can be found in Table I. Th
eigenvalues are expressed in terms of the curvature s
R̄5d(d21)/r 2 of the sphere with radiusr. In Ref. @36# it is
also shown that the spherical harmonicsTmn

lm , Tm
lm and Tlm

span the spaces ofST2 tensors,T vectors and scalars so th
we may expand arbitrary functionshmn

T , jm andf according
to

hmn
T ~x!5(

l 52

`

(
m51

Dl (d,2)

hlm
T Tmn

lm ~x!,

jm~x!5(
l 51

`

(
m51

Dl (d,1)

j lmTm
lm~x!,
02501
ct

q.

al-

lar

f~x!5(
l 50

`

(
m51

Dl (d,0)

f lmTlm~x!. ~D3!

Here the coefficients$hlm
T %, $j lm% and $f lm% are countably

infinite sets of constants that are uniquely determined
hmn

T , jm andf. Equation~D3! may now be used to expan
also any symmetric non-T2 tensor and nontransverse vect
in terms of spherical harmonics since they may be expres
in terms ofST2 tensors,T vectors and scalars by using th
decompositions~2.9!, ~2.18!, see e.g.@36–39#.

In this context it is important to note that theD1(d,1)
5d(d11)/2 modesTm

1,m and theD1(d,0)5d11 modesT1,m

satisfy the Killing equation~2.11! and the scalar equatio
~2.12!, respectively, and thatT0,15const. As discussed in
Sec. II B, arbitrary symmetric rank 2 tensors receive no c
tribution from these modes. In the case of arbitrary vector
is the constant scalar mode that does not contribute. S
modes have no physical meaning and have to be omi
therefore.

APPENDIX E: HEAT KERNEL COEFFICIENTS FOR
DIFFERENTIALLY CONSTRAINED FIELDS

In this part of the appendix we supply the tools necess
for the evaluation of functional traces and we derive the h
kernel expansions for Laplacians acting on differentia
constrained fields.

As a first step we consider a functional trace of the fo

Tr(s[C])@ f ~2D2!#5E ddxAg^xu f ~2D2!ux&m1 . . . ms

m1 . . . ms

5E ddx@„f ~2D2!…m1 . . . msn1 . . . ns

3~1(s[C]) !n1 . . . nsm1 . . . ms
dd~x2y!#x5y .

~E1!

Here f is an arbitrary smooth function whose argument
replaced with the covariant Laplacian defined on the spac
spin-s fields with a possible symmetry and/or transversa
constraintC, as indicated by the subscript (s@C#) at the
trace. Note thatf inherits the matrix structure from the co
responding Laplacian. Furthermore,1(s[C]) denotes the unit
matrix in the space of independent field components. Give
3-37



t
n

on

f

La

bl
t f
f

y

e
e
,
e

ts,

he

or

a

ely,

o-

ym-

th
to

he

u

O. LAUSCHER AND M. REUTER PHYSICAL REVIEW D65 025013
closed7 Riemannian manifold (M,g) we now assume tha
$Um1 . . . ms

k (x)% is a complete set of orthonormal functions o

(M,g) spanning the space of fields under considerati
Then by making use of the completeness relation

~1(s[C]) !n1 . . . nsm1 . . . ms

dd~x2y!

Ag~x!

5
1

2 (
k

„Un1 . . . ns

k ~x!Um1 . . . ms

k ~y!

1Um1 . . . ms

k ~x!Un1 . . . ns

k ~y!… ~E2!

Eq. ~E1! can be written as

Tr(s[C])@ f ~2D2!#

5E ddxAg(
k

Um1 . . . ms

k ~x!

3„f ~2D2!…m1 . . . msn1 . . . nsUn1 . . . ns

k ~x!. ~E3!

Clearly if $Um1 . . . ms

k (x)% is taken to be a complete set o

orthonormal eigenfunctions with respect to the covariant
placian such that2D2Um1 . . . ms

k (x)5L̃kUm1 . . . ms

k (x) Eq.

~E3! boils down to

Tr(s[C])@ f ~2D2!#5(
k

f ~L̃k!. ~E4!

In general the evaluation of such traces is a formida
task and one has to resort to approximations. The mos
miliar such approximation is the ‘‘early time’’ expansion o
the diagonal heat kernel^xue2 itD2

ux& for utu→0. @We write
t[s1 i« with Im(t)5«.0.# It has been discussed in man
references@35#:

^xue2 it(D21Q)ux&5S i

4ptD
d/2

$a0~x;Q!2 it a2~x;Q!

2t2 a4~x;Q!1O~ t3!%. ~E5!

HereQ is an arbitrary smooth matrix potential and thean’s
are tensor polynomials proportional to then/2-th power of
the curvature and endowed with the same matrix structur
D21Q. They depend on the space of fields under consid
ation. For operatorsD21Q acting on unconstrained fields
i.e. fields with independent components, the first three co
ficients take the form8

7The restriction to closed Riemannian manifolds is done for
sake of notational simplicity only. In principle, the results extend
noncompact asymptotically flat Riemannian manifolds.

8In the context of the Einstein-Hilbert truncation performed in t
present paper we only need the coefficientsa0}r 0 and a2}r 22.
However, for truncations containing invariants quadratic in the c
vature we shall also needa4}r 24, see@24#.
02501
.

-

e
a-

as
r-

f-

a0~x;Q![a051,

a2~x;Q!5P,

a4~x;Q!5
1

180
~RmnabRmnab2RmnRmn1D2R!1

1
1

2
P21

1

12
RmnR mn1

1

6
D2P. ~E6!

Here 1 is the unit matrix in the space of field componen
and

P[Q1
1

6
R 1. ~E7!

Furthermore,Rmn is the curvature operator defined as t
commutator

Rmn5@Dm ,Dn#[DmDn2DnDm . ~E8!

Inserting the asymptotic expansion~E5! into Eq. ~E1! we
obtain for the functional trace of the heat kernel

Tr@e2 it(D21Q)#5S i

4ptD
d/2E ddx Ag$tr a02 it tr a2~x;Q!

2t2 tr a4~x;Q!1O~ t3!% ~E9!

where tr is the matrix trace with respect to the tensor
spinor indices.

Let us have a closer look at the coefficientsan . For arbi-
trary scalarsf, Rmn vanishes sinceDmDnf5DnDmf. In
the case of arbitrary spin-s fields Fm1 . . . ms

(x) with integer

spin s>1 we obtain

Rab Fm1 . . . ms
~x!5(

i 51

s

Rabm i

m Fm1 . . . m i 21mm i 11 . . . ms
~x!.

~E10!

Hence, for scalars,a4 receives no contribution from
RabR ab, while for fields with nonzero spin it amounts to
nonvanishing contribution with a (ds3ds)-matrix structure.
For arbitrary vectors and rank-2 tensors we find, respectiv

~RabR ab!mn52RabgmRabg
n ,

~RabR ab!mnrs52RabgmRabg
r gns

2RabgnRabg
s gmr12RabmrRab

ns .

~E11!

From now on we restrict our considerations to matrix p
tentialsQ of the formQ5qR1(s) with q a real constant, and
we assume that the metric corresponds to a maximally s
metric backgroundSd. Settingan(x;qR1(s))[an(q) we ob-
tain a0(q)[a051(s) anda2(q)5(116q)/6R1(s) , indepen-
dently of the spins of the field. Here the dependence ons is

e

r-
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totally encrypted in the unit matrix1(s) . This is not the case
for the coefficienta4. It is given by

a4~q!5
1

360F5d227d16

d~d21!
160q1180q2G 1(0) R2,

~E12!

@a4~q!#mn5
1

360F5d327d216d260

d2~d21!
160q1180q2G

3~1(1)!mn R2, ~E13!

@a4~q!#mnrs5
1

360F5d327d216d2120

d2~d21!
160q1180q2G

3~1(2)!mnrs R21
1

3d2~d21!2

3~gmngrs2gmsgnr!R2 ~E14!
ul
th
e

als
w
on
he

02501
for scalars, vectors and rank-2 tensors, respectively, w
1(0)51, (1(1))mn5gmn and (1(2))mnrs5gmrgns .

Up to this point we considered only unconstrained fiel
For fields subject to constraints like transverse vectorsjm

and ST2 tensorshmn
T we cannot directly apply Eqs.~E6! or

~E13!, ~E14!. However, the heat kernel coefficients forjm

and hmn
T can be computed from those of the unconstrain

fields using the decompositions~2.18!, ~2.9! for arbitrary
vectors«m and arbitrary symmetric tensorshmn .

From Appendix D we can infer that the sets of orthono
mal 2D2 eigenfunctions

$Tm
lmumP$1, . . . ,Dl~d,1!%, l 51,2, . . .%

ø$„L l~d,0!…21/2DmTlmum

P$1, . . . ,Dl~d,0!%,l 51,2, . . .%
~E15!

and
$Tmn
lm umP$1, . . . ,Dl~d,2!%, l 52,3, . . .%

øH S 2S L l~d,1!2
R

d D D 21/2

~DmTn
lm1DnTm

lm!UmP$1, . . . ,Dl~d,1!%,l 52,3, . . .J
øH S L l~d,0!S d21

d
L l~d,0!2

R

d D D 21/2S DmDn2
1

d
gmn D2DTlmUmP$1, . . . ,Dl~d,0!%,l 52,3, . . .J

øH 1

Ad
gmnTlmUmP$1, . . . ,Dl~d,0!%, l 50,1, . . .J ~E16!
.

span the spaces ofall vectors«m and ofall symmetric ten-
sors hmn , respectively. Here theTlm’s are the normalized
spherical harmonics of Eq.~D2!.

Now we insert these eigenfunctions into the trace form
~E3! with f taken to be an exponential. Then we use
commutation relations of Appendix G in order to pull th
Dm’s from the TT decomposition through the exponenti
and to combine them to Laplacians. This leads to the follo
ing decomposition for the traced heat kernels of the unc
strained vectors and symmetric tensors in terms of the
kernels for the differentially constrained fields:

Tr(1)@e2 it(D21q R)#

5Tr(1T)@e2 it(D21q R)#1Tr(0)@e2 it(D21[(dq11)/d]R)#

2e2 it[(dq11)/d]R, ~E17!
a
e

-
-
at

Tr(2S)@e2 it(D21qR)#

5Tr(2ST2)@e2 it(D21qR)#

1Tr(1T)@e2 it(D21((d11)/[d(d21)]1q)R)#

1Tr(0)@e2 it„D21[2/(d21)1q]R…#

1Tr(0)@e2 it(D21qR)#2e2 it„2/(d21)1q…R

2~d11! e2 it„1/(d21)1q…R

2
d~d11!

2
e2 it„2/[d(d21)]1q…R. ~E18!

The last term of Eq.~E17! and the last three terms of Eq
~E18! arise from those spherical harmonicsTlm and Tm

lm

which are not contained in the sets of eigenfunctions~E15!
and ~E16!. To be more precise, the last term in Eq.~E17!
comes from the constant eigenmodeT0,1 of the operatorD2
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1(dq11)/d R. Furthermore, the last but second and the l
but first term in Eq.~E18! take account of the eigenmode
T0,15const andT1,m of the operatorD21„2/(d21)1q…R,
respectively. As discussed in Sec. II B theT1,m’s satisfy the
scalar equation~2.12! and are therefore in a one-to-one co
respondence with the PCKV’s ofSd. The last term in Eq.
~E18! comes from the eigenmodesTm

1,m of the operatorD2

1„(d11)/(d(d21)…1q)R, which are the KV’s ofSd.
These subtraction terms compensate for the correspon

unphysical contributions contained in thecompletetraces for
the constrained fields on the RHS of Eqs.~E17!, ~E18!. This
can be seen as follows. Consider the functional trace of
~E3!. Omitting the contributions from the mode
Uk1

, . . . ,Ukn
, we denote the functional trace involving on

the remaining modes with Tr(s[C])8 . . . 8@ f (2D2)#. Then Eq.~E4!
implies the following relation between Tr(s[C])8 . . . 8@ f (2D2)#
and thecompletetrace Tr(s[C])@ f (2D2)#:

Tr(s[C])8 . . . 8@ f ~2D2!#5Tr(s[C])@ f ~2D2!#2 (
kP$k1 , . . . ,kn%

f ~L̃k!.

~E19!

This rule indeed yields the last term in Eq.~E17! and the last
three terms in Eq.~E18!.

As the next step we insert the asymptotic expansion~E9!
into both sides of Eqs.~E17! and ~E18! and compare the
coefficients ofR. This leads to the following Seeley coeffi
cients for the constrained fields:

tr a0u(1T)5tr a0u(1T)2tr a0u(0) ,

tr a2~q!u(1T)5tr a2~q!u(1)2tr a2S dq11

d D U
(0)

1
1

2
dd,2 R,

tr a4~q!u(1T)5tr a4~q!u(1)2tr a4S dq11

d D U
(0)

1
1

4
dd,2~112q! R21

1

24
dd,4 R2,

~E20!

tr a0u(2ST2)5tr a0u(2S)2tr a0u(1T)22tra0u(0) ,

tr a2~q!u(2ST2)5tr a2~q!u(2S)2tr a2S d11

d~d21!
1qD U

(1T)

2tr a2S 2

d21
1qD U

(0)

2tr a2~q!u(0)

1
7

2
dd,2 R,
02501
t

ng

q.

tr a4~q!u(2ST2)5tr a4~q!u(2S)2tr a4S d11

d~d21!
1qD U

(1T)

2tr a4S 2

d21
1qD U

(0)

2tr a4~q!u(0)

1dd,2S 41
7

2
qD R21

2

3
dd,4 R2. ~E21!

The terms proportional to thed ’s originate from the subtrac
tion terms on the RHS of Eqs.~E17!, ~E18! which are due to
the unphysical eigenmodes. These terms have an expan
of the form(m50

` b2mr 22m, while the terms of the heat ker
nel expansion are of the form*ddxAg tr an}r d2n. Compar-
ing powers ofR}1/r 2, only under the condition22m5d
2n a given termb2mr 22m contributes to*ddxAg tr an .
Hence forn, m fixed, the Seeley coefficients tran for the
differentially constrained fields receive a contribution from
term of the formb2mr 22m/(*ddxAg) at most for one specific
value of the dimensionalityd. In particular, the subtraction
terms in Eqs.~E17!, ~E18! do not contribute to tra0, while
tr a2 and tra4 on the LHS of Eqs.~E20!, ~E21! receive con-
tributions from terms of the formdd,2 b0 /r 2 anddd,2 b2 /r 4,
dd,4 b0 /r 4, respectively.

The matrix traces on the RHS of Eqs.~E20!, ~E21! can
now be evaluated by using the heat kernel coefficients for
~differentially! unconstrained fields. For scalars we ha
tr an(q)5an(q)(1(0)51). For vectors the traces are eval
ated according to tran(q)5gmn@an(q)#mn so that we obtain
from Eqs.~E6!, ~E13!

tr a0u(1)5d

tr a2~q!u(1)5
116q

6
d R

tr a4~q!u(1)5
1

360F5d327d216d260

d~d21!
160dq

1180dq2G R2. ~E22!

In order to determine tran for symmetric tensor fields we
have to symmetrize the heat kernel for unconstrained ran
tensors according to

^xue2 is(D21qR)ux&mnrsu(2S)5
1

4
$^xue2 is(D21qR)ux&mnrsu(2)

1^xue2 is(D21qR)ux&nmrsu(2)

1^xue2 is(D21qR)ux&mnsru(2)

1^xue2 is(D21qR)ux&nmsru(2)%

~E23!

before we can apply Eq.~E9! with Eqs.~E6! and~E14!. This
leads to
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TABLE II. Heat kernel coefficients.

Field tr a0 tr a2(q) tr a4(q)

ST2

tensor
~d22!~d11!

2

~d11!~d12!~d2513 dd,2!

12~d21!
R

1q
~d22!~d11!

2
R

~d11!~5d4222d3283d22392d222811440dd,213240dd,4!

720d~d21!2
R2

1q
~d11!~d12!~d2513 dd,2!

12~d21!
R21q2

~d22!~d11!

4
R2

T
vector

d21
~d12!~d23!16 dd,2

6d
R

1q~d21!R

5d4212d3247d22186d11801360dd,21720dd,4

360d2~d21!
R2

1q
~d12!~d23!16 dd,2

6d
R21q2

d21

2
R2

scalar 1
116q

6
R

5d227d16

360d~d21!
R21

1
6 q R21

1
2 q2 R2
r

4 3 2

of

er
s
st’’

an-
@an~q!#mnrsu(2S)5
1

4
„@an~q!#mnrsu(2)1@an~q!#nmrsu(2)

1@an~q!#mnsru(2)1@an~q!#nmsru(2)…

~E24!

and in particular (1(2S))mnrs5(gmrgns1gmsgnr)/2. For ten-
sors the matrix traces are computed according to tan
5gmrgns@an(q)#mnrs which yields

tr a0u(2S)5
1

2
d~d11!

tr a2~q!u(2S)5
116q

12
d~d11! R
02501
tr a4~q!u(2S)5
1

720F5d 22d 2d 2114d2240

d~d21!

160q~113q!d~d11!G R2. ~E25!

Finally we insert the matrix traces Eqs.~E22!, ~E25! and
tr anu(0)5anu(0) into Eqs. ~E20!, ~E21! and determine the
heat kernel coefficients for transverse vectors andST2 ten-
sors. The results are summarized in Table II.

Let us add a final remark concerning the applicability
the asymptotic expansion~E5!. Since it is valid only in the
limit utu→0 it is clear that it cannot be integrated ov
Re(t)5s or Im(t)5« term by term, in general. However, thi
is possible if the heat kernel is integrated against a ‘‘te
function which suppresses large values ofs or «. This is
indeed the case for our application of the asymptotic exp
sion presented in Appendix B 2.
APPENDIX F: VARIOUS COEFFICIENTS

In this appendix we define the coefficient functions which appear in Eqs.~4.13!–~4.20! of Sec. IV C and in Eq.~B9! of
Appendix B 1:

AT~d![
d~d23!14

d~d21!
, AV~d,a![

a~d22!21

d
, AS1~d,a![

a~d24!

2a~d21!2~d22!
,

AS2~d,a![2
a~d22!22

a~d22!22~d21!
, AS3~d![

d24

d
, AS4~d,a![

a~d22!22

d
,

AS5[
~d22!~d12!a21~d2210d18!a12~d22!

d2a
,

BS1~d,a![2
2ad

2a~d21!2~d22!
, BS2~d,a![

2ad

a~d22!22~d21!
,
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CS1~d,a![2
2a~d21!2~d22!

4~d21!22a~d22!

d22

d21
, CS2~d,a![

d21

d2

2~d21!2a~d22!

a
,

CS3~d,a![
~d22!~a21!

a~d22!22~d21!
, ES~d,a![2

d22

4ad2
@2a~d21!2~d22!#,

FS1~d,a![2
2@a~d22!22~d21!#@2a~d21!2~d22!#

d2a
,

FS2~d,a![
4~d22!~d21!~a21!2

d2a
. ~F1!

APPENDIX G: COMMUTATION RELATIONS FOR A MAXIMALLY SYMMETRIC BACKGROUND

In the following we summarize the commutation relations which were used in order to derive Eq.~4.13! of Sec. IV C, and
Eqs.~E17! and ~E18! of Appendix E. They are valid for the class of maximally symmetric backgrounds:

D̄mD̄nĵm5
R̄

d
ĵn ~G1!

D̄2~D̄mĵn1D̄nĵm!5D̄mS D̄21
~d11!R̄

d~d21!
D ĵn1D̄nS D̄21

~d11!R̄

d~d21!
D ĵm ~G2!

~D̄mĵn1D̄nĵm!~D̄mĵn1D̄nĵm!522ĵmS D̄21
R̄

d
D ĵm1cov. divergence ~G3!

D̄2D̄mŝ5D̄nD̄mD̄nŝ5D̄mS D̄21
R̄

d
D ŝ ~G4!

D̄2S D̄mD̄n2
1

d
ḡmnD̄2D ŝ5S D̄mD̄n2

1

d
ḡmnD̄2D S D̄21

2R̄

d21
D ŝ ~G5!

S D̄mD̄nŝ2
1

d
ḡmnD̄2ŝ D S D̄mD̄nŝ2

1

d
ḡmnD̄2ŝ D5

d21

d
ŝD̄2S D̄21

R̄

d21
D ŝ1cov. divergence ~G6!

~D̄mĵn1D̄nĵm!exp~D̄2!~D̄mĵn1D̄nĵm!522ĵmS D̄21
R̄

d
D expS D̄21

~d11!R̄

d~d21!
D ĵm1cov. divergence

~G7!

~D̄mŝ! exp~D̄2! D̄mŝ52ŝ D̄2 expS D̄21
R̄

d
D ŝ1cov. divergence ~G8!

F S D̄mD̄n2
1

d
ḡmnD̄2D ŝ Gexp~D̄2!S D̄mD̄n2

1

d
ḡmnD̄2D ŝ5

d21

d
ŝD̄2S D̄21

R̄

d21
D expS D̄21

2R̄

d21
D ŝ1cov. divergence.

~G9!
la
APPENDIX H: APPROXIMATE SOLUTIONS FOR THE
FIXED POINT

In the following we determine the approximate formu
for the position of the non-Gaussian fixed point discussed
Sec. V C. In a first approximation we setlk5l 50 and
*

02501
in

determineg* from the conditionhN* 522d alone. Solving
this equation forg* leads to

g* 5
22d

B1~l* ;a,d!2~d22!B2~l* ;a,d!
~H1!
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which, for l* 50, boils down to

g* 5
22d

4
~4p!d/221H k1~d! Fd/221

1 ~0!1k2~d! F̃d/221
1 ~0!

1k3~d,a! Fd/2
2 ~0!1k4~d,a! F̃d/2

2 ~0!

13dd,2F 1

122lk
2

1

122alk
G J 21

. ~H2!

Herek1 , . . . ,k4 ared- anda-dependent coefficients define
as

k1~d!5
d424d329d2212

12d~d21!
,

k2~d!5
~d22!~d4213d2224d112!

24d~d21!
,

k3~d,a!52
d424d319d228d22

2d~d21!
2~d

22!a,

k4~d,a!52
~d22!~d424d315d228d12!

4d~d21!

2
~d22!2

2
a. ~H3!

Employing the exponential shape function~3.8! with s51,
and settingd54 and a51, for instance, Eq.~H2! yields
g* '0.590. Here we used that for this shape funct

F1
1(0)5p2/6, F2

2(0)51, F̃1
1(0)51, F̃2

2(0)51/2.
As a different approximation scheme, we determ

(l* ,g* ) from a set of Taylor-expandedb-functions. Using

d

dlk
Fn

p~22alk!52ap Fn
p11~22alk!,

d

dlk
F̃n

p~22alk!52ap F̃n
p11~22alk!,

~H4!

we expand theb-functions ~4.28! and ~4.30! aboutgk5lk
50 and obtain
ic

02501
e

bl~lk ,gk ;a,d!522lk1nd d gk1@2d~d2112a!

3~4p!12d/2 Fd/2
2 ~0!2~d22! vd#lk gk

1
1

2
d~d11!~d22!

3~4p!12d/2vd Fd/2
1 ~0! gk

21O~g3!,

bg~lk ,gk ;a,d!5~d22! gk2~d22!vd gk
21O~g3!.

~H5!

Herend andvd are defined as in Eqs.~5.8! and ~5.11!, and
O(g3) stands for terms of third and higher orders in t
couplings g1(k)5lk and g2(k)5gk . Now g* is obtained as
the nontrivial solution tobg50, which reads

g* 5vd
21

5
22d

4
~4p!d/221$k1~d! Fd/221

1 ~0!

1k3~d,a! Fd/2
2 ~0!%21. ~H6!

Inserting Eq.~H6! into bl and neglecting also the term
quadratic in the couplings the conditionbl50 leads to

l* 5
nd d

2vd

52
d~d22!~d23!

8
Fd/2

1 ~0!$k1~d! Fd/221
1 ~0!

1k3~d,a! Fd/2
2 ~0!%21. ~H7!

Using the shape function~3.8! with s51 we obtain from
Eqs.~H6! and ~H7! in d54 dimensions

g* 5S 13p

144
1

55

24p
1

a

p D 21

,

l* 5z~3!S 13p2

144
1

55

24
1a D 21

, ~H8!

which yields (l* ,g* )5(0.287,0.751) fora51, for in-
stance.
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