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Coulomb gauge QCD, confinement, and the constituent representation

Adam P. Szczepaniak
Department of Physics and Nuclear Theory Center, Indiana University, Bloomington, Indiana 47405-4202

Eric S. Swanson
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennslyvania 15260

and Jefferson Lab, 12000 Jefferson Ave, Newport News, Virginia 23606
~Received 7 July 2001; published 26 December 2001!

Quark confinement and the genesis of the constituent quark model are examined in nonperturbative QCD in
Coulomb gauge. We employ a self-consistent method to construct a quasiparticle basis and to determine the
quasiparticle interaction. The results agree remarkably well with lattice computations. They also illustrate the
mechanism by which confinement and constituent quarks emerge, provide support for the Gribov-Zwanziger
confinement scenario, clarify several perplexing issues in the constituent quark model, and permit the con-
struction of an improved model of low energy QCD.
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I. INTRODUCTION

Two of the key issues facing QCD at low energy are
quantitative description of confinement and an understand
of the origins of the constituent quark model. In this pap
we demonstrate how both issues may be resolved throu
nonperturbative analysis of QCD in Coulomb gauge. T
demonstration makes the physical origin of both effe
clear, resolves several long-standing inconsistencies in
constituent quark model, significantly extends the qu
model, and establishes a — perhaps surprising — relation
ship between confinement and the constituent quark mo

Although lattice gauge computations are capable of
swering many questions in strong QCD, it is clear that
development of reliable analytical continuum tools are a
cessity for advancing the field@1#. Continuum methods allow
one to understand how QCD works from first principles, p
mit the development of intuition for phenomenologic
model building, and address computationally challeng
phenomena such as QCD at finite density, extrapolation
low quark masses, or the treatment of large hadronic s
tems. A variety of such continuum tools exist: chiral pert
bation theory, effective heavy quark and low energy hadro
field theories, 4-dimensional Dyson-Schwinger metho
fixed gauge Hamiltonian QCD approaches, and QCD s
rule methods. In this paper we focus on Hamiltonian QCD
Coulomb gauge.

Much progress has been made in understanding Coul
gauge QCD since the seminal work of Schwinger@2#,
Khriplovich @3#, and Christ and Lee@4#. In particular, the
problem of the Gribov ambiguity@5# has been studied and
resolution has been suggested@6#. The ambiguity arises be
cause of residual gauge freedom after the canonical Coul
gauge fixing condition,“•A50 is imposed in a non-Abelian
theory. In Ref.@5# Gribov noted that the multiple-gauge cop
ambiguity may be resolved by insisting that the Fadde
Popov operator~to be defined later! is positive ~in fact a
more restrictive constraint is required!. With the aid of a
simple model, he then showed that this constraint implies
existence of a novel form for the gluon propagator and
0556-2821/2001/65~2!/025012~23!/$20.00 65 0250
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enhancement in the Faddeev-Popov propagator at low
menta. Furthermore, these imply that an enhancement e
in the instantaneous Coulomb potential, thereby providin
plausible mechanism for confinement. In a series of rec
papers@6,7#, Zwanziger has brought the Gribov Coulom
gauge confinement scenario onto firm theoretical ground
has demonstrated that a complete definition of the Coulo
gauge may be achieved by restricting the gauge fields to
‘‘fundamental modular region’’ — defined as the set of gau
fields which form the absolute minima of a suitable fun
tional. Furthermore, the constraint to the fundamental mo
lar region may be imposed by introducing a horizon te
through a Lagrange multiplier in the Hamiltonian.

A key feature of Coulomb gauge is that the elimination
nondynamical degrees of freedom creates an instantan
interaction. The QED analogue of this is the Coulomb pot
tial; however, the non-Abelian nature of QCD causes t
instantaneous interaction to depend on the gauge field, m
ing it intrinsically nonperturbative for large fields. The re
striction of the transverse gluon field to the fundamen
modular region formally makes the Coulomb potential w
defined. It also implies that the Faddeev-Popov~FP! operator
which enters in the Coulomb potential is positive defin
@6,7#. A consequence of this is that one may employ t
variational principle to build nonperturbative models of t
QCD ground state. This is a crucial step with many pheno
enological repercussions in the methodology we will be
vocating. As we shall demonstrate, the Fock space whic
built on our variational vacuum consists of quasiparticles
constituent quarks and gluons. These degrees of free
obey dispersion relations with infrared divergences due
the long-range instantaneous Coulomb interaction of the b
partons with the mean field vacuum. This interaction ma
colored objects infinitely heavy thus effectively removin
them from the physical spectrum. However, color neut
states remain physical because the infrared singularities
sponsible for the large self-energies are canceled by infra
divergences responsible for the long-range forces betw
the constituents.

Constructing a quasiparticle basis is a nontrivial s
©2001 The American Physical Society12-1
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which requires a nonperturbative treatment of QCD a
more directly, the QCD vacuum. We will show that it
possible to construct such a basis in a self-consistent ma
by coupling a specific variational ansatz for the vacuum w
the instantaneous interaction between color charges. The
results are explicit expressions for the Wilson confinem
interaction, the spectrum of the quasiparticles, and the st
ture of the QCD vacuum. The resulting Fock space and
fective Hamiltonian provide an ideal starting point for th
examination of the bound state problem in QCD and prov
a direct link between QCD and the phenomenological c
stituent quark model.

A simplified version of this program has been investiga
by the authors and others before@8–16#. In several of these
studies the non-Abelian Coulomb interaction was repla
by an effective potential between color charges, leading
relatively simple many-body Hamiltonian with two-body in
teractions between constituents. The phenomenology of
approach has proven quite successful. In Ref.@13# we have
extended this simple approximation and treated the Coulo
kernel in a self-consistent way by considering the effect
resummation of a class of ladder diagrams. These diagr
originate from dressing the bareaS /ux2yu Coulomb poten-
tial with transverse gluons. As one may expect from the d
cussion above, the effect of summing these diagrams is
enhancement of the Coulomb potential at large distan
Self-consistency appears in the problem because the stre
of this enhancement is determined by the spectral prope
of the transverse gluons in the quasiparticle vacuum.

In this paper we build on these findings by constructin
fully self-consistent set of equations which describe
gluon dispersion relation, the effective instantaneous inte
tion, and the structure of the quasiparticle vacuum. A deta
derivation is given in Sec. II. This section also contains
brief review of the QCD Hamiltonian in Coulomb gauge a
a discussion of the Gribov ambiguity. We discuss the ren
malization procedure and show how the various coun
terms in the regularized Coulomb gauge Hamiltonian may
constrained by physical observables. The last portion of S
II describes the variational vacuum employed in our meth
Section III presents the solution to the coupled equations.
first discuss the details of the renormalization procedure
present an approximate analytical solution which dem
strates many of the features which emerge. This is follow
by a full numerical solution and a discussion of the effects
higher order terms. A comparison of these results to lat
data is presented in Sec. IV. Section V discusses the im
cations of our results for the constituent quark model a
phenomenology in general. This includes clarifying seve
open issues in the constituent quark model~CQM! and ex-
tending the CQM. A comparison to similar approaches a
our conclusions are presented in Sec. VI.

II. QUASIPARTICLE FOCK SPACE FOR COULOMB
GAUGE QCD AND CONFINEMENT

One of the advantages of Coulomb gauge is that all
grees of freedom are physical. This makes the QCD Ham
tonian close in spirit to quantum mechanical models of QC
02501
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for example the constituent quark model. The intuiti
gained from several decades of quark model calculati
may then be applied to the analysis of a complex and n
linear quantum field theory. Additional advantages of Co
lomb gauge are that Gauss’s law is built into the Ham
tonian, the norm is positive definite, and no addition
constraints need be imposed on Fock space. Furtherm
retardation effects are minimized for heavy quarks; thus
is a natural framework for studying nonrelativistic boun
states, and in particular for identifying the physical mech
nisms which drive relativistic corrections, e.g., the spin sp
tings in heavy quarkonia. Since chiral symmetry is dynam
cally broken this framework is also of relevance for lig
flavors once the constituent quarks are identified with
quasiparticle excitations.

The confinement phenomenon in QCD has two comp
mentary aspects:~1! there is a long range attractive potenti
between colored sources; and~2! the gluons which mediate
this force are absent from the spectrum of physical sta
Thus the mechanism for confinement is not particula
transparent@6# in covariant gauges. In Coulomb gauge,
contrast, these two aspects can comfortably coexist: the
range force is represented by the instantaneous Coulom
teraction and is enhanced asq2→0, while the physical
~transverse! gluon propagator is suppressed — reflecting
absence of colored states in the physical spectrum.

A. Coulomb gauge Hamiltonian

Since the Hamiltonian in Coulomb gauge may look un
miliar to many readers we briefly illustrate the derivation
the classical Hamiltonian here.

The chromoelectric field is given by

Ea52Ȧa2“A0a1g fabcA0bAc, ~1!

and satisfies Gauss’s law,

“•Ea1g fabcAb
•Ec5grq

a . ~2!

Hererq
a5c†(la/2)c is the quark color charge density. The

equations are simplified by introducing the covariant deri
tive in the adjoint representation,

Dab5dab
“1 igTab

c Ac, ~3!

where Tc are the adjoint representation generators,Tab
c

5 i f cab. Thus Eq.~2! becomes

Dab
•Eb5grq

a . ~4!

If the electric field is split into transverse and longitudin
pieces,E[Etr2“f then Eq.~4! yields

2~Dab
•“ !f5gra, ~5!

wherera5rq
a1rg

a is the full color charge density, withrg
a

5 f abcEtr
b
•Ac being the color charge density of transver

gluons. The equation of motion for the longitudinal comp
nent of the electric field,
2-2
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“•Ea52“•DabA0b52“

2fa, ~6!

leads to a constraint for the 0th component of the vec
potential which can be formally solved. This yields

A0b5
1

“•D
~2“

2!
1

“•D
grb, ~7!

and

fa52
g

“•D
ra. ~8!

Finally the time evolution of the vector potential is dete
mined by the transverse chromoelectric field through

Pa[2Etr
a 5Ȧa1g~12“

22
““• ! f abcA0bAc. ~9!

After canonical quantization, the transverse fieldPa be-
comes the momentum conjugate to the transverse vecto
tential,Aa.

Passing from the Lagrangian to the Hamiltonian yie
terms proportional to (“f)2 from the longitudinal compo-
nents of the chromoelectric field inE2, terms proportional to
grqA0 from the quark gluon vertex,gc̄g0A0ala/2c and
terms proportional togPa

•AbA0cf abc from the Etr•Ȧtr
pieces ofE2. Combining all these contributions and subs
tuting the expression forA0 from Eq. ~7! results in the in-
stantaneous non-Abelian Coulomb interaction,

HC5
1

2E d3xd3yra~x!Kab~x,y;A!rb~y!, ~10!

where

Kab~x,y;A![^x,au
g

“•D
~2“

2!
g

“•D
uy,b&, ~11!

andra is the full color charge density as derived above,

ra~x!5rg
a~x!1rq

a~x!5 f abcAb~x!•Pc~x!1c†~x!
la

2
c~x!.

~12!

The transverse conjugate gluon momentaPa satisfy

@Aa,i~x!,Pb, j~y!#5 idabS d i j 2
“

i
“

j

“

2 D d~x2y!

[ idabdT~“̂ ! i j d~x2y!. ~13!

Following Lee@17#, we use the notation̂x,au . . . uy,b& to
denote kernels of integral operators,

^x,auDuy,b&5@dab
“x1g facbAc~x!#d3~x2y!. ~14!

In the Abelian limit D→“, K→2g2^x,au1/“2uy,b&
5g2dab/4pux2yu and the QED Coulomb interaction is re
covered.
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A rigorous derivation of the non-Abelian, quantum Co
lomb gauge Hamiltonian was given by Schwinger@2# and
Christ and Lee@4#. Zwanziger has shown how to derive th
Coulomb gauge Hamiltonian with a lattice regularization@6#.
The quantum Hamiltonian may be derived by transform
the canonicalA050 Hamiltonian to Coulomb gauge. Th
A050 Hamiltonian corresponds to ‘‘Cartesian’’ coordinat
in a flat gauge manifold, the subsequent restriction to C
lomb gauge induces curvature in the gauge manifold
therefore introduces a nontrivial metric. Christ and Lee ha
shown that the measure associated with this metric is pro
tional to the Faddeev-Popov determinant

J5det~“•D!. ~15!

Furthermore, the Hamiltonian contains factors ofJ which
are analogous to the Laplace-Beltrami operator indu
when one first quantizes in curvilinear coordinates. T
Faddeev-Popov determinant may be removed from the m
sure by working with the modified Hamiltonian

H→J 1/2HJ 21/2, ~16!

which is Hermitian with respect to (FuC)
5*DAF* (A)C(A). This transformation should be consid
ered as a formal expansion ofJ 21/2 which converges inside
the fundamental molecular region~FMR!.

Thus the final form for the QCD Hamiltonian in Coulom
gauge is

H5Hq1Hg1Hqg1HC , ~17!

where

Hq5E dxc†~2 i a•“1bm!c, ~18!

Hg5
1

2E dx~J 21/2PJ•PJ 21/21B•B!, ~19!

Hqg52gE dxc†a•Ac, ~20!

and

HC5
1

2E dxdyJ 21/2ra~x!J 1/2Kab~x,y;A!J 1/2rb~y!J 21/2.

~21!

In order to compare with the covariant Feynman rules a
the canonical path integral formalism, it is convenient
Weyl order the operators~we note that Weyl ordering is the
operator ordering which corresponds to path integral qua
zation with midpoint discretization!. This leads to the
Schwinger-Christ-Lee terms,V1 and V2 @17#. Here we will
keep the original ordering of Eqs.~17!–~21! so that no ex-
plicit V1 andV2 terms are present.
2-3



o
v

a
m
A
g

th
io
du
p
n

he
t-
l i

R
te

on

i-
ld

th
i

le
ds
o
n
u
th

n-
b

he
te
a
u
l-

ar-

mil-
ro-

h at
of
s.

o a
n-

ion
ar-
ical

in

en

nd-

sed

-

n-

mb

ADAM P. SZCZEPANIAK AND ERIC S. SWANSON PHYSICAL REVIEW D65 025012
B. The Gribov ambiguity

As detailed by Zwanziger@18#, not only is the Hamil-
tonian renormalizable in Coulomb gauge but the Grib
problem can also be resolved@6#. The essence of the Gribo
problem is that the condition“•A50 does not uniquely fix
the gauge in non-Abelian gauge theories; in general there
many copies of gauge field configurations, all with the sa
divergence, which are related by gauge transformations.
ternatively, the canonical transformation to Coulomb gau
is not singular so long as det(“•D)Þ0. But Gribov has
shown that large gauge configurations exist such that
condition does not hold. As the true physical configurat
space of a gauge theory is the set of gauge potentials mo
local gauge transformations, one must select a single re
sentative from each set of gauge-equivalent configuratio
The resulting subset of independent field configurations
known as the FMR.

A convenient characterization of the FMR is given by t
‘‘minimal’’ Coulomb gauge, obtained by minimizing a sui
ably chosen functional over gauge orbits. This functiona
defined as

FA@g#5TrE d3x~Ag!2, ~22!

where g(x) is a gauge transformation andAg5gAg†

2g“g†. A simple calculation shows that fields in the FM
are transverse. Alternatively, Zwanziger has demonstra
that Gribov copies may be removed by imposing the c
straint ^G&/V50 ~called the horizon condition! and argued
that in the infinite volume limit imposing the horizon cond
tion enables one to remove the direct restriction on the fie
HereG is the ‘‘horizon term’’ given by

G5E dx dy Dca~x!•^xau
21

“•D
uyb&•Dbc~y!1~Nc

221!V.

~23!

In this paper we follow a third approach. Because
Faddeev-Popov operator is positive semidefinite for fields
the FMR, we expand it in a power series over field variab
and evaluate matrix elements by integrating over all fiel
The expansion converges in the FMR. We note that the C
lomb interaction diverges at the boundary of the FMR a
that this may assist in regulating matrix elements. We disc
under what conditions this procedure is consistent with
horizon condition in Sec. IV B.

C. Regularization and renormalization

To properly define the Hamiltonian a cutoff must be i
troduced to regularize ultraviolet divergences. This can
done, for example, by point splitting products of fields in t
Hamiltonian. A simpler regularization procedure, adop
here, is to smear the fields. The induced nonlocalities
removed as the cutoff is taken to infinity. Since in the n
merical studies to follow we will be working with renorma
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ized quantities only~which are cutoff independent!, we will
explicitly remove the regulator making details of the regul
ization irrelevant.

Counterterms need to be added to the canonical Ha
tonian to ensure that a cutoff independent spectrum is p
duced,

H→H~L!→H~L!1dH~L!. ~24!

In this paper we concentrate on the pure glue sector wit
most static quarks, and therefore we will ignore the part
the Hamiltonian involving momentum or spin of the quark
In the gluon sector, the presence of the cutoff leads t
single relevant operator~an operator whose canonical dime
sion is less then four!. ThusdH(L) contains a term

dH~L!5L2
Zm~L!

2 E dx@Aa~x!2#L1••• ~25!

whereZm(L) is a dimensionless constant, and the notat
@•••#L represents the effect of regularization. For all m
ginal dimension four operators present in the canon
Hamiltonian there will be corresponding operators indH(L)
and the combination of the two leads to a Hamiltonian
which canonical terms are multiplied byL-dependent renor-
malization constants. For example,

E dx@Pa~x!2#L1dE dx@Pa~x!2#L

[ZP~L!E dx@Pa~x!2#L . ~26!

The full regularized Hamiltonian with counterterms is th
given by

H5
ZP~L!

2 E dx@Pa~x!2#L1
ZA~L!

2 E dx@Ba~x!2#L

1L2
Zm~L!

2 E @Aa~x!2#L

1
ZK~L!

2 E dxdy@ra~x!Kab~x,y;A!rb~y!#L1 . . . .

~27!

The ellipsis stands for higher order terms induced by expa
ing the modified conjugate momentaJ 21/2PJ 1/2 in terms of
gauge potentials. The effect of these terms will be discus
in Sec. III F.

At this stage we should in principle allow for every com
posite operator of dimensiond appearing in the Hamiltonian
to be multiplied by a renormalization factorZ(L)L42d with
Z being dimensionless and also allow for the coupling co
stant to beL dependentg→Zg(L)g[g(L). For example,
as discussed earlier, if the fields are in the FMR the Coulo
kernel may be expanded in a power series ingA, and the
ordern contribution would be proportional to
2-4
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Zn~L!F ig~L!

“

2 AcTc
•“G

L

n

. ~28!

Here Zn(L) is the nth order triple gluon vertex~two Cou-
lomb and one transverse! renormalization constant andg(L)
is the renormalized coupling. As we will show in Sec. III
such vertices are uv finite which impliesZi(L)51. The con-
tribution from the Coulomb kernel to the Hamiltonian ca
therefore be written in terms of only two renormalizatio
constantsZK(L) andZm(L) @and implicitly g(L)# as in Eq.
~27!.

As mentioned above, theL dependence of all renorma
ization constants has to be adjusted in such a way thaH
leads to aL-independent spectrum. This implies that t
renormalization group equations may be determined non
turbatively from the spectrum ofH. Furthermore in order for
this Hamiltonian to be consistent with QCD~in the chiral
limit ! all renormalization constantsZi(L) cannot depend on
L in an arbitrary way, but instead should depend on the s
through the couplingg(L). The renormalization group equa
tions will be discussed in Sec. III C.

D. Vacuum structure

The eigenstates of the Hamiltonian can, in principle,
expanded in an arbitrarily chosen complete basis wh
spans Fock space. One choice would be to use the pertu
tive basis which diagonalizes the free HamiltonianH(g
50). However, one expects the description of any hadro
bound state would be very complicated in this basis. Alt
natively, the phenomenologically successful constitu
quark model indicates that hadronic wave functions m
saturate quickly with only a few Fock space states provid
these states are constructed from constituent~quasiparticle!
quarks. This strongly suggests that a basis which incor
rates the effects of spontaneous chiral symmetry brea
would be more efficient for describing hadrons and their
teractions.

We expect a similar scenario to apply to the gluon sec
In a given hadronic state there is a large probability of fin
ing a component with a large number of bare, massless tr
verse gluons, but the expansion of a hadronic state ma
significantly simplified in a transformed Fock space which
constructed from quasiparticle~massive constituent! gluons.
We follow this intuition by constructing a vacuum upo
which the quasiparticle basis is built with a functional Gau
ian ansatz@19#,

FIG. 1. Dyson equation of the Coulomb-transverse gluon ver
The thick line represents the full FP functiond(k). The hatched
circle represents the full vertexG i

c . The gluon line is the gluonic
quasiparticle. All external propagators are truncated.
02501
r-

le

e
h
ba-

ic
-
t
y
d

o-
g
-

r.
-
s-

be

-

C0@A#5^Auv&5expF2
1

2E dk

~2p!3 Aa~k!v~k!Aa~2k!G .
~29!

It may be shown@20# that this ansatz sums all diagrams wi
nonoverlapping divergences. Note that the perturba
vacuum is obtained whenv5uku. The trial function is ob-
tained by minimizing the vacuum energy density

d

dv
^vuHuv&50. ~30!

The vacuum state obtained from this procedure is deno
uv&. We refer tov as the gap function since it is also respo
sible for lifting the single particle gluon energy beyond
perturbative value~see Fig. 5 below!.

This procedure is formally equivalent to the Hartre
Fock-Bogoliubov approximation, therefore one may also
terminev with a suitably chosen canonical transformatio
Perturbative gluon creation and annihilation operators are
troduced in the standard way:

Ac~x!5E dk

~2p!3

1

A2k
@e~k,l!a~k,l,c!

1e* ~k,l!a†~2k,l,c!#eik•x,

Pc~x!52 i E dk

~2p!3Ak

2
@e~k,l!a~k,l,c!

2e* ~k,l!a†~2k,l,c!#eik•x, ~31!

with the perturbative vacuum satisfying,a(k,l,c)uv(k)
5k&50. The canonical transformation is determined by
quiring that the vacuum ansatz satisfiesa(k,l,c)uv&50,
where the quasiparticle operatorsa,a† are related to the
fields by

Ac~x!5E dk

~2p!3

1

A2v~k!
@e~k,l!a~k,l,c!

1e* ~k,l!a†~2k,l,c!#eik•x,

Pc~x!52 i E dk

~2p!3Av~k!

2
@e~k,l!a~k,l,c!

2e* ~k,l!a†~2k,l,c!#eik•x. ~32!

x.

FIG. 2. Dyson equation forG (2). Symbols are as in Fig. 1.
2-5
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The condition that emerges forv(k) from Eq. ~30! is iden-
tical to the condition that there are noa†a† or aa operators
in the full Hamiltonian.

E. Self-consistent gap equations

The form of the QCD Hamiltonian in Coulomb gaug
induces a crucial complication in the evaluation of t
ground state energy density. This is because the interac
potential itself depends on the choice of the vacuum;
kernel K @Eq. ~11!# depends on the vector fields which d
pend on the gap function@Eq. ~32!#. Thus the gap function is
actually determined by a set of coupled equations which
scribe the vacuum energy density and the interactions w
are used to obtain this energy density. This subsection
scribes how these equations are obtained; the solution is
sented in the next section.

The first step is the evaluation of the Coulomb kernel, E
~11!. This is greatly simplified with the aid of the Swift equa
tion @21#:

Kab~x,y;A!L ,52g2~L!
d

dg~L!
^x,au

g~L!

“•D
ux,b&.

~33!

The subscriptL refers to the regularization of field operato
in the Coulomb kernel. Thus one need only evaluate
Faddeev-Popov operatorg/“•D to obtain the full instanta-
neous Coulomb kernel. This can be done by expanding
Faddeev-Popov operator in powers ofgA and taking the ap-
propriate contractions of the gluon field. The expansion
justified as long as the fields are restricted to the fundame
modular region. In the infinite volume limit, this restriction
not expected to affect field contractions@7# as long as the
expectation value of the horizon term vanishes. Thus
following expressions may be used:

^vu@Aa~x!Ab~y!#Luv&5
dab

2 EL

dk
dT~ k̂!

v~k;L!
eik•(x2y),

^vu@Pa~x!Pb~y!#Luv&5
dab

2 EL

dkdT~ k̂!v~k;L!eik•(x2y),

^vu@Aa~x!Pb~y!#Luv&52^vu@Pa~x!Ab~y!#Luv&

5 i
dab

2 EL

dkdT~ k̂!eik•(x2y). ~34!

We have temporarily allowed forL-dependence in the ga
function. This is discussed in more detail in Sec. III A.

The expansion of the Faddeev-Popov operator is given

^xau
g~L!

“•D
uy,b&L5D (0)~x,y;L!dab

1 (
c1 ,i 1

E dz1Di 1

(1)c1~x,y,z1 ;L!ab

3:Ac1 ,i 1~z1!:L1 . . . 1
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(
c1•••cn

(
i 1••• i n

E dz1•••dzn

3Di 1••• i n

(n)c1•••cn~x,y,z1 ,•••zn ;L!ab

3:Ac1 ,i 1~z1!•••Acn ,i n~zn!:L1 . . . ,

~35!

where :: stands for normal ordering with respect touv& and
cn and i n refer to color and spatial components of the glu
field, respectively. HereD (0) stands for the vacuum expecta
tion value~VEV! of the Faddeev-Popov operator in the a
satz vacuum:

Dab
(0)~x,y;L!5^vu^xau

g~L!

“•D
uy,b&uv&L. ~36!

An operator expansion of the Coulomb kernel may
defined in a similar manner:

Kab~x,y;A!5K (0)~x,y;L!dab

1 (
c1 ,i 1

E dz1Ki 1

(1)c1~x,y,z1 ;L!ab :Ac1 ,i 1~z1!:L

1 . . . (
c1•••cn

(
i 1••• i n

E dz1•••dzn

3Ki 1••• i n

(n)c1•••cn~x,y,z1 ,•••zn ;L!ab

3:Ac1 ,i 1~z1!•••Acn ,i n~zn!:L1 . . . . ~37!

The equation for the VEV of the FP operator is mo
easily expressed in terms of its Fourier transform which
write as

~2p!3d~P!
d~k;L!

k2 dab[2E dxdyDab
(0)~x,y;L!

3eik•(x2y)eiP•(x1y)/2. ~38!

The amplitudesD (n) which multiply a product ofn gluon
fields can be written in terms ofD (0) and a set of vertex
functions,G (n). To do this we first define the Fourier tran
form of theD (n) via

~2p!3dS k2(
i 51

n

qi2 lD di 1•••,i n

(n)c1•••cn~k,q1 ,•••,qn ,l;L!

[2E dxdydz1•••dznexpF2 ik•x1 i l•y1 i(
i 51

n

qi•zi G
3Di 1•••,i n

(n)c1•••cn~x,z1 ,•••,zn ,y;L!. ~39!

Next we define the full transverse gluon-Coulomb vert
as G i

c(k,q,p). The Dyson equation for the full vertex is il
lustrated in Fig. 1 and is given by
2-6
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G i
c~k,q,k2q;L!5Z1~L!Tcki1(

c1
(
i 1

EL dl

~2p!3

1

2v~ l ;L! FG i 1

c1~k,l,k2 l;L!
d~k2 l;L!

~k2 l!2

3G i
c~k2 l,q,k2 l2q;L!

d~k2 l2q;L!

~k2 l2q!2 G i 1

c1~k2 l2q,l,k2q;L!G . ~40!

In the planar approximation higher order vertex functionsG (n) satisfy the following Dyson equation:

G i 1••• i n

(n);c1•••cnS k,q1 ,•••,qn ,k2(
i 51

n

qi D 5G̃i 1••• i n

(n);c1•••cnS k,q1 ,•••,qn ,k2(
i 51

n

qi D 1(
c0

(
i 0

E dq0

~2p!3

1

2v~q0!

3F G i 0

c0~k,q0 ,k2q0!
d~k2q0!

~k2q0!2 G̃i 1••• i n

(n);c1•••cnS k2q0 ,q1•••qn ,k2q02(
i 51

n

qi D

3

dS k2q02(
i 51

n

qnD
S k2q02(

i 51

n

qnD 2 G i 0

c0S k2q02(
i 51

n

qn ,q0 ,k2(
i 51

n

qnD G , ~41!

where we have introduced the following quantity:

G̃i 1••• i n

(n);c1•••cnS k,q1 ,•••,qn ,k2(
i 51

n

qi D[(
c0

(
i 0

E dq0

~2p!3

1

2v~q0!F G i 0

c0~k,q0 ,k2q0!
d~k2q0!

~k2q0!2

3G i 1

c1~k2q0 ,q1 ,k2q02q1!
d~k2q02q1!

~k2q02q1!2 •••

3G i n

cnS k2q02 (
i 51

n21

qi ,qn ,k2q02(
i 51

n

qi D dS k2q02(
i 51

n

qnD
S k2q02(

i 51

n

qnD 2

3G i 0

c0S k2q02(
i 51

n

qn ,q0 ,k2(
i 51

n

qnD G . ~42!

The equation forG (2) is shown in Fig. 2.
Finally, we are able to write the coefficients of the operator product expansion of the Faddeev-Popov operator as

dc; i
(1)~k,q,k2q!5d~k!G i

c~k,q,k2q!d~q! ~43!

and

dc1 ,c2 ; i 1 ,i 2
(2) ~k,q1 ,q2 ,k2q12q2!5d~k!Gc1~k,q1 ,k2q1!d~k2q1!Gc2~k2q1 ,q2 ,k2q12q2!

1d~k!G i 1 ,i 2

(2)c1 ,c2~k,q1 ,q2 ,k2q12q2!d~k2q12q2!, ~44!

and similarly for higher orders. Before renormalization, these amplitudes are functions of the cutoff. In the planar a
mation the VEV of the Faddeev-Popov operator,d(k;L)5d(0)(k,k;L) defined in Eq.~38! satisfies
025012-7
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d~k;L!5
g~L!

12g~L!I @d,v#
, ~45!

where

I @d,v#5(
n

1

Nc
221

Tr (
c1•••cn

(
i 1••• i n

1

k2EL dq1

~2p!3 •••
dqn

~2p!3

1

2v~q1 ;L!3•••32v~qn ;L!
G i 1••• i n

(n)c1•••cnS k;qi ,•••,qn ;k

2(
i 51

n

qi D dS k2(
i 51

n

qi ;L D
S k2(

i 51

n

qi D 2 G i 1••• i n

(n)c1•••cnS k2(
i 51

n

qi ;q1 ,•••,qn ;kD . ~46!
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The trace is taken over the implicit color indices of the v
tex functions,G (n)5Gab

(n) , which also absorb the renorma
ization constantsZi(L) of Eq. ~28!. This equation is shown
in Fig. 3.

We proceed to the evaluation of the Coulomb kernel. F
lowing Swift @21# we definef (k;L) via

~2p!3d~P!d2~K,L!
f ~k,L!

k2 dab

[ZK~L!E dxdy^vuKab~x,y!uv&Leik•(x2y)eiP•(x1y)/2.

~47!

From Eqs.~33! and~45! it follows that the vacuum expecta
tion value of the Coulomb kernel satisfies

f ~k,L!5ZK~L!1
d

dg
I @ZKd,v#. ~48!

This comprises a linear integral equation which must
solved forf after having obtainedd. We are finally in a po-
sition to evaluate the expectation value of the energy den
from the full Hamiltonian,

E5Eg1Em1EC[
1

V~Nc
221!

^vuHuv& ~49!

where the three terms represent the kinetic energy~including
the non-Abelian portion of theB2 term!, the mass counter
term, and the Coulomb potential, respectively. In particul

FIG. 3. Dyson equation for the VEV of the Faddeev-Pop
operator. See Fig. 1 for an explanation of the symbols.
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Eg5
1

2E
L dq

~2p!3 FZP~L!v~q;L!1ZA~L!
q2

v~q;L!G
1g2~L!

Nc

16E
L dq

~2p!3

dk

~2p!3

@32~ k̂•q̂!2#

v~q;L!v~k;L!

~50!

and

Em5
1

2
ZmL2EL dq

~2p!3

1

v~q;L!
. ~51!

The contribution from the Coulomb potential may b
evaluated with the aid of the operator expansion in Eq.~37!.
Recall that the products of gluon fields in the operator
pansion of the kernel are normal ordered with respect to
variational vacuum. Thus the maximum number of ter
which contribute to the vacuum energy density is determin
by the number of external fields present in the charge de
ties multiplying the kernel~i.e., four!. The Coulomb vacuum
energy density may be thus be written as

EC5E C
(0)1E C

(2)1E C
(4) . ~52!

The termsE (n) correspond to the vacuum expectation valu
of K (n) contracted with the fields from the charge densiti
For the first term one gets

E C
(0)5

Nc

16E
L dq

~2p!3

dk

~2p!3

f ~k1q;L!d2~k1q;L!

~k1q!2

3@11~ k̂•q̂!2#Fv~k;L!

v~q;L!
1

v~q;L!

v~k;L!
22G . ~53!

The higher order termsE C
(n) are of orderd(n12)(k;L). Since

d plays the role of the running coupling@see Eq.~45!#, we
expect these higher order terms to give finite corrections
v(k;L) which will be small at large momenta. We furthe
expect that the corrections at low momenta will be sm
since the leading infrared behavior is already contained
2-8
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E C
(0) . These assumptions and the effects of vertex correct

@cf. Eqs.~42! and ~41!# and the FP determinant will be dis
cussed in detail in Sec. III F.

Minimizing E C
(n) with respect tov leads to two contribu-

tions – one from the explicitv dependence@cf. Eq. ~53! for
E C

(0)# and the other from the implicitv dependence arising
through the kernelf d2. We refer to these contributions to th
gap equation asE C

(n),v andE C
(n),K , respectively. The first of

these is of orderO@d(n12)(k;L)# and the second is
O@d(n14)(k;L)#. Thus, for exampleE C

(0),K should be com-
bined with other orderO@d4(k;L)# contributions from
E C

(2),v . Subsequent expressions forE C
(n),v/K contain a factor

of 22v2 with respect to the derivatives ofE. For the mo-
ment we retain only the leadingO@d2(k;L)# contributions
from E C

(0),v in the gap equation. MinimizingE with respect
to v leads to the following gap equation:

ZP
2 ~L!v2~q;L!5ZA

2~L!q21Zm~L!L2

1g2~L!
Nc

4 EL dk

~2p!3

@32~ k̂•q̂!2#

v~k;L!

1
Nc

4 EL dk

~2p!3

f ~k1q;L!d2~k1q;L!

~k1q!2

3@11~ k̂•q̂!2#
v2~k;L!2v2~q;L!

v~k;L!
.

~54!

This completes the derivation of the leading order g
equations. To summarize, these comprise Eq.~45! for the
VEV of the FP operatord(k;L), Eq. ~48! for the Coulomb
kernel f (k;L), and Eq.~54! for the gap functionv(k;L).

III. SOLUTION OF THE SELF-CONSISTENT GAP
EQUATIONS

Before continuing we shall briefly summarize our ph
losophy. The goal is to construct a quasiparticle Fock sp
which will provide a useful starting point for the evaluatio
of hadronic observables. Quasiparticle states are built o
variational vacuum and reflect the propagation of these
grees of freedom through a nontrivial background. Of cou
the full Hamiltonian still contains many-body terms whic
mix the free quasiparticle states; nevertheless, the quas
ticle Fock space is complete and at least in principle o
should be able to diagonalize the full Hamiltonian in th
basis.

When dynamical quarks and gluons are considered,
would need to diagonalize the Hamiltonian in the full Fo
space. In practice, however, such diagonalization is alw
performed in an appropriately selected subspace e.g., inc
ing only uQQ̄& or uQQQ& quasi-particle states. Such a tru
cation is better justified when the quasiparticles behave
constituent particles with average kinetic energies of sev
hundred MeV. Furthermore, as discussed earlier, the qu
particle basis diagonalizes the one-body part of the Ham
tonian, thus at least at the level of Tamm-Dancoff truncati
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the quasiparticle vacuum decouples from the hadronic sp
trum.

The required cut-off independence of the eigenvalues
be used to determine theL dependence of the various cou
terterms and couplings. At this stage, this implies that
Fock space itself should be cutoff-independent because
example, the ground state energy of two static color sour
is directly related to the expectation value ofH in the varia-
tional vacuum. We note that expanding the Fock space
which the Hamiltonian is being nonperturbatively diagon
ized will add new counterterms to the Hamiltonian whi
will modify the renormalization group equations.

A. Vertex truncation

We start by examining the renormalization group struct
which follows from the requirement that the gluonic Fo
space itself isL independent. This implies that the Coulom
kernel, and hence f (k;L) and d(k;L), should be
L-independent. These conditions may be imposed thro
an appropriate choice of the cutoff dependence of the co
terterms and coupling.

Consider first renormalizing the FP operator of Eq.~45!.
In this equationd is expressed in terms of the vertex fun
tions G (n) and the gap functionv. Since these can be inde
pendently renormalized using other renormalization para
eters which do not explicitly show up in Eq.~45! @i.e.,
Z1(L),Zm(L) in Eqs.~27! and~28!# we can replace them by
their renormalized,L-independent versions,G (n)(•••;L)
→G (n)(•••) and v(k;L)→v(k). Thus the only
L-dependent parameter available to enforce the cutoff in
pendence of the FP operator is the coupling,g(L).

To determine the consequences of this observation we
amine the behavior of the vertices which appear in the eq
tion for d @Eq. ~45!#. Asymptotic freedom implies that fo
momenta near the uv cutoff, the gap function and the ren
malized vertex functions approach their corresponding fr
field values,

lim
k;L→`

v~k!5k1O@g2~L!# ~55!

and

G i
c~k,q,k2q!→kiTc1O@g2~L!#. ~56!

For n.1

G (n)S k,q1 , . . . ,qn ,k2(
i 51

n

qi D→O@gn12~L!#. ~57!

Similarly one expects that in this limitd(k)→O@g(L)#.
Thus the integral in Eq.~45! is logarithmically divergent as
L→`. This divergence is absorbed by the couplingg(L). It
follows from Eq. ~40! that G i

c is given by an expression
which is finite asL approaches infinity; thus there is no ne
for vertex renormalization and one can setZ1(L)51. Fur-
thermore, the correction to the bare vertexTck is expected to
be of the orderO(^g2&) where ^g& refers to an uv and ir
2-9
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finite integral over the running coupling. This is due to t
two Faddeev-Popov operatorsd(k) in Eq. ~40!. Sinced(k) is
proportional tog(L5k) for large k, the renormalized FP
operator can be associated with the running coupling:

lim
k→`

d~k!→g~L5k!. ~58!

From the resummation implicit in Eq.~45!, and consistent
with asymptotic freedom, the large momentum behavior
d(k) will be logarithmically suppressed withk. Furthermore,
if d(k) is less singular than 1/k in the infrared limit then the
integral on the right hand side of Eq.~40! represents a finite
higher order~in the running QCD coupling! correction to the
bare vertex. This is also true for the higher order irreduci
vertices, G (n). From Eq. ~41! it follows that these are
O(^gn12&). This important observation will be used to tru
cate the gap equations in the next subsection.

B. The truncated and renormalized gap equations

The considerations of the previous subsection may
used to truncate the general gap equations derived in Se
This is necessary to make the equations tractable. The e
of neglected terms will be discussed in Sec. III D.

We start by ignoring the finite higher order corrections
the vertices and thus take

G i
c~k,q,k2q!5Tcki , ~59!

and

G (n)→0. ~60!

The equation for the unrenormalized FP operator, Eq.~45!,
becomes

1

d~k;L!
5

1

g~L!
2NcEL dq

~2p!3

12~ k̂•q̂!2

2v~q!~k2q!2 d~k2q;L!.

~61!

One sees from this equation that in order ford(k;L) to beL
independent,g(L) must obey the following renormalizatio
group equation

1

g~L!
5

1

g~m!
1NcEL dq

~2p!3

12~ q̂•m̂!2

2v~q!~q2m!2 d~q2m!.

~62!

Thus Eq.~61! becomes

1

d~k!
5

1

d~m!
2NcE dq

~2p!3

12~ q̂• k̂!2

2v~q!~q2k!2 d~q2k!

1NcE dq

~2p!3

12~ q̂•m̂!2

2v~q!~q2m!2 d~q2m!. ~63!

Here the renormalized FP operator is written asd(k;L)
→d(k). Equation~63! implies thatd(k) is independent ofL
~and the scalem), and represents the once-subtracted form
02501
f

e

e
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Eq. ~61!. The presence ofg(L) in Eq. ~45! shows thatd(k)
can only be determined up to an overall constant. Thus
equation ford(k) contains a single unknown,d(m).

The vertex truncations and Eqs.~48! and ~61! imply that
the expectation value of the unrenormalized Coulomb ker
is given by

f ~k,L!5ZK~L!1NcE dq

~2p!3

12~ q̂• k̂!2

2v~q!~q2k!2

3d2~q2k! f ~q2k;L!. ~64!

The uv divergence from the integral is absorbed byZK(L).
Subtracting once yields

f ~k!5 f ~m!1NcE dq

~2p!3

12~ q̂• k̂!2

2v~q!~q2k!2 d2~q2k! f ~q2k!

2NcE dq

~2p!3

12~ q̂•m̂!2

2v~q!~q2m!2 d2~q2m! f ~q2m!.

~65!

Here f (m) is another external renormalization paramet
The renormalization constant is given in terms of it by

ZK~L!5 f ~m!2NcE dq

~2p!3

12~ q̂•m̂!2

2v~q!~q2m!2

3d2~q2m! f ~q2m!. ~66!

We finally discuss renormalization of the gap equatio
Eq. ~54!. In general this equation can depend on the th
renormalization constants,ZA(L), ZP(L), Zm(L) and the
renormalized coupling,g(L). The couplingg(L) is already
determined by Eq.~62!. In the uv limit the integral on the
right hand side of Eq.~54! has in principle quadratic and
logarithmic divergences. The logarithmic divergence
present if the kernelf (k2q)d2(k2q) approaches a constan
in the uv limit. There are, however, logarithmic correctio
to both f andd which follow from Eqs.~63! and~65! which
actually protect the integral from the logarithmic divergenc
Thus one can immediately setZA5ZP51 and absorb all
possible remaining divergences~asL→`) into Zm(L). This
leaves the quadratic divergence which is eliminated b
single subtraction,

v2~q!5q22m21v2~m!1
Nc

4 E dk

~2p!3

f ~k1q!d2~k1q!

~k1q!2

3@11~ k̂•q̂!2#
v2~k!2v2~q!

v~k!
2

Nc

4 E dk

~2p!3

3
f ~k1m!d2~k1m!

~k1m!2 @11~ k̂•m̂!2#
v2~k!2v2~m!

v~k!
.

~67!

The mass counterterm is given in terms ofv(m) by
2-10



rd
b
o

ic
u

a
Th
ou

er

s

t
lin
th
n
tio
er
s

tio
fo
a

th
t

th

er-
ou-

de-

gle

sti-
nd

ial
qs.

COULOMB GAUGE QCD, CONFINEMENT, AND THE . . . PHYSICAL REVIEW D 65 025012
Zm~L!L25v2~m!2m22g2~L!
Nc

4 EL dk

~2p!3

@32~ k̂•q̂!2#

v~k!

2
Nc

4 EL dk

~2p!3

f ~k1m!d2~k1m!

~k1m!2

3@11~ k̂•m̂!2#
v2~k!2v2~m!

v~k!
. ~68!

Equations ~63!, ~65!, and ~67! form the renormalized
coupled gap equations which represent the leading o
vacuum and quasiparticle structure of QCD in Coulom
gauge. We proceed by examining the perturbative limit
these equations before turning to analytical and numer
solutions. Section III F examines corrections to the gap eq
tions due to truncation to the leading terms.

C. Asymptotic renormalization group equations

We establish the relationship of the renormalized g
equations to standard perturbative QCD in this section.
renormalization group equation for the renormalized c
pling, Eq. ~62! implies that for large cutoffs

L
dg~L!

dL
52

8NC

3

g2~L!d~L!

~4p!2 , ~69!

and from Eqs.~62! and ~63! it follows that in the limit L
→`

L
dg~L!

dL
52

8NC

3

g3~L!

~4p!2 [b@g~L!#. ~70!

We call the first coefficient in the expansion of theb

function b̄0. The last equation implies that

b̄05
8Nc

3
. ~71!

Although it is tempting to compare this to the canonical p
turbative expression ofb0511Nc/3, this is misleading for
two reasons. First the coupling defined here correspond
the product of the VEV of a composite operator~i.e., the
Faddeev-Popov operator! and the QCD coupling. Thusb̄
will also reflect renormalization of the FP operator. We no
that this is nevertheless a sensible definition for the coup
since it is this product which determines the strength of
various interactions involving Coulomb gluons. The seco
reason is that we sum loops which arise from the expecta
value of the Hamiltonian and do not include those from it
ating the Hamiltonian. Iteration of the Hamiltonian involve
summing over intermediate states. This is fine in perturba
theory, but because of confinement can only be justified
color singlets so that summation should be restricted to h
ronic intermediate states only. As discussed in Sec. II D
may be achieved in bound state perturbation theory once
quasiparticle Fock space is specified. We will discuss
running coupling in more detail below.
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The expression forZK given in Eq.~66! implies that the
renormalization group equation forZK(L) is given by

L
ZK~L!

dL
52b̄0

d2~L! f ~L!

~4p!2 , ~72!

which in the limit L→` leads to

L
dZK~L!

dL
52

8NC

3

g2~L!

~4p!2 ZK~L!. ~73!

Finally, Eq. ~68! yields

L
dZm~L!

dL
522Zm~L!2

g2~L!

~4p!2b̄0

3F2S 11
g2~L!

~4p!2b̄0D1ZK~L!G . ~74!

The first term is universal and reflects the quadratic div
gence. The remainder relates to the uv behavior of the C
lomb kernel and the quartic-gluon vertex which are both
termined by the running couplingg(L).

As expected, all counterterms run as a function of a sin
renormalized parameterg(L), where from Eq.~70!,

g2~L!5
g2~L0!

11
b̄0

~4p!2 g2~L0!log
L2

L0
2

5
~4p!2

b̄0log
L2

LQCD
2

, ~75!

with

LQCD
2 5L2exp@2~4p!2/b̄0g2~L!#. ~76!

Solving the renormalization group equations and sub
tuting for g yields the following expressions for the mass a
Coulomb renormalization constants

ZK~L!5ZK~L1!S log
L1

LQCD
2

log
L

LQCD
2

D 1/2

5ZK~L1!
g~L!

g~L1!
,

~77!

and

L2Zm~L!5Zm~L1!L1
22

b̄0

~4p!2E
L1

2

L2

dtg2~ t !

3F S 11
g2~ t !

~4p!2b̄0D1
1

2
ZK~ t !G . ~78!

Lastly, we examine the effective renormalized potent
between static color sources. This may be defined via E
~10! and ~47! as
2-11
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V~k![
f ~k!d2~k!

k2 [
4pa

eff
~k!

k2 . ~79!

It is clear that it is the combinationZK(L)g2(L) which is
responsible for makingaeff L-independent. For largeL and
L1 one obtains

aeff~L!5aeff~L1!
ZK~L!g2~L!

ZK~L1!g2~L1!

5
aeff~L1!

S 11b̄0

g2~L1!

~4p!2 log
L2

L1
2D 3/2 . ~80!

Notice the power in the denominator which is present due
the rainbow-ladder nonperturbative structure of the VEV
the Coulomb operator. Expanding Eq.~80! permits a com-
parison to perturbation theory:

aeff~L!5aeff~L1!S 11
3

2
b̄0

g2~L1!

~4p!2 log
L1

2

L2 1O~g4! D .

~81!

In perturbation theory~with no light quarks! the coefficients
in front of g2(L1) should be equal to 4NC2NC/3511/3Nc

rather than 3/2b̄054NC . The difference comes from the pe
turbative contribution due to emission and absorption o
transverse gluon, which involves iterating the Coulom
transverse gluon vertex fromHC twice. This contribution is
not present when one takes the expectation value of
Hamiltonian as done here. However, as stated earlier, pe
bative contributions from propagating transverse gluons m
be included, for example, in bound state perturbation the
and can be systematically included in our approach when
Hamiltonian is diagonalized in the quasiparticle basis.
should also be noted that such differences are of a scree
nature, and thus are not expected to spoil the confinem
mechanisms coming from summing the Coulomb-transve
gluon interactions.

D. Approximate analytical solution

In this subsection we present an approximate analyt
solution to the truncated renormalized coupled gap equat
for d(k), f (k) andv(k); Eqs.~63!, ~65!, ~67!, respectively.
The approximate solution is obtained by simplifying the a
gular part of the integrals over 3-momenta. In each case
angular dependence is approximated by

~k2q!2→u~k22q2!k21u~q22k2!q2. ~82!

Next we assume that the renormalized solution of the
equation can be written in the form

v~k!5u~k2mg!k1u~mg2k!mg . ~83!

Thus we assume that the gap function saturates to a non
value at low momentum. Once the FP operatord(k) and the
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Coulomb kernelf (k) have been obtained, the gap equati
may be solved forv(k) and the consistency of the ansatz f
v may be checked.

With the aid of these approximations the equation for
running coupling can be converted into differential form

2
d8~k!

d2~k!

55
b̄0

~4p!2 S 2

3

d~k!

mg
2

1

3

k

mg
d8~k! D for k<mg ,

b̄0

~4p!2 S 12
mg

2

3k2D S d~k!

k
2

1

2
d8~k! D for k>mg .

~84!

For k<mg a solution is given by

d~k!2

F12
5b̄0

3~4p!2

k

mg
d2~k!G4/55

d~m!2

F12
5b̄0

3~4p!2

m

mg
d2~m!G4/5,

~85!

which is well approximated by

d~k!5
d~m!

F11
5b̄0

3~4p!2 d2~m!S k2m

mg
D G1/2. ~86!

This equation is triviallym-independent. For large moment
k>mg we approximate Eq.~84! by neglecting the terms o
O(mg

2/k2). In this case the solution is given by

d~k!5
d~m!

S 11
b̄0

~4p!2 d~m!2log
k2

m2D 1/2, ~87!

which also ism-independent. Even though this solution
valid for k@mg it may be matched continuously with th
solution forkg,mg if one choosesm5mg . The freedom in
the renormalization ofd(k) is now related to the choice o
the value ofd(k) at k5m5mg .

It follows from Eqs.~85! and ~86! that there is a critical

value of d(mg)5dc54pA3/5b̄0;3.4414 forNc53 which
leads tod(k)}1/Ak for small k.1 Furthermore, this is the
strongest possible ir enhancement admitted by the appr
mate solution. The solution ford approaches a finite valu
for all other values ofd(mg) less thandc . We shall see that
this general behavior remains true for the full numerical
lution as well.

The corresponding solution for the functionf (k) follows
from Eq. ~33!. For k<mg ~with m5mg) one gets

1We note that this form is actually another solution to Eq.~84! for
small k.
2-12
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f ~k!5
f ~mg!

F11
5b̄0

3~4p!2 d2~mg!S k2mg

mg
D G1/25 f ~mg!

d~k!

d~mg!
,

~88!

and fork>mg ,

f ~k!5
f ~mg!

F11
b̄0

~4p!2 d2~mg!logS k2

mg
2D G1/25 f ~mg!

d~k!

d~mg!
.

~89!

The freedom in choosing the normalization forZK(L) is
now reflected in the unspecified normalization const
f (mg). The maximal infrared enhancement of the Coulom
kernel is given byk27/2 @f (k)}1/k1/2# if the approximate
solution of Eq. ~86! is used, or is given byk215/4 @f (k)
}1/k3/4# if the full solution for d(k), Eq. ~85! is used. We
note that a linearly rising Coulomb potential requiresf (k)
}1/k for small k. The exact numerical behavior off will be
discussed in the next subsection. Lastly, if one substitutes
ansatz solution for the gap function Eq.~83! into the gap
equation~67!, one finds that it is indeed a solution up
terms of orderO(k/mg) for k,mg or O(mg /k) for k
.mg .

To summarize, the approximate analytical solution lea
to a running coupling~FP operator!, d(k) which falls off
logarithmically at large momenta and is enhanced at sm
momenta. The approximate solution indicates that ther
only one critical value of the coupling for which the e
hancement is maximal and given byd(k)}1/Ak. This may
be an artifact of the truncation of the series of coupled s
consistent equations. One expects, however, that the cri
behavior is universal, i.e., near the critical coupling high
order corrections to the vertices in the Coulomb opera
become irrelevant.

The full Coulomb kernel becomes logarithmically su
pressed at large momenta as expected from an all-orde
summation of leading logs. At the critical point and for lo
momenta it becomes enhanced over the perturbative 1/k2 be-
havior and scales ask215/4. We have thus obtained a tant
lizing glimpse of the possibility of constructing a phenom
enologically viable truncation of QCD.

E. Numerical solution

Encouraged by the near-appearance of linear confinem
in the approximate analytical solution we proceed to a
numerical solution to the truncated renormalized coupled
equations. The solution is obtained by mapping the gap eq
tions onto a set of discrete nonlinear equations by placing
functions on a momentum space grid. We have found
numerical stability is enhanced if the grid is chosen carefu
in particular by preferentially populating the low and hig
momenta regions. The discrete gap equations were
solved with two independent solution algorithms. Both me
ods used an iterative procedure to cycle through the th
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equations. Convergence was typically achieved in only a
passes since the analytical starting point of the last sectio
quite accurate.

The numerical and approximate analytical solutions
the FP operator are shown in Fig. 4 for three separate va
of d(mg). This and subsequent figures are plotted in units
mg which after renormalization is the only dimensionful p
rameter. Its value can only be determined upon compari
to a physical observable. It is clear that the analytical so
tions are very accurate. Furthermore, the existence of a c
cal coupling appears to be numerically confirmed, with
value very neardc53.5.

FIG. 4. Solution for the expectation value of the FP opera
d(k). The two lower dashed lines correspond to an analytical,
proximate solution with d(mg)52.5 ~lower! and d(mg)53
~higher!. Boxes correspond to a full numerical solution for the co
responding values ofd(mg). The numerical solution close to th
critical point is shown by the open circles. The solid line corr
sponds to a fit to this numerical solution using the formula in E
~90!.

FIG. 5. f (k)/ f (mg). Curves as in Fig. 4. The numerical solutio
near the critical point~open circles! is fit to the formula given by
Eq. ~91! ~solid line!.
2-13
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The numerical solution near the critical point has been
to the formula

d~k!5H dcS mg

k D ad

for k<mg ,

dcS log~11bd!

log~k2/mg
21bd! D

cd

for k>mg .

~90!

The fit yieldsdc53.5, ad50.48, bd51.41 andcd50.4 veri-
fying the accuracy of the approximate analytical solutio
Figure 5 shows the Coulomb kernel functionf (k)/ f (mg) for
d(mg)52.5 and 3.0. Again, ford(mg),dc the solution satu-
rates at low momentum and the analytical approximation
n
ffi
g
th

02501
t

.

is

quite accurate. The solution at the critical point is compa
with

f ~k!/ f ~mg!5H S mg

k D af

for k<mg ,

S log~11bf !

log~k2/mg
21bf !

D cf

for k>mg .

~91!

The fit yields, af50.97, bf50.82 andcf50.62. The low
momentum behavior is found to be more enhanced tha
the approximate analytical solution. The two fits to the n
merical solutions ford and f result in the following expres-
sion for the Coulomb kernelV(k)5 f (k)d2(k)/k2:
k2V~k!/ f ~mg!5H ~3.50!2S mg

k D 1.93

for k<mg ,

8.07log20.80~k2/mg
211.41!log20.62~k2/mg

210.82! for k>mg .

~92!
ith

ion
the

th
o-

en
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e
the
hat
At low momenta the effective couplingaeff(k) @defined
through Eq.~79!# behaves very nearly as 1/k2. The fact that
the power is not exactly22 may be due to discretizatio
error ~a finer momentum grid does indeed bring the coe
cient closer to22) or the truncations employed in derivin
the gap equations. In any event, as will be shown later
difference~roughly 3.5%! is completely negligible with re-
gard to phenomenology.

Assuming linear confinement (2ad1af52) gives@13#

6pb5~3.5!2mg
2 . ~93!

Inserting the quark model value for the string tension,b
50.18 GeV2 yields mg'530 MeV. Alternatively, lattice
string tensions are typically 0.26 GeV2 @22#, giving mg

FIG. 6. Comparison of the analytical approximation tov(k)
~dashed line! and the full numerical solution~solid line!.
-

e

'630 MeV. These estimates of the scale are in accord w
lattice computations of the adiabatic hybrid surfaces~thus is
discussed further in Sec. IV A! and with old glueball phe-
nomenology@23#.

The numerical and ansatz solutions for the gap funct
are shown in Fig. 6. We note the remarkable accuracy of
simple ansatz forv, the main difference being the smoo
transition through the intermediate momentum region. N
tice also thatv approachesk very rapidly for large momen-
tum.

Finally, the numerical stability of the solutions have be
tested by varying the number of grid points. Of course t
also tests thede factonumerical cutoff dependence of th
results. The results are shown in Fig. 7. We find that
numerical results are stable to within a percent. Notice t

FIG. 7. Numerical solution ford(k) near the critical point for
192 ~circles!, 288 ~triangles! and 384~diamonds! grid points.
2-14
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this also confirms that all uv divergences have been prop
subtracted.

F. Higher order terms

We now address the issue of the neglected terms in
coupled gap equations. These arise, for example, from t
cation of the rainbow-ladder sums, higher order correcti
to the Coulomb vacuum energy, and from the terms ge
ated by the Faddeev-Popov determinantJ.

1. Vertex corrections

The truncation to the rainbow-ladder resummation for
Faddeev-Popov operator and the Coulomb kernel igno
higher order,O(dn), n>2 corrections to the triple Coulomb
transverse-gluon vertex. Using the approximate analyt
solutions ford(k) andv(k) we estimate these contribution
by evaluating theO(d2) correction. From Eq.~40! it follows
that the lowest order correction to the bare vertex is given

dG i
c~k,q,k2q!5

Nc

2 E dl

~2p!3

3
@~k1 l!•dT~q!# i@k•dT~ l!~k1 l2q!#

2v~ l!

3
d~k1 l!

~k1 l!2

d~k1 l2q!

~k1 l2q!2 Tc. ~94!

We have evaluated this integral numerically and found t
for all values of the external momenta the correction d
not exceed a few percent.

2. Second and fourth order corrections to the Coulomb kerne

Recall that an operator product expansion for the C
lomb kernel has been defined in Sec. II E, Eq.~37!. We now
employ the Swift equation~33! and the operator expansio
of the Faddeev-Popov operator Eq.~35! to derive an explicit
expression for the terms in that expansion:

Kab~k,p;A!5d~k1p!dabK (0)~k!1 ig f acb@K (0)~p!D (0)~k!

1D (0)~p!K (0)~k!#:Ac~p1k!•p: . . .

1~ i !nf ac1e1 . . . f en21cnb

3
d

dg Fgn11D (0)~p!D (0)~p2s1!•••

3D (0)S p2(
l 51

n

sl D GdS p1k2(
l 51

n

sl D
3:Ac1~s1!•p . . . Acn~sn!•S p2 (

l 51

n21

sl D :.

~95!

The term in the expansion ofK which containsn gluons is
weighted by a product ofn21 factors ofD (0) and a single
factor ofK (0). The additional contributions to the VEV of th
Hamiltonian discussed in Sec. II E,E C

(2) andE C
(4) , come from

terms with a product ofn52 andn54 normal ordered gluon
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fields :An:, respectively. These are the only contributio
which have a nonzero VEV after combining with the char
densities. The contribution to the gap equation is then
tained by taking the derivative of the VEV with respect tov.
As was discussed earlier, an alternative method to derive
gap equation is to require that the off-diagonal~proportional
to a†a† or aa) portions of the one-body operators vanis
The second method would indicate that terms withn56,
r:A6:r, contribute to the gap equation as well since the fo
gluon fields from the two charge densities can contract w
the fields from the kernel leading to an operator proportio
to :A2:. As discussed in Sec. II E, the apparent difference
these two procedures is resolved if one notices that there
contributions to the gap equation which arise from the i
plicit dependence of the Coulomb kernel onv. In the second
method, the contribution which would be associated with
n56 term in the operator product expansion ofK is identical
to the one from the derivative of the kernel in then54 term
contribution to the VEV. This was denotedE C

(4),K in Sec.
II E. Similarly the term referred to asE C

(0),K in the discussion
preceeding Eq.~54! is identical to the contribution from the
n52 term when the fields from the charge densities are c
tracted with each other.

Adding all these pieces together yields,

v2~q!2v~m!25q21@E C
(0),v~q!#1@E C

(0),K~q!1E C
(2),v~q!#

1@E C
(2),K~q!1E C

(4),v~q!#

1@E C
(4),K~q!#2~q→m!. ~96!

The four terms in the brackets areO(d2), O(d4), O(d6) and
O(d8), respectively; no other corrections exist. We test
importance of the higher order terms by computing t
O(d4) correction to the truncated gap equation.

An example of a diagram contributing toE C
(2),v is given

in Fig. 8. The explicit expressions forE C
(0),K andE C

(2),v are
given below:

E C
(0),K~q!5

Nc
2

8 E dk

~2p!3

dp

~2p!3 F v~k!

v~p!
21G

3Tr@dT~ p̂!dT~ k̂!#@~k1p!dT~ q̂!~k1p!#

3F f ~k1p!d2~k1p!d~k1p!d~k1p1q!1perm.

~k1p!2~k1p!2~k1p1q!2 G ~97!

and

FIG. 8. O(d4) contributions to the gap function fromE C
(2),v .
2-15
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E C
(2),v~q!5

Nc
2

16E dk

~2p!3

dp

~2p!3 F12
v2~q!

v~k!v~p!G
3@~q1k!dT~ p̂!dT~ q̂!dT~ k̂!~q1p!#

3F f ~q1k1p!d2~q1k1p!d~q1k!d~q1p!1perm.

~q1k1p!2~q1k!2~q1p!2 G
1

Nc
2

8 E dk

~2p!3

dp

~2p!3 F12
v~k!

v~p!G~k2q!dT~p!dT~k!dT~q!

3~p2k!F f ~p2k!d2~p2k!d~p2k1q!d~k2q!1perm.

~p2k!2~p2k1q!2~k2q!2 G .
~98!

Here the permutations refer to the other two ways of arra
ing the argument off d2 in f (1)d2(1)•d(2)•d(3).

Including these terms in the gap equations modifies
results ford andf by strengthening the ir enhancement som
what. The result for the gap function is shown in Fig. 9.
expected, the change at higher momenta is minimal. H
ever, we see that theO(d4) terms do not modifyv at low
momentum either. This is becauseE 2,v andE 0,K depend on
the combinationv(p1)/v(p2)21 which suppresses them i
the ir limit (p15p2). Our results are compared to lattic
computations in Sec. IV A. We stress that the result of Fig
should be considered preliminary because there are o
O(d4) corrections~see the next subsection! that have not yet
been included.

The computation of theO(d6) and O(d8) corrections is
progressively more difficult and is currently under investig
tion. These require the numerical solution of a self-consis
equation involving at least 8-dimensional integrals. Ho
ever, since theO(d4) corrections are small we expect the
higher order terms not to change the results significantly

3. Faddeev-Popov contributions

We now discuss the corrections due to the Faddeev-Po
determinantsJ. We calculate the contribution to the ga

FIG. 9. Normalized instantaneous transverse gluon propag
1/2v(k). The dashed line is the solution to the leading order g
equation of Eq.~67!; the solid line includesO(d4) corrections.
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equation for the determinant present in the kinetic part of
Hamiltonian, through theJ 21/2PJ 1/2 operators. This is
given by

1

2E dxJ 21/2Pa~x!JPa~x!J 1/25
1

2E dxPa~x!Pa~x!1VA .

~99!

Similarly, VB is defined via the relation@see Eq.~21!#

HC5
1

2E dxdyra~x!Kab~x,y;A!rb~y!1VB . ~100!

A direct computation yields

VA5
g2

4 E dxf abcf ae fdT~“x! i j ^xbu~“•D !21ux,c&“Q xj

3dT~“x! ik^xeu~“•D !21ux, f &“Q xk

2
g2

8 E dxf abcf ae fdT~“x! i j ^xbu~“•D !21ux, f &“Q xj

3dT~“x! ik^xeu~“•D !21ux,c&“Q xk
~101!

or in momentum space

VA52
1

8E d3k

~2p!3

d3p

~2p!3

d3q

~2p!3 Dac~q,q1k!

3Dde~p1k,p! f bcaf bed@qdT~k!p# ~102!

1
1

4E d3k

~2p!3

d3p

~2p!3

d3q

~2p!3Dac~q,k1p!

3Dde~p,q2k! f bcdf bea@qdT~k!p#, ~103!

where Dac(p,k)5^apug/(“•D)uck&. We note thatVA is
similar to Christ and Lee’sV1; however, it is not identical
because we have not Weyl ordered the Hamiltonian.

Using the operator product expansion for the FP opera
these lead to terms proportional to:A2: which add to the gap
equation the following contribution:

E FP
2,v~q!5

NC
2

16E dk

~2p!3

dp

~2p!3

d~k1q!

~k1q!2

d~k!

k2

3@kdT~q!p#2
d~p1q!

~p1q!2

d~p!

p2

2
NC

2

16E dk

~2p!3

dp

~2p!3

d~k1q!

~k1q!2

d~k!

k2 @kdT~q!p#

3@~k1q!dT~p1q1k!~p1q!#
d~p1q!

~p1q!2

d~p!

p2

2
NC

2

4 E dk

~2p!3

dp

~2p!3 S d~k!

k2 D 2

@kdT~p!k#

3@kdT~q!k#
d~k1q!

~k1q!2

d~k1p!

~k1p!2 . ~104!

or,
p
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The contribution ofVA to the gap equation is ir-finite bu
uv-divergent and will thus modify the gluon mass count
term. A detailed numerical study of the fullO(d4) correc-
tions to the gap equation will be presented elsewhere.

IV. DISCUSSION

As demonstrated in the previous section, the asympt
behavior of the numerical solution to the gap equations
V(k);1/k4, it thus appears that the methodology advoca
in this paper is capable of describing quark confinement.
appearance of the confinement phenomenon hinges cruc
on the choice of the variational vacuum which we use
construct the quasiparticle basis and on realizing that
choice also affects the interaction between these quasip
cles via the summed expression for the instantaneous C
lomb kernel. We now examine the implications of this su
cess on confinement and the Gribov ambiguity.

A. The confinement potential

The requirement that the gluon mass gap functionv(k)
be cutoff independent gives rise to a mass scale which
call the gluon mass,mg . The value ofv at a particular
momentum scale, sayk50 serves as the underlying ma
parameter of the theory. At the critical couplingdc the only
free parameters in the gluon sector areZK(m) and the mo-
mentum scale itself,mg5v(0). Nonperturbative renormal
ization may be carried out by requiring that the Coulom
kernel reproduce the staticQQ̄ heavy quark potential as see
on the lattice~recall that VQQ̄ is a renormalization group
invariant quantity!. In our approach this potential is given b

HQCDuQ~r /2!,Q̄~2r /2!&5VQQ̄~r !uQ~r /2!,Q̄~2r /2!&.
~105!

In pure QCD, i.e., ignoring light flavors, the above eigenst
can be expanded in terms of multigluon states constru
from the quasiparticle operators acting on theuv& vacuum.
Schematically,

uQ~r /2!,Q̄~2r /2!&5 (
n50

cn~a†!nb†~r /2!d†~2r /2!uv&,

~106!

where the quark creation operators refer to static sour
The Hamiltonian mixes states differing by gluon numb
however, one expects the mixing between such states t
suppressed by energy denominators due to the gluon m
gap,v(0)Þ0 ~this is discussed in much more detail in Se
V A !. This mass gap can be estimated from the differe
between the lowest and excited adiabaticQQ̄ potentials
which have been calculated on the lattice@22#. One finds that
this difference isDV(r;1 fm);6002800 MeV. This is a
natural estimate forv(k) at low momenta@23#. The impli-
cation is that the static ground state heavy quark poten
may be accurately computed by ignoring extra gluonic ex
tations in the heavy quark system.~A calculation of the ex-
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cited adiabatic potentials will be presented elsewhere.! Thus,
to good accuracy, the static heavy quark potentialV(r ) is
given by

VQQ̄~r !52CFV~r !

52CFE dk

~2p!3 eik•r
f ~k!d2~k!

k2

[2CFE dk

~2p!3 eik•r
4paeff~k!

k2 . ~107!

It is useful to return to the approximate analytical so
tions to the truncated renormalized gap equations of S
III D to illustrate how the different parameters enter. We ha
seen that at the critical pointdc the solutions for the
Faddeev-Popov operator and the Coulomb kernel are

d~k!55
d~mg!S mg

k D 1/2

for k<mg ,

d~mg!

A11
3

5
log

k2

mg
2

for k>mg ,

~108!

and

f ~k!55
f ~mg!S mg

k D 3/4

for k<mg ,

f ~mg!

A11
3

5
log

k2

mg
2

for k>mg .

~109!

Since d(mg)5dc;3.4414 is fixed, the potential has on
two free parameters, the overall strength determined
f (mg) and the mass scale set bymg5v(0). These may be
determined by comparing with lattice computations of t
Wilson loop. One findsf (mg);1.0 andmg'1.8/r 0. Herer 0
is the Sommer parameter of lattice gauge theory which
determined to be roughly 1/430 MeV21. Thus mg
'720 MeV.

The same procedure may be followed for the numeri
solution to the gap equation. Good agreement with the lat
static potential is obtained by choosingf (mg)51.41 and
mg51.4/r 05600 MeV. The minimum in parameter space
fairly broad, for example f (mg)51.09 and mg51.6/r 0
5690 MeV provides nearly as good a description ofVQQ̄ .
The resulting potential~after numerically Fourier transform
ing to configuration space! is presented in Fig. 10. One see
that the numerically obtained static quark potential provid
a reasonable facsimile of the lattice potential. This somew
surprising result providesa posteriorisupport for the meth-
odology advocated here.
2-17
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B. The Gribov-Zwanziger horizon and the gap function

As mentioned in Sec. II B, the Gribov problem may
resolved by selecting a single gauge copy from the ensem
of Gribov copies by imposing the horizon condition of E
~23!. Furthermore, Cucchieri and Zwanziger@7# have shown
that the restriction to the fundamental modular region i
posed by the horizon term is equivalent to having a lo
momentum enhancement in the Faddeev-Popov ope
over the perturbative 1/k2 behavior. This enhancement tak
the form

1

D (0)~k!
5kikj@S~0! i j 2S~k! i j #, ~110!

whereS is a regular function at the origin. Such a behav
is clearly an indication of confinement@5#, since the FP op-
erator determines the static potential between color sou
@cf. Eq. ~21! or Eq.~33!#. Comparing Eq.~110! with Eq. ~38!
shows that this is equivalent to the statement thatd(k) is
singular at the origin,

lim
k→0

1/d~k!→0. ~111!

The behavior ofd at small momenta depends on one integ
tion constant,d(m). As we have shown earlier,d(k) ap-
proaches a finite value ask→0 except whend(m)5dc
where the Gribov-Zwanziger singularity develops.

It is possible that the saturation ofd(k) to finite values
when d(m),dc is an artifact of the rainbow-ladde
approximation—we leave this as a matter of future inve
gation. For the present we simply require that the theory g
rise to an enhancement of the FP operator at small mom
tum, this boundary condition then selects the coupl
d(m)5dc .

In Ref. @7# the enhancement in the FP operator was
tained by adding the horizon term to the Hamiltonian via
Lagrange multiplier. The VEV of the new Hamiltonian wa
then computed in the bare vacuum, i.e., withv(k)5k; how-

FIG. 10. StaticQQ̄ ground state potential. The solid line is th
full numerical solution for f (mg)51.41 and mg51.4/r 0

5600 MeV. Data are taken from Ref.@22#.
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ever, the horizon terms adds a mass term through an effec
A2 operator whose strength is determined by the expecta
value of the FP operator. This term has the effect of enha
ing d(k) for small k. The equivalent of Eq.~45! was then
solved and the Coulomb operator was approximated by
square of the FP operator.

In our approach the horizon condition was used to jus
the expansion of the FP operator in a power series ingA. The
resulting expressions for the FP operator were summed in
presence of a nontrivial mean field background~the varia-
tional vacuum! with the aid of the rainbow approximatio
producing ir enhanced FP and Coulomb VEV’s. The succ
of this procedure demonstrates that the explicit effects of
horizon term may be ignored if one is willing to develop th
quasiparticle spectrum and interaction self consistently.

To further test this mechanism for realizing the Gribo
Zwanziger confinement scenario we compare our result
the gap function to that computed by Cucchieri and Zwa
ziger in SU~2! lattice gauge theory@24#. In that paper, the
authors measure the transverse and instantaneous g
propagators in ‘‘minimal Coulomb gauge.’’ They compa
the numerical results to a functional form proposed by G
bov @5#:

Dtr~k!5
1

2EG~k!
, EG~k!5

1

k
Ak41MG

4 . ~112!

We call the scale appearing in this relationship, the Grib
mass,MG . Cucchieri and Zwanziger found that the com
puted instantaneous transverse propagator agreed very
with this functional form but does not reproduce the norm
ization.

As discussed earlier, in our approach the transverse g
propagator is suppressed due to an infrared singularity in
one-body gluon operator. Explicitly, the one body operator
the quasiparticle basis is given by

Hone-body5(
l,c

E dk

~2p!3 E~k!a†~k,l,c!a~k,l,c!

~113!

with

E~k!5v~k!F11
Nc

4 E dq

~2p!3

f ~k2q!d2~k2q!

~k2q!2

3
11~ k̂•q̂!2

v~q! G . ~114!

The low-momentum enhancement of the kernel makes
integral infrared singular. Thus, as expected, gluons do
propagate.

We note that the equal time transverse gluon propagato
not determined byE(k) but by v(k)
2-18
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Dtr~x!5 lim
t→0

^vuT@Aa~x,t !Ab~0,0!#uv&

5dabE dk

~2p!3

dT~k!

2v~k!
eik•x. ~115!

We have seen that the gap function obtained in Sec. I
rather flat at small momenta, even when somed4 corrections
are incorporated into the gap equation. This is inconsis
with the lattice calculation of Ref.@24# and a general theo
rem @25#, but as shown above, is not inconsistent with t
Gribov confinement scenario. The disagreement with lat
may be due to the use of the rainbow-lattice approximat
or another solution to the coupled gap equations may e
These topics are being investigated. It is worth noting ho
ever that the effective gluon mass found by comparison
theQQ̄ potential~or alternatively theD00 gluon propagator!
is consistent with the magnitude of that found in the Co
lomb gauge lattice calculations.

V. IMPLICATIONS FOR THE CONSTITUENT QUARK
MODEL AND PHENOMENOLOGY

We now turn to an examination of the implications of t
results presented here on the phenomenology of hadr
Since this depends crucially on the explicit definition of ha
ronic states, we begin by searching for an efficient way
construct hadrons by specifying a new constituent qu
model of QCD. The phenomenology of confinement is th
analyzed in light of the results of the last two sections.
conclude with a clarification of several open issues in the
constituent quark model and present a justification for
surprising efficacy of the quark model for light hadrons.

A. Constructing hadrons

It is clear that constructing hadrons from the basis of f
quasiparticles is futile if it is done perturbatively. A simp
and natural way to avoid this pitfall is to choose a conveni
form of H0 and diagonalize it nonperturbatively to obtain
basis of color singlet bound states. Bound state perturba
theory may then be employed to systematically include
effects ofHint . In our case the natural assignment for the
operators is

H05E c†~2 i a•“1bm!c1
1

2E dxP22
1

2E dxA“

2A

1
1

2E dxdyra~x!K (0)~x2y!ra~y! ~116!

and

Hint5
1

2E dx@B21A“

2A#2gE c†s•Ac1VA1VB

1
1

2E dxdyra~x!@Kab~x2y;A!

2dabK (0)~x2y!#rb~y!. ~117!
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The general philosophy is clear—H0 generates hadronic
bound states;Hint incorporates the corrections to these sta
due to transverse gluon exchange, three and four gluon in
actions, and higher order contributions from the FP deter
nant and instantaneous confinement potential. It is wo
stressing thatH0 is still a field theory and hence is conside
ably tougher to solve than old fashioned quantum mech
cal quark models. But there are substantial advantage
adopting this approach. Foremost is thatH01Hint is QCD.
Furthermore,H0 is relativistic and incorporates gluonic de
grees of freedom. Thus it is possible to examine glueba
hybrids, and other gluonic phenomena in a coherent fash
The utility of the rearrangement made in Eq.~117! lies in the
use of the variational vacuum to construct a phenomenol
cally viable basis of quasiparticles. This has the direct eff
of greatly improving the Fock space convergence of any
servable. As we have seen, it also automatically generate
correct static potential upon which to construct hadrons.
have previously mentioned thatH0 generates states whic
are infrared divergent if they are not color singlets~hence
these are removed from the spectrum!. Conversely, all color
singlets are infrared finite. Thus the basis generated byH0

contains no spurious color nonsinglet states which wo
have to be removed by laborious iteration ofHint and, in
fact, is expected to provide a reasonably accurate star
point for hadronic spectrum computations. As a practi
note, the physics of the variational vacuum may be ac
rately approximated by simply using dressed quarks and
ons when constructing hadrons. The constituent masses
roughly 200 MeV and 600–800 MeV, respectively. Final
the spectrum generated byH0 is spin averaged in the sens
that it only incorporates spin effects from relativistic corre
tions to the Coulomb potential. Full spin splittings com
from Hint .

An important implication of this approach is that the rap
convergence of the constituent quark model Fock space
pansion has a natural and simple explanation. All of the c
rections induced byHint ~for nonexotic states! involve the
transfer of a virtual transverse gluon. Since these are qu
particles in the variational vacuum, the relevant perturbat
diagrams are suppressed by the mass gap between the re
and hybrid states. This simple feature of QCD in Coulom
gauge has important phenomenological consequences.
example, it implies that the Fock space expansion conve
quickly because state mixing involves the creation of m
sive gluonic~or quark! quasiparticles. Recently, lattice da
has appeared which confirms this picture. Duncanet al. @26#
have constructed a simple relativistic quark model ofB me-
sons by considering a light relativistic quark~with kinetic
energyAk21m2) moving in the latticeY potential. Detailed
comparison with latticeB data demonstrated the high acc
racy of the model. The point which is relevant for our di
cussion is that the latticeY interaction ~recall that this is
equivalent in principle and in practice toK (0)) should re-
ceive corrections due to the light quark when applied toB
mesons; see Fig. 11. The fact that these corrections are
important demonstrates that they are suppressed, in ag
ment with the above arguments.
2-19
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B. Confinement in the constituent quark model

One of the benefits of Coulomb gauge is that it makes
source of confinement clear; in the heavy quark limit qua
and transverse gluons decouple and the quark-antiq
quark interaction arises solely from the instantaneous C
lomb operator. This rigorous result has several signific
implications for hadronic phenomenology.

First we simplify the situation by noting that higher ord
terms such as shown in Fig. 12 are suppressed due to
arguments espoused in the previous subsection. Thus
dominate interaction between static color sources is the le
ing kernel in the Coulomb interaction,K (0). As we have
seen, this kernel is essentially identical to the lattice Wils
loop result, so this conclusion is supporteda posteriori.

This simple statement carries wide repercussions. For
ample, a longstanding cornerstone of quark model phen
enology is that confinement is ‘‘scalar.’’ What this means
that the interaction between quarks is assumed to be

1

2E c̄c~x!K~x2y!c̄c~y!. ~118!

This form ~as opposed to ‘‘vector’’ confinementc†cKc†c)
is supported by a comparison of the predicted spin splitti
in heavy quarkonia with data@27#. However, the results pre
sented here make it clear that this conclusion is naive.
interactions between color sources are more complica
than the simple facsimile given in Eq.~118!. As we have
seen, the leading interaction between quarks is given
K (0)—and this has the form of vector confinement. What
taken as evidence of the scalar nature of confinement i
fact quarkonium spin splittings which are generated by n
perturbative mixing with intermediate hybrid states viaHint .
That this more complicated~and correct! picture may look
scalar has been shown in Ref.@14#.

FIG. 11. The leading light quark correction to the confinem
potential.

FIG. 12. Examples of higher order corrections to the hea
quark-antiquark interaction.
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Another simple conclusion of the picture being develop
here is that the confinement potential between color sou
scales as the quadratic Casimir. This follows from the obs
vation that the dominant contribution to the confinement p
tential is given by the leading kernel and that the color str
ture of this kernel isKab

(0)5dabK
(0). The fact that Casimir

scaling of the Wilson loop potential has been observed
peatedly@28# may be taken as a successful prediction of o
methodology or may be used as further proof that the d
grams of Fig. 12 are suppressed with respect toK (0).

The methodology presented here allows for the resolu
of several open, but often ignored, ambiguities in the c
stituent quark model. For example, it is often stated that
linear potential is built from the exchange of infinitely man
gluons. One may then ask why the one gluon exchange
tential is retained as an important part of quark model p
nomenology. Indeed the split between one gluon excha
color Coulomb and hyperfine forces and the multiexchan
linear force is necessarily ambiguous. The resolution to
issue is transparent in Coulomb gauge: ‘‘one gluon
change’’ is part ofHint and is due to noninstantaneous tran
verse gluon exchange. The instantaneous central portio
the quark model should consist of a linear term in addition
the running resummed ‘‘Coulomb’’ term of Eq.~92!. No am-
biguity exists because of the separation of instantaneous
transverse degrees of freedom inherent in Coulomb gau

Another problem with the old-fashioned CQM has to
with the previously mentioned assumed scalar nature of c
finement. Unfortunately, scalar confinement implies tha
mesons are bound by a linear potential, baryons are a
bound@29#. This is clearly an intolerable situation which
routinely ignored by CQM practitioners. As we have see
the resolution is that confinement acts as the time compo
of a vector rather than as a scalar, and no inconsistency e
between mesons and baryons.

C. Constituent gluons and strong decays

We illustrate the power of our approach by consideri
the vexing problem of strong decays in hadronic physics

The strong decays of hadrons has been, and remain
mystery of soft QCD. The naive perturbative assumption t
the decay proceeds via one gluon dissociation@Fig. 13~b!# is
proven incorrect by direct comparison with experiment@30#.
The only reasonably successful phenomenology is provi
by the ‘‘ 3P0’’ model @31#, where quark pairs are assumed
appear with vacuum quantum numbers over all space. Th
clearly an unacceptable situation, especially given the ub
uity of hadronic decays and the fact that they provide a w
dow into the dynamics of glue at low energy.

t

y

FIG. 13. Leading order in 1/mg meson decay diagrams.
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COULOMB GAUGE QCD, CONFINEMENT, AND THE . . . PHYSICAL REVIEW D 65 025012
We now examine the predictions of the new quark mo
presented here. To lowest order inLQCD /mg and to all or-
ders in the coupling, the only diagrams which contribute
meson decay~here all mesons are assumed to have F
expansions which are dominated by the quasiqua
quasiantiquark components! are shown in Fig. 13. The lef
figure is contained withinH0 and is therefore the leadin
diagram. The central and right figures contribute
O(LQCD /mg) and are generated byHint .

Diagrams~a! and ~b! with perturbative gluons or mode
potentials in the intermediate states have been previo
examined as possible sources of hadronic decays in
@32#. The authors noted that diagram~a! is suppressed with
respect to~b! due to momentum routing through the pa
production vertex.~This diagram is zero in the nonrelativist
limit when a delta function potential is in place. It is strong
suppressed with a 1/q4 potential.! The other class of dia
grams considered in Ref.@32# was that generated by a ph
nomenological scalar interaction given in terms of sca
confinement@cf. Eq. ~118!#. This is, of course, anad hoc
microscopic realization of the3P0 model. What was found
was that this diagram@like diagram ~a! but with scalar as
opposed to a vector vertices# was much larger than diagram
~b!.

These conclusions imply that the3P0 model would
emerge in a natural way from our methodology if diagra
~c! produced light quark pairs with scalar quantum numbe
Diagram ~c! is generated by the product ofK (1) and Hqg
terms inHint @see Eqs.~20! and ~95!# and is roughly given
by A•“c†a•Ac. Once the vector potentials are contract
~or better yet, the sum over intermediate hybrid states
made!, the resulting operator is of the formc†@sdT“#c,
very nearly equal to the long-assumed3P0 vertex. Thus we
have obtained a viable microscopic description of hadro
decays. The implications of these observations will be
plored in a future publication.

D. Light quarks and the constituent quark model

The utility of the CQM for heavy quarkonium is not i
doubt. However, its apparently successful extension to l
quark states is unexpected and surprising. We seek to un
stand this observation in this subsection.

The major feature of light quark physics is spontaneo
chiral symmetry breaking. One may regard this as occurr
due to the appearance of a quark-antiquark vacuum con
sate. The interactions which generate the condensate
typically associated with an effective instanton interact
@33# or the confinement potential@8–10#. ~In our approach
the driving kernel would beK (0).) Regardless of the particu
lar mechanism which causes attraction in the scalar chan
a massive constituent quark is the necessary outcome
deed, while bare quarks may become very light or massl
the relevant quasiparticles saturate at roughly 200 MeV
the bare quark mass is reduced@15,12#. This, at least partly,
explains the apparent success of the nonrelativistic portio
the CQM. The agreement is also enhanced by the empi
accident that the expectation value ofAp21m2 is very close
to p2/2mCQM in typical hadronic states. More important tha
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this, however, is the nature of the central potential its
when the bare quarks are light. As discussed above, eff
due to one gluon exchange are suppressed by power
LQCD /mg . Thus the main effect due to light quarks is th
presence of intermediate quark loops in the instantane
interaction~Fig. 14!. These diagrams cause string breaki
which is an important feature of QCD. However, as Isgur h
argued@34#, the main consequence of this is simply to ren
malize the string tension. Thus light quark loops have lit
effect on the phenomenology arising fromH0. The conclu-
sion is that the structure of the new CQM which we have l
out is essentially unchanged for light quarks. Furthermo
even the simple nonrelativistic approximation may reta
some validity for massless bare quarks.

An explicit demonstration of how the CQM may emerg
was given in Ref.@12#. This paper assumed a simple conta
interaction in place of the full Coulomb kernel. Standa
many-body techniques were used to obtain chiral symm
breaking and constituent~quasiparticle! quarks. It was then
demonstrated that the vector meson–pseudoscalar m
mass splitting follows a form essentially identical to that
the CQM hyperfine splitting when considered as a funct
of the constituent mass. Nevertheless, the mass splitting
clearly driven by chiral symmetry breaking when consider
as a function of the current quark mass, thereby demons
ing that the pion may be viewed as both a pseudo-Goldst
boson and as a quark-antiquark bound state. The new q
model presented here provides an explicit microscopic r
ization of the contact model employed in Ref.@12# and it will
be of interest to verify the findings of that work.

VI. CONCLUSIONS

In the paper we propose a new way to organize Q
which is appropriate for low energy hadronic physics. T
starting point is chosen to be the QCD Hamiltonian in Co
lomb gauge because this gauge is most directly applicab
bound state physics—the degrees of freedom are phys
and an instantaneous potential exists.2 The instantaneous
Coulomb potential may be incorporated intoH0 ~as is done
in atomic physics! and a viable bound state perturbatio
theory may be constructed. This simple step already obvi

2We note that it is also useful for QCD at finite temperature b
cause a special frame is automatically selected and because c
ing degrees of freedom is an important aspect of thermodynam

FIG. 14. Light quark loop correction to the heavy quar
antiquark interaction.
2-21
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ADAM P. SZCZEPANIAK AND ERIC S. SWANSON PHYSICAL REVIEW D65 025012
one of the severe problems of perturbative QCD in desc
ing hadronic properties, namely that of ill-defined asympto
states.

While the division of the QCD Hamiltonian is a simp
task, it is essentially meaningless because the degree
freedom represented inH0 are partonic. Thus building boun
states would be a frustrating exploration of the depths
Fock space rather than the preliminary step for bound s
perturbation theory we desire it to be. The experience p
vided by the constituent quark model points the way out
the impasse; appropriate~constituent! degrees of freedom
must be employed. The problem in the past~cf. constituent
quark models, bag models, flux tube models, etc.! has been
in finding a way to introduce effective degrees of freedom
such a way that the connection to QCD is not destroy
Herein we present one way to do this which is based
experience gleaned from many-body physics often use
phenomenological models e.g., the Nambu-Jona-Las
model@35#. Specifically, a canonical transformation to a qu
siparticle basis which is defined with respect to a nontriv
variational vacuum is made. The theory remains QCD bu
given in terms of a useful and tractable basis. Although
vacuum state is necessarily an ansatz, this does not vitiat
construction—in principleanybasis may be used, we mere
seek an efficient one, and the vacuum itself may be syst
atically improved with standard techniques.

One finds a welcome complication when these ideas
applied to non-Abelian gauge theory; the interaction which
needed to define the vacuum ansatz and the quasipa
spectrum ~via the gap equation! itself depends on the
vacuum. Thus the fundamental quasiparticle interaction
the quasiparticles themselves are inextricably interdep
dent. Solving the gap equations requires the evaluation o
specific functional dependence of the quasiparticle inte
tion on the vector potential. We have chosen to do this wit
the rainbow ladder approximation. There are several imp
tant points to make at this stage:~1! the rainbow ladder ap
proximation may be improved at will,~2! the approximation
is accurate in the largeNc limit, ~3! the approximation is
accurate in the infrared limit, and~4! the approximation is
justified a posteriori. Lastly, although the approximatio
cannot yield nonperturbative results, true nonperturba
physics may be generated when the resummed kernel i
corporated in the nonlinear coupled gap equations. Doing
reveals a pleasant surprise, the emergence of the confine
phenomenon.

While it is gratifying that color confinement is produce
by our approach, this result would be useless if it did n
match phenomenology. The fact that the effective quasi
ticle potential matches the lattice static quark potential v
well points to the general utility of our method. Thus Eq
~116! and ~117! represent much more than a simple reord
ing of the QCD Hamiltonian. By buildingH0 as an effective
Hamiltonian describing the interactions of quasiparticles o
nontrivial vacuum we are able to establish contact with
constituent quark model and derive confinement. That b
of these emerge in our formalism bodes well for the futu
success ofH0 as a robust starting point for detailed hadron
computations.
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An important test of any new method in QCD is its abili
to provide insight into a variety of phenomena. We have tr
to demonstrate the robustness of our method in this regar
vital aspect of this robustness is the emergence ofLQCD /mg

as an expansion parameter. This provides the justification
gluonic Fock space truncation, for the validity of the leadi
static Coulomb kernelK (0), and for the applicability of the
static kernel to light quarks. Indeed, the method stron
hints as to why the constituent quark model works for lig
quarks. To summarize, quarks never become truly light~but
saturate at constituent masses!, the static kernel is not
strongly affected by the presence of light quarks, and par
eter freedom in the definition of the quark model allows f
an accurate reproduction of the relativistic quark kinetic e
ergy and the chirally-driven meson hyperfine splitting.

The ideas we have presented have had a long perio
development starting with Gribov’s speculation that confin
ment may arise naturally when resolving the gauge co
problem. In the early 1980’s Finger and Mandula@8#, Adler
and Davis@9#, and Le Yaouancet al. @10# all considered the
generation of constituent quark masses and spontaneous
ral symmetry breaking with simple@often of the form given
in Eq. ~118!# models of QCD. The issue of renormalizatio
was taken up by these papers and in Refs.@15,13,36#.

The work which is closest to ours is that of Zwanziger@6#
and Swift @21#. As discussed in Sec. IV B, Zwanziger ha
shown that the imposition of the horizon condition impli
that the Faddeev-Popov propagator is enhanced in the in
red. As we have stressed, an enhancement of the FP pr
gator is sufficient to cause confinement. In Ref.@6# Zwan-
ziger has shown that adding the horizon term to
Hamiltonian produces an effective gluon mass which in tu
induces the desired enhancement of the VEV of the Fadd
Popov operator. Zwanziger then makes several simplify
assumptions to arrive at an estimate for the Coulomb ker
Chief among these are an assumed form for the gluon
persion relation, a simplified version of the Faddeev-Pop
propagator integral equation, and the approximationK
;d2(k)/k2. The end results are similar to ours; Zwanzig
obtainsd;k24/3 ~we getk21/2) andV;r 5/3. Our analytical
approximation givesV;r 3/4 while the numerical solution is
very nearly linear.

The work of Swift@21# is very similar to ours in philoso-
phy. In fact our self-consistent equations for the lead
rainbow-ladder gap equations, which were derived in
Hamiltonian formalism, agree with those of Ref.@21#, which
were derived in the Green’s function formalism. However
difference occurs in the renormalization of the mass g
equation; we find that only one subtraction is necessary
render the equation finite. Thus no counterterm proportio
to A“

2A is required. This is due to the logarithmic suppre
sion of the potential at large momenta.

The main difference between the current paper and R
@21# is in the analysis of the gap equations. We have obtai
very good analytic and full numerical solutions to th
coupled gap equations. This was not attempted in Ref.@21#;
however, the author did examine the small momentum
havior of the Faddeev-Popov propagator and the Coulo
kernel assuming a particular form for the gap function. H
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FP and gap functions agree with our analytical estima
however his solution for the potential has an unexpec
imaginary portion. We believe this is due to an approxim
tion which generated a confinement potential which w
more singular than 1/k4.

A preliminary exploration of the work presented here w
undertaken in Ref.@13#. This reference neglected the FP d
terminant and higher order contributions to the gap equat
Furthermore, the full Coulomb kernel was drastically simp
fied by taking it to be the summation of the one loop expr
sion forK. Despite these simplifications and assumptions
resulting potential was similar to that obtained here. This
perhaps an indication of the power of the coupled quasip
ticle vacuum approach.

We regard the present work as a promising start to
construction of a new quark model of the strong interactio
in particular with regard to the treatment of gluonic degre
of freedom. Future projects include the evaluation of alld4

correction terms to the gap equation which are needed to
the Gribov-Zwanziger gluonic quasiparticle spectral fun
tion. We also intend to evaluate a broad swath of the me
baryon, glueball, and hybrid spectra, and to compute
heavy hybrid adiabatic energy surfaces. The latter two
a

nc

y
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the utility of the gluonic quasiparticles as effective degre
of freedom and will probe the structure ofK (0) and K (1).
General considerations~and explicit lattice evidence! lead
one to expect that glue behaves as a collective string
degree of freedom at large distances. We expect the glu
quasiparticles to provide a useful description of glue at sm
~less than 1 fermi! and intermediate~1–2 fermi! scales. It
will be interesting to see if the formalism presented he
allows for effective stringlike behavior at large distance
Finally, h2h8 mixing is a longstanding issue in soft QC
related to the anomaly, vacuum structure, the gluonic con
of mesons, and instantons. Examining this problem sho
prove informative for the further development of the qua
sector of our theory.

ACKNOWLEDGMENTS

We would like to thank R. Alkofer, S. Brodsky, A. Dun
can, N. Isgur, E. Shuryak, H. Thacker, A. Thomas, and
Zwanziger for discussions. This work was supported
D.O.E. under Contracts DE-FG02-00ER41135, DE-AC0
84ER40150~E.S.!, and DE-FG02-87ER40365~A.S.!.
.

and
@1# S. Capsticket al., hep-ph/0012238.
@2# J. Schwinger, Phys. Rev.127, 324 ~1962!.
@3# I.B. Khriplovich, Yad Fiz.10, 409 ~1969!.
@4# N.H. Christ and T.D. Lee, Phys. Rev. D22, 939 ~1980!.
@5# V.N. Gribov, Nucl. Phys.B139, 1 ~1978!.
@6# D. Zwanziger, Nucl. Phys.B485, 185 ~1997!.
@7# A. Cucchieri and D. Zwanziger, Phys. Rev. Lett.78, 3814

~1997!.
@8# J.R. Finger and J.E. Mandula, Nucl. Phys.B199, 168 ~1982!.
@9# S.L. Adler and A.C. Davis, Nucl. Phys.B244, 469 ~1984!.

@10# A. Le Yaouanc, L. Oliver, S. Ono, O. Pene, and J.C. Rayn
Phys. Rev. D31, 137 ~1985!.

@11# P.J.A. Bicudo, and J.E.F.T. Ribeiro, Phys. Rev. D42, 1611
~1990!; 42, 1635~1990!; 45, 1673~1992!.

@12# A.P. Szczepaniak and E.S. Swanson, Phys. Rev. Lett.87,
072001~2001!.

@13# A.P. Szczepaniak and E.S. Swanson, Phys. Rev. D62, 094027
~2000!.

@14# A.P. Szczepaniak and E.S. Swanson, Phys. Rev. D55, 3987
~1997!.

@15# A.P. Szczepaniak and E.S. Swanson, Phys. Rev. D55, 1578
~1997!.

@16# A.P. Szczepaniak, E.S. Swanson, C.-R. Ji, and S.R. Cota
Phys. Rev. Lett.76, 2011~1996!.

@17# T. D. Lee,Particle Physics And Introduction To Field Theor
~Harwood Academic, New York, 1981!.

@18# D. Zwanziger, Nucl. Phys.B518, 237 ~1998!.
@19# L.I. Schiff, Phys. Rev.130, 458 ~1963!; G. Rosen,ibid. 173,

1632 ~1968!.
@20# T. Barnes and G.I. Ghandour, Phys. Rev. D22, 924 ~1980!.
l,

h,

@21# A.R. Swift, Phys. Rev. D38, 668 ~1988!; J.L. Rodriguez Mar-
rero and A.R. Swift,ibid. 32, 476~1985!; 31, 917~1985!; A.R.
Swift and J.L. Rodriguez Marrero,ibid. 29, 1823~1984!.

@22# K.J. Juge, J. Kuti, and C.J. Morningstar, Nucl. Phys. B~Proc.
Suppl.! 63, 326 ~1998!.

@23# T. Barnes, Z. Phys. C10, 275 ~1981!; J.M. Cornwall, Phys.
Rev. D 26, 1453 ~1982!; J.M. Cornwall and A. Soni, Phys
Lett. 120B, 431 ~1983!.

@24# A. Cucchieri and D. Zwanziger, hep-th/0012024.
@25# D. Zwanziger, Nucl. Phys.B364, 127 ~1991!.
@26# A. Duncan, E. Eichten, and H. Thacker, Phys. Lett. B303, 109

~1993!; S.A. Pernice, Phys. Rev. D53, 1439~1996!.
@27# H.J. Schnitzer, Phys. Rev. Lett.35, 1540~1975!.
@28# G.S. Bali, Phys. Rev. D62, 114503~2000!.
@29# S. Godfrey and N. Isgur, Phys. Rev. D32, 189 ~1985!, see in

particular endnote 41.
@30# P. Geiger and E.S. Swanson, Phys. Rev. D50, 6855~1994!.
@31# L. Micu, Nucl. Phys.B10, 521 ~1969!; R. Carlitz and M.

Kislinger, Phys. Rev. D2, 336 ~1970!; A. Le Yaouanc, L. Ol-
iver, O. Pene, and J.-C. Raynal,ibid. 8, 2233 ~1973!; Phys.
Lett. 71B, 397 ~1977!; 72B, 57 ~1977!.

@32# E.S. Ackleh, T. Barnes, and E.S. Swanson, Phys. Rev. D54,
6811 ~1996!.

@33# See T. Scha¨fer and E. Shuryak, Rev. Mod. Phys.70, 323
~1998!.

@34# N. Isgur, Phys. Rev. D60, 054013~1999!; P. Geiger and N.
Isgur, ibid. 41, 1595~1990!.

@35# Y. Nambu and G. Jona-Lasinio, Phys. Rev.122, 345 ~1961!.
@36# D.G. Robertson, E.S. Swanson, A.P. Szczepaniak, C.R. Ji,

S.R. Cotanch, Phys. Rev. D59, 074019~1999!.
2-23


