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Coulomb gauge QCD, confinement, and the constituent representation
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Quark confinement and the genesis of the constituent quark model are examined in nonperturbative QCD in
Coulomb gauge. We employ a self-consistent method to construct a quasiparticle basis and to determine the
quasiparticle interaction. The results agree remarkably well with lattice computations. They also illustrate the
mechanism by which confinement and constituent quarks emerge, provide support for the Gribov-Zwanziger
confinement scenario, clarify several perplexing issues in the constituent quark model, and permit the con-
struction of an improved model of low energy QCD.
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[. INTRODUCTION enhancement in the Faddeev-Popov propagator at low mo-
menta. Furthermore, these imply that an enhancement exists
Two of the key issues facing QCD at low energy are ain the instantaneous Coulomb potential, thereby providing a
guantitative description of confinement and an understandinglausible mechanism for confinement. In a series of recent
of the origins of the constituent quark model. In this paperpapers[6,7], Zwanziger has brought the Gribov Coulomb
we demonstrate how both issues may be resolved throughgauge confinement scenario onto firm theoretical ground and
nonperturbative analysis of QCD in Coulomb gauge. Thishas demonstrated that a complete definition of the Coulomb
demonstration makes the physical origin of both effectsgauge may be achieved by restricting the gauge fields to the
clear, resolves several long-standing inconsistencies in th#undamental modular region” — defined as the set of gauge
constituent quark model, significantly extends the quarkields which form the absolute minima of a suitable func-
model, and establissea — perhaps surprising — relation- tional. Furthermore, the constraint to the fundamental modu-
ship between confinement and the constituent quark modelar region may be imposed by introducing a horizon term
Although lattice gauge computations are capable of anthrough a Lagrange multiplier in the Hamiltonian.
swering many questions in strong QCD, it is clear that the A key feature of Coulomb gauge is that the elimination of
development of reliable analytical continuum tools are a nenondynamical degrees of freedom creates an instantaneous
cessity for advancing the fie[d]. Continuum methods allow interaction. The QED analogue of this is the Coulomb poten-
one to understand how QCD works from first principles, per-tial, however, the non-Abelian nature of QCD causes this
mit the development of intuition for phenomenological instantaneous interaction to depend on the gauge field, mak-
model building, and address computationally challengingng it intrinsically nonperturbative for large fields. The re-
phenomena such as QCD at finite density, extrapolation tetriction of the transverse gluon field to the fundamental
low quark masses, or the treatment of large hadronic sysnodular region formally makes the Coulomb potential well
tems. A variety of such continuum tools exist: chiral pertur-defined. It also implies that the Faddeev-PofieR) operator
bation theory, effective heavy quark and low energy hadroniavhich enters in the Coulomb potential is positive definite
field theories, 4-dimensional Dyson-Schwinger methods|[6,7]. A consequence of this is that one may employ the
fixed gauge Hamiltonian QCD approaches, and QCD sumvariational principle to build nonperturbative models of the
rule methods. In this paper we focus on Hamiltonian QCD inQCD ground state. This is a crucial step with many phenom-
Coulomb gauge. enological repercussions in the methodology we will be ad-
Much progress has been made in understanding Coulomiocating. As we shall demonstrate, the Fock space which is
gauge QCD since the seminal work of Schwindéi, built on our variational vacuum consists of quasiparticles —
Khriplovich [3], and Christ and Le¢4]. In particular, the constituent quarks and gluons. These degrees of freedom
problem of the Gribov ambiguitf5] has been studied and a obey dispersion relations with infrared divergences due to
resolution has been suggesi&d. The ambiguity arises be- the long-range instantaneous Coulomb interaction of the bare
cause of residual gauge freedom after the canonical Coulompartons with the mean field vacuum. This interaction makes
gauge fixing conditiony - A=0 is imposed in a non-Abelian colored objects infinitely heavy thus effectively removing
theory. In Ref[5] Gribov noted that the multiple-gauge copy them from the physical spectrum. However, color neutral
ambiguity may be resolved by insisting that the Faddeevstates remain physical because the infrared singularities re-
Popov operatorto be defined latgris positive (in fact a  sponsible for the large self-energies are canceled by infrared
more restrictive constraint is requinedVith the aid of a  divergences responsible for the long-range forces between
simple model, he then showed that this constraint implies théhe constituents.
existence of a novel form for the gluon propagator and an Constructing a quasiparticle basis is a nontrivial step
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which requires a nonperturbative treatment of QCD andfor example the constituent quark model. The intuition
more directly, the QCD vacuum. We will show that it is gained from several decades of quark model calculations
possible to construct such a basis in a self-consistent manneray then be applied to the analysis of a complex and non-
by coupling a specific variational ansatz for the vacuum withlinear quantum field theory. Additional advantages of Cou-
the instantaneous interaction between color charges. The ehaimb gauge are that Gauss’s law is built into the Hamil-
results are explicit expressions for the Wilson confinementonian, the norm is positive definite, and no additional
interaction, the spectrum of the quasiparticles, and the struconstraints need be imposed on Fock space. Furthermore,
ture of the QCD vacuum. The resulting Fock space and efretardation effects are minimized for heavy quarks; thus this
fective Hamiltonian provide an ideal starting point for the is a natural framework for studying nonrelativistic bound
examination of the bound state problem in QCD and providestates, and in particular for identifying the physical mecha-
a direct link between QCD and the phenomenological connisms which drive relativistic corrections, e.g., the spin split-
stituent quark model. tings in heavy quarkonia. Since chiral symmetry is dynami-
A simplified version of this program has been investigatedcally broken this framework is also of relevance for light
by the authors and others befd@&-16]|. In several of these flavors once the constituent quarks are identified with the
studies the non-Abelian Coulomb interaction was replacedjuasiparticle excitations.
by an effective potential between color charges, leading to a The confinement phenomenon in QCD has two comple-
relatively simple many-body Hamiltonian with two-body in- mentary aspectgl) there is a long range attractive potential
teractions between constituents. The phenomenology of thisetween colored sources; af®) the gluons which mediate
approach has proven quite successful. In RES] we have this force are absent from the spectrum of physical states.
extended this simple approximation and treated the Coulomibhus the mechanism for confinement is not particularly
kernel in a self-consistent way by considering the effect oftransparen{6] in covariant gauges. In Coulomb gauge, in
resummation of a class of ladder diagrams. These diagrantontrast, these two aspects can comfortably coexist: the long
originate from dressing the baee;/|x—y| Coulomb poten- range force is represented by the instantaneous Coulomb in-
tial with transverse gluons. As one may expect from the disteraction and is enhanced ag—0, while the physical
cussion above, the effect of summing these diagrams is aftransversggluon propagator is suppressed — reflecting the
enhancement of the Coulomb potential at large distancesbsence of colored states in the physical spectrum.
Self-consistency appears in the problem because the strength
of this enhancement is determined by the spectral properties A. Coulomb gauge Hamiltonian

of the transverse gluons in the quasiparticle vacuum. Si the Hamiltonian in Coulomb look unf
In this paper we build on these findings by constructing a ince the Hamiltonian in L-oulomb gauge may Joox unia-

fully self-consistent set of equations which describe themiliar to many readers we briefly illustrate the derivation of
he classical Hamiltonian here.

gluon dispersion relation, the effective instantaneous interac,l— The ch lectric field is ai b

tion, and the structure of the quasiparticle vacuum. A detailed € chromoelectric field 1s given by

derivation is given in Sec. Il. This section also contains a a - 0a abenOb A C

brief review of the QCD Hamiltonian in Coulomb gauge and Ef=—AT— VAT +gf™APA", @

a discussion of the Gribov ambiguity. We discuss the renor- e ,
T . and satisfies Gauss’s law,

malization procedure and show how the various counter-

terms in the regularized Coulomb gauge Hamiltonian may be

constrained by physical observables. The last portion of Sec.
Il describes the variational vacuum employed in our methOdHerepgz #T(\312) is the quark color charge density. These

ﬁ’gt&?gcl.ﬂlsgrfhsfgt;gﬂg z?lﬁ]téorefotrﬁafgggloe: eg%i%%?g:géquations are simplified by introducing the covariant deriva-
P ve in the adjoint representation,

present an approximate analytical solution which demon-
strates many of the features which emerge. This is followed
by a full numerical solution and a discussion of the effects of
higher order terms. A comparison of these results to IatticQNhere T¢ are the adjoint representation generator§
data is presented in Sec. IV. Section V discusses the impli-:ifcab Thus Eq.(2) becomes b
cations of our results for the constituent quark model and ' '
phenomenology in general. This includes clarifying several

open issues in the constituent quark mod@QM) and ex-

tending the CQM. A comparison to similar approaches ands the electric field is split into transverse and longitudinal
our conclusions are presented in Sec. VI. pieces E=E, — V ¢ then Eq.(4) yields

V- E3+gfa°AP.EC=gp]. 2

D3P= 52PV +ig TS, AC, (€)

D2P-EP=gpj. (4)

_ ab, — a
Il. QUASIPARTICLE FOCK SPACE FOR COULOMB (D V)¢ gr (5)

GAUGE QCD AND CONFINEMENT where p®=p3+ p§ is the full color charge density, with§

One of the advantages of Coulomb gauge is that all de=f‘"bCEﬁ~Ac being the color charge density of transverse
grees of freedom are physical. This makes the QCD Hamilgluons. The equation of motion for the longitudinal compo-
tonian close in spirit to quantum mechanical models of QCDnent of the electric field,
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V.E?=-V.D¥*A®=-VvZ¢2, (6)
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A rigorous derivation of the non-Abelian, quantum Cou-
lomb gauge Hamiltonian was given by Schwind&t and

leads to a constraint for the Oth component of the vectoChrist and Led4]. Zwanziger has shown how to derive the

potential which can be formally solved. This yields

1 1
AP = (- V3 gp”, ™)

and

a__ 9 4

Finally the time evolution of the vector potential is deter-

mined by the transverse chromoelectric field through
A= _E2=A%4g(1-V 2VV.)faPAdAC (9

After canonical quantization, the transverse fidld be-

comes the momentum conjugate to the transverse vector p

tential, A2.

Passing from the Lagrangian to the Hamiltonian yields

terms proportional to ¥ ¢)? from the longitudinal compo-
nents of the chromoelectric field E?, terms proportional to

gpeA° from the quark gluon vertexgyy°A%\%/2y and
terms proportional togIT®- APASfab¢ from the Ey - A,

Coulomb gauge Hamiltonian with a lattice regularizatiéh
The quantum Hamiltonian may be derived by transforming
the canonicalA®=0 Hamiltonian to Coulomb gauge. The
A%=0 Hamiltonian corresponds to “Cartesian” coordinates
in a flat gauge manifold, the subsequent restriction to Cou-
lomb gauge induces curvature in the gauge manifold and
therefore introduces a nontrivial metric. Christ and Lee have
shown that the measure associated with this metric is propor-
tional to the Faddeev-Popov determinant
J=de(V-D). (15
Furthermore, the Hamiltonian contains factors Bfwhich
are analogous to the Laplace-Beltrami operator induced
when one first quantizes in curvilinear coordinates. The
Faddeev-Popov determinant may be removed from the mea-
Qure by working with the modified Hamiltonian
H_>j1/2Hj*l/2, (16)
which is Hermitian with respect to d|V)
=[DAD*(A)WV(A). This transformation should be consid-
ered as a formal expansion gf *2 which converges inside

pieces ofE2. Combining all these contributions and substi- the fundamental molecular regi¢RMR).

tuting the expression foA° from Eq. (7) results in the in-
stantaneous non-Abelian Coulomb interaction,

1
He=3 f d*xdPyp (0 Kan(xYiA)(Y), (10

where

KoY =(xale s (- VI s lvb), (D

and p? is the full color charge density as derived above,

a _a a __fgabcpab c T A®
p(X) = pg(X) + pg(X) = FEAL(X) - TIE(X) + ¢ (%) 5 ¥(X).

(12)
The transverse conjugate gluon momeHfasatisfy
. . A
[A21(x), [T (y)]=i 62" &' — V2 S(x—y)
=i 6% 5r(V);; 8(x—). (13

Following Lee[17], we use the notatiofx,a| . . .|y,b) to
denote kernels of integral operators,
(x,a|Dly,b)=[ 6"V, +gf***A%(x)]8*(x—y). (14

In the Abelian limit D—V, K— —g%x,a|1/V?|y,b)

Thus the final form for the QCD Hamiltonian in Coulomb
gauge is

H=Hq+Hy+Hqg+He, (17)
where
Hq=J dxy'(—ia-V+Bm)y, (18
1 ~1/2 ~12
HQ_E dx(J HI1J- 11~ *“+B-B), (19
Hqg=—gJ dxya- Ay, (20)

and

1
He=5 f dxdy.7 ™ ¥%p?(x) TV ap(x,y: A) TP (y) T
(21

In order to compare with the covariant Feynman rules and
the canonical path integral formalism, it is convenient to
Weyl order the operatorave note that Weyl ordering is the
operator ordering which corresponds to path integral quanti-
zation with midpoint discretization This leads to the
Schwinger-Christ-Lee termd/; andV, [17]. Here we will

=g256%°/47r|x—y| and the QED Coulomb interaction is re- keep the original ordering of Eq$17)—(21) so that no ex-

covered.

plicit V; andV, terms are present.
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B. The Gribov ambiguity ized quantities onlyfwhich are cutoff independentwe will

As detailed by Zwanzigef18], not only is the Hamil- gxp_licitl_y remove the regulator making details of the regular-
tonian renormalizable in Coulomb gauge but the Gribov/Zation irrelevant. , ,
problem can also be resolvéd]. The essence of the Griboy  Counterterms need to be added to the canonical Hamil-
problem is that the conditioR - A=0 does not uniquely fix tonian to ensure that a cutoff independent spectrum is pro-
the gauge in non-Abelian gauge theories; in general there afiuced,
many copies of gauge field configurations, all with the same
divergence, which are related by gauge transformations. Al-
ternatively, the canonical transformation to Coulomb gaug
is not singular so long as d&%( D)#0. But Gribov has
shown that large gauge configurations exist such that thi
condition does not hold. As the true physical configuration
space of a gauge theory is the set of gauge potentials modu|8 the gluon sector, the presence of the cutoff Iea(_js to a
local gauge transformations, one must select a single repr _!nglt_a relevant operatdgan operator whos_e canonical dimen-
sentative from each set of gauge-equivalent configurationf.Ion is less then folr Thus 8H(A) contains a term
The resulting subset of independent field configurations is
known as the FMR.

A convenient characterization of the FMR is given by the
“minimal” Coulomb gauge, obtained by minimizing a suit-
ably chosen functional over gauge orbits. This functional iswhereZ,(A) is a dimensionless constant, and the notation
defined as [---]x represents the effect of regularization. For all mar-

ginal dimension four operators present in the canonical
Hamiltonian there will be corresponding operatorghi(A)
FA[g]:Trf d*x(A9)?, (22 and the combination of the twg leads topa Hamiltonian in
which canonical terms are multiplied by-dependent renor-
malization constants. For example,

H—H(A)—H(A)+6H(A). (24

Sn this paper we concentrate on the pure glue sector with at
ost static quarks, and therefore we will ignore the part of
e Hamiltonian involving momentum or spin of the quarks.

5H(A)=A2%A)f AX[A3(X)?]\+ - - - (25)

where g(x) is a gauge transformation and9=gAg"
—gVg'. A simple calculation shows that fields in the FMR
are transverse. Alternatively, Zwanziger has demonstrated f dX[TI3(x)2]\ + & f dX[TI3(x)2]
that Gribov copies may be removed by imposing the con-

straint(G)/V=0 (called the horizon conditionand argued

that in the infinite volume limit imposing the horizon condi- EZH(A)f dx[TI3(x)?], . (26)
tion enables one to remove the direct restriction on the fields.

Here G is the “horizon term” given b . I . .
9 y The full regularized Hamiltonian with counterterms is then

given by

-1
G= | dxdyD(x)-(xa| g—=|yb)-D*(y)+(NZ—1)V. 7 (A 2. (A)
J VP (23) H= H; )de[Ha(x)z]ﬁ A(Z fdx[Ba(x)z]A

Zn(A
In this paper we follow a third approach. Because the +A2MJ’ [A3(x)?],
Faddeev-Popov operator is positive semidefinite for fields in 2

the FMR, we expand it in a power series over field variables Z(A)

and evaluate matrix elements by integrating over all fields. + 5 j dxdy[ p2(X) K ap(X,Y;A) p2(Y) I+ - .. .
The expansion converges in the FMR. We note that the Cou-

lomb interaction diverges at the boundary of the FMR and (27

that this may assist in regulating matrix elements. We discuss
under what conditions this procedure is consistent with thé he ellipsis stands for higher order terms induced by expand-

horizon condition in Sec. IVB. ing the modified conjugate momenta Y2172 in terms of
gauge potentials. The effect of these terms will be discussed
in Sec. lllF.

C. Regularization and renormalization At this stage we should in principle allow for every com-

To properly define the Hamiltonian a cutoff must be in- posite operator of dimensiahappearing in the Hamiltonian
troduced to regularize ultraviolet divergences. This can béo be multiplied by a renormalization fact@{A)A*~9 with
done, for example, by point splitting products of fields in theZ being dimensionless and also allow for the coupling con-
Hamiltonian. A simpler regularization procedure, adoptedstant to beA dependeng—Z,(A)g=g(A). For example,
here, is to smear the fields. The induced nonlocalities aras discussed earlier, if the fields are in the FMR the Coulomb
removed as the cutoff is taken to infinity. Since in the nu-kernel may be expanded in a power serieg#, and the
merical studies to follow we will be working with renormal- ordern contribution would be proportional to

025012-4



COULOMB GAUGE QCD, CONFINEMENT, AND THE . . . PHYSICAL REVIEW D 65 025012

k 1 dk
«po[A]=<A|w>=exp[—E f A 0(0AT (k)|
AN +
(29

FIG. 1. Dyson equation of the Coulomb-transverse gluon vertex!t may be showri20] that this ansatz sums all diagrams with
The thick line represents the full FP functiaf{k). The hatched Nonoverlapping divergences. Note that the perturbative
circle represents the full verteR®. The gluon line is the gluonic vacuum is obtained whew=[k|. The trial function is ob-

quasiparticle. All external propagators are truncated. tained by minimizing the vacuum energy density

n

ig(A) ——

1)
2,0 29 2 (wlHla)=0. 0

A

The vacuum state obtained from this procedure is denoted
|w). We refer tow as the gap function since it is also respon-
sible for lifting the single particle gluon energy beyond its
perturbative valuésee Fig. 5 beloyw

This procedure is formally equivalent to the Hartree-
. . " Fock-Bogoliubov approximation, therefore one may also de-
therefore be written in terms OT on_Iy_ two renorm_allzatlon termine w with a suitably chosen canonical transformation.
constant<Zy(A) andZy(A) [and implicitly g(A)] as in EQ.  peryyrhative gluon creation and annihilation operators are in-

(27). troduced in the standard way:
As mentioned above, th& dependence of all renormal- y:

ization constants has to be adjusted in such a way khat

Here Z,(A) is the nth order triple gluon vertextwo Cou-
lomb and one transverseznormalization constant amg{ A )

is the renormalized coupling. As we will show in Sec. Il F
such vertices are uv finite which impli@s(A)=1. The con-
tribution from the Coulomb kernel to the Hamiltonian can

leads to aA-independent spectrum. This implies that the Cl ) — =

renormalization group equations may be determined nonper- AT J' (2m)° \/ﬂ[f(k’)\)a(k’)\’c)
turbatively from the spectrum d¢f. Furthermore in order for N .

this Hamiltonian to be consistent with QC(n the chiral +e (k,N)a'(—k,\,c)Je™
limit) all renormalization constan®(A) cannot depend on

A in an arbitrary way, but instead should depend on the scale dk K

through the coupling(A). The renormalization group equa- C(x)= f 2m)° \[[e(k Ma(k,\,c)

tions will be discussed in Sec. Il C.
— e (k,Mal(—k,\,c)Je ™, (31)
D. Vacuum structure
with the perturbative vacuum satisfyin@(k,\,c)|w(k)
—k} 0. The canonical transformation is determined by re-
uiring that the vacuum ansatz satlsf|e$k \,C)|w)=0,

The eigenstates of the Hamiltonian can, in principle, be
expanded in an arbitrarily chosen complete basis whic
spans Fock space. One choice would be to use the perturb Gihere the quasiparticle operatorsa’ are related to the
tive basis which diagonalizes the free Hamiltonibd{g

fields by
=0). However, one expects the description of any hadronic
bound state would be very complicated in this basis. Alter-

natively, the phenomenologically successful constituent c

quark model indicates that hadronic wave functions may A*(X)= (2m )3 m[e(k N a(k,\,c)
saturate quickly with only a few Fock space states provided

these states are constructed from constitygoasiparticle + € (kM) at(—k,\,c)]e™ X,

quarks. This strongly suggests that a basis which incorpo-
rates the effects of spontaneous chiral symmetry breaking

would be more efficient for describing hadrons and their in- c i /
teractions. ()= (2 )3 [6 (k.M)a(k,h,c)
We expect a similar scenario to apply to the gluon sector. + ik.
In a given hadronic state there is a large probability of find- —€ (kMa'(—k,\c)]e" (32

ing a component with a large number of bare, massless trans-
verse gluons, but the expansion of a hadronic state may be
significantly simplified in a transformed Fock space which is

constructed from quasiparticlenassive constituengluons. - +

We follow this intuition by constructing a vacuum upon

which the quasipatrticle basis is built with a functional Gauss-

ian ansatZ19], FIG. 2. Dyson equation fof (%), Symbols are as in Fig. 1.
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The condition that emerges far(k) from Eq. (30) is iden-

tical to the condition that there are mda or aa operators Z 2 dz;---dz,

in the full Hamiltonian. Cnfr

X D|(n)Cl| . 'Cn(x,yyzl vy ;A)ab

E. Self-consistent gap equations ron
The form of the QCD Hamiltonian in Coulomb gauge XIAT(Zg) - ATI(Zy) it L

induces a crucial complication in the evaluation of the (35)

ground state energy density. This is because the interaction

potential itself depends on the choice of the vacuum; thavhere :: stands for normal ordering with respectd9 and

kernelK [Eq. (11)] depends on the vector fields which de- ¢, andi, refer to color and spatial components of the gluon

pend on the gap functidiEq. (32)]. Thus the gap function is  field, respectively. Her®(® stands for the vacuum expecta-

actually determined by a set of coupled equations which detion value (VEV) of the Faddeev-Popov operator in the an-

scribe the vacuum energy density and the interactions whicbatz vacuum:

are used to obtain this energy density. This subsection de-

scribes how these equations are obtained; the solution is pre-

sented in the next section. DO (x,y;A)= (w|<xa| V 5 |y b)|w) 4. (36)
The first step is the evaluation of the Coulomb kernel, Eq.

(12). This is greatly simplified with the aid of the Swift equa- An operator expansion of the Coulomb kernel may be

tion [21] defined in a similar manner:

Kan(X,Y;A)a,=—g*(A) ‘ (xal o) |X,b) Kap(X,y;A)=KO(x,y;A) &

ab\ MY M A dg(A) Ay.p! M ab\ s Y (DAl ab
(33 _
+ 2| Az Y, 2 A ) ap A 3(20):

The subscripi\ refers to the regularization of field operators SHE
in the Coulomb kernel. Thus one need only evaluate the
Faddeev-Popov operatgr/' V- D to obtain the full instanta- Z 2 dz;---dz,
neous Coulomb kernel. This can be done by expanding the “Cn iy

Faddeev-Popov operator in powersg# and taking the ap-
propriate contractions of the gluon field. The expansion is
justified as long as the fields are restricted to the fundamental
modular region. In the infinite volume limit, this restriction is
not expected to affect field contractiofig] as long as the
expectation value of the horizon term vanishes. Thus the
following expressions may be used:

X Ki(?.)?'li.n”cn(xayvzll' < Zy ;A)ab
XIAT(zg) - ASI(Z): L (3D)

The equation for the VEV of the FP operator is most
easily expressed in terms of its Fourier transform which we
write as

. S [A K)o
(oI = 5 ok e e, (2m8(P) " i b= [ dxayDGxyin)

) A . ) X @lk-(x=y)giP-(x+y)/2. 38
(IO o) = 22 dksr(R) ok A) e, e 3
The amplitudesD™ which multiply a product ofn gluon

o|[A2(X)ITP(Y) ], |w) = —(o|[TIRA(X)AP(Y)] | @ fields can be written in terms dD'* and a set of vertex
(wllAX W afw)=—(ell Y ale) functions,I'™™. To do this we first define the Fourier trans-
Sap (A o form of theD™ via

=i73 dksr(k)e'k 9, (34)

n

(n)c .
We have temporarily allowed foh-dependence in the gap (27) 5( k— 2 ai— )d e (K1, o A)
function. This is discussed in more detail in Sec. Il A.

The expansion of the Faddeev-Popov operator is given by

n
s—fdxdydzl-.-dznexp[—ik-x+i|-y+i2 q-z
) i=1
<Xa| oY.A= DO(X,y;A) Sap

XDi(:?f:.l,.i-n.cn(X!Zlv' "1Zn1y;A)' (39)
+c2| dz D(l)cl(x Y213 )ap Next we define the full transverse gluon-Coulomb vertex
i asT'f(k,q,p). The Dyson equation for the full vertex is il-

i (K,g,p i q
XIASLIL(Z)) L+ lustrated in Fig. 1 and is given by
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Io(Kk,ak—qA)=Z,(A)TK+ >, > fA RN . FCl(ka—|-A)d(k_|;A)
QKRG 1 = = | 2R 2eia)| TR
d(k—=I—=q;A
><Ff(k—l,q,k—l—q;A)%F%(k—I—qIk aA)|. (40)
In the planar approximation higher order vertex functib® satisfy the following Dyson equation:
Ml gy, k—é =Tl gy, g k- E +2 2 f 3t
il'“in 01, 0n s i:lql il.A.in o 0n s ai > ( 2w(q
d(k—qo)~
x| T0(K, o, k—do) ozl ok M k=g, Gy - O k= o= 2
0 (k—do) i=1
n
d k_QO_igl Qn) n n
X n ZFTS(k_qO_Izl Qn,QO-k_izl qn) ’ (41)
k=0~ 2, qn)
i=1
where we have introduced the following quantity:
n
~(n):cq- .- dq 1 d(k—qp)
(n)icy-- ¢y _ ) 0 co _ 0
Fil...in K,dy,--+,0n,K iElCh) 2 20(09) Fio(k,%,k QO)W
d(k—qgo—as)
XT, (k- k—
1(k=0o,G1,k—0o— %)mz
n
n-1 n d(k_QO_Zl qn)
XT{| k—do= 2, 0,0 k—0o— 2 qi) 2
n =1 =1
(k—qO—Zl qn)
n n
XT o k=00 2, an,Gok— 2 qn) : (42)

The equation fol" ) is shown in Fig. 2.
Finally, we are able to write the coefficients of the operator product expansion of the Faddeev-Popov operator as

dR(k,q,k—q)=d(k)I'f(k,q,k—q)d(q) (43)
and
d¢ i i, (6,01, 02, k= 01— 02) = d(K) T4, gy .k — g d(k— ) T2(K— 1,0z k= Gy~ )
FA(RT 5%k, 0,02 k— 01—~ G2)d(k— 61— ), (44

and similarly for higher orders. Before renormalization, these amplitudes are functions of the cutoff. In the planar approxi-
mation the VEV of the Faddeev-Popov operatifi; A)=d(®(k,k;A) defined in Eq/(38) satisfies
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dikip) = ——2 45)
’ 1-g(AM)I[d, 0]’
where
_ A dgy dan 1 eyl g .
0012 5T 2 2 o] e atar e e ik
" (k > A ) "
-2 ql)—z—F(”’°ln °”(k 2 g q1.~-,qn:k)- (46)
(k—E Ch)
=1
|
The trace is taken over the implicit color indices of the ver- q®
tex functions,I'™=T"{} , which also absorb the renormal- f @3 5| Zn(A) o(G;A) + ZA(A)———~ (q A
ization constant;(A) of Eq. (28). This equation is shown '
" d to the eval f the Coulomb kernel. Fol rgra) e[t e A (3— (k-9
We proceed to the evaluation of the Coulomb kernel. Fol- g A 3 3 . ;
lowing Swift [21] we definef(k:A) via 18] (2m* (2m)7 e(@:A)alkiA)
(50)
f(k,A
<2w>35<P>d2(K,A>%5ab and
=7 (A) dxd <w|K (X )|w> eik~(xfy)eiF'~(x+y)/2 E :}Z AZ . dq ; (51)
— 4K y ab ry A . m 2 m (277)3 a)(q,A) .

(47)

The contribution from the Coulomb potential may be
evaluated with the aid of the operator expansion in (B8@).
Recall that the products of gluon fields in the operator ex-
pansion of the kernel are normal ordered with respect to the
variational vacuum. Thus the maximum number of terms
which contribute to the vacuum energy density is determined
by the number of external fields present in the charge densi-
ties multiplying the kernel(i.e., foun. The Coulomb vacuum

This comprises a linear integral equation which must beenergy density may be thus be written as

solved forf after having obtained. We are finally in a po-

sition to evaluate the expectation value of the energy density Ec=EQ+E@+ el (52)
from the full Hamiltonian,

From Egs.(33) and(45) it follows that the vacuum expecta-
tion value of the Coulomb kernel satisfies

F(kA)=Zy(A) + 5o d 5[2«d.@). (48)

The termsE (™ correspond to the vacuum expectation values
of KM contracted with the fields from the charge densities.

=&yt Entéc=———(w|H|w 49 For the first term one gets
g m C V(N§—1)< | | > ( ) g
o ) ) ©o_Ne (A dg dk f(k+qg;A)di(k+q;A)
where the three terms represent the kinetic ené@rgyuding E¢ =16 2m)? (2m)° K+ )2
the non-Abelian portion of th@&? term), the mass counter- & . q
term, and the Coulomb potential, respectively. In particular, Y w(k;A)i w(q;A) ) -
y R PRV ARTT VI S
= g1 - ¢ The higher order term&{" are of orderd™*?)(k;A). Since

d plays the role of the running coupliigee Eq.(45)], we
expect these higher order terms to give finite corrections to
w(k;A) which will be small at large momenta. We further
FIG. 3. Dyson equation for the VEV of the Faddeev-Popovexpect that the corrections at low momenta will be small
operator. See Fig. 1 for an explanation of the symbols. since the leading infrared behavior is already contained in
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£9) . These assumptions and the effects of vertex correction#e quasiparticle vacuum decouples from the hadronic spec-

[cf. Egs.(42) and (41)] and the FP determinant will be dis- trum. . . .
cussed in detail in Sec. Il E. The required cut-off independence of the eigenvalues can

Minimizing £ with respect tow leads to two contribu- b€ used to determine the dependence of the various coun-
tions — one from the explici dependencécf. Eq. (53) for terterms anq couplings. At this stage, this implies that the
gg))] and the other from the implicit dependence arising Fock space itself should be cutoﬁ—lndependgnt because, for
through the kerneld?. We refer to these contributions to the _example, the ground state energy of two static color SOources
gap equation agg:n),w andg(cn),K7 respectively. The first of is directly related to the expectation vglueHbﬁn the varia- _
these is of orderO[d™?(k:A)] and the second is tional vacuum. We note that expanding the Fock space in

which the Hamiltonian is being nonperturbatively diagonal-

O[d"*)(k;A)]. Thus, for example 9 should be com- 4 will add e -
' ' I tert to the Hamilt hich

bined with other orderO[d*(k;A)] contributions from zed WIT 800 NEW COUMEerms 1o me Hamironian whic

X ) will modify the renormalization group equations.
@@ subsequent expressions /X contain a factor v grotip €4

of —2w? with respect to the derivatives ¢t For the mo-

ment we retain only the leading[d?(k;A)] contributions A Vertex truncation

from 5&0)"" in the gap equation. Minimizing with respect We start by examining the renormalization group structure

to w leads to the following gap equation: which follows from the requirement that the gluonic Fock

space itself is\ independent. This implies that the Coulomb

ZZ(M) 0 (q;A) = Z2(A) G2+ Zy( A) A2 kernel, and hencef(k;A) and d(k;A), should be
A-independent. These conditions may be imposed through
Ne (A dk [3—(k-0)?] an appropriate choice of the cutoff dependence of the coun-
+92(A)Z 277 wkA) terterms and coupling.
’ Consider first renormalizing the FP operator of E4f).

No (A dk  f(k+q;A)d3(k+q;A) In this equationd is expressed in terms of the vertex func-

4 ) 277 (k+q)2 tionsT(W and the gap functiom. Since these can be inde-
pendently renormalized using other renormalization param-

0?(K;A)— w?(q;A) eters which do not explicitly show up in Ed45) [i.e.,

X[1+(k-q)%]

w(k;A) : Z1(A),Zyn(A) in Egs.(27) and(28)] we can replace them by
their renormalized,A-independent versions['(W(- - -;A)
54 r™M(...) and w(k:A)—w(k). Thus the only

-dependent parameter available to enforce the cutoff inde-
ndence of the FP operator is the coupligg)).

To determine the consequences of this observation we ex-
amine the behavior of the vertices which appear in the equa-
tion for d [Eq. (45)]. Asymptotic freedom implies that for
momenta near the uv cutoff, the gap function and the renor-
IIl. SOLUTION OF THE SELF-CONSISTENT GAP malized vertex functions approach their corresponding free-

EQUATIONS field values,

Before continuing we shall briefly summarize our phi-
losophy. The goal is to construct a quasiparticle Fock space
which will provide a useful starting point for the evaluation
of hadronic observables. Quasiparticle states are built on
variational vacuum and reflect the propagation of these de-
grees of freedom through a nontrivial background. Of course c _ iTc 2
the full Hamiltonian still contains many-body terms which Ik, g k=) =kT+ O[g7(A)]. (56

This completes the derivation of the leading order gapA
equations. To summarize, these comprise &&) for the pe
VEV of the FP operatod(k;A), Eg. (48) for the Coulomb
kernelf(k;A), and Eq.(54) for the gap functionw(k;A).

lim wo(k)=k+O[g%(A)] (55)
k~A—o

mix the free quasiparticle states; nevertheless, the quasipafg—or n>1
ticle Fock space is complete and at least in principle one
should be able to diagonalize the full Hamiltonian in this n
basis. (n) n+2
. . r'mik,qq, ... .00 k— i|—0 A)]. B
When dynamical quarks and gluons are considered, one h Gn ;1 a |~ Olg™ (A (57

would need to diagonalize the Hamiltonian in the full Fock

space. In practice, however, such diagonalization is alwaySimilarly one expects that in this limitl(k)— O[g(A)].
performed in an appropriately selected subspace e.g., includ+us the integral in Eq45) is logarithmically divergent as
ing only |QQ) or |QQQ) quasi-particle states. Such a trun- A—2. This divergence is absorbed by the couplgig\). It
cation is better justified when the quasiparticles behave afllows from Eq. (40) that I'Y is given by an expression
constituent particles with average kinetic energies of severathich is finite as\ approaches infinity; thus there is no need
hundred MeV. Furthermore, as discussed earlier, the quasier vertex renormalization and one can gg(A)=1. Fur-
particle basis diagonalizes the one-body part of the Hamilthermore, the correction to the bare veriék is expected to
tonian, thus at least at the level of Tamm-Dancoff truncationpe of the orderO({g?)) where(g) refers to an uv and ir
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finite integral over the running coupling. This is due to theEq. (61). The presence aj(A) in Eq. (45) shows thad(k)

two Faddeev-Popov operataték) in Eq.(40). Sinced(k) is
proportional tog(A=k) for large k, the renormalized FP
operator can be associated with the running coupling:

lim d(k)—g(A=k).

k— o0

(58)

From the resummation implicit in Eq45), and consistent

with asymptotic freedom, the large momentum behavior of

d(k) will be logarithmically suppressed with Furthermore,
if d(k) is less singular than &/in the infrared limit then the
integral on the right hand side of EQ@LO) represents a finite,
higher order(in the running QCD couplingcorrection to the

can only be determined up to an overall constant. Thus the
equation ford(k) contains a single unknowul(w).

The vertex truncations and Eqg8) and (61) imply that
the expectation value of the unrenormalized Coulomb kernel
is given by

1—(q-k)?
2w(9)(q—k)?
xd?(q—k)f(q—k;A).

d
f(kA)=Ze(A) N, [ 50
(64

The uv divergence from the integral is absorbedZpyA).

bare vertex. This is also true for the higher order irreducible>UPtracting once yields

vertices, T, From Eq. (41) it follows that these are

O((g"*?)). This important observation will be used to trun-

cate the gap equations in the next subsection.

B. The truncated and renormalized gap equations

The considerations of the previous subsection may be
used to truncate the general gap equations derived in Sec. Il.

B dg  1-(g-k)?
f(k)_f(ﬂ)—i_NC (2’7T)3 2w(q)(q_k)2d2(q_k)f(q_k)
dg  1-(q-w?

_ 2(q— —
(65

This is necessary to make the equations tractable. The effect

of neglected terms will be discussed in Sec. Il D.

Here f(u) is another external renormalization parameter.

We start by ignoring the finite higher order corrections toThe renormalization constant is given in terms of it by

the vertices and thus take
Ii(k,q,k—q)=T%!, (59
and
rm—o. (60)

The equation for the unrenormalized FP operator, (8§),
becomes

1 1 [t dd 1-(k-g)?
d(k;A) g(A) ¢) (2m)° 20(a)(k—q

)Zd(k_qvA)
(61)

One sees from this equation that in orderdgk; A) to be A

independentg(A) must obey the following renormalization

group equation

t 1 Adg  1-@m?
on) gw ) @m? 2atayg- w2 49T
(62
Thus Eq.(61) becomes
t_ 1 dg_ 1-(9-k)?
0~ @ | 2o Zutaia 290K
dg  1-(a-m’
+N°f @) 2a(0)(q- w20 # Y

Here the renormalized FP operator is written d(k;A)
—d(k). Equation(63) implies thatd(k) is independent ol

dg  1-(q-w?
(27)% 2w(q)(q— p)?
xd?(q—mf(g—pm).

ZK(A):f(M)_NCJ
(66)

We finally discuss renormalization of the gap equation,
Eqg. (54). In general this equation can depend on the three
renormalization constantZ(A), Zp(A), Zn(A) and the
renormalized couplingg(A). The couplingg(A) is already
determined by Eq(62). In the uv limit the integral on the
right hand side of Eq(54) has in principle quadratic and
logarithmic divergences. The logarithmic divergence is
present if the kernel(k—q)d?(k—q) approaches a constant
in the uv limit. There are, however, logarithmic corrections
to bothf andd which follow from Eqgs.(63) and(65) which
actually protect the integral from the logarithmic divergence.
Thus one can immediately s&,=Zp=1 and absorb all
possible remaining divergencés A — «) into Z,,(A). This
leaves the quadratic divergence which is eliminated by a
single subtraction,

N, dk f(k+q)d?(k+Qq)
w*(A) =0~ pP+ 0¥ () + o 2m° ( (E+q()2 a
A 2(k)—w?(q) Nc dk
R 8 e
ket mdkt ) WK - o)
(k+ )2 [1+(k'M)2]T
67

(and the scalg), and represents the once-subtracted form ofThe mass counterterm is given in termswfu) by
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N. (A dk [3—(I2-E1)2] The e>_<pre_ssion foZ g give_n in Eq.(66)_ implies that the
Zm(A)A2=w2(,u)—,u2—g2(A)T 2 el renormalization group equation fdi (A) is given by
Ne (A dk f(k+ m)d?(k+ p) Zk(AN) —d’(A)f(A)
- 3 (K m 2 - A== = Bo 7 (72)
4] (2m (k+ ) dA ()
W14 (k- 1y 00— ) 6y  Which in the limitA—c leads to

w(k)
_ _ dZ¢(A)  8Ng g%(A)
Equations (63), (65), and (67) form the renormalized A daA - 3 @an)? Zi(A). (73
coupled gap equations which represent the leading order
vacuum and quasiparticle structure of QCD in Coulomb ;
gauge. We proceed by examining the perturbative limit otFma"y’ Ea.(68) yields
these equations before turning to analytical and numerical

2
solutions. Section Il F examines corrections to the gap equa- dZm(A) =—27 (A 9°(A)—
' : . m(A) = ——3B0
tions due to truncation to the leading terms. CdA (4 )
9% (A)—
C. Asymptotic renormalization group equations X2 1+ W'BO +Z(AN)|. (79

We establish the relationship of the renormalized gap

equations to standard perturbative QCD in this section. Thehe first term is universal and reflects the quadratic diver-
renormalization group equation for the renormalized cougence. The remainder relates to the uv behavior of the Cou-

pling, Eq.(62) implies that for large cutoffs lomb kernel and the quartic-gluon vertex which are both de-
5 termined by the running coupling(A).
dg(A) _ 8Nc g7(A)d(A) 69) As expected, all counterterms run as a function of a single
dA 3 (4m)? renormalized parametey(A), where from Eq(70),
and from Eqs.(62) and (63) it follows that in the limit A 2(Ag) (4)?
g"(Ag
2(A)= = (79
— 00 g Eo A2 - A2 ’
7P g2 Iog—
dg(A)  8Nc gd(A) s 70 Y (AO)IogA_S Fo AQeo
== 2=pL9 .
dA 3 (4m) with
We ceill the first coefficient in the expansion of tige ) , S
function B,. The last equation implies that Agcp=Aexd —(4m)% Bog™(A)]. (76)
. 8N Solving the renormalization group equations and substi-
,80— (71)  tuting for g yields the following expressions for the mass and

Coulomb renormalization constants

Although it is tempting to compare this to the canonical per- A 12
turbative expression o8,=11IN./3, this is misleading for |09—21—

two reasons. First the coupling defined here corresponds to 7 (A =7 (A QCD —7 (A g(A)

the product of the VEV of a composite operai@e., the K(A)=Zk(Ay) A K( 1)g(A )’
Faddeev-Popov operajoand the QCD coupling. Thug IOgA?CD

will also reflect renormalization of the FP operator. We note Q (77)

that this is nevertheless a sensible definition for the coupling

since it is this product which determines the strength of theyng

various interactions involving Coulomb gluons. The second

reason is that we sum loops which arise from the expectation

va}Iue of the Hgmil'gonian anq do not includg tho_se from iter- AZZm(A)=Zm(A1)A2 —ff dtg?(t)
ating the Hamiltonian. Iteration of the Hamiltonian involves 4r)

summing over intermediate states. This is fine in perturbation
theory, but because of confinement can only be justified for
color singlets so that summation should be restricted to had-
ronic intermediate states only. As discussed in Sec. Il D this
may be achieved in bound state perturbation theory once the Lastly, we examine the effective renormalized potential
quasiparticle Fock space is specified. We will discuss thdetween static color sources. This may be defined via Egs.
running coupling in more detail below. (10 and(47) as

9%(t) —

X 1+ (4 )ZBO

1
5 ZK(t)} (78)
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£(k)d2(K) 47Taefr(k) Coulomb kernelf (k) have been obt_ained, the gap equation
V(k)= . = — (79 may be solved fow (k) and the consistency of the ansatz for
k k o may be checked.
With the aid of these approximations the equation for the
running coupling can be converted into differential form

It is clear that it is the combinatiod(A)g?(A) which is
responsible for makingr.z A-independent. For largd and

A4 one obtains d(k)
Zk(A)g(A) d*(k)
A)= —_—
@e(A) = aen( 1)ZK(A1)92(A1) o
Bo (2d(k) 1 k
——— - —d'(k for ksmg,
ae(Ag) (4m)?\3 m; 3m
- 2 2\ 302 (80) =y — ’ ’
N B T L) e
“(@am? A3 @mz\ me)| e 24 o
(84)
Notice the power in the denominator which is present due to
the rainbow-ladder nonperturbative structure of the VEV offFor k<mjy a solution is given by
the Coulomb operator. Expanding E®0) permits a com-
parison to perturbation theory: d(k)? d(w)?
— B~ — 751
5 k 5
3 g%(Ay), AF . —iz—d%k) 1—ﬂ2id2w)
aeﬁ(A)=aeﬁ(A1) 1+ EBOWIOQP+O(Q ) . 3(4’77) mg 3(47T) I'T'Ig

81) (85
In perturbation theorywith no light quarks the coefficients which is well approximated by
in front of g*(A;) should be equal to Mc—N¢/3=11/3, d(w)
rather than 3/B,=4N. . The difference comes from the per- d(k)= ’ 75 - (86)
turbative contribution due to emission and absorption of a 1 5Bo d2() MK
transverse gluon, which involves iterating the Coulomb- 3(4m7)? # my

transverse gluon vertex froid ¢ twice. This contribution is
not present when one takes the expectation value of th&his equation is triviallyu-independent. For large momenta,
Hamiltonian as done here. However, as stated earlier, pertuk= ng we approximate Eq(84) by neglecting the terms of

bative contributions from propagating transverse gluons may)(mg/kz), In this case the solution is given by
be included, for example, in bound state perturbation theory

and can be systematically included in our approach when the d(p)

Hamiltonian is diagonalized in the quasiparticle basis. It d(k)= — ST (87

should also be noted that such differences are of a screening 14+ 120 d(,u)zlogk—)

nature, and thus are not expected to spoil the confinement (47)? u?

mechanisms coming from summing the Coulomb-transverse

gluon interactions. which also isu-independent. Even though this solution is
valid for k>m, it may be matched continuously with the

D. Approximate analytical solution solution fork,<<mj if one chooseg.=mg. The freedom in

. . . . the renormalization ofl(k) is now related to the choice of
In this subsection we present an approximate analytical,q yaue ofd(k) atk=px=m
g-

fs(s)rllati((ln(r)] t?(tln)e;;udnc?lt(()ee ézgo(rg;‘“(zgg C(%%I?gsgpaeit?\?gl;ﬂons It follows from Egs.(85) and (86) that there is a critical

, w(k); (69, ; , . g — . - i

The approximate solution is obtained by simplifying the an_value ofd(mg) =dg=4mv3/56, 1 3.4414 forNC—S. W_h'Ch
lgads tod(k)ec1/\k for small k! Furthermore, this is the

gular part of the integrals over 3-momenta. In each case th VR ) .

angular dependence is approximated by strongest possmle ir enhancement admitted by_ tne approxi-
mate solution. The solution fad approaches a finite value

(k—q)%2— 6(K2— g?)k?+ 0(q>— k) 2. (g2)  for all other values ofi(my) less thard,. We shall see that

this general behavior remains true for the full numerical so-

Next we assume that the renormalized solution of the gapution as well.

equation can be written in the form The corresponding solution for the functid(k) follows
from Eq. (33). Fork=my (with x=m,) one gets

(k)= 6(k—mg)k+ 8(mg—k)my . (83

Thus we assume that the gap function saturates to a nonzeréwe note that this form is actually another solution to EB#) for
value at low momentum. Once the FP operattk) and the  smallk.
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f(mg) d(k) 10° : . .

- Hllzzf(mg)d(mg) ,

f(k)=

(89)

and fork= my,

(my) d(k)

= f(mg)—d

f(k)= (my)”

(89

The freedom in choosing the normalization fag(A) is
now reflected in the unspecified normalization constant kim,

f(mg). The maximal infrared enhancement of the Coulomb

kernel is given byk™"? [f(k)<1/k*?] if the approximate FIG. 4. Solution for the expectation value of the FP operator
solution of Eq.(86) is used, or is given by~ 1% [f(k) d(k). The two lower dashed lines correspond to an analytical, ap-
oc1/k3’4] if the full solution for d(k), Eq. (85) is used. We proximate solution with d(my)=2.5 (lower) and d(mg)=3
note that a linearly rising Coulomb potential requirigk) (highep. Boxes correspond to a full numerical solution for the cor-
«1/k for smallk. The exact numerical behavior bfwill be ~ "€SPonding values od(mg). The numerical solution close to the
discussed in the next subsection. Lastly, if one substitutes thcéItlcal point Is shov_vn by th'.a open C.'rCIeS'.The solid line corre-
ansatz solution for the gap function E(®3) into the gap sponds to a fit to this numerical solution using the formula in Eq.
equation(67), one finds that it is indeed a solution up to (0.

terms of orderO(k/my) for k<mgy or O(mgy/k) for k . ) . .
>m,. equations. Convergence was typically achieved in only a few

To summarize, the approximate analytical solution lead$aSses since the analytical starting point of the last section is
to a running coupling FP operator d(k) which falls off ~ duite accurate. _ , _
logarithmically at large momenta and is enhanced at smal] "€ numerical and approximate analytical solutions for
momenta. The approximate solution indicates that there 1€ FP operator are shown in Fig. 4 for three separate values
only one critical value of the coupling for which the en- of d(mg). This and subsequent figures are plotted in units of

hancement is maximal and given biyk)o<1/yk. This may Mo which after renormalization is the only dimensionful pa-
be an artifact of the truncation of the series of coupled selff@Meter. Its value can only be determined upon comparison

consistent equations. One expects, however, that the criticl @ Physical observable. It is clear that the analytical solu-

behavior is universal, i.e., near the critical coupling highert'ons are very accurate. Furthermore, the existence of a criti-

order corrections to the vertices in the Coulomb operatof:al coupling appears to be numerically confirmed, with a
become irrelevant. value very nead,=3.5.

The full Coulomb kernel becomes logarithmically sup-
pressed at large momenta as expected from an all-order re-  10* ¢
summation of leading logs. At the critical point and for low
momenta it becomes enhanced over the perturbatkfebl-
havior and scales ds %* We have thus obtained a tanta- 10°
lizing glimpse of the possibility of constructing a phenom-
enologically viable truncation of QCD.

E. Numerical solution

(Kf(m,)

Encouraged by the near-appearance of linear confinement
in the approximate analytical solution we proceed to a full
numerical solution to the truncated renormalized coupled gap  1¢°
equations. The solution is obtained by mapping the gap equa-
tions onto a set of discrete nonlinear equations by placing all
functions on a momentum space grid. We have found that 5 t < 5 . 2
numerical stability is enhanced if the grid is chosen carefully, K/
in particular by preferentially populating the low and high !
momenta regions. The discrete gap equations were then FIG. 5. f(k)/f(my). Curves as in Fig. 4. The numerical solution
solved with two independent solution algorithms. Both meth-near the critical pointopen circle} is fit to the formula given by
ods used an iterative procedure to cycle through the thregq. (91) (solid line).
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The numerical solution near the critical point has been fitquite accurate. The solution at the critical point is compared

to the formula with
m, | 2d mg| 2f
dc(?g> for k<my, e (T) for ksmg,
— m,) =
d(k)= log(1+bg) | (%0 (ort(mg) log(1+by) |©
e for k=m,. [Ty i S for k=mj.
°| log(k?/m+bg) 9 log(k?/mg + by)

(91)

The fit yieldsd.=3.5, a4=0.48,bq=1.41 andcy=0.4 veri-  The fit yields, a;=0.97, b;=0.82 andc;=0.62. The low
fying the accuracy of the approximate analytical solution.momentum behavior is found to be more enhanced than in
Figure 5 shows the Coulomb kernel functibfk)/f(mg) for  the approximate analytical solution. The two fits to the nu-
d(mg)=2.5 and 3.0. Again, fod(my) <d, the solution satu- merical solutions foid andf result in the following expres-
rates at low momentum and the analytical approximation ission for the Coulomb kerneV (k) = f (k) d?(k)/k?:

(3.50)2<E)L93 for k<my,
K2V(K)/f(mg) = k ’ (92)

8.07log *#4k?/mZ+1.4D)log **4k?m;+0.82 for k=my.

At low momenta the effective coupling.«(k) [defined ~630 MeV. These estimates of the scale are in accord with
through Eq.(79)] behaves very nearly askf/ The fact that lattice computations of the adiabatic hybrid surfatibsis is
the power is not exactly-2 may be due to discretization discussed further in Sec. IV)Aand with old glueball phe-
error (a finer momentum grid does indeed bring the coeffi-nomenology{23].
cient closer to—2) or the truncations employed in deriving ~ The numerical and ansatz solutions for the gap function
the gap equations. In any event, as will be shown later thare shown in Fig. 6. We note the remarkable accuracy of the
difference(roughly 3.5% is completely negligible with re- simple ansatz fow, the main difference being the smooth

gard to phenomenology. transition through the intermediate momentum region. No-
Assuming linear confinement é3+a;=2) gives[13] tice also thatw approaches very rapidly for large momen-
tum.
67rb=(3.5)2m§. (93 Finally, the numerical stability of the solutions have been

tested by varying the number of grid points. Of course this
also tests thale factonumerical cutoff dependence of the

results. The results are shown in Fig. 7. We find that the
numerical results are stable to within a percent. Notice that

Inserting the quark model value for the string tensibn,
=0.18 GeV yields my~530 MeV. Alternatively, lattice
string tensions are typically 0.26 G&\[22], giving my

10° . . 10° . . . . . .

o(k)/ex0) = exk)/m,
o_

©

e
(=]

FIG. 6. Comparison of the analytical approximation a&gk) FIG. 7. Numerical solution fod(k) near the critical point for
(dashed lingand the full numerical solutiofsolid line). 192 (circles, 288 (triangles and 384(diamond$ grid points.
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this also confirms that all uv divergences have been properly
subtracted.

F. Higher order terms

We now address the issue of the neglected terms in the
coupled gap equations. These arise, for example, from trun-
cation of the rainbow-ladder sums, higher order corrections
to the Coulomb vacuum energy, and from the terms gener-
ated by the Faddeev-Popov determingnt

1. Vertex corrections FIG. 8. O(d*) contributions to the gap function fro@) .

The truncation to the rainbow-ladder resummation for the

Faddeev-Popov operator and the Coulomb kernel ignorefields ‘A", respectively. These are the only contributions
higher order(®(d"), n=2 corrections to the triple Coulomb- which have a nonzero VEV after combining with the charge
transverse-gluon vertex. Using the approximate analyticaflensities. The contribution to the gap equation is then ob-
solutions ford(k) andw(k) we estimate these contributions tained by taking the derivative of the VEV with respecto
by evaluating the)(d?) correction. From Eq(40) it follows ~ As was discussed earlier, an alternative method to derive the
that the lowest order correction to the bare vertex is given by@ap equation is to require that the off-diagofyadoportional

to a'a' or aa) portions of the one-body operators vanish.

STC(K,q,k—q) = N¢ di The second method would indicate that terms with 6,
e 2 ) (2m)3 p:A®:p, contribute to the gap equation as well since the four
i gluon fields from the two charge densities can contract with
X[(k+ D-sr(@ k- or((k+1—a)] the fields from the kernel leading to an operator proportional
20(1) to :A2:. As discussed in Sec. Il E, the apparent difference in

d(k+1) d(k+1—q) these two procedures is resolved if one notices that there are
( 5 ( q2 c (94) contributions to the gap equation which arise from the im-
(k+D* (k+1-q) plicit dependence of the Coulomb kernel @nin the second

We have evaluated this integral numerically and found tha{nethod, the contribution which would be associated with the

for all values of the external momenta the correction doe%1 :tr? term |fn thetﬁpedrat_or E)_rodu;:ir?x?(ansu?r}@nlf;|d2ntt|cal
not exceed a few percent. o the one from the derivative of the kernel in the4 term

contribution to the VEV. This was denotef{’¥ in Sec.
2. Second and fourth order corrections to the Coulomb kernel |1 E. Similarly the term referred to a8{")" in the discussion

Recall that an operator product expansion for the couPreceeding Eq(54) is identical to the contribution from the
lomb kernel has been defined in Sec. Il E, E). We now n=2 term when the fields from the charge densities are con-
employ the Swift equatiori33) and the operator expansion tracted with each other. .
of the Faddeev-Popov operator Eg5) to derive an explicit ~ Adding all these pieces together yields,

expression for the terms in that expansion: © »
> e oo T ER @I @ @)
K#(k,p;A) = o(k+p) 02K (k) +ig P K (p) DT(K) o
DO(p)KO(Kk)]:A(p+k) e @ e @)
+ P AS(p+k)-p:...
+[EQ @] (a—p). (96)

+(i)"facer | fen-16nd
The four terms in the brackets af¥d?), O(d*), O(d®) and

d O(d®), respectively; no other corrections exist. We test the
1n(0 0 ’ ’
*dg 9" D(p)D(p-sy)- - importance of the higher order terms by computing the
O(d* correction to the truncated gap equation.
i . An example of a diagram contributing {2 is given
XD p—; 54”5 p+k—|:21 3) in Fig. 8. The explicit expressions f@{"* and £ are
given below:
n—-1
XACS) P .A°n<sn>-(p—|§l s):- ek g Ne [ gk dp (k)
=5 ) @m? @ elp)

(99

The term in the expansion ¢f which containsn gluons is XTrLr(p) or(K) JL(k+p) or(q) (k+p)]
weighted by a product afi—1 factors ofD(®) and a single f(k+p)d2(k+p)d(k+p)d(k+p+q)+perm
factor ofK(9). The additional contributions to the VEV of the X 2 2 >
k+p)2(k+p)?(k+p+
Hamiltonian discussed in Sec. IlEZ) and£), come from (k+p)ktp)(k+pta)
terms with a product afi=2 andn=4 normal ordered gluon and

97)
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equation for the determinant present in the kinetic part of the
Hamiltonian, through the7 Y2I1.7%2 operators. This is
given by

NZf dk dp
16) (2m)3 (2m)3

_ 0%(9)

w(K)w(p)

X[(q+Kk) 87(p) 8r(q) (k) (q+p)]

" f(q+k+p)d?(q+k+p)d(g+k)d(g+p)+perm

(a+k+p)*(g+k)*(q+p)?

NZr dk dp w(k)

8] 2ar et e

f(p—k)d*(p—k)d(p—k+qg)d(k—q)+perm
(p—k)*(p—k+a)’(k—g)*

EQ(a)=

%f dxj*“?na(x)jna(x)j”?:%f dXIT3(X)IT3(X) + V4 .
(99

Similarly, Vg is defined via the relatiofsee Eq(21)]

}(k—Q)ﬁT(p) 51(k)81(q) .
He=3 f dxdyp?(X)Kap(X,Y;A)p°(y) +Vg. (100

X(p—k)[

A direct computation yields
(98)

g . -
Here the permutations refer to the other two ways of arrang- VA:ZJ deabCfaef5T(Vx)ii<Xb|(V‘D) 1|X'C>ij
ing the argument ofd? in f(1)d?(1)-d(2)-d(3). .

Including these terms in the gap equations modifies the X 5T(Vx)ik<xe|(V-D)*1|x,f)VXk
results ford andf by strengthening the ir enhancement some-
what. The result for the gap function is shown in Fig. 9. As
expected, the change at higher momenta is minimal. How-
ever, we see that th@(d*) terms do not modifyw at low _
momentum either. This is becau§é® and £°¢ depend on X 8r(V,)ik(xel(V-D) ~*|x,c)Vy, (101
the combinationw(p4)/w(p,) —1 which suppresses them in
the ir limit (p;=p,). Our results are compared to lattice Or in momentum space
computations in Sec. IV A. We stress that the result of Fig. 9 10 &% %o d°
should be considered preliminary because there are other Vy=—= P q D2%(q,q+k)

O(d* correctiong(see the next subsectipthat have not yet 8) (2m)*(2m)* (2m)° ’
been included.

The computation of theé)(d®) and O(d®) corrections is
progressively more difficult and is currently under investiga- 10 &%k d% diq
tion. These require the numerical solution of a self-consistent + =
equation involving at least 8-dimensional integrals. How- 4) (2m)* (2m)® (2m)®
ever, since the&(d*) corrections are small we expect these X D9%(p,q— k) FPe%FPeT qs1(k)p], (103

higher order terms not to change the results significantly.
where D?¢(p,k)=(ap|g/(V-D)|ck). We note thatV, is

similar to Christ and Lee’s/;; however, it is not identical

We now discuss the corrections due to the Faddeev-Popdyecause we have not Weyl ordered the Hamiltonian.
determinants/. We calculate the contribution to the gap  Using the operator product expansion for the FP operator,
these lead to terms proportional #?%: which add to the gap
equation the following contribution:

2
= L[ axteretoets (9,0, (xbl(V-D) 1),

X D*(p+k,p)f*?f Y qsr(k)p] (102

D%(q,k+p)

3. Faddeev-Popov contributions

20 )_N_é dk dp d(k+q) d(k)
FRl= 76 | 2m2 272 (k+q)2 K2

d(p+q) d(p)
Xkor(@pl oo S

m, /2000

0.4
§ NZ( dk dp d(k+q) d(k)
3 _E (277_)3 (277_)3 (k_l_q)Z K2 [kéT(q)p]

d(p+q) d(p)

X[(k+q)ér(p+g+k)(p+a)]

. (p+a)® p°
0.0 k;n? 2.0 ~ N_% dk dp d(k))z s y
9 4 (277)3 (277)3 k2 [ T(p) ]
FIG. 9. Normalized instantaneous transverse gluon propagator,
1/2w(k). The dashed line is the solution to the leading order gap X[k S7( )k]d(k+q) d(k+p) (104)
equation of Eq(67); the solid line include)(d*) corrections. g (k+q)? (k+p)*

025012-16



COULOMB GAUGE QCD, CONFINEMENT, AND THE . . . PHYSICAL REVIEW D 65 025012

The contribution ofV, to the gap equation is ir-finite but cited adiabatic potentials will be presented elsewhéreus,
uv-divergent and will thus modify the gluon mass counter-to good accuracy, the static heavy quark poterdél) is
term. A detailed numerical study of the fud(d*) correc- given by
tions to the gap equation will be presented elsewhere.

Vaa(r)=—CgV(r)

IV. DISCUSSION
dk . f(K)d%(K)

As demonstrated in the previous section, the asymptotic =—Cg (277)39 K2
behavior of the numerical solution to the gap equations is
V(k)~1/k*, it thus appears that the methodology advocated dk . 4maer(k)
in this paper is capable of describing quark confinement. The =—Cr (277)39 k2 - (107)

appearance of the confinement phenomenon hinges crucially

on the choice of the variational vacuum which we use to . . .
construct the quasiparticle basis and on realizing that this It is useful to return to the approximate analyncal solu-
choice also affects the interaction between these quasiparﬁti'—ons to the truncated re_normallzed gap equations of Sec.
cles via the summed expression for the instantaneous Coll! D to illustrate how the different parameters enter. We have

lomb kernel. We now examine the implications of this suc-Seen that at the critical poind. the solutions for the
cess on confinement and the Gribov ambiguity. Faddeev-Popov operator and the Coulomb kernel are

. . r m 1/2
A. The confinement potential d(mg)(rg) for k<my,

The requirement that the gluon mass gap functigk)
be cutoff independent gives rise to a mass scale which we

call the gluon massmy. The value ofw at a particular d(k)=1 & (108

momentum scale, sag=0 serves as the underlying mass 3 Kk* fork=mgy,

parameter of the theory. At the critical couplidg the only Vit glog—z

free parameters in the gluon sector &g «) and the mo- \ Mg

mentum scale itselfmy= w(0). Nonperturbative renormal-

ization may be carried out by requiring that the Coulomband

kernel reproduce the statigQ heavy quark potential as seen

on the lattice(recall thatVqg is a renormalization group p m.\ 3/4

invariant quantity. In our approach this potential is given by f(mg)<?g> for ks=my,
HacolQr/2).Q(=r/2) =Vag(nIQ(r/2).Q(—r/2). t={  f(mg (109

5) - =
3 k? for k=mg.
In pure QCD, i.e., ignoring light flavors, the above eigenstate 1+ gIOQF

can be expanded in terms of multigluon states constructed . 9
from the quasiparticle operators acting on tag vacuum.
Schematically, Since d(my) =d.~3.4414 is fixed, the potential has only

two free parameters, the overall strength determined by
- f(mg) and the mass scale set by, =w(0). These may be
1Q(r/2),Q(—r12))= >, y(ahHbl(ri2)d (= r/2)|w), determined by comparing with lattice computations of the
n=0 Wilson loop. One findg(mg) ~1.0 andmy~ 1.8k . Herer
(106 is the Sommer parameter of lattice gauge theory which is
determined to be roughly 1/430 MeéV. Thus my
where the quark creation operators refer to static sources.720 MeV.
The Hamiltonian mixes states differing by gluon number; The same procedure may be followed for the numerical
however, one expects the mixing between such states to kgjution to the gap equation. Good agreement with the lattice
suppressed by energy denominators due to the gluon masgtic potential is obtained by choosirfigmg)=1.41 and
gap,»(0)#0 (this is discussed in much more detail in Sec.m_=1.4f,=600 MeV. The minimum in parameter space is
VA). This mass gap can be estimated from the differenceajrly broad, for examplef(mg)=1.09 and my=1.6f,
between the lowest and excited adiaba@® potentials =690 MeV provides nearly as good a descriptionVefg.
which have been calculated on the latfi2€]. One finds that The resulting potentialafter numerically Fourier transform-
this difference isAV(r~1 fm)~600-800 MeV. Thisis a ing to configuration spages presented in Fig. 10. One sees
natural estimate fot(k) at low momentd23]. The impli-  that the numerically obtained static quark potential provides
cation is that the static ground state heavy quark potentizd reasonable facsimile of the lattice potential. This somewhat
may be accurately computed by ignoring extra gluonic excisurprising result providea posteriorisupport for the meth-
tations in the heavy quark systef calculation of the ex- odology advocated here.
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15.0 ' ' ' ' ever, the horizon terms adds a mass term through an effective
A? operator whose strength is determined by the expectation
value of the FP operator. This term has the effect of enhanc-
ing d(k) for small k. The equivalent of Eq(45) was then
solved and the Coulomb operator was approximated by the
square of the FP operator.

In our approach the horizon condition was used to justify
the expansion of the FP operator in a power seriggAinThe
resulting expressions for the FP operator were summed in the
presence of a nontrivial mean field backgrouite varia-
tional vacuum with the aid of the rainbow approximation
producing ir enhanced FP and Coulomb VEV's. The success
of this procedure demonstrates that the explicit effects of the

100 0 5 m 0 100 horlz_on term may be |gnoreq if one is willing to Qevelop the
” quasiparticle spectrum and interaction self consistently.
’ To further test this mechanism for realizing the Gribov-

FIG. 10. StaticQQ ground state potential. The solid line is the Zwanziger confinement scenario we compare our result for
full numerical solution for f(mg)=1.41 and my=1.4k, the gap function to that computed by Cucchieri and Zwan-

10.0

5.0

0.0

Fol Vool - Vogl2r))

-5.0

=600 MeV. Data are taken from RdR2]. ziger in SU2) lattice gauge theory24]. In that paper, the
authors measure the transverse and instantaneous gluon
B. The Gribov-Zwanziger horizon and the gap function propagators in “minimal Coulomb gauge.” They compare

As mentioned in Sec. Il B, the Gribov problem may be the numerical results to a functional form proposed by Gri-

resolved by selecting a single gauge copy from the ensembRPY [5]:

of Gribov copies by imposing the horizon condition of Eq.

(23). Furthermore, Cucchieri and Zwanzidé&i have shown 1 1

that the restriction to the fundamental modular region im- DY (K)=s=—, Eg(k)=-Vk*+Mg. (112
posed by the horizon term is equivalent to having a low- 2Eq(k) K

momentum enhancement in the Faddeev-Popov operator

over the perturbative k behavior. This enhancement takes \We call the scale appearing in this relationship, the Gribov
the form mass,Mg. Cucchieri and Zwanziger found that the com-
puted instantaneous transverse propagator agreed very well
with this functional form but does not reproduce the normal-
ization.

As discussed earlier, in our approach the transverse gluon
whereZ, is a regular function at the origin. Such a behaviorpropagator is suppressed due to an infrared singularity in the
is clearly an indication of confinemeff], since the FP op- one-body gluon operator. Explicitly, the one body operator in
erator determines the static potential between color sourcele quasiparticle basis is given by
[cf. Eq.(21) or Eq.(33)]. Comparing Eq(110) with Eq. (38)
shows that this is equivalent to the statement thgt) is
singular at the origin,

1
W:kikj[Z(o)ij_E(k)ij]’ (110

dk
Hone_body:)\zYC J WE(k)aT(k,)\,C)a(k,}\,C)

lim 1/d(Kk)—O. (111) (113
k—0

The behavior ofi at small momenta depends on one integra-With

tion constant,d(u). As we have shown earlied(k) ap-

proaches a finite value ak—0 except whend(u)=d.

where the Gribov-Zwanziger singularity develops. E(K) = w(K)
It is possible that the saturation dfk) to finite values

when d(u)<d. is an artifact of the rainbow-ladder o

approximation—we leave this as a matter of future investi- 1+ (k-q)?

gation. For the present we simply require that the theory give XTq)

rise to an enhancement of the FP operator at small momen-

tum, this boundary condition then selects the coupling

d(u)=d.. The low-momentum enhancement of the kernel makes the
In Ref. [7] the enhancement in the FP operator was obintegral infrared singular. Thus, as expected, gluons do not

tained by adding the horizon term to the Hamiltonian via apropagate.

Lagrange multiplier. The VEV of the new Hamiltonian was  We note that the equal time transverse gluon propagator is

then computed in the bare vacuum, i.e., wittk) =k; how-  not determined b¥e(k) but by w(k)

Ne( dg f(k—ag)d*(k—aq)
1+TJ(277)3 (k—a)?

(114
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D' (x)=lim{w| T[A3(x,t)AP(0,0)]| ) The general philosophy is cleaHy generates hadronic
t—0 bound states;,,; incorporates the corrections to these states
dk (k) due to transverse gluon exchange, three and four gluon inter-
= bf 5 T2 aikex (115 actions, and higher order contributions from the FP determi-
(2m)” 2w(k) nant and instantaneous confinement potential. It is worth

We have seen that the gap function obtained in Sec. II iSstressmg that is still a field theory and hence is consider-

rather flat at small momenta, even when satfi€orrections ably tougher to solve than old fashioned qgantum mechani-
are incorporated into the gap equation. This is inconsisterf@ duark models. But there are substantial advantages to
with the lattice calculation of Ref24] and a general theo- 2dopting this approach. Foremost is thég+ Hin is QCD.

rem [25], but as shown above, is not inconsistent with theFurthermoreH, is relat|V|.st!c and incorporates _gluonlc de-
Gribov confinement scenario. The disagreement with lattic@rees of freedom. Thus it is possible to examine glueballs,
may be due to the use of the rainbow-lattice approximatioflyPrids, and other gluonic phenomena in a coherent fashion.
or another solution to the coupled gap equations may existl he utility of the rearrangement made in Egj17) lies in the
These topics are being investigated. It is worth noting how-use of the variational vacuum to construct a phenomenologi-
ever that the effective gluon mass found by comparison tgally viable basis of quasiparticles. This has the direct effect
the QQ potential(or alternatively theD gluon propagator ~ ©f greatly improving the Fock space convergence of any ob-
is consistent with the magnitude of that found in the Cou-Servable. As we have seen, it also automatically generates the

lomb gauge lattice calculations. correct static potential upon which to construct hadrons. We
have previously mentioned th&t, generates states which
V. IMPLICATIONS FOR THE CONSTITUENT QUARK are infrared divergent if they are not color singlétence
MODEL AND PHENOMENOLOGY these are removed from the spectiu@onversely, all color

singlets are infrared finite. Thus the basis generatedpy

We now turn to an examination of the implications of the ¢ontains no spurious color nonsinglet states which would
results presented here on the phenomenology of hadrons,e to be removed by laborious iteration t8f,; and, in

Sinpe this depends crucially on thga explicit defir)it_ion of had'fact, is expected to provide a reasonably accurate starting
ronic states, we begin by sgarchmg for an efﬁqent way tq oint for hadronic spectrum computations. As a practical
construct hadrons by specifying a new constituent quar ote, the physics of the variational vacuum may be accu-

model of QCD. The phenomenology of confinement is the : : : )
analyzed in ight of the resuls of the last two sections. eon ™ FEREEEE R, S P08 o) FIESned WS S J0F
°°“°'9de with a (I:(Ianﬁ((:jat:on c(;f several open i_sue; n ]Ehe c;}l oughly 200 MeV and 600—800 MeV, respectively. Finally,
gﬁpsrtilél;:nt guar mfothe an kpresgn': fa Jll".Str']t'Cr?t'don ort &he spectrum generated bl is spin averaged in the sense
P g eflicacy of Ihe quark model Tor ight hadrons. 4t jt only incorporates spin effects from relativistic correc-
tions to the Coulomb potential. Full spin splittings come
A. Constructing hadrons from H. . .
int
It is clear that constructing hadrons from the basis of free  An important implication of this approach is that the rapid
quasiparticles is futile if it is done perturbatively. A simple convergence of the constituent quark model Fock space ex-
and natural way to avoid this pitfall is to choose a convenienpansion has a natural and simple explanation. All of the cor-
form of H, and diagonalize it nonperturbatively to obtain a rections induced byH;,; (for nonexotic statgsinvolve the
basis of color singlet bound states. Bound state perturbatiotiansfer of a virtual transverse gluon. Since these are quasi-
theory may then be employed to systematically include thdarticles in the variational vacuum, the relevant perturbative
effects ofH,,,. In our case the natural assignment for thesediagrams are suppressed by the mass gap between the regular
operators is and hybrid states. This simple feature of QCD in Coulomb
gauge has important phenomenological consequences. For
_ 1 1 example, it implies that the Fock space expansion converges
HoZJ Y'(—ia-V+pm)y+ Ef dxI1?— Ef dxAVZA quickly because state mixing involves the creation of mas-
sive gluonic(or quark quasiparticles. Recently, lattice data
1 a ©) a has appeared which confirms this picture. Dunegal.[26]
+ EJ dxdyp () K™ (x—y) p(y) (116 have constructed a simple relativistic quark modeBahe-
sons by considering a light relativistic quafwith kinetic
and energyk?+m?) moving in the latticeY potential. Detailed
comparison with latticd8 data demonstrated the high accu-
1 racy of the model. The point which is relevant for our dis-
Hint=§j dX[Bz+AV2A]—QJ Yo Ay+Vat+Vg cussion is that the lattic¥ interaction (recall that this is
equivalent in principle and in practice #(%) should re-

1 a ab ceive corrections due to the light quark when appliedto
+ EJ dxdyp®(X)[K*(X—y;A) mesons; see Fig. 11. The fact that these corrections are not
important demonstrates that they are suppressed, in agree-
— 52K O (x—y)1p°(y). (117 ment with the above arguments.
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+ FIG. 13. Leading order in id; meson decay diagrams.

FIG. 11. The leading light quark correction to the confinement

' Another simple conclusion of the picture being developed
potential.

here is that the confinement potential between color sources
scales as the quadratic Casimir. This follows from the obser-
B. Confinement in the constituent quark model vation that the dominant contribution to the confinement po-

One of the benefits of Coulomb gauge is that it makes théential is given by the leading kernel and that the color struc-
source of confinement clear; in the heavy quark limit quarkgure of this kernel isK{})= 8,,K(%). The fact that Casimir
and transverse gluons decouple and the quark-antiquagcaling of the Wilson loop potential has been observed re-
quark interaction arises solely from the instantaneous Coupeatedly{28] may be taken as a successful prediction of our
lomb operator. This rigorous result has several significanmethodology or may be used as further proof that the dia-
implications for hadronic phenomenology. grams of Fig. 12 are suppressed with respedt (3.

First we simplify the situation by noting that higher order =~ The methodology presented here allows for the resolution
terms such as shown in Fig. 12 are suppressed due to tlad several open, but often ignored, ambiguities in the con-
arguments espoused in the previous subsection. Thus, tlséituent quark model. For example, it is often stated that the
dominate interaction between static color sources is the leadinear potential is built from the exchange of infinitely many
ing kernel in the Coulomb interactior§(®). As we have gluons. One may then ask why the one gluon exchange po-
seen, this kernel is essentially identical to the lattice Wilsortential is retained as an important part of quark model phe-
loop result, so this conclusion is supportegbosteriori nomenology. Indeed the split between one gluon exchange

This simple statement carries wide repercussions. For exsolor Coulomb and hyperfine forces and the multiexchange
ample, a longstanding cornerstone of quark model phenonlinear force is necessarily ambiguous. The resolution to this
enology is that confinement is “scalar.” What this means isissue is transparent in Coulomb gauge: “one gluon ex-
that the interaction between quarks is assumed to be change” is part oH;,; and is due to noninstantaneous trans-

verse gluon exchange. The instantaneous central portion of
1(— — the quark model should consist of a linear term in addition to
EJ PR X=Y) (). (118 the running resummed “Coulomb” term of E2). No am-

biguity exists because of the separation of instantaneous and

. . ) i + + transverse degrees of freedom inherent in Coulomb gauge.
This form (as opposed to “vector” confinement’ YKy ) Another problem with the old-fashioned CQM has to do

is supported by a comparison of the predicted spin splittingyith the previously mentioned assumed scalar nature of con-
in heavy quarkonia with daf27]. However, the results pre- finement. Unfortunately, scalar confinement implies that if
sented here make it clear that this conclusion is naive. Thg,esons are bound by a linear potential, baryons are anti-
interactions between color sources are more complicatego,nd[29]. This is clearly an intolerable situation which is
than the simple facsimile given in E§118. As we have qtinely ignored by CQM practitioners. As we have seen,
seen, the leading interaction between quarks is given byhe resolution is that confinement acts as the time component

: , . . : _ .
K(®—and this has the form of vector confinement. What isof 4 vector rather than as a scalar, and no inconsistency exists
taken as evidence of the scalar nature of confinement is igetween mesons and baryons.

fact quarkonium spin splittings which are generated by non-
perturbative mixing with intermediate hybrid states Mg, . .
That this more complicate(and correct picture may look C. Constituent gluons and strong decays

scalar has been shown in Rgt4]. We illustrate the power of our approach by considering

the vexing problem of strong decays in hadronic physics.
! o T | > The strong decays of hadrons has been, and remains, a
: I | mystery of soft QCD. The naive perturbative assumption that
the decay proceeds via one gluon dissociafiig. 13b)] is
m proven incorrect by direct comparison with experimggd].
The only reasonably successful phenomenology is provided
I I I by the “3P,” model [31], where quark pairs are assumed to
] < ] < ] appear with vacuum quantum numbers over all space. This is
clearly an unacceptable situation, especially given the ubig-
FIG. 12. Examples of higher order corrections to the heavyuity of hadronic decays and the fact that they provide a win-
quark-antiquark interaction. dow into the dynamics of glue at low energy.
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We now examine the predictions of the new quark model |
presented here. To lowest order Ay cp/my and to all or-
ders in the coupling, the only diagrams which contribute to
meson decayhere all mesons are assumed to have Fock
expansions which are dominated by the quasiquark-
quasiantiquark componeftare shown in Fig. 13. The left
figure is contained withirH, and is therefore the leading

diagram. The central and right figures contribute at < ]
O(Agcp/mg) and are generated By, .
Diagrams(a) and (b) with perturbative gluons or model FIG. 14. Light quark loop correction to the heavy quark-

potentials in the intermediate states have been previousgntiquark interaction.
examined as possible sources of hadronic decays in Ref.
[32]. The authors noted that diagra@ is suppressed with this, however, is the nature of the central potential itself
respect to(b) due to momentum routing through the pair when the bare quarks are light. As discussed above, effects
production vertex(This diagram is zero in the nonrelativistic due to one gluon exchange are suppressed by powers of
limit when a delta function potential is in place. It is strongly Agcp/my. Thus the main effect due to light quarks is the
suppressed with a 47 potential) The other class of dia- presence of intermediate quark loops in the instantaneous
grams considered in Reff32] was that generated by a phe- interaction(Fig. 14). These diagrams cause string breaking
nomenological scalar interaction given in terms of scalawhich is an important feature of QCD. However, as Isgur has
confinement{cf. Eq. (118]. This is, of course, amd hoc  argued 34], the main consequence of this is simply to renor-
microscopic realization of théP, model. What was found malize the string tension. Thus light quark loops have little
was that this diagranilike diagram(a) but with scalar as effect on the phenomenology arising frary. The conclu-
opposed to a vector verticewas much larger than diagram sion is that the structure of the new CQM which we have laid
(b). out is essentially unchanged for light quarks. Furthermore,
These conclusions imply that théP, model would even the simple nonrelativistic approximation may retain
emerge in a natural way from our methodology if diagramsome validity for massless bare quarks.
(c) produced light quark pairs with scalar quantum numbers. An explicit demonstration of how the CQM may emerge
Diagram (c) is generated by the product &%) and Hqg  Was given in Ref[12]. This paper assumed a simple contact
terms inH;,; [see Eqs(20) and(95)] and is roughly given interaction in place of the full Coulomb kernel. Standard
by A- VT a-Ay. Once the vector potentials are contractedmany-body techniques were used to obtain chiral symmetry
(or better yet, the sum over intermediate hybrid states ibreaking and constituertuasiparticle quarks. It was then
made, the resulting operator is of the formt'[o6;V]y,  demonstrated that the vector meson—pseudoscalar meson
very nearly equal to the long-assumé#, vertex. Thus we mass splitting follows a form essentially identical to that of
have obtained a viable microscopic description of hadronidhe CQM hyperfine splitting when considered as a function
decays. The implications of these observations will be exof the constituent mass. Nevertheless, the mass splitting was

plored in a future publication. clearly driven by chiral symmetry breaking when considered
as a function of the current quark mass, thereby demonstrat-
D. Light quarks and the constituent quark model ing that the pion may be viewed as both a pseudo-Goldstone

. L . boson and as a quark-antiquark bound state. The new quark
The utility of the CQM for heavy quarkonium is not in qqe| presented here provides an explicit microscopic real-

doubt. Howe\_/er, its apparently succe_s_sful extension to ”ghfzation of the contact model employed in REf2] and it wil
quark states is unexpected and surprising. We seek to undgjz ot interest to verify the findings of that work.
stand this observation in this subsection.

The major feature of light quark physics is spontaneous
chiral symmetry breaking. One may regard this as occurring
due to the appearance of a quark-antiquark vacuum conden- In the paper we propose a new way to organize QCD
sate. The interactions which generate the condensate afghich is appropriate for low energy hadronic physics. The
typically associated with an effective instanton interactionstarting point is chosen to be the QCD Hamiltonian in Cou-
[33] or the confinement potenti@B8—10]. (In our approach lomb gauge because this gauge is most directly applicable to
the driving kernel would b&(?).) Regardless of the particu- bound state physics—the degrees of freedom are physical
lar mechanism which causes attraction in the scalar channednd an instantaneous potential exfst§he instantaneous
a massive constituent quark is the necessary outcome. Ii€oulomb potential may be incorporated it (as is done
deed, while bare quarks may become very light or masslesin atomic physics and a viable bound state perturbation
the relevant quasiparticles saturate at roughly 200 MeV agheory may be constructed. This simple step already obviates
the bare quark mass is reduddd,12. This, at least partly,
explains the apparent success of the nonrelativistic portion of———
the CQM. The agreement is also enhanced by the empiricalwe note that it is also useful for QCD at finite temperature be-
accident that the expectation value\@°+m? is very close  cause a special frame is automatically selected and because count-
to p2/2mCQM in typical hadronic states. More important than ing degrees of freedom is an important aspect of thermodynamics.

VI. CONCLUSIONS
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one of the severe problems of perturbative QCD in describ- An important test of any new method in QCD is its ability
ing hadronic properties, namely that of ill-defined asymptoticto provide insight into a variety of phenomena. We have tried
states. to demonstrate the robustness of our method in this regard. A
While the division of the QCD Hamiltonian is a simple vital aspect of this robustness is the emergencé gfp/mg
task, it is essentially meaningless because the degrees a$ an expansion parameter. This provides the justification for
freedom represented M, are partonic. Thus building bound gluonic Fock space truncation, for the validity of the leading
states would be a frustrating exploration of the depths oftatic Coulomb kerneK(®), and for the applicability of the
Fock space rather than the preliminary step for bound statetatic kernel to light quarks. Indeed, the method strongly
perturbation theory we desire it to be. The experience prohints as to why the constituent quark model works for light
vided by the constituent quark model points the way out ofguarks. To summarize, quarks never become truly light
the impasse; appropriat@onstituent degrees of freedom saturate at constituent masgeshe static kernel is not
must be employed. The problem in the pésft constituent strongly affected by the presence of light quarks, and param-
guark models, bag models, flux tube models,)etas been eter freedom in the definition of the quark model allows for
in finding a way to introduce effective degrees of freedom inan accurate reproduction of the relativistic quark kinetic en-
such a way that the connection to QCD is not destroyedergy and the chirally-driven meson hyperfine splitting.
Herein we present one way to do this which is based on The ideas we have presented have had a long period of
experience gleaned from many-body physics often used idevelopment starting with Gribov’s speculation that confine-
phenomenological models e.g., the Nambu-Jona-Lasinioment may arise naturally when resolving the gauge copy
model[35]. Specifically, a canonical transformation to a qua-problem. In the early 1980’s Finger and Mand{#, Adler
siparticle basis which is defined with respect to a nontrivialand Davis[9], and Le Yaouanet al. [10] all considered the
variational vacuum is made. The theory remains QCD but igeneration of constituent quark masses and spontaneous chi-
given in terms of a useful and tractable basis. Although theal symmetry breaking with simpleften of the form given
vacuum state is necessarily an ansatz, this does not vitiate tiie Eq. (118] models of QCD. The issue of renormalization
construction—in principleny basis may be used, we merely was taken up by these papers and in REIS,13,386.
seek an efficient one, and the vacuum itself may be system- The work which is closest to ours is that of Zwanzige}
atically improved with standard techniques. and Swift[21]. As discussed in Sec. IV B, Zwanziger has
One finds a welcome complication when these ideas arshown that the imposition of the horizon condition implies
applied to non-Abelian gauge theory; the interaction which ighat the Faddeev-Popov propagator is enhanced in the infra-
needed to define the vacuum ansatz and the quasiparticted. As we have stressed, an enhancement of the FP propa-
spectrum (via the gap equationitself depends on the gator is sufficient to cause confinement. In Ré&] Zwan-
vacuum. Thus the fundamental quasiparticle interaction andiger has shown that adding the horizon term to the
the quasiparticles themselves are inextricably interdeperiHamiltonian produces an effective gluon mass which in turn
dent. Solving the gap equations requires the evaluation of thimduces the desired enhancement of the VEV of the Faddeev-
specific functional dependence of the quasiparticle interacPopov operator. Zwanziger then makes several simplifying
tion on the vector potential. We have chosen to do this withirassumptions to arrive at an estimate for the Coulomb kernel.
the rainbow ladder approximation. There are several impor€hief among these are an assumed form for the gluon dis-
tant points to make at this stagd) the rainbow ladder ap- persion relation, a simplified version of the Faddeev-Popov
proximation may be improved at wil(2) the approximation propagator integral equation, and the approximati§n
is accurate in the larg®l, limit, (3) the approximation is ~d?(k)/k?. The end results are similar to ours; Zwanziger
accurate in the infrared limit, an@}) the approximation is obtainsd~k~*3 (we getk %) andV~r®3. Our analytical
justified a posteriori Lastly, although the approximation approximation gived/~r** while the numerical solution is
cannot yield nonperturbative results, true nonperturbativerery nearly linear.
physics may be generated when the resummed kernel is in- The work of Swift[21] is very similar to ours in philoso-
corporated in the nonlinear coupled gap equations. Doing sphy. In fact our self-consistent equations for the leading
reveals a pleasant surprise, the emergence of the confinemeainbow-ladder gap equations, which were derived in the
phenomenon. Hamiltonian formalism, agree with those of RE21], which
While it is gratifying that color confinement is produced were derived in the Green'’s function formalism. However, a
by our approach, this result would be useless if it did notdifference occurs in the renormalization of the mass gap
match phenomenology. The fact that the effective quasiparequation; we find that only one subtraction is necessary to
ticle potential matches the lattice static quark potential veryrender the equation finite. Thus no counterterm proportional
well points to the general utility of our method. Thus Egs.to AV?A is required. This is due to the logarithmic suppres-
(116) and (117) represent much more than a simple reorder-sion of the potential at large momenta.
ing of the QCD Hamiltonian. By buildingd, as an effective The main difference between the current paper and Ref.
Hamiltonian describing the interactions of quasiparticles on §21] is in the analysis of the gap equations. We have obtained
nontrivial vacuum we are able to establish contact with thevery good analytic and full numerical solutions to the
constituent quark model and derive confinement. That botltoupled gap equations. This was not attempted in R4i;
of these emerge in our formalism bodes well for the futurehowever, the author did examine the small momentum be-
success oH( as a robust starting point for detailed hadronichavior of the Faddeev-Popov propagator and the Coulomb
computations. kernel assuming a particular form for the gap function. His
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FP and gap functions agree with our analytical estimateshe utility of the gluonic quasiparticles as effective degrees
however his solution for the potential has an unexpectedf freedom and will probe the structure &f® and K™,
imaginary portion. We believe this is due to an approxima-General considerationgnd explicit lattice evidengelead
tion which generated a confinement potential which wasne to expect that glue behaves as a collective stringlike
more singular than kf. degree of freedom at large distances. We expect the gluonic
A preliminary exploration of the work presented here wasquasiparticles to provide a useful description of glue at small
undertaken in Ref.13]. This reference neglected the FP de- (less than 1 fermiand intermediatd1—2 ferm) scales. It
terminant and higher order contributions to the gap equationyijl| be interesting to see if the formalism presented here
Furthermore, the full Coulomb kernel was drastically simpli- gjlows for effective stringlike behavior at large distances.
fied by taking it to be the summation of the one loop expresinally, »— ' mixing is a longstanding issue in soft QCD
sion forK. Despite these simplifications and assumptions thge|ated to the anomaly, vacuum structure, the gluonic content
resulting potential was similar to that obtained here. This issf mesons, and instantons. Examining this problem should
perhaps an indication of the power of the coupled quasipairove informative for the further development of the quark

ticle vacuum approach. . sector of our theory.
We regard the present work as a promising start to the

construction of a new quark model of the strong interactions
in particular with regard to the treatment of gluonic degrees
of freedom. Future projects include the evaluation ofdéll
correction terms to the gap equation which are needed to test We would like to thank R. Alkofer, S. Brodsky, A. Dun-
the Gribov-Zwanziger gluonic quasiparticle spectral func-can, N. Isgur, E. Shuryak, H. Thacker, A. Thomas, and D.
tion. We also intend to evaluate a broad swath of the mesorZwanziger for discussions. This work was supported by
baryon, glueball, and hybrid spectra, and to compute thé®.O.E. under Contracts DE-FG02-00ER41135, DE-ACO5-
heavy hybrid adiabatic energy surfaces. The latter two tesB4ER40150E.S), and DE-FG02-87ER40368\.S.).
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