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Scalar-tensor bimetric brane world cosmology
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ICTP, Strada Costiera 11, 34014 Trieste, Italy

~Received 14 August 2001; published 21 December 2001!

We study a scalar-tensor bimetric cosmology in the Randall-Sundrum model with one positive tension brane,
where the biscalar field is assumed to be confined on the brane. The effective Friedmann equations on the brane
are obtained and analyzed. We comment on the resolution of cosmological problems in this bimetric model.
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Variable-speed-of-light~VSL! cosmologies were pro
posed@1,2# as possible solutions to the initial value problem
in the standard big bang~SBB! model. VSL models assum
that the speed of light initially took a larger value and th
decreased to the present day value at an early time. The
models solve various cosmological problems of the S
model associated with the initial value problems, includi
those solved by the inflationary scenario@3–5#. In the origi-
nal models by Moffat@1# and by Albrecht and Magueijo@2#,
the speed of lightc ~and possibly Newton’s constantG4) in
the action, which is a fundamental constant of the nature
just assumed to vary with time during an early period
cosmic evolution and thereby the Lorentz symmetry
comes explicitly broken. So, it becomes necessary to ass
that there exists a preferred frame in which the laws of ph
ics take simple forms. Later, Clayton and Moffat@6–9# pro-
posed an ingenious mechanism by which the speed of l
can vary with time in a diffeomorphism invariant mann
and without explicitly breaking the Lorentz symmetry.~See
also Ref. @10# for an independent development.! In their
models, two metrics are introduced into the spacetime m
fold ~thereby their models are called bimetric!, one being
associated with gravitons and the other providing the ge
etry on which matter fields, including photons, propaga
Since these two metrics are nonconformally related by a
lar field ~called a biscalar! or a vector field~called a bivec-
tor!, photons and gravitons propagate at different speeds

It has been shown@11–18# that brane world models man
fest the Lorentz violation, which is a necessary requirem
for the VSL models. Therefore, it would be of interest
study the VSL cosmologies within the context of the bra
world scenarios. In particular, the VSL models may provid
possible mechanism for bringing the quantum correction
the fine-tuned brane tensions under control, since the V
models generally solve the cosmological constant probl
In our previous work@19#, we studied the VSL cosmologie
in the Randall-Sundrum~RS! scenarios@20,21#, following
the approach of the earlier VSL models@1,2,22–26# with
varying fundamental constants. In this paper, we follow
approach of Clayton and Moffat to study the bimetric co
mology in the RS2 model@21#.

In the bimetric models it is usually assumed that gravito
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and the biscalar1 ~or the bivector! propagate on the geometr
described by the ‘‘gravity metric,’’ whereas all the matt
fields propagate on the geometry described by the ‘‘ma
metric.’’ So, a natural bimetric modification of a brane wor
model would be just to modify the brane matter field acti
to be constructed out of the matter metric. We consider
bimetric model with a biscalar, which is assumed to be c
fined on the brane world volume. The action for the bimet
RS2 model with the brane matter fields therefore takes
following form:

S5E d5xA2GF c4

16pG5
R2LG1E d4xA2ĝLmat

2E d4xA2gF1

2
gmn]mF]nF1V~F!1s G , ~1!

whereF is the biscalar field with the potentialV(F) ands
is the tension of the brane assumed to be located at the o
y50 of the extra spatial coordinatey. Here, the gravity met-
ric gmn and the matter metricĝmn on the brane are given in
terms of the bulk metricGMN andF by

gmn5Gmn~xr,0!, ĝmn5gmn2B]mF]nF, ~2!

where a dimensionless constantB is assumed to be positive
The LagrangianLmat for the brane matter fields is con
structed out ofĝmn .

We study the brane world cosmology associated with
above action. The general metric ansatz for the expand
brane universe where the principle of homogeneity and is
ropy in the three-dimensional space on the three-bran
satisfied is given by

GMNdxMdxN52n2~ t,y!c2dt21a2~ t,y!g i j dxidxj

1b2~ t,y!dy2, ~3!

whereg i j is the metric for the maximally symmetric three
dimensional space given in the Cartesian and the sphe
coordinates by

1As shown in Ref.@7#, one can also rewrite the biscalar equati
of motion in such a way that the biscalar field appears to propa
on a different geometry described by the metric expressed in te
of the gravity metric and the matter field energy-momentum ten
©2001 The American Physical Society08-1
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g i j dxidxj5S 11
k

4
dmnx

mxnD 22

d i j dxidxj

5
dr2

12kr2 1r 2~du21sin2 udf2!, ~4!

with k521,0,1 respectively for the three-dimension
spaces with the negative, zero and positive spatial cu
tures. Making use of the fact that it is always possible
choose a gauge so thatn(t,0) is constant without introducing
the cross termGty , we scale the time coordinate such th
n(t,0)51. With the assumption of homogeneity and isotro
on the three-brane, the biscalar fieldF does not depend on
the spatial coordinatesxi ( i 51,2,3) of the three-brane.

In obtaining the Einstein’s equations by varying the act
with respect to the metric, we have to keep in mind thatĝmn

is the physical metric for matter fields on the brane. So,
energy-momentum tensor for the matter fields are define
terms ofĝmn :

T̂mn[
2

A2ĝ

d~A2ĝLmat!

dĝmn

. ~5!

Modeling the brane matter fields as perfect fluid, we can
this energy-momentum tensor into the following stand
form:

T̂mn5S %1
`

c2DUmUn1`ĝmn, ~6!

where%, ` and Um are respectively the mass density, t
pressure and the four-velocity of the fluid, and the inve
ĝmn of ĝmn is given by

ĝmn5gmn1
B

12Bgab]aF]bF
gmm8gnn8]m8F]n8F. ~7!

The four-velocity is normalized asĝmnUmUn52c2. So, in
the comoving coordinates, the nonzero component ofUm is
given by

Ut5
1

A11BḞ2/c2
, ~8!

where the overdot denotes derivative with respect tot. The
nonzero components of the energy-momentum tensor for
brane matter fields are therefore

T̂tt5
%

11BḞ2/c2
, T̂i j 5

`

a0
2 g i j . ~9!

Since we assume that the matter field action is constru
out of ĝmn , the equations of motion of the brane matter fie
imply the conservation law for the brane matter fiel
energy-momentum tensor:
02500
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A2ĝ
]m~A2ĝT̂mn!50, ~10!

which takes the following standard form after the above
pressions for the energy-momentum tensor and the ma
metric are substituted:

%̇13S %1
`

c2D ȧ0

a0
50, ~11!

where the subscript 0 denotes quantities evaluated aty50,
i.e., a0(t)[a(t,0). This conservation equation can be d
rived independently from the effective four-dimension
Friedmann equations on the brane, implying that Eq.~10! is
consistent with the Einstein’s equations~12! in the below.

Taking the variation of the actionS with respect to the
metric, we obtain the following Einstein’s equations:

G MN5
8pG5

c4
T MN, ~12!

with the total energy-momentum tensor given by

T MN52GMNL1dm
Mdn

NF T̂mn
A2ĝ

A2G
1H gmm8gnn8]m8F]n8F

2
1

2
gmn]aF]aF2gmnV~F!2gmnsJ A2g

A2G
Gd~y!.

~13!

The equation of motion for the biscalar is

¹2F2V8~F!1B
A2ĝ

A2g
T̂mn¹̂m¹̂nF50, ~14!

where ¹2F5gmn¹m¹nF and the covariant derivative¹m

@¹̂m# is defined in terms of the metricgmn @ ĝmn#. We made
use of the conservation law~10! to achieve the simplified
form of the last term on the LHS and the prime on the b
calar potentialV denotes derivative with respect toF. The
above biscalar equation has dependence onT̂mn due to the
fact that the matter metricĝmn , of which the brane matte
fields action is made, depends on]mF.

After the above ansatz for the metric and the biscalar fi
are substituted, the Einstein’s equations~12! take the follow-
ing forms:

3

n2c2

ȧ

a
S ȧ

a
1

ḃ

b
D 2

3

b2 Fa8

a S a8

a
2

b8

b D1
a9

a G1
3k

a2

5
8pG5

c4 FL1S %Fc21
%c2

AI
1s D d~y!

b G , ~15!
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1

b2 Fa8

a S 2
n8

n
1

a8

a D2
b8

b S n8

n
12

a8

a D12
a9

a
1

n9

n G
1

1

n2c2 F ȧ

a
S 2

ṅ

n
2

ȧ

a
D 1

ḃ

b
S ṅ

n
22

ȧ

a
D 22

ä

a
2

b̈

b
G2

k

a2

5
8pG5

c4 F2L1~`F1AI `2s!
d~y!

b G , ~16!

n8

n

ȧ

a
1

a8

a

ḃ

b
2

ȧ8

a
50, ~17!

3

b2

a8

a S a8

a
1

n8

n D2
3

n2c2 F ȧ

a
S ȧ

a
2

ṅ

n
D 1

ä

a
G2

3k

a2

52
8pG5

c4
L, ~18!

where the primes on the metric components denote der
tive with respect toy. Here, the biscalar field mass dens
%F and pressurè F and I are defined as

%F5S 1

2

Ḟ2

c2
1VD 1

c2 , `F5
1

2

Ḟ2

c2
2V, I[11B

Ḟ2

c2
.

~19!

The biscalar field equation~14! takes the following form:

1

c2 S 12
c2B

I 3/2
% D F̈1

3

c2

ȧ0

a0
ḞS 11

B

AI
` D 1V8~F!50.

~20!

In the above equations of motion, we made use of the
sumptionn(t,0)51 to simplify the expressions.

The derivatives of the metric components with respec
y are discontinuous aty50 due to thed-function like brane
source there. From Eqs.~15!,~16!, we obtain the following
boundary conditions on the first derivatives ofa andn at y
50:

@a8#0

a0b0
52

8pG5

3c4 ~s1% totc
2!, ~21!

@n8#0

n0b0
52

8pG5

3c4 ~s23` tot22% totc
2!, ~22!

where

% tot[%F1%/AI , ` tot[`F1AI `. ~23!

Here,@F#0[F(01)2F(02) denotes the jump of a functio
F(y) acrossy50.

The effective four-dimensional Friedmann equations
the three-brane world volume can be obtained@27# by taking
the jumps and the mean values of the above five-dimensi
Einstein’s equations acrossy50 and then applying the
boundary conditions~21!,~22! on the first derivatives of the
02500
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metric components. Here, the mean value of a functionF
acrossy50 is defined as]F][@F(01)1F(02)#/2. In this
paper, we assume that the brane universe is invariant u
the Z2 symmetry,y→2y. Then, the mean value of the firs
derivative of a function acrossy50 vanishes. We also defin
the y-coordinate to be proportional to the proper distan
along they-direction withb being the constant of proportion
ality, sob850. We further assume that the radius of the ex
space is stabilized, i.e.,ḃ50, due to some mechanism in
volving for example a bulk scalar field with a stabilizin
potential ~cf. Refs. @28,29#!. Making use of these assump
tions, we define they-coordinate such thatb51. The result-
ing effective four-dimensional Friedmann equations take
following forms:

S ȧ0

a0
D 2

5
16p2G5

2

9c6 ~% tot
2 c412s% totc

2!

1c2
aR 09

a0
1

8pG5

3c2 S L1
2pG5

3c4 s2D2
kc2

a0
2

,

~24!

ä0

a0
52

16p2G5
2

9c6 ~2% tot
2 c41s% totc

213s` tot13` tot% totc
2!

2c2
aR 09

a0
1

16p2G5
2

9c6 s2, ~25!

where the subscriptR denotes the regular part of a functio
~note,a9 has ad-function like singularity aty50).

TheaR 09 term ~called ‘‘dark radiation’’ term! in the above
Friedmann equations originates from the Weyl tensor of
bulk and thus describes the back reaction of the bulk gra
tational degrees of freedom on the brane@27,30–33#. This
term can be evaluated by solvingaR9 as a function ofy from
the following equation obtained from the Einstein’s equ
tions ~15!,~16!,~18!:

3
aR9

a
1

nR9

n
52

16pG5

3c4 L, ~26!

along with the following relation obtained from th
(t,y)-component Einstein’s equation~17! with the assumed
ḃ50 condition:

n~ t,y!5l~ t !ȧ~ t,y!, ~27!

wherel(t) is an arbitrary function oft. The resulting expres-
sion is

aR95
C
a3

2
4pG5

3c4 La, ~28!

whereC is an integration constant.
To make contact with conventional cosmology having t

Hubble parameter proportional toA%, we assume thats
8-3
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@%totc
2,` tot @34,35#. To the leading order, the effectiv

Friedmann equations~24!,~25! along with Eq.~28! then take
the forms

S ȧ0

a0
D 2

5
32p2G5

2s

9c4AI
%1

32p2G5
2s

9c6 S 1

2

Ḟ2

c2
1VD

1
4pG5

3c2 S L1
4pG5

3c4 s2D 1
Cc2

a0
4

2
kc2

a0
2

, ~29!

ä0

a0

52
16p2G5

2s

9c4AI
S %13I

`

c2D 2
32p2G5

2s

9c6 S Ḟ2

c2
2VD

1
4pG5

3c2 S L1
4pG5

3c4 s2D 2
Cc2

a0
4

. ~30!

These effective Friedmann equations for the bimetric br
world cosmology have the same forms as the Friedm
equations for the scalar-tensor bimetric model of Clayton
Moffat except for the dark radiation termCc2/a0

4.
Note, the overdots in the above effective equations den

derivatives with respect to the time coordinatet, with which
the matter metric takes the form

ĝmndxmdxn52@c21BḞ2#dt21a0
2~ t !g i j dxidxj , ~31!

and the gravity metric on the brane is given by

gmndxmdxn52c2dt21a0
2~ t !g i j dxidxj . ~32!

Namely, the above effective equations are written in a
moving frame for the gravity metric. As can be seen fro
these metric expressions, with a choice of time coordinat,
a graviton travels with a constant speedcgrav5c and a pho-
ton, which is coupled toĝmn , travels with variable speed

cph5Ac21BḞ25cAI . So, a photon is observed to trav
faster than the present day speed in this frame, while
biscalar field varies witht.

Since all the matter fields on the brane are coupled to
matter metricĝmn , it would be more natural to consider th
comoving frame for the matter metric in order to make
connection with standard cosmology. By defining the cosm
time t of the brane universe in the following way

dt2[~11BḞ2/c2!dt2, ~33!

we can bring the matter metric into the following standa
comoving frame form for the Robertson-Walker metric:

ĝmndxmdxn52c2dt21a0
2~t!g i j dxidxj . ~34!

In this new frame, the gravity metric~32! takes the form
02500
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gmndxmdxn52@c22BḞ2#dt21a0
2~t!g i j dxidxj , ~35!

where the overdot from now on stands for derivative w
respect tot. So, in the matter metric comoving frame wit
the time coordinatet, a photon travels with a constant spe
cph5c and a graviton travels with a time-variable spe

cgrav5Ac22BḞ25c/AI . Note, I 51/(12BḞ2/c2) when
the overdot stands for derivative w.r.t.t. So, a graviton is
observed to travel slower than the present day speed in
new frame, whileF varies with t. In this new frame, the
effective Friedmann equations~29!,~30! take the following
forms:

S ȧ0

a0
D 2

5
32p2G5

2s

9c4I 3/2 %1
32p2G5

2s

9c6I S I

2

Ḟ2

c2
1VD

1
4pG5

3c2I S L1
4pG5

3c4 s2D1
Cc2

a0
4I

2
kc2

a0
2I

, ~36!

ä0

a0
1

1

2

İ

I

ȧ0

a0
52

16p2G5
2s

9c4I 3/2 S %13I
`

c2D
2

32p2G5
2s

9c6I S I
Ḟ2

c2
2VD

1
4pG5

3c2I S L1
4pG5

3c4 s2D2
Cc2

a0
4I

, ~37!

and the biscalar equation~20! takes the form

I 2

c2 S 12
c2B

I 3/2
% D F̈1

3I

c2

ȧ0

a0
ḞS 11

B

AI
` D 1V8~F!50.

~38!

The first Friedmann equation~36! can be put into the
following ‘‘sum-rule’’ form:

11I 21Vk5I 23/2V%1I 21VF1I 23/2VL4
1I 21VC ,

~39!

where the density parameters are defined as

Vk[
kc2

a0
2H2 , V%[

32p2G5
2s%

9c4H2 , VF[
32p2G5

2s%F

9c4H2 ,

VL4
[

32p2G5
2s%L4

9c4H2 , VC5
Cc2

a0
4H2 . ~40!

Here, H5ȧ0 /a0 is the Hubble parameter and%L4

5L4cgrav
2 /(8pG4)5(3c2AI /8pG5s)@L1(4pG5/3c4)s2#

is the vacuum energy density, whereL45(4pG5 /c4)@L
1(4pG5/3c4)s2# is the effective four-dimensional cosmo
logical constant. Unlike the case of conventional cosmolo
the sum rule involves the additional factors ofI. From the
8-4
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second Friedmann equation~37!, we obtain the following
expression for the deceleration parameter:

q52
a0ä0

ȧ0
2

5
İ

2HI
1

1

2
~ I 23/2V%1I 21VF!

1
16p2G5

2s

3c6H2 ~ I 21/2`1I 21`F12I 21/2`L4
!1I 21VC ,

~41!

where `L4
52cgrav

2 %L4
52(3c4/8pG5sAI )@L

1(4pG5/3c4)s2#. We consider the special case describi
the present day universe havingk50, L450 and`50. For
such case, the sum-rule formula~39! takes the form

15I 23/2V%1I 21VF1I 21VC . ~42!

So, the deceleration parameter~41! reduces to

q5
İ

2HI
1

1

2
1

16p2G5
2s

3c6H2I
`F1

1

2I
VC . ~43!

To be consistent with the observational data, the decelera
parameter has to be negative. Unlike the case of conv
tional cosmology, we have additional contribution from t
dark radiation term. A negative value ofC helps with achiev-
ing negativeq. With positiveC, more rapid variation of the
biscalar field with time is required in order to be consiste
with the observational data.

From the effective Friedmann equations~36!,~37! in the
comoving frame for the matter metric, we can read off th
the speed of a graviton and the effective four-dimensio
Newton’s constant on the brane are respectively given b

cgrav5
c

AI
, G45

4pG5
2s

3c4I 3/2 . ~44!

This expression forcgrav agrees with the value read off from
the gravity metric~35!. G4 also varies with time and take
smaller value than the present day value whileḞÞ0. In
terms of these effective four-dimensional parameters, the
fective Friedmann equations~36!,~37! in the comoving frame
for the matter metric take the forms

S ȧ0

a0
D 2

5
8pG4

3
%1

4pG4

3cgrav
4 AI

Ḟ21
cgrav

2

3
Leff

1
Ccgrav

2

a0
4

2
kcgrav

2

a0
2

, ~45!
02500
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n-
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ä0

a0

1
1

2

İ

I

ȧ0

a0

52
4pG4

3 S %13
`

cgrav
2 D 2

8pG4

3cgrav
4 AI

Ḟ2

1
cgrav

2

3
Leff2

Ccgrav
2

a0
4

, ~46!

whereLeff is the effective total four-dimensional cosmolog
cal constant given by

Leff5
4pG5

c4 S L1
4pG5

3c4 s2D1
32p2G5

2s

3c8 V~F!. ~47!

This effective four-dimensional cosmological constant h
contribution only fromV(F), if the brane tension takes th
fine-tuned values5A23c4L/4pG5 of the RS2 model@21#.

We discuss resolution of various cosmological proble
within our bimetric model. First, we consider the horizo
problem. The four-velocity vectorVm of a photon, which is
null with respect to the matter metric, i.e.,ĝmnVmVn50, is
spacelike with respect to the gravity metric, i.e.,gmnVmVn

5B(Vm]mF)2.0 when]mFÞ0 andB.0. So, photons and
other matter fields propagate outside the lightcone of
gravity metric. The horizon problem is therefore resolved
our bimetric model, providedF varies rapid enough with
time during an early period of cosmic evolution. Furthe
more, the problem of unwanted relics such as magn
monopoles, which requires a larger value of the light spe
during an early period for its resolution in the VSL mode
can also be resolved by our bimetric model. However,
flatness problem and the cosmological constant probl
which require the rapid enough decrease in the speed
graviton to the present day value~in the Friedmann equa
tions! for their resolution in the VSL models, cannot be r
solved by our bimetric model, since the speed of a gravi
takes a constant valuec in the comoving frame for the grav
ity metric and takes a smaller value thanc in the comoving
frame for the matter metric, whileḞÞ0. The flatness prob-
lem may be resolved by our bimetric model, provided t
biscalar potentialV(F) has a region satisfying the slow-ro
approximation and thereby the biscalar can act as an infla
Detailed discussion on resolution of these cosmolog
problems within the VSL brane world cosmologies is giv
in Refs.@19,36#.

We comment on the Planck problem of the VSL cosmo
gies pointed out in Ref.@37#. When the speed of a gravito
and Newton’s constant vary with time, so do the Planck m
mpl5A\cgrav/G4, the Planck lengthl pl5A\G4 /cgrav

3 and
the Planck timetpl5A\G4 /cgrav

5 . By substitutingcgrav and
G4 in Eq. ~44!, we see that the Planck mass takes alarger
value than the present day value, the Planck length rem
constant and the Planck time takes alarger value, while the
biscalar varies with time. Since the Planck mass take
larger value, our bimetric model makes the hierarchy pr
lem worse. Furthermore, too much large value ofI, which
leads to the value of the Planck time (;cgrav

25/2;I 5/4) larger
than ;10220 sec would totally mess up the usual standa
8-5
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particle physics arguments, e.g., matter dominance over
timatter. Therefore, a judicial choice of the biscalar poten
V(F) which leads to the value ofI not exceeding;1020 and
therefore the speed of light (;I 1/2) not exceeding;1010

times the present day value is necessary. This limit on
speed of light during the early stage of cosmological evo
ls

’

tra

s

02500
n-
l

e
-

tion may be insufficient for solving the cosmological pro
lems. So, our bimetric model risks the above mention
problem associated with largetpl , if it is to solve the cos-
mological problems. However, since the Planck dens
(;mpl / l pl

3 ;I 1/2) increases for our bimetric model, th
Planck density problem may be resolved.
-
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