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Scalar-tensor bimetric brane world cosmology
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We study a scalar-tensor bimetric cosmology in the Randall-Sundrum model with one positive tension brane,
where the biscalar field is assumed to be confined on the brane. The effective Friedmann equations on the brane
are obtained and analyzed. We comment on the resolution of cosmological problems in this bimetric model.

DOI: 10.1103/PhysRevD.65.025008 PACS nuniderll.27+d, 11.25.Mj, 98.80-k

Variable-speed-of-light(VSL) cosmologies were pro- and the biscalar(or the bivector propagate on the geometry
posed 1,2] as possible solutions to the initial value problemsdescribed by the “gravity metric,” whereas all the matter
in the standard big ban@BB) model. VSL models assume fields propagate on the geometry described by the “matter
that the speed of light initially took a larger value and thenmetric.” So, a natural bimetric modification of a brane world
decreased to the present day value at an early time. The VSnodel would be just to modify the brane matter field action

mode|s So've Various Cosmo|ogica| prob'ems Of the SBgO be Constructed out Of the matter metI’iC. We Consider the
model associated with the initial value problems, includingPimetric model with a biscalar, which is assumed to be con-
those solved by the inflationary scenaf®-5]. In the origi- fined on the brane world volume. The action for the bimetric

nal models by Moffaf1] and by Albrecht and Magueiji2], RS2 model with the brane matter fields therefore takes the
the speed of light (and possibly Newton's constag,) in  following form:

the action, which is a fundamental constant of the nature, is c

just assumed to vary with time during an early period of s:f d5x\/—_G[ R—A
cosmic evolution and thereby the Lorentz symmetry be- 167Gs
comes explicitly broken. So, it becomes necessary to assume

that there exists a preferred frame in which the laws of phys- - f d*x\—g
ics take simple forms. Later, Clayton and Moffét9] pro-

posed an ingenious mechanism by which the speed of lighfnereq s the biscalar field with the potenti®(®) and o
can vary with time in a diffeomorphism invariant manner is the tensjon of the brane assumed to be located at the origin
and without explicitly breaking the Lorentz symmet($ee y=0 of the extra spatial coordinage Here, the gravity met-

als?j Teft' [10] f(ir_ an md_etpegden(tj q?vetlr(])pme)nlnt_thew ric g, and the matter metrifg,w on the brane are given in
models, two metrics are introduced into the spacetime manig, . €" < b ik metric,,, and® by

fold (thereby their models are called bimejrione being
associated with gravitons and the other providing the geom- 9u,=G,(x".0)
etry on which matter fields, including photons, propagate. py e

Since these two metrics are nonconformally related by a scgyhere a dimensionless constahis assumed to be positive.
lar field (called a biscalaror a vector field(called a bivec-  1hq Lagrangian’,; for the brane matter fields is con-
tor), photons and gravitons propagate at different speeds. d e

structed out ofg,,, .

It has been shqwﬁl_l—la th_at prane world models mani- We study the brane world cosmology associated with the
fest the Lorentz violation, which IS a necessary r_equwemenébove action. The general metric ansatz for the expanding
for the VSL models. Thgreforg, ,'t would be of interest to brane universe where the principle of homogeneity and isot-
study the VSL cosmologies within the context of the braneropy in the three-dimensional space on the three-brane is
world scenarios. In particular, the VSL models may provide asagisfied is given by
possible mechanism for bringing the quantum corrections to
the fine-tuned brane tensions under control, since the VSL G, dxMdxN=—n?(t,y)c?dt?*+a?(t,y) yijdxidxi
models generally solve the cosmological constant problem.
In our previous worK19], we studied the VSL cosmologies +b2(t,y)dy?, ©)
in the Randall-SundruntRS) scenario[20,21], following ) ) ) )
the approach of the earlier VSL moddl§,2,22—26 with vv_here Yij s the metrl_c for_the mammall_y symmetric three_—
varying fundamental constants. In this paper, we follow thed'men.Slonal space given in the Cartesian and the spherical
approach of Clayton and Moffat to study the bimetric Cos_coordlnates by
mology in the RS2 moddR1].

In the bimetric models itis usually assumed that gravitons As shown in Ref[7], one can also rewrite the biscalar equation

of motion in such a way that the biscalar field appears to propagate
on a different geometry described by the metric expressed in terms
*Email address: youmd@ictp.trieste.it of the gravity metric and the matter field energy-momentum tensor.
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’yijdXIdXJ: 1+ ZamnXan 5ijdXIdX] - &M(,l_é-'i—,uV):O, (10)
vV—4g
— dr2 2 2 rT2 2
11— kr2+r (d6+sin 6d %), ) which takes the following standard form after the above ex-

pressions for the energy-momentum tensor and the matter
with k=-1,0,1 respectively for the three-dimensional metric are substituted:
spaces with the negative, zero and positive spatial curva-
tures. Making use of the fact that it is always possible to .
choose a gauge so that,0) is constant without introducing o+3
the cross ternG,,, we scale the time coordinate such that
n(t,0)=1. With the assumption of homogeneity and isotropy
on the three-brane, the biscalar fiekddoes not depend on
the spatial coordinates (i =1,2,3) of the three-brane.

éo—o 11
a_O_ 1] ( )

%)
Q+?

where the subscript 0 denotes quantities evaluatgo=a,
i.e., ag(t)=a(t,0). This conservation equation can be de-

In obtaining the Einstein’s equations by varving the act'onriv_ed independer_ﬂly from the effe_ctive_four-dimens_ional
ning INSiein’s equations by varying I Friedmann equations on the brane, implying that @@) is

W'th respec_t to the metnc, we ha\{e to keep in mind g consistent with the Einstein’s equatiofi®) in the below.
is the physical metric for matter fields on the brane. So, the Taking the variation of the actioS with respect to the
energy-momentum tensor for the matter fields are defined iﬂwetric we obtain the following Einstein’s equations:

terms ofg,,,:

~ 87G
2 8Vl GUN==T 2SN, 12

= - 5 ¢
V- o0
with the total energy-momentum tensor given by
Modeling the brane matter fields as perfect fluid, we can put

e

this energy-momentum tensor into the following standard /—é
form: TMN= —GMNA+ 8 80| T —=+1{ g**' 9" 9, P, D
for=| o+ Zururs o, © 1 g
MY Ay _ MV MY A
59 AP I*D—gH'V(P)—gHa NEre ay).
where o, ¢ andU* are respectively the mass density, the (13)
pressure and the four-velocity of the fluid, and the inverse
g“” of g, is given by The equation of motion for the biscalar is
~ B ’ ’ ~
MY=gH? — mEgrr g D9, D, (7 V=0. . .
9 Y T T Bg 000 9 Ok @) V2 V' (D) +B gT“”VMVVd):O, (14)

v—d9
The four-velocity is normalized ag,,,U*U"= —c?. So, in ) . o
the comoving coordinates, the nonzero componerid‘fis ~ Where V°®=g#"V, V,® and the covariant derivativ&,

given by [V,] is defined in terms of the metrig,, [g,,]. We made
use of the conservation layl0) to achieve the simplified
1 form of the last term on the LHS and the prime on the bis-
Uls ———, (8) calar potentiaV denotes derivative with respect €. The
V1+Bd?/c?

above biscalar equation has dependencé”éﬁ due to the

where the overdot denotes derivative with respedt tbhe ff"‘Ct that _the _matter metrig,,,, of which the brane matter
féelds action is made, depends opd.

E?;nz : rr?] ;tct)é?gi%?g : t;gftthh; :fg(reégy—momentum tensor for th After the above ansatz for the metric and the biscalar field
are substituted, the Einstein’s equatighg) take the follow-

ing forms:
fue— S qu-F (©)
1+Bd%c %o 3 ala b} 3[a’({a’ b’} a"] 3k
Since we assume that the matter field action is constructed n’c’ a 5+ b/ b’lala b/ a] a
out of{:]w,, the equati(_)ns of motion of the brane matter f_ields 87G 2 S(y)
imply the conservation law for the brane matter fields = Sl A+ Q¢CZ+Q—+0' oY) ’ (15)
energy-momentum tensor: ct VI b
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1 al 2nl + al b/ n/ a/ +2 n +n//
p?lal“n "a/ bln “al “a ' n
. 1 |a/ n a +bh al a bl k
n%cZlal“n a/ "bln “al “a b| a?
87Gy o(y)
== [—A‘F(KJ@WL\/'—W—U)T. (16)
c
n’ +a’b a’_o .
b a_ ] (7)
3a a’+n’ 3 |lafa n| a| 3k
b2ala n/ n%?lala n/ a|] gz2
87TG5
=——A, (18
c

where the primes on the metric components denote deriva-
tive with respect toy. Here, the biscalar field mass density

04 and pressurg g andl are defined as

12 1 12 B2
Qo= §?+V 2 ‘@(I’ZE?_V’ |=1+B?-
(19

The biscalar field equatiofil4) takes the following form:
1 B |. 3ap. B
vl 1— @Q ()] +EZ a—oq) 1+ —p

I

. +V/(D)=0.

(20

PHYSICAL REVIEW [B5 025008

metric components. Here, the mean value of a funckon
acrossy=0 is defined agt F#=[F(0")+F(07)]/2. In this
paper, we assume that the brane universe is invariant under
the Z, symmetry,y— —y. Then, the mean value of the first
derivative of a function acrogs=0 vanishes. We also define
the y-coordinate to be proportional to the proper distance
along they-direction withb being the constant of proportion-
ality, sob’ =0. We further assume that the radius of the extra

space is stabilized, i.eh=0, due to some mechanism in-
volving for example a bulk scalar field with a stabilizing
potential (cf. Refs.[28,29). Making use of these assump-
tions, we define thg-coordinate such thdi=1. The result-

ing effective four-dimensional Friedmann equations take the
following forms:

(2_2 zzmg—(;(st%(QtZOtC4+2(’Qtotcz)
(24)
i_z T 16;7—;65(2&20@4"' 000+ 300101 3P 0tQ10C7)
_CZ%O+ 16;7;6 g"z’ (25)

where the subscrigR denotes the regular part of a function
(note,a” has ad-function like singularity aty=0).

Theag, term(called “dark radiation” term in the above
Friedmann equations originates from the Weyl tensor of the

In the above equations of motion, we made use of the adulk and thus describes the back reaction of the bulk gravi-

sumptionn(t,0)=1 to simplify the expressions.

tational degrees of freedom on the brdi2&,30-33. This

The derivatives of the metric components with respect tderm can be evaluated by solviag as a function of/ from

y are discontinuous at=0 due to thes-function like brane
source there. From Eq$15),(16), we obtain the following
boundary conditions on the first derivativesafindn aty
=0:

[a,]o 8’7TGS
agby 3cF (ot 010C), (21
[n,]o 87TGS
obe ?(U— 3P0t 2010C?), (22
where
QtotEQ<I>+Q/\/|—v Prot=Pot Jip. (23

Here,[F]o=F(0")—F(0™) denotes the jump of a function
F(y) acrossy=0.

The effective four-dimensional Friedmann equations on

the three-brane world volume can be obtaif2d by taking

the following equation obtained from the Einstein’s equa-
tions (15),(16),(18):

(26)

along with the following relation obtained from the
(t,y)-component Einstein’s equatidi?7) with the assumed

b=0 condition:

n(t,y)=\(t)a(t,y), (27)

where\ (t) is an arbitrary function of. The resulting expres-
sion is

n_ C 47765

R a3— ?Aa, (28)

the jumps and the mean values of the above five-dimensionathereC is an integration constant.

Einstein’s equations acrosg=0 and then applying the
boundary condition$21),(22) on the first derivatives of the

To make contact with conventional cosmology having the
Hubble parameter proportional tge, we assume thatr
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>00C% 90t 134,35. To the leading order, the effective
Friedmann equation®4),(25) along with Eq.(28) then take
the forms

(éo)z 32w°GEr  32m°Glo( 1 &7
—| = + ——+V
ag act\I ¢ 9c® \2 c?
477(35/ 47Gg Ccc?  kc?
t | At o | —, (29)
3c2 | 3c al a2
a, 16w°Gio ¢\ 32mGio [ d?
—=- +31— —-V
ag act\I e c? och c2
47TG5 47TG5 CC2
+——| A ol - — (30
3c 3c ag
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9,,dx*dx"= —[c?—Bd2]dr*+ad(7) y;;dx'dx), (35)

where the overdot from now on stands for derivative with
respect tor. So, in the matter metric comoving frame with
the time coordinate, a photon travels with a constant speed
Cph=C and a graviton travels with a time-variable speed
Cgrav— VC?—Bd?=c/\I. Note, I=1/(1-Bd?/c?) when

the overdot stands for derivative w.r4. So, a graviton is
observed to travel slower than the present day speed in this
new frame, whiled varies with 7. In this new frame, the
effective Friedmann equatior(29),(30) take the following
forms:

These effective Friedmann equations for the bimetric brane

world cosmology have the same forms as the Friedman

equations for the scalar-tensor bimetric model of Clayton and

Moffat except for the dark radiation terdc?/ag.

Note, the overdots in the above effective equations denote

derivatives with respect to the time coordintevith which
the matter metric takes the form

9,,dx"dx"= —[c2+Bd2]dt?+ aj(t) y;;dXdx, (31)
and the gravity metric on the brane is given by

9,,dx*dx’= —c?dt?>+ad(t) y;dx dx. (32)

Namely, the above effective equations are written in a co-

moving frame for the gravity metric. As can be seen from
these metric expressions, with a choice of time coordihate
a graviton travels with a constant speggh,=c and a pho-
ton, which is coupled t(ﬁ’u,,, travels with variable speed
cpn=Vc2+Bd2=cyl. So, a photon is observed to travel
faster than the present day speed in this frame, while th
biscalar field varies with.

Since all the matter fields on the brane are coupled to th

matter metriofgw, it would be more natural to consider the

comoving frame for the matter metric in order to make a () —
connection with standard cosmology. By defining the cosmic

time 7 of the brane universe in the following way

d7?=(1+Bd?/c?)dt? (33

we can bring the matter metric into the following standard
comoving frame form for the Robertson-Walker metric:

9,,dx4dx’ = —c2dr?+aj(7) y;dxdx. (34)

In this new frame, the gravity metri@2) takes the form

ao|° 32m°G3o  327°Gio( | b2
o) T oAz @t 5 |5 2V
ag oc’l 9c®l |2 ¢2
+4WGS A+477(35 ) +(302 kc? 26
3 3t )t a9
- 1 - 22
n ao 1 I ao_ 16’7T G50' +3| 19
a 273, e (¢
32m°Gio | @2 v
BT R
47Gs(  A4mGs Cc? 3
3¢\ 3t 7 & S
and the biscalar equatid20) takes the form
" 1 <’ c'I'>+3I éOiI) 1+ 5 +V'(P)=0
2 929 Za ﬁJO (®)=0.
(38)

The first Friedmann equatio(86) can be put into the
following “sum-rule” form:

L+ 710 =17320,+1 7106 +17320, +1710,

o (39)

(\évhere the density parameters are defined as
kc? _ 327°Gioe 0. 32m2GEooq
aZH?' "¢ oc*HZ v YT 9ctH?
32772G§O'QA4 Ccc?

="z T (40

Here, H=ay/ay, is the Hubble parameter an(t)A4

= A 4Chra/ (8G,) = (3¢\1/8wG50) [ A + (47Gs/3c?) 0]

is the vacuum energy density, wherg,=(47Gs/c*)[A

+ (47mGg/3c*) 0?] is the effective four-dimensional cosmo-
logical constant. Unlike the case of conventional cosmology,
the sum rule involves the additional factors lofFrom the
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second Friedmann equatid7), we obtain the following do 1 i éo 47G o 887G
expression for the deceleration parameter: = 4 o+3 ) — 4 d
do 21 o 3 Cgrav 3cgrav\/|—
. . 2 2
_ aOaO_ I 1 —3/2 _1 Cgrav chrav
qa= a’ =ohr T2 T et ) 3 Aeff a_é, (46)
2~2
N 167 G50(|—1/2p+|‘1p +21712, 41710 whereA ¢ is the effective total four-dimensional cosmologi-
3ctH? ¢ A4 ¢ cal constant given by
(41)
A 477Gy 47Gs 32772650\/ _—

where 91,= ~ Coral 1, = — (3c*/87Gsa\1)[A et 4 37 7|t T V(@) 4D

+ (47Gg/3c*) 0%]. We consider the special case describing
the present day universe havikg0, A,=0 andp=0. For
such case, the sum-rule formu@9) takes the form

This effective four-dimensional cosmological constant has
contribution only fromV(®), if the brane tension takes the
fine-tuned valuer= \/— 3c*A/47wG; of the RS2 mode]21].

We discuss resolution of various cosmological problems
within our bimetric model. First, we consider the horizon
problem. The four-velocity vectov# of a photon, which is

null with respect to the matter metric, i.é;MV“V”=0, is
spacelike with respect to the gravity metric, i.g,,V*V”
=B(V#3,P)?>0 whend,®+0 andB>0. So, photons and
other matter fields propagate outside the lightcone of the
gravity metric. The horizon problem is therefore resolved in
our bimetric model, providedb varies rapid enough with

) i ) _time during an early period of cosmic evolution. Further-
To be consistent with the observational data, the deceleratighore, the problem of unwanted relics such as magnetic

parameter has to be negative. Unlike the case of convennongpoles, which requires a larger value of the light speed
tional cosmology, we have additional contribution from theduring an early period for its resolution in the VSL models,
dark radiation term. A negative value Ghelps with achiev-  can also be resolved by our bimetric model. However, the
ing negativeq. With positiveC, more rapid variation of the  flatness problem and the cosmological constant problem,
biscalar field with time is required in order to be consistentyhich require the rapid enough decrease in the speed of a
with the observational data. _ . graviton to the present day valu@n the Friedmann equa-
From the effective Friedmann equatio(&6),(37) in the  tions) for their resolution in the VSL models, cannot be re-
comoving frame for the matter metric, we can read off thatsglved by our bimetric model, since the speed of a graviton
the speed of a graviton and the effective four-dimensionajgkes a constant valuein the comoving frame for the grav-
Newton’s constant on the brane are respectively given by jty metric and takes a smaller value thain the comoving

frame for the matter metric, whil®# 0. The flatness prob-
lem may be resolved by our bimetric model, provided the

1=17320,+17204+171Qp. (42)

So, the deceleration parametdd) reduces to

I 1 167%Gioc

a=omt2

1
3c°H7| Pot ZQC- (43

2
c :i G4=ﬂ_ (44) biscalar potentiaV(®) has a region satisfying the slow-roll
g 3ct¥ approximation and thereby the biscalar can act as an inflaton.

Detailed discussion on resolution of these cosmological
problems within the VSL brane world cosmologies is given

This expression focy,, agrees with the value read off from in Refs.[19,36

the gravity metric(35). G, also varies with time and takes We comment on the Planck problem of the VSL cosmolo-

smaller value than the present day value while=0. In  gies nointed out in Ref:37]. When the speed of a graviton
terms of these effective four-dimensional parameters, the ef;,4 Newton’s constant vary with time, so do the Planck mass

fective Friedmann equatiori86),(37) in the comoving frame mp|=\/m- the Planck lengtH = m and

for the matter metric take the forms ; oo
the Planck timet, = \/ﬁG4/cg5rav. By substitutingcg,, and

G, in Eq. (44), we see that the Planck mass takesrger
value than the present day value, the Planck length remains

(ao)z 87G,  47Gs . Chay
—| = o+ P

A eff
o grav\/l_ 3

3 3c?

2 2
chrav I(Cgrav

4 2
2h) ch

, (49)

constant and the Planck time taketaeger value, while the
biscalar varies with time. Since the Planck mass takes a
larger value, our bimetric model makes the hierarchy prob-
lem worse. Furthermore, too much large valuel ofvhich
leads to the value of the Planck time- ¢, 3-~1%%) larger
than ~10 2° sec would totally mess up the usual standard
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particle physics arguments, e.g., matter dominance over attion may be insufficient for solving the cosmological prob-
timatter. Therefore, a judicial choice of the biscalar potentialems. So, our bimetric model risks the above mentioned
V(®) which leads to the value dfnot exceeding-10?°and  problem associated with lardg,, if it is to solve the cos-
therefore the speed of light<(1¥?) not exceeding~10'°  mological problems. However, since the Planck density
times the present day value is necessary. This limit on thé~mp,llg|~ll’2) increases for our bimetric model, the
speed of light during the early stage of cosmological evoluPlanck density problem may be resolved.
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