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Meson mass differences in two dimensional gauged four-Fermi models
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We quantitatively analyze the meson mass inequality relations of two dimensional gauged four-Fermi mod-
els in the largeN limit. The class of models we study includes the ’t Hooft model and the chiral and nonchiral
Gross-Neveu models as special points in the space of field theories. Cases in which the chiral symmetry is
spontaneously or explicitly broken are both studied. We study the meson mass differences quantitatively and
define a susceptibility which allows us to systematically analyze these quantities. In the generalized Gross-
Neveu model limit, we derive an analytic expression for this susceptibility. Even though no analytic proof of
the validity of the classic mass inequality exists for the generic case, the mass difference is found to have the
standard sign throughout most of the parameter space. We point out that the difference might have the opposite
sign in certain cases.
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I. INTRODUCTION

Determining the properties of composite particles in re
tivistic field theories, such as mesons or baryons in QCD
an essentially nonperturbative problem and is quite diffic
to address from first principles. While impressive progre
has been made in numerical approaches to the problem@1#, it
is highly desirable to also have a more analytic understa
ing of the properties of the composite particles. Import
relations that can be applied to composite particles in vec
like theories, such as massive QCD, are the mass inequ
relations@2#. While these elegant relations are quite use
and have therefore been well studied~for a recent review, see
@3#!, there seems to be little understanding regarding th
quantitative behavior. Furthermore, while the proof of
equalities does not apply to chiral, explicitly left-right asym
metric theories or theories with Yukawa couplings, no e
amples of theories wherein the mass difference has b
shown to be negative exists among relativistic quantu
field-theories. The mass differences provide nontrivial
sight into the dynamics of the interacting model. An und
standing of the behavior of the inequalities will undoubted
further our understanding of the spectrum of bound state
relativistic quantum-field-theories.

Whether the mass differences might or might not be po
tive in chiral models is of import, in particular to supersym
metric theories. In supersymmetric theories, one of
‘‘solves’’ the gauge hierarchy problem by invoking the chir
symmetry of the fermions, which is related in turn to t
mass of the scalar bosons by supersymmetry. While s
nonperturbative aspects of supersymmetric gauge theo
are recently being clarified@4,5#, relations analogous to th
mass inequality relations seems not to be known. Such r
tions, if they exist, should shed light on the properties of
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spectrum on supersymmetric theories and on the possib
of spontaneous breaking of supersymmetry. In attemptin
extend the mass inequality relations to supersymmetric th
ries, we believe a deeper understanding of its properties t
crucial. Of course, nonsupersymmetric theories are of in
est on its own, one of the reasons being that the low-ene
world is not supersymmetric.

While, needless to say, computing the mass difference
full QCD would be of import, not to mention very interes
ing, this is a daunting task. One approach is to compute
mass differences and develop an understanding of their
havior in analytically solvable relativistic quantum-field
theory models, such as the classic ’t Hooft model@6# and the
Gross-Neveu models@7#. This is the approach we shall ado
in this work. These models are tractable yet nontrivial a
have proven to be quite instructive by providing physics
sight into the nonperturbative aspects of field theories@10#.
The dynamics of gauge theories is certainly of import es
cially since it is an integral part of the standard model. Als
theories of four-Fermi interactions have been serving an
portant role in particle physics and other fields of phys
@11,12#.

In this work, we shall analyze the properties
mass differences of gauged four-Fermi models
(111)-dimensions, using the largeN limit. In these models,
the properties of the ‘‘meson’’ states can be reduced ana
cally to the problem of solving mathematical equatio
@13,16#. This will allow us to study the problem analytically
even if the final equations need to be solved numerica
@14#. The parameters in this family of models which we c
arbitrarily control are the scalar and the pseudoscalar fo
Fermi couplings, the gauge coupling, and the ‘‘quar
masses. The class of models we study contains the ’t H
model @6# and the chiral and nonchiral Gross-Neveu mod
@7# for particular choices of the parameters. It includes ca
where the chiral symmetry is spontaneously or explici
broken. This is of particular interest, since the Gross-Ne
model is known to be equivalent to a Yukawa model whe
©2001 The American Physical Society03-1
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the scalar field develops an expectation value@7#. This is
precisely the kind of situation where one might suspect t
the standard mass inequality may be violated@8,9#.

In order to study the mass differences quantitatively a
systematically, we need a measure for the size of the m
difference. We shall find such a measure in a param
which we shall call the ‘‘meson mass susceptibility’’ to b
explained below. This parameter will allow us to compa
the mass differences of various field theories in a natu
manner.

The work is organized as follows. In Sec. II, we sh
define and explain the meson mass susceptibility. In Sec
we discuss mass differences in quantum mechanics. In
IV, we first treat the simpler case of generalized Gross-Ne
models and analyze the mass differences there. In partic
an analytic form of the mass susceptibility will be explicit
presented. In Sec. V, we work with the general gauged fo
Fermi models. We first summarize the class of models
study and explain how the meson spectrum can be compu
Particular care has been paid to presenting the method
use explicitly for further possible use. We then compute a
study the properties of the mass differences. We end w
discussions of the results in Sec. VI. A short Appendix
some of the technical aspects of the computation is includ

II. THE MESON MASS SUSCEPTIBILITY

In studying the mass differences quantitatively, we nee
quantitative measure of how ‘‘large’’ the mass difference
in order to compare within the field-theory space. This e
codes information, intuitively speaking, on how strong t
attractive interactions in the theory are. The mass differe
we consider is

dmab[mab2
~maa1mbb!

2
~1!

which is known to be positive for vectorlike gauge theor
@2#. Here, denoting the constituents asq8s, mab is the mass
of the lightest meson that overlaps with theqāqb state, and
so on.

This quantity is dimensionful and depends not only on
model, but also on the difference of the masses of the c
stituents. The quantity may be made dimensionless trivi
by taking the ratio of the mass difference to a meson m
However, this difference may become large just because
constituent mass difference is large, so it is not the m
appropriate parameter for investigating the intrinsic dyna
ics of the theory. In fact, if we consider the field theory spa
to be parametrized by the couplings of the model which
clude the masses, the mass difference isnot a local quantity
in the parameter space. It is more natural to define a lo
parameter in the field-theory space. Let us define the m
squared of the constituents to be

Ma
25M2~11D!, Mb

25M2~12D!. ~2!

The meson mass differencedmab is even under the inter
change ofMa andMb and is, therefore, an even function
D.
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We shall characterize the mass difference by a param
we refer to as the ‘‘meson mass susceptibility.’’ This quant
is defined by

R[ lim
D→0

dmab

D2mab

5 lim
D→0

2mab2~maa1mbb!

D22mab

, ~3!

which is a function of the couplings and the mass of t
constituent quark. The susceptibility we defined above is a
useful from a practical point of view: Since the mass diffe
ence is an expansion in the constituent mass differe
squared, the susceptibility together with the meson mass
equal mass quarks, distill the meson mass information w
the quark mass difference is not too large.

Perhaps we should discuss here the relation of this
ceptibility to the global properties of the mass differenc
namely, when the mass differences are arbitrary. A nat
question is whether the positivity of the susceptibility in
parameter region guarantees the positivity of the mass di
ence when the mass differences are large. In quantum
chanics, the situation is quite simple; if the susceptibility
positive everywhere, the mass difference is positive for a
trary mass differences. This can be derived from the conv
ity of the meson mass with respect to the reduced mass o
two quarks. In quantum-field-theory, however, no such ar
ment exists in general, since the meson mass needs no
will not depend only on the reduced mass of the two quar
To make an analogous argument in quantum-field-theory,
need further information regarding the relation between
meson mass and the quark masses. While it seems q
natural to assume that relations exist such that the positi
of the local susceptibility guarantees the validity of the sta
dard mass inequality globally, we do not know if this is
fact true. In practice, we have found no counterexample
this statement.

III. MASS DIFFERENCES IN QUANTUM MECHANICS

In this section, we briefly discuss mass differences
quantum mechanics~see also@3#!. While the discussion is
not necessary for computing mass differences in relativi
field theories, we feel that it is nonetheless quite instruct
and provides a broader perspective on mass difference
quantum theories. Also, the mass differences in relativi
field theories should reduce to that of quantum mechanic
the nonrelativistic limit. As such, some of the results he
will be later compared to those from the full quantum-fiel
theory below. It should be noted, however, that phenom
such as symmetry breaking which plays a large role in
11)-dimensional gauge theories studied in this work are
sentially quantum-field-theoretical so that quantum- m
chanical behavior is not sufficient for understanding the f
relativistic behavior, even qualitatively.

In quantum mechanics, the problem of two-body bou
states under a local potential reduces to a model with
Hamiltonian

H5
p2

2M12
1V~x!, ~4!
3-2
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MESON MASS DIFFERENCES IN TWO DIMENSIONAL . . . PHYSICAL REVIEW D 65 025003
whereM12 denotes the reduced mass 1/M1251/M111/M2.
We will analyze one dimensional models, but similar ana
sis can be applied to higher dimensional models.

A. Infinitely deep square-well potential

The potential of the model is

V~x!5H 0 ~0<x<L !,

` ~x,0,x.L !.
~5!

The spectrum of the bound states is known to beE12,n
5\2p2n2/(2M12L

2), (n51,2, . . . ). This is somewhat
trivial but an interesting case. The susceptibilityR50 and
we can understand this as the signature of the model b
free within the well.

B. Delta function potential

The delta function potential

V~x!52V0d~x!, ~V0.0! ~6!

has a bound state with the binding energy2M12V0
2/(2\2)

dmab5Eab2
Eaa1Ebb

2
5

V0
2

8\2

~Ma2Mb!2

~Ma1Mb!
. ~7!

This leads to the susceptibility

R5
V0

2

32~12V0
2/8!

.0. ~8!

The susceptibility increases with largerV0, as expected. In
the nonrelativistic limit,V0!1.

C. Monomial potentials

Let us also discuss potentials whose behavior is gover
by a monomial

V~x!5Axg, Ag.0, ~9!

where g needs not be an integer butg.22 needs to be
satisfied for sensible physics behavior.Ag.0 needs to be
imposed for the existence of bound states.g52 and 21
corresponds to the harmonic oscillator and the three dim
sional Coulomb case, respectively.

We can use the uncertainty principle to crudely estim
the bound-state energy as

E12.S g

2
11DAS \2

gAM12
D g/(g12)

. ~10!

We can obtain the susceptibility from this energy as

R.
\2g/(g12)

8~g12!c2 S gA

2 D 2/(g12)

M 22(g11)/~g12!.0 ~11!
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in the nonrelativistic limit. While the derivation is not rigor
ous, in the harmonic oscillator and the Coulomb cases,
susceptibilities agree with those obtained from exact me
ods.

IV. GENERALIZED GROSS-NEVEU MODELS

In this section, we analyze the mass differences in
generalized Gross-Neveu models, described by the Lagr
ian

L5(
f 51

NF

c̄ f~ i ]”2mf !c f1
a2

2 (
f , f 851

NF

~ c̄ f 8c f !~c f̄c f 8!

2
a5

2

2 (
f , f 851

NF

~ c̄ f 8g5c f !~ c̄ fg5c f 8!. ~12!

In addition to the flavor indicesf , f 8 denoted explicitly in the
above formula, the fermions carry an additional intern
space index, the ‘‘color’’ index (1,2, . . . ,N) which has been
suppressed in the notation. This index should not be c
fused with the flavor index. We take the largeN limit while
keepinga2N,a5

2N fixed. Whenmf50,a5
250, the model re-

duces to the original Gross-Neveu model and whenmf

50,a25a5
2, the model reduces to the chiral Gross-Nev

model with continuous chiral symmetry. Whenmf50 and
the couplings are not equal, we are left with discrete ch
symmetry in the model. We need to consider multiple flav
for the analysis of the mass differences.

This class of models is included in the gauged four-Fe
models we deal with below and the analytic methods d
cussed there can be applied here also. However, the gen
ized Gross-Neveu models can be solved completely ana
cally using different methods than the gauged four-Fe
model case, so we shall discuss it separately. Here, we s
need the spectrum in the general case when two flavors h
different masses,m1

25” m2
2, anda25” a5

2, which was not solved
explicitly in @16#. We shall present the spectrum and analy
the mass differences.

Let us consider a meson bound state of constituents w
massesM1 ,M2. These constituent masses are physical
mion masses that include the effects of spontaneous c
symmetry breaking that occurs dynamically in the Gro
Neveu model. We dispense with the derivation here, but
Bethe-Salpeter equation for the meson state can be so
algebraically to obtain the meson ‘‘wave function,’’w(x) as

w~x!5w (0)1w (1)~122x!1ŵ~x!, ~0<x<1!, ~13!

ŵ~x!5
m12

2 @w (0)1w (1)~122x!#12~M1
22M2

2!w (1)

2m12
2 1

M1
2

x
1

M2
2

12x

,

~14!

where w (0),w (1) are constants andŵ(x)/@x(12x)# is inte-
grable atx50,1. The meson wave function satisfies the f
lowing boundary conditions:
3-3
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S b1 ~114G5!b2

b2 ~114G!b1
D S w (0)

w (1)D 5E
0

1

dx
ŵ~x!

x~12x! S G5 0

0 GD
3S b1 b2

b2 b1
D S 1

122xD .

~15!
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Here, we used the notationG[a2N/(4p), G5[a5
2N/(4p)

for the renormalized couplings and definedb6[(M1
6M2)/2. When the coupling constants are equal,a25a5

2, or
when the masses are equal,M15M2, the two boundary con-
dition equations simply decouple, but donot in the general
case.

The boundary conditions lead to a secular equation
detS J122
1

2 S 1

G
1

1

G5
D2S 1

G5
2

1

GD M1
21M2

2

4M1M2

M1
22M2

2

m2
J121 ln

M1
2

M2
2

2S 1

G5
2

1

GD M1
22M2

2

4M1M2

2
M1

22M2
2

m2
J121 ln

M1
2

M2
2

1S 1

G5
2

1

GD M1
22M2

2

4M1M2
S 122

M1
21M2

2

m2 D J122
1

2 S 1

G
1

1

G5
D1S 1

G5
2

1

GD M1
21M2

2

4M1M2

D 50.

~16!
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Here, we defined

J12[E
0

1 m2 dx

2m2x~12x!1M1
2~12x!1M2

2x
. ~17!

It should be noted that since the couplingsG,G5 are dimen-
sionless, the overall mass scaleM can always be scaled ou
of the problem and only the relative masses have a phys
meaning. The physical parameters of this quantum-fie
theory are the two dimensionless renormalized coupli
G,G5 and the mass ratioM1 /M2.

Before we analyze the behavior of the mass differenc
we first need to understand the behavior of the spect
when the masses of the constituents are the same. In
case, the secular equation~16! splits into two independen
equations for the pseudoscalar and scalar bound states,x and
s:

x:
1

G5
5E

0

1

dx
~mx /M !2

12~mx /M !2x~12x!

5
4

A4~M /mx!221
tan21S 1

A4~M /mx!221
D ,

~18!

s:
1

G
5E

0

1

dx
~ms /M !224

12~ms /M !2x~12x!
. ~19!

It should be noted that onlyG5 ~G! appears in the equatio
for x (s).

The states exists as a nontachyonic bound state only
G,21/4. It is not clear whether the theory is unitary f
negativeG and we shall consider the regionG>0, so we
shall not have much more to say ons. The original Gross-
Neveu model corresponds toG→2` in our scheme and in
this limit, ms

2→4M2.
al
-
s

s,
m
his

r

x exists as a bound state for anyG5>0 and 0<mx
2

<4M2. The dependence of the bound-state mass on the
pling is plotted in Fig. 1. This is the only bound state
the model for G,G5.0 and corresponds to the Namb
Goldstone-like particle when the constituent masses are
@7,17#, as in the chiral Gross-Neveu model. It is the depe
dence of this meson state on the constituent masses tha
shall investigate. As a side note, in a region we shall
investigate, there is an intriguing possibility whenG5>0
andG,21/4, in some cases, thex mass can be larger tha
thes mass. We do not know whether this can be achieved
a physically consistent situation. Another comment is p
haps appropriate; in the literature, the Gross-Neveu mo
(G5” 0,G550) is often used as a prototypical simple mod
with a bound state. However, the original Gross-Nev
model has no binding energy for the meson and has bare
bound state. It seems to us that in fact, the simplest the
that may be considered in this family that is useful in an
lyzing bound-state dynamics isG55” 0,G50 case. In this
case, we have a bound state whose mass depends o
coupling as in Fig. 1.

The meson mass susceptibility may be obtained by p
turbing the Eq.~16! in the mass difference parameterD in
Eq. ~2!. After some computation, we derive

FIG. 1. The behavior of thex meson massmx
2/M2 with respect

to the couplingG5.
3-4
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R5S z2
1

4D H 1

2
2

1

S 11
z

G5
D F S z2

1

4D 1

G5
1

1

4GG J .

~20!

We definedz[M2/m0
2, wherem0

2 is the mass of the meson i
the unperturbed case, whenD50. The susceptibility is inde-
pendent of the overall mass scaleM, since it can be scaled
out of the problem. The susceptibility may be shown anal
cally to be positive for anyG,G5.0. SinceG,G5 are scalar
and pseudoscalar couplings that can take on arbitrary va
the standard proof of the mass inequality@2,3# doesnot apply
to the models we study, except at special points. We bel
that an analytic expression has not been previously der
for the mass difference in any relativistic quantum-fie
theory.

It is interesting to check the asymptotic behavior of t
susceptibility for small and large couplings. For smallG5
couplings,

R5
p2G5

2

2
@128G5~114G!1O~G5

2!#. ~21!

This behavior is consistent with that for thed function prob-
lem discussed in Sec. II. For largeG5 couplings,

R5
G5

2~4G11!
2

1

24~4G11!2
1O~G5

21!. ~22!

The behavior of the susceptibility with respect toG5 is
shown forG50,0.1,1,10 in Fig. 2. The dependence onG is
not strong; this is because the properties of the bound stax
are governed mostly by the pseudoscalar couplingG5. The
crossover fromG5

2 behavior toG5 behavior in the suscepti
bility can be clearly seen in the plot.

V. GAUGED FOUR-FERMI MODELS

A. The model

Let us now discuss the most general gauged four-Fe
model described by the Lagrangian:

FIG. 2. The behavior of the meson mass susceptibilityR with
respect to the couplingG5 for the generalized Gross-Neve
models. The lines represent, from top to bottom,R for G
50,0.1,1,10, respectively.
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L52
1

2
Tr~FmnFmn!1(

f 51

NF

c̄ f~ iD” 2mf !c f

1
a2

2 (
f , f 851

NF

~ c̄ f8c f !~ c̄ fc f8!2
a5

2

2 (
f , f 851

NF

~ c̄ f8g5c f !

3~ c̄ fg5c f8!. ~23!

We have gauged the internal index in the generalized Gr
Neveu model~12! so that when we set the gauge coupling
zero, we recover the generalized Gross-Neveu model
cussed in the previous section. When we setG5G550, we
recover the ’t Hooft model. We take the large-N limit in a
manner similar to that of the previous section but also for
gauge coupling; namely, we keepg2N,a2N, anda5

2N fixed
while we takeN to infinity.

We again split the meson wave function as in Eq.~13!.
Then the Bethe-Salpeter equations for the meson bo
states with the fermion constituents with massesM1,2 may be
obtained in a simple closed form@16#:

m2w~x!5Hw~x!5S b121

x
1

b221

12x D ŵ~x!

2PE
0

1

dy
ŵ~y!

~y2x!2
12w (1)S 2b11b21 ln

12x

x D
~24!

satisfying the boundary conditions~15!. Since the gauge
coupling g has the dimensions of the mass
(111)-dimensions, we introduced the dimensionless m
parametersb1,2[pM1,2

2 /(g2N). The renormalized couplings
G,G5 are defined in the same way as in the previous sect
We should point out that all the parameters in this equat
are finite renormalized parameters, so that the problem
been reduced to solving a somewhat complicated inte
equation. The physical parameters in this theory are the th
dimensionless renormalized parametersb,G,G5.0.

For later purposes, we also derive the matrix elements
the ‘‘Hamiltonian,’’ H, in the most general case, when th
couplings and the masses are arbitrary:

~w8,Hw!5Fb11b2

4 S 1

G
1

1

G5
D1

1

2
Ab1b2S 1

G5
2

1

GD G
3w (0)8w (0)1

b12b2

4 S 1

G
1

1

G5
D ~w (0)8w (1)

1w (1)8w (0)!1Fb11b2

4 S 1

G
1

1

G5
18D12

1
1

2
Ab1b2S 1

G
2

1

G5
D Gw (1)8w (1)

1E
0

1

dxS b121

x
1

b221

12x D ŵ8~x!ŵ~x!
3-5
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2PE
0

1E
0

1 dx dy

~x2y!2
ŵ8~x!ŵ~y!

1E
0

1

dx2S 2b11b21 ln
12x

x D ~w (1)8ŵ~x!

1ŵ8~x!w (1)!. ~25!

B. Methods for obtaining the spectrum

In generalized Gross-Neveu models, the spectrum co
be obtained by just solving an ordinary equation, albei
transcendental one. In contrast, for the gauged four-Fe
model, we need to solve an integral equation which is te
nically more involved. Of course, this is to be expecte
since the usual ’t Hooft model, which is a simpler model,
solved in terms of an integral equation. To solve the integ
equation~24!, we employ two methods to be explained
this subsection, generalizing the methods used previous
the ’t Hooft model @18,19,15,16#. With either of the two
methods, we can solve for the spectrum and the wave fu
tions of any of the meson states for arbitrary combinations
masses and couplings in the gauged four-Fermi models
using the two different methods simultaneously, we are a
to obtain a better control over the error in the results wh
inevitably arise when we solve the integral equation num
he
m

u
yin
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cally, in addition to checking the internal consistency. W
will be succinct and summarize the results. Even though
basic ideas are the same as those in@16#, the results are
substantially more complicated since we need to treat
most general case which was previously not necessary.

1. Variational method

One method for solving the Bethe-Salpeter Eq.~24!,
familiar from solving the Schro¨dinger equation, is
the variational method. We choose the basis functio
$w j u j 52,3, . . .% as

w2k~x!5c111c21~122x!1
@x~12x!#k

B~k,k!
,

w2k11~x!5c121c22~122x!

1
~2k11!~122x!@x~12x!#k

B~k,k!

~k51,2 . . .!. ~26!

Theci j ’s need to be determined to satisfy the boundary c
ditions ~15! as
S c11 c12

c21 c22
D 5S b1 ~114G5!b2

b2 ~114G!b1
D 21S G5 0

0 GD S b1 b2

b2 b1
D ~27!

5
1

dS 2
1

4
~G2G5!~b11b2!1S G51G

2
14G5GDAb1b2 2

1

4
~G2G5!~b12b2!

1

4
~G2G5!~b12b2!

1

4
~G2G5!~b11b2!1

1

2
~G51G!Ab1b2

D

a-
where

d[~114G!b1
2 2~114G5!b2

2 5$~G2G5!~b11b2!

1@112~G51G!#Ab1b2%. ~28!

In the variational method, the problem of obtaining t
meson states is reduced to solving an eigenvalue proble

~m2Nkl2Hkl!wl50, Hkl[~wk ,Hw l !, Nkl[~wk ,w l !,

k,l 52,3,4 . . . . ~29!

We will approximate the solution by using basis elements
to a certain number and check the convergence by var
:

p
g

the dimension of this basis space. With some work, the m
trix elements can be computed to be

N2k,2l5c11
2 1

c21
2

3
1

c11

2 S k

2k11
1

l

2l 11D
1

k1 l

2~2k12l 11!

B~k1 l ,k1 l !

B~k,k!B~ l ,l !
,

N2k11,2l 115c12
2 1

c22
2

3
1

c22

2 S k

2k13
1

l

2l 13D
1

~k1 l !~2k11!~2l 11!

2~2k12l 11!~2k12l 13!

B~k1 l ,k1 l !

B~k,k!B~ l ,l !
,

~30!
3-6
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N2k,2l 115N2l 11,2k5c11c121
1

3
c21c22

1
k

2~2k11!
c121

l

2~2l 13!
c21,

H2k,2l5
1

d
Ab1b2F1

4
~G1G518GG5!~b11b2!

2
1

2
~G2G5!Ab1b2G12c12

2 1~b12b2!

3c12S 2c111
k

2k11
1

l

2l 11D
1S b11b2

2
21D B~k1 l ,k1 l !

B~k,k!B~ l ,l !
1

kl

2~k1 l !
,

H2k11,2l 115
1

d
Ab1b2F1

4
~G1G5!~b11b2!

1
1

2
~G2G5!Ab1b2G

12c22@c222~b12b2!c12#

1c22S k

k11
1

l

l 11D1S b11b2

2
21D

3
~2k11!~2l 11!

2k12l 11

B~k1 l ,k1 l !

B~k,k!B~ l ,l !

1
kl~2k11!~2l 11!

2~k1 l !~k1 l 11!
, ~31!

H2k,2l 115H2l 11,2k5
1

4d
Ab1b2~b12b2!~G1G5!

22c12@c222~b12b2!c12#

2c12

l

l 11
2c22~b12b2!

k

2k11
1

1

2
~b12b2!

3
~2l 11!B~k1 l ,k1 l !

~2k12l 11!B~k,k!B~ l ,l !
.

Whenb15b2, the even and the odd sectors completely
couple.

2. Multhopp’s method

Rather than using a variational method, we can exp
the meson wave function and solve the eigenvalue prob
directly @19#. Defining x[(11cosu)/2, the wave function
can be expanded in a manner consistent with the boun
conditions as
02500
-

d
m

ry

w~x!52pS c11 (
n:odd

K

vn2c12 (
n:even

K

vnD 22pS c21 (
n:odd

K

vn

2c22 (
n:even

K

vnD cosu1 (
n51

K

vn sinnu, ~32!

whereci j ’s were defined in Eq.~27!. This reduces the Bethe
Salpeter equation~24! to

(
n51

K

@m2P̂n~u!2M̂n~u!#vn50, ~33!

where

P̂n~u![sinnu12pH c112c21cosu n: odd

2c121c22cosu n: even,
~34!

M̂n~u![2S b121

11cosu
1

b221

12cosu D sinnu12p
nsinnu

sinu

14pS b12b21 ln
11cosu

12cosu D
3H 2c21 n: odd

c22 n: even.

The above Eq.~33! is still a functional equation, with the
dependence on the parameteru.

This can be further reduced to a generalized matrix eig
value problem

~m2P2M !v50. ~35!

The matrices are defined as

Pmn[(
l 51

K

gm~u l !P̂n~u l !, Mmn[(
l 51

K

gm~u l !M̂n~u l !,

u j[p
j

K11
. ~36!

The functiongm(u) is arbitrary, but using functions with the
property gm(u l)5(21)m11gm(uK112 l) simplifies the ma-
trix elements. With this condition, the matrix elements ar

Pmn5(
l 51

K

gm~u l !sinunl12p(
l 51

K

gm~u l !

3H c11 ~m,n: odd!

c22cosu l ~m,n: even!,

Pmn522p(
l 51

K

gm~u l !

3H c12 ~m: odd,n: even!

c21cosu l ~m: even,n: odd!,
~37!
3-7
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Mmn5(
l 51

K

gm~u l !F2
~b11b222!

sin2 u l

1
2pn

sinu l
Gsinunl

14p(
l 51

K

gm~u l !H ~2c21!~b12b2! ~m,n: odd!

c22 ln
11cosu l

12cosu l
~m,n: even!,

Mmn522~b12b2!(
l 51

K

gm~u l !
cosu l sinunl

sin2 u l

14p(
l 51

K

gm~u l !

3H c22~b12b2! ~m: odd,n: even!

~2c21!ln
11cosu l

12cosu l
~m: even,n: odd!.

~38!

In what follows, we adoptgm(u)52 sin@mu/(K11)# as was
done so for the ’t Hooft model@19#.

C. Mass differences

Since we have at hand the methods for obtaining
physical properties of meson states, we are in a positio
compute the mass differences. For investigating the m
differences, we use the properties of the lightest meson s
in each channel. In Fig. 3 we first plot the behavior of t
mass differencedmab /mab defined in Eq.~1! for finite mass
differences for a typical case ofG5G551, b51. The rela-
tive quark mass difference parameteruDu<1 by definition
and the mass difference is symmetric with respect to
interchangeD↔2D. At the same time, we also plot th
behavior expected from the susceptibilityRD2. We see that
the susceptibility describes the mass difference quite w
unless the quark mass difference is quite large, sayD*0.4.

Let us move on to the behavior of meson mass susce
bilities. To compute the susceptibilities, we may just use
methods explained in the previous section and obtain
susceptibility as the limiting case of small mass differen
going to zero. While this is logically fine, it incurs unnece
sary numerical errors during the process. Therefore, we

FIG. 3. The normalized meson mass difference as a functio
D ~solid!. The mass difference expected from the susceptibi
~dashes! is also shown.
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refine the method by perturbing in the mass differenceana-
lytically and then obtaining the mass susceptibilities direc
However, the standard perturbation formulas arenot appli-
cable to either of the two methods explained in the previo
section since we are dealing with a perturbation that chan
the boundary conditions, as we can see from Eq.~15!. While
the formulas that need to be derived should be of use
further studies, since this is technical and somewhat
volved, we have chosen to describe the methods concre
in the Appendix. We have computed the susceptibility us
both methods and have checked that the results agree.

The parameters of the gauged four-Fermi models
b,G,G5 and the ratios of constituent masses. We expectG to
play a not so dominant role in determining the properties
the lightest meson state.G5 is the pseudoscalar coupling th
strongly affects the lightest meson.b is effectively the in-
verse of the strength of the gauge coupling.

We first investigate the behavior ofR with respect tob as
in Fig. 4. WhenG55” 0, for largeb, the susceptibilities ap-
proach those of the generalized Gross-Neveu model, wh
is quite natural since the gauge coupling is effectively we
This behavior is quite visible for (G,G5)5(0,1),(1,1) cases
in Fig. 4 and the approach already occurs for moderateb
values,b*0.1. WhenG550, as we can see from Eq.~21!,
R50 in the generalized Gross-Neveu model. In the gau
four-Fermi model,R behaves as;b22/3, whenG550 and
largeb as we can see for (G,G5)5(0,0),(1,0) cases in Fig
4. This is consistent with the expectation from the quantu
mechanics calculation in Eq.~10! for the linear confining
potential. ForG5G5 and b50, it can be shown thatR
→0 as b2. This behavior is indeed seen in Fig. 4 for th
(G,G5)5(0,0),(1,1) cases.

Let us now analyze howR behaves with respect toG5 as
in Fig. 5. It can be seen that for fixedb, R approaches the
generalized Gross-Neveu model value as we increaseG or
G5. Qualitatively, this can be understood as the gauge c
pling, becoming relatively less important when the oth
couplings are strong. For smallG5, the behavior is governed
by the gauge coupling and we see in Fig. 5 that the susc
tibilities for the sameb value approach each other. Whi
these behaviors can be understood from the physics of

of
y

FIG. 4. The behavior of R against b for (G,G5)
5(0,0) ~h!, (1,1) ~s!, (0,1) ~n!, and (1,0)~,!. Dashes indicate
b22/3 behavior and dots indicateb2 behavior.
3-8
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MESON MASS DIFFERENCES IN TWO DIMENSIONAL . . . PHYSICAL REVIEW D 65 025003
model as we did here, it is quite nontrivial to derive the
analytically.

We have investigated the susceptibility extensively with
the parameter space of the theory and found that it is p
tive, except for a relatively small region, which we now d
cuss. In most regions in the parameter space, the nume
convergence of the susceptibility is quite rapid at least in
of the methods and both methods yield consistent res
In all these regions, the susceptibility parameter satisfieR
.0. However, for smallb, the convergence is rathe
slow. Particularly intriguing is the regionG*G5 ,0&b!1.
A simple argument shows why the behavior in this reg
can be subtle: In general, the finite-dimensional numer
results are analytic with respect to the parametersG, G5,
andb. From the behaviorR→0 asb→0, G5G5, we know
that unlessR vanishes as (G2G5)2 or some higher even
power forb50, there will be a region whereR is negative.
Indeed, we find in the numerical results thatR is negative in
the regionG*G5, 0&b!1 using both the variational an
the Multhopp’s method. Even the extrapolated values,
some cases, are negative. The meson mass squared is a
positive even in these cases and the physics of the sy
seems to be quite consistent. Naively, we would claim t
the susceptibility and hence also the standard inequality d
not hold in this regime. This, to our knowledge, wouldnot
conflict with any general arguments regarding mass ineq
ity relations. However, to conclude, this would be somew
premature, since if we study the negative region in the
rameter space, we find as in Fig. 6 that it shrinks when
basis space is enlarged and the negative region is quite s
compared toO(1) which is the natural scale in the problem
It should also be noted that even ifR5a1(G2G5)1O@(G
2G5)2# for b50 when the basis space is finite, it is st
possible that the coefficienta1 approaches 0 in the full basi
space, so that the positive susceptibility is compatible wit
negative one in the truncated basis space. On the other h
the regions of negative susceptibility have a common reg
with respect to both methods so it is also possible that a fi
region of negative susceptibility remains even when the b
space is complete. We therefore conclude that while the
ceptibility may be negative in the regimeG*G5,0&b!1,

FIG. 5. The behavior of R against G5 for (G,b)
5(0,0.1) ~h!, (0,1) ~s!, (1,0.1) ~n!, and (1,1)~,!. For compari-
son,R for the generalized Gross-Neveu model is also displayed
G50 ~solid! andG51 ~dashes!.
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further investigation is necessary to clarify this point. A
analytic computation determining the sign of the mass diff
ence would be ideal. If this is not possible, a set of ba
optimized for the gauged four-Fermi models in this particu
parameter regime, in either variational or Multhopp
method, should settle this issue.

VI. SUMMARY AND DISCUSSIONS

We have systematically and quantitatively studied
mass differences in gauged four-Fermi models
(111)-dimensions. Even in the cases where the mass
equality relations have been shown to be valid from gene
arguments, the size of the difference is unknown unless
explicit computation is made. We believe that the mass
ference is an interesting dynamical quantity characteriz
the spectrum of relativistic quantum-field-theories. To an
lyze the differences quantitatively, we adopted a natural s
ceptibility parameter to compare the size of the mass dif
ences throughout the field-theory space. We found that
parameter captures the essence of the mass difference
the constituent mass differences are not too large. In the f
ily of generalized Gross-Neveu models, we were able to
rive an analytic expression for the meson mass susceptib
In the more general case of gauged four-Fermi models,
have developed methods for obtaining the mass differen
systematically and have computed them. Since not m
seems to be known about the quantitative behavior of m
differences, we think that it is significant to have a class
relativistic field-theory models where it has been studied
plicitly. While the results are interesting, there remain furth
questions which should be answered.

An important question is whether the positivity of th
mass difference is much more general than the cases whe
has been shown to hold@2#. In particular, an intriguing prob-
lem is whether there is a relativistic quantum-field-theo
wherein the mass difference is negative yet its physics

r

FIG. 6. The zeros of the mass susceptibility parameter in
G5–b plane whenG50.1, computed using finite-dimensional bas
spaces. The solid curves, from top to bottom, correspond to
zeros in the variational method for the basis space dimensions
10, 12, 14, 16, 18, and 20. The dashed curves, from top to bot
correspond to the zeros of the susceptibility in the Multhop
method for the basis space dimensions of 20, 40, 100, 200,
800, and 1000. In the small regions below the respective curves
susceptibility is negative. The negative region becomes smaller
the increase in the size of the basis space in both methods.
3-9
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KENICHIRO AOKI AND KENJI ITO PHYSICAL REVIEW D 65 025003
havior is consistent. We have found that the meson m
susceptibility is positive for most of the parameter space
the gauged four-Fermi models and have explained som
the behavior analytically. The models we studied here
clude the celebrated models of ’t Hooft and of Gross a
Neveu for special choices of the parameters. For the ’t Ho
model, the standard arguments@2# do apply and we may
show analytically that the difference is positive. However,
general, no such arguments can be applied to gauged
Fermi models. Furthermore, the Gross-Neveu models
known to be equivalent to models with Yukawa couplin
and also display dynamical chiral symmetry-breaking beh
ior. These are exactly the kind of situations in which w
might doubt whether the mass difference is positive@8,9#. It
is interesting that even in these cases, the mass differen
positive, so that in fact, the property holds in much mo
general than those situations where it has been prove
would be interesting to find an analytic proof for this pro
erty if possible. It is important to understand why the diffe
ence is positive for the gauged four-Fermi models and cla
if this can be extended to other theories, such as supers
metric theories with bound states. There still remains a sm
region within the field-theory space wherein the sign of
susceptibility, hence also the mass difference, remains un
tain and further investigation is necessary to establish
sign. While (111)-dimensional theories such as the ’t Hoo
model or the Gross-Neveu model have physical behavior
sembling those of higher dimensions, we should mention
possibility that in higher dimensions, the behavior of the s
ceptibility might be quite different. Also, even in (111)
dimensions, the mass differences might behave qualitati
differently for other classes of models.

We have seen in Sec. III that the mass difference is p
tive in a large class of quantum-mechanics models@3#. This
leads us to suspect that the mass inequality relations are
for a large class of relativistic quantum-field-theories al
This is certainly consistent with our findings here. Howev
it should be noted that spontaneous breaking of symme
is essentially a field-theoretical behavior, which is also qu
relevant to the theory we studied. Therefore, we believe
it would be worthwhile to perform further research and
particular, clarify whether the mass difference can beco
negative in relativistic quantum-field-theories. In another
rection, largeN limit of field theories, such as the class
models we study, are presumably described by some kin
string theories@6#—an idea, which has recently been ma
more concrete@4#. It would be interesting to find out wha
kind of string theories our models correspond to and to e
cidate how mass inequalities fit into the string picture.

APPENDIX: PERTURBATION THEORY IN THE MASS
DIFFERENCES FOR THE SPECTRUM

Here, we shall briefly outline how to perform perturbatio
with respect to the relative constituent mass difference,D, in
the methods explained in Sec. V B for obtaining the sp
trum. The standard perturbation methods cannot be app
here. One major reason is that the boundary conditions~15!
depend on the masses of the constituents so that they ne
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be perturbed also. There are additional complications
both the methods used in Sec. V B, as we shall desc
below.

In both cases, we perturb in the relative mass differencD
and obtain an expansion for the meson mass in terms
D, for the cases (M1

2 ,M2
2)5(Ma

2 ,Ma
2),(Mb

2 ,Mb
2), and

(Ma
2 ,Mb

2)

m2[m0
21Dm1

21D2m2
21O~D3!. ~A1!

In the first two cases, the first-order term exists and is of
same size but of opposite sign, and in the last case the fi
order term is absent. Therefore, the leading-order term in
mass differencedmab will be of orderD2, as it should be.

1. Variational method

In the variational method, we need to consider a gene
ized eigenvalue problem with the normalization matrix n
being the identity matrix. In theory, we can just orthonorm
ize the basis vectors, but in practice, this is not numerica
equivalent since the normalization matrices can become
most singular even though we have tried to normalize
matrix elements to be of order one. Furthermore, since
boundary conditions also are perturbed, the normaliza
matrices will also have a nontrivial expansion inD.

Let us expand the matrices as

H[H01DH11D2H21O~D3!,

N[N01DN11D2N21O~D3!. ~A2!

Assume that we have the complete eigen-system for the
order problem:

H0w0n5m0n
2 N0w0n , ~w0m ,N0w0n!5dmn . ~A3!

Then, we obtain the expansion for mass squared of the
son state labeled byn

m1n
2 5~w0n ,~H12m0n

2 N1!w0n!,

m2n
2 5~w0n ,~H22m0n

2 N2!w0n!

2~w0n ,N1w0n!~w0n ,~H12m0n
2 N1!w0n!

1(
m

1

m0n
2 2m0m

2
u~w0n ,~H12m0n

2 N1!w0m!u2.

~A4!

We need the expansions of the matricesH,N in terms ofD
for the three cases, (M1

2 ,M2
2)5(Ma

2 ,Ma
2), (Mb

2 ,Mb
2), and

(Ma
2 ,Mb

2), to obtain the final results. Since this expansion
cumbersome but logically straight forward, it will not b
explicitly presented here to save space.

2. Multhopp’s method

In Multhopp’s method, the matrices are not Hermitian
that we need to perform the perturbation theory with so
care. Furthermore, due to the perturbation in the bound
3-10



a

is
e
,
st
e

nd

ass

the
for
ions.

an
o that
om-

to
but

us-
m-
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conditions, the matrixP will also be perturbed. To perform
the expansion, we will reduce the equation to a mathem
cally equivalent problem,

~m22P21M !v50. ~A5!

Ideally, it is better not to invert matrices numerically, but it
a substantially more complicated numerical task to solv
generalized nonsymmetric eigenvalue problem and also
this case, the matrixP turns out to be quite robust again
inversion even for moderately large basis spaces with dim
sions of order 103.

We expand the matrices as

P5P01DP11D2P2 ,

M5M01DM11D2M2 ,

~P21M !5~P21M !01D~P21M !1

1D2~P21M !21O~D3!, ~A6!

where

~P21M !05P0
21M0 , ~P21M !15P0

21~M12P1P0
21M0!,

~P21M !25P0
21~M22P2P0

21M02P1P0
21M1

1P1P0
21P1P0

21M0!. ~A7!
.
d

.

,

en

02500
ti-

a
in

n-

We need to first solve the 0th order problem for the left a
right eigenvectors,$un% and$vn%

1

u0m~P21M !05m0m
2 u0m , ~P21M !0v0n5m0n

2 v0n ,

~u0m ,v0n!5dmn . ~A8!

Then, we may obtain the expansion for the meson m
squared of the meson state labeled byn as

m1n
2 5~u0n ,~P21M !1v0n!, ~A9!

m2n
2 5~u0n ,~P21M !2v0n!

1 (
k5” n

~u0n ,~P21M !1v0k!~u0k ,~P21M !1v0n!

m0n
2 2m0k

2
.

~A10!

The rest proceeds as in the variational method case. As in
case of the variational method, the explicit expressions
the matrices are not shown here due to space considerat

1From a mathematical point of view, additional complications c
arise in general; namely, the eigenvalues may be degenerate s
the matrix is not diagonalizable, or the eigenvalues may be c
plex. However, we need to keep in mind that we do not have
solve the problem for general dimensions of the basis space,
only for a sequence of spaces that will allow us to obtain the s
ceptibility. In practice, these complications do not hinder our co
putations in the cases we have studied.
s
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