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Meson mass differences in two dimensional gauged four-Fermi models
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We quantitatively analyze the meson mass inequality relations of two dimensional gauged four-Fermi mod-
els in the largeN limit. The class of models we study includes the 't Hooft model and the chiral and nonchiral
Gross-Neveu models as special points in the space of field theories. Cases in which the chiral symmetry is
spontaneously or explicitly broken are both studied. We study the meson mass differences quantitatively and
define a susceptibility which allows us to systematically analyze these quantities. In the generalized Gross-
Neveu model limit, we derive an analytic expression for this susceptibility. Even though no analytic proof of
the validity of the classic mass inequality exists for the generic case, the mass difference is found to have the
standard sign throughout most of the parameter space. We point out that the difference might have the opposite
sign in certain cases.
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[. INTRODUCTION spectrum on supersymmetric theories and on the possibility
of spontaneous breaking of supersymmetry. In attempting to
Determining the properties of composite particles in rela-extend the mass inequality relations to supersymmetric theo-
tivistic field theories, such as mesons or baryons in QCD, isies, we believe a deeper understanding of its properties to be
an essentially nonperturbative problem and is quite difficultcrucial. Of course, nonsupersymmetric theories are of inter-
to address from first principles. While impressive progressest on its own, one of the reasons being that the low-energy
has been made in numerical approaches to the proflgnt  world is not supersymmetric.
is highly desirable to also have a more analytic understand- While, needless to say, computing the mass differences in
ing of the properties of the composite particles. Importantfull QCD would be of import, not to mention very interest-
relations that can be applied to composite particles in vectoring, this is a daunting task. One approach is to compute the
like theories, such as massive QCD, are the mass inequalitpyass differences and develop an understanding of their be-
relations[2]. While these elegant relations are quite usefulhavior in analytically solvable relativistic quantum-field-
and have therefore been well studigar a recent review, see theory models, such as the classic 't Hooft mdddland the
[3]), there seems to be little understanding regarding theiGross-Neveu mode[¥]. This is the approach we shall adopt
guantitative behavior. Furthermore, while the proof of in-in this work. These models are tractable yet nontrivial and
equalities does not apply to chiral, explicitly left-right asym- have proven to be quite instructive by providing physics in-
metric theories or theories with Yukawa couplings, no ex-sight into the nonperturbative aspects of field theofi&s.
amples of theories wherein the mass difference has beerhe dynamics of gauge theories is certainly of import espe-
shown to be negative exists among relativistic quantumeially since it is an integral part of the standard model. Also,
field-theories. The mass differences provide nontrivial in-theories of four-Fermi interactions have been serving an im-
sight into the dynamics of the interacting model. An under-portant role in particle physics and other fields of physics
standing of the behavior of the inequalities will undoubtedly[11,12.
further our understanding of the spectrum of bound states in In this work, we shall analyze the properties of
relativistic quantum-field-theories. mass differences of gauged four-Fermi models in
Whether the mass differences might or might not be posi{1+ 1)-dimensions, using the lardg¢limit. In these models,
tive in chiral models is of import, in particular to supersym- the properties of the “meson” states can be reduced analyti-
metric theories. In supersymmetric theories, one oftercally to the problem of solving mathematical equations
“solves” the gauge hierarchy problem by invoking the chiral [13,16]. This will allow us to study the problem analytically,
symmetry of the fermions, which is related in turn to theeven if the final equations need to be solved numerically
mass of the scalar bosons by supersymmetry. While some4]. The parameters in this family of models which we can
nonperturbative aspects of supersymmetric gauge theoriesbitrarily control are the scalar and the pseudoscalar four-
are recently being clarifief4,5], relations analogous to the Fermi couplings, the gauge coupling, and the “quark”
mass inequality relations seems not to be known. Such relanasses. The class of models we study contains the 't Hooft
tions, if they exist, should shed light on the properties of themodel[6] and the chiral and nonchiral Gross-Neveu models
[7] for particular choices of the parameters. It includes cases
where the chiral symmetry is spontaneously or explicitly
*Email address: ken@phys-h.keio.ac.jp broken. This is of particular interest, since the Gross-Neveu
TEmail address: kito@th.phys.titech.ac.jp model is known to be equivalent to a Yukawa model where
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the scalar field develops an expectation valdg This is We shall characterize the mass difference by a parameter
precisely the kind of situation where one might suspect thatve refer to as the “meson mass susceptibility.” This quantity
the standard mass inequality may be viola@d®]. is defined by

In order to study the mass differences quantitatively and
systematically, we need a measure for the size of the mass o Omap . 2pap— (Maat Mbb)
difference. We shall find such a measure in a parameter R= lim A = lim A22
which we shall call the “meson mass susceptibility” to be A=0 2 Hab  4-0 Hrab

explained below. This parameter will allow us to compareyhich is a function of the couplings and the mass of the
the mass differences of various field theories in a naturatonsituent quark. The susceptibility we defined above is also
manner. _ _ useful from a practical point of view: Since the mass differ-
The work is organized as follows. In Sec. II, we shall gnce js an expansion in the constituent mass difference
deﬂng and explain t_he meson mass susceptibility. .In Sec. ”'squared, the susceptibility together with the meson mass for
we discuss mass differences in quantum mechanics. In Seggual mass quarks, distill the meson mass information when
IV, we first treat the simpler case of generalized Gross-Neveyhe quark mass difference is not too large.
models and analyze the mass differences there. In particular, Perhaps we should discuss here the relation of this sus-
an analytic form of the mass sus_ceptibility will be explicitly ceptibility to the global properties of the mass difference,
presented. In Sec. V, we work with the general gauged fournamely, when the mass differences are arbitrary. A natural
Fermi models. We first summarize the class of models weyestion is whether the positivity of the susceptibility in a
study and explain how the meson spectrum can be computefarameter region guarantees the positivity of the mass differ-
Particular care has been paid to presenting the methods Wece when the mass differences are large. In quantum me-
use explicitly for further possible use. We then compute angtnanics, the situation is quite simple; if the susceptibility is
study the properties of the mass differences. We end wityositive everywhere, the mass difference is positive for arbi-
discussions of the results in Sec. VI. A short Appendix Onary mass differences. This can be derived from the convex-
some of the technical aspects of the computation is includecjty of the meson mass with respect to the reduced mass of the
two quarks. In quantum-field-theory, however, no such argu-
Il. THE MESON MASS SUSCEPTIBILITY ment exists in general, since the meson mass needs not and
will not depend only on the reduced mass of the two quarks.

In studying the mass differences quantitatively, we need %o make an analogous argument in quantum-field-theory, we

quantitative measure O.f h.OW Iar_ge the mass dlfferen_ce 'S'need further information regarding the relation between the
in order to compare within the field-theory space. This en-

codes information, intuitively speaking, on how strong the oo Mass and the quark masses. While it seems quite
o Do y Sp 9, ng natural to assume that relations exist such that the positivity
attractive interactions in the theory are. The mass differenc

we consider is 6f the local susceptibility guarantees the validity of the stan-
dard mass inequality globally, we do not know if this is in
(aat Mbb) fact true. In practice, we have found no counterexamples to
Opab=Mab™ — 5 (1) this statement.

: )

which is known to be positive for vectorlike gauge theories ll. MASS DIFFERENCES IN QUANTUM MECHANICS
, ; . .
[2]. Here, denoting the constituents @, 1.,y Is the mass In this section, we briefly discuss mass differences in

of the lightest meson that overlaps with thgq, state, and guantum mechanicésee alsd3]). While the discussion is
So on. o _ not necessary for computing mass differences in relativistic
This quantity is dimensionful and depends not only on thesie|q theories, we feel that it is nonetheless quite instructive
model, but also on the difference of the masses of the conyng provides a broader perspective on mass differences in
stituents. The quantity may be made dimensionless triviallyyyantum theories. Also, the mass differences in relativistic
by taking the ratio of the mass difference to a meson massie|q theories should reduce to that of quantum mechanics in
However, this difference may become large just because thge nonrelativistic limit. As such, some of the results here
constituent mass difference is large, so it is not the mosfj pe |ater compared to those from the full quantum-field-
appropriate parameter for investigating the intrinsic dynamtheory below. It should be noted, however, that phenomena
ics of the theory. In fact, if we considerthe field theory_spa_cesuch as symmetry breaking which plays a large role in (1
to be parametrized by the couplings of the model which in- 1)_gimensional gauge theories studied in this work are es-
clude the masses, the mass differencedsa local quantity sentially quantum-field-theoretical so that quantum- me-

in the parameter space. It is more natural to define a locglyanical behavior is not sufficient for understanding the full
parameter in the field-theory space. Let us define the masg,ativistic behavior. even qualitatively.

squared of the constituents to be In quantum mechanics, the problem of two-body bound
M2=MZ(1+4), MZ=M2(1—A). 2) Zt::ﬁﬁtounr;gre]r a local potential reduces to a model with the

The meson mass differenc®u,;, is even under the inter- 5

Zhange oM, andM,, and is, therefore, an even function of H= 2:\)/'12+V(x), (4
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where M ;, denotes the reduced mas$lh=1/M+1/M,. in the nonrelativistic limit. While the derivation is not rigor-

We will analyze one dimensional models, but similar analy-ous, in the harmonic oscillator and the Coulomb cases, the

sis can be applied to higher dimensional models. susceptibilities agree with those obtained from exact meth-
ods.

A. Infinitely deep square-well potential

The potential of the model is IV. GENERALIZED GROSS-NEVEU MODELS

0 (0=x<L), In this section, we analyze the mass differences in the
V(X)= (5)  generalized Gross-Neveu models, described by the Lagrang-
o (X<O0x>L). ian
The spectrum of the bound states is known to bg, Ne az Neoo o
=h2m°n?/(2M ,L?), (n=1,2,...). This is somewhat =2 Pi(ib=—mo) i+ — > () (e
trivial but an interesting case. The susceptibil®=0 and =1 fif'=1
we can understand this as the signature of the model being a’ Ne o
free within the well. — 2 (G ysd) (Urysdr). (12

/=1
B. Delta function potential . - T
In addition to the flavor indices,f’ denoted explicitly in the
The delta function potential above formula, the fermions carry an additional internal
V(X)=—Vo(x), (Vo>0) (6) space index,.the “color” i.ndex (1,2.. .,N) which has been
suppressed in the notation. This index should not be con-
fused with the flavor index. We take the lardimit while
keepinga®N,a2N fixed. Whenm;=0,a2=0, the model re-
2 2 duces to the original Gross-Neveu model and whmen
Sprap=Eap— BaatBop _ Vo (Ma™My) _ (7) =0a%=aZ, the model reduces to the chiral Gross-Neveu
2 8#2 (Ma+My) model with continuous chiral symmetry. When,=0 and
the couplings are not equal, we are left with discrete chiral
This leads to the susceptibility symmetry in the model. We need to consider multiple flavors
for the analysis of the mass differences.
Vé This class of models is included in the gauged four-Fermi
=———>—>0. (8) models we deal with below and the analytic methods dis-
32(1—Vq/8) cussed there can be applied here also. However, the general-
ized Gross-Neveu models can be solved completely analyti-
The susceptibility increases with larg¥p, as expected. In cally using different methods than the gauged four-Fermi

has a bound state with the binding energ ;,V3/(2%2)

the nonrelativistic limit,Vy<1. model case, so we shall discuss it separately. Here, we shall
need the spectrum in the general case when two flavors have
C. Monomial potentials different massesn;# ms, anda®# aZ, which was not solved

) _ . explicitly in [16]. We shall present the spectrum and analyze
Let us also discuss potentials whose behavior is governegha mass differences.

by a monomial Let us consider a meson bound state of constituents with

V(x)=Ax", Ay>0, ©) massedV;,M,. These constituent masses are physical fer-

mion masses that include the effects of spontaneous chiral

where y needs not be an integer byt>—2 needs to be symmetry breaking _that occurs dynamipally in the Gross-
satisfied for sensible physics behavidry>0 needs to be Neéveu model. We dispense with the derivation here, but the
imposed for the existence of bound statgs:2 and — 1 Bethe-Salpeter equation for the meson state can be solved

corresponds to the harmonic oscillator and the three dimerf2!gebraically to obtain the meson “wave functiorp(x) as
sional Coulomb case, respectively. -

We can use the uncertainty principle to crudely estimate ~ #()=¢P+eM(1-2x)+¢(x), (0=x=<1), (13
the bound-state energy as
~ e+ oM (1-2x)]+2(ME - M) M)

Y h? )7/(”2) ®(X) M2 M2 \
Eio=|z+1]A 10 1 2
V) (7AM12 (10 _“§2+7+1—x
. - . (14
We can obtain the susceptibility from this energy as
F2VO2) [ 2Ar42) where @ o) are constants an&(x)/[x(l—x)] is inte-
R~ —(_) M~20+DIv+2)>0g (17)  grable atx=0,1. The meson wave function satisfies the fol-
8(y+2)c?\ 2 lowing boundary conditions:
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b, (1+4Ggb_\/[¢©® 1 o(x) [Gs O Here, we used thg notatidB_EazN/(Mr), G_SEaéN/(Mr)
b 144G)b (1) =j Xx(l—x) 0 G for the renormalized couplings and definedb.=(M;
- )by e +M,)/2. When the coupling constants are eqadk= aé, or
b. b 1 when the masses are equdl; = M, the two boundary con-
| T 0T _ dition equations simply decouple, but dot in the general
b_ b,/\1-2x case.
(15 The boundary conditions lead to a secular equation
|
. M2+ M2 Mi—MiJ N M2 (1 1)'\/'5—'\/'%
23167 G, |G G amm, PEER R YT R [ I TV R V S
de =0.

Mi—M%J | M2 1 1)M§—M§ ) 2M§+M§ ; 1(1 1) (1 1\M2+M3

———Jptin—+|=——=|—— —2—= —ol=t =t ==

w2 TPTTM2 T \Gs G AMM, 2 772G TGy |G G)AMiM,
(16)

|
Here, we defined X exists as a bound state for a§s=0 and O<u?
<4M?. The dependence of the bound-state mass on the cou-
] fl w?dx an pling is plotted in Fig. 1. This is the only bound state in
2= | ~AX(1—x)+ M2(1—x) + M2X the model forG,Gs>0 and corresponds to the Nambu-

Goldstone-like particle when the constituent masses are zero
. . . [7,17], as in the chiral Gross-Neveu model. It is the depen-
It ShIOU|d bﬁ noted tlrat since the COUp:'“g@S are dllmen- dence of this meson state on the constituent masses that we
sionless, the overall mass scalecan always be scaled out ¢ jnyestigate. As a side note, in a region we shall not

of the problem and only the relative masses have a phySiC%vestigate, there is an intriguing possibility wh&y=0

meaning. The physical parameters of this quantum-fieldéndG<_1/4, in some cases, themass can be larger than

theory are the two dimensionless renormalized coupling$,q ;- mass. We do not know whether this can be achieved in
G,gsfand the malss ratlr(IVI 1I;Mh2. ior of th dgift a physically consistent situation. Another comment is per-
elore we ana yze the behavior of t € mass diflerence aps appropriate; in the literature, the Gross-Neveu model
we first need to understand the behavior of the spectrums, g —0) is often used as a prototypical simple model
when the masses of the constituents are the same. In thig, é ts)ound state. However, the original Gross-Neveu

case,_the fseCL;]Iar equgticémB? splitg intol twbo in%ependent model has no binding energy for the meson and has barely a
equations for the pseudoscalar and scalar bound sfa8® o ng state. It seems to us that in fact, the simplest theory

g that may be considered in this family that is useful in ana-
5 lyzing bound-state dynamics i&5#0,G=0 case. In this
X: izjldx (uyM) case, we have a bound state whose mass depends on the
Gs Jo  1—(u,/M)2x(1—x) coupling as in Fig. 1.
The meson mass susceptibility may be obtained by per-
4 - 1 turbing the Eq.(16) in the mass difference paramet&rin
=— an —_— |, . .
4('\/'/#)()2—1 4(M/MX)2_ 1 Eq. (2). After some computation, we derive
(18) 4 T T T T T T T
) 35 .
1 1 M) —4 i 4
o == f dx (u ) . (19 ®
G Jo 1 (u,/M)*(1-x) Y 25T I
&, 2r .
It should be noted that onls (G) appears in the equation = 1s5r T
for x (o). r T
The states exists as a nontachyonic bound state only for 05 7
G<—1/4. It is not clear whether the theory is unitary for 0 P ——
negativeG and we shall consider the regida=0, so we 0 08T s 55 25 8 35 4

shall not have much more to say on The original Gross-
Neveu model corresponds @— — in our scheme and in FIG. 1. The behavior of thg meson masg2/M? with respect
this limit, u2—4M?2. to the couplingGs.
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1x10° B# X(Prysit). (23

1X10-6 PR BT BRI B B

0.001 001 O G v 10 100 We have gauged the internal index in the generalized Gross-
5

Neveu model12) so that when we set the gauge coupling to
FIG. 2. The behavior of the meson mass susceptibiiityvith zero, we recover the generalized Gross-Neveu model dis-
respect to the couplingss for the generalized Gross-Neveu Cussed in the previous section. When weGetGs=0, we

models. The lines represent, from top to bottom, for G  recover the 't Hooft model. We take the larbetimit in a

=0,0.1,1,10, respectively. manner similar to that of the previous section but also for the
gauge coupling; namely, we kegpN,a’N, andaN fixed
1\ (1 1 while we takeN to infinity.
=(§— Z) 5 7 1 774 We again split the meson wave function as in ELp).
( )[(g— _)_ _} Then the Bethe-Salpeter equations for the meson bound
4G states with the fermion constituents with massls, may be

(20 obtained in a simple closed forfi6]:

We definedt=M?/u3, whereu3 is the mass of the meson in L
the unperturbed case, when=0. The susceptibility is inde-  ;,2,(x)=H(x)= (51 P2~ )g}(x)
pendent of the overall mass scdlk since it can be scaled X 1-x
out of the problem. The susceptibility may be shown analyti- A
cally to be positive for anys,Gs>0. SinceG,Gs are scalar _ Pfldy e(y) +2(P(1)( B+ +In2
and pseudoscalar couplings that can take on arbitrary values, (y—x)? 12 X
the standard proof of the mass inequalRy3] doesnot apply
to the models we study, except at special points. We believe
that an analytic expression has not been previously derived
for the mass difference in any relativistic quantum-field-satisfying the boundary conditiond5). Since the gauge
theory. coupling g has the dimensions of the mass in

It is interesting to check the asymptotic behavior of the(1+1)-dimensions, we introduced the dimensionless mass
susceptibility for small and large couplings. For sm@l ~ parameterss; ,= mM? /(g®N). The renormalized couplings
couplings, G,G; are defined in the same way as in the previous section.

We should point out that all the parameters in this equation
are finite renormalized parameters, so that the problem has

[1-8G5(1+4G)+0O(GP)]. (2)  been reduced to solving a somewhat complicated integral
equation. The physical parameters in this theory are the three
dimensionless renormalized parametg;&,Gs>0.

For later purposes, we also derive the matrix elements of
the “Hamiltonian,” H, in the most general case, when the
couplings and the masses are arbitrary:

(24)

22

R=

This behavior is consistent with that for tidfunction prob-
lem discussed in Sec. Il. For largg couplings,

Re 28 ! +O(G:YH. (22
C2(4G+1)  244G+1)2 > N 1 1
B1t B2
(¢ \He)= 7 G + Ge /31,82 e}
The behavior of the susceptibility with respect & is
shown forG=0,0.1,1,10 in Fig. 2. The dependence @ns ﬂl Ba
not strong; this is because the properties of the bound gtate X <p(°)’ 2 (G G )((P(O)' )
are governed mostly by the pseudoscalar coupliag The
crossover fromG2 behavior toGs behavior in the suscepti- — Bt Bo
bility can be clearly seen in the plot. +1 @)+ —7 l|\gta t8|+2
5
V. GAUGED FOUR-FERMI MODELS ’81B2<G é‘ ” (1);(}0( )
A. The model
Let us now discuss the most general gauged four-Fermi N fldx< B1—1 N ﬁ2_1> > (0 e(X)
model described by the Lagrangian: 0 X 1-x
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101 dxdy = A cally, in addition to checking the internal consistency. We
- PJ’ f @' (X)e(y) will be succinct and summarize the results. Even though the
0Jo(x=y) basic ideas are the same as thosd1ifi], the results are

1 1—x substantially more complicated since we need to treat the
+j dxz( _’81+’32+|n7 (oW o(x) most general case which was previously not necessary.
0

1. Variational method

0 (1)
e ()¢, (29 One method for solving the Bethe-Salpeter E84),

. familiar from solving the Schidinger equation, is
B. Methods for obtaining the spectrum the variational method. We choose the basis functions

In generalized Gross-Neveu models, the spectrum coulti¢jl 1=2.3, ...} as
be obtained by just solving an ordinary equation, albeit a
transcendental one. In contrast, for the gauged four-Fermi [x(1—x)]
model, we need to solve an integral equation which is tech- @2K(X) = Cq1+Coy(1—2%) + Bk
nically more involved. Of course, this is to be expected, '
since the usual 't Hooft model, which is a simpler model, is

solved in terms of an integral equation. To solve the integral ©oks1(X)=CqpoF Cop(1—2X)
equation(24), we employ two methods to be explained in .
this subsection, generalizing the methods used previously in N (2k+1)(1—-2x)[x(1—x)]
the 't Hooft model[18,19,15,1& With either of the two B(k,k)

methods, we can solve for the spectrum and the wave func-

tions of any of the meson states for arbitrary combinations of

masses and couplings in the gauged four-Fermi models. By (k=12...). (26)
using the two different methods simultaneously, we are able

to obtain a better control over the error in the results whichThe c;;’s need to be determined to satisfy the boundary con-
inevitably arise when we solve the integral equation numeriditions (15) as

Ci1 Cop» <b+ (1+4G5)b_)1 Gs 0\(b, b_ )
C,i Cp \b_ (1+4G)b. 0 G/\b_ by @
1 G;+G 1
L[ ~ 276G (Bt B2+ =5 +4GSG)\/,81,32 ~2(6=Gs)(B1B2)
~d 1 1 1
Z(G_Gs)(ﬁl_ﬁz) Z(G_Gs)(ﬁﬁ‘ﬁz)““ E(Gs+G)V31,32
|
where the dimension of this basis space. With some work, the ma-
trix elements can be computed to be
d=(1+4G)b% —(1+4Gg)b” ={(G~Gs)(S1+ B2) 2 ol K |
—c2 4 2t M1t L
+[1+2(Gs+G)]VB152}- (29) Naa=cut 37+ 5 k1t 21+ 1
In the variational method, the problem of obtaining the 4 k1 B(k+1,k+1)
meson states is reduced to solving an eigenvalue problem: 2(2k+21+1) B(k,k)B(l,I)’
2
(1*Ng—H )W =0, Hy=(ex,Hep), Nu=(¢w,¢)), N _2 g 2 _k +_I
ZktlasimH2t 3 2 \2k+3  21+3
kil=234.... (29 (k+1)(2k+1)(21+1)  B(k+1,k+1)

We will approximate the solution by using basis elements up 2(2k+21+1)(2k+21+3) B(kK)B(L,1)*
to a certain number and check the convergence by varying (30
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1
Noi21+1= Noj 4 1,2= C11C107F 321022

K |
Tokr 1) 2t 221 3 S

1 1
Hox 2= aVﬂlﬂz[Z(G+G5+ 8GGs)(B1t B2)

+2¢5,+ (81— B2)

1
~5(G=Gs)VBiB,

X €12 2k+1 2041

2C1t =

+

Bt Ba )B(k+|,k+|) kI
2 Y BkKBLD 20kt

1 1
H2k+1,2|+1:avﬂlﬁz[Z(G+Gs)(51+ﬁz)

1
+ E(G_Gs) \/31,82}

+2¢] Coo— (B1— B2)C12]
k | B1+ B>
+022(k+1+|+1 2 _1>

(2k+1)(21+1) B(k+1,k+1)
2k+21+1  B(k,K)B(,D)

KI(2k+1)(21+1)
2(k+1)(k+1+1) "’

31

1
Howo 1= H2I+1,21<:E\/:81,82(B1_,82)(G+ Gs)

—2¢1JCoo—(B1—

|
_C12m_022(ﬁ ’82)2k+1 2(:31 B2)

B2)C12]

(21+1)B(k+1,k+1)
(2k+21+1)B(k,K)B(I,))

When B,= 5, the even and the odd sectors completely de-

couple.

2. Multhopp’s method

PHYSICAL REVIEW D 65 025003

K K

K
e(X)= 277(0112 Un— C122 Un) ZW(Czln%dUn

n:even

K K
—Cpp 2, vn)cos«9+2 v,sinng, (32)

n:even

wherec;;’s were defined in E(27). This reduces the Bethe-
Salpeter equatiof24) to

K

2, [17Po(60)=Mn(0)Jua=0, (33)
where
~ ) Cq1— CpCOSH n: odd
P,(0)=sinnf+2x (39
—Cy,+CC080 N: even,
[ Bl Bl nsinng
Mn(6)=2 1+c050+1—c036 sinng-+ 2 sing
4 o 1+cosé
™ B Bt INT 5
[—021 n: odd
X
Cy, NI even.

The above Eq(393) is still a functional equation, with the
dependence on the parameter

This can be further reduced to a generalized matrix eigen-
value problem

(u?P—M)v=0. (35)

The matrices are defined as

K K
EZ m(0|)|5n(9|), anEZl gm(0|)|\7|n(0|),

The functiong,,( 6) is arbitrary, but using functions with the
property g(6,)=(—1)""1g,,(0x+1_;) simplifies the ma-
trix elements. With this condition, the matrix elements are

K K

= lz:l gm(0)sind, + 2772:1 Im( 6)

[Cn (m,n: odd)
X

C,,C0SH, (m,n: evern,

Rather than using a variational method, we can expand
the meson wave function and solve the eigenvalue problem
directly [19]. Defining x=(1+cos6)/2, the wave function
can be expanded in a manner consistent with the boundary
conditions as

K
Pmn=— 27721 Im( )

(37)

|ch (m: oddn: even

Cp1€0S60, (m: evenn: odd),
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FIG. 3. The normalized meson mass difference as a function of 00001 0001 001 01 8 ! o 100 1000
A (solid. The mass difference expected from the susceptibility
(dashegis also shown. FIG. 4. The behavior of R against 8 for (G,Gs)
=(0,0) (O, (1,1) (O), (0,1) (A), and (1,0)(V). Dashes indicate
K (B1+B>—2) 2mn]| B~ 2" behavior and dots indicatg® behavior.
an_lel gm( 0I) 2 Sir? 0, + sin&, SIN6y,
refine the method by perturbing in the mass differeana-
K (—=Co0)(B1—B2) (m,n: odd) lytically and then obtaining the mass susceptibilities directly.
+47Y, gu(6) 1+ cosé, _ However, the standard perturbation formulas ao¢ appli-
=1 2T 5s8, (m,n: even,  cable to either of the two methods explained in the previous
section since we are dealing with a perturbation that changes
K . the boundary conditions, as we can see from (E6).. While
cosé, sind, . .
an=—2(,31—,32)2 Oml( ) —————— the formulas that need to be derived should be of use in
=1 sir? 6, further studies, since this is technical and somewhat in-
K volved, we have chosen to describe the methods concretely
+4772 9 61) in the Appendix. We have computed the susceptibility using
=1 both methods and have checked that the results agree.
The parameters of the gauged four-Fermi models are
Cod B1—B2) (m: oddn: even B,G,Gs and the ratios of constituent masses. We ex(@eict
X 1+ cosé, play a not so dominant role in determining the properties of
(—Czﬂ|nm (m: evenn: odd). the lightest meson stat&; is the pseudoscalar coupling that

strongly affects the lightest mesop. is effectively the in-
(38 verse of the strength of the gauge coupling.
We first investigate the behavior & with respect tg3 as
in Fig. 4. WhenGs+0, for large B, the susceptibilities ap-
proach those of the generalized Gross-Neveu model, which
_ is quite natural since the gauge coupling is effectively weak.
C. Mass differences This behavior is quite visible forG,Gs)=(0,1),(1,1) cases
Since we have at hand the methods for obtaining thén Fig. 4 and the approach already occurs for modepate
physical properties of meson states, we are in a position tgalues,=0.1. WhenGs=0, as we can see from ER1),
compute the mass differences. For investigating the masB=0 in the generalized Gross-Neveu model. In the gauged
differences, we use the properties of the lightest meson stafeur-Fermi model,R behaves as- 3?3 whenGz=0 and
in each channel. In Fig. 3 we first plot the behavior of thelarge 8 as we can see foiQ,Gs)=(0,0),(1,0) cases in Fig.
mass differenc&u,p/ ua, defined in Eq(1) for finite mass 4. This is consistent with the expectation from the quantum-
differences for a typical case §=Gs=1, 8=1. The rela- mechanics calculation in Eq10) for the linear confining
tive quark mass difference parameteéy|<1 by definition potential. ForG=Gs and 8=0, it can be shown thak
and the mass difference is symmetric with respect to the~0 as 2. This behavior is indeed seen in Fig. 4 for the
interchangeA < —A. At the same time, we also plot the (G,Gs)=(0,0),(1,1) cases.
behavior expected from the susceptibill8A2. We see that Let us now analyze howR behaves with respect 85 as
the susceptibility describes the mass difference quite welin Fig. 5. It can be seen that for fixg8, R approaches the
unless the quark mass difference is quite large,s=0.4. generalized Gross-Neveu model value as we incréase
Let us move on to the behavior of meson mass susceptiss. Qualitatively, this can be understood as the gauge cou-
bilities. To compute the susceptibilities, we may just use theling, becoming relatively less important when the other
methods explained in the previous section and obtain theouplings are strong. For sm&@ls, the behavior is governed
susceptibility as the limiting case of small mass differencesy the gauge coupling and we see in Fig. 5 that the suscep-
going to zero. While this is logically fine, it incurs unneces- tibilities for the sameg value approach each other. While
sary numerical errors during the process. Therefore, we catihese behaviors can be understood from the physics of the

In what follows, we adopg,(60) =2 sin[mé/(K+1)] as was
done so for the 't Hooft moddl19].
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Gs FIG. 6. The zeros of the mass susceptibility parameter in the

. . G5—pB plane wherG=0.1, computed using finite-dimensional basis
FIG. 5. The behavior of R against Gs for (G.B)  gpaces. The solid curves, from top to bottom, correspond to the
=(0,0.1)(0), (0,1) (O), (1,0.1)(A), and (1,1)(V). For compari- ;e i the variational method for the basis space dimensions of 8,
son, R for_the generalized Gross-Neveu model is also displayed forlo’ 12, 14, 16, 18, and 20. The dashed curves, from top to bottom,
G=0 (solid) andG=1 (dashes correspond to the zeros of the susceptibility in the Multhopp’s
method for the basis space dimensions of 20, 40, 100, 200, 400,
model as we did here, it is quite nontrivial to derive them800, and 1000. In the small regions below the respective curves, the
analytically. susceptibility is negative. The negative region becomes smaller with
We have investigated the susceptibility extensively withinthe increase in the size of the basis space in both methods.
the parameter space of the theory and found that it is posi-

tive, except for a relatively small region, which we now dis- fher investigation is necessary to clarify this point. An
cuss. In most regions in th? parameter space, the numeric alytic computation determining the sign of the mass differ-
convergence of the susceptibility is quite rapid at least in one .o would be ideal. If this is not possible, a set of basis

?f tTIethmethOdS. and tEOth meth?g.sl,'tyleld Conf'Stemt.;gsu“%ptimized for the gauged four-Fermi models in this particular
noa Hese reguzcns, eﬁusceﬁl ity parameter safl r?S parameter regime, in either variational or Multhopp’s
>0. However, for smallB, the convergence is rather method, should settle this issue.

slow. Particularly intriguing is the regioG=Gs5,0=<8<1.

A simple argument shows why the behavior in this region
can be subtle: In general, the finite-dimensional numerical
results are analytic with respect to the paramet@r<Gs, We have systematically and quantitatively studied the
andg. From the behavioR—0 asp—0, G=Gs, we know mass differences in gauged four-Fermi models in
that unlessR vanishes as@—Gg)? or some higher even (1+1)-dimensions. Even in the cases where the mass in-
power for3=0, there will be a region wherR is negative. equality relations have been shown to be valid from general
Indeed, we find in the numerical results tfatis negative in  arguments, the size of the difference is unknown unless an
the regionG=Gs, 0= B<1 using both the variational and explicit computation is made. We believe that the mass dif-
the Multhopp’s method. Even the extrapolated values, irference is an interesting dynamical quantity characterizing
some cases, are negative. The meson mass squared is alwéys spectrum of relativistic quantum-field-theories. To ana-
positive even in these cases and the physics of the systelyze the differences quantitatively, we adopted a natural sus-
seems to be quite consistent. Naively, we would claim thateptibility parameter to compare the size of the mass differ-
the susceptibility and hence also the standard inequality doesnhces throughout the field-theory space. We found that the
not hold in this regime. This, to our knowledge, wouldt  parameter captures the essence of the mass difference when
conflict with any general arguments regarding mass inequakhe constituent mass differences are not too large. In the fam-
ity relations. However, to conclude, this would be somewhaily of generalized Gross-Neveu models, we were able to de-
premature, since if we study the negative region in the parive an analytic expression for the meson mass susceptibility.
rameter space, we find as in Fig. 6 that it shrinks when thén the more general case of gauged four-Fermi models, we
basis space is enlarged and the negative region is quite smélhve developed methods for obtaining the mass differences
compared ta)(1) which is the natural scale in the problem. systematically and have computed them. Since not much
It should also be noted that evenRf=a,(G—Gs) + O[(G seems to be known about the quantitative behavior of mass
—Gg)?] for B=0 when the basis space is finite, it is still differences, we think that it is significant to have a class of
possible that the coefficient; approaches 0 in the full basis relativistic field-theory models where it has been studied ex-
space, so that the positive susceptibility is compatible with alicitly. While the results are interesting, there remain further
negative one in the truncated basis space. On the other hamgljestions which should be answered.

the regions of negative susceptibility have a common region An important question is whether the positivity of the
with respect to both methods so it is also possible that a finitenass difference is much more general than the cases where it
region of negative susceptibility remains even when the basibas been shown to ho|@]. In particular, an intriguing prob-
space is complete. We therefore conclude that while the susem is whether there is a relativistic quantum-field-theory
ceptibility may be negative in the regin®@=G;,0s8<1, wherein the mass difference is negative yet its physics be-

VI. SUMMARY AND DISCUSSIONS
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havior is consistent. We have found that the meson madse perturbed also. There are additional complications for
susceptibility is positive for most of the parameter space irboth the methods used in Sec. V B, as we shall describe
the gauged four-Fermi models and have explained some difelow.

the behavior analytically. The models we studied here in- In both cases, we perturb in the relative mass difference
clude the celebrated models of 't Hooft and of Gross andand obtain an expansion for the meson mass in terms of
Neveu for special choices of the parameters. For the 't Hooff\, for the cases I‘(/I%,M%)=(M§,M§),(M§,M§), and
model, the standard argumerf2] do apply and we may (M2,M?2)

show analytically that the difference is positive. However, in

general, no such arguments can be applied to gauged four- wP=ud+ Apd+A2us+ O(A®). (A1)
Fermi models. Furthermore, the Gross-Neveu models are

known to be equiva|ent to models with Yukawa Coup"ngsln the first two cases, the first-order term exists and is of the

and also display dynamical chiral symmetry-breaking behavsame size but of opposite sign, and in the last case the first-
ior. These are exactly the kind of situations in which weorder term is absent. Therefore, the leading-order term in the
might doubt whether the mass difference is posifg@]. It ~ mass differencedu, will be of orderA?, as it should be.

is interesting that even in these cases, the mass difference is

positive, so that in fact, the property holds in much more 1. Variational method

general th_an tho?‘e situations where.it has been proven. It 1 the variational method, we need to consider a general-
would be interesting to find an analytic proof for this prop-j,qq eigenvalue problem with the normalization matrix not
erty 'f. p035|.b_le. Itis important to understqnd why the d'ffef' being the identity matrix. In theory, we can just orthonormal-
ence is positive for the gauged four-Fermi models and clarify, ¢ he pasis vectors, but in practice, this is not numerically

i th|_s can b? ext_ended to other theories, S.UCh as supersy quivalent since the normalization matrices can become al-
metric theories with bound states. There still remains a smal ost singular even though we have tried to normalize the
region within the field-theory space wherein the sign of the iy elements to be of order one. Furthermore, since the
susceptibility, hence also the mass difference, remains uncefi, nqary conditions also are perturbed, the normalization
tain and further investigation is necessary to establish itShatrices will also have a nontrivial expansionAn
sign. While (1+1)-dimensional theories such as the 't Hooft | o /o expand the matrices as '

model or the Gross-Neveu model have physical behavior re-

sembling those of higher dimensions, we should mention the H=Hy+AH;+A2%H,+O(A®),

possibility that in higher dimensions, the behavior of the sus-

ceptibility might be quite different. Also, even in (11) N=Ny+AN;+A%N,+ O(A3). (A2)
dimensions, the mass differences might behave qualitatively

differently for other classes of models. Assume that we have the complete eigen-system for the Oth

We have seen in Sec. Il that the mass difference is posiorder problem:
tive in a large class of quantum-mechanics mo@&]s This
leads us to suspect that the mass inequality relations are valid
for_ a large (;Iass of r.elat|V|st.|c quan_tum—ﬁeld—theones also'Then, we obtain the expansion for mass squared of the me-
This is certainly consistent with our findings here. However,

. , .’son state labeled by

it should be noted that spontaneous breaking of symmetries
is essentially a fleld-theoretlca_l behavior, which is algo quite ;2 = (wq,,(Hy— 13,N1)Wop),

relevant to the theory we studied. Therefore, we believe that

it would be worthwhile to perform further research and in 2 = (w,,,(H,— u3,N2)won)

particular, clarify whether the mass difference can become

negative in relativistic quantum-field-theories. In another di- — (Won sN1Wo) (Wop ,(Hl—,uéan)w()n)
rection, largeN limit of field theories, such as the class of

HoWon=18,NoWon,  (Wom,NogWon) = mn.  (A3)

models we study, are presumably described by some kind of 1 2 2
string theoried 6]—an idea, which has recently been made +% p2 — | (Won ,(H1 = 1nN1) Wom) |
more concretd4]. It would be interesting to find out what nomem

kind of string theories our models correspond to and to elu- (A4)

cidate how mass inequalities fit into the string picture. We need the expansions of the matri¢es in terms of A

for the three casesMZ,M3)=(M2,M2), (M3,M?), and
APPENDIX: PERTURBATION THEORY IN THE MASS (M2,M2), to obtain the final results. Since this expansion is
DIFFERENCES FOR THE SPECTRUM cumbersome but logically straight forward, it will not be

. . . explicitly presented here to save space.
Here, we shall briefly outline how to perform perturbation PICttly p P

with respect to the relative constituent mass differedcean

the methods explained in Sec. V B for obtaining the spec-
trum. The standard perturbation methods cannot be applied In Multhopp’s method, the matrices are not Hermitian so

here. One major reason is that the boundary conditi@fs  that we need to perform the perturbation theory with some
depend on the masses of the constituents so that they needdare. Furthermore, due to the perturbation in the boundary

2. Multhopp’s method
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conditions, the matri® will also be perturbed. To perform We need to first solve the Oth order problem for the left and
the expansion, we will reduce the equation to a mathematiright eigenvectorsju,} and{v}*

cally equivalent problem,
uOm(P_lM)O:MgmuOmr (P_lM)OUOn:MSnUOn:

(UomVon) = Smn- (A8)
Ideally, it is better not to invert matrices numerically, but it is Then, we may obtain the expansion for the meson mass
a substgnnally more complpated numerical task to solve %quared of the meson state labelednt
generalized nonsymmetric eigenvalue problem and also, in
this case, the matri® turns out to be quite robust against M%n:(uOna(PilM)ll}On)y (A9)
inversion even for moderately large basis spaces with dimen-

/-Lgn:(uOn a(P_lM)ZUOn)
Uon (P~ IM)1v00) (g, (P~ IM) 1
+2 ( On ( )1 Ok)( Ok( )l On).

sions of order 19
P=Py+AP,+A%P,, n Hn = Hok

(W?>—P IM)v=0. (A5)

We expand the matrices as

(A10)

The rest proceeds as in the variational method case. As in the
case of the variational method, the explicit expressions for
the matrices are not shown here due to space considerations.

M=My+AM;+A%M,,

(PIM)=(P M)+ A(P M),
+A2(PIM),+O(A®), (AB)

where 1From a mathematical point of view, additional complications can
arise in general; namely, the eigenvalues may be degenerate so that
the matrix is not diagonalizable, or the eigenvalues may be com-
plex. However, we need to keep in mind that we do not have to
solve the problem for general dimensions of the basis space, but
only for a sequence of spaces that will allow us to obtain the sus-
ceptibility. In practice, these complications do not hinder our com-
putations in the cases we have studied.

(P7*M)o=Py Mg, (P7*M);=Pg*(M;—P1Pg ' My),

(P7IM),=Py (My—P,Pg *Mo— PPy M,
+ PP, PPy TMy). (A7)
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