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BPS kinks in the Gross-Neveu model
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We find the exact spectrum and degeneracies for the Gross-Neveu model in two dimensions. This model
describesN interacting Majorana fermions; it is asymptotically free, and has dynamical mass generation and
spontaneous chiral symmetry breaking. We show here that the spectrum coMAikmis for anyN. The
unusualy2 in the number of kinks for odtl comes from restrictions on the allowed multi-kink states. These
kinks are the Bogomol'nyi-Prasad-Sommerfield states for a generalized supersymmetry where the conserved
current is of dimensioMN/2; the N=3 case is the\'=1 supersymmetric sine-Gordon model, for which the
spectrum consists of @2 kinks. We find the exac matrix for these kinks, and the exact free energy for the
model.
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[. INTRODUCTION selves. In particular, it was long known that for evdrthe
spectrum contained™ kink states in the two spinor repre-
The Gross-Neveu model describes interacting fermions isentations of theSO(N) symmetry algebrd?2]. The argu-
two dimensions. It has no gauge fields or gauge symmetrynents which led to the existence of kinks for evgrapply
yet it exhibits much of the behavior of gauge theories in fourequally well to oddN, but it was not clear how many such
dimensions. The coupling constant is naively dimensionlesskinks there were whem is odd. It was shown i3] that
but radiative corrections result in a mass scale to the theoryhere is no consister matrix for a single spinor represen-
Thus the theory is asymptotically free and strongly interacttation, and by utilizing a generalized supersymmetry, Witten
ing in the infrared. A(discrete chiral symmetry is spontane- showed that the kinks are in a reducible representation of
ously broken, which gives the fermions mass. In condensedSOQ(N) whenN=2P+1 is odd. He went on to conjecture
matter language, the interaction is marginally relevant, andhat they are in two copies of thePalimensional spinor

there is no nontrivial fixed point. representation.
The Gross-Neveu model consistsMajorana fermions In this paper we will answer this question and at long last
', ¢, withi=1,... N. The action is complete the computation of the mass spectrum. We show

that there are/2 copies of the spinor representation whén
o is odd: the number of kinks for arly is 22, A noninteger
Szf A2z o'+ Yoy + g ) (W yd)] (1) number of kinks means that there are restrictions on the al-
lowed multi-kink states; we give a precise definition below.
.q}'ehese kinks are in Bogomol'nyi-Prasad-Sommerfi@eS
) i . resentations of the generalized supersymmetry. NFor
g__=0, the fermions are free, witit' a function only ofz and zg, the model is equivglent to tha'= lpsugersymr%etric
y' a function only ofz. At this critical point in two dimen-  sine-Gordon model, so our result shows that these unusual
SionS, the fermion_s have left and I’Ight dimensions (1/2,0) fOlBPS kinks appear even for Ordinary Supersymmetry_ To con-
¢ and (0,1/2) fory, so the couplingy is naively dimension-  firm our claims we compute the exaftmatrix and free
less. However, the beta function for this interaction is non-energy of this model, and find agreement with the known
vanishing[1]. For g>0, the trivial free-fermion fixed point results in the ultraviolet limit.
is unstable, and a mass scale is generated. We denote this
mass scaléMl. In this paper we studiN=3; for N=2 the Il. THE SYMMETRIES
model reduces to the well-known massless Thirring model
(the Luttinger model in the condensed-matter litergtuaad
for N=1 it is free. The action(1) is invariant under the
symmetry grougO(N). In a separate paper, we will discuss
generalizations to other symmetries.

To determine the spectrum at®imatrices of the Gross-
Neveu model, we need to understand the symmetry structure
of the model in depth. There are actually four different sym-
metries which we utilize in this paper. These are all dis-

) . . . cussed in2]; this section is basically a review of these re-
Despite a huge number of papers discussing various as-

pects of this model, there remained an important unanswereSdJlts'
guestion: what is the spectrum of particles? Just because the

fields are known does not mean the spectrum is known: there ) o
may be kink states or bound states, and in some cases thereThe action has a glob&@(N) symmetryy'—U" ¢! and
are no one-particle states corresponding to the fields themp'—U'Ty). The matrixU must be an element c®(N)

A. O(N) symmetry
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because the Majorana fermions are real. The existence of th&sipersymmetry transformations. This seems odd in a theory
global symmetry means that the particles of the model musof fermions, but by bosonizing two of the three fermions,

transform in representations of this symmetry. one indeed obtains th&/=1 supersymmetric sine-Gordon
model [2]. For general odd\, this results in a generalized
B. Spontaneously-broken chiral symmetry supersymmetry. The full current algebra of these currents

. ) — seems quite tricky. It seems very likely thatgt 0 it is the

The action(1) has aZ, chiral symmetryy——4, ¢ B, algebra studied ifi4], which indeed involves a current
— . However, forg>0, this symmetry is spontaneously of spin P+ 1/2 along with those of even integer spin. This
broken, because the fermion bilineas ' /' gets an expec- Wwas explicitly worked out for th&®=2 case(wheng=0) in
tation value. This expectation value results in a mass for th€5]. This current algebra involves the spin-4 local current as
fermions. Note that this expectation value does not break theell. These currents remain conserved wigehO, just like
O(N) symmetry; a continuous symmetry cannot be spontathe supersymmetry currents do whier-1.
neously broken in two spacetime dimensions. Equivalently, Luckily, to determine theS matrix we do not need the full

the discrete parity symmetry/(z,?)eﬂ(?,z) is spontane- current algebra: we need only_ to understand how the con-
ously broken. served charges act on the particles. The conserved ckarge

of dimensionN/2—1 is defined byQ=fdzJ+fd§, and

C. Local conserved charges likewise fora. The operatoQ? must be of dimension and

When a model possesses an infinite number of local con|=°remZ spinN—2. For example, foN =3, using the explicit

served currents transforming non-trivially under the Lorentzform of the charge give®?«<P,_andQ®=Pg, with P_and
group, it is said to be integrable. The integrability results inPr the left and right momentg6]. For generaN, this means
powerful constraints on th&matrix, which will be discussed that whenQ? acts on a particle with energy and momen-
below. It was shown ifi2] that the actior(1) has at least one tump,
of these conserved currents. Whap=0, the energy-

momentum tensof = ¢/ dy' obeyssT"=0 for any integen.

This no longer holds foig#0. However,dT2 must have  since this is the only combination of energy and momentum
dimension 5 and Lorentz spin 3. All operators of this dimen-with the correct Lorentz properties. It is convenient to define

Q?*=(E+p)N7?,

sion and spin must be a total derivative: the rapidity # so that a particle of mass has energye
_ =m cosh# and momentunp=msinhé. The symmetry alge-
dT?=0A+ JB. bra acting on a particle for odd can then be written
Thus there is a conserved current with componerit$ ( {Q,Q}=2mN~2e(N-2)¢ {6,6}m2mN‘2e‘(N‘2)0
—A,B) in the Gross-Neveu model. This already requires that
the scattering be factorizable, and it seems very likely that {Q,6}=ZZ 3)
there is a conserved current of dimensiom @nd hence a
charge of dimension2—1) for all integern. The central ternZ acts on the states &a)=mN"2z,|a).
The (rea) numbersz,, vanish atg=0, but do not otherwise.
D. Generalized supersymmetry As we will discuss, non-zera, occur because of the non-

A very striking feature of the Gross-Neveu model shown(fvial boundary conditions on the kink statgd.

in [2] is that it possesses an extra conserved current of spin
N/2. This conserved current is lll. THE KINK SPECTRUM OF THE GROSS-NEVEU
o , MODEL
J=¢€ i, . i W12 Pn 2 . . .
rzoeN One interesting feature of the Gross-Neveu model is that
— . the spectrum is far more intricate than a glance at the action
Anot.her cor?ser_ved curredtof spln. le follows from re- (1) would suggest. For any value bff the spectrum includes
placing ¢ with . To prove that this is a conserved current jink states, as pointed out [8,2]. In fact, for N=3 andN
even forg#0, one shows that all possible contributions t0—4 the spectrum does not contain anything but the kink

4J are themselves total derivatives. In an equation, states. The spectrum includes kink states because of the
L spontaneously broken, chiral symmetry. The kink interpo-
dJ=0dJ. lates between the two degenerate vacua; in two-dimensional

_ spacetime there are domain walls between regions of the two
For N=2, J vanishes and this conserved current is thevacua. The main result of this paper is to answer the ques-
axial symmetry of the massless Thirring modelttinger  tion: how many kink states are there?
mode). For N=4, the Gross-Neveu model decouples into The result requires first finding how the kink states trans-
two sine-Gordon models, and the spin-2 curréig the dif-  form under the symmetries discussed in the last section. We
ference of the energy-momentum tensors of the two theoriesvill find the minimal number of particles required to trans-
For oddN=2P+ 1, the results are much more surprising. form under these symmetries non-trivially. In Sec. IV, we
For N=3, the current is of dimension 3/2, and generateswill work out the Smatrix of these particles, and then in Sec.
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V we will show that these particles ar®lmatrices give the tation of the Clifford algebra is not irreducible under the
correct free energy. SQO(N) whenN is even. It decomposes into irreducible rep-
Again, we follow the analysis df2] and study the kinks resentations with'N*1=+1. These representations are each
semiclassically. The fermion bilinear= ¢/ gets an expec- 2"/>~*-dimensional, and are known as the spinor representa-
tation valueo; the kink is a configuration of interpolating ~ tions of the algebre&SO(N). The entire kink spectrum for
between+ o and — o In the semi-classical approach, one €venN consists of 272 kinks in the two spinor representa-
treatso as a classical background field, and quantizes th&ions. It was shown irf10] that including these kinks along
fermions in this background. The fermions interact with thewith the other particles gives the correct free energy. This

background by the interaction effectively proves that these are all the kink states.
_ For oddN=2P+ 1, the spinor representation of dimen-
goy'y. sion 2 is irreducible. There is only one such spinor repre-

Thus in the semiclassical limit, this problem is equivalent goSentation qf?O(ZP+1). Thus it might seem Fhat t.he sim-
quantizingN Majorana fermions in a kink background. A plest possibility is that there are preuselﬁ Rinks in the
famous result of Jackiw and Rebbi shows that the Dirac>r0Ss-Neveu model for odd. However, Witten shows that
equation with this background possesses a single normalizhere must be morg2]. The key is to look at the discrete
able zero-energy modg, f, [9]. The zero-energy solution is Symmetry '——¢', ¢/——4'. One can think of this
real, while the finite-energy solutions are complex, so thesymmetry as being1)", with the caveat that the fermion
zero-energy state is created/annihilated by a real opepitor humberF is not defined forN odd: only (~1) is. This
while the finite-energy states are annihilated and created byymmetry is part of theO(N) group, but not part of the
al anda!| respectively. Thus the semiclassical expansion foconnectedSO(N) subgroup wherN is odd. Because of the
o andﬁ is form (4), b'— —b' under this symmetry. Thus there is a sym-
metry operatorA =(—1)F which obeysA?=1 and Ab'A
_ R . . =—Db'. In other words A anticommutes with all the Clifford
P'="fob'+ ZO [fran+fhay] algebra generators, and commutes with$i@& 2P +1) gen-
"~ erators. Thus the kink states in an irreducible representation
o of SO(2P+ 1) must all have the same eigenvalueAafThe
P=fob + > [faal+frall]. (4)  fact that the matrix elemer(6) does not vanish means that
n=0 some kink states have eigenvalgel, while some have ei-
genvalue— 1. Thus thereanustbe more kink states than those
o i in the single irreducible representation®0(2P+1). Note
{b',bl}=26". (5)  that for evenN, we can identifyA with yN*1, and the mul-
tiple representations with the two different spinor represen-
tations. For oddN, there is only one kind of spinor represen-
tation, so it must appear at least twice.

The canonical commutation relations fgf require that

This is called a Clifford algebra; the combinations'
=[b',b'] generate thesQ(N) algebra. In this paper, when
we useO(N) we generally mean the symmetry group, while g4 \yhat happens for odd? The simplest possibility is
SQ(N) refers to the resulting symmetry algebra. that there are kinks in two spinor representations, each of
The presence of these zero modes means that there muygh,ension 2 [2,11]. We will see that this is essentially cor-
be more than one kink state, because one can always act Wil nhyt there is a major subtlety. The key to the answer is in
any of theb' and get a different state. In other words, denot-ihe generalized supersymmetry.
ing the kink states bya), some matrix elements It is very useful to first examine the cable=3, where the
(BIbl] ) (6)  answer is knowrj12—-15. Here the Gross-Neveu model is
equivalent to the\'=1 supersymmetric sine-Gordon model
are non-vanishing. The kink states therefore form a represei2] at a fixed value of the sine-Gordon coupligs where
tation of the Clifford algebra. The simplest possibility is that the model has an extt@OQ(3) symmetry. One might expect
the b' act like the gamma matrices @OQ(N). A gamma that the kink spectrum would generalize the kink and anti-
matrix (y'),s obeys the Clifford algebr&5), and is an kink of the ordinary sine-Gordon model to account for the
SQ(N) invariant wherei=1 .. .N transforms in the vector supersymmetry. For thd/=1 supersymmetric sine-Gordon
representation oSO(N), while r,s=1...2"MN2 trans-  model, it seems plausible that the kink and antikink each are
form in the spinor representati@). The kinks must there- a boson/fermion doublet, making four particles in [dlB].
fore be in the spinor representationof SO(N). This is  However, this is not the correct spectrum. The reason is the
effectively charge fractionalization, because the vector repeentral charg& appearing in the supersymmetry alge@
resentation appears in the tensor product of two spinor repwith N=3]. For the supersymmetric sine-Gordon model,
resentations. Thus the original fermiogsin the vector rep-  does not vanish7]: it is the integral of a total derivativeZ
resentation “split” into kinks in the spinor representatisn  acting on the kink states is non-zero because here the bound-
The properties of the spinor representatgrof SO(N) ary conditions on the field at positive spatial infinity and
are different for even and odN. For evenN, there is an negative spatial infinity are different.
operatoryN**=ib'b?...bN which commutes with all the The consequences of a non-vanishiigare familiar in
SQ(N) generatordM' but anticommutes with the Clifford supersymmetric field theories. Representations where the
algebra generators. Therefore tH¥?dimensional represen- massm=|Z| are called BPS stat¢47]. BPS representations
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usually have a smaller number of states than those @ith

=0 [7] and so are often referred to as “reduced multiplets.”

When the BPS conditiom=|Z| holds, one can find a com-

PHYSICAL REVIEW D65 025001

One can indeed verify tha& andaacting on this represen-
tation satisfy the algebré). Moreover, the discrete symme-
try A acts non-diagonally as

bination of the generators which annihilates all BPS states.

For the generalized supersymmetry, the condition is

N—-2

Q- o —e™ D ||a)=0 ™

for all BPS statesa).

Alrsy=|—r—s).

A indeed anticommutes with the generalized supersymmetry
generators. With the interpretation df as (—1)", we see
that the kinks are neither bosons nor fermions. Since the

action ofQ and6 is non-local, we must be careful to define

We need now to introduce a precise definition of thetheir action on multiparticle states as well. For example on a

“number of kink states’K. We say there arK kink states if
the number of-particle kink states at large depends om

three-kink stateQQ acts as

as K". Put another way, the entropy per kink of a gas of Q(l@)®|B8)®|y))=(Qla))®|B)®|y)+(Ala))®(Q|B))

non-interacting kinks is IiK. K is usually an integer in field

theory: e.g., if there are two one-patrticle states, there are four

The

h I — o
kink structure need not be so simple, though. For example2nd likewise forQ. Thus whenQ acts on a kink, it flips all

two-particle states, eight three-particle states, and so on.

consider kinks in a potentidl(¢) = (¢$?— 1)?. The potential
has minima at¢p=*1, so there are two one-kink states,
having ¢()==*=1 and ¢(—)=F1. However, there are
only two two-kink states. In fact, there are only two kink
states for anyn. Thus the number of kink states in this ex-
ample isK=1. The example of most importance for this
paper is kinks in a potential lik¥/($) = ¢?($>—1)%. Here
the minima arep=0,% 1. If kinks are allowed to only inter-
polate between adjacent minintge., only between 0 and
+1), then the number af-kink states doubles every tinte
is increased by 2. Therefor&= /2 in this triple-well po-
tential.

For the BPS representations of the generalized supersy
metry (3), K= /2. This was already known fok’=1 super-
symmetry in two dimensiongl2,14,11, theN=23 case here.

The BPS representations were initially given for the therma

(19 perturbation of the tricritical Ising model, which has

N=1 supersymmetry as well as a Landau-Ginzburg descrip-

tion in terms of a fieldp with three degenerate mininja2].
To reconcile these two facts, Zamolodchikov showed ho
supersymmetry acts non-locally on th@ kinks in this

triple-well potential. Somewhat more surprisingly, there are,

J2 kinks in theA’=1 sine-Gordon model as well.

To give explicitly the action of the generalized supersym-

metry for oddN, we denote a kink withp(x=—«)=r and
d(x=+x)=s as|rs). In the triple-well potentialy,s=0,
+, andr—s=*1. The central chargg acting on a kink of
massm in a BPS representation s\~ ?(r>—s?). The BPS
representation of the generalized supersymmetry forbad

@[y +(Ala))@(A|B))®(Qly))

kinks to the left of it. FoiN= 3, this reduces to the action of
supersymmetry discussed [ib2,14].
Of course, the kinks in the Gross-Neveu model must still

transform as a spinor & O(N). Thus we see that for odd,
the simplest non-trivial kink spectrum consistent with all the
symmetries of the theory is for the kinks to be spinors of
SO(2P+1) and interpolate between the three degenerate
wells of this potential. Each kink is labeled by a spinor index
1...2° and by a pair of vacua. The number of kinks is
J2x2P=2N2 \We emphasize that the generalized supersym-
metry and the discrete symmetry require that there be
more than the spinor:"#? is the minimum number of kinks
atisfying these constraints. In subsequent sections, we will
ind the S matrix for these kinks, and show that it gives the
correct free energy, effectively confirming the presence of
Fhese BPS kinks.

IV. THE S MATRICES

In this section we work out th& matrix for the kinks in

Whe Gross-Neveu model for oddi=2P+1.

This S matrix must obey a variety of constraints. These
re easiest to write in terms of rapidity variables, defined so
that the rapidityd, of a particle is related to its energy and
momentum byE=mcosh#;, p=mcoshé,. Lorentz invari-
ance requires that the two-partickematrix depend only on
the differencef= 6,— 6,. Any S matrix arising from a uni-
tary field theory must be unitary and crossing-symmetric.
Moreover, the integrability of the Gross-Neveu model means
that the multi-particleS matrix must factorize into the prod-

non-local: it changes the kink configuration all the way to ¢t of two-particle ones. The resulting constraint is called the

spatial —. On a single-particle state of rapidity
Qlro)y=ir(me’)(N~-2/2—r0)
Qlor)=r(me’)(N=22or)
Q|roy=ir (me #)(N-272 —r0)

Q|or)=—r(me %)(N=2720r),

Yang-Baxter equation. Finally, th® matrix must obey the
bootstrap equations. These mean that3hmatrix elements
of a bound state can be expressed in terms ofthmatrix of
the constituents. This constraint is explained in detaj3ih
for example. Bound states show up as poles inSmeatrix
in the “physical strip” 0<Im( @) <. If there is such a pole
at 0= 0 in the kink-kink S matrix, then the kinks of masa
have a bound state at mass

m;=2m cosh 6;/2). (8)
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O written in terms of projection operators. A projection opera-
tor P, maps the tensor product of two spinor representations
0—O0—=0 O—O0—"~0C—~C—0 onto an irreducible representation labeled &y Here a
=0...P, wherea=0 labels the identity representatios,
=1 the vector representatioas= 2 the antisymmetric tensor,
FIG. 1. TheSO(N) Dynkin diagrams for eveiN and oddN. and so on up t@=P—1. The representation wita=P is
the representation with highest weight 2, whereup is the
WhenN= 3 andN=4, the kinks are the only states in the highest weight of the spinor representation. We do not give
spectrum[8]. For N=3, this was confirmed by the compu- the explicit expressions for the projectors because we will
tation of the exact free energy of thié=1 supersymmetric not need them; they can be written explicitly in terms of the
sine-Gordon moddM5]. For the latter, it follows because the gamma matrices for the algeb&0O(2P + 1), which in turn
N=4 Gross-Neveu model can be mapped to two decoupledan be written as tensor products of Pauli matrices. The
ordinary sine-Gordon models, each at tB&J(2)-invariant ~ spinorS matrix is
coupling (3§G—>87r in the conventional normalizatipri2]. P
This special decoupling happens because the algeb(d) ‘ _
is equivalent toSU(2)xSU(2). At the SU(2) invariant Sspinor 0) aZO FalO7Pa(0). @)
coupling of sine-Gordon, there are no bound states in the
spectrum: the only particles are the kinks in doublets of eac he functionsf,(6) are not constrained by tHeQ(2P+1)
SU(2). In the SO(4) language, these are the spinor repre-Symmetry, but all can be related tp(6) by using the Yang-

sentations. Baxter equation. The result [8]
ForN>4, there are states other than the kinks. They have o+imA
masse$18] . o
0—imA
7] :
mj=2msm(N_2> (9 0+imA(2a+1) 12

fPfafl:mfPfaJrl

wherem is the mass of the kink ang=1 ... int(N—3)/2.

The first of these states corresponds to the particle created Were the ang-Baxter equation does not _determme .
#: it is in the N-dimensional vector representation of The functionf p(#) must satisfy the unitarity and crossing

SO(N). The other states are bound states of the fermiong.elations' These do not determine the function uniquely, be-

One useful fact to note is that each type of particle correﬁ]al;“:ﬁglﬁgg g‘;’]‘; gi?/f:]nsilgﬁx Sbc;lu;?lr;ncc):];iége(sei ggg;‘ﬂ%ﬂs by

sponds to a node on the Dynkin diagram ®0O(N), as ) o

displayed in Fig. 1. For eveN, the kinks correspond to the F(6)=1 andF(6)=F(i7—6). This is known as the CDD

two nodes on the right, while for odd, the kink is the node amb!gwty. The m|r_1|mal .SOIUt'On of the unitarity and crossing

on the right. The vector representation is the node on the lef elatlor_15. ISa SO.IUt'On W'th.OUt any poles in the physical strip.
The exactS matrix of the vector particles for anyl was he minimal spinoiS matrix of SQ(2P+1) has

worked out in[18]. Using the bootstrap gives ti&matrix 1 1

for fermion bound states, but not the kinks. The explicit ex- A=—F-=——

pression for theS matrix of particles with mass, [which

are in the antisymmetric and singlet representations 0£md[3]

SQO(N)] can be found if19]. The Smatrix for the kinks for

evenN is worked out in[20,21] (see alsd3]). Thus to com- 0 1 0

plete this picture we need to work out the scattering of the P-1 F( 1-bA— ﬁ)r( ( b+ §) A+ _)

kinks for oddN, including the fact that they have the addi- fp(0)= H 7 1 7

tional BPS structure discussed in the last section. b=0 1“( 1—bA+ —)F( ( b+=]A— —
The BPS kinks in the Gross-Neveu model are in the 2m 2 2mi

2P-dimensional spinor representation 8f0(2P+1), and (13

they also form a multiplet transforming under the general-Notice that this has zero a#=iwA(2b+1) for all b
ized supersymmetry. Since the two symmetries commute. 5 p_1 These cancel poles arising from E(E), and

W'tg e"‘t‘ﬁh other, thets_lmp_lestfttvr\]/o-tpart|c$enat(;|x |tnfv anant  onsyre that there are no poles in the physical strip for any of
under these symmetries 1S of the tensor-product form the f,. The following integral representation fép will be

S(6) = Sepinod )@ Sapd 6). (10) useful in the future:

—_

- ; * Ao op 1)
The matricesSinod #) and Sgpo(6) are respectively ths fp(0)=ex —el(@P=L)wblm
matrices for particles in the spinor representation of e @
SO(2P+1), and for kinks in the triple-well potential. e~ 12 sinh(Pw)

The spinor part of th& matrix was found if 3]. The fact
that it is invariant undeSO(2P+ 1) means that it can be

X cosh(2P-Dwi2siniw)|” ¥
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b
s ,8r=cos(%r).

The tricritical Ising mode matrix has\ = 1/4, so in general
N must bex(N—2)/4. Crossing symmetry fixes the sign,
requiring that

S

FIG. 2. Representing kink scattering by four vacua.

N—2 1
—(_1\Pt1____— _/_q1\P+1__
N=(-1) (~)P* i

4
The minimal S matrix for BPS kinks in a triple-well po-
tential can also be determined by imposing the same criteria.
In addition, we can utilize the generalized supersymmetryWe should InOte thst some thtri ”IW(mUS S|gnshap%ear in the
tions because the kinks are neither bosons nor
Because the generalized supersymmetry oper@ansdQ crossing rela
commute with the Hamiltonian, they must also commute fermions[21]. This solution of the Yang-Baxter equation was

with the S matrix. Since we know how they act on multipar- onginally found in an integraple lattice model, the hard-

ticle states, this is simple to implement. In fact, some of th exagon model, _where the kmk vacua corre§pond fo the
work has already been done for us. TBematrix for the elgh.ts in the [attlce quel. This Iatt.|ce model is part of the

tricritical Ising model describes the scattering of kinks in a restricted solid-on-solid” (RSOS hierarchy [22]. More

triple well, and is invariant under ordinary supersymmetrygeneral RSOS models let the heights or vacua run over more

; - lues; these arise in the multi-flavor and symplectic Gross-
12]. Th | | hgaues .
[12]. The generalized supersymmetry algebra acting on tfﬂeveu models to be discussed[BB].

stateq3) is related to the ordinary supersymmetry algebra b . . ; .
making the substitutiord— = (N—2)6. Thus in order to The Iast_step is to find the functidd(6). Crossing sym-
metry requires that

commute with the generalized supersymmetry,
Sgpd 0)*Srci((N—2)6) B(6)=B(i7m—6)
or  Sgpg(0)*Srci(—(N—-2)0).

while unitarity requires that
Such anS matrix will automatically satisfy the Yang-Baxter

equation as wellany solution remains a solution under the 1
scalingf—\0). B(0#)B(—0)= - - .
It is easiest to label th& matrix elements for kinks by Sim{)\g_ ' Sin}-{l_ﬂ-+)\0

their vacua. A two-kink configuration can be labeled by three 4 4

vacua. As shown in Fig. 2, a two-particmatrix element
can be labeled by four vacua because only the middl
vacuum can change in a collision. Thus tBisatrix element

Sgr;,) describes scattering the initial statt to the final state
rs't. For the triple well, the labels,s,s’,t take the values

0,£1. The elements 08gzpg are then

ebne can easily find the minimal solution of these relations,
whereB(6) has no poles in the physical strip<Om 6<<nr.
For theN=3 case, the\'=1 supersymmetric sine-Gordon
model, there are no bound states: the BPS kinks make up the
entire spectrunj2]. There are no poles in the physical strip
for N=3. This result is confirmed by calculating the free
B om i energy[15], a computation we will repeat in the next section
SE{‘“H)(Q):B(o)(m—rm) isin}{)\o— —} ! , '
4 In general, we needBR( ) with poles, because the Gross-

et Neveu model has bound states. For 1, there are particles
U2, gl |\ L+i(olm) other than the kink in the spectrum. These have masses given
(rr) _ BriiBry 4\Pi by Eq.(9), with j=1...P—1. The fermiony; is thej=1
Sr=1r1(0)=B(0) ) (= 1)7isinf{A 0] state, and highgrcorresponds to bound states of the fermion

[18]. For oddN=2P+1 all fundamental representations ex-
cept for the spinor appear in the tensor product of two spinor
representations. Moreover, the poles in E4®) correspond
to bound-state particles in the correct representations of
io1m) ) SO(2P+1). We thus expect all statdsther than the kink
Br-1 'B—cos '_Wr N itself) to appear as bound states of two kinks. It follows from
B 4 Egs.(8) and(9) that the bound states appear as poleB(if)

(15 at §;=im(1—-2jA) for j=1...P—1. Crossing symmetry

means that there must be polesdatin2jA as well.

where We find that

Br+1)'(0’”),3 r{i”

—cCcosh—r+A\@
B Z

SUPTINY 0)=B<0><
s <0>=B(0)(
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int{(P—1)/2y SIN = (O+i7—idbmA)

B(”:—.{ L r{
sinif A0+ — sin

Sinl‘{%(0+i4bﬂ'A)}

(0—im+idbmA)

N | N -

sinr{%(a—MbwA)}

® r£+(|—1)i—i}r23+(2|—1)i+—H—+|i—L}
2 2 AiAl |2 4A T ama| |27 28 T amin
<1 -7 1 0 |t 1 06 11 1 6|

The 1/sinhk6+in/4) gives poles corresponding to bound states with pdthe finite product of sinh functions gives the
appropriate poles for evgnThe infinite product of gamma functions assures that crossing symmetry is obeyed. Another way
of writing B(#) is as

int{P/2} sinh{%[ O+imT—i(4b— 2)77A]} sinh‘%[ 0+i(4b— 2)77A]]

B(g):. i =1 . |1 S 1 .
sin Z—m S|nh{§[0—|w+|(4b—2)7-rA]}smh‘5[6—|(4b—2)7rA]]

e} F
x11
I=1

T

1+(21-1 ! — T ! —0
+(2l= )H+47TiA 2A  4miA

1+(21-1 ! —0 Fll —0 |
+(2l= )H_4’7TiA ﬂ+477iA

1 0 1 0
l+(|—l)ﬂ—m r (2|—1)E+m r

l|11—0F2|11—0I‘
+= )ﬁ+47riA (2= )E_47TiA

Here the 1/sintN¢—in/4) gives poles corresponding to the fact that at a polé= 6; of the S matrix, the residue {
bound states with evej) while the finite product of sinh —6;)S(6,) becomes a projection operator. This happens
functions gives the appropriate poles for gddVith a little oy at imaginary values of the rapidity, so this does not

tedium one can show that the two expressionsHf) are  yiolate unitarity. For example, from Eq€l2), it follows that
in fact equal. The following integral representation will be 5t 9= g, =j#(1—24A), all the f,(6;)=0 except forj=1.

useful: Thus Sqpinor becomes a projection operat®y onto the |
=1 bound states. This means that one can think of the fer-
» dw (2P Dbl mion of rapidity # as a bound state of two kinks, one with
B(6)= mex f_w P rapidity 6+ 6,/2 and the other witt§— 6,/2. In general, con-

sider a case where tf&matrix of two particlesx and 8 has
a pole atd= ;. The residue of th&matrix at the pole is the

2sinj(P—3/2)w]+sinf (P—1/2)w] Uy
sum of projection operators

4 sinfjw]cosh(P—1/2)w]

(16 lim [(6—6,)S“A(6)]=, RyP,.

60— 6; a
It is most easily obtained by multiplying the two expressions .

for B(#), a standard rewriting of the logarithm of the gammahe s matrix of the bound statg from another particley

functions in terms of an integral, and then taking the squargg|ated to theS matrices of the constituents by the formula

root. . . [23,3]
We have thus determined tt&matrix (10) for the BPS

kinks in the Gross-Neveu model.

By using the bootstrap, one obtains Bmatrix for all the Sin= ( > \/@Pa) SN (9+ 6,/2)SPN (6 ;12)
particles, for example reproducing ti&ematrix of [18] for a
the fermionsy; . To apply the bootstrap, we need to utilize a

: . . 1

number of results from integrable lattice models. In this con- %
text, the process of obtaining a new solution of the Yang- \/@
Baxter equation from an existing one is called fudiag,24].
For example, in a model witBU(2) symmetry, one can fuse Note that the matrices in E¢17) are not all acting on the
the Smatrices for two spin-1/2 particles to get that for a spin-same spaces, so this relation is to be understood as multiply-
1 particle. In the simplest cases, the fusion procedure utilizeg the appropriate elements. The upshot is that one can

Pa|- )

%
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think of the particle with massn; and rapidity ¢ as the number of kink states and the funny rules do not affect the
bound state of kinks with rapiditieg+ ¢;/2 and 6— 6;/2. bound states. However, these extra factors do result in zeros
The f, given by Egs(12) determine in which representa- which cancel spurious poles occurring in the fusion of
tion of SO(2P+ 1) the particles for a giveptransform. For  Sgpinor for odd N.
example, the particles with mass; transform in the vector There is an algebraic explanation for the simplicity of the
representation, so there ar®2 1 of them. These are the kink structure in the bound states. Conceptually, it is similar
original fermions. The particles with mass, transform in  to the cases with a Lie-algebra symmetry, but here it is be-
the antisymmetric representation and the singlet, so there am@useSgps has a quantum-group symmetry. In our case of
2P2+P+1 of these. In general, the particles with mass interest, the quantum-group algebralg(SU(2)), with the
are in thea-index antisymmetric tensor representations withdeformation parametey=e>™/3, This algebra is a deforma-
a=j,j—2,.... Thereason for the multiple representations tion of SU(2), andmany of its representations have proper-
of particles at a given mass is likely that they form an irre-ties similar to ordinary5U(2). In particular, the kinks inter-
ducible representation of the Yangian algebra $©(2P polating between adjacent minima are the spin-1/2
+1) [19]. To compute the explici® matrix for all the bound  representations df,(SU(2)). However, whery is a root of
states is a formidable task; for some results, [93. How-  unity, various special things happen. In our case of a triple
ever, by using fusion we can compute the “prefactor” of the well, what happens is that the spin-1 representation is very
S matrix, which is necessary for the computation of the freesimple. A spin-1 kink goes from either the vacuum 1 to
energy in the next section. The prefactor of &matrix for  —1, —1 to 1, or from O to 0. Note that whichever vacua
scattering a particle in representation with highest weight one is in, there is only one vacua to go to. Hence the number
from a particle in representatiqn, is defined as th&matrix ~ of spin-1 kinks isK=1. The triple-well structure can be
element multiplying the projector on the representation withignored once one fuses the kinks: effectively the BPS struc-
highest weightu,+ u, . We denote the prefactor &,(6#),  ture goes away for the bound states.

and for example, for kink-kink scattering the prefactor is To conclude this section, we note that kinks transforming
under the generalized supersymmetry have appeared before,
Spp(0)=B(0)fp(0). in the ordinary sine-Gordon model at coupling3g

=16x7/(2P+1) [25]. In fact, the Gross-Neveu model and
the sine-Gordon model at these couplings are closely related.
Rrhe masses; (but not the degeneracieis the spectrum are

An important check on thi§ matrix is that the scattering
closes. This means that all the poles in the physical stri
correspond to particles in the spectrum. In fact, ZEros Comlr]ﬂjentical, with the soliton and antisoliton of the sine-Gordon
from_ the BPS part of thes matrix cancel spurious poles model having the masas like the kinks herg¢18]. Even more
coming from the spinor pa}rt. without the BPS part, .the bOOt'strikingly, the soliton and antisoliton are representations of
strap does_not_close. This was noted[Bj,_ where It was the generalized supersymmetf$), as shown in25]. The
term_ed a ylolanon of the bootstrap for spinor partlclﬁ. reason for the similarity is that both are related to a certain
Solving this problem gives another way of seeing that th

extra BPS structure must be present. To find the zeros co eir_1tegrab|e perturbatiofby the (1,1;adjoin} operatof of the

ing from fusingSgps, note thatg; for oddj obeys sinhX6, "Coset conformal field theories
+im/4)=0, while for even;j it obeys obey sintNg,—im/4) SO(N), X SO(N);
=0. Thus at\ 0= —i«/4, the S matrix in Egs.(15) projects SON)y 11

+

onto the states

The k=1 case is the sine-Gordon model 8§ ;= 167/N,
while the k—o case is the Gross-Neveu modeb]. The
models for allk should be integrable, and for odd the S
matrix should have the form

|-11), |1-1), [00) j odd
while at\ 6=i/4, it projects onto

|-1,-1), [00), |11) j even. S=5,8 Seps
Using the formula(17) yields the bound-stat8 matrix. One
finds that fusingSgps gives anS matrix effectively diagonal

in the kink labels, and moreover, it is the same for all labels
Thus it contributes only an overall factor to tBenatrix of a
bound statg from a kink y, namely

where g is related tok. The S matrix S, is the S matrix
associated with the spinor representation of the quantum
groupU4(SQ(N)), which as far as we know has never been
worked out explicitly in general. In th&=1 sine-Gordon
case, the generalized supersymmetry is extended 1g=a@

i3 version, with generator®. ,Q. . This means that fok
sinf{w— T} j odd =1, S, is in fact xSgps. For k—», g—1 and the
quantum-group algebra reduces to the usual Lie algebra
SQ(N). Thus lim,_,1S4= Sspinor-

V. THE FREE ENERGY

: ) i
S(”)ocsmr{)\éhl— 5

) ] i
s ”ocsm){)\a— 5

) i3
sinh A0+ ——

A j even.

This overall factor is the only effect of the restricted-kink  In this section we compute the free energy of the Gross-
structure on the bound statgs 1 .. .P—1. The non-integer Neveu model at finite temperature using a technique called
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the thermodynamic Bethe ansdf#BA). This gives a non- have to assume that the usual Bethe equations based on the
trivial check on the exac® matrix. In the limit of all masses Dynkin diagram of the underlying Lie algebfa8] apply, in

going to zero, the theorem ¢27] says that the free energy the SO(2P+1) case, not to the irreducible representations
per unit length must behave as IT;, but precisely to the mixturgs, . This is a key technical
assumption, which is checkedposteriorj because the num-

ber of particles of each mass can be read off from the TBA
equations.

The second is that the kinks in the Gross Neveu model are
wherecy is the central charge of the conformal field theory not only in the -dimensional spinor representation, they
describing this ultraviolet limit. The numbeg,y, can usually ~ also form a multiplet under the generalized supersymmetry
be calculated analytically from the TBA, because in this limittransformations. This means that instead of one, one gets two
the free energy can be expressed as a sum of dilogarithmguxiliary problems, one to diagonalize the transfer matrices
The ¢y computed from the TBA must of course match theacting on the degrees of freedom transforming in the spinor
cyy from the field theory. This provides a very useful check,representation, the other to diagonalize the transfer matrices
because the spectrum is essentially an infrared propertcting on the BPS degrees of freedom. A similar but simpler
Finding the central charge exactly in the ultraviolet limit re- problem has been solved in the TBA calculation of tkie
quires knowing not only the exact spectrum but the egact =1 supersymmetric sine-Gordon mod&b.
matrix as well: the gas of particles at high temperature is We first solve the auxiliary problem for the BFSSnatrix.
strongly interacting. All particles contribute to the free en- This was already done i{29], becauseSgps is the same as
ergy, so if some piece of the spectrum is missing, or iSan that in the tricritical Ising model, up to a rescaling @fThe
matrix is wrong, the TBA will not give the correct,, . result is that the TBA equations in the tricritical Ising model

The free energy is computed from the TBA by two steps.require introducing one pseudoparticle with densi{),

First one finds how the momenta are quantized when periand hole densityr(6). Then the density of states for the
odic boundary conditions are imposed. Precisely, one departicle in the tricritical Ising model is

mands that the multi-particle wave functiaf(x4,X,, . ..)
remains the same when any coordinateis shifted to
X;+L. In an interacting theory, the quantization involves the
S matrix, because as one particle is brought around the peri-
odic world, it scatters through the other particles. In the conwhere we have defined convolution as
tinuum, this leads to a constraining relation between the den-

sities of states and the actual particle densities. The free a*b(a)sfw a(6—0')b(6')de’.
energy at temperatufgis found in the second step by mini- —w

mizing it subject to the constraint. The detailed procedure for

this computation has been discussed in many places, so widhe kernel¢(6) is defined as

will not repeat these explanations. Several papers closely re-

lated to the current computation af29,15,1Q. The TBA £(6) = 2P—1
computation here is technically complicated because the cosh(2P—1)4]
scattering is not diagonal. This means that, as a particle is

going around the periodic interval of length it can change in general, withP=1 for the tricritical Ising model. The
states as it scatters through the other particles. The way tdensity of real particles is denoted pyc,. It is most con-
proceed then is well known. First, one has to set up the&/enient to give most kernels in terms of Fourier transforms,
system of auxiliary Bethe equations to diagonalize the transdefined as

fer matrix, then use its results to determine the allowed ra-

pidities. This computation amounts to a standard Bethe an- f(“’)zf %ei(zp_l)wg/ﬂ—f(a)

satz computation. The end result can be written conveniently 2

by introducing extra zero-mass “pseudoparticles” or “mag-

nons” to the constraining relations. Then one minimizes theso that

free energy to find out the equilibrium distributions at tem-

peratureT, and thus the thermal properties of the+1)- Hw)=

dimensional quantum field theory. w\’

Two kinds of additional complications occur here. The 2 COS'{§)
first difficulty is that, as a striking consequence of the boot-
strap analysis, particles appear in plhdex antisymmetric The density of states for the pseudoparticles is then re-
tensor representatiori$; , but in general there is not a single |ated to the density of real particlesc, by
mass associated with a given representation. Instead, par-
ticles with massm, appear in representations=a,a 27T(T+;):§*pTCI-

—2,..., amixture we callp,. On the other hand, little is
known about the diagonalization of transfer matrices actingrhe pseudoparticles have zero energy, but they contribute
on products ofSO(2P+1) representations. To proceed, we entropy to the free energy. The equilibrium valyes, and 7

. wT?
IimF=— TCUV (18
m—0

1¢éx¢ 1 s
271-F)TCI( 0):mCOSh0+ E E*p-l—cﬁ— Ef*(r— T)

(19
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are four_1d by mihimizing the free energy ;ubject to the above(") O O O O—
constraints. Notice that simple manipulations allow us to re-
express the density of states for the particle as FIG. 3. The TBA for theO(3) Gross-Neveu moddthe super-

symmetric sine-Gordon model

* ~
27P+c(6)=mcosho+ ﬁ*p-rm— ExT=mcoshf+ éxT.

27 The new kernel is given by

The second form will be the most convenient in what fol- Aj(lw)zz cotr(w)e*max(j"’“"'sinh(min(j D).
lows.
Before giving the full answer for the odd-Gross-Neveu These equations can be simplified greatly by inverting the
model, let us first also review the solution for tRe=1 case, matrix A, (for details see for example.0]), giving
the /=1 supersymmetric sine-Gordon model at 6X(3)

sym_metric point. As discussed in the last section, $haa- 2wP;(0)= 6;omcoshf+ Ex(pj_1+pj_1). (23
trix is
Even the pseudoparticle coming from the BPS piece is
580(3):STCI®Sﬁ§G—»8w- included in this equation, by defining_,(8)=7(6) and
. . . . . P_,= 7+ 7. Minimizing the free energy then yields the TBA
The latter piece is th& matrix for the ordinary sine-Gordon equlaticTJnsT g 9y 4
model at anSU(2)-invariant point B§G—>8w in the usual
normalizatior). The au_xi!iary proble_m for this _piece _is €(0)=8,om coshd— éx[In(1+e €i-1/T)
equivalent to diagonalizing the Heisenberg spin chain, a
problem solved by Bethe 70 years ago. One must introduce +In(1+e S+1/M)]

an infinite number of pseudoparticles with densijigls), in o _
addition to the pseudoparticle densityd) required for the ~With j=—1,0,1,2..., ande_,==. These TBA equations
BPSSmatrix. The density of state®, for the kinks of mass are conveniently encoded in the diagram in Fig. 3. The

m is then related to the particle densjty given by circles represent the functioreg ; the filled node represents
the fact that the equation fary has a mass term.

” _ _ The free energy per unit lengthis
2mPo(6)=mcoshf+Yxpo(0)— >, o\ xp;(6)—Ex7(0).
=1

(20) F(m,T)= —ij g—icoshaln(1+e‘€o(9)”). (24)
The kernel&r}w) follow from the Bethe ansatz analysis, and
are One can check that in the limih— 0, this free energy yields
R _ the correct central charge 3[25]. This confirms the pres-
ol =ellel, ence of the BPS kinks in the spectrum.

The TBA for the full O(2P+ 1) Gross-Neveu model is
The kernel) comes from two places. There is a contribution conceptually similar to thé(3) case, but is much more
from the prefactor of the& matrix, and for kink-kink scatter- inyolved technically. To complicate matters further, there are
ing there is an extra piece arising from the Bethe ansatparticles with masses,, a=1...P. Luckily, many of
analysis[29]. The formula for anyP is the technical complications have already been solved. The
diagonalization of the BPS part is the same as in the tricriti-
cal Ising model [29]. This requires introducing the
pseudoparticle density(6), as described above. The diago-
nalization of the auxiliary problem for th&OQ(2P+1)

i d d 1.
PPP+1/2):@ ImIn B+@ Iminfp+ E(5)2 (21)

so that spinor part is done using the standard string hypothesis based
on the Dynkin diagranp30]. For the TBA for theSU(N) and
R GAEL I el O(2P) Gross-Neveu models discussed [ih0], the TBA
PP P=1 4cosﬁ(w/2)' equations are related to tH@U(N) and SO(2P) Dynkin

diagrams. HowevelSO(2P +1) is not simply laced, so this
The other Bethe equations relate the densities of states f@ase is somewhat more complicated. Nevertheless, the ap-

the pseudoparticles to particle and pseudoparticle densitiepropriate computation has been done alread}aDj, utiliz-

They are ing the Yangian structure of th® matrix. The densities of
particles with massn, are defined ag, o, while the auxil-

. ” oy o~ iary problem requires introducing pseudoparticle densities

27TPJ'(‘g):‘TJ( Hpol 9)_21 AJ(| "xpi(6) (22 paj With j=1 ..., as well asr. In our notation, we try to

- remain consistent withl10], where the TBA for theD(2P)

where the density of string stat is Gross-Neveu model is discussed. N
The quantization conditions for the densities of states
PJ:pJ+pJ Pa,j:Pa,j+Pa,j are then
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p
2P, o #)=m, coshf+ bZl YEDup o(6)

oo

- E U](w)*’;’a,j( 0),

=)
27Pp o=m coshd+ bzl V&2 py o 6)

=2 o[ (0)-6xT(0). (29

PHYSICAL REVIEW [®5 025001

The last terms in Eq$25) are expressions of the logarithmic
derivatives of the transfer matriX eigenvalues. The kernels
Vap are simply related with the S matrices described in the
previous sections. Except for the case=b=P given
above in Eq.(21), one hasy{"Y2)=(1/)(d/d6) InS,,,
whereS,,, is the prefactor for scattering particles belonging
to the representations with highest weighig and wy.

As explained above, thes& matrix elements do not
probe the kink structure, so the same computation will give
these kernels fo®(N) for even and oddN. Thus these ker-
nels for oddN can be read off from th&l even results in
[10], giving

cosh(P—1/2—max a,b))w)sinh(min(a,b) w)

Y& A(w0)= 81— el

coshH(P—1/2) w)sinh( w)

sinhlaw)

3y (P+1/2
yg,P ): _elwl

P PUA_ 1 _glol

2 cosl(P—1/2) w)sinh w)

(26)

sin(Pw)

for a,b=1...P—1. The latter kernel came from E(R1).

4 cosh{(P— 1/2) w)sinh( w)cosh w/2)

the appearance of factors of 2 in the terms involving the

The pseudoparticle densities are given by the auxiliary Beth&tter, which in the Dynkin diagram corresponds to the spinor

system
© P-1
ZWpa,j(a)ZU](x)*Pa,O_zl b§=:1 A %K gp% pp 1 (0)

- 21 Aﬁ)z*KaP*EPJ :

% P-1
2mpp |(0) =0\ *ppo— ;1 bzl Al * K pyx pp i(0)

ee]

- 241 AJ(Z)J/Z*KPP*PPJ

2m(1+7)=E*ppg (27

where the kerneK in Fourier space is

n 1 .

Kaa+1=— 2 coshe Kaa=1

‘ B coshw/2 Qo cothw/2 28
P.P=17" coshw PP™ cothew (28

Equations(27) are the continuum limit of th&OQ(2P+1)

Bethe equations, with source terms associated to alpthe
representations. In the preceding equati@®—(28), the in-
dex a takes values 1 ..P—1; the equations involving the
indexP are given explicitly. The key feature of this system is

representation. It is directly related to the fact that Bta
root is the shortest; it has length 1 while all the others have
length 2.

The TBA equations are written in terms of functiogs; ,
defined as

Pa,j 1 T 1

Paj 1+e%i™" 747 14e®e-1/T

for a=1...P. The values tha} runs over depend on the
value ofa: for a=1...P—1, j takes values 0,1 ..o,
while fora=P, j=-1,0,1 .. =. The extra functiorep _;
arises from the diagonalization of the BFSmatrix. This
problem can now be put in a considerably simpler and rather
universal form by inverting the kernels. The resulting TBA
equations are

€2j(0)=—Tox[In(1+e @ai+t/T)+In(1+e @i-1/T)]
+Tp*[In(1+ea+1i’T)+In(1+ea-1'T)],
a=1,...P-2 (29)
together with
€p_1j(0)=—Te*[In(1+e P-1i+1/T)
+In(1+e P-1i-1/T) ]+ Thx[In(1+eP-2i'T)
+In(1+ePa+1/T) +In(1+ePa-1/T)]

+ Ty In(1+eP2'T) (30
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this by taking the limit of Eq(32) takes a little bit of work.

, Q Q— Another check is that in the IR limitn,— o, the correct
| | | particle multiplicities are obtained. Namely, one should have
I S S ~ d¢ he)IT

Yy H _ . — My COS

@ Q Q rnI;TOCF(m,T)— Té namaf_xzwcoshae a
I I I (33
' 5 5

.5‘\ ’UE\\ ,/*-’5 . wheren, is the number of particles with mass,. To obtain

. \ ’ HEEEN
ty b 4 tv \
-/ -/

7 7
/7 \ /
/ . \ /

Define
W, o6
e .
FIG. 4. The TBA for theO(2P+ 1) Gross-Neveu modéhere Yavj_(!'"le ai@), j=1
P=4). -
and Ya,OE lim eMa coshf— €aj(0),

H— 0

€p,j(0)=—Téx[In(1+e Pi-tN)+In(1+e”Pi-1/T)] It then follows from Eqs(32),(33) thatn,=Y, . To find the
+Téx In(1+eP-1i/T), (31)  Ya, requires taking then—co limit of the TBA equations
(29),(30),(31). In this limit, one can replace the, j(¢) by
In the last equation, the coupling te»_;;,, occurs only In Ya,j.Thus_ the integrals can be done explicitly, giving a set
when j is even. The kernels are defined by their Fourierof polynomial equations for thé&; ;. For example, forj

transform, =0 they are
® (Ya0?=Ya 10Yar1d1+Ya) a=1,...P-2
1 cosi 7 1
b= — =\ Yo 102=Yp_2dYpo)?(1+Yp_1)Yp1(1+Yp,) L
¢ 2 costiw)’ Y coslm) ' & PR (Yp 1,0) P 2,0( P,o)( P 1,1) P,l( P,l)
2 cos 2 XYp _1(1+Yp )7t

As usual, the mass terms disappear from the equations, but  (Ypo)’=Yp 1d1+Yp 1)(1+Yp 1)

are encoded in the asymptotic boundary conditions ) . .
where Yo =1. The (not written) equations forY,; for j

€,0—M,yco0shé epo—mcoshd, O—cc. =1 do not depend on th¥, ;, so these can be solved sepa-
' ' rately. One finds immediately thatp _;=1, but unfortu-
The TBA equations can be conveniently encoded in the dianately, we were not able to derive an explicit closed-form
gram of Fig. 4. This is the non-simply-laced generalizationsolution for the othely, ;. However, it is easy to find them
of the diagrams of10]. One remarkable feature is how the by solving the polynomial equations numerically. For ex-
extra pseudoparticle coming from the BPS struct(tee ~ ample, forP=2, one finds thay; ;= 14/11, andY, ;= 11/5.
node on the bottom leffits in perfectly with the pseudopar- Plugging this into the equation for,, gives Y; g=n;=5
ticles coming from the diagonalization of the spinor part ofand Y, ¢=n,=42. These indeed are the correct multiplici-
the Smatrix. In this sense one could infer the existence of thdies forP=2. ForP=3, we findY, ;,=27/22,Y, ;=95/147,
BPS structure from a careful examination of the structure ofind Y3 ;=21/11. This yieldsn; =7, n,=22, andn,=8,2.
the TBA equations. In particular, note thab,=21+1, the dimensions of the an-
The entire purpose of this section is to verify that tBis tisymmetric and singlet representationsd(7). This checks
matrix does give the correct free ener@) in the ultravio-  that the transfer matrix diagonalization j80] indeed in-
let m— 0. This is of course a major check: it shows that thiscludes all the particles at each mass, even though they come
complicated spectrum arffimatrix conspire to give the cor- from more than one representation o2 .. .P—1.
rect central charge=P+1/2 in the UV, corresponding to As another check, we can easily generalize this TBA cal-
2P+ 1 Majorana fermions. The free energy per unit lenigth culation to the SO(2P+1),XSOQ(2P+1),/SO(2P

is given in terms of these dressed energigsis +1),.1 coset models mentioned at the end of the last sec-
tion. The TBA is almost the same as that above, except that
© dé el (BT the right hand side is truncated, so thén €, ; runs only
F(m’TF—Tg My | 5-coshfin(l+e a0, fom 0...k—1 for a=1,...P—1, while j=
(32) —1,0,1...2k—1 for thea=P nodes[30]. One can check

that for this truncated TBA system

By rewriting F asm—0 in terms of dilogarithms, we have
verified that one does indeed obtair P+ 1/2 as required. S k(2P+1)(4P—1+k)
Thus we take it as proven that this is the corr®chatrix. W7 2(k+2P—1)(k+2P)
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, supersymmetry results in the existence of BPS kinks. We
found the exactS matrix for these kinks, and used this to

' compute the exact free energy.
| One striking feature is that there is a non-integer number
’ K =2N2 of these kinks, in the sense that the number of
| n-kink states goes d§". In the simplest case, the generalized
supersymmetry reduces fg=1 supersymmetry in two di-
mensions. In fact, the “single-state supermultiplet’[82] is
closely related to the multiplet with th¢2 particles. More-
over, a(2+1)-dimensional analog is discussed[®83], and
unusual particle statistics related to Clifford algebras have
also been discussed [B4].

FIG. 5. The TBA for the sine-Gordon model #85y/8m We have generalized these results to a large number of
=2/(2P+1) (hereP=4). models with four-fermion interaction35]. These models

include Gross-Neveu-like models witBp(2N) symmetry,

as required. Fork=1, the conformal theory has central and multi-flavor generalizations of the Gross-Neveu model.
chargec=1, and the coset perturbation coincides with theAs in theO(N) case, kinks with non-integd¢ appear when-
sine-Gordon model fo;Béd87-r=2/(2P+ 1). This TBA is  ever the symmetry algebra is not simply laced.
represented by the diagram in Fig. 5, and was first studied in
[25,31].
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