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BPS kinks in the Gross-Neveu model
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We find the exact spectrum and degeneracies for the Gross-Neveu model in two dimensions. This model
describesN interacting Majorana fermions; it is asymptotically free, and has dynamical mass generation and
spontaneous chiral symmetry breaking. We show here that the spectrum contains 2N/2 kinks for anyN. The
unusualA2 in the number of kinks for oddN comes from restrictions on the allowed multi-kink states. These
kinks are the Bogomol’nyi-Prasad-Sommerfield states for a generalized supersymmetry where the conserved
current is of dimensionN/2; the N53 case is theN51 supersymmetric sine-Gordon model, for which the
spectrum consists of 2A2 kinks. We find the exactS matrix for these kinks, and the exact free energy for the
model.
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I. INTRODUCTION

The Gross-Neveu model describes interacting fermion
two dimensions. It has no gauge fields or gauge symme
yet it exhibits much of the behavior of gauge theories in fo
dimensions. The coupling constant is naively dimensionle
but radiative corrections result in a mass scale to the the
Thus the theory is asymptotically free and strongly intera
ing in the infrared. A~discrete! chiral symmetry is spontane
ously broken, which gives the fermions mass. In condens
matter language, the interaction is marginally relevant,
there is no nontrivial fixed point.

The Gross-Neveu model consists ofN Majorana fermions
c i , c̄ i , with i 51, . . . ,N. The action is

S5E d2z@c i ]̄c i1c̄ i]c̄ i1g~ c̄ ic i !~ c̄ jc j !# ~1!

where repeated indices are summed over. At the critical p
g50, the fermions are free, withc i a function only ofz and
c̄ i a function only ofz̄. At this critical point in two dimen-
sions, the fermions have left and right dimensions (1/2,0)
c and (0,1/2) forc̄, so the couplingg is naively dimension-
less. However, the beta function for this interaction is no
vanishing@1#. For g.0, the trivial free-fermion fixed point
is unstable, and a mass scale is generated. We denote
mass scaleM. In this paper we studyN>3; for N52 the
model reduces to the well-known massless Thirring mo
~the Luttinger model in the condensed-matter literature!, and
for N51 it is free. The action~1! is invariant under the
symmetry groupO(N). In a separate paper, we will discu
generalizations to other symmetries.

Despite a huge number of papers discussing various
pects of this model, there remained an important unansw
question: what is the spectrum of particles? Just because
fields are known does not mean the spectrum is known: th
may be kink states or bound states, and in some cases
are no one-particle states corresponding to the fields th
0556-2821/2001/65~2!/025001~13!/$20.00 65 0250
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selves. In particular, it was long known that for evenN the
spectrum contained 2N/2 kink states in the two spinor repre
sentations of theSO(N) symmetry algebra@2#. The argu-
ments which led to the existence of kinks for evenN apply
equally well to oddN, but it was not clear how many suc
kinks there were whenN is odd. It was shown in@3# that
there is no consistentS matrix for a single spinor represen
tation, and by utilizing a generalized supersymmetry, Wit
showed that the kinks are in a reducible representation
SO(N) when N52P11 is odd. He went on to conjectur
that they are in two copies of the 2P-dimensional spinor
representation.

In this paper we will answer this question and at long l
complete the computation of the mass spectrum. We sh
that there areA2 copies of the spinor representation whenN
is odd: the number of kinks for anyN is 2N/2. A noninteger
number of kinks means that there are restrictions on the
lowed multi-kink states; we give a precise definition belo
These kinks are in Bogomol’nyi-Prasad-Sommerfield~BPS!
representations of the generalized supersymmetry. FoN
53, the model is equivalent to theN51 supersymmetric
sine-Gordon model, so our result shows that these unu
BPS kinks appear even for ordinary supersymmetry. To c
firm our claims we compute the exactS matrix and free
energy of this model, and find agreement with the kno
results in the ultraviolet limit.

II. THE SYMMETRIES

To determine the spectrum andS matrices of the Gross
Neveu model, we need to understand the symmetry struc
of the model in depth. There are actually four different sy
metries which we utilize in this paper. These are all d
cussed in@2#; this section is basically a review of these r
sults.

A. O„N… symmetry

The action has a globalO(N) symmetryc i→Ui j c j and
c̄ i→Ui jT c̄ j . The matrix U must be an element ofO(N)
©2001 The American Physical Society01-1
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because the Majorana fermions are real. The existence o
global symmetry means that the particles of the model m
transform in representations of this symmetry.

B. Spontaneously-broken chiral symmetry

The action~1! has aZ2 chiral symmetryc→2c, c̄

→c̄. However, for g.0, this symmetry is spontaneous
broken, because the fermion bilinears[c̄ ic i gets an expec-
tation value. This expectation value results in a mass for
fermions. Note that this expectation value does not break
O(N) symmetry; a continuous symmetry cannot be spon
neously broken in two spacetime dimensions. Equivalen
the discrete parity symmetryc(z,z̄)→c̄( z̄,z) is spontane-
ously broken.

C. Local conserved charges

When a model possesses an infinite number of local c
served currents transforming non-trivially under the Lore
group, it is said to be integrable. The integrability results
powerful constraints on theSmatrix, which will be discussed
below. It was shown in@2# that the action~1! has at least one
of these conserved currents. Wheng50, the energy-
momentum tensorT5c i]c i obeys]̄Tn50 for any integern.
This no longer holds forgÞ0. However, ]̄T2 must have
dimension 5 and Lorentz spin 3. All operators of this dime
sion and spin must be a total derivative:

]̄T25 ]̄A1]B.

Thus there is a conserved current with componentsT2

2A,B) in the Gross-Neveu model. This already requires t
the scattering be factorizable, and it seems very likely t
there is a conserved current of dimension 2n ~and hence a
charge of dimension 2n21) for all integern.

D. Generalized supersymmetry

A very striking feature of the Gross-Neveu model sho
in @2# is that it possesses an extra conserved current of
N/2. This conserved current is

J5e i 1i 2 . . . i N
c i 1c i 2

•••c i N. ~2!

Another conserved currentJ̄ of spin 2N/2 follows from re-
placingc with c̄. To prove that this is a conserved curre
even forg5” 0, one shows that all possible contributions
]̄J are themselves total derivatives. In an equation,

]̄J5] J̃.

For N52, J̃ vanishes and this conserved current is
axial symmetry of the massless Thirring model~Luttinger
model!. For N54, the Gross-Neveu model decouples in
two sine-Gordon models, and the spin-2 currentJ is the dif-
ference of the energy-momentum tensors of the two theo

For oddN52P11, the results are much more surprisin
For N53, the current is of dimension 3/2, and genera
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supersymmetry transformations. This seems odd in a the
of fermions, but by bosonizing two of the three fermion
one indeed obtains theN51 supersymmetric sine-Gordo
model @2#. For general oddN, this results in a generalize
supersymmetry. The full current algebra of these curre
seems quite tricky. It seems very likely that atg50 it is the
WBP algebra studied in@4#, which indeed involves a curren
of spin P11/2 along with those of even integer spin. Th
was explicitly worked out for theP52 case~wheng50) in
@5#. This current algebra involves the spin-4 local current
well. These currents remain conserved wheng5” 0, just like
the supersymmetry currents do whenP51.

Luckily, to determine theSmatrix we do not need the ful
current algebra: we need only to understand how the c
served charges act on the particles. The conserved charQ

of dimensionN/221 is defined byQ5*dzJ1*dz̄J̃, and
likewise for Q̄. The operatorQ2 must be of dimension and
Lorentz spinN22. For example, forN53, using the explicit
form of the charge givesQ2}PL andQ̄25PR , with PL and
PR the left and right momenta@6#. For generalN, this means
that whenQ2 acts on a particle with energyE and momen-
tum p,

Q2}~E1p!N22,

since this is the only combination of energy and moment
with the correct Lorentz properties. It is convenient to defi
the rapidity u so that a particle of massm has energyE
5m coshu and momentump5m sinhu. The symmetry alge-
bra acting on a particle for oddN can then be written

$Q,Q%52mN22e(N22)u $Q̄,Q̄%}2mN22e2(N22)u

$Q,Q̄%52Z ~3!

The central termZ acts on the states asZua&5mN22zaua&.
The ~real! numbersza vanish atg50, but do not otherwise
As we will discuss, non-zeroza occur because of the non
trivial boundary conditions on the kink states@7#.

III. THE KINK SPECTRUM OF THE GROSS-NEVEU
MODEL

One interesting feature of the Gross-Neveu model is t
the spectrum is far more intricate than a glance at the ac
~1! would suggest. For any value ofN, the spectrum includes
kink states, as pointed out in@8,2#. In fact, for N53 andN
54, the spectrum does not contain anything but the k
states. The spectrum includes kink states because of
spontaneously brokenZ2 chiral symmetry. The kink interpo-
lates between the two degenerate vacua; in two-dimensi
spacetime there are domain walls between regions of the
vacua. The main result of this paper is to answer the qu
tion: how many kink states are there?

The result requires first finding how the kink states tra
form under the symmetries discussed in the last section.
will find the minimal number of particles required to tran
form under these symmetries non-trivially. In Sec. IV, w
will work out theSmatrix of these particles, and then in Se
1-2
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BPS KINKS IN THE GROSS-NEVEU MODEL PHYSICAL REVIEW D65 025001
V we will show that these particles andS matrices give the
correct free energy.

Again, we follow the analysis of@2# and study the kinks
semiclassically. The fermion bilinears[c̄ ic i gets an expec-
tation values0; the kink is a configuration ofs interpolating
between1s0 and2s0. In the semi-classical approach, on
treatss as a classical background field, and quantizes
fermions in this background. The fermions interact with t
background by the interaction

gsc̄ ic i .

Thus in the semiclassical limit, this problem is equivalent
quantizingN Majorana fermions in a kink background.
famous result of Jackiw and Rebbi shows that the Di
equation with this background possesses a single norm
able zero-energy modef 0 , f̄ 0 @9#. The zero-energy solution i
real, while the finite-energy solutions are complex, so
zero-energy state is created/annihilated by a real operatobi ,
while the finite-energy states are annihilated and created
an

i andan
i† respectively. Thus the semiclassical expansion

c i and c̄ i is

c i5 f 0bi1 (
n50

`

@ f nan
i 1 f n* an

i†#

c̄ i5 f̄ 0bi1 (
n50

`

@ f̄ nan
i 1 f̄ n* an

i†#. ~4!

The canonical commutation relations forc i require that

$bi ,bj%52d i j . ~5!

This is called a Clifford algebra; the combinationsMi j

5@bi ,bj # generate theSO(N) algebra. In this paper, whe
we useO(N) we generally mean the symmetry group, wh
SO(N) refers to the resulting symmetry algebra.

The presence of these zero modes means that there
be more than one kink state, because one can always act
any of thebi and get a different state. In other words, den
ing the kink states byua&, some matrix elements

^bubi ua& ~6!

are non-vanishing. The kink states therefore form a repre
tation of the Clifford algebra. The simplest possibility is th
the bi act like the gamma matrices ofSO(N). A gamma
matrix (g i) rs obeys the Clifford algebra~5!, and is an
SO(N) invariant wherei 51 . . .N transforms in the vecto
representation ofSO(N), while r ,s51 . . . 2int(N/2) trans-
form in the spinor representation~s!. The kinks must there-
fore be in the spinor representation~s! of SO(N). This is
effectively charge fractionalization, because the vector r
resentation appears in the tensor product of two spinor
resentations. Thus the original fermionsc i in the vector rep-
resentation ‘‘split’’ into kinks in the spinor representation~s!.

The properties of the spinor representation~s! of SO(N)
are different for even and oddN. For evenN, there is an
operatorgN11[ ib1b2 . . . bN which commutes with all the
SO(N) generatorsMi j but anticommutes with the Clifford
algebra generators. Therefore the 2N/2-dimensional represen
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tation of the Clifford algebra is not irreducible under th
SO(N) whenN is even. It decomposes into irreducible re
resentations withgN11561. These representations are ea
2N/221-dimensional, and are known as the spinor represe
tions of the algebraSO(N). The entire kink spectrum for
evenN consists of 2N/2 kinks in the two spinor representa
tions. It was shown in@10# that including these kinks along
with the other particles gives the correct free energy. T
effectively proves that these are all the kink states.

For oddN52P11, the spinor representation of dimen
sion 2P is irreducible. There is only one such spinor repr
sentation ofSO(2P11). Thus it might seem that the sim
plest possibility is that there are precisely 2P kinks in the
Gross-Neveu model for oddN. However, Witten shows tha
there must be more@2#. The key is to look at the discret
symmetry c i→2c i , c̄ i→2c̄ i . One can think of this
symmetry as being (21)F, with the caveat that the fermion
numberF is not defined forN odd: only (21)F is. This
symmetry is part of theO(N) group, but not part of the
connectedSO(N) subgroup whenN is odd. Because of the
form ~4!, bi→2bi under this symmetry. Thus there is a sym
metry operatorL5(21)F which obeysL251 and LbiL
52bi . In other words,L anticommutes with all the Clifford
algebra generators, and commutes with theSO(2P11) gen-
erators. Thus the kink states in an irreducible representa
of SO(2P11) must all have the same eigenvalue ofL. The
fact that the matrix element~6! does not vanish means tha
some kink states have eigenvalue11, while some have ei-
genvalue21. Thus theremustbe more kink states than thos
in the single irreducible representation ofSO(2P11). Note
that for evenN, we can identifyL with gN11, and the mul-
tiple representations with the two different spinor repres
tations. For oddN, there is only one kind of spinor represe
tation, so it must appear at least twice.

So what happens for oddN? The simplest possibility is
that there are kinks in two spinor representations, each
dimension 2P @2,11#. We will see that this is essentially co
rect, but there is a major subtlety. The key to the answer i
the generalized supersymmetry.

It is very useful to first examine the caseN53, where the
answer is known@12–15#. Here the Gross-Neveu model
equivalent to theN51 supersymmetric sine-Gordon mod
@2# at a fixed value of the sine-Gordon couplingbSG where
the model has an extraSO(3) symmetry. One might expec
that the kink spectrum would generalize the kink and an
kink of the ordinary sine-Gordon model to account for t
supersymmetry. For theN51 supersymmetric sine-Gordo
model, it seems plausible that the kink and antikink each
a boson/fermion doublet, making four particles in all@16#.
However, this is not the correct spectrum. The reason is
central chargeZ appearing in the supersymmetry algebra@~3!
with N53#. For the supersymmetric sine-Gordon model,Z
does not vanish@7#: it is the integral of a total derivative.Z
acting on the kink states is non-zero because here the bo
ary conditions on the field at positive spatial infinity an
negative spatial infinity are different.

The consequences of a non-vanishingZ are familiar in
supersymmetric field theories. Representations where
massm5uZu are called BPS states@17#. BPS representation
1-3
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PAUL FENDLEY AND HUBERT SALEUR PHYSICAL REVIEW D65 025001
usually have a smaller number of states than those witZ
50 @7# and so are often referred to as ‘‘reduced multiplet
When the BPS conditionm5uZu holds, one can find a com
bination of the generators which annihilates all BPS sta
For the generalized supersymmetry, the condition is

S Q2
mN22

Z
e(N22)uQ̄D ua&50 ~7!

for all BPS statesua&.
We need now to introduce a precise definition of t

‘‘number of kink states’’K. We say there areK kink states if
the number ofn-particle kink states at largen depends onn
as Kn. Put another way, the entropy per kink of a gas
non-interacting kinks is lnK. K is usually an integer in field
theory: e.g., if there are two one-particle states, there are
two-particle states, eight three-particle states, and so on.
kink structure need not be so simple, though. For exam
consider kinks in a potentialV(f)5(f221)2. The potential
has minima atf561, so there are two one-kink state
having f(`)561 and f(2`)571. However, there are
only two two-kink states. In fact, there are only two kin
states for anyn. Thus the number of kink states in this e
ample isK51. The example of most importance for th
paper is kinks in a potential likeV(f)5f2(f221)2. Here
the minima aref50,61. If kinks are allowed to only inter-
polate between adjacent minima~i.e., only between 0 and
61), then the number ofn-kink states doubles every timen
is increased by 2. Therefore,K5A2 in this triple-well po-
tential.

For the BPS representations of the generalized supers
metry ~3!, K5A2. This was already known forN51 super-
symmetry in two dimensions@12,14,11#, theN53 case here.
The BPS representations were initially given for the therm
(f1,3) perturbation of the tricritical Ising model, which ha
N51 supersymmetry as well as a Landau-Ginzburg desc
tion in terms of a fieldf with three degenerate minima@12#.
To reconcile these two facts, Zamolodchikov showed h
supersymmetry acts non-locally on theA2 kinks in this
triple-well potential. Somewhat more surprisingly, there a
A2 kinks in theN51 sine-Gordon model as well.

To give explicitly the action of the generalized supersy
metry for oddN, we denote a kink withf(x52`)5r and
f(x51`)5s as urs&. In the triple-well potential,r ,s50,
6, andr 2s561. The central chargeZ acting on a kink of
massm in a BPS representation ismN22(r 22s2). The BPS
representation of the generalized supersymmetry for oddN is
non-local: it changes the kink configuration all the way
spatial2`. On a single-particle state of rapidityu,

Qur0&5 ir ~meu!(N22)/2u2r0&

Qu0r &5r ~meu!(N22)/2u0r &

Q̄ur0&5 ir ~me2u!(N22)/2u2r0&

Q̄u0r &52r ~me2u!(N22)/2u0r &.
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One can indeed verify thatQ andQ̄ acting on this represen
tation satisfy the algebra~3!. Moreover, the discrete symme
try L acts non-diagonally as

Lurs&5u2r 2s&.

L indeed anticommutes with the generalized supersymm
generators. With the interpretation ofL as (21)F, we see
that the kinks are neither bosons nor fermions. Since
action ofQ andQ̄ is non-local, we must be careful to defin
their action on multiparticle states as well. For example o
three-kink state,Q acts as

Q~ ua& ^ ub& ^ ug&)5~Qua&) ^ ub& ^ ug&1~Lua&) ^ ~Qub&)

^ ug&1~Lua&) ^ ~Lub&) ^ ~Qug&)

and likewise forQ̄. Thus whenQ acts on a kink, it flips all
kinks to the left of it. ForN53, this reduces to the action o
supersymmetry discussed in@12,14#.

Of course, the kinks in the Gross-Neveu model must s
transform as a spinor ofSO(N). Thus we see that for oddN,
the simplest non-trivial kink spectrum consistent with all t
symmetries of the theory is for the kinks to be spinors
SO(2P11) and interpolate between the three degener
wells of this potential. Each kink is labeled by a spinor ind
1 . . . 2P and by a pair of vacua. The number of kinks
A232P52N/2. We emphasize that the generalized supersy
metry and the discrete symmetryL require that there be
more than the spinor: 2N/2 is the minimum number of kinks
satisfying these constraints. In subsequent sections, we
find theS matrix for these kinks, and show that it gives th
correct free energy, effectively confirming the presence
these BPS kinks.

IV. THE S MATRICES

In this section we work out theS matrix for the kinks in
the Gross-Neveu model for oddN52P11.

This S matrix must obey a variety of constraints. The
are easiest to write in terms of rapidity variables, defined
that the rapidityu1 of a particle is related to its energy an
momentum byE5m coshu1, p5mcoshu1. Lorentz invari-
ance requires that the two-particleS matrix depend only on
the differenceu5u12u2. Any S matrix arising from a uni-
tary field theory must be unitary and crossing-symmet
Moreover, the integrability of the Gross-Neveu model mea
that the multi-particleS matrix must factorize into the prod
uct of two-particle ones. The resulting constraint is called
Yang-Baxter equation. Finally, theS matrix must obey the
bootstrap equations. These mean that theS matrix elements
of a bound state can be expressed in terms of theSmatrix of
the constituents. This constraint is explained in detail in@3#,
for example. Bound states show up as poles in theS matrix
in the ‘‘physical strip’’ 0,Im(u),p. If there is such a pole
at u5u j in the kink-kinkSmatrix, then the kinks of massm
have a bound state at mass

mj52m cosh~u j /2!. ~8!
1-4
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WhenN53 andN54, the kinks are the only states in th
spectrum@8#. For N53, this was confirmed by the compu
tation of the exact free energy of theN51 supersymmetric
sine-Gordon model@15#. For the latter, it follows because th
N54 Gross-Neveu model can be mapped to two decoup
ordinary sine-Gordon models, each at theSU(2)-invariant
coupling (bSG

2 →8p in the conventional normalization! @2#.
This special decoupling happens because the algebraSO(4)
is equivalent toSU(2)3SU(2). At the SU(2) invariant
coupling of sine-Gordon, there are no bound states in
spectrum: the only particles are the kinks in doublets of e
SU(2). In theSO(4) language, these are the spinor rep
sentations.

For N.4, there are states other than the kinks. They h
masses@18#

mj52m sinS p j

N22D ~9!

wherem is the mass of the kink andj 51 . . . int(N23)/2.
The first of these states corresponds to the particle create
c i ; it is in the N-dimensional vector representation
SO(N). The other states are bound states of the fermio
One useful fact to note is that each type of particle cor
sponds to a node on the Dynkin diagram forSO(N), as
displayed in Fig. 1. For evenN, the kinks correspond to th
two nodes on the right, while for oddN, the kink is the node
on the right. The vector representation is the node on the

The exactS matrix of the vector particles for anyN was
worked out in@18#. Using the bootstrap gives theS matrix
for fermion bound states, but not the kinks. The explicit e
pression for theS matrix of particles with massm2 @which
are in the antisymmetric and singlet representations
SO(N)# can be found in@19#. TheSmatrix for the kinks for
evenN is worked out in@20,21# ~see also@3#!. Thus to com-
plete this picture we need to work out the scattering of
kinks for oddN, including the fact that they have the add
tional BPS structure discussed in the last section.

The BPS kinks in the Gross-Neveu model are in
2P-dimensional spinor representation ofSO(2P11), and
they also form a multiplet transforming under the gener
ized supersymmetry. Since the two symmetries comm
with each other, the simplest two-particleS matrix invariant
under these symmetries is of the tensor-product form

S~u!5Sspinor~u! ^ SBPS~u!. ~10!

The matricesSspinor(u) and SBPS(u) are respectively theS
matrices for particles in the spinor representation
SO(2P11), and for kinks in the triple-well potential.

The spinor part of theSmatrix was found in@3#. The fact
that it is invariant underSO(2P11) means that it can be

FIG. 1. TheSO(N) Dynkin diagrams for evenN and oddN.
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written in terms of projection operators. A projection oper
tor Pa maps the tensor product of two spinor representati
onto an irreducible representation labeled bya. Here a
50 . . .P, wherea50 labels the identity representation,a
51 the vector representation,a52 the antisymmetric tensor
and so on up toa5P21. The representation witha5P is
the representation with highest weight 2mP , wheremP is the
highest weight of the spinor representation. We do not g
the explicit expressions for the projectors because we
not need them; they can be written explicitly in terms of t
gamma matrices for the algebraSO(2P11), which in turn
can be written as tensor products of Pauli matrices. T
spinorS matrix is

Sspinor~u!5 (
a50

P

f a~u!Pa~u!. ~11!

The functionsf a(u) are not constrained by theSO(2P11)
symmetry, but all can be related tof P(u) by using the Yang-
Baxter equation. The result is@3#

f P215
u1 ipD

u2 ipD
f P

f P2a215
u1 ipD~2a11!

u2 ipD~2a11!
f P2a11 ~12!

where the Yang-Baxter equation does not determineD.
The functionf P(u) must satisfy the unitarity and crossin

relations. These do not determine the function uniquely,
cause one can obtain a new solution of these equation
multiplying any given solution by a functionF(u) obeying
F(u)51 andF(u)5F( ip2u). This is known as the CDD
ambiguity. The minimal solution of the unitarity and crossin
relations is a solution without any poles in the physical str
The minimal spinorS matrix of SO(2P11) has

D5
1

N22
5

1

2P21

and @3#

f P~u!5 )
b50

P21 GS 12bD2
u

2p i DGS S b1
1

2DD1
u

2p i D
GS 12bD1

u

2p i DGS S b1
1

2DD2
u

2p i D
.

~13!

Notice that this has zero atu5 ipD(2b11) for all b
50 . . .P21. These cancel poles arising from Eqs.~12!, and
ensure that there are no poles in the physical strip for an
the f a . The following integral representation forf P will be
useful in the future:

f P~u!5expF E
2`

` dv

v
ei (2P21)vu/p

3
e2uvu/2 sinh~Pv!

2 cosh@~2P21!v/2#sinh~v!G . ~14!
1-5
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The minimalS matrix for BPS kinks in a triple-well po-
tential can also be determined by imposing the same crite
In addition, we can utilize the generalized supersymme
Because the generalized supersymmetry operatorsQ and Q̄
commute with the Hamiltonian, they must also commu
with theSmatrix. Since we know how they act on multipa
ticle states, this is simple to implement. In fact, some of
work has already been done for us. TheS matrix for the
tricritical Ising model describes the scattering of kinks in
triple well, and is invariant under ordinary supersymme
@12#. The generalized supersymmetry algebra acting on
states~3! is related to the ordinary supersymmetry algebra
making the substitutionu→6(N22)u. Thus in order to
commute with the generalized supersymmetry,

SBPS~u!}STCI„~N22!u…

or SBPS~u!}STCI„2~N22!u….

Such anS matrix will automatically satisfy the Yang-Baxte
equation as well~any solution remains a solution under th
scalingu→lu).

It is easiest to label theS matrix elements for kinks by
their vacua. A two-kink configuration can be labeled by thr
vacua. As shown in Fig. 2, a two-particleS-matrix element
can be labeled by four vacua because only the mid
vacuum can change in a collision. Thus thisSmatrix element
Sss8

(rt ) describes scattering the initial staterst to the final state
rs8t. For the triple well, the labelsr ,s,s8,t take the values
0,61. The elements ofSBPS are then

Srr
(r 21 r 11)~u!5B~u!S b r

b r 11
1/2 b r 21

1/2 D i (u/p)

i sinhFlu2
ip

4 G
Sr 61r 71

(rr ) ~u!5B~u!S b r 11
1/2 b r 21

1/2

b r
D 11 i (u/p)

~21!Pisinh@lu#

Sr 11r 11
(rr ) ~u!5B~u!S b r 11

b r
D i (u/p) b1

b r
coshF ip

4
r 1luG

Sr 21r 21
(rr ) ~u!5B~u!S b r 21

b r
D i (u/p) b1

b r
coshF ip

4
r 2luG

~15!

where

FIG. 2. Representing kink scattering by four vacua.
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4
r D .

The tricritical Ising modelSmatrix hasl51/4, so in general
l must be6(N22)/4. Crossing symmetry fixes the sig
requiring that

l5~21!P11
N22

4
5~21!P11

1

4D
.

We should note that some extra minus signs appear in
crossing relations because the kinks are neither bosons
fermions@21#. This solution of the Yang-Baxter equation wa
originally found in an integrable lattice model, the har
hexagon model, where the kink vacua correspond to
heights in the lattice model. This lattice model is part of t
‘‘restricted solid-on-solid’’ ~RSOS! hierarchy @22#. More
general RSOS models let the heights or vacua run over m
values; these arise in the multi-flavor and symplectic Gro
Neveu models to be discussed in@35#.

The last step is to find the functionB(u). Crossing sym-
metry requires that

B~u!5B~ ip2u!

while unitarity requires that

B~u!B~2u!5
1

sinhFlu2
ip

4 GsinhF ip

4
1luG .

One can easily find the minimal solution of these relatio
whereB(u) has no poles in the physical strip 0,Im u,p.
For theN53 case, theN51 supersymmetric sine-Gordo
model, there are no bound states: the BPS kinks make up
entire spectrum@2#. There are no poles in the physical str
for N53. This result is confirmed by calculating the fre
energy@15#, a computation we will repeat in the next sectio

In general, we need aB(u) with poles, because the Gros
Neveu model has bound states. ForP.1, there are particles
other than the kink in the spectrum. These have masses g
by Eq. ~9!, with j 51 . . .P21. The fermionc i is the j 51
state, and higherj corresponds to bound states of the fermi
@18#. For oddN52P11 all fundamental representations e
cept for the spinor appear in the tensor product of two spi
representations. Moreover, the poles in Eqs.~12! correspond
to bound-state particles in the correct representations
SO(2P11). We thus expect all states~other than the kink
itself! to appear as bound states of two kinks. It follows fro
Eqs.~8! and~9! that the bound states appear as poles inB(u)
at u j5 ip(122 j D) for j 51 . . .P21. Crossing symmetry
means that there must be poles atu j5 ip2 j D as well.

We find that
1-6
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B~u!5
i

sinhFlu1
ip

4 G )
b51

int$(P21)/2% sinhF1

2
~u1 ip2 i4bpD!GsinhF1

2
~u1 i4bpD!G

sinhF1

2
~u2 ip1 i4bpD!GsinhF1

2
~u2 i4bpD!G

3)
l 51

` GF1

2
1~ l 21!

1

2D
2

u

4p iDGG2F1

2
1~2l 21!

1

4D
1

u

4p iDGGF1

2
1 l

1

2D
2

u

4p iDG
GF1

2
1~ l 21!

1

2D
1

u

4p iDGG2F1

2
1~2l 21!

1

4D
2

u

4p iDGGF1

2
1 l

1

2D
1

u

4p iDG .

he 1/sinh(lu1ip/4) gives poles corresponding to bound states with oddj. The finite product of sinh functions gives the
ppropriate poles for evenj. The infinite product of gamma functions assures that crossing symmetry is obeyed. Another
f writing B(u) is as

B~u!5
i

sinhF ip

4
2luG )

b51

int$P/2% sinhH 1

2
@u1 ip2 i ~4b22!pD#J sinhH 1

2
@u1 i ~4b22!pD#J

sinhH 1

2
@u2 ip1 i ~4b22!pD#J sinhH 1

2
@u2 i ~4b22!pD#J

3)
l 51

` GF11~ l 21!
1

2D
2

u

4p iDGGF ~2l 21!
1

4D
1

u

4p iDGGF11~2l 21!
1

4D
1

u

4p iD GGF l
1

2D
2

u

4p iDG
GF11~ l 21!

1

2D
1

u

4p iDGGF ~2l 21!
1

4D
2

u

4p iDGGF11~2l 21!
1

4D
2

u

4p iD GGF l
1

2D
1

u

4p iDG .
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Here the 1/sinh(lu2ip/4) gives poles corresponding t
bound states with evenj, while the finite product of sinh
functions gives the appropriate poles for oddj. With a little
tedium one can show that the two expressions forB(u) are
in fact equal. The following integral representation will b
useful:

B~u!5
A2

Acosh 2lu
expF2E

2`

` dv

v
ei (2P21)vu/p

3
2 sinh@~P23/2!v#1sinh@~P21/2!v#

4 sinh@v#cosh@~P21/2!v#
G .

~16!

It is most easily obtained by multiplying the two expressio
for B(u), a standard rewriting of the logarithm of the gamm
functions in terms of an integral, and then taking the squ
root.

We have thus determined theS matrix ~10! for the BPS
kinks in the Gross-Neveu model.

By using the bootstrap, one obtains theSmatrix for all the
particles, for example reproducing theS matrix of @18# for
the fermionsc i . To apply the bootstrap, we need to utilize
number of results from integrable lattice models. In this co
text, the process of obtaining a new solution of the Yan
Baxter equation from an existing one is called fusion@23,24#.
For example, in a model withSU(2) symmetry, one can fus
theSmatrices for two spin-1/2 particles to get that for a sp
1 particle. In the simplest cases, the fusion procedure util
02500
s

re

-
-

-
s

the fact that at a poleu5u j of the S matrix, the residue (u
2u j )S(u0) becomes a projection operator. This happe
only at imaginary values of the rapidity, so this does n
violate unitarity. For example, from Eqs.~12!, it follows that
at u5u1[ ip(122D), all the f j (u1)50 except for j 51.
Thus Sspinor becomes a projection operatorP1 onto the j
51 bound states. This means that one can think of the
mion of rapidity u as a bound state of two kinks, one wit
rapidity u1u1/2 and the other withu2u1/2. In general, con-
sider a case where theSmatrix of two particlesa andb has
a pole atu5u j . The residue of theSmatrix at the pole is the
sum of projection operators

lim
u→u j

@~u2u j !S
(ab)~u!#5(

a
RaPa .

The S matrix of the bound statej from another particleg
related to theS matrices of the constituents by the formu
@23,3#

S( j g)5S (
a

AuRauPaDS(ag)~u1u j /2!S(bg)~u2u j /2!

3S (
a

1

AuRau
PaD . ~17!

Note that the matrices in Eq.~17! are not all acting on the
same spaces, so this relation is to be understood as mult
ing the appropriate elements. The upshot is that one
1-7
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PAUL FENDLEY AND HUBERT SALEUR PHYSICAL REVIEW D65 025001
think of the particle with massmj and rapidity u as the
bound state of kinks with rapiditiesu1u j /2 andu2u j /2.

The f a given by Eqs.~12! determine in which representa
tion of SO(2P11) the particles for a givenj transform. For
example, the particles with massm1 transform in the vector
representation, so there are 2P11 of them. These are th
original fermions. The particles with massm2 transform in
the antisymmetric representation and the singlet, so there
2P21P11 of these. In general, the particles with massmj
are in thea-index antisymmetric tensor representations w
a5 j , j 22, . . . . Thereason for the multiple representatio
of particles at a given mass is likely that they form an ir
ducible representation of the Yangian algebra forSO(2P
11) @19#. To compute the explicitSmatrix for all the bound
states is a formidable task; for some results, see@19#. How-
ever, by using fusion we can compute the ‘‘prefactor’’ of t
S matrix, which is necessary for the computation of the fr
energy in the next section. The prefactor of theS matrix for
scattering a particle in representation with highest weightma
from a particle in representationmb is defined as theSmatrix
element multiplying the projector on the representation w
highest weightma1mb . We denote the prefactor asSab(u),
and for example, for kink-kink scattering the prefactor is

SPP~u!5B~u! f P~u!.

An important check on thisS matrix is that the scattering
closes. This means that all the poles in the physical s
correspond to particles in the spectrum. In fact, zeros com
from the BPS part of theS matrix cancel spurious pole
coming from the spinor part: without the BPS part, the bo
strap does not close. This was noted in@3#, where it was
termed a ‘violation’’ of the bootstrap for spinor particles@3#.
Solving this problem gives another way of seeing that
extra BPS structure must be present. To find the zeros c
ing from fusingSBPS, note thatu j for odd j obeys sinh(luj
1ip/4)50, while for evenj it obeys obey sinh(luj2ip/4)
50. Thus atlu52 ip/4, theS matrix in Eqs.~15! projects
onto the states

u211&, u121&, u00& j odd

while at lu5 ip/4, it projects onto

u21,21&, u00&, u11& j even.

Using the formula~17! yields the bound-stateS matrix. One
finds that fusingSBPS gives anS matrix effectively diagonal
in the kink labels, and moreover, it is the same for all labe
Thus it contributes only an overall factor to theSmatrix of a
bound statej from a kink g, namely

S( j g)}sinhFlu1
ip

8 GsinhFlu2
i3p

8 G j odd

S( j g)}sinhFlu2
ip

8 GsinhFlu1
i3p

8 G j even.

This overall factor is the only effect of the restricted-kin
structure on the bound statesj 51 . . .P21. The non-integer
02500
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ip
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e
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number of kink states and the funny rules do not affect
bound states. However, these extra factors do result in z
which cancel spurious poles occurring in the fusion
Sspinor for odd N.

There is an algebraic explanation for the simplicity of t
kink structure in the bound states. Conceptually, it is sim
to the cases with a Lie-algebra symmetry, but here it is
causeSBPS has a quantum-group symmetry. In our case
interest, the quantum-group algebra isUq„SU(2)…, with the
deformation parameterq5e2p i /3. This algebra is a deforma
tion of SU(2), andmany of its representations have prope
ties similar to ordinarySU(2). In particular, the kinks inter-
polating between adjacent minima are the spin-
representations ofUq„SU(2)…. However, whenq is a root of
unity, various special things happen. In our case of a tri
well, what happens is that the spin-1 representation is v
simple. A spin-1 kink goes from either the vacuum 1 t
21, 21 to 1, or from 0 to 0. Note that whichever vacu
one is in, there is only one vacua to go to. Hence the num
of spin-1 kinks isK51. The triple-well structure can be
ignored once one fuses the kinks: effectively the BPS str
ture goes away for the bound states.

To conclude this section, we note that kinks transform
under the generalized supersymmetry have appeared be
in the ordinary sine-Gordon model at couplingbSG

2

516p/(2P11) @25#. In fact, the Gross-Neveu model an
the sine-Gordon model at these couplings are closely rela
The massesmj ~but not the degeneracies! in the spectrum are
identical, with the soliton and antisoliton of the sine-Gord
model having the massm like the kinks here@18#. Even more
strikingly, the soliton and antisoliton are representations
the generalized supersymmetry~3!, as shown in@25#. The
reason for the similarity is that both are related to a cert
integrable perturbation@by the ~1,1;adjoint! operator# of the
coset conformal field theories

SO~N!k3SO~N!1

SO~N!k11
.

The k51 case is the sine-Gordon model atbSG
2 516p/N,

while the k→` case is the Gross-Neveu model@26#. The
models for allk should be integrable, and for oddN the S
matrix should have the form

S5Sq^ SBPS

where q is related tok. The S matrix Sq is the S matrix
associated with the spinor representation of the quan
groupUq„SO(N)…, which as far as we know has never be
worked out explicitly in general. In thek51 sine-Gordon
case, the generalized supersymmetry is extended to anN52
version, with generatorsQ6 ,Q̄6 . This means that fork
51, Sq is in fact }SBPS. For k→`, q→1 and the
quantum-group algebra reduces to the usual Lie alge
SO(N). Thus limq→1Sq5Sspinor .

V. THE FREE ENERGY

In this section we compute the free energy of the Gro
Neveu model at finite temperature using a technique ca
1-8
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BPS KINKS IN THE GROSS-NEVEU MODEL PHYSICAL REVIEW D65 025001
the thermodynamic Bethe ansatz~TBA!. This gives a non-
trivial check on the exactSmatrix. In the limit of all masses
going to zero, the theorem of@27# says that the free energ
per unit length must behave as

lim
m→0

F52
pT2

6
cUV ~18!

wherecUV is the central charge of the conformal field theo
describing this ultraviolet limit. The numbercUV can usually
be calculated analytically from the TBA, because in this lim
the free energy can be expressed as a sum of dilogarith
The cUV computed from the TBA must of course match t
cUV from the field theory. This provides a very useful chec
because the spectrum is essentially an infrared prop
Finding the central charge exactly in the ultraviolet limit r
quires knowing not only the exact spectrum but the exacS
matrix as well: the gas of particles at high temperature
strongly interacting. All particles contribute to the free e
ergy, so if some piece of the spectrum is missing, or if aS
matrix is wrong, the TBA will not give the correctcUV .

The free energy is computed from the TBA by two ste
First one finds how the momenta are quantized when p
odic boundary conditions are imposed. Precisely, one
mands that the multi-particle wave functionc(x1 ,x2 , . . . )
remains the same when any coordinatexi is shifted to
xi1L. In an interacting theory, the quantization involves t
S matrix, because as one particle is brought around the p
odic world, it scatters through the other particles. In the c
tinuum, this leads to a constraining relation between the d
sities of states and the actual particle densities. The
energy at temperatureT is found in the second step by min
mizing it subject to the constraint. The detailed procedure
this computation has been discussed in many places, s
will not repeat these explanations. Several papers closely
lated to the current computation are@29,15,10#. The TBA
computation here is technically complicated because
scattering is not diagonal. This means that, as a particl
going around the periodic interval of lengthL, it can change
states as it scatters through the other particles. The wa
proceed then is well known. First, one has to set up
system of auxiliary Bethe equations to diagonalize the tra
fer matrix, then use its results to determine the allowed
pidities. This computation amounts to a standard Bethe
satz computation. The end result can be written convenie
by introducing extra zero-mass ‘‘pseudoparticles’’ or ‘‘ma
nons’’ to the constraining relations. Then one minimizes
free energy to find out the equilibrium distributions at te
peratureT, and thus the thermal properties of the~111!-
dimensional quantum field theory.

Two kinds of additional complications occur here. T
first difficulty is that, as a striking consequence of the bo
strap analysis, particles appear in allj-index antisymmetric
tensor representationsP j , but in general there is not a sing
mass associated with a given representation. Instead,
ticles with mass ma appear in representationsj 5a,a
22, . . . , amixture we callra . On the other hand, little is
known about the diagonalization of transfer matrices act
on products ofSO(2P11) representations. To proceed, w
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have to assume that the usual Bethe equations based o
Dynkin diagram of the underlying Lie algebra@28# apply, in
the SO(2P11) case, not to the irreducible representatio
P j , but precisely to the mixturesra . This is a key technical
assumption, which is checkeda posteriori, because the num
ber of particles of each mass can be read off from the T
equations.

The second is that the kinks in the Gross Neveu model
not only in the 2P-dimensional spinor representation, the
also form a multiplet under the generalized supersymme
transformations. This means that instead of one, one gets
auxiliary problems, one to diagonalize the transfer matri
acting on the degrees of freedom transforming in the spi
representation, the other to diagonalize the transfer matr
acting on the BPS degrees of freedom. A similar but simp
problem has been solved in the TBA calculation of theN
51 supersymmetric sine-Gordon model@15#.

We first solve the auxiliary problem for the BPSSmatrix.
This was already done in@29#, becauseSBPS is the same as
that in the tricritical Ising model, up to a rescaling ofu. The
result is that the TBA equations in the tricritical Ising mod
require introducing one pseudoparticle with densityt(u),
and hole densityt̃(u). Then the density of states for th
particle in the tricritical Ising model is

2pPTCI~u!5m coshu1
1

2

j!j

2p
!rTCI1

1

2
j!~t2 t̃ !

where we have defined convolution as

a!b~u![E
2`

`

a~u2u8!b~u8!du8.

The kernelj(u) is defined as

j~u!5
2P21

cosh@~2P21!u#
~19!

in general, withP51 for the tricritical Ising model. The
density of real particles is denoted byrTCI . It is most con-
venient to give most kernels in terms of Fourier transform
defined as

f̂ ~v![E du

2p
ei (2P21)vu/p f ~u!

so that

ĵ~v!5
1

2 coshS v

2 D .

The density of states for the pseudoparticles is then
lated to the density of real particlesrTCI by

2p~t1 t̃ !5j!rTCI .

The pseudoparticles have zero energy, but they contrib
entropy to the free energy. The equilibrium valuesrTCI andt
1-9
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PAUL FENDLEY AND HUBERT SALEUR PHYSICAL REVIEW D65 025001
are found by minimizing the free energy subject to the ab
constraints. Notice that simple manipulations allow us to
express the density of states for the particle as

2pPTCI~u!5m coshu1
j!j

2p
!rTCI2j! t̃5m coshu1j!t.

The second form will be the most convenient in what f
lows.

Before giving the full answer for the odd-N Gross-Neveu
model, let us first also review the solution for theP51 case,
the N51 supersymmetric sine-Gordon model at itsSO(3)
symmetric point. As discussed in the last section, theS ma-
trix is

SSO(3)5STCI^ Sb
SG
2 →8p .

The latter piece is theS matrix for the ordinary sine-Gordon
model at anSU(2)-invariant point (bSG

2 →8p in the usual
normalization!. The auxiliary problem for this piece i
equivalent to diagonalizing the Heisenberg spin chain
problem solved by Bethe 70 years ago. One must introd
an infinite number of pseudoparticles with densitiesr j (u), in
addition to the pseudoparticle densityt(u) required for the
BPSSmatrix. The density of statesP0 for the kinks of mass
m is then related to the particle densityr0 given by

2pP0~u!5m coshu1Y!r0~u!2(
j 51

`

s j
(`)! r̃ j~u!2j! t̃~u!.

~20!

The kernelss j
(`) follow from the Bethe ansatz analysis, an

are

ŝ j
(`)5e2 j uvu.

The kernelY comes from two places. There is a contributi
from the prefactor of theSmatrix, and for kink-kink scatter-
ing there is an extra piece arising from the Bethe ans
analysis@29#. The formula for anyP is

ŶPP
(P11/2)5

d

du
Im ln B̂1

d

du
Im ln f P̂1

1

2
~ ĵ !2 ~21!

so that

Ŷ5Ŷ PP
(P11/2)uP51512

euvu

4 cosh2~v/2!
.

The other Bethe equations relate the densities of states
the pseudoparticles to particle and pseudoparticle dens
They are

2pr j~u!5s j
(`)!r0~u!2(

l 51

`

Ajl
(`)! r̃ l~u! ~22!

where the density of string statesPj is

Pj5 r̃ j1r j .
02500
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The new kernel is given by

Âj l
(`)52 coth~v!e2max(j ,l )uvusinh„min~ j ,l !v….

These equations can be simplified greatly by inverting
matrix Ajl ~for details see for example@10#!, giving

2pPj~u!5d j 0m coshu1j!~r j 211r j 21!. ~23!

Even the pseudoparticlet coming from the BPS piece is
included in this equation, by definingr21(u)[t(u) and
P215t1 t̃. Minimizing the free energy then yields the TB
equations

e j~u!5d j 0m coshu2j!@ ln~11e2e j 21 /T!

1 ln~11e2e j 11 /T!#

with j 521,0,1,2, . . . , ande22[`. These TBA equations
are conveniently encoded in the diagram in Fig. 3. T
circles represent the functionsea ; the filled node represent
the fact that the equation fore0 has a mass term.

The free energy per unit lengthF is

F~m,T!52TmE
2`

` du

2p
coshu ln~11e2e0(u)/T!. ~24!

One can check that in the limitm→0, this free energy yields
the correct central charge 3/2@15#. This confirms the pres-
ence of the BPS kinks in the spectrum.

The TBA for the full O(2P11) Gross-Neveu model is
conceptually similar to theO(3) case, but is much more
involved technically. To complicate matters further, there
particles with massesma , a51 . . .P. Luckily, many of
the technical complications have already been solved.
diagonalization of the BPS part is the same as in the tric
cal Ising model @29#. This requires introducing the
pseudoparticle densityt(u), as described above. The diag
nalization of the auxiliary problem for theSO(2P11)
spinor part is done using the standard string hypothesis b
on the Dynkin diagram@30#. For the TBA for theSU(N) and
O(2P) Gross-Neveu models discussed in@10#, the TBA
equations are related to theSU(N) and SO(2P) Dynkin
diagrams. However,SO(2P11) is not simply laced, so this
case is somewhat more complicated. Nevertheless, the
propriate computation has been done already in@30#, utiliz-
ing the Yangian structure of theS matrix. The densities of
particles with massma are defined asra,0 , while the auxil-
iary problem requires introducing pseudoparticle densi
ra, j with j 51 . . .`, as well ast. In our notation, we try to
remain consistent with@10#, where the TBA for theO(2P)
Gross-Neveu model is discussed.

The quantization conditions for the densities of sta
Pa, j5ra, j1 r̃a, j are then

FIG. 3. The TBA for theO(3) Gross-Neveu model~the super-
symmetric sine-Gordon model!.
1-10
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2pPa,0~u!5ma coshu1 (
b51

P

Y ab
(P11/2)!rb,0~u!

2(
j 51

`

s j
(`)! r̃a, j~u!,

2pPP,05m coshu1 (
b51

P

Y Pb
(P11/2)!rb,0~u!

2(
j 51

`

s j /2
(`)! r̃P, j~u!2j! t̃~u!. ~25!
th

is

02500
The last terms in Eqs.~25! are expressions of the logarithm
derivatives of the transfer matrixT eigenvalues. The kernel
Yab are simply related with the S matrices described in
previous sections. Except for the casea5b5P given
above in Eq.~21!, one hasY ab

(P11/2)5(1/i )(d/du) ln Sab,
whereSab is the prefactor for scattering particles belongi
to the representations with highest weightsma and mb .
As explained above, theseS matrix elements do no
probe the kink structure, so the same computation will g
these kernels forO(N) for even and oddN. Thus these ker-
nels for oddN can be read off from theN even results in
@10#, giving
Ŷ ab
(P11/2)~v!5dab2euvu cosh~„P21/22max~a,b!…v!sinh„min~a,b!v…

cosh„~P21/2!v…sinh~v!

Ŷ a,P
(P11/2)52euvu sinh~av!

2 cosh„~P21/2!v…sinh~v!
~26!

Ŷ P,P
(P11/2)512euvu sinh~Pv!

4 cosh„~P21/2!v…sinh~v!cosh~v/2!
the
or

ve

e

her
A

for a,b51 . . .P21. The latter kernel came from Eq.~21!.
The pseudoparticle densities are given by the auxiliary Be
system

2pra, j~u!5s j
(`)!ra,02(

l 51

`

(
b51

P21

Ajl
(`)!Kab! r̃b,l~u!

2(
l 51

`

Aj ,l /2
(`) !KaP! r̃P,l ,

2prP, j~u!5s j /2
(`)!rP,02(

l 51

`

(
b51

P21

Aj /2,l
(`) !KPb! r̃b,l~u!

2(
l 51

`

Aj /2,l /2
(`) !KPP! r̃P,l

2p~t1 t̃ !5j!rP,0 ~27!

where the kernelK in Fourier space is

K̂a,a6152
1

2 coshv
K̂aa51

K̂P,P215
coshv/2

coshv
K̂PP5

cothv/2

cothv
. ~28!

Equations~27! are the continuum limit of theSO(2P11)
Bethe equations, with source terms associated to all thera
representations. In the preceding equations~25!–~28!, the in-
dex a takes values 1 . . .P21; the equations involving the
indexP are given explicitly. The key feature of this system
e
the appearance of factors of 2 in the terms involving
latter, which in the Dynkin diagram corresponds to the spin
representation. It is directly related to the fact that thePth
root is the shortest; it has length 1 while all the others ha
length 2.

The TBA equations are written in terms of functionsea, j ,
defined as

ra, j

Pa, j
5

1

11eea, j /T
,

t

t1 t̃
5

1

11eeP,21 /T

for a51 . . .P. The values thatj runs over depend on th
value of a: for a51 . . .P21, j takes values 0,1, . . .`,
while for a5P, j 521,0,1 . . .̀ . The extra functioneP,21
arises from the diagonalization of the BPSS matrix. This
problem can now be put in a considerably simpler and rat
universal form by inverting the kernels. The resulting TB
equations are

ea, j~u!52Tf!@ ln~11e2ea, j 11 /T!1 ln~11e2ea, j 21 /T!#

1Tf!@ ln~11eea11,j /T!1 ln~11eea21,j /T!#,

a51, . . . ,P22 ~29!

together with

eP21,j~u!52Tf!@ ln~11e2eP21,j 11 /T!

1 ln~11e2eP21,j 21 /T!#1Tf!@ ln~11eeP22,j /T!

1 ln~11eeP,2j 11 /T!1 ln~11eeP,2j 21 /T!#

1Tc! ln~11eeP,2j /T! ~30!
1-11
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and

eP, j~u!52Tj!@ ln~11e2eP, j 11 /T!1 ln~11e2eP, j 21 /T!#

1Tj! ln~11eeP21,j /2 /T!. ~31!

In the last equation, the coupling toeP21,j /2 occurs only
when j is even. The kernels are defined by their Four
transform,

f̂5
1

2 cosh~v!
, ĉ5

coshS v

2 D
cosh~v!

, ĵ5
1

2 coshS v

2 D .

As usual, the mass terms disappear from the equations
are encoded in the asymptotic boundary conditions

ea,0→ma coshu eP,0→m coshu, u→`.

The TBA equations can be conveniently encoded in the
gram of Fig. 4. This is the non-simply-laced generalizat
of the diagrams of@10#. One remarkable feature is how th
extra pseudoparticle coming from the BPS structure~the
node on the bottom left! fits in perfectly with the pseudopar
ticles coming from the diagonalization of the spinor part
theSmatrix. In this sense one could infer the existence of
BPS structure from a careful examination of the structure
the TBA equations.

The entire purpose of this section is to verify that thisS
matrix does give the correct free energy~18! in the ultravio-
let m→0. This is of course a major check: it shows that th
complicated spectrum andS matrix conspire to give the cor
rect central chargec5P11/2 in the UV, corresponding to
2P11 Majorana fermions. The free energy per unit lengthF
is given in terms of these dressed energiesea as

F~m,T!52T(
a

maE
2`

` du

2p
coshu ln~11e2ea,0(u)/T!.

~32!

By rewriting F as m→0 in terms of dilogarithms, we hav
verified that one does indeed obtainc5P11/2 as required.
Thus we take it as proven that this is the correctS matrix.

FIG. 4. The TBA for theO(2P11) Gross-Neveu model~here
P54).
02500
r

ut

-

f
e
f

Another check is that in the IR limitma→`, the correct
particle multiplicities are obtained. Namely, one should ha

lim
ma→`

F~m,T!52T(
a

namaE
2`

` du

2p
coshue2ma cosh(u)/T

~33!

wherena is the number of particles with massma . To obtain
this by taking the limit of Eq.~32! takes a little bit of work.
Define

Ya, j[ lim
u→`

e2ea, j (u), j >1

Ya,0[ lim
u→`

ema coshu2ea, j ~u!.

It then follows from Eqs.~32!,~33! thatna5Ya,0 . To find the
Ya, j requires taking them→` limit of the TBA equations
~29!,~30!,~31!. In this limit, one can replace theea, j (u) by
ln Ya,j . Thus the integrals can be done explicitly, giving a s
of polynomial equations for theYa, j . For example, forj
50 they are

~Ya,0!
25Ya21,0Ya11,0~11Ya,1! a51, . . . ,P22

~YP21,0!
25YP22,0~YP,0!

2~11YP21,1!YP,1~11YP,1!
21

3YP,21~11YP,21!21

~YP,0!
25YP21,0~11YP,21!~11YP,1!

where Y0,0[1. The ~not written! equations forYa, j for j
>1 do not depend on theYa,0 , so these can be solved sep
rately. One finds immediately thatYP,2151, but unfortu-
nately, we were not able to derive an explicit closed-fo
solution for the otherYa, j . However, it is easy to find them
by solving the polynomial equations numerically. For e
ample, forP52, one finds thatY1,1514/11, andY2,1511/5.
Plugging this into the equation forYa,0 gives Y1,05n155
andY2,05n254A2. These indeed are the correct multiplic
ties for P52. ForP53, we findY1,1527/22,Y2,1595/147,
and Y3,1521/11. This yieldsn157, n2522, andn358A2.
In particular, note thatn252111, the dimensions of the an
tisymmetric and singlet representations ofO(7). This checks
that the transfer matrix diagonalization in@30# indeed in-
cludes all the particles at each mass, even though they c
from more than one representation fora52 . . .P21.

As another check, we can easily generalize this TBA c
culation to the SO(2P11)k3SO(2P11)1 /SO(2P
11)k11 coset models mentioned at the end of the last s
tion. The TBA is almost the same as that above, except
the right hand side is truncated, so thej in ea, j runs only
from 0 . . .k21 for a51, . . . ,P21, while j 5
21,0,1. . . 2k21 for the a5P nodes@30#. One can check
that for this truncated TBA system

cUV5
k~2P11!~4P211k!

2~k12P21!~k12P!
1-12
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as required. Fork51, the conformal theory has centr
chargec51, and the coset perturbation coincides with t
sine-Gordon model forbSG

2 /8p52/(2P11). This TBA is
represented by the diagram in Fig. 5, and was first studie
@25,31#.

VI. CONCLUSION

We have completed the solution of the Gross-Nev
model for any numberN of fermions. For oddN, generalized

FIG. 5. The TBA for the sine-Gordon model atbSG
2 /8p

52/(2P11) ~hereP54).
ys

f E
h-

02500
in

u

supersymmetry results in the existence of BPS kinks.
found the exactS matrix for these kinks, and used this t
compute the exact free energy.

One striking feature is that there is a non-integer num
K52N/2 of these kinks, in the sense that the number
n-kink states goes asKn. In the simplest case, the generaliz
supersymmetry reduces toN51 supersymmetry in two di-
mensions. In fact, the ‘‘single-state supermultiplet’’ of@32# is
closely related to the multiplet with theA2 particles. More-
over, a~211!-dimensional analog is discussed in@33#, and
unusual particle statistics related to Clifford algebras ha
also been discussed in@34#.

We have generalized these results to a large numbe
models with four-fermion interactions@35#. These models
include Gross-Neveu-like models withSp(2N) symmetry,
and multi-flavor generalizations of the Gross-Neveu mod
As in theO(N) case, kinks with non-integerK appear when-
ever the symmetry algebra is not simply laced.
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