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Our starting point is an iterative construction suited to combinatorics in arbitarary dimemusiohsotally
anisymmetrizeg-Riemann 2 forms (2p<d) generalizing the (+)Riemann curvature 2-forms. The super-
position ofp-Ricci scalars obtained from tiegRiemann forms defines the maximally Gauss-Bonnet extended
gravitational Lagrangian. Metrics, spherically symmetric (1) space dimensions, are constructed for the
general case. The problem is directly reduced to solving polynomial equations. For some black-hole type
metrics the horizons are obtained by solving polynomial equations. Corresponding Kruskal-type maximal
extensions are obtained explicitly in complete generality, as is also the periodicity of time for the Euclidean
signature. We show how to include a cosmological constant and a point charge. Possible further developments
and applications are indicated.
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[. INTRODUCTION corresponding to thef@form Riemann curvature defining it.
Each member is thp-Ricci scalarR,, formed by the con-
Higher-order terms in the Riemann tensor appear in théraction of the indices on the2form Riemann tensor. These
gravitational sector of string theofjL]. Here, we choose to described black-hole vacuum metricd] and metrics with
consider only the Gauss-Bonn@&B) terms[2] of all orders  point chargg 11] generalizing the Reissner-Nordsticsolu-
which assure that the Lagrangian contains only quadratitions. In the present work we present a particularly conve-
powers of the velocity field§.e., the derivatives of the met- nient and systematic formalism for a Lagrangian consisting
ric or the vielbein. For the second-ordelin the Riemann  of the superposition of these individyaRicci scalarsRp, ,
curvature terms, which will be labeled bp=2 in the fol-  with constant dimensional coefficienkgy,
lowing, it was indeed showf8] that the corresponding terms
arising in the string theoretic context can be reduced to the
GB form by suitably redefining the fields. However, already L= 21 E"(p)R(p)- (1.1
at the level of cubic curvatures, in addition to the 3 GB :

term there occurf4,5] the additional term The systems considered must be in dimensidgs5, and
due to the antisymmetry of thep2forms consist o terms
such that P=<d.

: . . . . . For spherical symmetry inl—1 spacedimensions with
in the case of the bosonic string. The inclusion of this termqic P y y P

causes the appearance of the culhie., higher than qua-

P

o A v
Rp. Vp Rpa’ RT)\M

dratic) power of the velocity fields. In this paper we have d82=IN(r)dt2+N(r)*ldr2+r2dQ(2d,2), (1.2
excluded all such terms and restrict our analysis to GB terms
only. it is shown in Secs. lll and IV that the metric pertaining to

GB extended Einstein equations in higher dimensionshe system(1.1), generalizing the standard Schwarzschild,
have been studied by various authors for a long time in varireissner-Nordstra, and de Sitter soltions, is obtained by
ous context§6-9], namely, that of cosmological solutions golying the polynomial equation fgrL—N(r)]

[8], gravitational instantonf§6,7] and black holeg$8,9]. Of

these, the work of9] is the closest to our present work in Pk 1—N\P

that all possible GB terms are taken into account. > ﬂ(d—Z)(d—S)- --(d—2p) )
Recently we have studied black-hole solutions of gener- p=12Pp! r?

alized gravitational systems consisting of single Gauss-

Bonnet terms, considered as members of a hierarchy of gen- __c b 2 1.3

eralized gravitational systems, each labeled with an intpger pd=1  p2(d-2) '

This is our crucial result. FoP>2, elliptic and hyperelliptic
*Email address: chakra@cpht.polytechnique.fr functions (theta functions of suitably higher genusre
"Email address: tigran@thphys.may.ie needed to construct the solutions explicitly. Relating the pa-
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rameters characterizing these functions to those appearing wmith Maxwell and cosmological terms added to Ed.1),

Eq. (1.9 is in general a difficult task. However, in principle i.e., the construction of Reissner-Nordstreand de Sitter

a complete set of solutions can be obtained in each case, tieetrics.

required prescriptiongl2] for which are available. Hence for Possibilities of generalizations and applications of our
spherical symmetry, the problem of the construction of thepresent study are discussed in our conclusions in Sec. VIII.
metric pertaining to the systerfl.l) can be considered

solved. . . _ Il. GENERALIZED LAGRANGIAN AND EINSTEIN
We .WI|| study the properties of some relatively s_|mple TENSOR
cases in the following sections. We will assume that in gen-
eral, in Eq.(1.3), Let €® be the tangent frame vector 1-forms
a__ a
K(l)> K(p)» p> 1. € _e#dXM' (21)
where as usua,b, ... denote frame indices and v, . ..

Hence, having obtained the solution of E#.3) for the usual
Einstein-Hilbert case, with =0 for p>1, one can con-
sider systems consisting of a series of terms with coefficient
K(2),K(3), - -, With K@) K@), - - - In this sense, such w3h= gyt = — yba 2.2
systems could be considered as perturbative series, and suc- m

cessive terms are expected to become appreciable with iRgtisfying

creasing energies. For a fixed numbergf, our results per

se are, in principle, exact. Let us consider an example of de*+ w?Ne,=0. (2.3
interest, namely the horizonssr . These are by definition

obtained settindN(r) =0 in Eq.(1.3), and then solving for The curvature 2-forms are then

ry. In constructing exact solutions of polynomial equations ab_ 4 ab. a A cb_ mba

for horizons in Sec. V, out of the full set of solutions one can RP=do™+ 0%\ o®=—R*%,

select the real positive one by comparing with perturbative ab b oab al A b

(in k@, Pp>1) solutions. Consider for simplicity the =RLAXFADX =R, e* A\ev.
Schwarzschild-like case, with=0= X, with moreoverk (2.4
=0 for p>2. One can first, setting,)=0, obtain the real
positive horizorr {{?, and then for small nonzere, obtain

space-time ones, and®® denotes the antisymmetric Levi-
g:ivita spin-connection 1-forms

We will often use the last form involving only tangent plane

indices.
Starting withR?, higher-ordeip-form terms, totally anti-
— (O) 2 1 1
FH=TH +0(k(2) +0(k(z))- symmetrized in the indices,b,c, ..., aredefined itera-

: . . : . . . tively as follows:
Consistency with this perturabtive series solution will select y

out the real positive horizony from the exact solutions of Rabcd— Raba\ Red pad A\ gbey pac Rdb. (2.5
the relevant polynomial$l.3). Examples will be given in
Sec. V. R2122" - -82p = R2132 /\ R334 " -a2p

In contrast to our considerations in Sec. V, where we trun-
cated the values gb to lower than the maximum possible + cyclic permutations of(a; ,as, . . . azp),
valueP (consistent with P<<d), we emphasize that our for- (2.6)

malism yields some exact resulfor systems featuring all
K(p) Up t0x(py). One such case concerns maximal extensiongor the p=2 and the generip cases, respectively. The anti-
in Sec. VI. We assume=r; to be an exact solution of Eq. symmetric 2-form curvature(2.6) consists of ... (2p

(1.3 with N(r) =0 and then for —3)(2p—1) terms of the type
r=ry+p, p<l R2132/\ R2384/\ . . . /\ R%2p-192p,
we set For p=1, Eq. (2.6) coincides with Eq.(2.4), the usual
curvature, in any dimensioth Ford<2p, Eq.(2.6) vanishes
N(p)=268p+o0(p?). due to the antisymmetry. Far=2p, Eq. (2.6) becomes the

topological Euler density in those dimensions. For odd di-

We obtain an exact solution faf, viz. Eq.(6.3), as a func- mensions,p=_%(d—1) in Eq. (2.6) leads to features analo-
tion of ryy, the space-timedimensiond, and thex, . The ~ gous to thatid=3 for Eq.(2.4. . N
parametesd plays a crucial role concerning the near-horizon ~One can express E(.6) in avielbeinbasis, generalizing
geometry, the periodicity of the Euclidean time, and theEd. (2.4), as
Hawking temperature. The exact general solutiérB) is aan. . .a
hence of considerable interest. Re1%27 " d2p = Rbibz...bigebl/\ebz'"/\ebz"- .7

In Sec. VII, we have indicated how our results of Sec. V
can be extended to include metrics pertaining to system$he p-Ricci tensor is then defined as
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a aan. 2 We shall henceforth use the following notattoior the
Ripyp, = > R (2.8)  frame indices:
(ag,...aagp) 1722
Xa=(t,l‘,01,02, PR ,Gd_2)=(t,l’,l,2, PR d_2),
and thep-Ricci scalar as
so that for diagonal metrics one can §&ith no summatioh

R(p)zg R(p)g (29) ea: \/|gaaldxa. (32)
The consequent simplifying properties0] of the spin con-
The generalized Einstein-Hilbert Lagrangian is now definechections lead finally to, using labeling withj=1,2,...,d
to be —2, and the notation
: N(r)=1—-L(r) ith L’ dL (3.3
_ r)=1—-L(r), wi =— )
£=2 o= kpRep). (2.10 dr
p=1 2P
. 1 1 .
where P=d and d—1, respectively, for even and odtl R = EL”et/\e', R“=2—L’et/\e',
Each coupling constant, is taken to be positive and has r
dimension(length 2P, rendering the Lagrangian dimension- 1 1
less. For Ri=_—L'eNe, Ri=—LeANel.
2r r2
K(Z):K(g):"':K(p):O (34)

one recovers the usual Einstein-Hilbert Lagrangian in dimen- IV. METRICS

siond. We will always set . ]
From the results of the previous two sections, namely by

applying Eqs(3.4) to Eq.(2.11), we arrive at the remarkably

k(1> 0. . S
@ compact expressions for the nonvanishing componen®of

Some or all of the othersg,, p=2,3, ... P, can then be d
chosen to be nonzero. We will choose at leagy>0 so as Gi=G|=— ( r a+(d— 1))V(r) 4.1
to illustrate higher-order effects, ang,, will be taken to be

much larger thamk ), p=2,3, . .. P, so that the latter terms d
can be considered to play a perturbative role. Gl=——= r—+(d—2)>
For eachp, the p-Einstein tensor is defined as d—2\ dr
d
1 X r—+(d—1))V(r), (4.2
Gipp=Ripb~ 35 7R (2.19 dr

with i=1,2,...d—2, and where

and for the systen@2.10 it is o
V=S (d—2)(d=3)---(d—2p) [ L\"
P (r)_p:l K(p) 2°p! r_z .

1
f;:p; 5K(p)G(p)§- (2.12 (4.3

It is clear that the term wittd=2p vanishes, so that the
Ill. SPHERICAL SYMMETRY summation in Eq(4.3) runs up to P <d.
) _ ) All the p dependence is contained inry, which is a
~We impose spherical symmetry in thé—1 space- polynomial in Lr2. Hence the constraints ovi(r) itself,
d|mgnS|ons .by requiring the dlggonal metric, for Lorentz an amely the variational equations, are independerp ahd
Euclidean signatures, respectively, are the same as for the=1 case. Once these dynamical
equations are solved, the next step is to solve a polynomial
ds’=FN(r)dt?+N(r) " 'dr*+r?dQf_,, (3.1  equation inL/r2 This result is crucial.

where
We do not distinguish the tangent plane indices from the coordi-
d-3 2 nate onest(r,1,2, ... d—2), for example by introducing yet an-
dQ(zd,Z)= d6?+sir?6,de3+ - - +| [] sin 0n> de3_,. other notation {,r,1,2, . ..). Fordiagonal metrics, this simplify-
n=1 ing notation does not cause ambiguities. As tangent plane indices

they are raised and lowered using, rather tharg*, .
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Consistently with spherical symmetry one can set

K@) o) S} 5@ g 2)(d-3)(a- ) = .
(a2 S|+ a2 =34 5|+

o
V(r):m_rz(d72)+)\ (4.4 . L p c
+2PP! (d=2)(d=3)---(d—2P) 2 :rd_‘l
when
(5.
Gl=Gl=— (d—3)b —(d—1)\ (4.5) with 2P<d. With a single nonvanishing, the solution of
v r2(d-2) ' ' Eq. (5.1 reduces to the functionL(r) desribing the
p-Schwarzschild metric off10], and with p=1 to the
d—3)b d-dimensional Schwarzschild metric GE3].
i (d—3) —(d—1)\. (4.6) For a horizon, denoted by=ry, by definition

2@
N(ry)=1-L(rgy)=0 ~— L(ry=1. (5.2
The first term in Eq.(4.4), namelycr~ "), represents a 1.nca
vacuum solution leading to the generalized Schwarzschild-
type black hole[10]. This is annihilated by the operator K1) L, K@) i
[r(d/dr)+(d—1)] present in eaclGj in Egs. (4.0 and — (d=2)(ry) “+—=(d=2)(d=3)(d—=4)(ry) "+
(4.2.

Adding the second term in E@4.4), —br 22 leads K(p)
to generalized Reissner-Nordstidype[11] solutions in the + po(d=2)(d=3)- (d=2P)(ry)~ %
presence of a point charge dndimensions. Finally addiny 2"P!
in Eq. (4.4) can include the presence of a cosmological con-  — ¢y )~ (d-1), (5.3
stant.
Note the effect of the extra factor We will look for positive real rootsonly.
Let us now look at particular cases to better understand
the possibilities. In practice we will restrict to the casg,
d—2 ra+(d—2) (4.7) =K@="---=kp)=0, keeping onlyx;y and k(,y. One ob-
tains, ford>4,
in Eq. (4.2) as compared to its absence in E4.1). In Eq. 24
(4.6) this induces just a change of sign as compared to Eq. L(r)=( (1) )
(4.5). This compensates precisely for the corresponding sign (d=3)(d=4)x(2)
of Fhe angular_componenﬁ of the stress-energy tensor of a 20(d—3)(d—4) k(2 12
point chargeg in d dimensions: namely, 1+ —1|r2
(d=2)kfyr@v
. (d=3)¢’ (5.4
t_ r_ T
T=T,=—-T= PECEE (4.8

For k(2)>0 this is real and positive. Fot,)=0 it reduces
to the usual Schwarzschild solution dndimensiong13]. In

Acting on the third term\ of Eq. (4.4), the action of the 3| cases one obtains asymptotically flat solutions.
operator(4.7) yields unity. The constant® and\ are to be For the horizon, one has

fixed, finally, after choosing suitable units, by inserting Egs.
(4.5 and(4.6) in K K B
2 (d=2)(ry) 2 =2 (d=2)(d=3)(d—4)(ry)
a __ a
b—ConSD(T b+A 5ab. (49) o
=c(ry) @D, (5.5

In the following sections we will give examples of ex- (i) For dimensiord=5

plicit solutions forL(r) using Egs.(4.3) and (4.4). We will

start with Schwarzschild-type black holes wiik- A =0 and ) 2 3
will study their properties. HI% c— 24 (5.6
V. GENERALIZED SCHWARZSCHILD-TYPE BLACK Hence f0rC>%K(2), there is a single real horizon at
HOLES o |12 3 172
In the case of a vanishing stress-energy tensor, @d3. rH:<3K(1) (C_ ZK(Z)) : (5.7)
and (4.6) are solved byV(r)=cr (@1 with b=0=\,
yielding Compare this with the cage=2 in [10] when«(;y=0.
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(ii) For dimensiond=6,

3k c
3 (2)
g+ ——ry— =0. (5.9
H 2 K(l) H 2K(1)
Hence
rH:(a+B)r (aei(27/3)+,8e7i(2"/3)),
(aefi(27r/3)+lgei(2ﬂ'/3)) (59)
with
2 3711/2) 1/3
ol ) )|
4K(l) 4K(1) 2K(1) ’
IB:[ c ~ ( c )2+< K(Z) )3}1/2]1/3
4K(1) 4K(1) 2K(1) '

which are real cube roots. Thus, for sufficiently smaf,
<k(1), there is only one real horizon at

rh="(a+p), (5.10
consistently with
1/3 -1/3
c 1« c
(2) 2
rh= —5— +0(K(z))-
H (2K(1)> 2 K(l)<2K(1) ( (2))
(iii) For dimensiond=7,
4, K@ , 2C
ry+3—rg— =0, (5.11
" Tk T Bk

giving the real positive value for the horizon

3k 1/2]
_ (2) -
rH—<2K(1)) 1+

(iv) For dimensiord=8,

(5.13

This is a quintic equation whose soluti¢h2] can be ex-
pressed in terms ddlliptic functions Setting

a
rH:E,
Eq. (5.13 transforms into
5k 3a%« 3a%«
f_<2@ﬁ ujf_ uj:Q (5.14
a K(1) c

PHYSICAL REVIEW D 65 024029

Equation(5.14) is already aprincipal quintic [12] with in
addition the linear term abseftanishing coefficient of).
Moreover, by choosing suitably one can obtain a conve-
niently simple value for one of the two coefficients in Eq.
(5.14) or for their ratio. These features simplify the task of
explicitly constructing the solutionsl 2].

However since considerable more work is needed to real-
ize these explicit solutions, we will not pursue them further
here. We just add that the determination of the real positive
root must be consistent with

) 1/5_ K(2)

K1)

—1/5

c 2
+0(K(2))- (5.195

Cc
ro= -
H (SK(l) 3K(1)

(v) For dimensiond=11, there is a special simplification,
namely that Eq(5.5) reduces to ajuarticin rZ , which per-
mits an elementary solution. Thus E§.5 here is

14« 2c
ré+ @6 _

=0. (5.16

K(1) 9y

This can first be solved as a quarticriﬁ and then the posi-
tive square root taken consistently with

( 2c
r e [
9K(1)

1/8 -1/8

+0( k().
(5.17

(vi) For arbitrary dimensiord, one can solve, in principle,
polynomial equations of any degree in termstloéta func-
tions of suitably high genu$12]. This applies both to Egs.
(5.1 and (5.3). Hence, in principle, exact solutions can be
constructed though it would be a very complicated task in
practice.

One may note certain qualitative features easy to observe.
Thus, for example, the qualitative features described by Egs.
(5.15 and (5.17 hold more generally. For the conditions
concerningx ) , stated afte(2.10), the single real positive
ry tends to shrink due te,y and «(,) with p>2, the black
hole becoming smaller in radius.

In the preceding examples we have retained anly and
K(2) to illustrate basic features. Fa=7 one can include
K3y, ford=9, k4, and so on. The equations become more
difficult to solve but the general features appear already in
our examples above.

In the illustrative examples considered in this section, we
were mostly concerned with E¢p.3) to find the horizorr, .
Concerning the evaluation of the functitu(r), on the other
hand, one may note that in E(.1) for L, up tod=10 one
has a quartic or an equation of lower degree lfor~or d
=11 one has, retaining all possible nonzero contributions,
for the first time, a quintic folt.

2c
gK(l)

7 K(z)

4 K(l)

VI. MAXIMAL EXTENSIONS AND PERIODICITY
FOR EUCLIDEAN SIGNATURE

We start by deriving a crucial ingredient in this context,
determining both the maximal extension and the near-
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horizon geometry. For details we refer to Secs. lll and V ofThen, near the horizon, we defidethrough
[10] and references cited therein. ,
Set N(p)=1—L(p)=26p+0(p°). (6.2

r=ru+p, p <1 . (6. It can be shown that

1 s 1 ~2(n-1)
K1)t Z(d_4)(d_5)K(2)rH +-- +2”‘1n| (d=4)---(d=2n—1)kny

(5

o (6.3

1
— " (d=3)--.(d— —2(n—-1)
K(1)+ (d 3)(d 4)K(2)r + 2n71(n_1)! (d 3) (d Zn)K(n)rH

with r satisfying Eq.(5.3), where we have assumed that the  One obtains from the second member of E7), for the

firstn k), p=1,2, ... n are nonzero. The next step would period oft,

be to substitute fory an explicit solution such as E¢.7),

Eqg. (5.10, and so on. But the general expressi@?) is p— 2_77

particularly suitable for our present purpose. |8]
If k=0 forn>1, one obtains

(6.9

where s is given by Eq.(6.9. Forn=2, i.e., onlyx;y and

d-3 K| V4 K(2) Nonzero, one obtains
26=|——|=(d=3)| 5, : (6.4)
. o 4TTH (d—1)(d—4) k)
and usually, ford=4, («(1)/2c) is defined as () ~*. Cd=3 |7 amkyri+(d—4)(d=5)kpy)|
Now we proceed to construct the Kruskal-type maximal
extension and the periodicity of the Euclidean met8cl) ) o ) )
with Euclidean signature, namely The periodP is inversely proportional to the Hawking tem-
perature of the black hole. Substituting figf in Eq. (6.10
d<s?=Ndt2+ N_ldr2+r2dQ(2d_2)_ (6.5 one obtains the full modification due tqy;.

We follow the standard procedure, which was generalized t0/Il. COSMOLOGICAL CONSTANT AND POINT CHARGE

one (single memberp of the hierarchy in Sec. 3 df10]. . . .
Using Eqs.(6.1) and (6.2, we set So far we restricted our attention to vacuum metrics. Let

us now consider the more general case, keeping &d8.
and(4.9) in mind, namely Eq(4.4),
r —j—= —Inp+h(p), (6.6)
c b
V(I’)Zm——z(d_z)'i‘)\.
in which the functionh(p) is not relevant for the singularity r r
at the horizon.

We also introduce the coordinates,¢) by We illustrate some basic features by setting

260% _ T 2 #2 ot _
=g, e n+e) C Eq. (4.3, whence(for d>4)
2
S being given by Eq(6.3). Here (5,¢) provide the generali- K(l) (2)
zation of Kruskal coordinates. — - (d- 2) — (d=2)(d=3)(d- 4)

One obtains from Eqg6.5 and(6.7)

c b
ds?=(48%€2"") "IN(7,)(dE%+d7?) +12(7,0)dQ% ). EETERPTTREIRES 7.0
(6.9
5. L . Setting
the factor ofr © in the last term being implicitly a function of
(7,£). The factor €2° ") "IN tends to unity ap—0, assur- L=L+pr2, (7.2
ing maximal extension, there being neither a divergence nor
a zero at the horizon. the left-hand side of Eq7.1) becomes

024029-6
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~ I: 2
with
1
1= 5(d=2)k(gy+(d=2)(d=3)(d=4) 7Kz,
(7.9
1
B2 5(d-2)(d-3)(d-4)xz), (79
1 1 2
Ba= 5(d=2) 7xy+g(d=2)(d=3)(d—4) 7xz).
(7.6)
Setting
B3=A\ 7.9

determinesy. Then one solves

L\? L c b
Bo ) +B1 P] B e R T =0. (7.9

One obtains, with sign conventions consistent with &),
1/2
ﬂ 1+ 4ﬂ L _ L —14r2
23, 135 pd=1  p2(d-2) ’
(7.

so thatL(r) is given by Eq.(7.2).

L(r)=

Forb=0 and\ #0, Eq.(7.9) for L has the same structure
as forL in Eq. (5.4), with the constant coefficients now de-

pending on\, as given by Eq(7.4—(7.7). It is easy to see
that this feature will hold quite generally for ak, (up to
p=P). Even in the presence of a point chargeéth b+ 0),

PHYSICAL REVIEW D 65 024029

system. In the present work, we have omitted the effects of
all other fields, e.g. the dilaton, which also occur in super-
string inspired systen{d,3]. So far, apart from introducing a
cosmological constant and the Maxwell systéra., a point
charge in Sec. VII, we have studied only the gravitational
field with higher-order terms. The scope can be broadened by
including other fields relevant to string theory and by pursu-
ing certain applications.

In the context of string theory, the fields to be added on to
the gravitational systems are the dilaton, the Yang-Mills, and
the (Abelian) antisymmetric tensor fields.

Exact solutions including dilatons in this context were
studied in[14] and [15], but without higher-order gravita-
tional terms. The application of the efficient formalism given
in the present work would enable the extension of these re-
sults[14,15 to the case of gravitational systems including
higher GB terms.

Concerning the interaction ¢the usual Yang-Mills fields
interacting with Einstein-Hilbert gravity in 4-dimensions,
this has been intensely studied recently, and extensive refer-
ences to it can be found in the revigh6]. The extension of
these consideration&vith and without dilato, involving
generalized Yang-Mills systems interacting with generalized
Einstein-Hilberts fields in highgthan 4) dimensions, would
be a very natural and efficient use of our present results.
Indeed, we have already considered generalized Yang-Mills
fields on fixed generalized gravitationabackgroundsin
higher dimension$17].

Since in the gravitational sector of string theory there ap-
pear in addition the dilaton and the antisymmetric tensor
fields, it is in principle desirable to include these, as, for
example in[18,19, respectively. However, an adequate
study with dilatons, antisymmetric tensors, and possible
supplementary terms from the cubic order onwdid19 is
beyond the scope of this work.

Another interesting result of the inclusion of the dilaton
and the antisymmetric tensor fields to the usual gravity in the
context of the low-energy effective action of supergravity is
the construction of solitonic solutions of supergra\ig0].

As another application of our results, it would be very inter-

the effect ofk can always be taken into account in this way. esting to find out what the effect of adding higher-order

Whenb is nonzero, it is seen from E¢4.8) to be positive
for a real chargey. Hence for sufficiently smalt, it can be

seen from Eq(7.9 thatL (and hencd.) becomesomplex

gravitational terms would be on these solutions.
Finally, we mention some further possible applications of
our results in the wake of earlier work in the literature where

In a previous study11] of the gravitational systems char- gravitational Lagrangians with higher terms were studied.

acterized byn =0= 75, butb+#0, and with asingle nonvan-

These include applications to the elimination of gh¢8isto

ishing K(p) s it was shown that such a point of transition from the vanishing of the Cosmological constant as a stable fixed

a real to a complex metric was situatiedide the horizotts)
ry of the generalizegh—Reissner-Nordstro type solutions.

point[21,22, and to the construction of gravitational instan-
tons[6,7], as well as to cosmological solutiof&3,24]. More

Hence in theexteriorregion the metric was always real. Also recent work involving the first GB terf25] pertains to cos-
in [11], the possibility of a compatible real metric for the mological solutions[26] and to theories with noncompact
interior region was indicated. In the present work we will not extra dimension§27-3Q of gravity. The extension of these

undertake a parallel detailed study of E@.9).

VIIl. DISCUSSION

We have studied black-hole-type solutions to generalized
gravity in d dimensions =5). These systems consist of

results[26—29 to include several higher-order GB terms,
with and without the inclusion of the dilaton field, would
constitute natural applications of our results.

1. Note added
After completion of this manuscript, many previous

superpositions of successive higher-order Gauss-Bonngburces were brought to our attention. To take account of
terms labeled by (2p=d) which occur, among other gravi- these, we add the following supplementary references and

tational terms, in the superstring inspirgd 3] gravitational

explanations.
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Most helpful is the extensive list of references in the re- ., o d d L\P
view of Myers[31]. Without trying to be complete, we men- f I(p)dr:f dr rd2< r—+2|{r—+1 rdz(—z) 1
tion the pioneering sources quoted thf3e,33,3. gt H dr dr r

Maximal extensions have been studied systematically in P11 @

[34]. Our results pertaining to maximal extensions are spe- _ d al b

cifically concerned with the consequences of the supplemen- “lar r r_2

tary (d—2) dimensions and the higher curvature GB terms "H

implemented through Ed6.3) in the standard Kruskal pre-

scription in ther-t plane. — 2¢ 51+ (26)p— (d—2p) pd—2p

Particularly relevant for us i§35]. The metric function (d=2)kqy Pt My .

(5.4) and the period6.10 obtained by us as particular cases (8.3
by settingx,)=0 for p>2, match with Eqs(3) and(9) of with
[35], respectively, for
c
. liy=———n——+26r972—(d-2)r% 3, (8.4
A= e (d-3)(d=4). ®.1) W7 [d=2)ag, T2 A7 T (B
lgy=4dry *—(d—arg >, (8.5

For comparison with théotal Euclidean actionEq. (12)

in [35], we briefly present the corresponding general resuleind so forth,

for our case: Note that the term independent f in Eqg. (8.4) comes
Total Euclidean Action= period X area of unit sphere in from

(d—2) dimensionsx radial integral,

Period =2/|8|; area of unit sphere ind—2) dimen- _ oL o d 2¢ .
sions, lim — | r S| |=lm—| ——————r
r—o dr r r_>oodr (d_Z)K(l)r
5 d-1
Ad-2)=Tq— 11 =
oo F(d__l) (d_Z)K(l)
2

The Euclidean action and the near-horizon fagsee Eq.
(6.3] provide basic ingredients for studying thermodynamics
and surface deformations of black holes in the context of our
formalism. We hope to present such a study elsewhere.

The radial integral is

Kp) [~
E— R(p)dr

p 2p "y ACKNOWLEDGMENTS
P (d=2)(d—3)---(d—2p+1) (= We would like to acknowledge some interesting corre-
:;321 K(p) 2Ppl fr I(pdr, spondence with R.B. King. It is a pleasure to thank John
= I Ny

Rizos for illuminating discussions. This work was carried out
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