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Gravitation with superposed Gauss-Bonnet terms in higher dimensions:
Black hole metrics and maximal extensions
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Our starting point is an iterative construction suited to combinatorics in arbitarary dimensionsd, of totally
anisymmetrizedp-Riemann 2p forms (2p<d) generalizing the (12)Riemann curvature 2-forms. The super-
position ofp-Ricci scalars obtained from thep-Riemann forms defines the maximally Gauss-Bonnet extended
gravitational Lagrangian. Metrics, spherically symmetric in (d21) space dimensions, are constructed for the
general case. The problem is directly reduced to solving polynomial equations. For some black-hole type
metrics the horizons are obtained by solving polynomial equations. Corresponding Kruskal-type maximal
extensions are obtained explicitly in complete generality, as is also the periodicity of time for the Euclidean
signature. We show how to include a cosmological constant and a point charge. Possible further developments
and applications are indicated.
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I. INTRODUCTION

Higher-order terms in the Riemann tensor appear in
gravitational sector of string theory@1#. Here, we choose to
consider only the Gauss-Bonnet~GB! terms@2# of all orders
which assure that the Lagrangian contains only quadr
powers of the velocity fields~i.e., the derivatives of the met
ric or the vielbein!. For the second-order~in the Riemann
curvature! terms, which will be labeled byp52 in the fol-
lowing, it was indeed shown@3# that the corresponding term
arising in the string theoretic context can be reduced to
GB form by suitably redefining the fields. However, alrea
at the level of cubic curvatures, in addition to thep53 GB
term there occurs@4,5# the additional term

Rmn
rsRrs

tlRtl
mn

in the case of the bosonic string. The inclusion of this te
causes the appearance of the cubic~i.e., higher than qua-
dratic! power of the velocity fields. In this paper we hav
excluded all such terms and restrict our analysis to GB te
only.

GB extended Einstein equations in higher dimensio
have been studied by various authors for a long time in v
ous contexts@6–9#, namely, that of cosmological solution
@8#, gravitational instantons@6,7# and black holes@8,9#. Of
these, the work of@9# is the closest to our present work
that all possible GB terms are taken into account.

Recently we have studied black-hole solutions of gen
alized gravitational systems consisting of single Gau
Bonnet terms, considered as members of a hierarchy of
eralized gravitational systems, each labeled with an integp
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corresponding to the 2p-form Riemann curvature defining it
Each member is thep-Ricci scalarR(p) formed by the con-
traction of the indices on the 2p-form Riemann tensor. Thes
described black-hole vacuum metrics@10# and metrics with
point charge@11# generalizing the Reissner-Nordstro¨m solu-
tions. In the present work we present a particularly con
nient and systematic formalism for a Lagrangian consist
of the superposition of these individualp-Ricci scalars,R(p) ,
with constant dimensional coefficientsk (p) ,

L5 (
p51

P
1

2p
k (p)R(p) . ~1.1!

The systems considered must be in dimensionsd>5, and
due to the antisymmetry of the 2p-forms consist ofP terms
such that 2P<d.

For spherical symmetry ind21 spacedimensions with
metric

ds257N~r !dt21N~r !21dr21r 2dV (d22)
2 , ~1.2!

it is shown in Secs. III and IV that the metric pertaining
the system~1.1!, generalizing the standard Schwarzschi
Reissner-Nordstro¨m, and de Sitter soltions, is obtained b
solving the polynomial equation for@12N(r )#

(
p51

P
k (p)

2pp!
~d22!~d23!•••~d22p!S 12N

r 2 D p

5
c

r d21
2

b

r 2(d22)
1l. ~1.3!

This is our crucial result. ForP.2, elliptic and hyperelliptic
functions ~theta functions of suitably higher genus! are
needed to construct the solutions explicitly. Relating the
©2001 The American Physical Society29-1
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rameters characterizing these functions to those appearin
Eq. ~1.3! is in general a difficult task. However, in principl
a complete set of solutions can be obtained in each case
required prescriptions@12# for which are available. Hence fo
spherical symmetry, the problem of the construction of
metric pertaining to the system~1.1! can be considered
solved.

We will study the properties of some relatively simp
cases in the following sections. We will assume that in g
eral, in Eq.~1.3!,

k (1)@k (p) , p.1.

Hence, having obtained the solution of Eq.~1.3! for the usual
Einstein-Hilbert case, withk (p)50 for p.1, one can con-
sider systems consisting of a series of terms with coefficie
k (2) ,k (3) , . . . , with k (2)@k (3) , . . . . In this sense, suc
systems could be considered as perturbative series, and
cessive terms are expected to become appreciable with
creasing energies. For a fixed number ofk (p) our results per
se are, in principle, exact. Let us consider an example
interest, namely the horizons,r 5r H . These are by definition
obtained settingN(r H)50 in Eq. ~1.3!, and then solving for
r H . In constructing exact solutions of polynomial equatio
for horizons in Sec. V, out of the full set of solutions one c
select the real positive one by comparing with perturbat
~in k (p) , p.1! solutions. Consider for simplicity the
Schwarzschild-like case, withb505l, with moreoverk (p)
50 for p.2. One can first, settingk (2)50, obtain the real
positive horizonr H

(0) , and then for small nonzerok (2) obtain

r H5r H
(0)1o~k (2)!1o~k (2)

2 !.

Consistency with this perturabtive series solution will sel
out the real positive horizonr H from the exact solutions o
the relevant polynomials~1.3!. Examples will be given in
Sec. V.

In contrast to our considerations in Sec. V, where we tr
cated the values ofp to lower than the maximum possibl
valueP ~consistent with 2P,d), we emphasize that our for
malism yields some exact results~for systems featuring al
k (p) up tok (P)). One such case concerns maximal extensi
in Sec. VI. We assumer 5r H to be an exact solution of Eq
~1.3! with N(r H)50 and then for

r 5r H1r, r!1

we set

N~r!52dr1o~r2!.

We obtain an exact solution ford, viz. Eq. ~6.3!, as a func-
tion of r H , the space-timedimensiond, and thek (p) . The
parameterd plays a crucial role concerning the near-horiz
geometry, the periodicity of the Euclidean time, and t
Hawking temperature. The exact general solution~6.3! is
hence of considerable interest.

In Sec. VII, we have indicated how our results of Sec.
can be extended to include metrics pertaining to syste
02402
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with Maxwell and cosmological terms added to Eq.~1.1!,
i.e., the construction of Reissner-Nordstro¨m and de Sitter
metrics.

Possibilities of generalizations and applications of o
present study are discussed in our conclusions in Sec. V

II. GENERALIZED LAGRANGIAN AND EINSTEIN
TENSOR

Let ea be the tangent frame vector 1-forms

ea5em
a dxm, ~2.1!

where as usuala,b, . . . denote frame indices andm,n, . . .
space-time ones, andvab denotes the antisymmetric Lev
Civita spin-connection 1-forms

vab5vm
abdxm52vba, ~2.2!

satisfying

dea1vab`eb50. ~2.3!

The curvature 2-forms are then

Rab5dvab1va
c`vcb52Rba,

5Rmn
abdxm`dxn5Ra8b8

ab ea8`eb8.
~2.4!

We will often use the last form involving only tangent plan
indices.

Starting withRab, higher-orderp-form terms, totally anti-
symmetrized in the indicesa,b,c, . . . , are defined itera-
tively as follows:

Rabcd5Rab`Rcd1Rad`Rbc1Rac`Rdb, ~2.5!

Ra1a2•••a2p5Ra1a2`Ra3a4•••a2p

1cyclic permutations of~a2 ,a3 , . . . ,a2p!,

~2.6!

for the p52 and the genericp cases, respectively. The ant
symmetric 2p-form curvature~2.6! consists of 3.5 . . . (2p
23)(2p21) terms of the type

Ra1a2`Ra3a4`•••`Ra2p21a2p.

For p51, Eq. ~2.6! coincides with Eq.~2.4!, the usual
curvature, in any dimensiond. Ford,2p, Eq.~2.6! vanishes
due to the antisymmetry. Ford52p, Eq. ~2.6! becomes the
topological Euler density in those dimensions. For odd
mensions,p5 1

2 (d21) in Eq. ~2.6! leads to features analo
gous to that ind53 for Eq. ~2.4!.

One can express Eq.~2.6! in a vielbeinbasis, generalizing
Eq. ~2.4!, as

Ra1a2•••a2p5Rb1b2•••b2p

a1a2•••a2peb1`eb2
¯`eb2p. ~2.7!

The p-Ricci tensor is then defined as
9-2
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R(p)b1

a15 (
(a2 , . . . ,a2p)

Rb1a2•••a2p

a1a2•••a2p, ~2.8!

and thep-Ricci scalar as

R(p)5(
a

R(p)a
a . ~2.9!

The generalized Einstein-Hilbert Lagrangian is now defin
to be

L5 (
p51

P
1

2p
k (p)R(p) , ~2.10!

where 2P5d and d21, respectively, for even and oddd.
Each coupling constantk (p) is taken to be positive and ha
dimension~length! 2p, rendering the Lagrangian dimensio
less. For

k (2)5k (3)5•••5k (P)50

one recovers the usual Einstein-Hilbert Lagrangian in dim
sion d. We will always set

k (1).0.

Some or all of the others,k (p) , p52,3, . . . ,P, can then be
chosen to be nonzero. We will choose at leastk (2).0 so as
to illustrate higher-order effects, andk (1) will be taken to be
much larger thank (p) , p52,3, . . . ,P, so that the latter terms
can be considered to play a perturbative role.

For eachp, thep-Einstein tensor is defined as

G(p)b
a5R(p)b

a2
1

2p
hb

aR(p) , ~2.11!

and for the system~2.10! it is

Gb
a5 (

p51

P
1

2p
k (p)G(p)b

a . ~2.12!

III. SPHERICAL SYMMETRY

We impose spherical symmetry in thed21 space-
dimensions by requiring the diagonal metric, for Lorentz a
Euclidean signatures, respectively,

ds257N~r !dt21N~r !21dr21r 2dV (d22)
2 , ~3.1!

where

dV (d22)
2 5 du1

21sin2u1du2
21•••1S )

n51

d23

sinunD 2

dud22
2 .
02402
d

-

d

We shall henceforth use the following notation1 for the
frame indices:

xa5~ t,r ,u1 ,u2 , . . . ,ud22!5~ t,r ,1,2, . . . ,d22!,

so that for diagonal metrics one can set~with no summation!

ea5Augaaudxa. ~3.2!

The consequent simplifying properties@10# of the spin con-
nections lead finally to, using labeling withi , j 51,2, . . . ,d
22, and the notation

N~r !512L~r !, with L85
dL

dr
, ~3.3!

Rtr5
1

2
L9et`er , Rti5

1

2r
L8et`ei ,

Rri 5
1

2r
L8er`ei , Ri j 5

1

r 2
L ei`ej .

~3.4!

IV. METRICS

From the results of the previous two sections, namely
applying Eqs.~3.4! to Eq.~2.11!, we arrive at the remarkably
compact expressions for the nonvanishing components oGb

a

Gt
t5Gr

r52S r
d

dr
1~d21! DV~r ! ~4.1!

Gi
i52

1

d22 S r
d

dr
1~d22! D

3S r
d

dr
1~d21! DV~r !, ~4.2!

with i 51,2, . . . ,d22, and where

V~r !5 (
p51

P

k (p)

~d22!~d23!•••~d22p!

2pp!
S L

r 2D p

.

~4.3!

It is clear that the term withd52p vanishes, so that the
summation in Eq.~4.3! runs up to 2P,d.

All the p dependence is contained in V(r ), which is a
polynomial in L/r 2. Hence the constraints onV(r ) itself,
namely the variational equations, are independent ofp and
are the same as for thep51 case. Once these dynamic
equations are solved, the next step is to solve a polynom
equation inL/r 2. This result is crucial.

1We do not distinguish the tangent plane indices from the coo
nate ones (t,r ,1,2, . . . ,d22), for example by introducing yet an

other notation (t̂ , r̂ ,1̂,2̂, . . . ). Fordiagonal metrics, this simplify-
ing notation does not cause ambiguities. As tangent plane ind
they are raised and lowered usingha

b rather thangm
n .
9-3
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Consistently with spherical symmetry one can set

V~r !5
c

r d21
2

b

r 2(d22)
1l ~4.4!

when

Gt
t5Gr

r52
~d23!b

r 2(d22)
2~d21!l, ~4.5!

Gi
i5

~d23!b

r 2(d22)
2~d21!l. ~4.6!

The first term in Eq.~4.4!, namelycr2(d21), represents a
vacuum solution leading to the generalized Schwarzsch
type black hole@10#. This is annihilated by the operato
@r (d/dr)1(d21)# present in eachGa

a in Eqs. ~4.1! and
~4.2!.

Adding the second term in Eq.~4.4!, 2br22(d22), leads
to generalized Reissner-Nordstro¨m type@11# solutions in the
presence of a point charge ind dimensions. Finally addingl
in Eq. ~4.4! can include the presence of a cosmological c
stant.

Note the effect of the extra factor

1

d22 S r
d

dr
1~d22! D ~4.7!

in Eq. ~4.2! as compared to its absence in Eq.~4.1!. In Eq.
~4.6! this induces just a change of sign as compared to
~4.5!. This compensates precisely for the corresponding s
of the angular componentsTi

i of the stress-energy tensor of
point chargeq in d dimensions: namely,

Tt
t5Tr

r52Ti
i52

~d23!q2

2r 2(d22)
. ~4.8!

Acting on the third terml of Eq. ~4.4!, the action of the
operator~4.7! yields unity. The constantsb andl are to be
fixed, finally, after choosing suitable units, by inserting E
~4.5! and ~4.6! in

Ga
b5const3Ta

b1L da
b . ~4.9!

In the following sections we will give examples of ex
plicit solutions forL(r ) using Eqs.~4.3! and ~4.4!. We will
start with Schwarzschild-type black holes withb5l50 and
will study their properties.

V. GENERALIZED SCHWARZSCHILD-TYPE BLACK
HOLES

In the case of a vanishing stress-energy tensor, Eqs.~4.5!
and ~4.6! are solved byV(r )5cr2(d21), with b505l,
yielding
02402
-

-

q.
n

.

k (1)

2
~d22!S L

r 2D 1
k (2)

8
~d22!~d23!~d24!S L

r 2D 2

1•••

1
k (P)

2PP!
~d22!~d23!•••~d22P!S L

r 2D P

5
c

r d21

~5.1!

with 2P,d. With a single nonvanishingp, the solution of
Eq. ~5.1! reduces to the functionL(r ) desribing the
p-Schwarzschild metric of@10#, and with p51 to the
d-dimensional Schwarzschild metric of@13#.

For a horizon, denoted byr 5r H , by definition

N~r H!512L~r H!50 ° L~r H!51. ~5.2!

Hence

k (1)

2
~d22!~r H!221

k (2)

8
~d22!~d23!~d24!~r H!241•••

1
k (P)

2PP!
~d22!~d23!•••~d22P!~r H!22P

5c~r H!2(d21). ~5.3!

We will look for positive real rootsonly.
Let us now look at particular cases to better underst

the possibilities. In practice we will restrict to the casek (3)
5k (4)5•••5k (P)50, keeping onlyk (1) andk (2) . One ob-
tains, ford.4,

L~r !5S 2k (1)

~d23!~d24!k (2)
D

3F S 11
2c~d23!~d24!k (2)

~d22!k (1)
2 r (d21) D 1/2

21G r 2.

~5.4!

For k (2).0 this is real and positive. Fork (2)50 it reduces
to the usual Schwarzschild solution ind dimensions@13#. In
all cases one obtains asymptotically flat solutions.

For the horizon, one has

k (1)

2
~d22!~r H!221

k (2)

8
~d22!~d23!~d24!~r H!24

5c~r H!2(d21). ~5.5!

~i! For dimensiond55,

r H
2 5

2

3k (1)
S c2

3

4
k (2)D . ~5.6!

Hence forc. 3
4 k (2) , there is a single real horizon at

r H5S 2

3k (1)
D 1/2S c2

3

4
k (2)D 1/2

. ~5.7!

Compare this with the casep52 in @10# whenk (1)50.
9-4
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~ii ! For dimensiond56,

r H
3 1

3

2

k (2)

k (1)
r H2

c

2k (1)
50. ~5.8!

Hence

r H5~a1b!, ~aei (2p/3)1be2 i (2p/3)!,

~ae2 i (2p/3)1bei (2p/3)! ~5.9!

with

a5H c

4k (1)
1F S c

4k (1)
D 2

1S k (2)

2k (1)
D 3G1/2J 1/3

,

b5H c

4k (1)
2F S c

4k (1)
D 2

1S k (2)

2k (1)
D 3G1/2J 1/3

,

which are real cube roots. Thus, for sufficiently smallk (2)
!k (1) , there is only one real horizon at

r H5~a1b!, ~5.10!

consistently with

r H5S c

2k (1)
D 1/3

2
1

2

k (2)

k (1)
S c

2k (1)
D 21/3

1o~k (2)
2 !.

~iii ! For dimensiond57,

r H
4 13

k (2)

k (1)
r H

2 2
2c

5k (1)
50, ~5.11!

giving the real positive value for the horizon

r H5S 3k (2)

2k (1)
D 1/2F S 11

8c

45

k (1)

k (2)
2 D 1/2

21G 1/2

. ~5.12!

~iv! For dimensiond58,

r H
5 15

k (2)

k (1)
r H

3 2
c

3k (1)
50. ~5.13!

This is a quintic equation whose solution@12# can be ex-
pressed in terms ofelliptic functions. Setting

r H5
a

z
,

Eq. ~5.13! transforms into

z52S 5k (2)

a2k (1)
D S 3a5k (1)

c D z22S 3a5k (1)

c D50. ~5.14!
02402
Equation~5.14! is already aprincipal quintic @12# with in
addition the linear term absent~vanishing coefficient ofz).
Moreover, by choosinga suitably one can obtain a conve
niently simple value for one of the two coefficients in E
~5.14! or for their ratio. These features simplify the task
explicitly constructing the solutions@12#.

However since considerable more work is needed to r
ize these explicit solutions, we will not pursue them furth
here. We just add that the determination of the real posi
root must be consistent with

r H5S c

3k (1)
D 1/5

2
k (2)

k (1)
S c

3k (1)
D 21/5

1o~k (2)
2 !. ~5.15!

~v! For dimensiond511, there is a special simplification
namely that Eq.~5.5! reduces to aquartic in r H

2 , which per-
mits an elementary solution. Thus Eq.~5.5! here is

r H
8 1

14k (2)

k (1)
r H

6 2
2c

9k (1)
50. ~5.16!

This can first be solved as a quartic inr H
2 and then the posi-

tive square root taken consistently with

r H5S 2c

9k (1)
D 1/8

2
7

4

k (2)

k (1)
S 2c

9k (1)
D 21/8

1o~k (2)
2 !.

~5.17!

~vi! For arbitrary dimensiond, one can solve, in principle
polynomial equations of any degree in terms oftheta func-
tions of suitably high genus@12#. This applies both to Eqs
~5.1! and ~5.3!. Hence, in principle, exact solutions can b
constructed though it would be a very complicated task
practice.

One may note certain qualitative features easy to obse
Thus, for example, the qualitative features described by E
~5.15! and ~5.17! hold more generally. For the condition
concerningk (p) , stated after~2.10!, the single real positive
r H tends to shrink due tok (2) andk (p) with p.2, the black
hole becoming smaller in radius.

In the preceding examples we have retained onlyk (1) and
k (2) to illustrate basic features. Ford>7 one can include
k (3) , for d>9, k (4) , and so on. The equations become mo
difficult to solve but the general features appear already
our examples above.

In the illustrative examples considered in this section,
were mostly concerned with Eq.~5.3! to find the horizonr H .
Concerning the evaluation of the functionL(r ), on the other
hand, one may note that in Eq.~5.1! for L, up tod510 one
has a quartic or an equation of lower degree forL. For d
511 one has, retaining all possible nonzero contributio
for the first time, a quintic forL.

VI. MAXIMAL EXTENSIONS AND PERIODICITY
FOR EUCLIDEAN SIGNATURE

We start by deriving a crucial ingredient in this contex
determining both the maximal extension and the ne
9-5
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horizon geometry. For details we refer to Secs. III and V
@10# and references cited therein.

Set

r 5r H1r, r !1 . ~6.1!
he
ld

a

d

f

n

02402
fThen, near the horizon, we defined through

N~r!512L~r!52dr1o~r2!. ~6.2!

It can be shown that
2d5S d23

r H
DF k (1)1

1

4
~d24!~d25!k (2)r H

221•••1
1

2n21n!
~d24!•••~d22n21!k (n)r H

22(n21)

k (1)1
1

2
~d23!~d24!k (2)r H

221•••1
1

2n21~n21!!
~d23!•••~d22n!k (n)r H

22(n21)G ~6.3!
-

et
with r H satisfying Eq.~5.3!, where we have assumed that t
first n k (p) , p51,2, . . . ,n are nonzero. The next step wou
be to substitute forr H an explicit solution such as Eq.~5.7!,
Eq. ~5.10!, and so on. But the general expression~6.3! is
particularly suitable for our present purpose.

If k (n)50 for n.1, one obtains

2d5S d23

r H
D5~d23!S k (1)

2c D 1/(d23)

, ~6.4!

and usually, ford54, (k (1)/2c) is defined as (2M )21.
Now we proceed to construct the Kruskal-type maxim

extension and the periodicity of the Euclidean metric~3.1!
with Euclidean signature, namely

ds25Ndt21N21dr21r 2dV (d22)
2 . ~6.5!

We follow the standard procedure, which was generalize
one ~single! memberp of the hierarchy in Sec. 3 of@10#.
Using Eqs.~6.1! and ~6.2!, we set

r !5E dr

N
5

1

2d
ln r1h~r!, ~6.6!

in which the functionh(r) is not relevant for the singularity
at the horizon.

We also introduce the coordinates (h,z) by

e2dr !
5

1

4
~h21z2!, eidt5S h2 i z

h1z D 1/2

, ~6.7!

d being given by Eq.~6.3!. Here (h,z) provide the generali-
zation of Kruskal coordinates.

One obtains from Eqs.~6.5! and ~6.7!

ds25~4d2e2dr !
!21N~h,z!~dz21dh2!1r 2~h,z!dV (d22)

2 ,
~6.8!

the factor ofr 2 in the last term being implicitly a function o
(h,z). The factor (e2dr !

)21N tends to unity asr→0, assur-
ing maximal extension, there being neither a divergence
a zero at the horizon.
l

to

or

One obtains from the second member of Eq.~6.7!, for the
period of t,

P5
2p

udu
, ~6.9!

whered is given by Eq.~6.3!. For n52, i.e., onlyk (1) and
k (2) nonzero, one obtains

P5
4pr H

d23 F11
~d21!~d24!k (2)

4pk (1)r H
2 1~d24!~d25!k (2)

G .

~6.10!

The periodP is inversely proportional to the Hawking tem
perature of the black hole. Substituting forr H in Eq. ~6.10!
one obtains the full modification due tok (2) .

VII. COSMOLOGICAL CONSTANT AND POINT CHARGE

So far we restricted our attention to vacuum metrics. L
us now consider the more general case, keeping Eqs.~4.8!
and ~4.9! in mind, namely Eq.~4.4!,

V~r !5
c

r d21
2

b

r 2(d22)
1l.

We illustrate some basic features by setting

k (3)5k (4)5•••5k (P)50

in Eq. ~4.3!, whence~for d.4!

k (1)

2
~d22!S L

r 2D 1
k (2)

8
~d22!~d23!~d24!S L

r 2D 2

5
c

r d21
2

b

r 2(d22)
1l. ~7.1!

Setting

L5L̂1hr 2, ~7.2!

the left-hand side of Eq.~7.1! becomes
9-6
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b1S L̂

r 2D 1b2S L̂

r 2D 2

1b3 ~7.3!

with

b15
1

2
~d22!k (1)1~d22!~d23!~d24!hk (2) ,

~7.4!

b25
1

8
~d22!~d23!~d24!k (2) , ~7.5!

b35
1

2
~d22!hk (1)1

1

8
~d22!~d23!~d24!h2k (2) .

~7.6!

Setting

b35l ~7.7!

determinesh. Then one solves

b2S L̂

r 2D 2

1b1S L̂

r 2D 2S c

r d21
2

b

r 2(d22)D 50. ~7.8!

One obtains, with sign conventions consistent with Eq.~5.4!,

L̂~r !5S b1

2b2
D H F11

4b2

b1
2 S c

r d21
2

b

r 2(d22)D G 1/2

21J r 2,

~7.9!

so thatL(r ) is given by Eq.~7.2!.
For b50 andlÞ0, Eq.~7.9! for L̂ has the same structur

as forL in Eq. ~5.4!, with the constant coefficients now de
pending onl, as given by Eq.~7.4!–~7.7!. It is easy to see
that this feature will hold quite generally for allk (p) ~up to
p5P). Even in the presence of a point charge~with bÞ0),
the effect ofl can always be taken into account in this wa

Whenb is nonzero, it is seen from Eq.~4.8! to be positive
for a real chargeq. Hence for sufficiently smallr, it can be
seen from Eq.~7.9! that L̂ ~and henceL) becomescomplex.

In a previous study@11# of the gravitational systems cha
acterized byl505h, but bÞ0, and with asinglenonvan-
ishingk (p) , it was shown that such a point of transition fro
a real to a complex metric was situatedinsidethe horizon~s!
r H of the generalizedp–Reissner-Nordstro¨m type solutions.
Hence in theexteriorregion the metric was always real. Als
in @11#, the possibility of a compatible real metric for th
interior region was indicated. In the present work we will n
undertake a parallel detailed study of Eq.~7.9!.

VIII. DISCUSSION

We have studied black-hole-type solutions to generali
gravity in d dimensions (d>5). These systems consist o
superpositions of successive higher-order Gauss-Bo
terms labeled byp (2p<d) which occur, among other gravi
tational terms, in the superstring inspired@1,3# gravitational
02402
.

d

et

system. In the present work, we have omitted the effects
all other fields, e.g. the dilaton, which also occur in sup
string inspired systems@1,3#. So far, apart from introducing a
cosmological constant and the Maxwell system~i.e., a point
charge! in Sec. VII, we have studied only the gravitation
field with higher-order terms. The scope can be broadene
including other fields relevant to string theory and by purs
ing certain applications.

In the context of string theory, the fields to be added on
the gravitational systems are the dilaton, the Yang-Mills, a
the ~Abelian! antisymmetric tensor fields.

Exact solutions including dilatons in this context we
studied in@14# and @15#, but without higher-order gravita
tional terms. The application of the efficient formalism give
in the present work would enable the extension of these
sults @14,15# to the case of gravitational systems includin
higher GB terms.

Concerning the interaction of~the usual! Yang-Mills fields
interacting with Einstein-Hilbert gravity in 4-dimension
this has been intensely studied recently, and extensive re
ences to it can be found in the review@16#. The extension of
these considerations~with and without dilaton!, involving
generalized Yang-Mills systems interacting with generaliz
Einstein-Hilberts fields in higher~than 4) dimensions, would
be a very natural and efficient use of our present resu
Indeed, we have already considered generalized Yang-M
fields on fixed generalized gravitationalbackgrounds in
higher dimensions@17#.

Since in the gravitational sector of string theory there a
pear in addition the dilaton and the antisymmetric ten
fields, it is in principle desirable to include these, as,
example in @18,19#, respectively. However, an adequa
study with dilatons, antisymmetric tensors, and possi
supplementary terms from the cubic order onwards@18,19# is
beyond the scope of this work.

Another interesting result of the inclusion of the dilato
and the antisymmetric tensor fields to the usual gravity in
context of the low-energy effective action of supergravity
the construction of solitonic solutions of supergravity@20#.
As another application of our results, it would be very inte
esting to find out what the effect of adding higher-ord
gravitational terms would be on these solutions.

Finally, we mention some further possible applications
our results in the wake of earlier work in the literature whe
gravitational Lagrangians with higher terms were studi
These include applications to the elimination of ghosts@3#, to
the vanishing of the cosmological constant as a stable fi
point @21,22#, and to the construction of gravitational insta
tons@6,7#, as well as to cosmological solutions@23,24#. More
recent work involving the first GB term@25# pertains to cos-
mological solutions@26# and to theories with noncompac
extra dimensions@27–30# of gravity. The extension of thes
results @26–29# to include several higher-order GB term
with and without the inclusion of the dilaton field, woul
constitute natural applications of our results.

1. Note added

After completion of this manuscript, many previou
sources were brought to our attention. To take accoun
these, we add the following supplementary references
explanations.
9-7
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Most helpful is the extensive list of references in the
view of Myers@31#. Without trying to be complete, we men
tion the pioneering sources quoted there@32,33,3#.

Maximal extensions have been studied systematically
@34#. Our results pertaining to maximal extensions are s
cifically concerned with the consequences of the supplem
tary (d22) dimensions and the higher curvature GB ter
implemented through Eq.~6.3! in the standard Kruskal pre
scription in ther -t plane.

Particularly relevant for us is@35#. The metric function
~5.4! and the period~6.10! obtained by us as particular cas
by settingk (p)50 for p.2, match with Eqs.~3! and ~9! of
@35#, respectively, for

l̂5
k (2)

2k (1)
~d23!~d24!. ~8.1!

For comparison with thetotal Euclidean action, Eq. ~12!
in @35#, we briefly present the corresponding general res
for our case:

Total Euclidean Action: 5 period3 area of unit sphere in
(d22) dimensions3 radial integral,

Period 52p/udu; area of unit sphere in (d22) dimen-
sions,

A(d22)5
2p

d21
2

GS d21

2 D .

The radial integral is

(
p

k (p)

2p E
r H

`

R(p)dr

5 (
p51

P

k (p)

~d22!~d23!•••~d22p11!

2pp!
E

r H

`

I (p)dr,

~8.2!

where
d

02402
-

in
-

n-
s

lt

E
r H

`

I (p)dr5E
r H

`

dr r d22S r
d

dr
12D S r

d

dr
11D F r d22S L

r 2D pG
5H d

dr F r dS L

r 2D pG J
r H

`

5
2c

~d22!k (1)
dp,11S ~2d!p2

~d22p!

r H
D r H

d22p

~8.3!

with

I (1)5
2c

~d22!k (1)
12dr H

d222~d22!r H
d23 , ~8.4!

I (2)54 d r H
d242~d24!r H

d25 , ~8.5!

and so forth.
Note that the term independent ofr H in Eq. ~8.4! comes

from

lim
r→`

d

dr F r dS L

r 2D G5 lim
r→`

d

dr S 2c

~d22!k (1)r
d21

•r dD
5

2c

~d22!k (1)
.

The Euclidean action and the near-horizon factor@see Eq.
~6.3!# provide basic ingredients for studying thermodynam
and surface deformations of black holes in the context of
formalism. We hope to present such a study elsewhere.
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