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An action principle of singular hypersurfaces in general relativity and scalar-tensor type theories of gravity
in the Einstein frame is presented without assuming any symmetry. The action principle is manifestly doubly
covariant in the sense that coordinate systems on and off a hypersurface are disentangled and can be indepen-
dently specified. It is shown that, including variation of the metric, the position of the hypersurface, and the
matter fields, the variational principle gives the correct set of equations of motion: the Einstein equation off the
hypersurface, Israel’s junction condition in a doubly covariant form, and the equations of motion of the matter
fields including the scalar fields. The position of the hypersurface measured from one side of the hypersurface
and that measured from the other side can be independently varied as required by the double covariance.
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I. INTRODUCTION

Spatially extended objects such as branes, membra
shells, and walls have played many important roles in
recent progress in theoretical physics including string the
@1#, particle phenomenology@2–4#, the theory of black holes
@5–7#, cosmology@8,9#, and so on. Hence, it is important t
investigate the dynamics of such extended objects. In
ticular, the so-called brane-world scenario is based on
idea that our four-dimensional universe may be the wo
volume of a brane in a higher dimensional spaceti
@2–4,10#. Thus, in the brane-world scenario the dynamics
the brane is the dynamics of our universe itself and is of
utmost physical importance.

It is well known and the most commonly adopted pictu
that the dynamics of extended objects is elegantly descr
as a geometrical embedding of world-volume surfaces
spacetime in a certain limit. In particular, in the case of co
mension 1, or when the world-volume surface is a hypers
face, the geometrical description becomes simpler than
other cases with higher codimension. In fact, in general r
tivity or other theories of gravity in the Einstein frame, th
classical dynamics of a hypersurface is perfectly descri
by Israel’s junction condition@11#.

One of the main advantages of the junction condition
that it is manifestly doubly covariant in the sense that co
dinate systems on and off a hypersurface are disentan
and can be independently specified. More precisely, there
three independent coordinate systems: that on the hype
face and those in the two regions separated by the hype
face. From the brane world point of view, double covarian
is important since it allows us to separate the coordin
system in our world from that in the higher dimension
spacetime.

Once the classical dynamics is understood, one wo
usually like to understand quantum mechanical dynam
@12–21#. For this purpose, we would like to obtain the acti
principle for a system including a hypersurface.
0556-2821/2001/65~2!/024028~8!/$20.00 65 0240
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The easiest way to obtain the action may be to adopt
Gaussian normal coordinate system based on the hype
face and to consider the Einstein-Hilbert action with a de
function source. The action obtained in this way gives
correct set of equations in the coordinate system, provi
that the position of the hypersurface and coordinates in
neighborhood of the hypersurface are fixed by the Gaus
normal coordinate condition. However, in this method w
lose the double covariance: the coordinates on the hyper
face are part of the coordinates off the hypersurface so
the coordinates satisfy the Gaussian normal coordinate
dition. The loss of the double covariance is regrettable.

Actually, as far as the author knows, a doubly covaria
action principle has not yet been obtained in the literatu
One of the main difficulties seems to be due to the fact t
the spacetime metric on one side of the hypersurface and
on the other side are independent variables in the variatio
principle. Hence, the question arises: How can we ensure
regularity of the intrinsic geometry of the hypersurface wit
out entangling the coordinate systems on and off the hyp
surface? This question will be answered in this paper a
manifestly covariant action principle will be presented.

Another difficulty is due to the fact that the double cov
riance requires inclusion of the position of the hypersurfa
as a dynamical variable in the action principle. In fact, in t
doubly covariant formulation of the junction condition, it
easy to see that variables specifying the position are no
variant under coordinate transformation and should not
fixed @22#. More about why we need to include the positio
of the hypersurface will be explained from the brane wo
point of view in Sec. V. Here, we mention that, since t
coordinate systems on the two sides of the hypersurface
independent, it should be possible to independently vary
position of the hypersurface measured from one side and
measured from the other side in the variational principle.

It may be worth reviewing the present status in the lite
ture regarding the second difficulty. However, the auth
knows of only a few papers referring to this point. Here, w
only quote a sentence from one of them: ‘‘The variation
©2001 The American Physical Society28-1
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SHINJI MUKOHYAMA PHYSICAL REVIEW D 65 024028
equations that arose from the unreduced Hamiltonian ac
were not strictly consistent in a distributional sense, but
were able to localize the ambiguity into the single equat
that arises by varying the action with respect to the sh
position. @20#’’ One might think that another paper@21# ob-
tained the correct set of equations, but in that paper the
sition of the hypersurface measured from one side and
measured from the other side cannot be varied indep
dently. In fact, if we simply varied the position of the hype
surface measured from one side and that measured from
other side independently, then the variational principle p
sented in Ref.@21# would give wrong equations. Moreove
in both of these papers, the hypersurface represents on
dust shell and the coordinate systems on and off the hy
surface are not independent. One of them@20# assumes
spherical symmetry, too.

The purpose of this paper is to provide a manifestly d
bly covariant action principle of singular hypersurfaces
general relativity and scalar-tensor type theories of gravity
the Einstein frame without assuming any symmetry. In ad
tion to the scalar fields included in the scalar-tensor ty
theories, any kind of matter Lagrangian density on the
persurface, which may also depend on the pullback of
scalar fields, can be included. It is shown that, includ
variation of the metric, the position of the hypersurface, a
the matter fields, the variational principle gives the corr
set of equations of motion: the Einstein equation off the
persurface, Israel’s junction condition in a doubly covaria
form, and the equations of motion of the matter fields inclu
ing the scalar fields. As required by the double covarian
the position of the hypersurface measured from one sid
the hypersurface and that measured from the other side
be independently varied.

This paper is organized as follows. In Sec. II a doub
covariant action of a singular hypersurface is derived fr
the standard Einstein-Hilbert action. In Sec. III variation
the action is calculated for the variations of the metric a
the position of the hypersurface, and the corresponding e
tions are obtained. In Sec. IV the variation of the acti
corresponding to the variations of scalar fields is evalua
Section V is devoted to a summary of this paper and so
discussion.

II. ACTION OF SINGULAR HYPERSURFACE

Let us consider aD-dimensional spacetime (M,gMN) and
a timelike or spacelike hypersurfaceS which separatesM
into two regionsM1 and M2 . Since we would like to
considerS as a physical object~e.g., the world volume of a
brane or the world volume of a bubble wall in a first-ord
phase transition! or a physical event~e.g., an instantaneou
global phase transition@23#!, we assume that the
(D21)-dimensional intrinsic geometry onS is regular. On
the other hand, theD-dimensional geometry is not necessa
ily regular onS.

In the following arguments we shall estimate the act
for the system including the singular hypersurfaceS. We
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assume that the system is described by the action1

I tot5I EH1I matter, ~1!

whereI EH is the Einstein-Hilbert action with a cosmologic
constant

I EH5
1

2k2EM
dDxAugu~R22L!, ~2!

and I matter is the matter action of the form

I matter5E
M1

dDx1L11E
M2

dDx2L21E
S
dD21yL0 .

~3!

Here, $x6
M% are D-dimensional coordinate systems inM6 ,

respectively, and$ym% is a (D21)-dimensional coordinate
system inS. The three coordinate systems can be indep
dent of each other.

In order to evaluate the gravitational part of the action,
first regularize theD-dimensional geometry in the neighbo
hood ofS by introducing the finite thicknessd of the object
corresponding toS. Of course, in the final step below, w
shall take the limitd→10, where the hypersurface becom
singular again. That is we consider the prescription

I EH5 lim
d→10

~ I 1
d 1I 0

d1I 2
d !,

I 0
d5

1

2k2 F EM 0
d
dDxAugu~R22L!12eE

B1
d

dD21yAuquK

22eE
B2

d
dD21yAuquKG ,

I 6
d 5

1

2k2 F EM 6
d

dDxAugu~R22L!72eE
B 6

d
dD21yAuquKG ,

~4!

whereM 0
d is a spacetime neighborhood ofS representing

the regularized object,M 6
d are the two regions separated b

M 0
d so that

M 0
d.S,M 6

d ,M6 , lim
d→10

M 6
d 5M6 , ~5!

and B 6
d is the boundary betweenM 0

d and M 6
d , respec-

tively. Note that surface terms have been included inI 0,6
d for

later convenience but that these exactly cancel each othe
common boundariesB 6

d . Each surface term is defined as a
integral over the (D21)-dimensional intrinsic coordinate
ym on B 6

d , q is the determinant of the induced metric,K is

1For simplicity we do not consider the boundary ofM, but it is
easy to take it into account by imposing suitable boundary con
tions and introducing boundary terms appropriate for the bound
condition.
8-2
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the trace of the extrinsic curvature associated with the
normalnM directed fromM 0

d to M1
d or from M2

d to M 0
d ,

ande5gMNnMnN561.
Next, in order to estimateI 0

d , we foliateM 0
d by such a

one-parameter family of hypersurfacesSt that S0 coincides
with S and thatS61 coincides with the boundaryB 6

d , re-
spectively. Hence, we can decompose theD-dimensional
Ricci scalarR as

R5R(D21)1eK22eKmnKmn22e~KnM2n;N
M nN! ;M ,

~6!

whereR(D21) is the Ricci scalar of the (D21)-dimensional
induced metric onSt , the semicolon represents the cova
ant derivative compatible withgMN , nM is the unit normal to
St directed towardB1

d , e5gMNnMnN561, Kmn is the ex-
trinsic curvature associated withnM, the indices$m,n% are
raised by the inverse of the induced metric, andK5Kn

m . By
integrating overM 0

d and taking the limitd→10, we obtain

I 0
d5

1

2k2EM 0
d
dDxAugu~R(D21)1eK22eKmnKmn22L!

→0~d→10!. ~7!

Here, we have used the assumption that the intrinsic ge
etry onS is regular even in the limitd→10. We have also
assumed that the extrinsic curvature remains finite.

Therefore, we obtain the following form of the Einstei
Hilbert action for the system including the singular hypers
faceS:

I EH5
1

2k2 F EM1

dDx1Aug1u~R122L1!

1E
M2

dDx2Aug2u~R222L2!

22eE
S
dD21y~Auq1uK12Auq2uK2!

1eE
S
dD21ylmn~q1mn2q2mn!G , ~8!

whereq6mn is the induced metric,q6 is the determinant of
q6mn , K65q6

mnK6mn is the trace of the extrinsic curvatur
K6mn , andq6

mn is the inverse ofq6mn . In the expression~8!
we have distinguished geometrical quantities inM1 and
M2 by introducing the subscript6, and have allowed the
cosmological constant to have different values in these
regions. We have introduced the Lagrange multiplier fi
lmn(y) to ensure the regularity of the intrinsic geometry
S. When we regularized the system and decomposedI EH

into I 0
d and I 6

d as in Eq.~4!, we implicitly assumed that the
induced metric and the extrinsic curvature are continu
across the boundariesB 6

d . After taking the limitd→10, the
extrinsic curvature remains finite but can be discontinu
acrossS. On the other hand, the induced metric should
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10 because of the finiteness of the extrinsic curvature. P
vided that the hypersurfaceS is specified as the boundary o
M6 by the parametric equation

x6
M5Z6

M~ym!, ~9!

the induced metric and the extrinsic curvature are given

q6mn~y!5e6m
M ~y!e6n

N ~y!g6MNux65Z6(y) ,

K6mn~y!5
1

2
e6m

M ~y!e6n
N ~y!Ln6

g6MNux65Z6(y) ,

~10!

wheree6n
M are vectors tangent toS defined by

e6m
M ~y!5

]Z6
M

]ym
, ~11!

andn6
M is the unit normal toS directed fromM2 to M1 .

To be precise,n1
M is the inward-directed unit normal toS as

the boundary ofM1 and n2
M is the outward-directed uni

normal toS as the boundary ofM2 .
Finally, the total action of the system is given by Eq.~1!,

whereI EH and I matter are given by Eq.~8! and ~3!, respec-
tively.

III. VARIATIONAL PRINCIPLE

In this section we derive equations of motion from t
variational principle based on the action obtained in the p
vious section; namely, we shall extremize the actionI tot with
respect to the variation

g6MN~x!→g6MN~x!1dg6MN~x!,

Z6
M~y!→Z6

M~y!1dZ6
M~y!. ~12!

In the following we omit the subscript6 unless there is a
possibility of confusion.

First, it is easy to show that the integrand of the volum
term in I EH changes as follows:

Augu~R22L!→Augu@~R22L!2~GMN1LgMN!dgMN

1~dg ;N
MN 2dg;M ! ;M1O~d2!#, ~13!

where the semicolon represents the covariant derivative c
patible with the background metricgMN ~not with the per-
turbed metricgMN1dgMN), the indicesM ,N, . . . are low-
ered and raised by the background metricgMN and its inverse
gMN, anddg is defined bydg5dgM

M . Hence,
8-3
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dE
M 6

dDx6Augu~R22L!

52E
M 6

dDx6Augu~GMN1LgMN!dgMN

7eE
S
dD21yAuqunM~dgM ;N

N 2dg;M !Ux65Z6

7eE
S
dD21yAuqunMdZ6

M~R22L!U
x65Z6

.

~14!

The second term on the right hand side came from the t
derivative in Eq.~13! and the last term is due to the chan
of the region to be integrated over.

Next, let us consider the surface term inI EH . As shown in
Ref. @22# the variations of the induced metric and the extr
sic curvature are given by

dqmn5em
Men

N~dgMN1dZM ;N1dZN;M !,

dKmn5
e

2
nMnN~dgMN12dZM ;N!Kmn

2
1

2
nLem

Men
N@2dGLMN1dZL;MN

1dZL;NM1~RL8MLN1RL8NLM!dZL8#, ~15!

where the right hand side is evaluated atx6
M5Z6

M(y) and

dGLMN5
1

2
~dgLM ;N1dgLN;M2dgMN;L!. ~16!

In order to make the covariant derivatives ofdZM well-
defined, we have to extenddZM off S. The expressions~15!
are independent of the method of the extension. For det
see Ref.@22#. Hence,

AuquK→AuquK1d~AuquK !1O~d2!, ~17!

where

d~AuquK !/Auqu52S Kmn2
1

2
KqmnD dqmn1

e

2
nMnN~dgMN

12dZM ;N!K2nLqmnem
Men

N~dGLMN

1dZL;MN1RL8MLNdZL8!. ~18!

Combining this with the second term in Eq.~14!, we obtain
02402
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nM~dgM ;N
N 2dg;M !12d~AuquK !/Auqu

52~Kmn2Kqmn!dqmn22nMRMNdZN

2
1

Auqu
@AuquqmnnMen

N~dgMN12dZM ;N!# ,Lem
L

~19!

where we have used the equations

@em ,en#M50,

em
M~en

NnN! ;M5em
M~nNnN! ;M50,

qmnem
Men

N1enMnN5gMN. ~20!

Thus, the variation of the Einstein-Hilbert actionI EH is given
by

2k2dI EH52E
M1

dDx1Aug1u~G1
MN1L1g1

MN!dg1MN

2E
M2

dDx2Aug2u~G2
MN1L2g2

MN!dg2MN

1eE
S
dD21y$@Auq1u~K1

mn2K1q1
mn!

1lmn#dq1mn2@Auq2u~K2
mn2K2q2

mn!

1lmn#dq2mn12n1
M~G1MN

1L1g1MN!ux15Z1
dZ1

N 22n2
M~G2MN

1L2g2MN!ux25Z2
dZ2

N 1~q1mn2q2mn!dlmn%.

~21!

Now let us consider the variation ofI matter:

2dI matter5E
M1

dDx1Aug1uT1
MNdg1MN

1E
M2

dDx2Aug2uT2
MNdg2MN

1eE
S
dD21y@AuquSmndqmn12F1MdZ1

M

12F2MdZ2
M#, ~22!

whereqmn is eitherq1mn or q2mn , and

Aug6uT6
MN~x6!52

d

dg6MN~x6!
E

M 6

dDx68 L6 ,

AuquSmn~y!52e
d

dqmn~y!
E

S
dD21y8L0udZM50 ,
8-4
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AuquF6M~y!57n6ML6Ux65Z6(y)

1e
d

dZ6
M~y!

E
S
dD21y8L0U

dqmn50

.~23!

Therefore,dI tot50 is equivalent to the following set o
equations:

G6
MN1L6g6

MN5k2T6
MN ,

q1mn2q2mn50,

K1
mn2K2

mn52k2S Smn2
1

D22
SqmnD ,

~24!

F6N57n6
MT6MNux65Z6

, ~25!

and

lmn52Auqu~K7
mn2K7qmn!. ~26!

On the right hand side of the last equation, the subscrip2
~or 1) should be taken whenL0 is written in terms ofq1mn

~or q2mn).
Note that Eqs.~24! are the Einstein equation and Israe

junction condition@11#. The last equation is just to determin
the Lagrange multiplier fieldlmn. Although Eq.~25! looks
like a new independent equation, it will be shown in the n
section for simple examples that the equation is compat
with the equations of motion of the matter fields. Therefo
the action principle gives the correct set of equations:
Einstein equation, Israel’s junction condition, and the eq
tions of motion of matter fields.

IV. SIMPLE EXAMPLES

In this section we show that for simple examples Eq.~25!
is compatible with the equations of motion of matter field
The first trivial example is the case in which all matter fiel
are confined on the hypersurfaceS. This case includes a
shell with an arbitrary equation of state in a vacuum and
brane world scenario in a purely gravitational bulk with
bulk cosmological constant and arbitrary matter fields on
brane. In this case, the consistency condition~25! is trivially
satisfied sinceL650 andL0 does not change whenZ6

M is
changed withqmn fixed.

As the second example, let us consider a simple cas
which there is only a scalar field other than those ma
fields confined on the hypersurfaceS; namely, let us con-
sider the following Lagrangian densities:

L652AuguF1

2
gMN]MF]NF1V6~F!G ,

L05L̄0~f1!1lf~f12f2!, ~27!
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whereL̄0 is the Lagrangian density for matter confined onS,
andf6 is the pullback ofF on S defined by

f6~y!5Fux65Z6(y) . ~28!

The matter Lagrangian densityL̄0 on S can depend onf1

as well. Note that the Lagrange multiplier fieldlf(y) is
necessary in order that the scalar field should have a si
value onS and thatS should be regular. For this examp
we can easily calculateT6

MN , Smn, andF6M as follows.

T6
MN5]MF]NF2gMNF1

2
gM8N8]M8F]N8F1V~F!G ,

Smn5
2e

Auqu

d

dqmn~y!
E

S
dD21y8L̄0udf150 , ~29!

and

F1M5AuquF1

2
gM8N8]M8F]N8F1V6~F!GnM

1e~]f1
L̄01lf!]MF, ~30!

F2M52AuquF1

2
gM8N8]M8F]N8F1V6~F!GnM

2elf]MF, ~31!

where the right hand sides of Eqs.~30! and ~31! are evalu-
ated atx6

M5Z6
M(y), respectively. Hence, by using

lf52]f1
L̄02eAuqun1

M]MFux15Z1

52eAuqun2
M]MFux25Z2

, ~32!

which is part of the equations of motion, it is confirmed th
Eq. ~25! is satisfied. Thus, the consistency condition~25! is
actually compatible with the equations of motion of the sc
lar field.

It is easy to extend the above analysis to an arbitr
number of scalar fields.

V. SUMMARY AND DISCUSSION

We have presented an action principle of singular hyp
surfaces in general relativity in any dimension without a
suming any symmetry. Since an arbitrary number of sca
fields can be consistently included as shown in Sec. IV,
action principle is applicable to a wide class of scalar-ten
type theories of gravity in the Einstein frame. In addition
the scalar fields, any kind of matter Lagrangian density
the hypersurface, which may depend also on the pullbac
the scalar fields, can be included. The action principle
manifestly doubly covariant in the sense that coordinate s
tems on and off a hypersurface are disentangled and ca
independently specified. More precisely, there are three in
pendent coordinate systems: that on the hypersurface
those in the two regions separated by the hypersurface.
8-5
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have shown that, including variation of the metric, the po
tion of the hypersurface, and the matter fields, the variatio
principle gives the correct set of equations of motion:
Einstein equation off the hypersurface, Israel’s junction c
dition in a doubly covariant form, and the equations of m
tion of matter fields including the scalar fields. It is wor
mentioning that the position of the hypersurface measu
from one side of the hypersurface and that measured f
another side can be independently varied as required by
double covariance.

Now let us discuss the application of the doubly covari
action principle to the brane world scenario. In Refs.@24–
30# it was shown that the standard cosmology can be real
in the Randall-Sundrum brane world scenario for a spati
homogeneous and isotropic brane. After that, many auth
investigated cosmological perturbations in the brane-wo
scenario@31,22,32–41#.

In particular, four independent equations for scalar per
bations on the brane in the plane symmetric (K50) back-
ground were derived recently in Ref.@32#. The number of
independent equations is the same as in standard cosmo
and it was shown that at low energy these sets of equat
differ only by the nonlocal effects due to gravitational wav
in the bulk.

In the derivation of the four equations in Ref.@32# the
author took advantage of the doubly gauge invariant form
ism developed in Refs.@31,22#. It was essential that the for
malism include perturbation of the position of a brane a
dynamical variable. In fact, as already discussed in Ref.@31#,
if we fix the position of the brane by hand as in the Gauss
normal coordinate system, then it is in general inconsis
with convenient gauge choices in the bulk, such as a ge
alized Regge-Wheeler gauge.2 In other words, as was done i
Refs. @33,31#, we can constructD-gauge invariant variable
from the perturbation of the position of the brane, and th
are physical degrees of freedom independent of theD-gauge
invariant variables in the bulk. The former gauge invaria
variables are concise in the sense that they are localize
the brane, and the later variables can be expressed most
cisely by the master variables introduced in Ref.@27#. Hence,
the inclusion of the brane position as a dynamical varia
provides us with the most concise configuration space.

Now let us illustrate the above arguments aboutD-gauge-
invariant variables by using some equations. For simplic
we consider perturbations around a background with th
dimensional plane symmetry in five-dimensions. This is, f
lowing the notation in Ref.@32#, we consider the metric

ds5
25gMNdxMdxN5~gMN

(0) 1dgMN!dxMdxN ~33!

and the embedding relation

xM5ZM~y!5Z(0)M~y!1dZM~y!, ~34!

where the background is specified by the plane symme
background metric

2In the literature this is sometimes called a generalized longitu
nal gauge.
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gMN
(0) dxMdxN5gabdxadxb1r 2(

i 51

3

~dxi !2 ~35!

and such background embedding functionsZ(0)M(y) that
Z(0)a depends only ony0 and thatZ(0)i5yi . Here, the two-
dimensional metricgab and the functionr 2 are assumed to
depend only on the two-dimensional coordinates$xa%. As for
perturbations, since in linear order the perturbations of
position of the hypersurface are decoupled from vector
tensor perturbations, we consider scalar perturbations:

dgMNdxMdxN5E d3k@habYdxadxb12h(L)aV(L) idxadxi

1~h(LL)T(LL) i j 1h(Y)T(Y) i j !dxidxj #,

dZMdxM5E d3k@zaYdxa1z(L)V(L) idxi #, ~36!

where Y5exp(2ik•x), V(L) i5] iY, T(LL) i j 52] i] jY
1(2k2/3)d i j Y, andT(Y) i j 5d i j Y, and all coefficients are sup
posed to depend only on the two-dimensional coordina
$xa% of the orbit space. Here,x denotes coordinates$xi% of
the three-dimensional plane (i 51,2,3), andk represents the
momentum$ki% along the plane. Hereafter, we omitk in
most cases. It is easy to see how the coefficients$h,z% trans-
form under the five-gauge transformation and to constr
five-gauge-invariant variables. Therefore, we obtain the
lowing five-gauge-invariant variables:

fa5za1Xa , ~37!

and

Fab5hab2¹aXb2¹bXa ,

F5h(Y)2Xa]br 21
2k2

n
h(LL) , ~38!

whereXa5h(L)a2r 2]a(r 22h(LL)) and¹a represents the co
variant derivative compatible with the two-dimensional m
ric gab . The variables~37! correspond to perturbations of th
physical position of the hypersurfaceS, and its normal com-
ponentfan(0)a appears in the doubly-gauge-invariant jun
tion condition, wheren(0)a is the background unit normal to
the hypersurface. The variables~38! correspond to gravita-
tional perturbations in the bulk and can be most concis
expressed in terms of the master variableF as

Fab5
1

r S ¹a¹bF2
2

3
¹2Fgab1

1

3l 2
FgabD ,

F5
r

3 S ¹2F2
2

l 2
F D . ~39!

The perturbed Einstein equation in the bulk is reduced to
following simple equation called the master equation:

r 2¹a@r 21¹a~r 21F!#2k2r 22F50. ~40!
i-
8-6
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In the generalized Regge-Wheeler gauge whereh(L)a
5h(LL)50, the five-gauge-invariant variables are given
fa5za , Fab5hab , andF5h(Y) . On the other hand, in the
Gaussian normal gauge whereza5z(L)5h(L)an(0)a

5habn
(0)b50, these are given byfa5Xa and Eq.~38!. Note

that in the Gaussian normal gaugefa is expressed in term
of a metric perturbation. Therefore, it is evident thatfa can-
not be set zero even in the Gaussian normal gauge s
XaÞ0 in general. Actually, requiringfa50 in the Gaussian
normal gauge is equivalent to requiringza50 in the gener-
alized Regge-Wheeler gauge, which is not possible in g
eral.

Of course, it is always possible to take the Gaussian n
mal coordinate system. In this coordinate system, as il
trated above, the five-gauge-invariant variablefa is ex-
pressed in terms of metric perturbations. Hence, as was d
in Ref. @42# for a static background by a gauge-depend
method, we need to extract the degrees of freedom
fan(0)a from the metric perturbations. Classically, this pr
cedure should not be difficult since we can use the equat
B

li,

,

D
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of motion. However, quantum mechanically, we have to
careful when we use the equations of motion to reduce
action.

The next task in the future is to obtain the second-or
action for perturbations by using the doubly covariant act
obtained in this paper. After that, we need to obtain the c
responding reduced action by using a formalism to treat c
strained systems, e.g., Dirac’s method@43# or the Faddeev-
Jackiw method@44#. As shown in Ref.@45#, the perturbative
behavior of the Wheeler–DeWitt wave function can be
vestigated by the usual quantum field theory in curved spa
time with a reduced action.
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