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An action principle of singular hypersurfaces in general relativity and scalar-tensor type theories of gravity
in the Einstein frame is presented without assuming any symmetry. The action principle is manifestly doubly
covariant in the sense that coordinate systems on and off a hypersurface are disentangled and can be indepen-
dently specified. It is shown that, including variation of the metric, the position of the hypersurface, and the
matter fields, the variational principle gives the correct set of equations of motion: the Einstein equation off the
hypersurface, Israel’s junction condition in a doubly covariant form, and the equations of motion of the matter
fields including the scalar fields. The position of the hypersurface measured from one side of the hypersurface
and that measured from the other side can be independently varied as required by the double covariance.
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[. INTRODUCTION The easiest way to obtain the action may be to adopt the
Gaussian normal coordinate system based on the hypersur-
Spatially extended objects such as branes, membranefgce and to consider the Einstein-Hilbert action with a delta
shells, and walls have played many important roles in thdunction source. The action obtained in this way gives the
recent progress in theoretical physics including string theorgorrect set of equations in the coordinate system, provided
[1], particle phenomenology2—4], the theory of black holes that the position of the hypersurface and coordinates in the
[5—7], cosmology[8,9], and so on. Hence, it is important to Neighborhood of the hypersurface are fixed by the Gaussian
investigate the dynamics of such extended objects. In paf?ormal coordinate condition. However, in this method we
ticular, the so-called brane-world scenario is based on thiS€ the double covariance: the coordinates on the hypersur-
idea that our four-dimensional universe may be the world@C€ aré part of the coordinates off the hypersurface so that
volume of a brane in a higher dimensional spacetimethe coordinates satisfy the Gaussian normal coordinate con-

[2—4,10. Thus, in the brane-world scenario the dynamics ofdition. The loss of the double covariance is regrettable.

the brane is the dynamics of our universe itself and is of the Actually, as far as the author knows, a doubly covariant
the dy action principle has not yet been obtained in the literature.
utmost physical importance.

. . One of the main difficulties seems to be due to the fact that
Itis well known and the most commonly adopted picturey,q g cetime metric on one side of the hypersurface and that
that the dynamics of extended objects is elegantly describeg}, he other side are independent variables in the variational
as a geometrical embedding of world-volume surfaces intQyinciple. Hence, the question arises: How can we ensure the
spacetime in a certain limit. In particular, in the case of codi-egylarity of the intrinsic geometry of the hypersurface with-
mension 1, or when the world-volume surface is a hypersurput entangling the coordinate systems on and off the hyper-
face, the geometrical description becomes simpler than igurface? This question will be answered in this paper as a
other cases with higher codimension. In fact, in general relamanifestly covariant action principle will be presented.
tivity or other theories of gravity in the Einstein frame, the  Another difficulty is due to the fact that the double cova-
classical dynamics of a hypersurface is perfectly describedance requires inclusion of the position of the hypersurface
by Israel’s junction conditiofl11]. as a dynamical variable in the action principle. In fact, in the
One of the main advantages of the junction condition isdoubly covariant formulation of the junction condition, it is
that it is manifestly doubly covariant in the sense that cooreasy to see that variables specifying the position are not in-
dinate systems on and off a hypersurface are disentangladriant under coordinate transformation and should not be
and can be independently specified. More precisely, there afexed [22]. More about why we need to include the position
three independent coordinate systems: that on the hypersusf the hypersurface will be explained from the brane world
face and those in the two regions separated by the hypersyseint of view in Sec. V. Here, we mention that, since the
face. From the brane world point of view, double covariancecoordinate systems on the two sides of the hypersurface are
is important since it allows us to separate the coordinaténdependent, it should be possible to independently vary the
system in our world from that in the higher dimensional position of the hypersurface measured from one side and that
spacetime. measured from the other side in the variational principle.
Once the classical dynamics is understood, one would It may be worth reviewing the present status in the litera-
usually like to understand quantum mechanical dynamicsure regarding the second difficulty. However, the author
[12-21]. For this purpose, we would like to obtain the action knows of only a few papers referring to this point. Here, we
principle for a system including a hypersurface. only quote a sentence from one of them: “The variational
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equations that arose from the unreduced Hamiltonian actioassume that the system is described by the action
were not strictly consistent in a distributional sense, but we

were able to localize the ambiguity into the single equation lor=lent Imatter, @
that arises by varying the action with respect to the shell o 0| is the Einstein-Hilbert action with a cosmological
position.[20]" One might think that another pap¢2l] ob-  .onstant

tained the correct set of equations, but in that paper the po-

sition of the hypersurface measured from one side and that 1

measured from the other side cannot be varied indepen- IEHz—zf d®x\/|g[(R—2A), @)
dently. In fact, if we simply varied the position of the hyper- 2K°I M

surface measured from one side and that measured from tl&%dlmatter is the matter action of the form

other side independently, then the variational principle pre-

sented in Ref[21] would give wrong equations. Moreover, B b b b1

in both of these papers, the hypersurface represents only a ! matter= fM+d Xi Lo+ “ d™x- L+ Ld YLo.

dust shell and the coordinate systems on and off the hyper- (3)
surface are not independent. One of thg&®] assumes
spherical symmetry, too. Here,{xﬁ} are D-dimensional coordinate systems M.,

The purpose of this paper is to provide a manifestly dou+espectively, andy*} is a (D—1)-dimensional coordinate
bly covariant action principle of singular hypersurfaces insystem inX. The three coordinate systems can be indepen-
general relativity and scalar-tensor type theories of gravity irdent of each other.
the Einstein frame without assuming any symmetry. In addi- [n order to evaluate the gravitational part of the action, we
tion to the scalar fields included in the scalar-tensor typdirst regularize thed-dimensional geometry in the neighbor-
theoriesy any kind of matter Lagrangian density on the hyhOOd of>, by intrOdUCing the f|n|te thiCk-neS& of the ObjeCt
persurface, which may also depend on the pullback of th&orresponding t&. Of course, in the final step below, we
scalar fields, can be included. It is shown that, includingShall take the limito— +0, where the hypersurface becomes
variation of the metric, the position of the hypersurface, andbingular again. That is we consider the prescription
the matter fields, the variational principle gives the correctI = lim (1°+18+1%)
set of equations of motion: the Einstein equation off the hy- EH soi0 o
persurface, Israel’s junction condition in a doubly covariant
form, and the equations of motion of the matter fields includ- 1
ing the scalar fields. As required by the double covariance, Ig=—2
the position of the hypersurface measured from one side of K
the hypersurface and that measured from the other side can
be independently varied. —fo édD_ly \/WK}

This paper is organized as follows. In Sec. Il a doubly 5=
covariant action of a singular hypersurface is derived from

the standard Einstein-Hilbert action. In Sec. Il variation of |i: ;{f 5de\/H(R—2A)IZEf ﬁley\/HK},
K ML B

f deM(R—zA)Jrzef d®~ly|q|K
M B’

+

the action is calculated for the variations of the metric and

the position of the hypersurface, and the corresponding equa- (4
tions are obtained. In Sec. IV the variation of the action

corresponding to the variations of scalar fields is evaluated/.vhere/\/lg is a spacetime neighborhood B&f representing
Section V is devoted to a summary of this paper and soméhe regularized object/}/li are the two regions separated by
discussion. Mg so that

MEDI MSCM-, lim M3=M-., (5)
1. ACTION OF SINGULAR HYPERSURFACE o—-+0

Let us consider ®-dimensional spacetimeM(,gy,) and and B is the boundary betweep § and M 3, respec-
a timelike or spacelike hypersurfaée which separateg\t tively. Note that surface terms have been includetﬁip for
into two regionsM, and M_. Since we would like to later convenience but that these exactly cancel each other on
considers, as a physical objede.g., the world volume of a common boundarieBi . Each surface term is defined as an
brane or the world volume of a bubble wall in a first-orderintegral over the D —1)-dimensional intrinsic coordinates
phase transitionor a physical evente.g., an instantaneous y* on 3{1 , q is the determinant of the induced metri¢,is
global phase transition[23]), we assume that the
(D—1)-dimensional intrinsic geometry ah is regular. On
the other hand, thB-dimensional geometry is not necessar- 1ror simplicity we do not consider the boundary b1, but it is
ily regular onX.. easy to take it into account by imposing suitable boundary condi-
In the following arguments we shall estimate the actiontions and introducing boundary terms appropriate for the boundary
for the system including the singular hypersurface We  condition.
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the trace of the extrinsic curvature associated with the unitnain continuous across even after taking the limio—

normaln™ directed fromM § to M3 or from M° to M §, +0 because of the finiteness of the extrinsic curvature. Pro-

ande=gyynVnN=+1. vided that the hypersurface is specified as the boundary of
Next, in order to estimaté), we foliate M § by such a M. by the parametric equation

one-parameter family of hypersurfacEs that 2, coincides

with 3 and that . ; coincides with the boundarig? , re- xM=2zM(y»), 9

spectively. Hence, we can decompose falimensional

Ricci scalarR as the induced metric and the extrinsic curvature are given by

R=RC D+ eK?— eK 'K ,,—2e(Kn" —nlinM).yy ,
(6) Q= w(Y) =€ (Y)Y, (V) gmnlx, =2, ()

whereR(°~1 is the Ricci scalar of thel§ — 1)-dimensional

induced metric or, ., the semicolon represents the covari- M N

ant derivative compatible withy, n™ is the unit normal to KepwulY)= 5€2,(Y)8: (V) Ln Gamnlx, =2, ()

3, directed toward3? , e=gyyn“n"==+1, K,, is the ex- (10)
trinsic curvature associated with", the indices{u,v} are

raised by the inverse of the induced metric, Hod K':;L . By WhereeMV are vectors tangent tB defined by
integrating overM § and taking the limits— + 0, we obtain -

azM
1 M ()= 25F

5_ D D-1 2 e er, (y)= , (11
lo——ZKJMgd x\g[(RC~ D+ eK2— KK ,,—2A) =)=

—0(6—+0). () and n¥ is the unit normal t& directed fromM_ to M, .

Here, we have used the assumption that the intrinsic geomT0 be precisen.’ is the inward-directed unit normal  as

; vhe ' )
etry on, is regular even in the limis— + 0. We have also the boundary ofM, andn_ is the outward-directed unit

assumed that the extrinsic curvature remains finite. ”O”’T‘a' toX. as the bou_ndary aM._. L

Therefore, we obtain the following form of the Einstein- Finally, the total action of the system is given by Ed),
Hilbert action for the system including the singular hypersur-f[’i"\?eei;elEH and | mayer are given by Eq(8) and(3), respec-
faceX: :

1 11l. VARIATIONAL PRINCIPLE
IEH:_[JM d® Vg [(Ry—2A4)
+

2k? In this section we derive equations of motion from the
variational principle based on the action obtained in the pre-
+ J dPx_v|g_[(R.—2A_) vious section; namely, we shall extremize the actigpwith
M- respect to the variation

_Zéfde_ly( a1k =la-[k-) 9+ MN(X) =G mn(X) + 69+ mn(X),
te JEdD‘lyx“"(qw—q_W) ! ®) ZE(y) = ZE(y) +6ZE(y). (12

whereq. ,,, is the induced metriag.. is the determinant of In thg _fpllowing we _omit the subscript: unless there is a
-, K:=0%"K. ,, is the trace of the extrinsic curvature possibility of confusion. _

K- ,,, andg*’ is the inverse ofj. ,, . In the expressio() F|r_st, it is easy to show that. the integrand of the volume
we have distinguished geometrical quantities &b, and term inley changes as follows:

M _ by introducing the subscript, and have allowed the

cosmological constant to have different values in these two |g|(R—2A)—\|g|[(R—2A)—(GMN+AgMN) Sgun
regions. We have introduced the Lagrange multiplier field MN " 5

\“?(y) to ensure the regularity of the intrinsic geometry of (69 N—69);mt O(87)], (13

3. When we regularized the system and decompdsed

into |g andli as in Eq.(4), we implicitly assumed that the where the semicolon represents the covariant derivative com-
induced metric and the extrinsic curvature are continuougatible with the background metrigy, (not with the per-
across the boundari&i . After taking the limit6— +0, the  turbed metricgyn+ 9umn), the indicesM,N, ... are low-
extrinsic curvature remains finite but can be discontinuougred and raised by the background medrig, and its inverse
acrossX. On the other hand, the induced metric should regMN, and &g is defined byég=6gm . Hence,
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M sqN
5f d®x. J]g[(R—2A) nM(8gm:n— 89.m) +28(v]alK)/ V]|
M.

=—(K*"=Kg"*)éq,,,— 2nMRy6ZN

=— [ d%.[gl(GM"+Ag"™) g 1
f/\/u B MN _—[\/|Q|anMet‘(5gMN+25ZM;N)],L9|[L
Vial

IGJEdDily\/WnM((S\g’ltlll;N_5g;M) Xy=Z, (19)

where we have used the equations

T ef d®~tylqg[ny 6z
s

Xy =Z, [e,u vev]MIOa
(14 e,'\,{l(e’;nN);M:e,'\f(nNnN);Mzoy
The second term on the right hand side came from the total qMVel'\:letl-i- enMnN=gMN, (20)
derivative in Eq.(13) and the last term is due to the change
of the region to be integrated over. Thus, the variation of the Einstein-Hilbert actibg, is given

Next, let us consider the surface term gy, . As shownin  py
Ref.[22] the variations of the induced metric and the extrin-
sic curvature are given by
2K 8l gy=— fM d®x g+ [(GYN+ A g™ 69 wn

+

5qw:e,’fetl(59MN+ OZy;NT 6Zn;m),
_f d®x_[g_[(GM"+A_g"™) 59wy
M_

€
8K, ==nM"nN(sgyn+ 26Zy.n) K
vy ! my - v v
2 "‘Efde WiVl (KL —K g4
LaMoN
_En e,uey[Z(SFLMN_F 5ZL;MN +)\My]6q+ﬂy_[\/m(Kliy_K—qliv)
’ v M

+6Z . nm+ (Rumint Runem) 6251, (19) A0 205 (Crmn

+ AL gy, =z, 825 —2n"(G
where the right hand side is evaluateck¥t=z"(y) and \ ,
+A—g—MN)|X7227527+(q+,uv_q—,uv)5)\# }

1 (21
5FLMN:§(5QLM;N+ OgLn;M ~ OGmN;L)- (16)
Now let us consider the variation of,,er:

In order to make the covariant derivatives 6ZM well- b VN
defined, we have to extentZM off 3. The expressiongl5) 26l matter= fM A V194 TET 09 un
are independent of the method of the extension. For details, ’
see Ref[22]. Hence,

+f d®x_\/Jg_|T"Nsg_
M_
VlalK—|alK+ 8(y]alK) +0(5%), (17)

+ eLdD_ly[ Jlals#sq,,,+ 2F ;62"

where
+2F_y 62V, (22)

5(\/HK)/\/H (K/M/_ _Kq,uv> 5qw+ n MANC S whereq,,, is eitherq, ,, orq_,,, and

o
+25ZM;N)K_nLq'uvezle,;l(arLMN Vg [ TN(x. )= Z—J dPx. L.,
, 09+ mn(X+) I -
+6Z_ . unt R mLNGZY). (18
V]a|S# (y)=2e f dly'c ,
Combining this with the second term in Ed.4), we obtain lals*ty) 5CI,W(Y) V' Lolozti=o
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whereL_',o is the Lagrangian density for matter confinedXn

VIalFcm(y)=FnomLla X\ =Z..(y) and ¢ .. is the pullback of® on 3 defined by
P ¢¢(Y):q)|xi=zt(y) . (28
+e—y f dP~ly'z, (23 _ _
6ZZ(y)Js 5q..=0 The matter Lagrangian densit§, on 3 can depend om
mv

as well. Note that the Lagrange multiplier field,(y) is
Therefore, 8l,,,=0 is equivalent to the following set of Necessary in order that the scalar field should _have a single
equations: value onZ and thatX should be regular. For this example
we can easily calculatg"™, S*”, andF .., as follows.
GYN+ AL g¥N=k2TUN,

1 ’ !
T’_\_,_AN:(?M(I)&N(D_QMN —gM N &Mr(I)&qu)-I-V(q))

2 1
q+;¢v_q—p,v:o!
1 (g 2e S f dely/Z| (29)
MV __ MV 2 v__ v = =0
KoK= K<SM D_quu), Vil 89,,(9) Js Pod=t
(24)
and
Fon=FnYTounlx. =2, (25) 1
Fov=1al §9M N @y @+ Ve (P) ny
and
)\MV:_\/H(K;TILV_KIC]MV). (26) +6(ﬁ¢+£0+}\¢)(9|\/|q), (30)
On the right hand side of the last equation, the subseript _ 1
(or +) should be taken whef is written in terms ofg, ,,,, Fow=—ldl 29 I PIND+V (D) Ny
(ora-.).
Note that Eqs(24) are the Einstein equation and Israel’s — €Ny P, (31

junction condition11]. The last equation is just to determine
the Lagrange multiplier field*”. Although Eq.(25) looks

like a new independent equation, it will be shown in the nex
section for simple examples that the equation is compatible

where the right hand sides of Eq80) and(31) are evalu-
ated atx! =7¥(y), respectively. Hence, by using

— o [ M
with the equations of motion of the matter fields. Therefore, Ng=—0dy, Lo € |q|n+07'\/'q)|><+:2+
the action principle gives the correct set of equations: the _ M
Einstein equation, Israel’'s junction condition, and the equa- =—elanZon®l, -z, (32)

tions of motion of matter fields. L . L '
which is part of the equations of motion, it is confirmed that

Eq. (25) is satisfied. Thus, the consistency conditi@3) is
actually compatible with the equations of motion of the sca-

In this section we show that for simple examples &)  lar field.
is compatible with the equations of motion of matter fields. It is easy to extend the above analysis to an arbitrary
The first trivial example is the case in which all matter fieldsnumber of scalar fields.
are confined on the hypersurfage This case includes a
shell with an arbitrary equation of state in a vacuum and the V. SUMMARY AND DISCUSSION
brane world scenario in a purely gravitational bulk with a We h d . inciole of sinaular h
bulk cosmological constant and arbitrary matter fields on the € have presente an gc'upn principie of singufar hyper-
brane. In this case, the consistency conditi®d is trivially 5“”"%“365 in general relatl_vlty in-any _dlmen3|on without as-
- . = M suming any symmetry. Since an arbitrary number of scalar
satisfied sincel.. =0 and £y does not change wheny is . . . .
changed withy.., fixed. - f|eIQS can bg can|ster_1tIy included as shown in Sec. IV, the
As the secoﬂnyd example, let us consider a simple case ﬁcnon prln_C|pIe is ap_phc.able toa w@e class of scala_r—.tensor
which there is only a scalar field other than those matte ype theories of gravity in the Einstein frame. In addition to

) , the scalar fields, any kind of matter Lagrangian density on
flglds confined on the hyp(-.:‘rsurfa&e,' .narnely, let us con- the hypersurface, which may depend also on the pullback of
sider the following Lagrangian densities:

the scalar fields, can be included. The action principle is
1 manifestly doubly covariant in the sense that coordinate sys-
L£.=—+g| EQMNf?M(Dc?N‘DJFV:(@) , tems on and off a hypersurface are disentangled and can be
independently specified. More precisely, there are three inde-
_ pendent coordinate systems: that on the hypersurface and
Lo=Lo(P )T Ny(di— ), (270 those in the two regions separated by the hypersurface. We

IV. SIMPLE EXAMPLES
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have shown that, including variation of the metric, the posi- 3 _
tion of the hypersurface, and the matter fields, the variational gidXMdxN =y, dx@dxP+ 12>, (dx)2 (35)
principle gives the correct set of equations of motion: the =1

Ellr_13te'|n equation off thg hypersurface, Israel’s jgnctlon coN- 14 such background embedding functict@™(y) that
dition in a doubly covariant form, and the equations of mo-

(0)a 0 (0)i — /i -
tion of matter fields including the scalar fields. It is worth Z. de_pends on!y oy" and thatz . y2. Here, the two
§|men5|onal metricy,, and the functiorr= are assumed to

mentioning that the position of the hypersurface measure . . .
from one side of the hypersurface and that measured fromeenOI o_nly on _the two gﬂmensmnal coordme{be"&._As for
rturbations, since in linear order the perturbations of the

. . . . e
zgamgrcil\?:ri(;ir;e?e independently varied as required by t'{p;eosition of the hypersurface are decoupled from vector and

Now let us discuss the application of the doubly covarianttensor perturbations, we consider scalar perturbations:

action principle to the brane world scenario. In Ré4—
30] it was shown that the standard cosmology can be realized gy ndxdxN= f d3k[hapY DEDXP+ 20 ),V )idXPd X!
in the Randall-Sundrum brane world scenario for a spatially
homogeneous and isotropic brane. After that, many authors +(hy Twi+hen Tevip dxdx],
investigated cosmological perturbations in the brane-world
scenarigq31,22,32-41 y 3 :

In particular, four independent equations for scalar pertur- 6Zydx :J d°k[z,Y dX+7()V(yidX], (36)
bations on the brane in the plane symmetic=0) back-
ground were derived recently in RdB2]. The number of where Y=exp(—ik-x), V=4dY, T)ij=2d9;Y
independent equations is the same as in standard cosmology/2k?/3) i} Y, andT v);; = §;;Y, and all coefficients are sup-
and it was shown that at low energy these sets of equationsosed to depend only on the two-dimensional coordinates
differ only by the nonlocal effects due to gravitational waves{x?} of the orbit space. Heres denotes coordinatel'} of
in the bulk. the three-dimensional plané=1,2,3), andk represents the

In the derivation of the four equations in R¢B2] the  momentum{k;} along the plane. Hereafter, we oniitin
author took advantage of the doubly gauge invariant formalmost cases. It is easy to see how the coefficiéinis} trans-
ism developed in Ref§31,22. It was essential that the for- form under the five-gauge transformation and to construct
malism include perturbation of the position of a brane as dive-gauge-invariant variables. Therefore, we obtain the fol-
dynamical variable. In fact, as already discussed in Bdfl,  lowing five-gauge-invariant variables:
if we fix the position of the brane by hand as in the Gaussian
normal coordinate system, then it is in general inconsistent Pa=2Zat Xy, (37)
with convenient gauge choices in the bulk, such as a gener-
alized Regge-Wheeler gaugén other words, as was done in and
Refs.[33,31], we can construdD-gauge invariant variables
from the perturbation of the position of the brane, and they
are physical degrees of freedom independent otfgauge oK2
invariant variables in the bulk. The former gauge invariant F:h(Y)—Xa&berr —hwy. (39
variables are concise in the sense that they are localized on n
the brane, and the later variables can be expressed most con:- _
cisely by the master variables introduced in R&%). Hence, whereXa=h()a—r*da(r 1)) and¥, represents the co-

the inclusion of the brane position as a dynamical variabl variant derivative compatible with the two-dimensional met-

provides us with the most concise configuration space. ”ﬁ Yab- IThe Xgnab:fetﬁS?]correspfor%ito F(Jje_ft turbatlonls of the
Now let us illustrate the above arguments abDegauge- PYsica pO(SOI)aIOI’l orthe .ypﬁrsgr abl and 1s hormat com-
invariant variables by using some equations. For simplicityponem‘ﬁ’cln appears in the doubly-gauge-invariant junc-

| | . ; i ©a | |
we consider perturbations around a background with threet—'r?n ﬁondltlor}, whe1r_e:]1 IS tgle background u(;nt normal to
dimensional plane symmetry in five-dimensions. This is, fol-(N€ hypersurface. The varia €88) correspond to gravita-

lowing the notation in Ref{32], we consider the metric tional perturbations in the bulk and can be most concisely
' expressed in terms of the master variadhleas

Fab=hap— VaXp— Vo Xa,

dsZ=gundxMdxN=(gig\ + dgun) dXMdx¥  (33) . , .
Fab: ?( Vaqu)_ §V2(I) Yab™T — O ')’ab) y

and the embedding relation 3)2
xM=2ZM(y)=Z2M(y) + 62" (y), (34) )
r
— 2
where the background is specified by the plane symmetric F= 3 Vo - |_2(D ' (39

background metric

The perturbed Einstein equation in the bulk is reduced to the

following simple equation called the master equation:
2In the literature this is sometimes called a generalized longitudi-
nal gauge. r2var—1v,(r 1®)]—k? 2d=0. (40)
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In the generalized Regge-Wheeler gauge whegg,  of motion. However, quantum mechanically, we have to be

=h)=0, the five-gauge-invariant variables are given bycareful when we use the equations of motion to reduce the
$a=2Za, Fap=hap, andF=hy,. On the other hand, in the action. _ _ _
Gaussian normal gauge Wheraa: Z(L):h(L)an(O)a The next task |n_ the fUtUre. is to obtain the Se(:;ond'or_der
=h,pn®°=0, these are given by,= X, and Eq.(38). Note ~ action for perturbations by using the doubly covariant action
that in the Gaussian normal gauge is expressed in terms obtained in this paper. After that, we need to obtain the cor-
of a metric perturbation. Therefore, it is evident tifatcan- respondmg reduced action by’ using a formalism to treat con-
not be set zero even in the Gaussian normal gauge sinddrained systems, e.g., Dirac's metha@] or the Faddeev-

X,#0 in general. Actually, requiringg,= 0 in the Gaussian Jackivx_/ method44]. As shown in_ Ref[45], the _perturbative_
normal gauge is equivalent to requiriag=0 in the gener- behgwor of the Wheeler—DeWitt wave funcyon can be in-
alized Regge-Wheeler gauge, which is not possible in gen\_/.estlga}ted by the usual quantum field theory in curved space-
eral. time with a reduced action.

Of course, it is always possible to take the Gaussian nor-
mal coordinate system. In this coordinate system, as illus-
trated above, the five-gauge-invariant varialbg is ex- The author would like to thank Werner Israel for his con-
pressed in terms of metric perturbations. Hence, as was doni@uing encouragement and helpful discussions. This work
in Ref. [42] for a static background by a gauge-dependentvas done during a stay at the Canadian Institute for Theoret-
method, we need to extract the degrees of freedom atal Astrophysics. The author is grateful to Lev Kofman for
$,n'®2 from the metric perturbations. Classically, this pro- his warm hospitality. This work was supported by CITA and
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