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Axially symmetric monopoles and black holes in Einstein-Yang-Mills-Higgs theory
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We investigate static axially symmetric monopole and black hole solutions with a magnetic nbatgm
Einstein-Yang-Mills-Higgs theory. For a vanishing and small Higgs self-coupling, multimonopole solutions are
gravitationally bound. Their magger unit chargeis lower than the mass of the=1 monopole. For a large
Higgs self-coupling only a repulsive phase exists. The static axially symmetric hairy black hole solutions
possess a deformed horizon with constant surface gravity. We consider their properties in the isolated horizon
framework, interpreting them as bound states of monopoles and black holes. Representing counterexamples to
the “no-hair” conjecture, these black holes are neither uniquely characterized by their horizon area and horizon
charge.
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[. INTRODUCTION core would be smaller than the Schwarzschild radius of the
solution[13]. The same holds true for static axially symmet-

Magnetic monopoleq 1], multimonopoles[2-5], and ric gravitating multimonopole solutiorjd4]. All these solu-
monopole-antimonopole pair solutiorf$,7] are globally tions are asymptotically flat.
regular solutions of S(2) Yang-Mills-Higgs(YMH) theory, The inclusion of gravity allows for an attractive phase of
with a Higgs field in the triplet representation. Since theirlike monopoles not present in flat spddel]. There arises a
magnetic charge is proportional to their topological chargeregion of parameter space, where the n@esunit chargeof
the monopoles and multimonopoles reside in topologicallythe gravitating multimonopole solutions is lower than the
nontrivial sectors of the theory, whereas the monopolemass of the gravitating=1 monopole. Here the multimono-
antimonopole pair solutions are topologically trivial. pole solutions are gravitationally bound.

In the Bogomol'nyi-Prasad-SommerfieldBPS limit To every regular monopole solution there exists a corre-
[8,9], where the strength of the Higgs self-interaction poten-sponding family of black hole solutions with regular event
tial vanishes, the mass of the monopole and multimonopol&orizon and horizon radius<0x, <X, max[13]. Likewise, to
solutions saturates its lower bound, the Bogomol'nyi boundevery regular axially symmetric multimonopole solution
In particular, the masper unit chargeof ann>1 monopole there exists a corresponding family of black hole solutions
is precisely equal to that of the=1 monopole. The mass- with regular event horizohl4]. Outside their event horizon
less Higgs field mediates a long range attractive force whiclthese black hole solutions possess nontrivial non-Abelian
exactly cancels the long range repulsive magnetic force ofields. Therefore they represent counterexamples to the “no-
the U(1) field[10,11. hair” conjecture. The axially symmetric black hole solutions

For a finite Higgs self-coupling, however, the Higgs field additionally show that static black hole solutions need not be
is massive and therefore decays exponentially. Consequentipherically symmetric; i.e., Israel's theorem cannot be gen-
the long range magnetic field dominates at large distancegralized to non-Abelian theories eithgr5—17).
leading to the repulsion of like monopolgk2]. In particular, Considering the non-Abelian black hole solutions in the
as verified numerically fon=2 andn=3 monopoled4], isolated horizon frameworkl8—2Q, they can be interpreted
the masger unit chargeof ann>1 monopole is higher than as bound states of monopoles and black hf2&. In par-
the mass of then=1 monopole. Thus for a finite Higgs ticular, the isolated horizon framework yields an intriguing
self-coupling there is only a repulsive phase between likeelation for the mass of hairy black hole solutions, represent-
monopoles. ing it as the sum of the monopole mass and the horizon mass

Let us now consider the effect of gravity on the monopoleof the black hole solution§19]. Having shown previously
and multimonopole solutions. When gravity is coupled tothat this relation is also valid for black holes in between
YMH theory, a branch of gravitating monopole solutions monopole-antimonopole pair solutiohgl], we here verify
emerges from the flat space monopole solufi®8]. With  this relation for the magnetically charged hairy black hole
increasing gravitational strength, the mass of the gravitatingolutions. The isolated horizon formalism has furthermore
monopole solutions decreases monotonically. The branch déd to new conjectures for black holes. In particular, a
monopole solutions extends up to some maximal value of théquasilocal uniqueness conjecture” has been proposed, stat-
gravitational strength, beyond which the size of the solitoning that static black holes are uniquely characterized by their

0556-2821/2001/62)/02402722)/$20.00 65024027-1 ©2001 The American Physical Society



BETTI HARTMANN, BURKHARD KLEIHAUS, AND JUTTA KUNZ

horizon area and horizon chafge[19]. We investigate the
validity of this conjecture for the Einstein—YMKEYMH)
black hole solutions.

This paper presents a detailed account of the static axially
symmetric multimonopole and black hole solutions, reported
in [14]. In Sec. Il we present the action, the axially symmet-
ric ansatz in isotropic spherical coordinates, and the bound-
ary conditions. In Sec. Ill we recall the spherically symmet-
ric solutions, presenting them in isotropic coordinates. In
Sec. IV we discuss the properties of the axially symmetric
regular multimonopole solutions, and in Sec. V those of the
black hole solutions. We present our conclusions in Sec. VI.
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In Appendix A some details of the quantitiés,,, D,®,
andT,,
nique is briefly described.

II. EINSTEIN-YANG-MILLS-HIGGS EQUATIONS
OF MOTION

A. Einstein-Yang-Mills-Higgs action

We consider the S(2) Einstein-Yang-Mills-Higgs action

S—H R 1TF R LD D D
66 21 )= 711Dy )
1
-gh Tr(d2— 7?)? )\/ gd*x, 1

with field strength tensor
Fu=0d,A,—d,A,+ie[A, Al 2

of the gauge field

1
A, =57, &)

and with covariant derivative
D, ®=49,0+ie[A,,P], 4
of the Higgs field in the adjoint representation

O =g (5)

Here g denotes the determinant of the metric. The constants
in the action represent Newton'’s const&htthe Yang-Mills
coupling constang, the Higgs self-coupling constait and

the vacuum expectation value of the Higgs field
Variation of the action(1) with respect to the metrig"”
leads to the Einstein equations

G,=R

y3% v Eg,uv

R=87GT,, (6)

with stress-energy tensor

are shown, and in Appendix B the numerical tech-

Variation with respect to the gauge fiekd, and the Higgs
field @ leads to the matter field equations

1 1
EDM(J—_gFW)—Zm[cD,D@]:o, (8)

D, (V—gD#®)+\(P2— 72 P=0, 9

\/_

respectively.

B. Static axially symmetric ansatz

Instead of the Schwarzschild-like coordinates, used for
the spherically symmetric EYM and EYMH solutions
[22,23,13 (see Sec. I, we adopt isotropic coordinates as in
[24,16,25,17,26,21,]14to construct static axially symmetric
solutions. In terms of the spherical coordinatesé, and ¢
the isotropic metric reads

m mr2 Ir2sir? 6
ds?= — fdt?+ —dr24+ —d#?+ ————

2

where the metric functions, m, andl are only functions of
the coordinates and 6. The z axis (=0) represents the
symmetry axis. Regularity on this axis requif@d]

M| y=o=1]=0- (13)

We take a purely magnetic gauge fief,=0 and choose
for the gauge field the ansdt3,28,24,16,25,17,14

1
AMdX“:E{TZ[HldH(l—HZ)rd 6]

—n[ 7 H3+ 7)(1—Hy)rsinede}. (12

Here the symbolsy, 73, andr, denote the dot products of
the Cartesian vector of Pauli matrice?s,z(TX,Ty,Tz), with
the spatial unit vectors

ép: (sinf cosne,sind sinng,cosh),
=(cosf cosne,cosd sinng, —sing), (13

el =(—sinng,cosng,0),
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respectively. Since the fields windtimes around, while the
azimuthal anglep covers the full trigopnometric circle once,
we refer to the integen as the winding number of the solu-
tions. For the Higgs field the corresponding ansafZid]

O=(D, 7+ Dy 7. (14
The four gauge field functionkl; and the two Higgs field
functions ®; depend only on the coordinatesand 6. For
n:]. a.nd H1:H3:(D2:O, H2=H4=K(I’), and (I)l
=H(r), the spherically symmetric solutions are obtained in
isotropic coordinates.

The ansatz12)—(14) is axially symmetric in the sense
that a rotation around the axis can be compensated by a
gauge rotation. The ansatz is form invariant under the Abe
lian gauge transformatiof8,29,28,30

U=exp{|§rgr(r,0)>. (15)

The functionsH; andH, transform inhomogeneously under
this gauge transformation,
H 1— H 1 r &rF y
H2—)H2+30F, (16)

like a two-dimensional gauge field. The functiddg andH ,
combine to form a scalar doubldt§+ cotd,H,). Likewise,
the Higgs field functions form a scalar doubl& {,P>).

We fix the gauge by choosing the gauge condition as pre-

viously [29,28,30,24,16,25,17,14In terms of the functions
H, it reads

l’&rHl—&gHz:O. (17)
With the ansat10)—(12) and the gauge conditiofl7) we
then obtain the set of EYMH field equations.

The energy density of the matter fields —T8= —Lyis
given by

2
A 2 _ 2
To 2r2f m[(mrq)l"'Hl‘bz) +(roy®,—H®y)
+(9g®P1—Hy®,) 2+ (9,0 + H,y®P1)?]
2

n 2 A 2 2 2\2

f2
+—
2e%r*m
n2
+ l—{(rang— HiH,)2+[rd,H,+H(Hz+cot)]?

1 2
E(r&er‘i‘ o'?HHl)

+(dgH3— 1+ cotOH 3+ H,H,)?

+[dgHs+cotO(H—Hy) —HoH312) . (18)

PHYSICAL REVIEW D 65 024027

As seen from Eq(18), regularity on thez axis requires

Holg—0=Hal p—0- (19

C. Boundary conditions

To obtain asymptotically flat solutions with the proper
symmetries, which are either globally regular or possess a
regular event horizon, we must impose appropriate boundary
conditions[24,16,25,17,1} Here we are looking for solu-
tions with parity reflection symmetry. Therefore we need to
consider the solutions only in the regiors<@< /2, impos-
ing boundary conditions along the and z axes(i.e., for 6
=17/2 and6=0).

1. Boundary conditions at infinity

Asymptotic flatness imposes for the metric functions of
the regular and black hole solutions at infinity=(e) the
boundary conditions

fli—e=ml—=1]—=1. (20
For the Higgs field functions we require
q)1|r=oo:1- q)2|r=oc:0; (21

thus the modulus of the Higgs field assumes the vacuum
expectation value;. For magnetically charged solutions, the
gauge field function$l; satisfy

Hili—w=Hol,—w=Hs|,—.=Hy|,—.=0. (22

2. Boundary conditions at the origin

Requiring the solutions to be regular at the origin (
=0) leads to the boundary conditions, for the metric func-
tions,

Ofli—o=0,m|,—o=d,1|,-0=0. (23
The Higgs field functions satisfy
Dy —o=P2|=0=0, (24)
and the gauge field functionts; satisfy
Hili—=o=Hsl=0=0, Hal;—o=H4l;=0=1. (29

3. Boundary conditions at the horizon

The event horizon of static black hole solutions is charac-
terized byg,= —f=0. In isotropic coordinateg,, is finite
at the horizon. We now impose that the horizon of the black
hole solutions reside at a surface of constantr=r
[16,17,14.

Requiring the horizon to be regular, we obtain the bound-
ary conditions at the horizon=r. The metric functions
must satisfy

f|r=rH:m|r:rH:||r=rH:0- (26)
The boundary conditions for the gauge field functions and
the Higgs field functions can be deduced from E@&s.and

(9), respectively:
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Fra|r:r =0 (rg,Hy+ ‘90H1)|r:r =0, D. Mass, temperature, and entropy
H H
Let us introduce the dimensionless coordinate
Fr<p|r=rH:0<:>(r’9rH3_H1H4)|r=rH:0 x=ner (34)

[me4_Hl(H3+C°t0)]|f=rH:O’ The equations then depend only on two dimensionless cou-

pling constantsy and 3:
qu)|r=rH=0<:>(r(9rCDl+qu)2)|r=rH=0

A
2_ 2 2_
(3, ®o—Hy®1)|, -, =0. a=4nGry, B= o 39

@ The massM of the solutions can be obtained directly from
The equations of motion yield only three boundary con-the total energy-momentum *“tensor#” of matter and
ditions for the four gauge field functionts; ; one gauge field ~gravitation[31]:
boundary condition is left indeterminate. However, for the
black hole solutions the gauge conditioh?7) still allows M:f 79043 (36)
nontrivial gauge transformations satisfying

. . . 2 .
rzarzl"+r(9rl“+n7§1"=0. (29) It is related to the dimensionless maskx” via
To fix the gauge, we have chosen the gauge condition ,u/a2=il\/l, (37)
[16,17,14 47y
(dHD)|,—, =0, (29)  Wherep is determined by the derivative of the metric func-
H tion f at infinity [24,16,25,1T
which implies H1|r:rH=0, if we take into account the 1
boundary conditions on the axeld;|4—¢.>=0 (see next m=5 lim x2a, f. (39
paragraph As a consequence the boundary conditions, Egs. X—00

27), reduce to _ . . .
@0 The surface gravitycgy of static black hole solutions is

ﬁrH2|r:rH:Ov 0rH3|r:rH:01 arH4|r:rH:01 given by[32,15

30 2 _ ttyii( g .
9,0 =0, 3D, =0. (30 k2=~ (UAG"91 (9,91 (9,900). (39
To evaluatex,, we need to consider the metric functions at
4. Boundary conditions along the axes the horizon. Expanding the equations in the vicinity of the
horizon in powers of the dimensionless coordinate (

The boundary conditions along the and z axes @ . . .
— /2 and §=0) are determined by the symmetries. The,_XH)/XH’ we observe that the metric functions are quadratic
i

metric functions satisfy, along the axes, N X=Xu,
X—Xy) 2 X—X x—xy| 4
Igt|g=0=eM| g=0=¢l| 9=0=0, f(x,a):f2(6)< H) (1— H) +O( H) :
(31) XH XH XH
9of| = mi2=9¢M| 9= 71o= gl | 9= m12=0. (40)
Likewise the Higgs field functions satisfy X— Xy 2 X— Xy X— X 4
m(x, 8) =my( 6) 1-3 +0 ,
9g®1]p=0=0, P3[4=0=0, X X XH
(32) (41)

99P1] 9= =0, @p|p- =0, _ _ . :
with 1(x, ) like m(x, 0), Eq.(41). We then obtain the dimen-
along the axes. For the gauge field functidhssymmetry  sionless surface gravity= kg,/e7:
considerations lead to the boundary conditions
f2(0)
Hilp=0=Hs3lo=0=0, dpH2|p=0=3gHa|s=0=0, K= —F——.
1ls=0=Hasly=0 oH2l9=0=3gHals=0 . Xy 6)

Halg=m2=Halp=72=0,  dgH7| = o= 94H 4| g= 2=0,

(42)

The zeroth law of black hole physics states that the sur-
face gravity gy is constant at the horizon of a black hole
along the axes. In addition, regularity on thexis requires [32]. To show that the zeroth law holds for the hairy black
condition (11) for the metric functions to be satisfied and hole solutions we employ the expansion of the metric func-
condition(19) for the gauge field functions. tions (40),(41) in ther 8 component of the Einstein equations
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at the horizo{17]. This yields the crucial relation between K = R#V*AR

(52)
the expansion coefficients(6) andmy(6):

mvap -
In order to show thaK is finite at the horizon it is sufficient

_ 9y _defs to point out that the expansion of the metric functions

Tm, _Zf' (43 (40),(41) is the same as for the EYM system considered in
[17]. Consequently, it follows from the calculations of Ref.

The temperature is proportional to the surface grawify [17] that the Kretschmann scalar is finite at the event hori-

[32]; in particular, the dimensionless temperature is given byon, if the condition(43) holds, i.e., if the temperature is

constant at the event horizon.

T=«l/(27). (44

The dimensionless areA of the event horizon of the E. Horizon mass and horizon charge

black hole solutions, In the isolated horizon framewofl 8] an intriguing rela-
tion between the Arnowitt-Deser-MisnéADM ) massu/ o
w Vlom of a black hole with are@d and area parameteq, ,
A=27Tf dasino%xﬁ, (45) P :
0 2 X5 = JVAl4, (53)
is proportional to the dimensionless entropy32], and the ADM massu,e,/a? of the corresponding regular
A solution holdg19],
S=—, (46)
4 M= MregT M (54)
yielding the product where the horizon mass, /o2 is defined by
XH ™ H XA ! ! !
TS= ZJ dosinol,. (47) M:f k(X )X4dX} (55)
0 0

Having defined temperature and entropy, we now derive avith the dimensionless surface gravityin the integrand.
second expression for the mass of the black hole solutions The isolated horizon formalism then suggests to interpret
[32]. As in EYM theory[17], the equations of motion yield a hairy black hole as a bound state of a regular solution and
in EYMH theory the relation a Schwarzschild black holg0],

1 v = Kregt HsT Kbing, (56)
847G &M(V_gﬁl‘lnf):_ _Q(ZTOO—TMM)- (48) M= Mregt s Mping
where ug/a®=x,/2a? is the ADM mass of the Schwarzs-
Integrating both sides over, 6, ande from the horizon to  child black hole with horizon radius, , and pying/ a? rep-

infinity, we obtain resents the binding energy of the system:
1 (= a,f]]” Mbind= MA ™~ Ms- (57
—J désing rz\/l—%}
4GJo 'y Another crucial quantity in the isolated horizon formalism

2 is the non-Abelian magnetic charge of the horifd8,19,
= —J f J ded Hdr\/—g(ZTOO_T#M): M,. defined via the surface integral over the horizon
0 0 Jry

(49) PXM=%3€ \/ > (Fy,)%déde. (59)

Changing to dimensionless coordinates, we express the left- . ] ) ] ]

and the product of temperature and entropg, obtaining ~ gously with the dual field strength ten§d8,19. These ho-
rizon charges are an important ingredient in a new “quasilo-

w=pot+2TS, (500  cal uniqueness conjecture” put forward in RgE9], which
states that static black holes are uniquely determined by their
with w./a?=(eldwn)M,, in agreement with the general horizon area and their horizon electric and magnetic charges.
mass formula for static black hole solutigr&2]. For regular

solutions one simply obtains IIl. SPHERICALLY SYMMETRIC SOLUTIONS
B o . Previously, spherically symmetric EYMH solutions were
M=—1] (2Tg"—T,*)V—gdrdéde. (51 obtained numerically in Schwarzschild-like coordindt&3).
Since we construct the axially symmetric solutions in isotro-
We finally consider the Kretschmann scakar pic coordinates, we here discuss the coordinate transforma-
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tion between isotropic and Schwarzschild-like coordinatesesponding flat space monopole solution. This fundamental
for spherically symmetric solutions. monopole branch extends up to a maximal vakyg, of the
We briefly recall the dependence of the monopole solucoupling constant. Beyond this value no monopole solu-
tions on the parameters of the theasyand 8. In particular,  tions exist. In the BPS limit3=0, and for small values g8,
we compare the way the limiting Reissner-Nordstr(RN) the fundamental monopole branch bends backwards,at,
solution is reached in Schwarzschild-like and isotropic coor-until a critical coupling constant,, is reached. At the critical
dinates. value «, the fundamental monopole branch reaches a limit-
We then turn to the spherically symmetric black hole so-ing solution and bifurcates with the branch of extremal RN
lutions, putting particular emphasis on the relations obtainedolutions of unit magnetic charg&3]. For larger values o8
in the isolated horizon formalism. We demonstrate the relathe maximal value ofr and the critical value of coincide,
tion between black hole mass, soliton mass, and horizow,, .= a [13,33,34.

mass, Eq(54), we evaluate the binding energy, E§6), and Let us first recall how the critical value of is ap-
we discuss the “quasilocal uniqueness conjectites]. proached in Schwarzschild-like coordinates. Along the fun-
damental branch, the metric functid)l{f() of the monopole
A. Coordinate transformations solutions develops a minimum, which decreases monotoni-

By requiringl =m and the metric functionsandmto be ~ cally. In the limit «— a,, the minimum approaches zero at
only functions of the coordinate the axially symmetric iso- X,=a.,. The limiting metric function then consists of an
tropic metric(10) reduces to the spherically symmetric iso- jnner partx<Xx., and an outer park=X,. Forx=X,, the
tropic metric limiting metric function corresponds to the metric function

m N(x) of the extremal RN black hole fat,, with unit mag-
ds?=—fdt?>+ T[o|r2+ r2(de?+sir? 0de?)]. (59  netic charge.
Likewise the gauge and Higgs field functions approach

In Schwarzschild-like coordinates the metric reati3] limiting functions, whena— a.,. For x=Xx, they also cor-
respond to those of the extremal RN black hole dgr with
unit magnetic charge. The limi&— «, is demonstrated in
Figs. 1@-1(c) for the monopole solutions in the BPS limit
. . _ for the metric functionN(x), the gauge field functiok (x),
whgre the m_etn(ifunctlons andN are only functions of the and the Higgs field functiof! (X).
radial coordinate, and We recall that a RN solution with magnetic cha@éas

~ metric functions
~ 2M(r)
N(I’) =1- .F . (61) 262

~ 2
N(x)=1—T'u+
X

1 .. -
d52=—A2th2+Ndr2+r2(d02+sinz€d<p2), (60)

= A(x)=1. (64)

The spherically symmetric horizon resides at radial coordi-
natery, and the(dimensionful) area of the horizon is In the embedded RN solution with unit magnetic charge the

o gauge field functiork (X) and the Higgs field functioki ()
A=Amry; 62 are constant,
hence, the area parameteris just the Schwarzschild radius
My.

Compari_son of _the mgtric in_Schwz_;\rzschiId-Iike coordi- implying a Coulomb-type decay for the magnetic field and a
nates(60) with the isotropic metri¢59) yields, for the coor-  trjyial Higgs field, assuming its vacuum expectation value. In

K(X)=0, HX)=1, (65)

dinate transformation, particular, an extremal RN solution has metric function
dr 1 dr - N(),
__ —. 2
r N r - aP
VN(r) N(x)=(1—7> , (66)
X

The functionN(r) [or equivalently the mass functidv (r)]
is only known numerically. Therefore the coordinate functionand ADM massu/«?, where

r(r) can only be obtained numerically from E@3).
pn=a|P|. (67)

B. Monopole solutions Let us now turn to the monopole solutions in isotropic

Let us briefly recall the dependence of the gravitatingcoordinates. In Figs. (3)—2(c) we demonstrate the depen-
magnetic monopole solutions on the parameterand 8.  dence of the gravitating magnetic monopole solutions on the
When « is increased from zero, whil@ is kept fixed, a parameter along the fundamental branch in isotropic coor-
gravitating monopole branch emerges smoothly from the cordinates. For comparison the same set of parameter values as
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metric function f_

1.0 1.0 7
0.8 0.8 A ]
0.6 0.6 b
=4 4
0.4 0.4 " os oo o0  as1402
02 ool i |
o= a=1386 =0
0.0 0.0 == . . .
0. 0.0 02 04 06 08 10
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auge field function K
1.0 10T , .
0.8 08l
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X 0.6 X
0.4 0.4
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02r ) 1 0z . - a=1.402]
0.0 : . . . 0.0 ke . , — a-1.86
00 02 04 06 08 1.0 0.0 02 04 06 08 10
(©) Zg (c) zZ
FIG. 1. (8 The metric functionN of the n=1 monopole solu- FIG. 2. (a) The metric functiorf of then=1 monopole solution

tion is shown as a function of the compactified dimensionlesdS shown as a function of the compactified dimensionless isotropic
Schwarzschild-like coordinate,=x/(1+X) in the BPS limit for ~ coOrdinatez=x/(1+x) inthe BPS limit for five values ok along.
five values ofa along the monopole branch, in particular for a the monopole branch, in particular for a value close to the maximal
value close to the maximal value of « ;1 403. and for a value of @, an~1.403 and for a value close to the critical value
] max . ) . .

value close to the critical value of, a,~1.386.(b) The same as ©f @ @c~1.386.(b) The same aga) for the gauge field function
(a) for the gauge field functiok. (c) The same ag) for the Higgs - (€) The same aga) for the Higgs field functiorH.
field functionH. ~
in the extremal case|P|=u=X,.

The metric functiong (x) andm(x) of a nonextremal RN

in Figs. Xa@-1(c) is chosen. In the limiw— «a, the funda- )
black hole are given by

mental monopole branch bifurcates with the branch of ex

tremal RN solutions of unit magnetic charge. In particular, as
" : . . X X
the critical « is approached, the metric functidiix) devel- (1 1+ =
ops a zero at the origin, which corresponds to the horizon of _ XH XH
an extremal RN solution in isotropic coordinates. f(x)= 2% aP\2 [ x\2]%
For an RN solution with charge and horizon radiusy 1+ —\/1+|—]| +|—
the isotropic coordinatr is related to the Schwarzschild-like XH 2%y XH
coordinatex by 4 2 2
sl 1+ 2 (70)
m(x)=|— - — —

\/L)ZZ—ZM;(+ a2P2+;(—,u
X:

5 (68)

respectively. The horizon radius, in isotropic coordinates
is related to the horizon radius in Schwarzschild-like coordi-

in the nonextremal case|P|< = (1/2%.) (X3 + «?P?) and ~ NalesXy by

by Xi—azp2
~ Xy=——
X=X—al|P| (69) 4}y
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domain of existence mass u/of
1.8 I I* I 3.5 |21z : In 1, g=0
X <] o 4 =1, p= 4
LB, x ¢ B0 ]
1.2t # RN(n=2) -~ 1 2.5 fognl .
d o oess 0673 08 .~ RN(a=05)
B o o - B
3 20
- T 15p w08
] Lok e e
0.5 . X
1.6 0.0 0.4 0.8 1.2
o X

FIG. 3. The domain of existence of the hairy black hole solu- FIG. 4. The dependence of the maskx? of the n=1 hairy

tions in the BPS limit is shown in the,-« plane. The solid line  black hole solutions on the area parametgiis shown in the BPS
shows the maximal values, ., Obtained for then=1 hairy black  limit for «=0.5 anda=1. For comparison, the mass of the corre-
hole solutions, while the crosses represent the maximal valuesponding RN solutions is also shown.
XA max Obtained forn=2 hairy black hole solutions. The asterisk
marks the valuex(2)=/3/2, conjectured to separate the two re-
gions with distinct critical behavior. Also shown are the extremal
RN solutions with unit charge and charge 2.

solutions increases monotonically with increasiyg until
it reaches its maximal value af .. Bending backwards
the mass then decreases again, until the bifurcation point at
Xa.¢r IS reached, where it coincides with the mass of a non-
extremal RN black hole with unit charge. Note that the mass
P of the hairy black hole solutions exceeds the mass of the RN
—) . (720 solutions in a small region close #Q -
In contrast fora=1>a, the limiting solution reached

An extremal RN solution has horizon radigg=0 and met- ~ corresponds to an extremal RN solution with unit chafge
ric functions ’;(BXA'U). Since fora> « the maximal horizon radius, max
of the hairy black holes is smaller than the horizon radius of
the corresponding extremal RN solution, a gap between the
branch of hairy black holes and the RN branch arises. This
gap is seen in Fig. 4 far=1 for the mass of the black holes.

In Fig. 5 we exhibit the surface gravity as function of
) the area parameter, for the same set of black hole solu-

Let us now turn to the black hole solutions of the(@U  tions, obtained forw=0.5 and 1. The surface gravity of the
EYMH system. We here limit our discussion to the BPShajry black hole solutions decreases monotonically along the
case,3=0. black hole branches. In contrast, the surface gravity of the

Hairy black hole solutions exist in a limited domain of the Corresponding RN branches increases for small horizon ra-
X, — a-plane[13]. For fixed @<amay, hairy black hole so-  giys x, . For x,—X, o, the surface gravity of the hairy
lutions emerge from the monopole solution in the it plack hole solutions reaches the surface gravity of the corre-
—0. They persist up to a maximal value of the horizon ra-sponding limiting RN solutions. In particular, far=0.5 the
dius Xa max, Which limits the domain of existence of hairy hairy black hole branch and the RN branch bifurcate, and the
black holes. The domain of existence is shown in Fig. 3jimiting value reached corresponds to the value of a nonex-
where the maximal value of the horizon radi¥g max IS tremal RN solution. In contrast far= 1 the surface gravity

shown as a function of. of the hairy black hole solutions reaches the value of an
The domain of existence of hairy black hole solutions

consists of two regions with distinct critical behavior. These

Its ADM massu/a? is obtained from

= -
M 2XH 1 2XH

f(x)= m(x)=1. (73

2
X+a|P|) '

C. Black hole solutions

surface gravity «

two regions are separated by the particular valuexpfa 3.0

=/3/2[13]. For a< a< amay, the hairy black hole solutions 251 e atds
bifurcate at a critical value,  with an extremal RN solu- R.0r --- RN(a=0.5)
tion with unit charge. In contrast, for<Oa<a, the hairy o 15} - RN(a=1.0) |
black hole solutions bifurcate at a critical valxg ., with a 1.0F .
nonextremal RN solution with unit charge. In particular, for 05t ' i
small values ofa, the branch of hairy black hole solutions ool A0 T
extends backwards from the maximal val¥g .« to the 0.0 0.4 0.8 1.2
critical valuex, «, whereas for larger values af< a, both *a

values coincidexs mac=Xa,cr- 5 . FIG. 5. The dependence of the surface grawtpf the n=1
The dependence of the massa” of the hairy black hole  pairy plack hole solutions on the area parameteis shown in the
solutions on the area parameter is demonstrated in Fig. 4 fg§pg |imit for « = 0.5 anda=1. For comparison, the surface gravity

«=0.5 and 1. Fore=0.5<«, the mass of the black hole of the corresponding RN solutions is also shown.
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horizon mass w,/a’ horizon charge P(x,)

1.2 i 1.00
n=1, §=0 n=1, =0
0.9} . 0.75 1
......... a=0.5
5 0.6F . 3 050¢ .
~3 — a=10 )
* 03 . 1 0.25¢ -
0.0 L2 . 0.00 . .
0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9
Xp

Xa

FIG. 8. The dependence of the non-Abelian horizon magnetic
chargeP(x,) of the n=1 hairy black hole solutions on the area
parameteix, is shown in the BPS limit fow=0.5 anda=1.

FIG. 6. The dependence of the horizon mass/a? of the n
=1 hairy black hole solutions on the area paramgjteis shown in
the BPS limit fora=0.5 anda=1.

extremal RN solution—namely, zero—even though the hairylution is smaller than the binding energy of the RN solution
black hole branch is separated from the RN branch by a gajexcept for a small region close Q. (See also Fig. 4.
of the horizon radius. This indicates stability of these hairy black hole solutions
Let us now turn to the predictions of the isolated horizon(except close tXy may-
formalism, which have not been considered before for Let us finally consider the “quasilocal uniqueness conjec-
EYMH black hole solutions. We first consider relatié®4)  ture” of Ref. [19], which states that static black holes are
between black hole mass, soliton mass, and horizon mass faniquely specified by their horizon area and horizon charges.
the fundamental monopole and black hole solutions. In Fig. @he solutions considered here carry no horizon electric
we exhibit the horizon masg, /«? obtained from Eq(55).  charge; thus, they should be uniquely characterized by their
Adding the mass of the corresponding soliton solutionhorizon area and horizon magnetic charge. In Fig. 8 we ex-
[Mreg/az(a=0.5)=0.963461 and ,u,reg/az(a=1.0) hibit the non-Abelian horizon magnetic charge for the hairy
=0.855254, respectivelyprecisely gives the masses of the black hole solutions withu=0.5 and 1. The horizon mag-
non-Abelian black hole solutions shown in Fig. 4. netic charge increases monotonically along the branches of
Interpreting the hairy black holes as bound states of reguhairy black hole solutions. As expected, fo= 0.5 the value
lar solutions and Schwarzschild black holgX)], we can of the RN solution with unit charge is reached, when
identify the binding energy of these systemsgq/a?, ac- —Xa o IN contrast, fore=1 a value smaller than one is
cording to Eq.(57). In Fig. 7 we present the binding energy reached, wherx,—Xx, (. In this case again a gap occurs
of the hairy black hole solutions far=0.5 anda=1. For  between the hairy black hole branch and the RN branch.
comparison, we also show the binding eneﬁgﬁ?/az of Concerning the “quasilocal uniqueness conjecture” we
the RN solutions, which we define analogously to Egf) conclude that allowing only for integer values of the mag-
via netic charge as required for the non-Abelian magnetic charge
of embedded RN solutions, the spherically symmetric black
hole solutions are uniquely characterized by their area pa-
rameter and their horizon magnetic charge.
where ugry/a? is the mass of the RN solution with unit
charge i,/ a® is the mass of the monopole, apg/a? is
the mass of the Schwarzschild black hole with the same ho-

rizon area as the RN black hole. Note that, when the solu- ) ) . ) )
tions coexist, the binding energy of the hairy black hole so- e here give a detailed discussion of the properties of the
regular axially symmetric multimonopole solutions. We first

investigate the dependence of the monopole solutions on the
parametera for fixed B. In particular, we demonstrate the
convergence of the multimonopole solutions with magnetic
chargen to limiting extremal RN solutions with magnetic

RN
Mpind=— MRN™ Mreg™ MS: (74)

IV. AXIALLY SYMMETRIC SOLUTIONS

binding energy pu,,/o
0.1000| =1 , gm0 "
“\ _oats|

-0.200

—-0.0375

\ T,
\ -o.

™\

.290
0666 0.673 0.890

chargen, when a— a,. Focusing on values o close to

01790 e aq, We introduce auxiliary Schwarzschild-like coordinates
_0.3125 -- RN@=08) , to gain better understanding of the limiting solutions ob-
B NN tained in isotropic coordinates.
04800 L We then show that the inclusion of gravity allows for an
0.0 0.2040.6081.012 1.4

attractive phase of like monopoles not present in flat space

[14]. There arises a region of parameter space, where the
FIG. 7. The dependence of the binding eneggyq/a? of the ~ Massper unit chargeof the gravitating multimonopole solu-

n=1 hairy black hole solutions on the area paramgteis shown tions is lower than the mass of the gravitating: 1 mono-

in the BPS limit fora=0.5 ande= 1. For comparison, the binding pole; hence, the multimonopole solutions are gravitationally

energy of the corresponding RN solutions is also shown. bound.

XA
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FIG. 9. () The metric functionf of the axially symmetricn=2 monopole solution is shown as a function of the compactified
dimensionless isotropic coordinate-x/(1+Xx) for the angles#=0, 6= /4, andf= /2 in the BPS limit for four values of along the
multimonopole branchg=1, 1.2, 1.4, and 1.49%9b) The same a&) for the metric functiorm. (c) The same a&) for the metric function
I. (d) The same aga) for the gauge field functiohl ;. (e) The same a&) for the gauge field functioil,. (f) The same a&) for the gauge
field functionH;. (g) The same a) for the gauge field functioil,. (h) The same a&) for the Higgs field functiond,. (i) The same as
(a) for the Higgs field function®,.

The numerical technique is briefly described inthe gauge field and Higgs field functions are constéht,
Appendix B. =0,i=1,...,4, ®&,=1, and®d,=0.

We now illustrate the dependence of the multimonopole
solutions ona and, in particular, the convergence of the
non-Abelian solutions to the corresponding RN solution in

Let us first consider the dependence of the gravitatinghe limit a— «, for the special case of=2 multimonopole
axially symmetric multimonopole solutions with magnetic solutions in the BPS limit. Numerically we find in this case
chargen on the parameters and 8. Analogously to the a¢~ama=1.5[14,35. The static axially symmetric solu-
monopole solutions, whea is increased from zero, whilg tions depend on two variables, the radial coordincdad the
is kept fixed, a branch of gravitating multimonopole solu-angle 6. In the following we present the functions in two-
tions with chargen emerges smoothly from the correspond- dimensional plots, exhibiting the dependence for three
ing flat space multimonopole solution. The multimonopolefixed angles,§=0, 6=x/4, andf= /2.
branch extends up to a maximal valug,(n) of the cou- Let us first discuss the dependence of the metric functions
pling constanty, beyond which no axially symmetric multi- on the parametes. In Figs. 9a)—9(c) the metric functions
monopole solutions with charge exist. At the maximal f, |, andmare shown, respectively, far=1, 1.2, 1.4, and
value a,(N), which coincides with the critical value.(n) 1.499. The functiorf increases monotonically with increas-
[35], the multimonopole branch reaches a limiting solutioning x for all values ofa. Its value at the originf(0) de-
and bifurcates with the branch of extremal RN solutions withcreases with increasing and tends to zero as approaches
magnetic charge [14,3€]. The metric functions of this em- the critical valuea,. The functionsm and| also increase
bedded RN solution are given by Eq33) with I=m, and  monotonically with increasing. As « tends to its critical

A. Fundamental multimonopole branch
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value, these functions approach the value one on an increas- metric function f
ing interval. However, at the origin the functioms and | -1 ' ' 40 A
assume a value different from one. Thus, convergence to the 2
limiting RN solution is pointwise.

In Figs. 9d)—9(g) we show the gauge fields functions :
H,—H,, respectively, for the same values®f The function _ab ' ]
H, possesses a maximum, whose position decreases with
increasinga: and tends to zero, whem approaches its criti- -5
cal value. In contrast, the height of the maximum depends @ -
only weakly ona. The functionH, decreases monotonically
with increasingx on thez axis (#=0) and possesses a mini-
mum on thep axis (= 7/2). The location of the minimum

logo(f)
&b

decreases with increasing and tends to zero whea ap- .

proaches its critical value. The functidty is similar toH, ey 0.6 1

and the functiorH, to H,, except thaH, decreases mono- 041 e ’

tonically with increasing for all values off. At the same 0r 1

time the range where the gauge field functions differ consid- 0.0 s :

erably from zero decreases with increasingnd vanishes as 0 1 2 3 4

« tends toag,. However, in this limit the gauge field func- (o) %

tions are not continuous at the origin. Thus, convergence to norm of Higgs field ||

the gauge field functions of the embedded RN solutidp, 1.0 ' ' i

=0, is again pointwise. 08r — a0 S
The Higgs field functionsp,; and®, are shown in Figs. 0.6L ---- a-t493

9(h) and gi). ®, increases monotonically with increasirg = oal 74 |

&, possesses a minimum with negative value, whose posi- ' g=0 £ omn/a

tion decreases with increasing and tends to zero, aa O=r o ]

tends toa,,. Again the height of the extremum depends only 0.0 - - ‘

weakly ona. Since for an embedded RN solutidn =1 and © 0 ! ; 3 4

®,=0, we observe that the Higgs field functioirg and®d,

deviate from their respective RN values in a decreasing FIG. 10. (a) The metric functionf of the axially symmetrian
range, asy approachesy. . Again, in this limit, the Higgs =2 monopole solution is shown as a function of the auxillary
field functions are not continuous at the origin, thus converSchwarzschild-like coordinate=x/m/f, for the angless=0, 6
gence to the Higgs field function of the embedded RN solu= /4, and 6==/2 in the BPS limit for «=1.493, 1.496, and
tion is also pointwise. 1.499, close to the criticat. Also shown is the metric functiohof
the RN solution with charg =2 and area parametgg = 1.5. (b)
The same a&) for the gauge field functiohl,. (c) The same a&)

B. Coordinate transformation
for the norm of the Higgs fieldd|= @2+ ®2,

Let us focus now on the limit— a, where the non-
Abelian multimonopole solutions approach the limiting RN
solution. We recall that fon=1 in Schwarzschild-like coor-

dinates a degenerate horizon formsat «.,, ase tends to . . .~ . .
g AE dor, 85 with the Schwarzschild-like coordinateonly, if the metric

g FOrx>Xxy the limiting solujiorl is identical to the em- functions are independent & As observed above, in the
bedded RN solution, whereas forx,, the limiting solution  |imit o— «,, the functionf(x) tends to zero on an interval
retains its non-Abelian features and differs from any embedpt the coordinate, whose length tends also to zero. Consid-
deo_l Abelian solution. Analogous_ly, for solut|on_s W.'th Mag- ared as a function ok however, the functiorf(x) tends to
ngtlc chargen one expects. that, in Schwarfschnd-hke OO 2er0 on an interval of almost constant length. In this sense,
dinates, a degenerate horizon should format Nag ase oo o yillary coordinaté serves as a Schwarzschild-like co-
tends toa., and that the limiting solution should retain its ordinate
non-Abelian features fox<xy. . _ In Figs. 1Ga)—10(c) we present the=2 solutions in the

In isotropic coordinates, however, the horizon radius of argps |imit for a=1.493, 1.496, and 1.499 on the interval 0

extre.mal R.N t?lacklhole is.gi\./en b“':(.)' Thus, the limiting <x=4, extending beyond the critical valtig=2ay~3. As
28:3382 (C)(rjll?f?ed\?vi (I)rllet?ﬁéﬁﬁg;g;@%tef;zfgfgfr:gaéEe':_ a tends toac, the metric functiorf tends to zero on the
tion arises as to what happens to the region where the limithterval 0<x=3, and the metric functions and| tend to

ing solution is essentially non-Abelian, since this regionﬂOﬂtl’iVifﬂ limiting functions. Forx>3 the metric functions
shrinks to zero size in isotropic coordinates in the limit assume the form of the extremal RN solution with charge

— g P =2 and horizon radiug,=2a,, for a— a.,. The behavior

To elucidate this point we introduce the auxiliary
Schwarzschild-like coordinatg=x+/m/f, which coincides
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FIG. 12. The dependence of the maximal valugg,(n) of the
hairy black hole solutions on the paramegeis shown for magnetic
chargen=1, 2, and 3. Also shown are the equilibrium values
aedN1=Ny), in particularae1=2), agl=3), andac(2=3),
of the gauge field functions and the Higgs functions is simi-for which the masper unit chargeof the chargen, and the charge
lar. Forx>3 they tend to the functions of the extremal RN n (multhmonopole equal to one another.

solutions, whereas for®x=<3 they tend to nontrivial limit-  sion between like monopoles can be overcome for small

ing functions. Higgs self-coupling by sufficiently strong gravitational at-
We thus conclude that there exists a limiting solution fortraction.

a— . This limiting solution is nontrivial and angle depen-  To mark the region in parameter space, where an attrac-

dent on the interior interval @X<3. In Figs. gb) and 9c) tive phase exists, we introduce the equilibrium value

T . ; : aeNy=ny), where the masper unit chargeof the charge
this limiting solution has already been reached in the mnernl Solution and the masger unit chargeof the chargen,

most part of the interval &x=3. For x>3, the limiting  solution equal one another. Sineg,.~ a., decreases with
solution is an extremal RN solution. Therefore the fUnCtionSan increasing Higgs Seif-coupiing' anqq increases with an

of the IImItlng solution, and in partiCUlar the metric func- increasing Higgs Seif-coupiing, the region of parameter
tions, are spherically symmetric. Hence, we can identify thespace, where an attractive phase exists, decreases with in-
coordinatex with the Schwarzschild-like coordinatefor x ~ creasing Higgs self-coupling. In particular, for a large Higgs
>3, and we conclude that in Schwarzschild-like coordinateself-coupling, only a repulsive phase is left.

FIG. 11. The dependence of the maes unit chargeu/(a?n)
of the hairy black hole solutions on the parametds shown in the
BPS limit for magnetic charge=1, 2, and 3. For comparison, the
massper unit chargeof the extremal RN solutions is also shown.

the horizon radius is,=aP, in accordance with our ex-  We show the equilibrium values. in Fig. 12. In addi-
pectation. tion to the valuesue(1=2) andae(1=3), for which the
monopole mass and the magsr unit chargeof the n=2

C. Gravitationally bound monopoles and n=3 multimonopole equal one another, respectively,

, . Fig. 12 also shows the values af{2=3), where the mass
Let us now consider the mag®r unit chargeof the  er ynjt chargeof then=2 and the masper unit chargeof
(multimonopole solutions, to show that gravitationally {ne =3 multimonopole equal one another. Thus Fig. 12

bound monopoles exist. The maper unit chargeof the  gypipits the small domain of the-B-plane where an attrac-
(multiymonopole solutions decreases with increasingnd e phase for like monopoles exists.

merges with the mass of the RN solutione{(n). In the While n=1 monopole solutions are stable, stability of the
BPS limit, for =0 the massper unit chargeof the  giatic axially symmetric multimonopole solutions is not ob-
(multimonopole solutions is precisely equal to the mass ofioys, We conjecture that the=2 multimonopole solutions
then=1 monopole. Fow>0, however, we observe that the 4y staple, as long as their mass unit chargeis lower than
massper unit chargeof the multimonopoles is smaller than ine mass of ther= 1 monopole. For topological number
the mass of ther=1 monopole. In particular, the maper >3 however, solutions with only discrete symmetry exist in
unit chargedecreases with increasing Thus, in the BPS 5t spacd5), which, by continuity, should also be present in
limit, there is an attractive phase between like monopolesg,ryeq spacéat least for small gravitational strengthFor a
not present in flat space. Moreover, multimonopoles exist fobiven topological numben>2, such multimonopole solu-
values of the gravitational coupling strength, too large forins without rotational symmetry may possess a lower mass
n=1 monopoles to exist, sinag(n) increases with. The 3 the corresponding axially symmetric solutions. The axi-
mass of then=1 monopole and the mager unit chargeof g1y symmetric solutions may therefore not represent global
n=2 andn=3 multimonopoles in the BPS limit are shown minima in their respective topological sectors, even if their

in Fig. 11 ) ) ] massper unit chargeis lower than the mass of the=1
For finite Higgs self-coupling, the flat space multimono- monopole.

poles have higher mager unit chargethan then=1 mono-

pole, allowing only for a repulsive phase between like mono-
poles. By continuity, this repulsive phase persists in the
presence of gravity for small values of but it can give way Here we present the static axially symmetric hairy black
to an attractive phase for larger valuesaofThus the repul- hole solutions of EYMH theory. We describe their properties,

V. BLACK HOLE SOLUTIONS
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n=2a=10,8=0,zs=10 n=3a=05 =0 zs=05

b) c) d)

e=3.0 e=3.5 e=4.0

FIG. 13. (a) The energy density=— T is shown for the hairy
black hole solution with magnetic charge=2 and area parameter
Xx=1.0 in the BPS limit fora = 1.0 in a three-dimensional plot and
a contour plot with axep andz (b)—(d) Surfaces of constant en-
ergy densitye= —Tg are shown for the solution df).

starting with the structure of the energy density of the matter d) € =145 e) €= 1.54

fields and the deformation of the regular horizon. We then

discuss the domain of existence of the hairy black hole so- FIG. 14. The same as Fig. 13 for the hairy black hole solution
lutions and describe the convergence of these solutions tith n=3, x,=0.5, anda=0.5.

RN solutions in the limitx,— X, -

The hairy black hole solutions are then considered withdensity. For small values of, the surfaces of constant en-
respect to the results of the isolated horizon formalism. Irergy density appear ellipsoidal, being flatter at the poles than
particular, the mass formula is verified, and the bound staté the equatorial plane. With increasing valuesedd torus-
interpretation is investigated. Finally the “quasilocal unique-like shape appears.
ness conjecture” is addressed. For smaller values of the parametersand«, the energy

For the static axially symmetric hairy black hole solutionsdensity of the matter fields exhibits a more complicated
of EYMH theory we employ the same numerical techniquestructure, as seen in Figs. (&#-14(e), where we show the
as for the globally regular multimonopole solutiofsee Ap-  energy density of the matter fields of time=3 black hole
pendix B. The black hole solutions depend on the horizonsolution, with area parameteq,=0.5 for =0.5. Figure

radiusxy and on the coupling constantsand 3. Here we ~ 14(@) again shows a three-dimensional plot of the energy
consider only the BPS limit3=0. density as a function of the coordinatps-xsin@ and z

=x cos# together with a contour plot, while Figs. ®1—
14(e) show surfaces of constant energy density. Whereas the
surfaces of constant energy density still appear ellipsoidal for
Let us begin the discussion of the static axially symmetricsmall values ofe, here with increasing values efthe torus-
black hole solutions by considering the energy density of thdike shape appears together with two additional ellipsoids
matter fields,e. The energy density has a pronounced anglecovering the poles. For the largest values of the energy den-
dependence with a maximum on thexis. In particular, the sity only the toruslike shape remains.
energy density is not constant at the horizon. Let us now The n dependence of the energy density of the matter
consider two representative examples for the energy densitields is illustrated in Fig. 15, where we show the energy
of the matter fields. density of the black hole solutions with magnetic chames
In Figs. 13a)—13(d) we exhibit the energy density of the =1-3 and area parameter= 0.5 for «=0.5. With increas-
matter fields of then=2 black hole solution with area pa- ing magnetic charge the absolute maximum of the energy
rameter x,=1 for a«=1. Figure 18a) shows a three- density of the solutions, residing on theaxis, shifts out-
dimensional plot of the energy density as a function of theward and decreases significantly in height.
coordinatep = x sin § andz= x cosé together with a contour Let us now turn to the regular horizon of the hairy black
plot, and Figs. 1®)—13(d) show surfaces of constant energy hole solutions, which resides at a surface of constant radial

A. Energy density and horizon
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energy density e which enter into the expression fat, Eq. (42), possess a
‘ ' ' ' nontrivial angular dependence at the horizon, as seen in Fig.
16.

12

B. Domain of existence

The domain of existence of the axially symmetric non-
Abelian black holes is very similar to the domain of exis-
tence of the spherically symmetric black hole solutions. For

% a fixed value of the coupling constatt a<<a,{(n), hairy
black hole solutions emerge from the globally regular solu-

FIG. 15. The energy density=—T g of the hairy black hole tion in the limitx,—0. They persist up to a maximal value
solutions with magnetic charge=1, 2, and 3 and area parameter of the area parameten, ., Which depends on and limits
x.A:O.5 is shown as a function of the dimensiopless isotropic C00lthe domain of existende of hairy black holes. The domain of
dinatex for the anglesf=0, §=m/4, andf=/2 in the BPS Iimit  gyisience of hairy black hole solutions with magnetic charge
for «=0.5. n=2 is indicated in Fig. 3, where crosses mark the maximal
_ ) ) ) valuesx, max Obtained.
coordinatex=xy . Even though the radial coordinate is con-  The domain of existence of the hairy black hole solutions
stant at the horizon, the horizon is deformed. The deformagith n>1 also consists of two regions with distinct critical

tion is revealed, when measuring the circumference of th% . . ~
. . ehavior, separated by a particular valuexpfienotedx(n).
horizon along the equatol,., and the circumference of the - ) ) ’
For a(n)<a<ama{N), the hairy black hole solutions bifur-

X=Xy ,0=m/2

X=Xy ,¢=const

horizon along the poled,,, > ' !
cate at a critical value, ., with an extremal RN solution
2m \[ i with chargen, while for 0<a< &(n), the hairy black hole
Le= fo de\/7xsind , solutions bifurcate at a critical valug, ., with a non-
extremal RN solution with charge For small values ofy,
(79 the branch of hairy black hole solutions extends backwards
w \/ﬁ from the maximal valuex, max to the critical valuex, c,
Lp=2L de TX ' whereas for larger values of, both values coincides, max
=Xy, cr- This pattern of the>1 hairy black hole solutions is
. . . . completely analogous to the pattern observed forrthkel
since the hairy black hole solutions havg#L. (ingeneral. o) tions. Our numerical results, as exhibited in Fig. 3, are
The deviation from spherical symmetry is small, though. Forconsistent with the con'ectur&(2)= /312, suggesting that
instance, for the solution of Fig. 13,./L,=0.99076, and =~ o J » Sugg 9
for the solution of Fig. 14L,/L,=0.99977. a(n) is independent of.
The hairy black holes satisfy the zeroth law of black hole
mechanics, which states that the surface grawity constant C. Area parameter x, dependence
on the horizor{32]. This is dictated by the full set of EYMH Before demonstrating the dependence of the hairy black
equa}tions, as discussed in Sec. Il D. Nume.ricallly the surfacggje solutions on the area parametgrand the convergence
gravity is also constant, as demonstrated in Fig. 16 for they the solutions to the limiting RN solution, we briefly con-
n=2 solution with horizon area parametey=1 for =1.  gjder the relation between the area parameterand the
In contrast to the surface gravity itself, the expansion coeffit,qrizon radius in isotropic coordinateg, sincex, is one of
cients f,(¢) and my(6) of the metric functionsf and m,  he parameters employed in the calculations.
In the limit x4—0, hairy black hole solutions emerge

n=2 , azll‘O , X,=1.0

from the globally regular solution. With increasing parameter

0.010 —_ (&(0)=x(8))/x(8) Xy the horizon area of the hairy black hole solutions in-
0.000 =z creases, until a maximal value of the parameter is
~~~~~~~~~~~~~~~~ reached. This maximal value of the parametgr however,
—0.010F does not coincide with the maximal value of the horizon area
and, thus, the maximal value of the area parameterin the
—0.020T ... (£0)=£(8))/1(0)~~ ] further discussion we consider the two regions of the domain
_0.030 """ (mal0)-me(6))/mz(0) """ of existence with distinct critical behavior separately.
0.00 0.79 1.57 For small values ofr, 0<a< a(n), the branch of hairy

2}

black hole solutions, as a function of the horizon radiys

extends backwards from the maximal valyen,y, until the
shown for the hairy black hole solution with magnetic charge ~Critical valuexy ¢ of the bifurcation with the nonextremal
=2 and area parameta = 1.0 in the BPS limit fora=1.0. Also RN solution is reached. Whex decreases fromy max, the
shown is the angle dependence of the normalized expansion coekea parameter increases further up to its maximal value
ficientsf, andm, of the metric functiong andm. Xa.max: from where it decreases, until it reaches the critical

FIG. 16. The angle independence of the surface grawitig
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horizon radius xy energy density €
0300 n2 /g0 I . | 6=0 I I I
02261 . . gl — 6=nss |
--= 8=m/2
w 0.150 F = a=1.0 4 w 2} i
> X,=108
0.075F 7 e i 1 T R N |
0.000 L&, ‘ . 0 ke A
00 04 08 12 186 00 02 04 06 08 1.0
*a (@) z
FIG. 17. The dependence of the horizon radius in isotropic co- metric function f
ordinatesxy of the n=2 hairy black hole solutions on the area 1.00 ‘ ‘ ' ‘
paramete, is shown in the BPS limit for=0.5 anda=1. omsl =0
. B — B=
valuex, ( of the bifurcation. This is illustrated in Fig. 17 for - 050+ o
the n=2 black hole solutions fow=0.5. The endpoint of
the curve marks the bifurcation with the nonextremal RN 0.25¢
solution at a finite value of the area. 0.00 o100
For larger values oft, a(n)<a<ama(n), the branch of 00 0‘2 04 06 o.‘a 10
hairy black hole solutions bifurcates with an extremal RN (b) ”
solution, which haxy=0. As a function of the horizon ra-
dius x4, the branch of hairy black hole solutions also ex- norm of Higgs field |9l
tends backwards from the maximal vabag .., but it ends 1.00 xe=1.09
at the critical valuexy =0, where it bifurcates with the 075

extremal RN solution. The area parameter, in contrast, in-

creases monotonically, and reaches its maximal value & 0.50
Xa,max=Xa,cr at the bifurcation, as illustrated in Fig. 17 for
then=2 black hole solutions foer=1. 0.25 Faswwwon= }
Let us now consider the dependence of the hairy black 0.00 z ——— =g
hole solutions on the area parametgrin more detail, dis- 00 02 04 06 08 1.0
tinguishing again the regions<Oa<a(n) and a(n)<a () z
<amadN). For a(n)<a<ama(n), the limiting solution of FIG. 18. (a) The energy densitg=—TY of the n=2 hairy

the branch of hairy black hole solutions is an extremal RNhjack hole solution is shown as a function of the dimensionless
solution. Since convergence to an extremal RN solution hagompactified coordinate=1—x,,/x for the anglesf=0, 6= /4,
been considered in great detail in Sec. IV, in the followingand 6= /2 in the BPS limit for four values of along the hairy
we put more emphasis on the regiorc@< a(n), where  black hole branch, in particular for a value close to the maximal
convergence to a nonextremal RN solution is observed.  value ofXy, X, max~1.39 and for a value close to the critical value
For small values ofa in the region G<a<2u(n), the of X5, Xa,c~1.07.(b) The same at) for thg metric functiorf. (c)
branch of hairy black hole solutions extends backwards fron] "¢ same aga) for the norm of the Higgs fieldd|= 3+ P;.

the maximal value, max, Which limits the domain of exis-
tence, to the critical valug, ., where the bifurcation oc- ~ Convergence to the limiting RN solution is nicely seen in
curs. In Figs. 189—-18c) we exhibit a set o=2 black  Fig. 19, whereH,(xy) and®,(xy) are shown: the horizon
hole solutions for four values of the area parameter along thealues of the gauge field functiod, and the Higgs field
black hole branch. Increasing, from zero along the branch function ®,, respectively. Starting from the unique values
of hairy black hole solutions, first the solutions with ~ H2(0)=1 and®,(0)=0 of the regular solution at the ori-
=0.46 and 1.26 are encountered, then the solution wjth gin, for finite x, an angle dependence arises, which becomes
=1.39 close to the maximal value, max is passed, and fi- maximal as the maximal value of the area parameigfayis
nally the solution withx,=1.09 close to the critical value approached. On the backward bending part of the hairy black
Xa or IS reached. hole branch, the angle dependence diminishes and vanishes
The energy density of the matter fields is shown in Fig.in the limit x,—X, ¢, where the horizon values tend to the
18(a), the metric functiorf in Fig. 18b), and the norm of the unique horizon values of the corresponding RN solution,
Higgs field |®|=/®7+®2 in Fig. 180c). All functions Ha(xu)=0 and®,(x,)=1.
change drastically along the hairy black hole branch. In par- For a> «, the limiting solution is reached at the maximal
ticularly, we observe that they approach the limiting func-value of the area paramete{ ma=Xa cr- Sincex, <na, a
tions of the corresponding nonextremal RN solution Xgr  gap between the branch of hairy black hole solutions and the
—Xp.o~1.07. Thus in this limit the functions become corresponding RN branch occurs, similarly as in the case of
spherically symmetric. the globally regular solutions.
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Hy(xy) and @,(xy) surface gravity «

1.2| n=2, a=05, g=0 2.50](

1.0 amnanziz. n=2 . p=0
B Hy(xq) 1.88¢F .
2 08r ] a=0.5
= L | .
= 0.6 ________Z=2/4 o LRSS 4 N\ e a=1.0 §
X 0.4F ---0=n/2 g --- RN(a=0.5)
T oo2r @y(%y) 0 062r ] |

0.0 T e L =

0.0 0.4 0.8 1.2 1.5 O‘O% 0 0'4 0'8 1z 16

Xa

FIG. 19. The dependence of the horizon value of the gauge field

function H,(x,) and the horizon value of the Higgs field function

®,(xy) of then=2 hairy black hole solutions on the area param-
eterx, is shown in the BPS limit forr=0.5.

FIG. 21. The dependence of the surface grawitgf the n=2
hairy black hole solutions on the area parameters shown in the
BPS limit for «=0.5 anda=1. For comparison, also the surface
gravity of the RN solutions forr=0.5 is shown.

Let us now consider the mass, the surface gravity, and the di | is ob d

deformation of the horizon of the hairy black hole solutions.SPoNding RN values is observed. . .
In Fig. 20 we see the dependence of the mass ohth@ Let us now turn to th_e shape of the horizon. In Fig. 22 the
black hole solutions on the area parametefor «=0.5 and ciezpebr;delzl(r;]e IOf thle rat|o of c;]rcumferendees(Lp for t}?e n
a=1. (Figure 20 is completely analogous to Fig. 4, where~ 2 Plack hole solutions on the area paramedtes shown
the mass of the=1 black hole solutions is shownFor @  for «=0.5 anda=1. Interestingly, fora=0.5<« the ratio
—0.5< &, the mass increases with increasing, reaching Le/L, shows a rather complicated dependence on the area
its maximal value aky ma. Forming a spike, the mass then Parameter. With increasing area parameter the fatid,
decreases with decreasing, and reaches the mass of the fI'St decreases, until it reaches a minimum cloS& {Qnax-
limiting nonextremal RN solution with charge=2 atx, . Along this part_of _the branch of h_aury black hole solutions
For comparison, the corresponding branch of RN solutions i§6,/LP<1' Qontmumg glong 'the.halry b!ack ho.Ie branch, the
also shown. Apart from the critical point, o, the RN ratio then increases, _f|rst with increasing gntll XA max 1S
branch and the hairy black hole branch also coincide at théﬁaChe,d'_a”d then fW'tE dec.rtra]asmg. PassinglLe/L,=1,
crossing poink, qrose 1.32. Consequently, the RN solutions the ratio increases further wit decreasing, and attains a
have a lower mass than the non-Abelian black hole solutiond"@xImum Le“-dp> 1. ETOThthlt?fe_l;e/Lp ?Sg?fseslvwfﬂ:hde-

- . creasingx, and reaches the limiting val =1 of the
when x <XA<Xp or- FOr a=1>a, the mass increases . . : P
monot()Ah(i:E:O;ﬁy svith Ai’rc1rcreasirC:ng f(laaching its maximal spherically symmetric RN solution fofy —x, - Along the

. latter part of the branch of hairy black hole solutions,
value at _the maximal value of the area parame:t@,l;nax_ Le/Lp>1. The occurrence of./L,>1 is a new phenom-
—Xaor- SlncexAtcr<2a, a gap between th_e branch of hairy enon, not seen previouslyThe EYM solutions had only val-
black hole solutions and the corresponding RN branch OCes of the ratid. /L. <1 [171)
curs. In Fig. 20, the RN branch would beginxat=2. e-p '

In Fig. 21 the dependence of the surface gravity of the O @=1>a, the dependence of the raliq/L, on the
n=2 hairy black hole solutions on the area parameters area parameter is much simpler. Again, with increasing area

shown fora=0.5 anda = 1. (Figure 21 is completely analo- parameter the ratib./L, decreases, until it reaches a mini-
gous to Fig. 5, where the surface gravity of the 1 black ~MUM NOt t0O far fromX, max. The ratio then increases with
hole solutions is showhAgain, convergence to the corre- INCreasingx,, to reach the limiting valué.e/L,=1 of the
spherically symmetric RN solution foty— X, . Thus for
mass per unit charge
2.5 fras—— ' ' L./Lg

/ RN(«=0.5) .. 1.010
2 0 B _
a T

---n=3, a=05

1.000

315 1 e
3 » 3

IR0 T — i = 0.990

«=1.0 n=2, ,8=0
0.5 : : : 0.980 ‘ . .
0.0 0.4 0.8 1.2 1.6 0.00 055 1.10 185 220
Xa Xp
FIG. 20. The dependence of the ma&s unit chargew/(a?n) FIG. 22. The dependence of the ratio of circumferericed.

of then=2 hairy black hole solutions on the area paramgteis of then=2 hairy black hole solutions on the area paramaters
shown in the BPS limit forr=0.5 anda=1. For comparison, also shown in the BPS limit fora=0.5 anda=1. Also shown is the
the masser unit chargeof the RN solutions forw= 0.5 is shown.  ratio of circumferences /L, of the n=3 hairy black hole solu-
For «=1.0, RN solutions with charge=2 exist only forx,=2. tions for «=0.5.
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h?réizon mass per unit charge bindingl energy Mypg ol
: 0.0
n=2, §=0 n=2, §=0
~ 0.9} o2t i
£ — a=05 % a=05 S
s 0.6 — a=0. _'
{; ........ «=1.0 \'E 04y .. a=1.0 ‘\ . 7
2 03f < —- RN(a=0.5) '
—0.6 __ RN(a=1.0) \ 1
0.0l - SN
00 04 08 12 18 -0.8 . R
Xy 0.0 0.7 1.4 2.1
X
FIG. 23. The dependence of the horizon masg «? of then
=2 hairy black hole solutions on the area paramgieis shown in FIG. 24. The dependence of the binding enetgy,q/a* of the
the BPS limit fora=0.5 anda=1. n=2 hairy black hole solutions on the area paramgiers shown

in the BPS limit fora=0.5 anda=1. For comparison, the binding

a=1 the hairy black hole solutions always havg/L <1 energy of the corresponding RN solutions is also shown.
p<l.

We also note that the magnitude of the deformation of th
horizon of thea=1 solutions is considerably greater than

the magmt_ude of the deformation of the horizon of e and a Schwarzschild black hole represents only one particu-
=0.5 solutions. ar case

. . .
Let us finally consider the dependence of the deformation In the following we restrict the discussion to hairy black

of the horizon on the magnetic chargeFor the solutions hole solutions with magnetic charge=2. Let us define the
with chargen>2 we observe the same features of the ratiobinding energyul Ja? of the compound system of a
bin

Le/L, as for the solutions with charga=2, described _ . .
above. This is seen in Fig. 22, where the dependence of the2 multimonopole and a Schwarzschild black hole by

ratio of circumference& /L, for the n=3 black hole solu-

hotion of binding energy is no longer unique, and the binding
energy of the compound system ofna=2 multimonopole

_ -2 1 1
p"=2(x5) = oy 2+ ps(Xa) + iping= 1+ Miing

tions on the area paramete for a=0.5<« is also shown. (76)
We observe that the maximal deformation of the horizon
increases with. and compare it to the binding energggmd/az of the com-
pound system of twe=1 monopoles and a Schwarzschild
D. Isolated horizon results black hole:

Let us now address the predictions of the isolated horizon ~ ;,("=2)(x )= 2#5251)+M3(XA)+M§md= M2+M§ind-
formalism for the axially symmetric hairy black hole solu- (77
tions with n>1. We first consider relatior{54) between
black hole mass, soliton mass, and horizon mass fomthe Since the binding energp?,,{a? differs from the binding
>1 solutions. Our numerical calculations confirm this rela—energy,uéimja2 by the difference between the mass of the
tion for the axially symmetric hairy black hole solutions of n=2 multimonopole and the mass of twoe=1 monopoles,
EYMH theory. In Fig. 23 we show the dependence of thethe binding energy.?, ./ @2 is smaller than the binding en-
horizon masper unit chargeu, /(«?n), obtained according ergyﬂémd/a{ shown in Fig. 24.
to Eq.(55), on the area parameteg for then=2 black hole Alternatively we can consider m=2 hairy black hole as
solutions fora=0.5 ande=1. Adding the masper unit 3 compound system ofra= 1 monopole and a charged black
charge of the corresponding multimonopole solutions hole. For the compound system ofna=1 monopole and a
[#reg! (20%)(@=0.5)=0.961105 andpureq/(2a”)(a=1.0)  n=1 hairy black hole, the binding energy,.d @ is given
=0.847943, respective]yprecisely gives the values of the by
massper unit chargeof the hairy black hole solutions in Fig.

20. _ _ _ _ p=D(xy) = pily P+ DX + piing= 13+ Biing

Next we consider the interpretation of the hairy black
holes as bound states of regular solutions and Schwarzschild (78)
black holeq20]. We therefore identify the binding energy of
these systema g/ @?, according to Eq(57). In Fig. 24 we
present the dependence of the binding eneugyy/? on

in the parameter range, where both black hole solutions co-
exist. Likewise, for the compound system oh& 1 mono-

ole and a RN black hole with unit charge, the binding en-
the area parametet, for the n=2 black hole solutions for P g g

4 g2
«=0.5 anda= 1. For comparison, the binding energy of the €19y ppind @” IS given by
corresponding RN solgUons is also given. E|gure 24 is com- w("=2(x,) :Mggg: l)+MRN(XA)+Méind: /-L4+:U“gindv
pletely analogous to Fig. 7, where the binding energy of the (79
n=1 black hole solutions is shown.

However, for then>1 hairy black hole solutions, we can in the parameter range, where both solutions coexist.
also consider other compound systems with magnetic charge Let us now illustrate these possibilities for the binding

n, consisting of a soliton and a black hole. Therefore theenergy by considering the masses of the corresponding com-
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=05 =0 horizon charge P(x,)
5 [oo0s ! ) 2.1 n= 2 8= O ...............
Hoina(Xa) :'f // 1.8r q
0.02 v 15 —a=0.5 |
4r b D «=1.0
« 0.00——= g ] 1.2 T
[« 0.00 -t : ) o9F  TTTTTTTTTOYTC ]
~ | (n=2) o, )
3 3F ©w !Xa! 4 0.6F ---RN(I‘I=1,0(=0.5) 4
re&(“-‘)+l‘(n-‘)(XA) 0.3} ---RN(n=2,a=0.5) J
Bt (%) 0.0 . .
R b (), P s(x) | 0.0 03 06 09 12 15
‘ ‘ %
0.0 0.5 1.0 1.5 *
(a) Xa FIG. 26. The dependence of the non-Abelian horizon magnetic

chargeP(x,) of the n=2 hairy black hole solutions on the area
parametek, is shown in the BPS limit forw=0.5 anda=1. Also
shown is the horizon magnetic charge of the RN solutions with
chargen=1 andn=2 for «=0.5.

For =1 then=2 hairy black hole is energetically favor-
able forx,<0.52, where the compound system oha 1
monopole and an=1 hairy black hole is heavier, and for
Xa,e(N=1)<x,<1, since belowk, =1 no RN solutions ex-

-y et) ist. [Xa o(N=1)<x,<1 represents the gap between the
1.6 H’q“""iym(&) i (X‘Q =1 hg’i?;( bIacL h(ﬁe bran?:h and the R?\I %ranch with unit
0.0 0.5 1. 0 1.5 charge]
(b) X, Let us finally consider the “quasilocal uniqueness conjec-
ture,” which states that static black holes are uniquely speci-

FIG. 25. (a) The dependence of the mass of the compound sysfied by their horizon area and horizon charges. In Fig. 26 we
tem of an=2 multimonopole and a Schwarzschild black hole, of show the dependence of the non-Abelian horizon magnetic
two n=1 monopoles and a Schwarzschild black hole, af-al charge on the area parametey for the n=2 hairy black
monopole and a=1 hairy black hole, and of a=1 monopole  pgje solutions fora=0.5 and 1. The horizon charge in-
and a RN black hole with unit charge, on the area paramates o505 monotonically along the branchesnef2 hairy
shown in the BPS limit for=0.5. For comparison the mass of the - ho|e solutions, analogously to the horizon charge of the

Em;nha';);]:rla(:kv\:g:er::m;gn;'ihaelsgo‘:":]c’;\lljnnd-rzes'gfg }hg;/lvs the fh=1 hairy black hole solutions, shown in Fig. 8. In the limit
g gy P P y Xpo—Xa ¢, fOr «=0.5 the value of the RN solution with

monopole and a=1 hairy black hole(b) The same asa) for .
-1, P y ® ) for @ chargen=2 is reached, as expected, whereasder1 the

limiting value is smaller than Zreflecting the gap between
pound systems. In Figs. 25 and 25b) we show the depen- the hairy black hole branch and the RN brandfhe horizon
dence of the massegs'/a?— u* a?, Egs.(76)—(79), on the  electric charge vanishes.

area parameter, , and_ compare it to the mass of the=2 To address the “quasilocal uniqueness conjecture,” we
hairy black hole solutionsp.("=?)(x,)/a?, for «=0.5 and  now also consider the branches of embedded RN solutions
a=1, respectively. with integer values of the magnetic charge, beginningat

The binding energyupi,d@® and the binding energy = an, The lowest branch of embedded RN solutions has unit
bind @® are always negative for the=2 hairy black hole magnetic charge and, thus, unit horizon magnetic charge. For
solutions. In contrast, the binding energy,./ a?, represent-  «=0.5, this branch begins at,=0.5, and crosses the cor-
ing the binding energy of the compound system af-al  responding &=0.5) branch ofn=2 hairy black hole solu-
monopole and =1 hairy black hole, changes sign. For tions. Consequently, at the crossing point there exist two dis-
a=0.5, up.da’ is positive beyondx,~0.34, and fora tinct black hole solutions, one with hair and the other without
=1, it is positive beyondx,~0.52. The binding energy hair, with the same horizon area and the same non-Abelian

waind @2, representing the binding energy of the compoundhorizon magnetic charge, representing a counterexample to
system of an=1 monopole and a RN black hole with unit the “quasilocal uniqueness conjecture.”
charge, changes sign at~0.63 for «a=0.5, whereas it is

always positive fora=1. VI. CONCLUSIONS
Thus for «=0.5, then=2 hairy black holes possess a ) ) . ) )
mass lower than the mass;aé—,u“ of the Compound sys- We have considered static aX|aIIy symmetric multimono-

tems only forx,<0.34. Forx,>0.34, then=2 hairy black ~ pole and black hole solutions in EYMH theory. We have
hole is either heavier than the compound system of=dl ~ presented these solutions in detail and discussed their prop-
monopole and an=1 hairy black hole, ofwhen then=1  erties. Our particular interests were the investigation of an
hairy black hole branch ceases to exisis heavier than the attractive phase between like monopoles and the study of
compound system of a=1 monopole and a RN black hole monopole and black hole properties predicted by the isolated
with unit charge. horizon formalism.
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Concerning the multimonopole solutions we observe tharon. Being static and not spherically symmetric, these black
the massper unit chargeof the (multiymonopole solutions hole solutions represent further examples, showing that Isra-
decreases with increasing In the BPS limit, fora=0 the  el's theorem cannot be generalized to EYM or EYMH
massper unit chargeis precisely equal to the mass of the theory. While previous(nonperturbative counterexamples
n=1 monopole. Fora>0, however, we observe that the [28,21] were classically unstable, hairy EYMH black holes
massper unit chargeof the multimonopoles is smaller than should provide classically stable counterexamples.
the mass of them=1 monopole. In particular, the mapsr Considering the static axially symmetric solutions from
unit chargedecreases with increasing Thus, in the BPS the isolated horizon formalism point of view, we have veri-
limit, there is an attractive phase between like monopolesfied the mass relation between the monopole and the black
not present in flat space. Moreover, multimonopoles exist fohole solutions, showing that the black hole mass is given by
gravitational coupling strength, too large for=1 mono- the sum of the soliton mass and the horizon mass. Interpret-
poles to exist. ing the hairy black holes as bound states of solitons and

For finite Higgs self-coupling, the flat space multimono- Schwarzschild black hol€g20], we have studied the binding
poles have higher mager unit chargethan then=1 mono-  €nergy of these bound systems. We have furthermore consid-
pole, allowing only for a repulsive phase between like mono-€red the binding energy with respect to various other com-
poles. By continuity, this repulsive phase persists in thepound systems, such asne-1 soliton and an=1 hairy
presence of gravity for small values ef but it can give way ~ black hole or an—1 soliton and a RN black hole with unit
to an attractive phase for larger valuesaofThus the repul-  charge. The “quasilocal uniqueness conjecture” claims that
sion between like monopoles can be overcome for a smalfplack holes are uniquely specified by their horizon area and
Higgs self-coupling by a sufficiently strong gravitational at- their horizon electric and magnetic_ charge. Since we have
traction. At the equilibrium valuere, the multimonopole constructed a counterexample to this conjecture, the need for
massper unit chargeand monopole mass equal one another@ New formulation of the unigueness _conjecture arises.

The equilibrium valuea,, increases with increasing Higgs  The hairy black hole solutions studied here represent only
self-coupling, yielding a decreasing region in parameteﬂhe simplest type of nonspherical black hole solutions. In-
space for the attractive phase. For a large Higgs selfdeed, there are gravitating black hole solutions with much
coupling, only a repulsive phase is left. more complex shapes and only discrete symmetries left. In

While singly charged monopole solutions are stable, th&urved space such black holes without rotational symmetry
stability of the static axially symmetric multimonopole solu- have been considered so far only perturbativl§]. It re-
tions is not obvious. We conjecture that tie 2 multimono- mains a challenge to construct such solutions nonperturba-
pole solutions are stable, as long as their mpes unit  tively and to find out whether such black hole solutions with-
chargeis lower than the mass of the=1 monopole. For ~Out rotational symmetry are stable.
topological numben=3, however, solutions with only dis-

crete symmetry exist in flat spa¢g], which, by continuity, ACKNOWLEDGMENTS
should also be present in curved spdaé least for small . .
gravitational strength For a given topological numben We would like to thank the RRZN in Hannover for com-

>2, such multimonopole solutions without rotational sym-Puting time.
metry may possess a lower mass than the corresponding axi-
ally symmetric solutions, as suggested by analogy from APPENDIX A: TENSORS F,,, D,®, T,,
multi-Skyrmions in flat spac¢37]. The axially symmetric . .
solutionsy may therefore n%t represent globalymizima in their, We expand the field strength _tenso_r and the covariant de-
respective topological sectors, even if their mass unit  fvative with respect to the Pauli matrice} [\=r, 0, ¢;
chargeis lower than the mass of the=1 monopole. see Eq(13)]:
Let us now turn to the black hole solutions of QY
EYMH theory. Besides embedded Abelian black hole solu-
tions, SU2) EYMH theory also possesses genuine non-
Abelian black hole solutionfl3]. The static SW2) EYMH
black hole solutions are no longer uniquely determined byand
their mass and charge alone. Indeed, in a certain region of
the domain of existence of hairy black hole solutions, also Dﬂq>=D§j)cD .
embedded RN solutions with the same mass and charge ex-
ist. The non-Abelian black hole solutions therefore represenfserting ansatz12) for the gauge field, we obtain the non-
counterexamples to the “no-hair” conjectuf3]. vanishing Coefﬁcientgg\g andD, &™),
While static spherically symmetrinE1) EYMH black
holes were studied in great detail3], non-Abelian black 1
hole solutions with magnetic charge>1 were previously FS‘;):— F(H1,9+rH2J),
only considered perturbative[\L5]. We have obtained static
axially symmetric black hole solutions with integer magnetic _
chargen>1 numerically. These black hole solutions are as- E(N— _ nﬂ(rH —H4Hy)
H P [ 3r 114/,
ymptotically flat, and they possess a regular deformed hori- ¢ r '

n
™\

—_gM)
Fu=FN
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F<f">—n—(rH4r+H1H3+coteH ), (A1)
FO)=—nsind(Hz,—1+H,H,+cotoHy),
F{=nsing[H,y—HaHz—cotd(Hy—Hy)l,
and
(COPE=TON!
FMV FV,U«'
1
qu><r>=F(ch1>2+rcI>l,r),
1
quD(e):_F(quH_rq’z,r),
Dy =(dy,—Hydy), (A2)
D@ =(Dyy+H,P),
D, @@ =nsing(H,P,+Hzd,+cotod,).
It is convenient to define
Ffy=(F{9)%+ —(rHl,r—Hw)Z,
Fro=(F{)?+ (F(Q)2, (A3)

Fio=(Fi)2+(Fi)2,

where the second term in the definitionfef, represents the
gauge fixing term, as well as

DZd=(D"®)%+ (D)2,

D0 =(D{)®)*+(D®)?, (Ad)
2 — (©) )2

D2d=(DYd)2,

With the ansatz for the metridl0) we obtain the
Lagrange densities

IR LA F+1F2)
F 2m\r2m " r2gik e\ "¢y '
L __ D2¢+£D2<I>+—D2<I>
*o2m| 7T r2 7 r2sike ¢

A 2 2\2

5T @?= 7?2, (AS)
LM:L(I)+LF1
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L F2y ' g2 tee ) p2g
072m| 2, " r2giz ol | e (2 % '
+£D2<I>+—D2<I> +f£Tr(<I>2— 7°)?
r2 %7 Ir2sirte ¢ 8 ’
1| f 1
Te=5|5=Fist 5—5 | Fio— F, | tDi®
20 2m g2 smzal< e '
1 m mA
- SDib— ———DZd |- — STr(®?- 5?)?,
r2 % Ir2site ¢ f 8 g
(AB)
2
r f f 1
N R = I R A 2 N YA
Tor=7 rszr0+rzsin20I( Fw+r2F0¢ Dre
1
+ —D2b - D2®
200 25 g D6
mr? \
—T—Tf(cpz—n)
r2sinf 6 | f, 5
o ol T Fret | Fro
2 m| (2q r2sir? 6l
1 1
+—F5, | -Di®— D0+ ———Did
2 0 ' r2 %7 Ir2sirte ¢
Ir2sir? 6 \ )
—— g — )2
APPENDIX B

Subject to the corresponding set of boundary conditions,
we solve the system of coupled nonlinear partial differential
equations numerically. For the globally regular solutions, we
employ the radial coordinate

X

1+x’ (B1)
instead ofx, to map the infinite interval of the variabkeonto
the finite interval 0,1] of the variablez. For the derivatives
this leads to the substitutions

rf ,—z(1-2)F ,, (B2)

rZF,r,r_’Zz((l_z)zF,z,z_2(1_Z)F,z) (83)

for any functionF in the differential equations. In this form
we have solved the system of differential equations numeri-
cally.

To map spatial infinity to the finite value= 1, we employ

and the nonvanishing components of the stress-energy tenséoy the black hole solutions the radial coordinate

024027-20



AXIALLY SYMMETRIC MONOPOLES AND BLACK HOLES . .. PHYSICAL REVIEW D 65 024027

Xy The numerical method is based on the Newton-Raphson
z=1-—-. (B4)  method, an iterative procedure to find a good approximation
to the exact solution. Let us put the partial differential equa-
For the derivatives this leads to the substitutions tions into the formP(u) =0, whereu denotes the unknown
functions (and their derivativels For an approximate solu-
rF—(1-2)F,, (B5  tionu®, P(u®) does not vanish. If we could find a small
, , correction Au, such thatu®+Au is the exact solution,
rFrr—1-2)%F ;,—2(1-2)F, (B6)  p(u™+Au)=0 should hold. Approximately the expansion

. . . . . in Au gives
for any functionF in the differential equations. 9

For the_black hgle solutions_we furthermore introduce the
functionsf(z,6), m(z,6), andl(z,6) [16,17,

f_(z,e>=“§—;9), E(z,0)=m(;’a), 1(z.6)=

O=P(u(1)+Au)%P(u(l))+%(u(1))Au.
1(z,6)
2’
(B7)  The equatiorP(u®)=—(aP/du)(uV)Au can be solved to
determine the correctionu®=Au. u@=u®+Au® will
wherez is the compactified coordinatéd4). Since in the pot pe the exact solution but an improved approximate solu-
limit x— o the variablez approaches the value 1, the bound-tjon. Repeating the calculations iteratively, the approximate
ary conditions for the function§, m, and| coincide with  solutions will converge to the exact solution, provided the
the boundary conditions for the functioris m, and| at initial guess solution is close enough to the exact solution.
infinity. At the horizon, the boundary conditions of the func- The iteration stops after steps if the Newton residual

tionsf, m, andl are given by P(uV) is smaller than a prescribed tolerance. Therefore it is
essential to have a good first guess, to start the iteration
(f=3,6)),-0=0, (Mm+3d,m)|,—o=0, (I1+4,l)|,_o=0. procedure. Our strategy therefore is to use a known solution
(B9) as a guess and then vary some parameter to produce the next
solution.
To satisfy the regularity conditiofiL1) in the numerical cal- To construct axially symmetric EYMH solutions, we have
culations, we have introduced the new functig(z, 6), useq the knoyvn sphencally symmetric EYMIH solutions as
starting solutions withn=1. We have then increased the
m(z, 6) “parameter”n slowly, to obtain the desired axially symmet-
9(z,0)= = , (B9)  ric solutions at integer values of
1(z,0) For a numerical solution it is important to have informa-

with the boundar " . {ion about its quality, i.e., to have an error estimate. The error
y conditions on the symmetry axis and at_. . . o L
the horizon: originates fr_om discretization of the system of pa_lrtlal_dlffer-
ential equations. It depends on the number of gridpoints and
9lp—0=1, ,9|,_0=0. (B1o)  on the order of consistency of the differential formulas for
the derivativesFIDISOL provides an error estimate for each
The numerical calculations are performed with the help ofunknown function, corresponding to the maximum of the
the programribisoL, which is extensively documented in discretization error divided by the maximum of the function.
[38]. The equations are discretized on a nonequidistant griéfor the solutions presented here the estimations of the rela-
in zand 6. Typical grids used have sizes 1880, covering tive error for the functions are on the order of F0for n

the integration region €z<1 and O< =< 7/2. =2 andn=3.
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