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Axially symmetric monopoles and black holes in Einstein-Yang-Mills-Higgs theory
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We investigate static axially symmetric monopole and black hole solutions with a magnetic chargen>1 in
Einstein-Yang-Mills-Higgs theory. For a vanishing and small Higgs self-coupling, multimonopole solutions are
gravitationally bound. Their massper unit chargeis lower than the mass of then51 monopole. For a large
Higgs self-coupling only a repulsive phase exists. The static axially symmetric hairy black hole solutions
possess a deformed horizon with constant surface gravity. We consider their properties in the isolated horizon
framework, interpreting them as bound states of monopoles and black holes. Representing counterexamples to
the ‘‘no-hair’’ conjecture, these black holes are neither uniquely characterized by their horizon area and horizon
charge.
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I. INTRODUCTION

Magnetic monopoles@1#, multimonopoles @2–5#, and
monopole-antimonopole pair solutions@6,7# are globally
regular solutions of SU~2! Yang-Mills-Higgs~YMH ! theory,
with a Higgs field in the triplet representation. Since th
magnetic charge is proportional to their topological char
the monopoles and multimonopoles reside in topologica
nontrivial sectors of the theory, whereas the monopo
antimonopole pair solutions are topologically trivial.

In the Bogomol’nyi-Prasad-Sommerfield~BPS! limit
@8,9#, where the strength of the Higgs self-interaction pote
tial vanishes, the mass of the monopole and multimonop
solutions saturates its lower bound, the Bogomol’nyi bou
In particular, the massper unit chargeof ann.1 monopole
is precisely equal to that of then51 monopole. The mass
less Higgs field mediates a long range attractive force wh
exactly cancels the long range repulsive magnetic force
the U(1) field @10,11#.

For a finite Higgs self-coupling, however, the Higgs fie
is massive and therefore decays exponentially. Conseque
the long range magnetic field dominates at large distan
leading to the repulsion of like monopoles@12#. In particular,
as verified numerically forn52 and n53 monopoles@4#,
the massper unit chargeof ann.1 monopole is higher than
the mass of then51 monopole. Thus for a finite Higg
self-coupling there is only a repulsive phase between
monopoles.

Let us now consider the effect of gravity on the monop
and multimonopole solutions. When gravity is coupled
YMH theory, a branch of gravitating monopole solutio
emerges from the flat space monopole solution@13#. With
increasing gravitational strength, the mass of the gravita
monopole solutions decreases monotonically. The branc
monopole solutions extends up to some maximal value of
gravitational strength, beyond which the size of the soli
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core would be smaller than the Schwarzschild radius of
solution@13#. The same holds true for static axially symme
ric gravitating multimonopole solutions@14#. All these solu-
tions are asymptotically flat.

The inclusion of gravity allows for an attractive phase
like monopoles not present in flat space@14#. There arises a
region of parameter space, where the massper unit chargeof
the gravitating multimonopole solutions is lower than t
mass of the gravitatingn51 monopole. Here the multimono
pole solutions are gravitationally bound.

To every regular monopole solution there exists a cor
sponding family of black hole solutions with regular eve
horizon and horizon radius 0,xD<xD,max @13#. Likewise, to
every regular axially symmetric multimonopole solutio
there exists a corresponding family of black hole solutio
with regular event horizon@14#. Outside their event horizon
these black hole solutions possess nontrivial non-Abe
fields. Therefore they represent counterexamples to the ‘
hair’’ conjecture. The axially symmetric black hole solution
additionally show that static black hole solutions need not
spherically symmetric; i.e., Israel’s theorem cannot be g
eralized to non-Abelian theories either@15–17#.

Considering the non-Abelian black hole solutions in t
isolated horizon framework@18–20#, they can be interpreted
as bound states of monopoles and black holes@20#. In par-
ticular, the isolated horizon framework yields an intriguin
relation for the mass of hairy black hole solutions, represe
ing it as the sum of the monopole mass and the horizon m
of the black hole solutions@19#. Having shown previously
that this relation is also valid for black holes in betwe
monopole-antimonopole pair solutions@21#, we here verify
this relation for the magnetically charged hairy black ho
solutions. The isolated horizon formalism has furthermo
led to new conjectures for black holes. In particular,
‘‘quasilocal uniqueness conjecture’’ has been proposed, s
ing that static black holes are uniquely characterized by th
©2001 The American Physical Society27-1
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horizon area and horizon charge~s! @19#. We investigate the
validity of this conjecture for the Einstein–YMH~EYMH!
black hole solutions.

This paper presents a detailed account of the static ax
symmetric multimonopole and black hole solutions, repor
in @14#. In Sec. II we present the action, the axially symm
ric ansatz in isotropic spherical coordinates, and the bou
ary conditions. In Sec. III we recall the spherically symm
ric solutions, presenting them in isotropic coordinates.
Sec. IV we discuss the properties of the axially symme
regular multimonopole solutions, and in Sec. V those of
black hole solutions. We present our conclusions in Sec.
In Appendix A some details of the quantitiesFmn , DmF,
andTmn are shown, and in Appendix B the numerical tec
nique is briefly described.

II. EINSTEIN-YANG-MILLS-HIGGS EQUATIONS
OF MOTION

A. Einstein-Yang-Mills-Higgs action

We consider the SU~2! Einstein-Yang-Mills-Higgs action

S5E S R

16pG
2

1

2
Tr~FmnFmn!2

1

4
Tr~DmFDmF!

2
1

8
l Tr~F22h2!2DA2gd4x, ~1!

with field strength tensor

Fmn5]mAn2]nAm1 ie@Am ,An#, ~2!

of the gauge field

Am5
1

2
taAm

a , ~3!

and with covariant derivative

DmF5]mF1 ie@Am ,F#, ~4!

of the Higgs field in the adjoint representation

F5tafa. ~5!

Hereg denotes the determinant of the metric. The consta
in the action represent Newton’s constantG, the Yang-Mills
coupling constante, the Higgs self-coupling constantl, and
the vacuum expectation value of the Higgs fieldh.

Variation of the action~1! with respect to the metricgmn

leads to the Einstein equations

Gmn5Rmn2
1

2
gmnR58pGTmn ~6!

with stress-energy tensor
02402
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Tmn5gmnLM22
]LM

]gmn

5TrS 1

2
DmFDnF2

1

4
gmnDaFDaF D

12 TrS FmaFnbgab2
1

4
gmnFabFabD

2
1

8
gmnl Tr~F22h2!2. ~7!

Variation with respect to the gauge fieldAm and the Higgs
field F leads to the matter field equations

1

A2g
Dm~A2gFmn!2

1

4
ie@F,DnF#50, ~8!

1

A2g
Dm~A2gDmF!1l~F22h2!F50, ~9!

respectively.

B. Static axially symmetric ansatz

Instead of the Schwarzschild-like coordinates, used
the spherically symmetric EYM and EYMH solution
@22,23,13# ~see Sec. III!, we adopt isotropic coordinates as
@24,16,25,17,26,21,14#, to construct static axially symmetri
solutions. In terms of the spherical coordinatesr , u, andw
the isotropic metric reads

ds252 f dt21
m

f
dr21

mr2

f
du21

lr 2 sin2 u

f
dw2, ~10!

where the metric functionsf , m, andl are only functions of
the coordinatesr and u. The z axis (u50) represents the
symmetry axis. Regularity on this axis requires@27#

muu505 l uu50 . ~11!

We take a purely magnetic gauge field,A050 and choose
for the gauge field the ansatz@3,28,24,16,25,17,14#

Amdxm5
1

2er
$tw

n@H1dr1~12H2!rdu#

2n@t r
nH31tu

n~12H4!#r sinudw%. ~12!

Here the symbolst r
n , tu

n , andtw
n denote the dot products o

the Cartesian vector of Pauli matrices,tW5(tx ,ty ,tz), with
the spatial unit vectors

eW r
n5~sinu cosnw,sinu sinnw,cosu!,

eW u
n5~cosu cosnw,cosu sinnw,2sinu!, ~13!

eWw
n5~2sinnw,cosnw,0!,
7-2
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respectively. Since the fields windn times around, while the
azimuthal anglew covers the full trigonometric circle once
we refer to the integern as the winding number of the solu
tions. For the Higgs field the corresponding ansatz is@3,4#

F5~F1t r
n1F2tu

n!h. ~14!

The four gauge field functionsHi and the two Higgs field
functions F i depend only on the coordinatesr and u. For
n51 and H15H35F250, H25H45K(r ), and F1
5H(r ), the spherically symmetric solutions are obtained
isotropic coordinates.

The ansatz~12!–~14! is axially symmetric in the sens
that a rotation around thez axis can be compensated by
gauge rotation. The ansatz is form invariant under the A
lian gauge transformation@3,29,28,30#

U5expS i

2
tw

nG~r ,u! D . ~15!

The functionsH1 andH2 transform inhomogeneously unde
this gauge transformation,

H1→H12r ] rG,

H2→H21]uG, ~16!

like a two-dimensional gauge field. The functionsH3 andH4
combine to form a scalar doublet (H31cotu,H4). Likewise,
the Higgs field functions form a scalar doublet (F1 ,F2).

We fix the gauge by choosing the gauge condition as p
viously @29,28,30,24,16,25,17,14#. In terms of the functions
Hi it reads

r ] rH12]uH250. ~17!

With the ansatz~10!–~12! and the gauge condition~17! we
then obtain the set of EYMH field equations.

The energy density of the matter fieldse52T0
052LM is

given by

2T0
05

h2

2r 2
f F 1

m
@~r ] rF11H1F2!21~r ] rF22H1F1!2

1~]uF12H2F2!21~]uF21H2F1!2#

1
n2

l
@H4F11~H31cotu!F2#2G1

l

2
~F1

21F2
22h2!2

1
f 2

2e2r 4m
H 1

m
~r ] rH21]uH1!2

1
n2

l
$~r ] rH32H1H4!21@r ] rH41H1~H31cotu!#2

1~]uH3211cotuH31H2H4!2

1@]uH41cotu~H42H2!2H2H3#2%J . ~18!
02402
-
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As seen from Eq.~18!, regularity on thez axis requires

H2uu505H4uu50 . ~19!

C. Boundary conditions

To obtain asymptotically flat solutions with the prop
symmetries, which are either globally regular or posses
regular event horizon, we must impose appropriate bound
conditions@24,16,25,17,14#. Here we are looking for solu-
tions with parity reflection symmetry. Therefore we need
consider the solutions only in the region 0<u<p/2, impos-
ing boundary conditions along ther and z axes~i.e., for u
5p/2 andu50).

1. Boundary conditions at infinity

Asymptotic flatness imposes for the metric functions
the regular and black hole solutions at infinity (r 5`) the
boundary conditions

f ur 5`5mur 5`5 l ur 5`51. ~20!

For the Higgs field functions we require

F1ur 5`51, F2ur 5`50; ~21!

thus the modulus of the Higgs field assumes the vacu
expectation valueh. For magnetically charged solutions, th
gauge field functionsHi satisfy

H1ur 5`5H2ur 5`5H3ur 5`5H4ur 5`50. ~22!

2. Boundary conditions at the origin

Requiring the solutions to be regular at the originr
50) leads to the boundary conditions, for the metric fun
tions,

] r f ur 505] rmur 505] r l ur 5050. ~23!

The Higgs field functions satisfy

F1ur 505F2ur 5050, ~24!

and the gauge field functionsHi satisfy

H1ur 505H3ur 5050, H2ur 505H4ur 5051. ~25!

3. Boundary conditions at the horizon

The event horizon of static black hole solutions is char
terized bygtt52 f 50. In isotropic coordinatesgrr is finite
at the horizon. We now impose that the horizon of the bla
hole solutions reside at a surface of constantr , r 5r H
@16,17,14#.

Requiring the horizon to be regular, we obtain the boun
ary conditions at the horizonr 5r H . The metric functions
must satisfy

f ur 5r H
5mur 5r H

5 l ur 5r H
50. ~26!

The boundary conditions for the gauge field functions a
the Higgs field functions can be deduced from Eqs.~8! and
~9!, respectively:
7-3
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Fruur 5r H
50⇔~r ] rH21]uH1!ur 5r H

50,

Frwur 5r H
50⇔~r ] rH32H1H4!ur 5r H

50

@r ] rH42H1~H31cotu!#ur 5r H
50,

DrFur 5r H
50⇔~r ] rF11H1F2!ur 5r H

50

~r ] rF22H1F1!ur 5r H
50.

~27!

The equations of motion yield only three boundary co
ditions for the four gauge field functionsHi ; one gauge field
boundary condition is left indeterminate. However, for t
black hole solutions the gauge condition~17! still allows
nontrivial gauge transformations satisfying

r 2] r
2G1r ] rG1]u

2G50. ~28!

To fix the gauge, we have chosen the gauge condi
@16,17,14#

~]uH1!ur 5r H
50, ~29!

which implies H1ur 5r H
50, if we take into account the

boundary conditions on the axes,H1uu50,p/250 ~see next
paragraph!. As a consequence the boundary conditions, E
~27!, reduce to

] rH2ur 5r H
50, ] rH3ur 5r H

50, ] rH4ur 5r H
50,

~30!
] rF1ur 5r H

50, ] rF2ur 5r H
50.

4. Boundary conditions along the axes

The boundary conditions along ther and z axes (u
5p/2 and u50) are determined by the symmetries. T
metric functions satisfy, along the axes,

]u f uu505]umuu505]ul uu5050,
~31!

]u f uu5p/25]umuu5p/25]ul uu5p/250.

Likewise the Higgs field functions satisfy

]uF1uu5050, F2uu5050,
~32!

]uF1uu5p/250, F2uu5p/250,

along the axes. For the gauge field functionsHi symmetry
considerations lead to the boundary conditions

H1uu505H3uu5050, ]uH2uu505]uH4uu5050,
~33!

H1uu5p/25H3uu5p/250, ]uH2uu5p/25]uH4uu5p/250,

along the axes. In addition, regularity on thez axis requires
condition ~11! for the metric functions to be satisfied an
condition ~19! for the gauge field functions.
02402
-

n
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D. Mass, temperature, and entropy

Let us introduce the dimensionless coordinatex:

x5her. ~34!

The equations then depend only on two dimensionless c
pling constantsa andb:

a254pGh2, b25
l

e2
. ~35!

The massM of the solutions can be obtained directly fro
the total energy-momentum ‘‘tensor’’tmn of matter and
gravitation@31#:

M5E t00d3r . ~36!

It is related to the dimensionless massm/a2 via

m/a25
e

4ph
M , ~37!

wherem is determined by the derivative of the metric fun
tion f at infinity @24,16,25,17#:

m5
1

2
lim
x→`

x2]x f . ~38!

The surface gravityksg of static black hole solutions is
given by @32,15#

ksg
2 52~1/4!gttgi j ~] igtt!~] jgtt!. ~39!

To evaluateksg, we need to consider the metric functions
the horizon. Expanding the equations in the vicinity of t
horizon in powers of the dimensionless coordinatex
2xH)/xH , we observe that the metric functions are quadra
in x2xH ,

f ~x,u!5 f 2~u!S x2xH

xH
D 2S 12

x2xH

xH
D1OS x2xH

xH
D 4

,

~40!

m~x,u!5m2~u!S x2xH

xH
D 2S 123

x2xH

xH
D1OS x2xH

xH
D 4

,

~41!

with l (x,u) like m(x,u), Eq.~41!. We then obtain the dimen
sionless surface gravityk5ksg/eh:

k5
f 2~u!

xHAm2~u!
. ~42!

The zeroth law of black hole physics states that the s
face gravityksg is constant at the horizon of a black ho
@32#. To show that the zeroth law holds for the hairy bla
hole solutions we employ the expansion of the metric fu
tions ~40!,~41! in the ru component of the Einstein equation
7-4
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at the horizon@17#. This yields the crucial relation betwee
the expansion coefficientsf 2(u) andm2(u):

05
]um2

m2
22

]u f 2

f 2
. ~43!

The temperature is proportional to the surface gravityksg
@32#; in particular, the dimensionless temperature is given

T5k/~2p!. ~44!

The dimensionless areaA of the event horizon of the
black hole solutions,

A52pE
0

p

du sinu
Al 2m2

f 2
xH

2 , ~45!

is proportional to the dimensionless entropyS @32#,

S5
A

4
, ~46!

yielding the product

TS5
xH

4 E
0

p

du sinuAl 2. ~47!

Having defined temperature and entropy, we now deriv
second expression for the mass of the black hole solut
@32#. As in EYM theory@17#, the equations of motion yield
in EYMH theory the relation

1

8pG
]m~A2g]m ln f !52A2g~2T0

02Tm
m!. ~48!

Integrating both sides overr , u, andw from the horizon to
infinity, we obtain

1

4GE
0

p

du sinuF r 2Al
] r f

f GU
r H

`

52E
0

2pE
0

pE
r H

`

dwdudrA2g~2T0
02Tm

m!5Mo .

~49!

Changing to dimensionless coordinates, we express the
hand side~LHS! with the help of the dimensionless massm
and the product of temperature and entropy,TS, obtaining

m5mo12TS, ~50!

with mo /a25(e/4ph)Mo , in agreement with the genera
mass formula for static black hole solutions@32#. For regular
solutions one simply obtains

M52E ~2T0
02Tm

m!A2gdrdudw. ~51!

We finally consider the Kretschmann scalarK:
02402
y
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ft-

K5RmnabRmnab . ~52!

In order to show thatK is finite at the horizon it is sufficien
to point out that the expansion of the metric functio
~40!,~41! is the same as for the EYM system considered
@17#. Consequently, it follows from the calculations of Re
@17# that the Kretschmann scalar is finite at the event ho
zon, if the condition~43! holds, i.e., if the temperature i
constant at the event horizon.

E. Horizon mass and horizon charge

In the isolated horizon framework@18# an intriguing rela-
tion between the Arnowitt-Deser-Misner~ADM ! massm/a2

of a black hole with areaA and area parameterxD ,

xD5AA/4p, ~53!

and the ADM massm reg/a2 of the corresponding regula
solution holds@19#,

m5m reg1mD , ~54!

where the horizon massmD /a2 is defined by

mD5E
0

xD
k~xD8 !xD8 dxD8 , ~55!

with the dimensionless surface gravityk in the integrand.
The isolated horizon formalism then suggests to interp

a hairy black hole as a bound state of a regular solution
a Schwarzschild black hole@20#,

m5m reg1mS1mbind, ~56!

wheremS/a25xD/2a2 is the ADM mass of the Schwarzs
child black hole with horizon radiusxD , andmbind/a2 rep-
resents the binding energy of the system:

mbind5mD2mS. ~57!

Another crucial quantity in the isolated horizon formalis
is the non-Abelian magnetic charge of the horizon@18,19#,
defined via the surface integral over the horizon

PD
YM5

1

4p RA(
i

~Fuw
i !2dudw. ~58!

The non-Abelian electric horizon charge is defined ana
gously with the dual field strength tensor@18,19#. These ho-
rizon charges are an important ingredient in a new ‘‘quas
cal uniqueness conjecture’’ put forward in Ref.@19#, which
states that static black holes are uniquely determined by t
horizon area and their horizon electric and magnetic char

III. SPHERICALLY SYMMETRIC SOLUTIONS

Previously, spherically symmetric EYMH solutions we
obtained numerically in Schwarzschild-like coordinates@13#.
Since we construct the axially symmetric solutions in isot
pic coordinates, we here discuss the coordinate transfor
7-5
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tion between isotropic and Schwarzschild-like coordina
for spherically symmetric solutions.

We briefly recall the dependence of the monopole so
tions on the parameters of the theory,a andb. In particular,
we compare the way the limiting Reissner-Nordstro¨m ~RN!
solution is reached in Schwarzschild-like and isotropic co
dinates.

We then turn to the spherically symmetric black hole s
lutions, putting particular emphasis on the relations obtai
in the isolated horizon formalism. We demonstrate the re
tion between black hole mass, soliton mass, and hori
mass, Eq.~54!, we evaluate the binding energy, Eq.~56!, and
we discuss the ‘‘quasilocal uniqueness conjecture’’@19#.

A. Coordinate transformations

By requiring l 5m and the metric functionsf andm to be
only functions of the coordinater, the axially symmetric iso-
tropic metric~10! reduces to the spherically symmetric is
tropic metric

ds252 f dt21
m

f
@dr21r 2~du21sin2 udw2!#. ~59!

In Schwarzschild-like coordinates the metric reads@13#

ds252A2Ndt21
1

N
dr̃21 r̃ 2~du21sin2 udw2!, ~60!

where the metric functionsA andN are only functions of the
radial coordinater̃ , and

N~ r̃ !512
2M̃ ~ r̃ !

r̃
. ~61!

The spherically symmetric horizon resides at radial coo
nate r̃ H , and the~dimensionfull! area of the horizon is

A54p r̃ H
2 ; ~62!

hence, the area parameterr D is just the Schwarzschild radiu
r̃ H .

Comparison of the metric in Schwarzschild-like coord
nates~60! with the isotropic metric~59! yields, for the coor-
dinate transformation,

dr

r
5

1

AN~ r̃ !

dr̃

r̃
. ~63!

The functionN( r̃ ) @or equivalently the mass functionM̃ ( r̃ )#
is only known numerically. Therefore the coordinate functi
r ( r̃ ) can only be obtained numerically from Eq.~63!.

B. Monopole solutions

Let us briefly recall the dependence of the gravitat
magnetic monopole solutions on the parametersa and b.
When a is increased from zero, whileb is kept fixed, a
gravitating monopole branch emerges smoothly from the c
02402
s
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r-

responding flat space monopole solution. This fundame
monopole branch extends up to a maximal valueamax of the
coupling constanta. Beyond this value no monopole solu
tions exist. In the BPS limit,b50, and for small values ofb,
the fundamental monopole branch bends backwards atamax,
until a critical coupling constantacr is reached. At the critical
valueacr the fundamental monopole branch reaches a lim
ing solution and bifurcates with the branch of extremal R
solutions of unit magnetic charge@13#. For larger values ofb
the maximal value ofa and the critical value ofa coincide,
amax5acr @13,33,34#.

Let us first recall how the critical value ofa is ap-
proached in Schwarzschild-like coordinates. Along the fu
damental branch, the metric functionN( x̃) of the monopole
solutions develops a minimum, which decreases monot
cally. In the limit a→acr , the minimum approaches zero
x̃cr5acr . The limiting metric function then consists of a
inner part,x̃< x̃cr , and an outer part,x̃> x̃cr . For x̃> x̃cr , the
limiting metric function corresponds to the metric functio
N( x̃) of the extremal RN black hole foracr with unit mag-
netic charge.

Likewise the gauge and Higgs field functions approa
limiting functions, whena→acr . For x̃> x̃cr they also cor-
respond to those of the extremal RN black hole foracr with
unit magnetic charge. The limita→acr is demonstrated in
Figs. 1~a!–1~c! for the monopole solutions in the BPS lim
for the metric functionN( x̃), the gauge field functionK( x̃),
and the Higgs field functionH( x̃).

We recall that a RN solution with magnetic chargeP has
metric functions

N~ x̃!512
2m

x̃
1

a2P2

x̃2
, A~ x̃!51. ~64!

In the embedded RN solution with unit magnetic charge
gauge field functionK( x̃) and the Higgs field functionH( x̃)
are constant,

K~ x̃!50, H~ x̃!51, ~65!

implying a Coulomb-type decay for the magnetic field and
trivial Higgs field, assuming its vacuum expectation value.
particular, an extremal RN solution has metric functi
N( x̃),

N~ x̃!5S 12
aP

x̃
D 2

, ~66!

and ADM massm/a2, where

m5auPu. ~67!

Let us now turn to the monopole solutions in isotrop
coordinates. In Figs. 2~a!–2~c! we demonstrate the depen
dence of the gravitating magnetic monopole solutions on
parametera along the fundamental branch in isotropic coo
dinates. For comparison the same set of parameter value
7-6
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in Figs. 1~a!–1~c! is chosen. In the limita→acr the funda-
mental monopole branch bifurcates with the branch of
tremal RN solutions of unit magnetic charge. In particular,
the criticala is approached, the metric functionf (x) devel-
ops a zero at the origin, which corresponds to the horizon
an extremal RN solution in isotropic coordinates.

For an RN solution with chargeP and horizon radiusx̃H
the isotropic coordinatex is related to the Schwarzschild-lik
coordinatex̃ by

x5
Ax̃222m x̃1a2P21 x̃2m

2
~68!

in the nonextremal caseauPu,m5(1/2x̃H)( x̃H
2 1a2P2) and

by

x5 x̃2auPu ~69!

FIG. 1. ~a! The metric functionN of the n51 monopole solu-
tion is shown as a function of the compactified dimensionl

Schwarzschild-like coordinatezs5 x̃/(11 x̃) in the BPS limit for
five values ofa along the monopole branch, in particular for
value close to the maximal value ofa, amax'1.403, and for a
value close to the critical value ofa, acr'1.386.~b! The same as
~a! for the gauge field functionK. ~c! The same as~a! for the Higgs
field functionH.
02402
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in the extremal caseauPu5m5 x̃H .
The metric functionsf (x) andm(x) of a nonextremal RN

black hole are given by

f ~x!5

S 12
x

xH
D 2S 11

x

xH
D 2

F11
2x

xH
A11S aP

2xH
D 2

1S x

xH
D 2G2 ,

m~x!5S xH

x D 4S 12
x

xH
D 2S 11

x

xH
D 2

, ~70!

respectively. The horizon radiusxH in isotropic coordinates
is related to the horizon radius in Schwarzschild-like coor
natesxD by

xH5
xD

2 2a2P2

4xD
2

. ~71!

s

FIG. 2. ~a! The metric functionf of then51 monopole solution
is shown as a function of the compactified dimensionless isotro
coordinatez5x/(11x) in the BPS limit for five values ofa along
the monopole branch, in particular for a value close to the maxi
value ofa, amax'1.403 and for a value close to the critical valu
of a, acr'1.386.~b! The same as~a! for the gauge field function
K. ~c! The same as~a! for the Higgs field functionH.
7-7
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Its ADM massm/a2 is obtained from

m52xHA11S aP

2xH
D 2

. ~72!

An extremal RN solution has horizon radiusxH50 and met-
ric functions

f ~x!5S x

x1auPu D
2

, m~x!51. ~73!

C. Black hole solutions

Let us now turn to the black hole solutions of the SU~2!
EYMH system. We here limit our discussion to the BP
case,b50.

Hairy black hole solutions exist in a limited domain of th
xD2a-plane@13#. For fixeda,amax, hairy black hole so-
lutions emerge from the monopole solution in the limitxD

→0. They persist up to a maximal value of the horizon
dius xD,max, which limits the domain of existence of hair
black holes. The domain of existence is shown in Fig.
where the maximal value of the horizon radiusxD,max is
shown as a function ofa.

The domain of existence of hairy black hole solutio
consists of two regions with distinct critical behavior. The
two regions are separated by the particular value ofa, â

5A3/2 @13#. For â,a,amax, the hairy black hole solutions
bifurcate at a critical valuexD,cr with an extremal RN solu-
tion with unit charge. In contrast, for 0,a,â, the hairy
black hole solutions bifurcate at a critical valuexD,cr with a
nonextremal RN solution with unit charge. In particular, f
small values ofa, the branch of hairy black hole solution
extends backwards from the maximal valuexD,max to the
critical valuexD,cr , whereas for larger values ofa,â, both
values coincide,xD,max5xD,cr .

The dependence of the massm/a2 of the hairy black hole
solutions on the area parameter is demonstrated in Fig. 4
a50.5 and 1. Fora50.5,â, the mass of the black hol

FIG. 3. The domain of existence of the hairy black hole so
tions in the BPS limit is shown in thexD-a plane. The solid line
shows the maximal valuesxD,max obtained for then51 hairy black
hole solutions, while the crosses represent the maximal va
xD,max obtained forn52 hairy black hole solutions. The asteris

marks the valueâ(2)5A3/2, conjectured to separate the two r
gions with distinct critical behavior. Also shown are the extrem
RN solutions with unit charge and charge 2.
02402
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,

or

solutions increases monotonically with increasingxD , until
it reaches its maximal value atxD,max. Bending backwards
the mass then decreases again, until the bifurcation poin
xD,cr is reached, where it coincides with the mass of a n
extremal RN black hole with unit charge. Note that the ma
of the hairy black hole solutions exceeds the mass of the
solutions in a small region close toxD,max.

In contrast fora51.â, the limiting solution reached
corresponds to an extremal RN solution with unit charge~for
x̃>xD,cr). Since fora.â the maximal horizon radiusxD,max
of the hairy black holes is smaller than the horizon radius
the corresponding extremal RN solution, a gap between
branch of hairy black holes and the RN branch arises. T
gap is seen in Fig. 4 fora51 for the mass of the black holes

In Fig. 5 we exhibit the surface gravityk as function of
the area parameterxD for the same set of black hole solu
tions, obtained fora50.5 and 1. The surface gravity of th
hairy black hole solutions decreases monotonically along
black hole branches. In contrast, the surface gravity of
corresponding RN branches increases for small horizon
dius xD . For xD→xD,cr , the surface gravity of the hairy
black hole solutions reaches the surface gravity of the co
sponding limiting RN solutions. In particular, fora50.5 the
hairy black hole branch and the RN branch bifurcate, and
limiting value reached corresponds to the value of a non
tremal RN solution. In contrast fora51 the surface gravity
of the hairy black hole solutions reaches the value of

-

es

l

FIG. 4. The dependence of the massm/a2 of the n51 hairy
black hole solutions on the area parameterxD is shown in the BPS
limit for a50.5 anda51. For comparison, the mass of the corr
sponding RN solutions is also shown.

FIG. 5. The dependence of the surface gravityk of the n51
hairy black hole solutions on the area parameterxD is shown in the
BPS limit for a50.5 anda51. For comparison, the surface gravi
of the corresponding RN solutions is also shown.
7-8
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extremal RN solution—namely, zero—even though the ha
black hole branch is separated from the RN branch by a
of the horizon radius.

Let us now turn to the predictions of the isolated horiz
formalism, which have not been considered before
EYMH black hole solutions. We first consider relation~54!
between black hole mass, soliton mass, and horizon mas
the fundamental monopole and black hole solutions. In Fig
we exhibit the horizon massmD /a2 obtained from Eq.~55!.
Adding the mass of the corresponding soliton solut
@m reg/a2(a50.5)50.963461 and m reg/a2(a51.0)
50.855254, respectively# precisely gives the masses of th
non-Abelian black hole solutions shown in Fig. 4.

Interpreting the hairy black holes as bound states of re
lar solutions and Schwarzschild black holes@20#, we can
identify the binding energy of these systemsmbind/a2, ac-
cording to Eq.~57!. In Fig. 7 we present the binding energ
of the hairy black hole solutions fora50.5 anda51. For
comparison, we also show the binding energymbind

(RN)/a2 of
the RN solutions, which we define analogously to Eq.~56!
via

mbind
RN 5mRN2m reg2mS, ~74!

where mRN/a2 is the mass of the RN solution with un
charge,m reg/a2 is the mass of the monopole, andmS/a2 is
the mass of the Schwarzschild black hole with the same
rizon area as the RN black hole. Note that, when the s
tions coexist, the binding energy of the hairy black hole

FIG. 6. The dependence of the horizon massmD /a2 of the n
51 hairy black hole solutions on the area parameterxD is shown in
the BPS limit fora50.5 anda51.

FIG. 7. The dependence of the binding energymbind/a2 of the
n51 hairy black hole solutions on the area parameterxD is shown
in the BPS limit fora50.5 anda51. For comparison, the binding
energy of the corresponding RN solutions is also shown.
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lution is smaller than the binding energy of the RN soluti
@except for a small region close toxD,max ~see also Fig. 4!#.
This indicates stability of these hairy black hole solutio
~except close toxD,max).

Let us finally consider the ‘‘quasilocal uniqueness conje
ture’’ of Ref. @19#, which states that static black holes a
uniquely specified by their horizon area and horizon charg
The solutions considered here carry no horizon elec
charge; thus, they should be uniquely characterized by t
horizon area and horizon magnetic charge. In Fig. 8 we
hibit the non-Abelian horizon magnetic charge for the ha
black hole solutions witha50.5 and 1. The horizon mag
netic charge increases monotonically along the branche
hairy black hole solutions. As expected, fora50.5 the value
of the RN solution with unit charge is reached, whenxD

→xD,cr . In contrast, fora51 a value smaller than one i
reached, whenxD→xD,cr . In this case again a gap occu
between the hairy black hole branch and the RN branch

Concerning the ‘‘quasilocal uniqueness conjecture’’ w
conclude that allowing only for integer values of the ma
netic charge as required for the non-Abelian magnetic cha
of embedded RN solutions, the spherically symmetric bla
hole solutions are uniquely characterized by their area
rameter and their horizon magnetic charge.

IV. AXIALLY SYMMETRIC SOLUTIONS

We here give a detailed discussion of the properties of
regular axially symmetric multimonopole solutions. We fir
investigate the dependence of the monopole solutions on
parametera for fixed b. In particular, we demonstrate th
convergence of the multimonopole solutions with magne
chargen to limiting extremal RN solutions with magneti
chargen, when a→acr . Focusing on values ofa close to
acr , we introduce auxiliary Schwarzschild-like coordinat
to gain better understanding of the limiting solutions o
tained in isotropic coordinates.

We then show that the inclusion of gravity allows for a
attractive phase of like monopoles not present in flat sp
@14#. There arises a region of parameter space, where
massper unit chargeof the gravitating multimonopole solu
tions is lower than the mass of the gravitatingn51 mono-
pole; hence, the multimonopole solutions are gravitationa
bound.

FIG. 8. The dependence of the non-Abelian horizon magn
chargeP(xD) of the n51 hairy black hole solutions on the are
parameterxD is shown in the BPS limit fora50.5 anda51.
7-9
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FIG. 9. ~a! The metric functionf of the axially symmetricn52 monopole solution is shown as a function of the compactifi
dimensionless isotropic coordinatez5x/(11x) for the anglesu50, u5p/4, andu5p/2 in the BPS limit for four values ofa along the
multimonopole branch,a51, 1.2, 1.4, and 1.499.~b! The same as~a! for the metric functionm. ~c! The same as~a! for the metric function
l. ~d! The same as~a! for the gauge field functionH1. ~e! The same as~a! for the gauge field functionH2. ~f! The same as~a! for the gauge
field functionH3. ~g! The same as~a! for the gauge field functionH4. ~h! The same as~a! for the Higgs field functionF1. ~i! The same as
~a! for the Higgs field functionF2.
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The numerical technique is briefly described
Appendix B.

A. Fundamental multimonopole branch

Let us first consider the dependence of the gravitat
axially symmetric multimonopole solutions with magne
chargen on the parametersa and b. Analogously to the
monopole solutions, whena is increased from zero, whileb
is kept fixed, a branch of gravitating multimonopole so
tions with chargen emerges smoothly from the correspon
ing flat space multimonopole solution. The multimonopo
branch extends up to a maximal valueamax(n) of the cou-
pling constanta, beyond which no axially symmetric multi
monopole solutions with chargen exist. At the maximal
valueamax(n), which coincides with the critical valueacr(n)
@35#, the multimonopole branch reaches a limiting soluti
and bifurcates with the branch of extremal RN solutions w
magnetic chargen @14,36#. The metric functions of this em
bedded RN solution are given by Eqs.~73! with l 5m, and
02402
g

-

the gauge field and Higgs field functions are constant,Hi
50, i 51, . . . ,4, F151, andF250.

We now illustrate the dependence of the multimonop
solutions ona and, in particular, the convergence of th
non-Abelian solutions to the corresponding RN solution
the limit a→acr for the special case ofn52 multimonopole
solutions in the BPS limit. Numerically we find in this cas
acr'amax'1.5 @14,35#. The static axially symmetric solu
tions depend on two variables, the radial coordinatex and the
angleu. In the following we present the functions in two
dimensional plots, exhibiting thex dependence for three
fixed angles,u50, u5p/4, andu5p/2.

Let us first discuss the dependence of the metric functi
on the parametera. In Figs. 9~a!–9~c! the metric functions
f , l , andm are shown, respectively, fora51, 1.2, 1.4, and
1.499. The functionf increases monotonically with increas
ing x for all values ofa. Its value at the originf (0) de-
creases with increasinga and tends to zero asa approaches
the critical valueacr . The functionsm and l also increase
monotonically with increasingx. As a tends to its critical
7-10
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value, these functions approach the value one on an incr
ing interval. However, at the origin the functionsm and l
assume a value different from one. Thus, convergence to
limiting RN solution is pointwise.

In Figs. 9~d!–9~g! we show the gauge fields function
H1–H4, respectively, for the same values ofa. The function
H1 possesses a maximum, whose position decreases
increasinga and tends to zero, whena approaches its criti-
cal value. In contrast, the height of the maximum depe
only weakly ona. The functionH2 decreases monotonicall
with increasingx on thez axis (u50) and possesses a min
mum on ther axis (u5p/2). The location of the minimum
decreases with increasinga and tends to zero whena ap-
proaches its critical value. The functionH3 is similar toH1,
and the functionH4 to H2, except thatH4 decreases mono
tonically with increasingx for all values ofu. At the same
time the range where the gauge field functions differ cons
erably from zero decreases with increasinga and vanishes as
a tends toacr . However, in this limit the gauge field func
tions are not continuous at the origin. Thus, convergenc
the gauge field functions of the embedded RN solution,Hi

50, is again pointwise.
The Higgs field functionsF1 andF2 are shown in Figs.

9~h! and 9~i!. F1 increases monotonically with increasingx.
F2 possesses a minimum with negative value, whose p
tion decreases with increasinga and tends to zero, asa
tends toacr . Again the height of the extremum depends on
weakly ona. Since for an embedded RN solutionF151 and
F250, we observe that the Higgs field functionsF1 andF2

deviate from their respective RN values in a decreas
range, asa approachesacr . Again, in this limit, the Higgs
field functions are not continuous at the origin, thus conv
gence to the Higgs field function of the embedded RN so
tion is also pointwise.

B. Coordinate transformation

Let us focus now on the limita→acr , where the non-
Abelian multimonopole solutions approach the limiting R
solution. We recall that forn51 in Schwarzschild-like coor-
dinates a degenerate horizon forms atx̃H5acr , asa tends to
acr . For x̃. x̃H the limiting solution is identical to the em
bedded RN solution, whereas forx̃, x̃H the limiting solution
retains its non-Abelian features and differs from any emb
ded Abelian solution. Analogously, for solutions with ma
netic chargen one expects that, in Schwarzschild-like coo
dinates, a degenerate horizon should form atx̃H5nacr asa
tends toacr and that the limiting solution should retain i
non-Abelian features forx̃, x̃H .

In isotropic coordinates, however, the horizon radius of
extremal RN black hole is given byxH50. Thus, the limiting
solution coincides in the limita→acr with the extremal RN
solution on the whole interval 0,x,`. Therefore the ques
tion arises as to what happens to the region where the li
ing solution is essentially non-Abelian, since this regi
shrinks to zero size in isotropic coordinates in the limita
→acr .
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To elucidate this point we introduce the auxilia
Schwarzschild-like coordinatex̂5xAm/ f , which coincides
with the Schwarzschild-like coordinatex̃ only, if the metric
functions are independent ofu. As observed above, in th
limit a→acr , the functionf (x) tends to zero on an interva
of the coordinatex, whose length tends also to zero. Cons
ered as a function ofx̂ however, the functionf ( x̂) tends to
zero on an interval of almost constant length. In this sen
the auxillary coordinatex̂ serves as a Schwarzschild-like c
ordinate.

In Figs. 10~a!–10~c! we present then52 solutions in the
BPS limit for a51.493, 1.496, and 1.499 on the interval
< x̂<4, extending beyond the critical valuex̂H52acr'3. As
a tends toacr , the metric functionf tends to zero on the
interval 0< x̂<3, and the metric functionsm and l tend to
nontrivial limiting functions. Forx̂.3 the metric functions
assume the form of the extremal RN solution with char
P52 and horizon radiusx̂H52acr for a→acr . The behavior

FIG. 10. ~a! The metric functionf of the axially symmetricn
52 monopole solution is shown as a function of the auxilla

Schwarzschild-like coordinatex̂5xAm/ f , for the anglesu50, u
5p/4, and u5p/2 in the BPS limit for a51.493, 1.496, and
1.499, close to the criticala. Also shown is the metric functionf of
the RN solution with chargeP52 and area parameterxD51.5. ~b!
The same as~a! for the gauge field functionH2. ~c! The same as~a!
for the norm of the Higgs fielduFu5AF1

21F2
2.
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BETTI HARTMANN, BURKHARD KLEIHAUS, AND JUTTA KUNZ PHYSICAL REVIEW D 65 024027
of the gauge field functions and the Higgs functions is sim
lar. For x̂.3 they tend to the functions of the extremal R
solutions, whereas for 0< x̂<3 they tend to nontrivial limit-
ing functions.

We thus conclude that there exists a limiting solution
a→acr . This limiting solution is nontrivial and angle depen
dent on the interior interval 0< x̂<3. In Figs. 9~b! and 9~c!
this limiting solution has already been reached in the inn
most part of the interval 0< x̂<3. For x̂.3, the limiting
solution is an extremal RN solution. Therefore the functio
of the limiting solution, and in particular the metric func
tions, are spherically symmetric. Hence, we can identify
coordinatex̂ with the Schwarzschild-like coordinatex̃ for x̂
.3, and we conclude that in Schwarzschild-like coordina
the horizon radius isx̃H5acrP, in accordance with our ex
pectation.

C. Gravitationally bound monopoles

Let us now consider the massper unit chargeof the
~multi!monopole solutions, to show that gravitationa
bound monopoles exist. The massper unit chargeof the
~multi!monopole solutions decreases with increasinga and
merges with the mass of the RN solution atacr(n). In the
BPS limit, for a50 the massper unit charge of the
~multi!monopole solutions is precisely equal to the mass
then51 monopole. Fora.0, however, we observe that th
massper unit chargeof the multimonopoles is smaller tha
the mass of then51 monopole. In particular, the massper
unit chargedecreases with increasingn. Thus, in the BPS
limit, there is an attractive phase between like monopo
not present in flat space. Moreover, multimonopoles exist
values of the gravitational coupling strength, too large
n51 monopoles to exist, sinceacr(n) increases withn. The
mass of then51 monopole and the massper unit chargeof
n52 andn53 multimonopoles in the BPS limit are show
in Fig. 11.

For finite Higgs self-coupling, the flat space multimon
poles have higher massper unit chargethan then51 mono-
pole, allowing only for a repulsive phase between like mon
poles. By continuity, this repulsive phase persists in
presence of gravity for small values ofa, but it can give way
to an attractive phase for larger values ofa. Thus the repul-

FIG. 11. The dependence of the massper unit chargem/(a2n)
of the hairy black hole solutions on the parametera is shown in the
BPS limit for magnetic chargen51, 2, and 3. For comparison, th
massper unit chargeof the extremal RN solutions is also shown
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sion between like monopoles can be overcome for sm
Higgs self-coupling by sufficiently strong gravitational a
traction.

To mark the region in parameter space, where an att
tive phase exists, we introduce the equilibrium val
aeq(n15n2), where the massper unit chargeof the charge
n1 solution and the massper unit chargeof the chargen2
solution equal one another. Sinceamax'acr decreases with
an increasing Higgs self-coupling, andaeq increases with an
increasing Higgs self-coupling, the region of parame
space, where an attractive phase exists, decreases wit
creasing Higgs self-coupling. In particular, for a large Hig
self-coupling, only a repulsive phase is left.

We show the equilibrium valuesaeq in Fig. 12. In addi-
tion to the valuesaeq(152) andaeq(153), for which the
monopole mass and the massper unit chargeof the n52
and n53 multimonopole equal one another, respective
Fig. 12 also shows the values ofaeq(253), where the mass
per unit chargeof the n52 and the massper unit chargeof
the n53 multimonopole equal one another. Thus Fig.
exhibits the small domain of thea-b-plane where an attrac
tive phase for like monopoles exists.

While n51 monopole solutions are stable, stability of th
static axially symmetric multimonopole solutions is not o
vious. We conjecture that then52 multimonopole solutions
are stable, as long as their massper unit chargeis lower than
the mass of then51 monopole. For topological numbern
>3, however, solutions with only discrete symmetry exist
flat space@5#, which, by continuity, should also be present
curved space~at least for small gravitational strength!. For a
given topological numbern.2, such multimonopole solu
tions without rotational symmetry may possess a lower m
than the corresponding axially symmetric solutions. The a
ally symmetric solutions may therefore not represent glo
minima in their respective topological sectors, even if th
massper unit chargeis lower than the mass of then51
monopole.

V. BLACK HOLE SOLUTIONS

Here we present the static axially symmetric hairy bla
hole solutions of EYMH theory. We describe their propertie

FIG. 12. The dependence of the maximal valuesamax(n) of the
hairy black hole solutions on the parameterb is shown for magnetic
chargen51, 2, and 3. Also shown are the equilibrium valu
aeq(n15n2), in particularaeq(152), aeq(153), andaeq(253),
for which the massper unit chargeof the chargen1 and the charge
n2 ~multi!monopole equal to one another.
7-12
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starting with the structure of the energy density of the ma
fields and the deformation of the regular horizon. We th
discuss the domain of existence of the hairy black hole
lutions and describe the convergence of these solution
RN solutions in the limitxD→xD,cr .

The hairy black hole solutions are then considered w
respect to the results of the isolated horizon formalism.
particular, the mass formula is verified, and the bound s
interpretation is investigated. Finally the ‘‘quasilocal uniqu
ness conjecture’’ is addressed.

For the static axially symmetric hairy black hole solutio
of EYMH theory we employ the same numerical techniq
as for the globally regular multimonopole solutions~see Ap-
pendix B!. The black hole solutions depend on the horiz
radiusxH and on the coupling constantsa and b. Here we
consider only the BPS limit,b50.

A. Energy density and horizon

Let us begin the discussion of the static axially symme
black hole solutions by considering the energy density of
matter fields,e. The energy density has a pronounced an
dependence with a maximum on ther axis. In particular, the
energy density is not constant at the horizon. Let us n
consider two representative examples for the energy den
of the matter fieldse.

In Figs. 13~a!–13~d! we exhibit the energy density of th
matter fields of then52 black hole solution with area pa
rameter xD51 for a51. Figure 13~a! shows a three-
dimensional plot of the energy density as a function of
coordinatesr5x sinu andz5x cosu together with a contour
plot, and Figs. 13~b!–13~d! show surfaces of constant energ

FIG. 13. ~a! The energy densitye52T 0
0 is shown for the hairy

black hole solution with magnetic chargen52 and area paramete
xD51.0 in the BPS limit fora51.0 in a three-dimensional plot an
a contour plot with axesr andz. ~b!–~d! Surfaces of constant en
ergy densitye52T 0

0 are shown for the solution of~a!.
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density. For small values ofe, the surfaces of constant en
ergy density appear ellipsoidal, being flatter at the poles t
in the equatorial plane. With increasing values ofe a torus-
like shape appears.

For smaller values of the parametersxD anda, the energy
density of the matter fields exhibits a more complicat
structure, as seen in Figs. 14~a!–14~e!, where we show the
energy density of the matter fields of then53 black hole
solution, with area parameterxD50.5 for a50.5. Figure
14~a! again shows a three-dimensional plot of the ene
density as a function of the coordinatesr5x sinu and z
5x cosu together with a contour plot, while Figs. 14~b!–
14~e! show surfaces of constant energy density. Whereas
surfaces of constant energy density still appear ellipsoidal
small values ofe, here with increasing values ofe the torus-
like shape appears together with two additional ellipso
covering the poles. For the largest values of the energy d
sity only the toruslike shape remains.

The n dependence of the energy density of the ma
fields is illustrated in Fig. 15, where we show the ener
density of the black hole solutions with magnetic chargen
51 –3 and area parameterxD50.5 fora50.5. With increas-
ing magnetic chargen the absolute maximum of the energ
density of the solutions, residing on ther axis, shifts out-
ward and decreases significantly in height.

Let us now turn to the regular horizon of the hairy bla
hole solutions, which resides at a surface of constant ra

FIG. 14. The same as Fig. 13 for the hairy black hole solut
with n53, xD50.5, anda50.5.
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coordinatex5xH . Even though the radial coordinate is co
stant at the horizon, the horizon is deformed. The deform
tion is revealed, when measuring the circumference of
horizon along the equator,Le , and the circumference of th
horizon along the poles,Lp ,

Le5E
0

2p

dwAl

f
x sinuU

x5xH ,u5p/2

,

~75!

Lp52E
0

p

duAm

f
xU

x5xH ,w5const

,

since the hairy black hole solutions haveLpÞLe ~in general!.
The deviation from spherical symmetry is small, though. F
instance, for the solution of Fig. 13,Le /Lp50.99076, and
for the solution of Fig. 14,Le /Lp50.99977.

The hairy black holes satisfy the zeroth law of black ho
mechanics, which states that the surface gravityk is constant
on the horizon@32#. This is dictated by the full set of EYMH
equations, as discussed in Sec. II D. Numerically the surf
gravity is also constant, as demonstrated in Fig. 16 for
n52 solution with horizon area parameterxD51 for a51.
In contrast to the surface gravity itself, the expansion coe
cients f 2(u) and m2(u) of the metric functionsf and m,

FIG. 15. The energy densitye52T 0
0 of the hairy black hole

solutions with magnetic chargen51, 2, and 3 and area paramet
xD50.5 is shown as a function of the dimensionless isotropic co
dinatex for the anglesu50, u5p/4, andu5p/2 in the BPS limit
for a50.5.

FIG. 16. The angle independence of the surface gravityk is
shown for the hairy black hole solution with magnetic chargen
52 and area parameterxD51.0 in the BPS limit fora51.0. Also
shown is the angle dependence of the normalized expansion
ficients f 2 andm2 of the metric functionsf andm.
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which enter into the expression fork, Eq. ~42!, possess a
nontrivial angular dependence at the horizon, as seen in
16.

B. Domain of existence

The domain of existence of the axially symmetric no
Abelian black holes is very similar to the domain of exi
tence of the spherically symmetric black hole solutions. F
a fixed value of the coupling constanta, a,amax(n), hairy
black hole solutions emerge from the globally regular so
tion in the limit xD→0. They persist up to a maximal valu
of the area parameterxD,max, which depends onn and limits
the domain of existence of hairy black holes. The domain
existence of hairy black hole solutions with magnetic cha
n52 is indicated in Fig. 3, where crosses mark the maxim
valuesxD,max obtained.

The domain of existence of the hairy black hole solutio
with n.1 also consists of two regions with distinct critic
behavior, separated by a particular value ofa, denotedâ(n).
For â(n),a,amax(n), the hairy black hole solutions bifur
cate at a critical valuexD,cr with an extremal RN solution
with chargen, while for 0,a,â(n), the hairy black hole
solutions bifurcate at a critical valuexD,cr with a non-
extremal RN solution with chargen. For small values ofa,
the branch of hairy black hole solutions extends backwa
from the maximal valuexD,max to the critical valuexD,cr ,
whereas for larger values ofa, both values coincide,xD,max
5xD,cr . This pattern of then.1 hairy black hole solutions is
completely analogous to the pattern observed for then51
solutions. Our numerical results, as exhibited in Fig. 3,
consistent with the conjectureâ(2)5A3/2, suggesting tha
â(n) is independent ofn.

C. Area parameter xD dependence

Before demonstrating the dependence of the hairy bl
hole solutions on the area parameterxD and the convergence
of the solutions to the limiting RN solution, we briefly con
sider the relation between the area parameterxD and the
horizon radius in isotropic coordinatesxH , sincexH is one of
the parameters employed in the calculations.

In the limit xH→0, hairy black hole solutions emerg
from the globally regular solution. With increasing parame
xH the horizon area of the hairy black hole solutions
creases, until a maximal value of the parameterxH is
reached. This maximal value of the parameterxH , however,
does not coincide with the maximal value of the horizon a
and, thus, the maximal value of the area parameterxD . In the
further discussion we consider the two regions of the dom
of existence with distinct critical behavior separately.

For small values ofa, 0,a,â(n), the branch of hairy
black hole solutions, as a function of the horizon radiusxH ,
extends backwards from the maximal valuexH,max, until the
critical value xH,cr of the bifurcation with the nonextrema
RN solution is reached. WhenxH decreases fromxH,max, the
area parameter increases further up to its maximal va
xD,max, from where it decreases, until it reaches the criti

r-

ef-
7-14



r

N

N
-
x

in
lu
r

ac

N
ha
ng

om

th

ig

a
c

e

in

es
-

es

ack
shes
e
n,

al

the
of

co
a

ess

al
e

AXIALLY SYMMETRIC MONOPOLES AND BLACK HOLES . . . PHYSICAL REVIEW D 65 024027
valuexD,cr of the bifurcation. This is illustrated in Fig. 17 fo
the n52 black hole solutions fora50.5. The endpoint of
the curve marks the bifurcation with the nonextremal R
solution at a finite value of the area.

For larger values ofa, â(n),a,amax(n), the branch of
hairy black hole solutions bifurcates with an extremal R
solution, which hasxH50. As a function of the horizon ra
dius xH , the branch of hairy black hole solutions also e
tends backwards from the maximal valuexH,max, but it ends
at the critical valuexH,cr50, where it bifurcates with the
extremal RN solution. The area parameter, in contrast,
creases monotonically, and reaches its maximal va
xD,max5xD,cr at the bifurcation, as illustrated in Fig. 17 fo
the n52 black hole solutions fora51.

Let us now consider the dependence of the hairy bl
hole solutions on the area parameterxD in more detail, dis-
tinguishing again the regions 0,a,â(n) and â(n),a

,amax(n). For â(n),a,amax(n), the limiting solution of
the branch of hairy black hole solutions is an extremal R
solution. Since convergence to an extremal RN solution
been considered in great detail in Sec. IV, in the followi
we put more emphasis on the region 0,a,â(n), where
convergence to a nonextremal RN solution is observed.

For small values ofa in the region 0,a,â(n), the
branch of hairy black hole solutions extends backwards fr
the maximal valuexD,max, which limits the domain of exis-
tence, to the critical valuexD,cr , where the bifurcation oc-
curs. In Figs. 18~a!–18~c! we exhibit a set ofn52 black
hole solutions for four values of the area parameter along
black hole branch. IncreasingxD from zero along the branch
of hairy black hole solutions, first the solutions withxD

50.46 and 1.26 are encountered, then the solution withxD

51.39 close to the maximal valuexD,max is passed, and fi-
nally the solution withxD51.09 close to the critical value
xD,cr is reached.

The energy density of the matter fields is shown in F
18~a!, the metric functionf in Fig. 18~b!, and the norm of the
Higgs field uFu5AF1

21F2
2 in Fig. 18~c!. All functions

change drastically along the hairy black hole branch. In p
ticularly, we observe that they approach the limiting fun
tions of the corresponding nonextremal RN solution forxD

→xD,cr'1.07. Thus in this limit the functions becom
spherically symmetric.

FIG. 17. The dependence of the horizon radius in isotropic
ordinatesxH of the n52 hairy black hole solutions on the are
parameterxD is shown in the BPS limit fora50.5 anda51.
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Convergence to the limiting RN solution is nicely seen
Fig. 19, whereH2(xH) and F1(xH) are shown: the horizon
values of the gauge field functionH2 and the Higgs field
function F1, respectively. Starting from the unique valu
H2(0)51 andF1(0)50 of the regular solution at the ori
gin, for finitexD an angle dependence arises, which becom
maximal as the maximal value of the area parameterxD,max is
approached. On the backward bending part of the hairy bl
hole branch, the angle dependence diminishes and vani
in the limit xD→xD,cr , where the horizon values tend to th
unique horizon values of the corresponding RN solutio
H2(xH)50 andF1(xH)51.

For a.â, the limiting solution is reached at the maxim
value of the area parameterxD,max5xD,cr . SincexD,cr,na, a
gap between the branch of hairy black hole solutions and
corresponding RN branch occurs, similarly as in the case
the globally regular solutions.

-

FIG. 18. ~a! The energy densitye52T 0
0 of the n52 hairy

black hole solution is shown as a function of the dimensionl
compactified coordinatez512xH /x for the anglesu50, u5p/4,
and u5p/2 in the BPS limit for four values ofa along the hairy
black hole branch, in particular for a value close to the maxim
value ofxD , xD,max'1.39 and for a value close to the critical valu
of xD , xD,cr'1.07.~b! The same as~a! for the metric functionf. ~c!
The same as~a! for the norm of the Higgs fielduFu5AF1

21F2
2.
7-15
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Let us now consider the mass, the surface gravity, and
deformation of the horizon of the hairy black hole solution
In Fig. 20 we see the dependence of the mass of then52
black hole solutions on the area parameterxD for a50.5 and
a51. ~Figure 20 is completely analogous to Fig. 4, whe
the mass of then51 black hole solutions is shown.! For a

50.5,â, the mass increases with increasingxD , reaching
its maximal value atxD,max. Forming a spike, the mass the
decreases with decreasingxD , and reaches the mass of th
limiting nonextremal RN solution with chargen52 atxD,cr .
For comparison, the corresponding branch of RN solution
also shown. Apart from the critical pointxD,cr , the RN
branch and the hairy black hole branch also coincide at
crossing pointxD,cross'1.32. Consequently, the RN solution
have a lower mass than the non-Abelian black hole solutio
when xD,cross,xD,xD,cr . For a51.â, the mass increase
monotonically with increasingxD , reaching its maximal
value at the maximal value of the area parameterxD,max
5xD,cr . SincexD,cr,2a, a gap between the branch of hai
black hole solutions and the corresponding RN branch
curs. In Fig. 20, the RN branch would begin atxD52.

In Fig. 21 the dependence of the surface gravity of
n52 hairy black hole solutions on the area parameterxD is
shown fora50.5 anda51. ~Figure 21 is completely analo
gous to Fig. 5, where the surface gravity of then51 black
hole solutions is shown.! Again, convergence to the corre

FIG. 19. The dependence of the horizon value of the gauge
function H2(xH) and the horizon value of the Higgs field functio
F1(xH) of the n52 hairy black hole solutions on the area para
eterxD is shown in the BPS limit fora50.5.

FIG. 20. The dependence of the massper unit chargem/(a2n)
of the n52 hairy black hole solutions on the area parameterxD is
shown in the BPS limit fora50.5 anda51. For comparison, also
the massper unit chargeof the RN solutions fora50.5 is shown.
For a51.0, RN solutions with chargeP52 exist only forxD>2.
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sponding RN values is observed.
Let us now turn to the shape of the horizon. In Fig. 22 t

dependence of the ratio of circumferencesLe /Lp for the n
52 black hole solutions on the area parameterxD is shown
for a50.5 anda51. Interestingly, fora50.5,â the ratio
Le /Lp shows a rather complicated dependence on the
parameter. With increasing area parameter the ratioLe /Lp
first decreases, until it reaches a minimum close toxD,max.
Along this part of the branch of hairy black hole solutio
Le /Lp,1. Continuing along the hairy black hole branch, t
ratio then increases, first with increasingxD until xD,max is
reached, and then with decreasingxD . PassingLe /Lp51,
the ratio increases further with decreasingxD , and attains a
maximumLe /Lp.1. From thereLe /Lp decreases with de
creasingxD and reaches the limiting valueLe /Lp51 of the
spherically symmetric RN solution forxD→xD,cr . Along the
latter part of the branch of hairy black hole solution
Le /Lp.1. The occurrence ofLe /Lp.1 is a new phenom-
enon, not seen previously.~The EYM solutions had only val-
ues of the ratioLe /Lp,1 @17#.!

For a51.â, the dependence of the ratioLe /Lp on the
area parameter is much simpler. Again, with increasing a
parameter the ratioLe /Lp decreases, until it reaches a min
mum not too far fromxD,max. The ratio then increases wit
increasingxD , to reach the limiting valueLe /Lp51 of the
spherically symmetric RN solution forxD→xD,cr . Thus for

ld

-

FIG. 21. The dependence of the surface gravityk of the n52
hairy black hole solutions on the area parameterxD is shown in the
BPS limit for a50.5 anda51. For comparison, also the surfac
gravity of the RN solutions fora50.5 is shown.

FIG. 22. The dependence of the ratio of circumferencesLe /Lp

of the n52 hairy black hole solutions on the area parameterxD is
shown in the BPS limit fora50.5 anda51. Also shown is the
ratio of circumferencesLe /Lp of the n53 hairy black hole solu-
tions for a50.5.
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a51 the hairy black hole solutions always haveLe /Lp,1.
We also note that the magnitude of the deformation of
horizon of thea51 solutions is considerably greater tha
the magnitude of the deformation of the horizon of thea
50.5 solutions.

Let us finally consider the dependence of the deforma
of the horizon on the magnetic chargen. For the solutions
with chargen.2 we observe the same features of the ra
Le /Lp as for the solutions with chargen52, described
above. This is seen in Fig. 22, where the dependence o
ratio of circumferencesLe /Lp for the n53 black hole solu-
tions on the area parameterxD for a50.5,â is also shown.
We observe that the maximal deformation of the horiz
increases withn.

D. Isolated horizon results

Let us now address the predictions of the isolated hori
formalism for the axially symmetric hairy black hole sol
tions with n.1. We first consider relation~54! between
black hole mass, soliton mass, and horizon mass for thn
.1 solutions. Our numerical calculations confirm this re
tion for the axially symmetric hairy black hole solutions
EYMH theory. In Fig. 23 we show the dependence of t
horizon massper unit chargemD /(a2n), obtained according
to Eq.~55!, on the area parameterxD for then52 black hole
solutions fora50.5 anda51. Adding the massper unit
charge of the corresponding multimonopole solution
@m reg/(2a2)(a50.5)50.961105 andm reg/(2a2)(a51.0)
50.847943, respectively# precisely gives the values of th
massper unit chargeof the hairy black hole solutions in Fig
20.

Next we consider the interpretation of the hairy bla
holes as bound states of regular solutions and Schwarzs
black holes@20#. We therefore identify the binding energy o
these systemsmbind/a2, according to Eq.~57!. In Fig. 24 we
present the dependence of the binding energymbind/a2 on
the area parameterxD for the n52 black hole solutions for
a50.5 anda51. For comparison, the binding energy of th
corresponding RN solutions is also given. Figure 24 is co
pletely analogous to Fig. 7, where the binding energy of
n51 black hole solutions is shown.

However, for then.1 hairy black hole solutions, we ca
also consider other compound systems with magnetic ch
n, consisting of a soliton and a black hole. Therefore

FIG. 23. The dependence of the horizon massmD /a2 of the n
52 hairy black hole solutions on the area parameterxD is shown in
the BPS limit fora50.5 anda51.
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notion of binding energy is no longer unique, and the bind
energy of the compound system of an52 multimonopole
and a Schwarzschild black hole represents only one part
lar case.

In the following we restrict the discussion to hairy blac
hole solutions with magnetic chargen52. Let us define the
binding energymbind

1 /a2 of the compound system of an
52 multimonopole and a Schwarzschild black hole by

m (n52)~xD!5m reg
(n52)1mS~xD!1mbind

1 5m11mbind
1 ,

~76!

and compare it to the binding energymbind
2 /a2 of the com-

pound system of twon51 monopoles and a Schwarzschi
black hole:

m (n52)~xD!52m reg
(n51)1mS~xD!1mbind

2 5m21mbind
2 .

~77!

Since the binding energymbind
2 /a2 differs from the binding

energymbind
1 /a2 by the difference between the mass of t

n52 multimonopole and the mass of twon51 monopoles,
the binding energymbind

2 /a2 is smaller than the binding en
ergy mbind

1 /a2, shown in Fig. 24.
Alternatively we can consider an52 hairy black hole as

a compound system of an51 monopole and a charged blac
hole. For the compound system of an51 monopole and a
n51 hairy black hole, the binding energymbind

3 /a2 is given
by

m (n52)~xD!5m reg
(n51)1m (n51)~xD!1mbind

3 5m31mbind
3 ,

~78!

in the parameter range, where both black hole solutions
exist. Likewise, for the compound system of an51 mono-
pole and a RN black hole with unit charge, the binding e
ergy mbind

4 /a2 is given by

m (n52)~xD!5m reg
(n51)1mRN~xD!1mbind

4 5m41mbind
4 ,

~79!

in the parameter range, where both solutions coexist.
Let us now illustrate these possibilities for the bindin

energy by considering the masses of the corresponding c

FIG. 24. The dependence of the binding energymbind/a2 of the
n52 hairy black hole solutions on the area parameterxD is shown
in the BPS limit fora50.5 anda51. For comparison, the binding
energy of the corresponding RN solutions is also shown.
7-17
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pound systems. In Figs. 25~a! and 25~b! we show the depen
dence of the massesm1/a22m4/a2, Eqs.~76!–~79!, on the
area parameterxD , and compare it to the mass of then52
hairy black hole solutions,m (n52)(xD)/a2, for a50.5 and
a51, respectively.

The binding energymbind
1 /a2 and the binding energy

mbind
2 /a2 are always negative for then52 hairy black hole

solutions. In contrast, the binding energymbind
3 /a2, represent-

ing the binding energy of the compound system of an51
monopole and an51 hairy black hole, changes sign. F
a50.5, mbind

3 /a2 is positive beyondxD'0.34, and fora
51, it is positive beyondxD'0.52. The binding energy
mbind

4 /a2, representing the binding energy of the compou
system of an51 monopole and a RN black hole with un
charge, changes sign atxD'0.63 for a50.5, whereas it is
always positive fora51.

Thus for a50.5, then52 hairy black holes possess
mass lower than the massesm12m4 of the compound sys
tems only forxD,0.34. ForxD.0.34, then52 hairy black
hole is either heavier than the compound system of an51
monopole and an51 hairy black hole, or~when then51
hairy black hole branch ceases to exist! it is heavier than the
compound system of an51 monopole and a RN black hol
with unit charge.

FIG. 25. ~a! The dependence of the mass of the compound s
tem of an52 multimonopole and a Schwarzschild black hole,
two n51 monopoles and a Schwarzschild black hole, of an51
monopole and an51 hairy black hole, and of an51 monopole
and a RN black hole with unit charge, on the area parameterxD is
shown in the BPS limit fora50.5. For comparison the mass of th
n52 hairy black hole solutions is also shown. The inlet shows
binding energy with respect to the compound system of an51
monopole and an51 hairy black hole.~b! The same as~a! for a
51.
02402
d

For a51 then52 hairy black hole is energetically favor
able for xD,0.52, where the compound system of an51
monopole and an51 hairy black hole is heavier, and fo
xD,cr(n51),xD,1, since belowxD51 no RN solutions ex-
ist. @xD,cr(n51),xD,1 represents the gap between then
51 hairy black hole branch and the RN branch with u
charge.#

Let us finally consider the ‘‘quasilocal uniqueness conje
ture,’’ which states that static black holes are uniquely spe
fied by their horizon area and horizon charges. In Fig. 26
show the dependence of the non-Abelian horizon magn
charge on the area parameterxD for the n52 hairy black
hole solutions fora50.5 and 1. The horizon charge in
creases monotonically along the branches ofn52 hairy
black hole solutions, analogously to the horizon charge of
n51 hairy black hole solutions, shown in Fig. 8. In the lim
xD→xD,cr , for a50.5 the value of the RN solution with
chargen52 is reached, as expected, whereas fora51 the
limiting value is smaller than 2~reflecting the gap betwee
the hairy black hole branch and the RN branch!. The horizon
electric charge vanishes.

To address the ‘‘quasilocal uniqueness conjecture,’’
now also consider the branches of embedded RN solut
with integer values of the magnetic charge, beginning atxD

5an. The lowest branch of embedded RN solutions has u
magnetic charge and, thus, unit horizon magnetic charge.
a50.5, this branch begins atxD50.5, and crosses the co
responding (a50.5) branch ofn52 hairy black hole solu-
tions. Consequently, at the crossing point there exist two
tinct black hole solutions, one with hair and the other witho
hair, with the same horizon area and the same non-Abe
horizon magnetic charge, representing a counterexampl
the ‘‘quasilocal uniqueness conjecture.’’

VI. CONCLUSIONS

We have considered static axially symmetric multimon
pole and black hole solutions in EYMH theory. We ha
presented these solutions in detail and discussed their p
erties. Our particular interests were the investigation of
attractive phase between like monopoles and the study
monopole and black hole properties predicted by the isola
horizon formalism.

s-

e

FIG. 26. The dependence of the non-Abelian horizon magn
chargeP(xD) of the n52 hairy black hole solutions on the are
parameterxD is shown in the BPS limit fora50.5 anda51. Also
shown is the horizon magnetic charge of the RN solutions w
chargen51 andn52 for a50.5.
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Concerning the multimonopole solutions we observe t
the massper unit chargeof the ~multi!monopole solutions
decreases with increasinga. In the BPS limit, fora50 the
massper unit chargeis precisely equal to the mass of th
n51 monopole. Fora.0, however, we observe that th
massper unit chargeof the multimonopoles is smaller tha
the mass of then51 monopole. In particular, the massper
unit chargedecreases with increasingn. Thus, in the BPS
limit, there is an attractive phase between like monopo
not present in flat space. Moreover, multimonopoles exist
gravitational coupling strength, too large forn51 mono-
poles to exist.

For finite Higgs self-coupling, the flat space multimon
poles have higher massper unit chargethan then51 mono-
pole, allowing only for a repulsive phase between like mon
poles. By continuity, this repulsive phase persists in
presence of gravity for small values ofa, but it can give way
to an attractive phase for larger values ofa. Thus the repul-
sion between like monopoles can be overcome for a sm
Higgs self-coupling by a sufficiently strong gravitational a
traction. At the equilibrium valueaeq the multimonopole
massper unit chargeand monopole mass equal one anoth
The equilibrium valueaeq increases with increasing Higg
self-coupling, yielding a decreasing region in parame
space for the attractive phase. For a large Higgs s
coupling, only a repulsive phase is left.

While singly charged monopole solutions are stable,
stability of the static axially symmetric multimonopole sol
tions is not obvious. We conjecture that then52 multimono-
pole solutions are stable, as long as their massper unit
charge is lower than the mass of then51 monopole. For
topological numbern>3, however, solutions with only dis
crete symmetry exist in flat space@5#, which, by continuity,
should also be present in curved space~at least for small
gravitational strength!. For a given topological numbern
.2, such multimonopole solutions without rotational sym
metry may possess a lower mass than the corresponding
ally symmetric solutions, as suggested by analogy fr
multi-Skyrmions in flat space@37#. The axially symmetric
solutions may therefore not represent global minima in th
respective topological sectors, even if their massper unit
chargeis lower than the mass of then51 monopole.

Let us now turn to the black hole solutions of SU~2!
EYMH theory. Besides embedded Abelian black hole so
tions, SU~2! EYMH theory also possesses genuine no
Abelian black hole solutions@13#. The static SU~2! EYMH
black hole solutions are no longer uniquely determined
their mass and charge alone. Indeed, in a certain regio
the domain of existence of hairy black hole solutions, a
embedded RN solutions with the same mass and charge
ist. The non-Abelian black hole solutions therefore repres
counterexamples to the ‘‘no-hair’’ conjecture@13#.

While static spherically symmetric (n51) EYMH black
holes were studied in great detail@13#, non-Abelian black
hole solutions with magnetic chargen.1 were previously
only considered perturbatively@15#. We have obtained stati
axially symmetric black hole solutions with integer magne
chargen.1 numerically. These black hole solutions are a
ymptotically flat, and they possess a regular deformed h
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zon. Being static and not spherically symmetric, these bl
hole solutions represent further examples, showing that I
el’s theorem cannot be generalized to EYM or EYM
theory. While previous~nonperturbative! counterexamples
@28,21# were classically unstable, hairy EYMH black hole
should provide classically stable counterexamples@15#.

Considering the static axially symmetric solutions fro
the isolated horizon formalism point of view, we have ve
fied the mass relation between the monopole and the b
hole solutions, showing that the black hole mass is given
the sum of the soliton mass and the horizon mass. Interp
ing the hairy black holes as bound states of solitons
Schwarzschild black holes@20#, we have studied the binding
energy of these bound systems. We have furthermore con
ered the binding energy with respect to various other co
pound systems, such as an21 soliton and an51 hairy
black hole or an21 soliton and a RN black hole with uni
charge. The ‘‘quasilocal uniqueness conjecture’’ claims t
black holes are uniquely specified by their horizon area
their horizon electric and magnetic charge. Since we h
constructed a counterexample to this conjecture, the need
a new formulation of the uniqueness conjecture arises.

The hairy black hole solutions studied here represent o
the simplest type of nonspherical black hole solutions.
deed, there are gravitating black hole solutions with mu
more complex shapes and only discrete symmetries left
curved space such black holes without rotational symme
have been considered so far only perturbatively@15#. It re-
mains a challenge to construct such solutions nonpertu
tively and to find out whether such black hole solutions wi
out rotational symmetry are stable.
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APPENDIX A: TENSORS F µn , DµF, Tµn

We expand the field strength tensor and the covariant
rivative with respect to the Pauli matricestl

n @l5r , u, w;
see Eq.~13!#:

Fmn5Fmn
(l)

tl
n

2

and

DmF5Dm
(l)F tl

n .

Inserting ansatz~12! for the gauge field, we obtain the non
vanishing coefficientsFmn

(l) andDmF (l),

Fru
(w)52

1

r
~H1,u1rH 2,r !,

Frw
(r )52n

sinu

r
~rH 3,r2H1H4!,
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Frw
(u)5n

sinu

r
~rH 4,r1H1H31cotuH1!, ~A1!

Fuw
(r )52n sinu~H3,u211H2H41cotuH3!,

Fuw
(u)5n sinu@H4,u2H2H32cotu~H22H4!#,

and

Fmn
(l)52Fnm

(l),

DrF
(r )5

1

r
~H1F21rF1,r !,

DrF
(u)52

1

r
~H1F12rF2,r !,

DuF (r )5~F1,u2H2F2!, ~A2!

DuF (u)5~F2,u1H2F1!,

DwF (w)5n sinu~H4F11H3F21cotuF2!.

It is convenient to define

Fru
2 5~Fru

(w)!21
1

r 2
~rH 1,r2H2,u!2,

Frw
2 5~Frw

(r )!21~Frw
(u)!2, ~A3!

Fuw
2 5~Fuw

(r )!21~Fuw
(u)!2,

where the second term in the definition ofFru
2 represents the

gauge fixing term, as well as

Dr
2F5~Dr

(r )F!21~Dr
(u)F!2,

Du
2F5~Du

(r )F!21~Du
(u)F!2, ~A4!

Dw
2F5~Dw

(w)F!2.

With the ansatz for the metric~10! we obtain the
Lagrange densities

LF52
f

2m X f

r 2m
Fru

2 1
f

r 2 sin2 u l
S Frw

2 1
1

r 2
Fuw

2 D C,
LF52

f

2 m S Dr
2F1

1

r 2
Du

2F1
m

lr 2 sin2 u
Dw

2F D
2

l

8
Tr~F22h2!2, ~A5!

LM5LF1LF ,

and the nonvanishing components of the stress-energy te
02402
or,

T005
f 2

2mF f

r 2m
Fru

2 1
f

r 2 sin2 u l
S Frw

2 1
1

r 2
Fuw

2 D 1Dr
2F

1
1

r 2
Du

2F1
m

lr 2 sin2 u
Dw

2FG1 f
l

8
Tr~F22h2!2,

Trr 5
1

2 F f

r 2m
Fru

2 1
f

r 2 sin2 u l
S Frw

2 2
1

r 2
Fuw

2 D 1Dr
2F

2
1

r 2
Du

2F2
m

lr 2 sin2 u
Dw

2FG2
m

f

l

8
Tr~F22h2!2,

~A6!

Tuu5
r 2

2 F f

r 2m
Fru

2 1
f

r 2 sin2 u l
S 2Frw

2 1
1

r 2
Fuw

2 D 2Dr
2F

1
1

r 2
Du

2F2
m

lr 2 sin2 u
Dw

2FG
2

mr2

f

l

8
Tr~F22h2!2,

Tww5
r 2 sin2 u

2

l

mF2
f

r 2m
Fru

2 1
f

r 2 sin2 u l
S Frw

2

1
1

r 2
Fuw

2 D 2Dr
2F2

1

r 2
Du

2F1
m

lr 2 sin2 u
Dw

2FG
2

lr 2 sin2 u

f

l

8
Tr~F22h2!2.

APPENDIX B

Subject to the corresponding set of boundary conditio
we solve the system of coupled nonlinear partial differen
equations numerically. For the globally regular solutions,
employ the radial coordinate

z5
x

11x
, ~B1!

instead ofx, to map the infinite interval of the variablex onto
the finite interval@0,1# of the variablez. For the derivatives
this leads to the substitutions

rF ,r→z~12z!F ,z , ~B2!

r 2F ,r ,r→z2
„~12z!2F ,z,z22~12z!F ,z… ~B3!

for any functionF in the differential equations. In this form
we have solved the system of differential equations num
cally.

To map spatial infinity to the finite valuez51, we employ
for the black hole solutions the radial coordinate
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z512
xH

x
. ~B4!

For the derivatives this leads to the substitutions

rF ,r→~12z!F ,z , ~B5!

r 2F ,r ,r→~12z!2F ,z,z22~12z!F ,z ~B6!

for any functionF in the differential equations.
For the black hole solutions we furthermore introduce

functions f̄ (z,u), m̄(z,u), and l̄ (z,u) @16,17#,

f̄ ~z,u!5
f ~z,u!

z2
, m̄~z,u!5

m~z,u!

z2
, l̄ ~z,u!5

l ~z,u!

z2
,

~B7!

where z is the compactified coordinate~B4!. Since in the
limit x→` the variablez approaches the value 1, the boun
ary conditions for the functionsf̄ , m̄, and l̄ coincide with
the boundary conditions for the functionsf , m, and l at
infinity. At the horizon, the boundary conditions of the fun
tions f̄ , m̄, and l̄ are given by

~ f̄ 2]zf̄ !uz5050, ~m̄1]zm̄!uz5050, ~ l̄ 1]zl̄ !uz5050.

~B8!

To satisfy the regularity condition~11! in the numerical cal-
culations, we have introduced the new functiong(z,u),

g~z,u!5
m̄~z,u!

l̄ ~z,u!
, ~B9!

with the boundary conditions on the symmetry axis and
the horizon:

guu5051, ]zguz5050. ~B10!

The numerical calculations are performed with the help
the programFIDISOL, which is extensively documented i
@38#. The equations are discretized on a nonequidistant
in z andu. Typical grids used have sizes 150330, covering
the integration region 0<z<1 and 0<u<p/2.
.

h.

. A
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The numerical method is based on the Newton-Raph
method, an iterative procedure to find a good approximat
to the exact solution. Let us put the partial differential equ
tions into the formP(u)50, whereu denotes the unknown
functions ~and their derivatives!. For an approximate solu
tion u(1), P(u(1)) does not vanish. If we could find a sma
correction Du, such thatu(1)1Du is the exact solution,
P(u(1)1Du)50 should hold. Approximately the expansio
in Du gives

05P~u(1)1Du!'P~u(1)!1
]P

]u
~u(1)!Du.

The equationP(u(1))52(]P/]u)(u(1))Du can be solved to
determine the correctionDu(1)5Du. u(2)5u(1)1Du(1) will
not be the exact solution but an improved approximate so
tion. Repeating the calculations iteratively, the approxim
solutions will converge to the exact solution, provided t
initial guess solution is close enough to the exact soluti
The iteration stops afteri steps if the Newton residua
P(u( i )) is smaller than a prescribed tolerance. Therefore i
essential to have a good first guess, to start the itera
procedure. Our strategy therefore is to use a known solu
as a guess and then vary some parameter to produce the
solution.

To construct axially symmetric EYMH solutions, we hav
used the known spherically symmetric EYMH solutions
starting solutions withn51. We have then increased th
‘‘parameter’’n slowly, to obtain the desired axially symme
ric solutions at integer values ofn.

For a numerical solution it is important to have inform
tion about its quality, i.e., to have an error estimate. The e
originates from discretization of the system of partial diffe
ential equations. It depends on the number of gridpoints
on the order of consistency of the differential formulas f
the derivatives.FIDISOL provides an error estimate for eac
unknown function, corresponding to the maximum of t
discretization error divided by the maximum of the functio
For the solutions presented here the estimations of the r
tive error for the functions are on the order of 1023 for n
52 andn53.
.
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