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We construct and discuss solutions®(1,2)xX SO(1,2) Chern-Simons theory which correspond to mul-
tiple BTZ black holes. These solutions typically have additional singularities, the simplest cases being special
conical singularities with a 2 surplus angle. There are solutions with singularities inside a common outer
horizon, and other solutions with naked conical singularities. Previously such singularities have been ruled out
on physical grounds, because they do not obey the geodesic equation. We find however that the Chern-Simons
gauge symmetry may be used to locate all such singularities to the horizons, where they necessarily follow
geodesics. We are therefore led to conclude that these singular solutions correspond to physically sensible
geometries. Boundary charges at infinity are only sensitive to the total mass and spin of the black holes, and not
to the distribution among the black holes. We therefore argue that a holographic description in terms of a
boundary conformal field theory should represent both single and multiple BTZ solutions with the same
asymptotic charges. Then sectors with multiple black holes would contribute to the black hole entropy calcu-
lated from a boundary CFT.
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[. INTRODUCTION are relevant, and how they are excited. They may also be
represented differently in different quantum gravity theories.
Three-dimensional gravity has been a useful laboratoryln 2+ 1 dimensions there are several inequivalent quantiza-
for exploring quantum gravity in a simplified setting. For a tions[10].) To start investigating what geometries may rep-
negative cosmological constant there are black hole solutiongsent the entropy we choose to study one description,
[1,2], and the Bekenstein-Hawking entropy of theseChern-Simons theory11,12. In Chern-Simons theory the
Barados-Teitelboim-ZanellBTZ) black holes have been at- map to the boundary theory is well known and produces a
tributed to boundary degrees of freedom at the hor[&4, Wess-Zumino-Wittef WZW) theory[13—-135.
at infinity [5] or at any intermediate timelike surfacks. On the classical level one could ask which constant cur-
Strominger’s asymptotic approach makes use of a particuzature metricgsolving the equations of motiaiook asymp-
lar property of asymptotically AdS solutions of three- iqically like BTZ black holes, and could be expected to be

dimensional gravity discovered by Brown and Hennef@llx  ¢qually important as the standard BTZ solution for the black

the asymptotic isometries are representedi canonica_lly bY Aole entropy. Baados[ 16] (see alsg17] and[18]) has given

> . & simple analytic and general characterization of such solu-
transformation properties under the conformal transforma:

. ; . tions, but unfortunately the analytic expression of the solu-
tions (conformal weights In conformal field theory an argu- . d t aive directly the geometric structure of the
ment by Cardy{8] can be used to relate central charges oftIon 0€s not give directly 9
Virasoro algebras to the densities of states at high weight pacetlme'. In strmg theory approaches t_o black hple entropy,
Similarly the asymptotic density of states of quantum gravity RS solutions Wh"?h can be separ'at.ed '|nto multl—squrpe S0-
is fixed by the central charge. It is found to agree with eX_Iutlor}s play a promln.ent rolgl9]. Thls |nd|cates' that similar
pectations from the BTZ horizon area. This elegant argumeritPlutions may be of interest also in pure gravity. Indeed, we
is independent of the precise conformal field theory repreWill find that asymptotically, Chern-Simons multi-source so-
senting quantum gravity, and gives few details about thdutions typically are closer than most of the solution$16]
theory. Carlip has combined it with his horizon approach, toand[17] to the standard BTZ solutions.
open the way to an understanding of the universal nature of Chern-Simons multi-source solutions have been discussed
black hole entropy9], and its relation to horizon area. The as candidates for stationary multi-black-hole solutions by
price is that the horizon is treated as an input, rather than asoussaert and Hennea({i0]. Clement[21] found similar
a consequence of the global geometry, and again that deta®lutions in a metrical formulation and generalized them to
of the field theory are lost. dynamical solutions with moving sources. His main motiva-
The ability to compute black hole entropy quantum me-tion for doing so was to correct the shortcoming also ob-
chanically does not mean that it is fully explained. Even inserved in[20], that the stationary solutions necessarily in-
the simple case of 21 dimensions the gravitational back- volve additional conical singularities which typically do not

grounds that contribute to the entropy are poorly understoodollow geodesics. A non-geodesic behavior signals an un-
Ideally a correct count of boundary degrees of freedom at the
horizon or at infinity should also tell us what bulk geometries
The presence of these singularities indicates that such solutions
are different from the multi-black-hole solutions with multiple
*Email address: teresia@physto.se asymptotic regions that have been discussed by B23 and
TEmail address: bo@physto.se the wormhole solutions by Bengtssehal.[24,25.
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wanted transport of energy-momentum between the singulae metric approaching an AdS form asymptotically, or as a
ity and spacetime. guotient of anti—de Sitter spa¢2]. The BTZ-metric can be
From our perspective this state of affairs is quite puzzlingwritten
The multi-source solutions could be expected to be on equal
footing with the BTZ solutions on the basis of their ds’=—N?dt*+N~2dr*+r?(N?dt+de)? (1)
asymptotic behavior, and as Chern-Simons solutions they are
no less regular. Hence calculations of black hole entropyvhere the lapse functioN and the angular shifil* are
based on Chern-Simons theory and its expression in terms of
a boundary WZW model, which reproduce Bekenstein- ) r2  J2 r2+r2
Hawking's result, appear to include unphysical geometries. N*=—-M+ |_2+ ar? - 2 2
Is Chern-Simons theory, which has attracted so much atten-
tion as a model of quantum gravity, just not sensible as a
theory of gravity? o__ _2rr
. . N J ()
Fortunately, there is a caveat in the above argument. We 2r2 |
find that multi-source solutions have similar asymptotic be-
havior, but also that they represent physithbugh singular  and O<r <o, —wo<t<ow, 0<$<2w. M is the mass of the
geometries. The crucial observation is that one should deddlack hole andl is the angular momentum. Both these quan-
with gauge equivalence classes of solutions to Chern-Simortities can be expressed in terms of the values ¢f , and
theory rather than with individual solutions. As we show inr_) when the lapse functioN vanishes. They correspond to
Sec. IVB 1, all “unacceptable” Coussaert-Henneaux solu-the outer ¢, ) and the inneri(_) horizon of the black hole.
tions are gauge equivalent to perfectly acceptable solufionsFor the horizons to exist we ne&t>0 and|J|<MI . When
This is possible because the Chern-Simons gauge group s coincides withr _, we get extremal black holes,|
larger than the diffeomorphism group. For a discussion of=MI. We will be concerned mainly with the non-extremal
how the gauge symmetry conspires with the presence of dease.
generate metrics in the Chern-Simons “formulation” see The cosmological constaitis related to the length scale
Matschull[26]. In practice, gauge transformations move the| by the A= —1/2. We choose units such thkt1. To fa-
static conical singularities to the horizons, where they obey:ilitate the Chern-Simons formulation in Sec. Il B we rewrite
the geodesic equatiotby infinite redshiff as already ob- the metric differently the outer regiar>r , , the intermedi-
served by Clement. If all Chern-Simons solutions have simiate regionr . >r>r_ and the inner region_>r>0. Thus
lar sensible representative geometries or not is left as an op&fe make the following Rindler-like coordinate transforma-
question. The Coussaert-Henneaux solutions dealt with hetgn in each region>r_ , r,>r>r_ andr_>r>0:
certainly constitute an important subclass.
In Sec. Il we give our Chern-Simons formulation of the s
BTZ black hole and in Sec. Il we write this Chern-Simons I: r?=r? cosit
solution in a more geometric way, and are led to a much
more general solution, which includes the multi-black-hole -
solutions, some of which have already been discussed by at+ =<p<ow (4)
Coussaert and Henneaux. We also discuss how gauge trans- 2
formations act on all these these solutions. In Sec. IV we
specialize to the case of two black holesore precisely two
excluded regions with closed timelike curye#/e study the
properties of this solution and the role of degenerate metrics. )
We solve the problem of the non-geodesic singularities of the
Coussaert-Henneaux solutions by choosing a suitable gauge lll: r?=r?cosi(p—a)—r2sintf(p—a), 0<p<a
in Sec. IV B 1 and we end with conclusions in Sec. V. (6)

—a— T2 o
p—a 2) rsmhz<p @ 2),

o
l: r2=r2cof(p—a)+risif(p—a), a<p<a+ >

r

IIl. THE BTZ BLACK HOLE a=arctam€ﬁ). @)

In (2+ 1)-dimensional gravity with a negative cosmologi- . .
cal constant there exists a black hole solution to Einstein’d € constania is chosen in such a way that=0 corre-

equations, the BTZ black ho[d]. It can be viewed either as SPONds top=0. In these coordinates we get a one to one
correspondence betweerand p. This will lead to the fol-

lowing metrics:

2t may seem strange that some gauge potentials give meaningful
metrics while others in the same class do not, but this property is in | d2= — sinhz( p—a— m [r dt—r ,d¢>]2+ dp2
fact intrinsic to the Chern-Simons approach. The solutions to the 2
equations of motion are pure gauge, and they may locally be trans-
formed away, giving a completely degenerate metric, unless further + COSH’( p—a— Z) [r_dt—r d¢]2 (8
conditions on the vector potentials are imposed. 2 *
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Il: ds*=sir(p— a)[r _dt—r_ d¢]*—dp’+cos(p—a) F=dA+ANA=0 and F=dA+AAA=0 (10
X[r,dt—r_d¢]?

are then actually equivalent with Einstein’s equations, pro-
ll: ds?=—sinff(p— a)[r_dt—r . d¢]?+dp? vided the identifications

+cosi(p—a)[r dt—r_d¢]>

If we look at the metric in the inner region Il we find that gijzef‘ejbnab (17
our choice ofa causes the coefficient af? to vanish pre-
cisely whenp=0 and to become negative wher<0, i.e.
we will get closed timelike curve$CTCs. Excluding the
negativep region in fact removes all CTdg]. We also note a_ E a_pa

. . . . Lo ef=-(A—A)) (12
thatt is always a global Killing coordinate, timelike in | and 2
spacelike in Il and Ill. Thexy plane is Euclidean in I,
Lorentzian in Il and Euclidean in Ill, implying that light
cones are drastically tilted inside the black hole. The radial
ﬁ(ljordinatep is spacelike in |, timelike in Il and spacelike in wia:%(AiaJrK?) (13)

Here it makes sense to pause and think about the split into

three different coordinate regions. The point we want to
make may seem trivial in the metric formulation, but it will of the metric, the dreibein and the spin connection are made,
reappear in the Chern-Simons formulation. Although theand the metric is non-degenerate. Solutions with metrics that
boundaries between the regions happen to coincide with thare degenerate somewhere need special study. In the present
positions of the inner and outer horizons there is of cours@aper we encounter cases where the degeneration corre-
nothing special going on locally in these places. So why déponds to coordinate singularity or to a conical singularity. In
we not simply continue our expressions from one side of theome of the cases the degeneration can be directly associated
boundary to the other instead of changing analytic formgo horizons, with coordinate singularities in the accompany-
from region to region? The answer is that the analytic exing “Schwarzschild-like” coordinate systems. Such degen-
pressions of the metrit8) become degenerate at the bound-erations may be handled by attaching another coordinate
aries of the regions, indicating that the coordinates becompatch with a boundary and gluing them together by the ap-
singular there. This coordinate singularity just means that th@ropriate matching conditions. Then one may find a new
horizon is not covered by these particular coordinates. Thergoordinate system covering the boundary region, with a met-
exist other coordinates which also cover the horizon and pafic Which is non-degenerate. Thus the degeneration is not a
of the spacetime on the other side. As will become evidentgoordinate invariant concefinless restrictions are imposed
our coordinates are still useful for finding generalized spaceon the allowed coordinate transformations at a supposed
times with singularities which are physical in a very definite boundary of spacetime
sense detailed in Sec. IV B 1.

A. Chern-Simons formulation of gravity B. Chern-Simons representation of the BTZ black hole

In the Chern-Simons formulation of three-dimensional VoW We want to write down the Chern-Simons fields cor-

gravity [11] isometries of the AdS background are gauged_responding to the metric in each region, and then verify that

For AdS the isometry group iSO(1,2)X SO(1,2) and we ';he fiel'drlstrengtrFr:/anighetieye? gt thefhorizons. We nEe? t
call the respective gauge fields of each facter AkJ, and 0 vanish €verywnere in the nterior ot our space except a
singularities for the solutions to represent a spacetime with

A— Ak
A_A.‘]k' TheSQ(1,2) generatord, of a factor of the_grOUp constant negative curvature. A non-vanishing field strength at
are different from those of the other factor, but since theyiho horizons can only come from a discontinuity in tAe

never appear multiplied together we shall not distinguish befield when we glue the different regions togetifescall that

tween them. The commutation ruleg within each factor ar§ _gA+A/A, and if A contains a step function the differ-
[Jc.di1= € dm, With the conventione;,= — €o1,=—1, and  gnig) gives rise to a delta functiorSince derivatives trans-
Metric 7,,=2Tr(J.Jp) of signature €-1,1,1). The Chern- yerse to the boundary only appearFnfor the longitudinal
Simons three-form componentsA, and A, it is enough to ensure that these
components are continuous.

Knowing the metric in the different regions, we may
choose corresponding dreibeins and derive the corresponding
spin connections from the equation of motioms®+ wp
and its counterpart for the other factor then serve as Lagrange’=0 and dew?®+ (1/2)ed. 0’/ \ o= —(1/21%) €] e°/\eC.
ian densities, which automatically yield a generally covarianiThe result is unique up to local Lorentz transformations, and
action. The equations of motion a simple choice is

2
Tr{ AAdA+ ANANA (9)
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e= —Sin|‘<p—a— g)[r+dt—rd¢]\lo+cosk(p—a— g)[—rdt+r+d¢]\]1+dp\]2,

0= —sinr(p—a— g)[—rdt+r+d¢]Jo+cosr(p—a— g)[udt—rdq&]\]l,

_ e=dpJo—sin(p—a)[r_dt—r, d¢]I;+codp—a)[r . dt—r_d¢]J,
I w=sin(p—a)[r, dt—r_d¢]Il;—cogp—a)[r_dt—r,d¢]I,
_[e=sink(p—a)[—rdt+r+d¢]Jo+dle+cosr(p—a)[r+dt—rd¢]J2

"|w=sinh(p—a)[r . dt—r_d¢]Jg+coshp—a)[—r_dt+r_ d¢]J,. (149

These dreibeins and spin connections can be compared witthere we see that our choice of dreibeins makes the longitu-

those of Cangemet al. [27], who use a different radial co- dinal components oA and A continuous when passing be-

ordinate[the same as in the metr(@)]. Otherwise t_he dif- tween the regions (1l and so on. TheA, and theA, just
ferences are the choices of some of the signs and in the outgE ..o P p

and inner regions the Lie algebra components are inter-

changed. Our choice af means that closed timelike curves

are excluded in the regiop>0, and it corresponds to the LA, =Jdp, LA =Jo, NEA,=J;

boundary conditior(at p=0) that the¢ -component of the

dreibein is I|ght_||ke. In effect it rela-tes the tangential compo- A — 3, A — ST A — .
nents ofA andA at these boundaries. ’ ’ P (17)

FromA=w+e andA=w—e we get the Chern-Simons

fields Thus the only discontinuous componen#ig, which in fact

cannot contribute to the field strength since it only depends
R on p and the other components are continudgs, vanishes
coshpma=3 by antisymmetry and the off-diagonal terrfs,, and F
4 tp
vanish by relating the discontinuities afA, and d,A; re-
spectively with that ofA,, .
There is an important distinction between how the bound-
aries between the regions are treated in the Chern-Simons
I: Ay=A=(r,—r_)[cod p—a)Jp+sin(p formulation and in the metric formulation. A naive analytic
continuation of the outer metri8) to all p does not make
—a)dq] sense as a solution to Einstein’s equations, since it becomes
degenerate at the horizon. In contrast, the Chern-Simons for-
l: Ay=A=(r,—r_)[coship—a),+sinh(p mulations seems to leave us with a choice. There is nothing
wrong with the expressions for the vector potentials I, 1l or
—a)Jdo], (15 11, even if they are extended to al. We can take those
expressions as they afgiving us a problem in the gravita-
and tional interpretatiop or we can match solutions and get a
Chern-Simons version of the BTZ solution.

LAg=A=(r,—r_)

) T
XJl—SInl'(p—a— E)JO

- . . From a Chern-Simons perspective the matched discon-
LA,=—A=(r +r.) cos}‘( p—a— —> tinuous solutions and the smooth solutions are indistinguish-
2 able in the outer region, and they both make equally good

- sense in the interior. Only imposing boundary conditions in

XJ+ sinl'(p—a— 5) JO} the interior or imposing special gauge conditions may pick
out one solution as preferable to the other. Thus a sound

gravitational interpretation of the solutions is only possible

||;K¢: —K[:(r++r7)[cog(p—a)\]2—sin(p given special_ boundary cor_1d_itions or gauge fi'xings of t_he
vector potential. In generalizing the BTZ solution we will
—a)Jdq] ensure that the boundaries of different regions are always

matched in the same way as in this original BTZ solution.

To prepare for more general solutions let us write the BTZ
solution in Cartesian coordinatesy=\x*+y?> and ¢
—a)Jdp]. (16 =arctany/x). In the inner region we can write it as

I Ay=—A=(r,+r_)[costip—a)I,—sinh p

024025-4



MULTI-BLACK-HOLE SECTORS OF Adg GRAVITY PHYSICAL REVIEW D 65 024025

—qy along a level curve op. For two curvesC, and C, which
Ax=0——— T dxpds (18  can be continuously deformed into each other, but are based
Xty at two different points andy, the holonomies are conjugate,
W(C,)=U(y) tU(X)W(C,)U(x) *U(y). Theeigenvalues
_ X of W for two curves which can be continuously deformed
Ay—gX2+y2 +aypds (19) into each other are thus equal. These eigenvalues are deter-

mined by the parameterg, aand the eigenvalues of the

where SQ(1,2) Lie algebra elementgandg. It does not matter in
q=r, -1 (20) which coordinate patch we follow the level curves, because
- we have ensured that the connections are flat also at the
and boundaries between the patches.
Since the gauge group is a product of two rank one groups
g=[coshp—a)J,+sinh(p—a)Jg]. (21 it is enough to characterize the eigenvalues by the two traces

The second vector potential Tr W(C) and TrW(C). For the BTZ solutions we obtain

— ——qy TrW(C)=2 coslhmq], TrV_V(C)=2cosrﬁ7-ra],
Ax= gszyz — dxpIdy (22 (27)

— for Wilson loops in the two-dimensional representation of
A= _ (23) S(O(1,2). Via Eq.(3) the holonomies are then related to the
mass and spin of the black hole. In the complete classifica-
tion of conjugacy classes 30(2,2) Lie algebra elements
where [2] one finds that holonomies corresponding formally to

— imaginaryq or g may occur, and furthermore that the case of

q=r,+r_ (24) o . >
coinciding eigenvaluepwvhen TrwW(C)=2 or TrW(C)=2]
and allows for non-trivial holonomy matrice€n addition toW
— _ =1 orW=1). These cases can be dealt with in the Chern-
g=[coslip—a)J,—sinh(p—a)Jo]. (25  simons formulation by modifying the expressions épand
g.

In Cartesian coordinates it looks aspif=0 denotes a single
point in space. There is rebpriori justification for this since
we chosep=0 to be special by hand, and all other equations I1l. MULTI-BLACK-HOLE SOLUTIONS

=const denote topological circles. On the other hand, we . . .
p polog We will generalize the solutiofil9) to the case were we

excludedp=0 on physical grounds, to get rid of closed time have arbitrary many singularites. We will use the same form

like curves. Furthermore, calculatiigin Cartesian coordi- f th luti in the | . ding the Lie alge-
nates we get a delta function at the origin which we may0 € solution assln € Inner region, regarding the Lie aige
formally regard as a source, and in this context we can aIsBra direction of A. We may then try a solution
regardp=0 as a single point.

A=dhJ;+(f+dt)g (28

C. Holonomies

_ =go(h)Jg+ga(h)Jsy, 29
In a gauge theory of flat connections=F=0, gauge 9= oM Jo* g2(N)J @9

invariant observables are scarce. The fields are locally PUI, rehis a scalar function generalizing the radial coordi-
gaugeA=U"1dU, for U an element 0f5Q(1,2), and any 9 9

non-trivial observable has to be associated with the bounopatep andf is a spatial one-form which is closed except at

aries of spacetime or be topological in nature. The simples'fc’Olated sources

topological observables are holonomi@s Wilson loop$
measuring the effect of parallel transport along a closed loop
in spacetime. For flat connections the result can only be non-
zero if the loopC, (based ak) is non-contractible. Then the
Wilson loop

N
df=272, q;82(x—x;)dx/\dy. (30)
i=1

3If we exchangel; with J, we also have to change signs in front
W(C,)= Pex;{ § A) =U"Y(x)U(x+Cy), (26 of the J, component, in order to preserve the commutation relations
Cx which govern the equations of motion. If we exchardgewith J,
we have to change the last condition in E82) below. There will
where P denotes path ordering of the exponential. As ob-then be a minus sign in front @y, in effect exchanging trigono-
served by Cangengt al. [27] it is simplest in our case t0 metric and hyperbolic functions. This is precisely the case in Egs.
take the closed curv€, at constant radial coordinate, i.e. (15), (16) and(17).

024025-5



TERESIA MANSSON AND BO SUNDBORG PHYSICAL REVIEW [®5 024025

The q; determine the strength of the sour¢d®e masses and where

spins of black holes By integrating Eq.(30) over a large

disk D enclosing all sources we obtain Tt _aiQ
-

N (35
f}g fzf df=27>, qi=27Q. (31)
dD D =1

The metric is easily compared with the BTZ met{&} in the

If appropriate boundary conditions oh are assumedf inner region(lll). The functionh+ « has replace.d the ra}dial
—Qdé asp— . Then we may regard,=Qg(h)—A, as a coordlnatep, 0o andg, represent the hyperbohp functions,
natural generalization of the relatidy—A,=0 satisfied by andr..d¢ is replaced byf.. . The last change is the most
single BTZ black holes. This is consistent with the ansatz'9nificant one, since two different one-forms are needed to
(28) after rescaling. genera!lzed¢. Or_1|y whenf andf._ are proport|.onal do we

The equations of motiodA+AAA=0 are satisfied by get a direct r_nultl—source generalizationad. This hgppens
the vector potential28) outside the sourcesZé&)Z-) pro- when the_ ratio of_ the two charges_at each source is constant.
vided e Irrespectlve of this we can make direct contact with the BTZ-
solution very close to a charge, where the effect of the other
charges is negligible, or at asymptotically large distances,
——=0,, ——=0o. (320  where the sum of the charges dominate the solution.

In the general cas@4) we can still define regions of type
I, I'and lll, between which the solutions have to be matched,
and different choices of the functidngives different regions
rIeven their topologies may be differgnbut they are actually
related by gauge transformations, as we proceed to discuss.

We recognize the equation for the hyperbolic functions en
tering the BTZ solution, but now their arguments have bee
generalized fronp to h. By permuting the Lie algebra ele-
mentsJ; in Egs.(28), (29) one obtains solutions generalizing
the BTZ solutions for all three regions, provided the signs in
Egs. (28), (29), (32) are changed accordingly. Matching of A. Gauge transformations
the regions works precisely as in the BTZ case. Note that the  one can check that the gauge transformation
Lie algebra elemeng is spacelike, null or timelike depend-
ing on the sign of Tg?, and that its sign is necessarily con- SA=déshJ,+[A, shd ] (36)
stant all over spacetime for the present solutions. The one-
form f/Q generalizes the angular one-foihg in the BTZ
case.

Although any choices df and off satisfying Eq.(30) are

amounts to a change df into h+ éh in the solution for
region Ill, implying that solutions with different functiorts

; © - ¢ : are equivalent if only their boundary conditions are the same.
consistent with the equations of motion, we will concentrateOf course, an analogous statement is trueZoie stress

on boundary conditions and combinationsAoBnd A solu- ot the solutions are only equivalent in the Chern-Simons
tions that reduce to ordinary BTZ solutions both for asymp-go:mulation of pure gravity. To see this we may study
totically largeh and close to the sourcéeegions of closed | rizons.

timelike curve$. All the important new features of these gen- ¢ boundary between region | and Il resembles a hori-
eralized solutions are then associated with the fact that theé/On and it is actually an event horizon for constant charge

are multi-centered, which in its turn implies that there will be otins of all sources, if it consists of a single connected com-

critical points ofh_ andf. Su<_:h critical points can g_ive rise 10 honent. This is because we can then use coorditedes!
degenerate metrics, a subject we shall return to in Sec. IV B i1, dy=f to obtain the ordinary BTZ metric in the exterior

The second gauge field has analogous solutions in region. The transformation to these coordinates works as-

terms ofh, g,(h) andgy(h). In order to get solutions similar ymptotically and also in the whole exterior region provided
to the BTZ solutions we may choosk=—h, g,(h)  doesnothave a zero there. In fact, we will show later that the

— (P R — (R multi-black hole solutions have singularities at zeroed. of
;ngizéir:()ararnedggilggh\)/vitl%()(Qﬁdggld:\?e?qyai?jsgc% aflﬂlcwj((:f[Lig)ﬁslnre- These singularities may be inside or outside a physical event
spectively, we obtainzthe vecotor potentials horizon depending on the choice of the functienSuch a

difference could for instance be detected by the propagation
A=(f+0dD (M) In+dhd: + (f+0dHa,(h)J of light rays in the background metric. Light rays are of
(f+QdHgo(N) o 1 (T+Qdbgz(h), course not included in a Chern-Simons description.

Even if there is little physics in the functidm the multi-

A=—(T=Qd1)go(h)Jo—dhJ; + (= Qd1)gx(h)J; black hole solution also depends on the formsand f_,

(33 which in their turn depend on the positions and charges of
and the metric the sources. As W_iII be discussed in the next s_ubsection, the
charges may be directly measured by holonomies around the
d2= — g2(h(x,y)){r _dt—f. (x,y)}2+g2(h(x, sources. The positions of the sources are trickier, and cannot
Go(hxyIN 0y ga(h(x.y)) be resolved by the holonomies. Other available observables

x{r dt—f_(x,y)}2+dh(x,y)?, (34  are the asymptotic chargg®8]. The generaf , andf_ are
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asymptotic to the corresponding BTZ forms, and the issue isnon to several different sectors labeled by the numbers of
if the approach is fast enough to give finite asymptoticsources, and possibly by their positions.
charges, but also slow enough to give non-zero values.
As an example we may compare a single source BTZ B. Multi-black-hole holonomies
solution A; with a solutionA, with sources separated by a

small coordinate distancg, in the x direction. Then one We now wish to calculate holonomies

finds

Tr(Pepr A). (39

c
-y
A=A+ 6 =A;+X —-qyd| ——=/g. (3
2= At T Al G ) (X2+y2>g 37 We first calculate the ordinary integral over a closed loop,

Thus ;A 4 scales agp~ 2 while A, 4, scales agp~* with p B ah(x,y) ah(x,y)
and the change is subleading. If the chadggA,, can be CA_J’ fxg+ — —Ju|dx+| fyg+ T‘Jl dy|,

written as an infinitesimal gauge transforﬁllel with a (40)

decreasing gauge parametethen the separation of the two

sources is truly a matter of gauge choice at infinity and it ishere written out for an inner-type region. If the function
not detectable by any asymptotic chargés.will still be  h(x,y) is chosen in such a way that there are closed level
detectable by holonomies, corresponding to the fact that theurves ofh(x,y) the termdh in the integral is zero, and
gauge transformations are not defined everywhere, or do nditrthermoreg is constant. Then the integral depends on
belong to the identity component of the gauge grpdine  which charges); are enclosed by the level curve,

problem in our case is that the asymptotic behavior of the

BTZ solution implies thag has an exponential dependence f A:gf
on p. The same is true fok 1,. Then the boundary values of c c
the fields and the transformation parameters are not well de-

fined. Fortunately, this problem may be circumvented by diswhere |- denotes the set of enclosed sources gpdthe

f=2mg>, g=2mgqc, (42)

ielc

cussing the vector potentials enclosed charge. Since the eigenvalues of the traceless real
matrix g are necessarily both real or both imaginary and add
A’ =ePlade P2+ eP2Ae P2, (38  up to zero, we may write

which locally are gauge transforms Afbut satisfy different 2 4 e 27

boundary conditions. In fadj, is a constant and the’ of L PexprA =e"mict+e Tt =2 costi2mqch)

our generalized multi-source solutions approach constants at (42)
infinity. The A’ do however give rise to metrics which are

everywhere degenerate, and we just regard them as auxiliagyhere) is one of the eigenvalues ¢f, and independent of

solutio_ns which help distinguishing asymptotic gauge transy The matrix corresponding to the must also have either
formations and global transformations generated by

asymptotic charges. The parameters of global transforméj-olh 'mag'”ary or both real elgenvallues which we satnd
tions onA’ go to constants at infinity while true gauge trans- — A~ S0 in general we get three different holonomy types
formations vanish asymptotically. The effect of both kinds ofdepending on the eigenvaluesandX\: either one is real and
transformations on the fielda is simply obtained by the one imaginary, both are real or both are imaginary. When we
mapping inverse to Eq38). Conversely, by mapping t&’  just have one singularity it is known that these types will
transformations o may be classified as gauge transforma-correspond to different quotients of anti—de Sitter space. Ba-
tions or global transformationgéor as changing boundary nadoset al. [2] have shown how different spaces are ob-
conditions. tained from anti—de Sitter by modding out subgroups of
Returning t063,A,,, its image 63,71, under the map SO(2,2), and that BTZ black holes belong to one of these
(38) vanishes at infinity, implying that asymptotic chargesclasses of spaces. They also find three different types of
are left invariant by moving sources apart. In fagf,A;, ~ Spaces. The correspondence between their eigenvalues
=0\ A1 for A1,=—yg'/(x?>+y?) with a constang’. Since  and our eigenvalues is;=g\—g\ and A,=g\+qg\. In
A4, diverges at the origin it does not give a globally well our language the generic BTZ black hole corresponds to the
defined infinitesimal gauge transformation and there can stifase with two real eigenvalues. When both are imaginary we
be a physical difference between the solutions. In conclusiorgenerally get conical singularities, except in the case
solutions with different numbers of sources are inequivalent=q\=i/2 , which curiously corresponds to AdS sp&de.
because of different holonomies, while different positions offact, we may also find “multi-AdS solutions” with several of
the sources may or may not be observable depending on thieese AdS charges. They may possibly serve as ground states
global properties and boundary conditions of the finite gauge
transformations effecting the translations. The asymptotic————
charges are insensitive to these details, so they may be*M=-1 andJ=0 are obtained from Eq$20), (24) and(3) and
thought of as (generating transformations com-the metric(1) then represents AdS.
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of multi-black-hole sectors. Note that the holonomy around a gg2= — gﬁ(h(x,y)){(rl_ 1o )dt—(r 1o figt oy foy)

single AdS charge is almost trivial, and around two it is

entirely trivial. X dX— (114 f1y 15, Fo)dy}2+g3(h(x,y))
Notice that we have not mixed holonomy type for the

different singularities. It would be interesting to find solu- X{(rps 1o )dt=(ry_fo,+ry-fr)dx

':lr?iggwhere the sources give rise to different types of holono- —(ry_fy+ro fh)dy}?

ah(x, ah(x, 2
+ (x.y) dx+ (x.y) dy; .
IV. TWO SOURCES oX X

We will study the solutions for the case with two sources So far the functionh has been left unspecified. If, for
in more detail. After verifying that the solutions approach theinstance, we chooske(x,y) = ypip,— « in terms of the ra-
single-source solution asymptotically and for vanishing sepadlial coordinatesp; and p, centered on each of the two
ration of the charges, we will continue with a generalizationsources and a functio@ approaching a constafi) at infin-
to several sources of the procedure to exclude CTCs, and wty and in the limitx,—0, we can ensure that the BTZ so-
will also discuss how the multi-source solutions genericallylution is approached both at infinity and ®$— 0. To verify

(51)

contain additionalmild) singularities. this, start by looking at the metric in the outer region
Solutions with sources a&t=x; =Xy andx=X,= — X, can _
be written ds?=—sint?(\p1pa— a)(r 14+ 1)

Xdt—[(ry_fo+ro f)dx+(r;_fi+ry_fy)dy])?

A=[(rip—ri)+(rae—rz-)1g (43
+costt(Vpipa—a)(ri—+r,-)
Jh(x, _ 2
AX:(flx+f2x)g+ ;Xy)‘]l (44) xdt [(r1+flx+r2+f2x)dx+(r1+fly+r2+f2y)dy])
L[Phxy) | dhxy) 2 ,
ox Xt ———dy|, (52)
_ Ih(x.y)
Ay=(TiytTay)0+ ay ! (45 to see how it behaves asymptotically at infinity. In terms of
polar coordinatesy, ¢) centered aroundx(y) = (x4,0) (im-
where plylng p:pl)
; -y —psing X—Xg pCOS¢
fo=01————, fy,=0,—— 46 p p p p
1x Q1(X_XO)2+y2 1y Q1(X_XO)2+y2 (46)
-y —psing X+Xg pCOSh+2Xq
_ X+ X fo=— = 2 0 lyT T o T 2
f=q y fu=q o (47) P2 P2 P2 P2
2R )2y Y P (xxg) 2+ Y2 (53
o the metric takes the form
The conjugate field\, ]
dsguter: — sink¥( Npp2—a)
—  — — — dh(xy) Fo(p2+2Xop COSP)+T1_p3
A= (Fat fa) gt ———3 (48) ><|r+dt—( 2-(p op2 $)+11-p2
P2
_ . 2
— —  — — dh(xy) 2r,_XgSing B
A= (Tay+ o) gt 00, (49 Xdgt ——5——dp || +costi(Vpp=a)
2 2
where . { rdt_( 0 2500 9050) 1.
P2
9=02(n(x,y))J2+do(h(x,y))Js. (50) 2ry.xesing |7
Xdp+ ————
P2

In the BTZ-like inner region withh=—h, g,(h)=g,(h), ,
go(h)=go(h) andg, andg, even and odd functions respec- N dh(¢,p) d¢+t9h(¢,P) q
tively, we find the metric 2] ap Pl -

(54)
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We see that the metric is asymptotic to the BTZ solution withwhen p=0. We must choose in order to make the vector
ry=rq,+ry,, andr_=r,_+r,_ whenp—o or x,—0. field 4, lightlike at x=X,. For a with d,a=0 whenp=0,
the condition thav, becomes lightlike becomes

A. Exclusion of closed timelike curves 5 9
_ T Ugp=—(r1:)?sinfPa+(r;_)%costfa=0

In the BTZ solution(8) there are closed timelike curves

for p<0, and we expect similar pathologies in the multi- ry_

black-hole solutions inside the black holes. It is natural to cut = a=arctan Pk (57)

off the range of the coordinates precisely where CTCs are 1

encountered. Here we show how this can be done in the casg the same way we can change to polar coordinates centered

of two sources. The same procedure can be used for anytoundx= —x, which instead would lead us to the condition
number of sources. The resulting spacetimes then have sin-

gularities in the causal structure if they are continued “in- g¢¢=—(r2+)zsinhza+(r2_)2cosr?a=0
side” the sources.

Just as for the BTZ cas@) we need the vector field,
for some periodic coordinaté to become lightlike at each
source in order to exclude regions containing closed timelike
curves. Coordinates which are periodic around curves erln order to have both these conditions satistiedan only be
closing only single sources are readily found. We may use constant in the case,_/r{,=r,_/r,, . Still, there are
the angle between the line from the source to a point and themany ways of choosing aa(p,¢) that does not affect the
positivex direction, or we may usdf, anddf_ to measure singularities or the asymptotics of the solutions. We may
angular differences. Close to the sources these measures affoosea to be a constant at infinity, for instance
angle all agree up to proportionality constants.

Mo

Mo
=Sa= arctan}é —) . (58

To localize the causal singularities to the positions of the _ VEF1P2+ f2P1>
- : . a=arctany ———|. (59
sources it is then enough to choose the functioappropri- riepatrospg
ately. In order to encounter closed timelike curves we have to
go to the inner region. We see that in the casg_/rq,=r,_/r,, this a will re-
First study the metric in the inner region. It is obtained duce to a constant. This will also be the case wkgn0, i.e.
from the outer metri¢54) by exchanging , with r_: when the singularities are in the same point. The requirement
d4,a=0 whenp=0 is also easily seen to be fulfilled.
ds2, o= — Sinf(\pp» To make the analogy with the BTZ case complete the
different regions we had can be generalized to
r24(p°+2Xop COSP) +1 1, p5
—le) r_dt— pg |0<p<a:>0< p1p2<a
. 2 T T
Xdep+ 2r2+x(2)5|n¢dp } +C05ﬁ(@—a) Il a<p<a+ E:a< p1p2<a+§
P2
2 2 ™ ™
| (rZ(P +2Xop COSP) +11_p3 I a+ z<p=a+ 5<pips. (60)
X4 r, dt— > 2 2
P2

) In Fig. 1 we have plotted the “horizons” when we have fixed
2r,_XoSin¢ r . andr _ but varying distances, between the singularities.
pg d )} Although the equations determining the boundaries of the
regions are similar to the single-BTZ case we cannot be cer-
+{(9h(§b,p) ah(¢,p) dp]z tain that we are dealing with true horizons, unless we trace

Xdp+

i do+ ap (59 Iight rays through the new geometries. This explains the quo-
tation marks.
Now take a look at the,, component,
B. Singularities

2 2\ 2

A ( o4 (p=+2%op c2:os¢)+r1+Pz) SinfP(\ppy— a) In thi.s.subsection we djscuss the nature of the ;pacetime
P singularities we necessarily encounter by interpreting gravi-

5 tationally the multi-source generalizations of the Chern-

Fo—(p?+2Xop COSP) +11_p5 o Simons solutions giving rise to BTZ black hole metrics. Our

+ 2 cost(Vppz— a) goal is to find gauge choices in Chern-Simons theory which

P2 yield physically sensible geometries. Thus the metrics we

consider should be thought of as composite fields in Chern-
), (56) Simons theory, and the discussion of gauge equivalence is
entirely in the Chern-Simons framework. For a clear discus-

Xap Sirf2¢ (aa
+

2 x2\[psin2¢ ( Ja
JE— + e —
d¢

n2g 7
o170

3
P2
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FIG. 1. The inner and outer
“horizons” in the xy plane at
fixed t for differentx,.

sion of the distinction between gauge equivalence in Chern- h=ax?—by?
Simons theory and in Einstein gravity see Matsclh2].
The metric(34) may locally be written

A= — g2d T2+ g2dd2+ dh?, 61) r-fo=r.f_=cdxy). (62
with dT=r_dt—f, andd®=r_dt—f_, sincef, andf_
are closed forms. This metric degenera‘[es W[‘w@r Js By rescaliﬂg coordinates ardwe find a Spatial line element
vanishes, where one of the functiomét,x,y), ®(t,x,y) or
h(t,x,y) has critical point, and wherdT, d® anddh are L
linearly dependent. The coordinate singularities at the BTZ _ _
horizons and their multi-black-hole generalizations belong to ds*=d(xy)*+ Zd(xz_yz)z_ (O +y?)(dx*+dy?).
the first case, but our solutions also display the other types of (63
degeneracies, and we now proceed to investigate their inter-
pretation.

In the case when one of the functiofis® or h has a The areaAy and circumferenceCy of circles around the
critical point, one may ignore the effects of the functiaps  origin are then related bgz%:son in contrast to the Eu-
or g, locally, since they may be absorbed into redefinitionsclidean relationC?=4=A. Since the metric is manifestly flat
of T, ® or h only in exceptional cases at the expense ofthe difference can only be due to a conical singularity at the
changing the nature of the critical poifiiut see the follow-  origin, and we conclude that there is a negative deficit angle
ing subsection to appreciate the importance of these excepf 2.
tions). Then the singularity is precisely of the kind discussed We have argued that simple conical singularities with a
by Horowitz [29] for zero cosmological constant. The sim- surplus angle of 2 appear in the geometries with two equal
plest such singularity occurs between two equal chargesources provided the gauge is chosen so that saddlés of
separated by some distance. coincide with zeros of , andf_. For n sourcesh typically

To see what happens we study the equal charge solutionfasn—1 saddles since it is chosen to havecal minima at
close to the origin. Theré, =f_=0 because the contribu- the sources and a maximufmfinity) at infinity. Similarly
tions from the two charges cancel by symmetry. The metriG , and f_ typically haven—1 zeros, because of the
(61) then degenerates at the origin at all times, becal®e sources and the behavior at infinity.fif andf_ are propor-
and d® both become parallel to the Killing directiodt.  tional their zeros coincide, and may be chosen to have
Furthermoreh, which approaches infinity at infinity and as- saddles at the same points. Fixing the behavioh appro-
sumes local minima at the positions of the charges, has tgriately close to its saddles the local calculation is then the
have a saddle point. Due to gauge invariaf@® the posi- same as between two sources, and we conclude that there are
tion of the saddle point may be chosen to be at the originn—1 conical singularities. Physically the proportionality of
making the metric on this linin spacetimg even more  f_ and f_ means that the sources all have the same ratio
degenerate, of rank one. Generically we instead expect defM of spin and mass. Other source distributions generally
generations to rank-two metrics on two-dimensional surfacefead to more complicated singularities in the geometry. Some
[29,30. In fact, we have found that the mag,X,y)  of these may be removable like the coordinate singularites of
—(T,®,h) has three singular fold surfaces joined pairwisethe BTZ geometry, but some are likely to be required by

at three cusp lines if the saddle point bfis displaced global arguments, like the conical singularities we have just
slightly. The geometries of such complicated singularities dediscussed.

serve a special study, but for our purposes it is enough to find
the simplest singularities in a gauge equivalence class.
Returning to the case of coinciding saddles we proceed to
determine the geometry close to the saddles. There we have The stationary conical singularities discussed above have
approximately been found before by Clemef21] and by Coussaert and

1. Geodesic singularities
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HenneauX 20]. These authors have also remarked that such V. CONCLUSIONS
singularities do not follow geodesics. This is quite disturbing . . .
for the commonly used hypothesis that Chern-Simons theor&. we havel Z%nsstruct(?d ar;]q rllnvestlgalt.ed s;]oluél_?_;s tcl) three-
should be relevant to the counting of black hole states. AllIMensional AdS gravity which generalize the solution.

ready at the classical level would Chern-Simons theory give/Vhile the ordinary BTZ black hole can be viewed as a single

rise to geometries which seem to leak energy and momerfOUrce solution in the Chern-Simons formulation, we have
tum. constructed multi-source solutions. These solutions give rise

Fortunately’ Chern-Simons theory itself contains theto a kind of multi-black-hole SO|Uti0nS, which however also

answer to the problem. By asking under what preciselisplay other singularities. In the simplest cases the addi-
conditions the singularities are non-geodesic we may findional singularities are fixed conical singularities, but more
an exception: when the singularity is located at a horizoncomplicated cases also occur. Einstein’s equations break
This case was already mentioned by Clement, but not imlown at these singularities, so they represent geometries
the Chern-Simons context where it becomes truly importantwhich are not allowed in pure Einsteinian gravity. On the
While the set of geometries with singularities fixed to other hand, they occur very naturally in the Chern-Simons
horizons may seem like an exceptional set of measuréramework, which is natural for quantization, so we believe
zero, in Chern-Simons theory they are not exceptional. Inthat these multi-black-hole solutions should be included in a
fact, large class of solution&@and all those considered by fyll Chern-Simons treatment of BTZ black hole entropy.
Coussaert and Hennegumay be written in a gauge such  \we have also shown that a large class of these multi-
that the singularities are located at the horizon and thug|ack-hole solutions allow a gauge choice which ensures that
follow geodesics. We now proceed to give some details ofpe singularities in the corresponding geometries follow geo-
this argument. _ desics. Geometrically the solutions then precisely encode the
We need to evaluate the Christoffel symb®i$ andI't BTz solution outside a number of horizons. These horizons
which vanish precisely where there are static geodesics. U e however all connected with each other, since the conical

puzzle of the unphysical geometries is solved. We study thﬁZOI’IS without violating the geodesic equation. The union of

Coussaert-Hen.neaux SOIL.'“O”S’ which are essentially Ord'éul these horizons appears to the outside observer as a single
nary BTZ solutions, but with the mass and angular momens

tum distributed in the same proportions on several source porizon. Only at the horizotand insidg is the difference to
. prop The single black hole solution noticable. In this picture of a
In our language this means that

single horizon, special light-like geodesics on the horizon are
identified pairwise, since they in fact represent the same

conical singularity, only approached from two different di-

rfo=rofo=r_r,f, (64)  rections(two different ridges on the saddle point of the func-

tion h).

where the single forni encodes the source distribution. As  Although we have not attempted in this paper to find
has been pointed out several times above this assumptiahe quantum states corresponding to the multi-black-hole
simplifies the interpretation of the solutions considerably.solutions, we have provided evidence that such states should

Now be included in the black hole spectrum. Namely, the
asymptotics at infinity of the classical solutions approach

the single-BTZ solutions so rapidly that the difference

, Fa@i(hg’(h) cannot be d_etected by any asymptotic gharggs_. Only
(65  non-asymptotic observables like the holonomies distinguish

between the solutions. It then seems quite unnatural to

. . exclude the sectors with multiple sources, in particular
where the signand the label) depends on the region. In gince the sources may be hidden inside the horizon. Presum-
general this expression and the oneFQf{dlverge atacom-  gply the additional sectors of the boundary conformal field
mon zero off and critical point ofh, butif g or g’ vanishes  theory that are required to represent multi-black-hole
at fch:_a same point the _whole expression lns_tea_d goes 1o zergg|ytions can also be understood by purely two-dimensional
This is what happens if the conical singularity is located at &gnsjderations, for instance by the requirement of modular

horizon. _ _ - invariance.
It only remains to argue that the singularities can be

moved to a horizon. Indeed, in region Il a infinitesimal shift
of h is equivalent to an infinitesimal gauge transformation
(36), and similar relations exist in the other regions. Assum-
ing that these transformations can be integrated, we conclude We would like to thank S@n Holst and Max Karlovini
that changes of functiomm are gauge transformations. By for useful discussions. It is a pleasure to also thank
adjustingh we can then makg or g’ vanish at a conical Marc Henneaux for a conversation about REZ0] and
singularity, i.e. a gauge transformation may take the singuingemar Bengtsson for one on papef4,25. The
larity to a horizon, where it follows énull) geodesic simply  work of B.S. was financed by the Swedish Science Research
by being stationary. Council.
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