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Multi-black-hole sectors of AdS3 gravity
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~Received 30 October 2000; revised manuscript received 20 April 2001; published 26 December 2001!

We construct and discuss solutions ofSO(1,2)3SO(1,2) Chern-Simons theory which correspond to mul-
tiple BTZ black holes. These solutions typically have additional singularities, the simplest cases being special
conical singularities with a 2p surplus angle. There are solutions with singularities inside a common outer
horizon, and other solutions with naked conical singularities. Previously such singularities have been ruled out
on physical grounds, because they do not obey the geodesic equation. We find however that the Chern-Simons
gauge symmetry may be used to locate all such singularities to the horizons, where they necessarily follow
geodesics. We are therefore led to conclude that these singular solutions correspond to physically sensible
geometries. Boundary charges at infinity are only sensitive to the total mass and spin of the black holes, and not
to the distribution among the black holes. We therefore argue that a holographic description in terms of a
boundary conformal field theory should represent both single and multiple BTZ solutions with the same
asymptotic charges. Then sectors with multiple black holes would contribute to the black hole entropy calcu-
lated from a boundary CFT.
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I. INTRODUCTION

Three-dimensional gravity has been a useful laborat
for exploring quantum gravity in a simplified setting. For
negative cosmological constant there are black hole solut
@1,2#, and the Bekenstein-Hawking entropy of the
Bañados-Teitelboim-Zanelli~BTZ! black holes have been a
tributed to boundary degrees of freedom at the horizon@3,4#,
at infinity @5# or at any intermediate timelike surfaces@6#.

Strominger’s asymptotic approach makes use of a part
lar property of asymptotically AdS solutions of thre
dimensional gravity discovered by Brown and Henneaux@7#:
the asymptotic isometries are represented canonically b
Virasoro algebra. The BTZ mass and spin determine
transformation properties under the conformal transform
tions ~conformal weights!. In conformal field theory an argu
ment by Cardy@8# can be used to relate central charges
Virasoro algebras to the densities of states at high weig
Similarly the asymptotic density of states of quantum grav
is fixed by the central charge. It is found to agree with e
pectations from the BTZ horizon area. This elegant argum
is independent of the precise conformal field theory rep
senting quantum gravity, and gives few details about
theory. Carlip has combined it with his horizon approach,
open the way to an understanding of the universal natur
black hole entropy@9#, and its relation to horizon area. Th
price is that the horizon is treated as an input, rather tha
a consequence of the global geometry, and again that de
of the field theory are lost.

The ability to compute black hole entropy quantum m
chanically does not mean that it is fully explained. Even
the simple case of 211 dimensions the gravitational back
grounds that contribute to the entropy are poorly understo
Ideally a correct count of boundary degrees of freedom at
horizon or at infinity should also tell us what bulk geometr
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are relevant, and how they are excited. They may also
represented differently in different quantum gravity theori
~In 211 dimensions there are several inequivalent quant
tions @10#.! To start investigating what geometries may re
resent the entropy we choose to study one descript
Chern-Simons theory@11,12#. In Chern-Simons theory the
map to the boundary theory is well known and produce
Wess-Zumino-Witten~WZW! theory @13–15#.

On the classical level one could ask which constant c
vature metrics~solving the equations of motion! look asymp-
totically like BTZ black holes, and could be expected to
equally important as the standard BTZ solution for the bla
hole entropy. Ban˜ados@16# ~see also@17# and@18#! has given
a simple analytic and general characterization of such s
tions, but unfortunately the analytic expression of the so
tion does not give directly the geometric structure of t
spacetime. In string theory approaches to black hole entr
BPS solutions which can be separated into multi-source
lutions play a prominent role@19#. This indicates that similar
solutions may be of interest also in pure gravity. Indeed,
will find that asymptotically, Chern-Simons multi-source s
lutions typically are closer than most of the solutions in@16#
and @17# to the standard BTZ solutions.

Chern-Simons multi-source solutions have been discus
as candidates for stationary multi-black-hole solutions
Coussaert and Henneaux@20#. Clement@21# found similar
solutions in a metrical formulation and generalized them
dynamical solutions with moving sources. His main motiv
tion for doing so was to correct the shortcoming also o
served in@20#, that the stationary solutions necessarily i
volve additional conical singularities which typically do n
follow geodesics.1 A non-geodesic behavior signals an u

1The presence of these singularities indicates that such solu
are different from the multi-black-hole solutions with multip
asymptotic regions that have been discussed by Brill@22,23# and
the wormhole solutions by Bengtssonet al. @24,25#.
©2001 The American Physical Society25-1
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TERESIA MÅNSSON AND BO SUNDBORG PHYSICAL REVIEW D65 024025
wanted transport of energy-momentum between the singu
ity and spacetime.

From our perspective this state of affairs is quite puzzli
The multi-source solutions could be expected to be on eq
footing with the BTZ solutions on the basis of the
asymptotic behavior, and as Chern-Simons solutions they
no less regular. Hence calculations of black hole entro
based on Chern-Simons theory and its expression in term
a boundary WZW model, which reproduce Bekenste
Hawking’s result, appear to include unphysical geometr
Is Chern-Simons theory, which has attracted so much at
tion as a model of quantum gravity, just not sensible a
theory of gravity?

Fortunately, there is a caveat in the above argument.
find that multi-source solutions have similar asymptotic b
havior, but also that they represent physical~though singular!
geometries. The crucial observation is that one should d
with gauge equivalence classes of solutions to Chern-Sim
theory rather than with individual solutions. As we show
Sec. IV B 1, all ‘‘unacceptable’’ Coussaert-Henneaux so
tions are gauge equivalent to perfectly acceptable solutio2

This is possible because the Chern-Simons gauge grou
larger than the diffeomorphism group. For a discussion
how the gauge symmetry conspires with the presence of
generate metrics in the Chern-Simons ‘‘formulation’’ s
Matschull @26#. In practice, gauge transformations move t
static conical singularities to the horizons, where they ob
the geodesic equation~by infinite redshift! as already ob-
served by Clement. If all Chern-Simons solutions have si
lar sensible representative geometries or not is left as an o
question. The Coussaert-Henneaux solutions dealt with
certainly constitute an important subclass.

In Sec. II we give our Chern-Simons formulation of th
BTZ black hole and in Sec. III we write this Chern-Simo
solution in a more geometric way, and are led to a mu
more general solution, which includes the multi-black-ho
solutions, some of which have already been discussed
Coussaert and Henneaux. We also discuss how gauge t
formations act on all these these solutions. In Sec. IV
specialize to the case of two black holes~more precisely two
excluded regions with closed timelike curves!. We study the
properties of this solution and the role of degenerate metr
We solve the problem of the non-geodesic singularities of
Coussaert-Henneaux solutions by choosing a suitable g
in Sec. IV B 1 and we end with conclusions in Sec. V.

II. THE BTZ BLACK HOLE

In (211)-dimensional gravity with a negative cosmolog
cal constant there exists a black hole solution to Einste
equations, the BTZ black hole@1#. It can be viewed either a

2It may seem strange that some gauge potentials give meanin
metrics while others in the same class do not, but this property
fact intrinsic to the Chern-Simons approach. The solutions to
equations of motion are pure gauge, and they may locally be tr
formed away, giving a completely degenerate metric, unless fur
conditions on the vector potentials are imposed.
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a metric approaching an AdS form asymptotically, or as
quotient of anti–de Sitter space@2#. The BTZ-metric can be
written

ds252N2dt21N22dr21r 2~Nfdt1df!2 ~1!

where the lapse functionN and the angular shiftNf are

N252M1
r 2

l 2
1

J2

4r 2
M5

r 1
2 1r 2

2

l 2
~2!

Nf 52
J

2r 2
J5

2r 1r 2

l
~3!

and 0,r ,`, 2`,t,`, 0,f,2p. M is the mass of the
black hole andJ is the angular momentum. Both these qua
tities can be expressed in terms of the values ofr (r 1 and
r 2) when the lapse functionN vanishes. They correspond t
the outer (r 1) and the inner (r 2) horizon of the black hole.
For the horizons to exist we needM.0 anduJu<Ml . When
r 1 coincides with r 2, we get extremal black holes,uJu
5Ml . We will be concerned mainly with the non-extrem
case.

The cosmological constantl is related to the length scal
l by the l521/l 2. We choose units such thatl 51. To fa-
cilitate the Chern-Simons formulation in Sec. II B we rewri
the metric differently the outer regionr .r 1 , the intermedi-
ate regionr 1.r .r 2 and the inner regionr 2.r .0. Thus
we make the following Rindler-like coordinate transform
tion in each regionr .r 1 , r 1.r .r 2 and r 2.r .0:

I: r 25r 1
2 cosh2S r2a2

p

2 D2r 2
2 sinh2S r2a2

p

2 D ,

a1
p

2
,r,` ~4!

II: r 25r 2
2 cos2~r2a!1r 1

2 sin2~r2a!, a,r,a1
p

2
~5!

III: r 25r 2
2 cosh2~r2a!2r 1

2 sinh2~r2a!, 0,r,a
~6!

a5arctanhS r 2

r 1
D . ~7!

The constanta is chosen in such a way thatr 50 corre-
sponds tor50. In these coordinates we get a one to o
correspondence betweenr and r. This will lead to the fol-
lowing metrics:

I:ds252sinh2S r2a2
p

2 D @r 1dt2r 2df#21dr2

1cosh2S r2a2
p

2 D @r 2dt2r 1df#2 ~8!
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MULTI-BLACK-HOLE SECTORS OF AdS3 GRAVITY PHYSICAL REVIEW D 65 024025
II: ds25sin2~r2a!@r 2dt2r 1df#22dr21cos2~r2a!

3@r 1dt2r 2df#2

III: ds252sinh2~r2a!@r 2dt2r 1df#21dr2

1cosh2~r2a!@r 1dt2r 2df#2.

If we look at the metric in the inner region III we find tha
our choice ofa causes the coefficient ofdf2 to vanish pre-
cisely whenr50 and to become negative whenr,0, i.e.
we will get closed timelike curves~CTCs!. Excluding the
negativer region in fact removes all CTCs@2#. We also note
that t is always a global Killing coordinate, timelike in I an
spacelike in II and III. Thexy plane is Euclidean in I,
Lorentzian in II and Euclidean in III, implying that ligh
cones are drastically tilted inside the black hole. The rad
coordinater is spacelike in I, timelike in II and spacelike i
III.

Here it makes sense to pause and think about the split
three different coordinate regions. The point we want
make may seem trivial in the metric formulation, but it w
reappear in the Chern-Simons formulation. Although
boundaries between the regions happen to coincide with
positions of the inner and outer horizons there is of cou
nothing special going on locally in these places. So why
we not simply continue our expressions from one side of
boundary to the other instead of changing analytic for
from region to region? The answer is that the analytic
pressions of the metric~8! become degenerate at the boun
aries of the regions, indicating that the coordinates beco
singular there. This coordinate singularity just means that
horizon is not covered by these particular coordinates. Th
exist other coordinates which also cover the horizon and
of the spacetime on the other side. As will become evide
our coordinates are still useful for finding generalized spa
times with singularities which are physical in a very defin
sense detailed in Sec. IV B 1.

A. Chern-Simons formulation of gravity

In the Chern-Simons formulation of three-dimension
gravity @11# isometries of the AdS background are gaug
For AdS the isometry group isSO(1,2)3SO(1,2) and we
call the respective gauge fields of each factorA5AkJk and
Ā5ĀkJk . TheSO(1,2) generatorsJk of a factor of the group
are different from those of the other factor, but since th
never appear multiplied together we shall not distinguish
tween them. The commutation rules within each factor
@Jk ,Jl #5ekl

mJm , with the conventione12
0 52e012521, and

metric hab52Tr(JaJb) of signature (21,1,1). The Chern-
Simons three-form

TrH A`dA1
2

3
A`A`AJ ~9!

and its counterpart for the other factor then serve as Lagra
ian densities, which automatically yield a generally covari
action. The equations of motion
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F5dA1A`A50 and F5dĀ1Ā`Ā50 ~10!

are then actually equivalent with Einstein’s equations, p
vided the identifications

gi j 5ei
aej

bhab ~11!

ei
a5

1

2
~Ai

a2Āi
a! ~12!

v i
a5

1

2
~Ai

a1Āi
a! ~13!

of the metric, the dreibein and the spin connection are ma
and the metric is non-degenerate. Solutions with metrics
are degenerate somewhere need special study. In the pr
paper we encounter cases where the degeneration c
sponds to coordinate singularity or to a conical singularity.
some of the cases the degeneration can be directly assoc
to horizons, with coordinate singularities in the accompa
ing ‘‘Schwarzschild-like’’ coordinate systems. Such dege
erations may be handled by attaching another coordin
patch with a boundary and gluing them together by the
propriate matching conditions. Then one may find a n
coordinate system covering the boundary region, with a m
ric which is non-degenerate. Thus the degeneration is n
coordinate invariant concept~unless restrictions are impose
on the allowed coordinate transformations at a suppo
boundary of spacetime!.

B. Chern-Simons representation of the BTZ black hole

Now we want to write down the Chern-Simons fields co
responding to the metric in each region, and then verify t
the field strengthF vanishes even at the horizons. We needF
to vanish everywhere in the interior of our space excep
singularities for the solutions to represent a spacetime w
constant negative curvature. A non-vanishing field strengt
the horizons can only come from a discontinuity in theA
field when we glue the different regions together~recall that
F5dA1A`A, and if A contains a step function the differ
ential gives rise to a delta function!. Since derivatives trans
verse to the boundary only appear inF for the longitudinal
componentsAt and Af , it is enough to ensure that thes
components are continuous.

Knowing the metric in the different regions, we ma
choose corresponding dreibeins and derive the correspon
spin connections from the equation of motions,dea1vb

a

`eb50 and dva1(1/2)ebc
a vb`vc52(1/2l 2)ebc

a eb`ec.
The result is unique up to local Lorentz transformations, a
a simple choice is
5-3
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I:H e52sinhS r2a2
p

2 D @r 1dt2r 2df#J01coshS r2a2
p

2 D @2r 2dt1r 1df#J11drJ2 ,

v52sinhS r2a2
p

2 D @2r 2dt1r 1df#J01coshS r2a2
p

2 D @r 1dt2r 2df#J1 ,

II: H e5drJ02sin~r2a!@r 2dt2r 1df#J11cos~r2a!@r 1dt2r 2df#J2

v5sin~r2a!@r 1dt2r 2df#J12cos~r2a!@r 2dt2r 1df#J2

III: H e5sinh~r2a!@2r 2dt1r 1df#J01drJ11cosh~r2a!@r 1dt2r 2df#J2

v5sinh~r2a!@r 1dt2r 2df#J01cosh~r2a!@2r 2dt1r 1df#J2 .
~14!
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These dreibeins and spin connections can be compared
those of Cangemiet al. @27#, who use a different radial co
ordinate@the same as in the metric~1!#. Otherwise the dif-
ferences are the choices of some of the signs and in the o
and inner regions the Lie algebra components are in
changed. Our choice ofa means that closed timelike curve
are excluded in the regionr.0, and it corresponds to th
boundary condition~at r50) that thef -component of the
dreibein is lightlike. In effect it relates the tangential comp
nents ofA and Ā at these boundaries.

From A5v1e and Ā5v2e we get the Chern-Simon
fields

I:Af5At5~r 12r 2!FcoshS r2a2
p

2 D
3J12sinhS r2a2

p

2 D J0G
II: Af5At5~r 12r 2!@cos~r2a!J21sin~r

2a!J1#

III: Af5At5~r 12r 2!@cosh~r2a!J21sinh~r

2a!J0#, ~15!

and

I: Āf52Āt5~r 11r 2!FcoshS r2a2
p

2 D
3J11sinhS r2a2

p

2 D J0G
II: Āf52Āt5~r 11r 2!@cos~r2a!J22sin~r

2a!J1#

III: Āf52Āt5~r 11r 2!@cosh~r2a!J22sinh~r

2a!J0#. ~16!
02402
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Here we see that our choice of dreibeins makes the long
dinal components ofA and Ā continuous when passing be
tween the regions (I→II and so on!. TheAr and theĀr just
become

I:Ar5J2 , II: Ar5J0 , III: Ar5J1

I: Ār52J2 , II: Ār52J0 , III: Ār52J1 .
~17!

Thus the only discontinuous component isAr , which in fact
cannot contribute to the field strength since it only depe
on r and the other components are continuous.Frr vanishes
by antisymmetry and the off-diagonal termsFfr and Ftr
vanish by relating the discontinuities of]rAf and ]rAt re-
spectively with that ofAr .

There is an important distinction between how the bou
aries between the regions are treated in the Chern-Sim
formulation and in the metric formulation. A naive analyt
continuation of the outer metric~8! to all r does not make
sense as a solution to Einstein’s equations, since it beco
degenerate at the horizon. In contrast, the Chern-Simons
mulations seems to leave us with a choice. There is noth
wrong with the expressions for the vector potentials I, II
III, even if they are extended to allr. We can take those
expressions as they are~giving us a problem in the gravita
tional interpretation! or we can match solutions and get
Chern-Simons version of the BTZ solution.

From a Chern-Simons perspective the matched disc
tinuous solutions and the smooth solutions are indistingu
able in the outer region, and they both make equally go
sense in the interior. Only imposing boundary conditions
the interior or imposing special gauge conditions may p
out one solution as preferable to the other. Thus a so
gravitational interpretation of the solutions is only possib
given special boundary conditions or gauge fixings of
vector potential. In generalizing the BTZ solution we w
ensure that the boundaries of different regions are alw
matched in the same way as in this original BTZ solution

To prepare for more general solutions let us write the B
solution in Cartesian coordinates,r5Ax21y2 and f
5arctan(y/x). In the inner region we can write it as
5-4
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Ax5g
2qy

x21y2
1]xrJ1 ~18!

Ay5g
qx

x21y2
1]yrJ1 ~19!

where

q5r 12r 2 ~20!

and

g5@cosh~r2a!J21sinh~r2a!J0#. ~21!

The second vector potential

Āx5ḡ
2q̄y

x21y2
2]xrJ1 ~22!

Āy5ḡ
q̄x

x21y2
2]yrJ1 ~23!

where

q̄5r 11r 2 ~24!

and

ḡ5@cosh~r2a!J22sinh~r2a!J0#. ~25!

In Cartesian coordinates it looks as ifr50 denotes a single
point in space. There is noa priori justification for this since
we choser50 to be special by hand, and all other equatio
r5const denote topological circles. On the other hand,
excludedr<0 on physical grounds, to get rid of closed tim
like curves. Furthermore, calculatingF in Cartesian coordi-
nates we get a delta function at the origin which we m
formally regard as a source, and in this context we can a
regardr50 as a single point.

C. Holonomies

In a gauge theory of flat connections,F5F̄50, gauge
invariant observables are scarce. The fields are locally p
gaugeA5U21dU, for U an element ofSO(1,2), and any
non-trivial observable has to be associated with the bou
aries of spacetime or be topological in nature. The simp
topological observables are holonomies~or Wilson loops!
measuring the effect of parallel transport along a closed l
in spacetime. For flat connections the result can only be n
zero if the loopCx ~based atx! is non-contractible. Then the
Wilson loop

W~Cx!5P expS R
Cx

AD 5U21~x!U~x1Cx!, ~26!

where P denotes path ordering of the exponential. As o
served by Cangemiet al. @27# it is simplest in our case to
take the closed curveCx at constant radial coordinate, i.e
02402
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along a level curve ofr. For two curvesCx and Cy which
can be continuously deformed into each other, but are ba
at two different pointsx andy, the holonomies are conjugate
W(Cy)5U(y)21U(x)W(Cx)U(x)21U(y). The eigenvalues
of W for two curves which can be continuously deform
into each other are thus equal. These eigenvalues are d
mined by the parametersq, q̄ and the eigenvalues of th
SO(1,2) Lie algebra elementsg and ḡ. It does not matter in
which coordinate patch we follow the level curves, becau
we have ensured that the connections are flat also at
boundaries between the patches.

Since the gauge group is a product of two rank one gro
it is enough to characterize the eigenvalues by the two tra
Tr W(C) and TrW̄(C). For the BTZ solutions we obtain

Tr W~C!52 cosh@pq#, Tr W̄~C!52 cosh@pq̄#,
~27!

for Wilson loops in the two-dimensional representation
SO(1,2). Via Eq.~3! the holonomies are then related to th
mass and spin of the black hole. In the complete classifi
tion of conjugacy classes ofSO(2,2) Lie algebra elements
@2# one finds that holonomies corresponding formally
imaginaryq or q̄ may occur, and furthermore that the case
coinciding eigenvalues@when TrW(C)52 or TrW̄(C)52#
allows for non-trivial holonomy matrices~in addition toW

51 or W̄51). These cases can be dealt with in the Che
Simons formulation by modifying the expressions forg and
ḡ.

III. MULTI-BLACK-HOLE SOLUTIONS

We will generalize the solution~19! to the case were we
have arbitrary many singularites. We will use the same fo
of the solution as in the inner region, regarding the Lie alg
bra direction of A.3 We may then try a solution

A5dhJ11~ f 1dt!g ~28!

g5g0~h!J01g2~h!J2 , ~29!

whereh is a scalar function generalizing the radial coord
nater and f is a spatial one-form which is closed except
isolated sources

d f52p(
i 51

N

qid
2~xW2xW i !dx`dy. ~30!

3If we exchangeJ1 with J2 we also have to change signs in fro
of theJ0 component, in order to preserve the commutation relati
which govern the equations of motion. If we exchangeJ1 with J0

we have to change the last condition in Eq.~32! below. There will
then be a minus sign in front ofg1, in effect exchanging trigono-
metric and hyperbolic functions. This is precisely the case in E
~15!, ~16! and ~17!.
5-5
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TERESIA MÅNSSON AND BO SUNDBORG PHYSICAL REVIEW D65 024025
Theqi determine the strength of the sources~the masses and
spins of black holes!. By integrating Eq.~30! over a large
disk D enclosing all sources we obtain

R
]D

f 5E
D

d f52p(
i 51

N

qi52pQ. ~31!

If appropriate boundary conditions onf are assumed,f
→Qdf asr→`. Then we may regardAt5Qg(h)→Af as a
natural generalization of the relationAt2Af50 satisfied by
single BTZ black holes. This is consistent with the ans
~28! after rescalingt.

The equations of motiondA1A`A50 are satisfied by
the vector potential~28! outside the sources (xWÞxW i), pro-
vided

dg0

dh
5g2 ,

dg2

dh
5g0 . ~32!

We recognize the equation for the hyperbolic functions
tering the BTZ solution, but now their arguments have be
generalized fromr to h. By permuting the Lie algebra ele
mentsJi in Eqs.~28!, ~29! one obtains solutions generalizin
the BTZ solutions for all three regions, provided the signs
Eqs. ~28!, ~29!, ~32! are changed accordingly. Matching o
the regions works precisely as in the BTZ case. Note that
Lie algebra elementg is spacelike, null or timelike depend
ing on the sign of Trg2, and that its sign is necessarily co
stant all over spacetime for the present solutions. The o
form f /Q generalizes the angular one-formdf in the BTZ
case.

Although any choices ofh and off satisfying Eq.~30! are
consistent with the equations of motion, we will concentr
on boundary conditions and combinations ofA and Ā solu-
tions that reduce to ordinary BTZ solutions both for asym
totically largeh and close to the sources~regions of closed
timelike curves!. All the important new features of these ge
eralized solutions are then associated with the fact that
are multi-centered, which in its turn implies that there will
critical points ofh andf. Such critical points can give rise t
degenerate metrics, a subject we shall return to in Sec. IV

The second gauge fieldĀ has analogous solutions i
terms ofh̄, ḡ2(h̄) andḡ0(h̄). In order to get solutions simila
to the BTZ solutions we may chooseh̄52h, ḡ2(h̄)
5g2(h̄) andḡ0(h̄)5g0(h̄), guided by Eqs.~15! and~16!. In
an inner region withg2 and g0 even and odd functions re
spectively, we obtain the vector potentials

A5~ f 1Qdt!g0~h!J01dhJ11~ f 1Qdt!g2~h!J2

Ā52~ f̄ 2Q̄dt!g0~h!J02dhJ11~ f̄ 2Q̄dt!g2~h!J2
~33!

and the metric

ds252g0
2
„h~x,y!…$r 2dt2 f 1~x,y!%21g2

2
„h~x,y!…

3$r 1dt2 f 2~x,y!%21dh~x,y!2, ~34!
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where

f 65
f̄ 6 f

2
, r 65

Q̄6Q

2
. ~35!

The metric is easily compared with the BTZ metric~8! in the
inner region~III !. The functionh1a has replaced the radia
coordinater, g0 and g2 represent the hyperbolic functions
and r 6df is replaced byf 6 . The last change is the mos
significant one, since two different one-forms are needed
generalizedf. Only whenf 1 and f 2 are proportional do we
get a direct multi-source generalization ofdf. This happens
when the ratio of the two charges at each source is cons
Irrespective of this we can make direct contact with the BT
solution very close to a charge, where the effect of the ot
charges is negligible, or at asymptotically large distanc
where the sum of the charges dominate the solution.

In the general case~34! we can still define regions of type
I, II and III, between which the solutions have to be match
and different choices of the functionh gives different regions
~even their topologies may be different!, but they are actually
related by gauge transformations, as we proceed to disc

A. Gauge transformations

One can check that the gauge transformation

dA5ddhJ11@A,dhJ1# ~36!

amounts to a change ofh into h1dh in the solution for
region III, implying that solutions with different functionsh
are equivalent if only their boundary conditions are the sam
Of course, an analogous statement is true forĀ. We stress
that the solutions are only equivalent in the Chern-Simo
formulation of pure gravity. To see this we may stud
horizons.

The boundary between region I and II resembles a h
zon and it is actually an event horizon for constant cha
ratios of all sources, if it consists of a single connected co
ponent. This is because we can then use coordinatesh andc
with dc5 f to obtain the ordinary BTZ metric in the exterio
region. The transformation to these coordinates works
ymptotically and also in the whole exterior region providef
does not have a zero there. In fact, we will show later that
multi-black hole solutions have singularities at zeroes of.
These singularities may be inside or outside a physical ev
horizon depending on the choice of the functionh. Such a
difference could for instance be detected by the propaga
of light rays in the background metric. Light rays are
course not included in a Chern-Simons description.

Even if there is little physics in the functionh, the multi-
black hole solution also depends on the formsf 1 and f 2,
which in their turn depend on the positions and charges
the sources. As will be discussed in the next subsection,
charges may be directly measured by holonomies around
sources. The positions of the sources are trickier, and ca
be resolved by the holonomies. Other available observa
are the asymptotic charges@28#. The generalf 1 and f 2 are
5-6
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MULTI-BLACK-HOLE SECTORS OF AdS3 GRAVITY PHYSICAL REVIEW D 65 024025
asymptotic to the corresponding BTZ forms, and the issu
if the approach is fast enough to give finite asympto
charges, but also slow enough to give non-zero values.

As an example we may compare a single source B
solution A1 with a solutionA2 with sources separated by
small coordinate distancex0 in the x direction. Then one
finds

A25A11d12A15A11x0~q22q1!dS 2y

x21y2D g. ~37!

Thusd12A1f scales asgr22 while A1f scales asgr21 with r
and the change is subleading. If the changed12A1f can be
written as an infinitesimal gauge transformdL12

A1 with a

decreasing gauge parameterL then the separation of the tw
sources is truly a matter of gauge choice at infinity and i
not detectable by any asymptotic charges.~It will still be
detectable by holonomies, corresponding to the fact that
gauge transformations are not defined everywhere, or do
belong to the identity component of the gauge group.! The
problem in our case is that the asymptotic behavior of
BTZ solution implies thatg has an exponential dependen
on r. The same is true forL12. Then the boundary values o
the fields and the transformation parameters are not well
fined. Fortunately, this problem may be circumvented by d
cussing the vector potentials

A85erJ2de2rJ21erJ2Ae2rJ2, ~38!

which locally are gauge transforms ofA but satisfy different
boundary conditions. In factABTZ8 is a constant and theA8 of
our generalized multi-source solutions approach constan
infinity. The A8 do however give rise to metrics which a
everywhere degenerate, and we just regard them as aux
solutions which help distinguishing asymptotic gauge tra
formations and global transformations generated
asymptotic charges. The parameters of global transfor
tions onA8 go to constants at infinity while true gauge tran
formations vanish asymptotically. The effect of both kinds
transformations on the fieldsA is simply obtained by the
mapping inverse to Eq.~38!. Conversely, by mapping toA8
transformations onA may be classified as gauge transform
tions or global transformations~or as changing boundar
conditions!.

Returning tod12A1f , its imaged12A1f8 under the map
~38! vanishes at infinity, implying that asymptotic charg
are left invariant by moving sources apart. In fact,d12A1f8
5dL12

A1 for L1252yg8/(x21y2) with a constantg8. Since

L12 diverges at the origin it does not give a globally we
defined infinitesimal gauge transformation and there can
be a physical difference between the solutions. In conclus
solutions with different numbers of sources are inequival
because of different holonomies, while different positions
the sources may or may not be observable depending on
global properties and boundary conditions of the finite ga
transformations effecting the translations. The asympt
charges are insensitive to these details, so they may
thought of as generating transformations co
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mon to several different sectors labeled by the numbers
sources, and possibly by their positions.

B. Multi-black-hole holonomies

We now wish to calculate holonomies

TrS P expE
C
AD . ~39!

We first calculate the ordinary integral over a closed loop

E
C
A5E XS f xg1

]h~x,y!

]x
J1Ddx1S f yg1

]h~x,y!

]y
J1DdyC,

~40!

here written out for an inner-type region. If the functio
h(x,y) is chosen in such a way that there are closed le
curves ofh(x,y) the termdh in the integral is zero, and
furthermore g is constant. Then the integral depends
which chargesqi are enclosed by the level curve,

E
C
A5gE

C
f 52pg(

i PI C

qi52pgqC , ~41!

where I C denotes the set of enclosed sources andqC the
enclosed charge. Since the eigenvalues of the traceless
matrix g are necessarily both real or both imaginary and a
up to zero, we may write

TrS P expE
C
AD 5e2pqCl1e22pqCl52 cosh~2pqCl!

~42!

wherel is one of the eigenvalues ofg , and independent o
h. The matrix corresponding to theĀ must also have eithe
both imaginary or both real eigenvalues which we calll̄ and
2l̄. So in general we get three different holonomy typ
depending on the eigenvaluesl andl̄: either one is real and
one imaginary, both are real or both are imaginary. When
just have one singularity it is known that these types w
correspond to different quotients of anti–de Sitter space.
ñadoset al. @2# have shown how different spaces are o
tained from anti–de Sitter by modding out subgroups
SO(2,2), and that BTZ black holes belong to one of the
classes of spaces. They also find three different types
spaces. The correspondence between their eigenvaluel8

and our eigenvalues isl185ql2q̄l̄ and l285ql1q̄l̄. In
our language the generic BTZ black hole corresponds to
case with two real eigenvalues. When both are imaginary
generally get conical singularities, except in the caseql

5q̄l̄5 i /2 , which curiously corresponds to AdS space.4 In
fact, we may also find ‘‘multi-AdS solutions’’ with several o
these AdS charges. They may possibly serve as ground s

4M521 andJ50 are obtained from Eqs.~20!, ~24! and~3! and
the metric~1! then represents AdS.
5-7
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of multi-black-hole sectors. Note that the holonomy aroun
single AdS charge is almost trivial, and around two it
entirely trivial.

Notice that we have not mixed holonomy type for t
different singularities. It would be interesting to find sol
tions where the sources give rise to different types of holo
mies.

IV. TWO SOURCES

We will study the solutions for the case with two sourc
in more detail. After verifying that the solutions approach t
single-source solution asymptotically and for vanishing se
ration of the charges, we will continue with a generalizati
to several sources of the procedure to exclude CTCs, and
will also discuss how the multi-source solutions generica
contain additional~mild! singularities.

Solutions with sources atx5x15x0 andx5x252x0 can
be written

At5@~r 112r 12!1~r 212r 22!#g ~43!

Ax5~ f 1x1 f 2x!g1
]h~x,y!

]x
J1 ~44!

Ay5~ f 1y1 f 2y!g1
]h~x,y!

]y
J1 ~45!

where

f 1x5q1

2y

~x2x0!21y2
, f 1y5q1

x2x0

~x2x0!21y2
~46!

f 2x5q2

2y

~x1x0!21y2
, f 2y5q2

x1x0

~x1x0!21y2
. ~47!

The conjugate fieldĀ,

Āx5~ f̄ 1x1 f̄ 2x!ḡ1
]h̄~x,y!

]x
J1 ~48!

Āy5~ f̄ 1y1 f̄ 2y!ḡ1
]h̄~x,y!

]y
J1 ~49!

where

ḡ5ḡ2~ h̄~x,y!!J21ḡ0~ h̄~x,y!!J0 . ~50!

In the BTZ-like inner region withh̄52h, ḡ2(h̄)5g2(h̄),
ḡ0(h̄)5g0(h̄) andg2 andg0 even and odd functions respe
tively, we find the metric
02402
a

-

-

we
y

ds252g0
2
„h~x,y!…$~r 121r 22!dt2~r 11 f 1x1r 21 f 2x!

3dx2~r 11 f 1y1r 21 f 2y!dy%21g2
2
„h~x,y!…

3$~r 111r 21!dt2~r 12 f 1x1r 22 f 2x!dx

2~r 12 f 1y1r 22 f 2y!dy%2

1H ]h~x,y!

]x
dx1

]h~x,y!

]x
dyJ 2

. ~51!

So far the functionh has been left unspecified. If, fo
instance, we chooseh(x,y)5Ar1r22a in terms of the ra-
dial coordinatesr1 and r2 centered on each of the tw
sources and a functiona approaching a constant~7! at infin-
ity and in the limit x0→0, we can ensure that the BTZ so
lution is approached both at infinity and asx0→0. To verify
this, start by looking at the metric in the outer region

ds252sinh2~Ar1r22a!„~r 111r 21!

3dt2@~r 12 f 1x1r 22 f 2x!dx1~r 12 f 1y1r 22 f 2y!dy#…2

1cosh2~Ar1r22a!„~r 121r 22!

3dt2@~r 11 f 1x1r 21 f 2x!dx1~r 11 f 1y1r 21 f 2y!dy#…2

1S ]h~x,y!

]x
dx1

]h~x,y!

]x
dyD 2

, ~52!

to see how it behaves asymptotically at infinity. In terms
polar coordinates (r,f) centered around (x,y)5(x1,0) ~im-
plying r5r1)

f 1x5
2y

r2
5

2r sinf

r2
, f 1y5

x2x0

r2
5

r cosf

r2

f 2x5
2y

r2
2

5
2r sinf

r2
2

, f 2y5
x1x0

r2
2

5
r cosf12x0

r2
2

~53!

the metric takes the form

dsouter
2 52sinh2~Arr22a!

3H r 1dt2S r 22~r212x0r cosf!1r 12r2
2

r2
2

3df1
2r 22x0sinf

r2
2

dr D J 2

1cosh2~Arr22a!

3H r 2dt2S r 21~r212x0r cosf!1r 11r2
2

r2
2

3df1
2r 21x0sinf

r2
2

dr D J 2

1H ]h~f,r!

]f
df1

]h~f,r!

]r
drJ 2

. ~54!
5-8



ith

s
ti-
cu
a
ca
a
s

in

lik
e

us
th

es

th

e

ed

r

ered
n

ay

ent

the

d
.
the
cer-
ace
uo-

time
vi-

rn-
ur
ich
we
rn-
e is
us-

MULTI-BLACK-HOLE SECTORS OF AdS3 GRAVITY PHYSICAL REVIEW D 65 024025
We see that the metric is asymptotic to the BTZ solution w
r 15r 111r 21 and r 25r 121r 22 whenr→` or x0→0.

A. Exclusion of closed timelike curves

In the BTZ solution~8! there are closed timelike curve
for r,0, and we expect similar pathologies in the mul
black-hole solutions inside the black holes. It is natural to
off the range of the coordinates precisely where CTCs
encountered. Here we show how this can be done in the
of two sources. The same procedure can be used for
number of sources. The resulting spacetimes then have
gularities in the causal structure if they are continued ‘‘
side’’ the sources.

Just as for the BTZ case~8! we need the vector field]f
for some periodic coordinatef to become lightlike at each
source in order to exclude regions containing closed time
curves. Coordinates which are periodic around curves
closing only single sources are readily found. We may
the angle between the line from the source to a point and
positivex direction, or we may used f1 andd f2 to measure
angular differences. Close to the sources these measur
angle all agree up to proportionality constants.

To localize the causal singularities to the positions of
sources it is then enough to choose the functiona appropri-
ately. In order to encounter closed timelike curves we hav
go to the inner region.

First study the metric in the inner region. It is obtain
from the outer metric~54! by exchangingr 1 with r 2:

dsinner
2 52sinh2~Arr2

2a!H r 2dt2S r 21~r212x0r cosf!1r 11r2
2

r2
2

3df1
2r 21x0sinf

r2
2

dr D J 2

1cosh2~Arr22a!

3H r 1dt2S r 22~r212x0r cosf!1r 12r2
2

r2
2

3df1
2r 22x0sinf

r2
2

dr D J 2

1H ]h~f,r!

]f
df1

]h~f,r!

]r
drJ 2

. ~55!

Now take a look at thegff component,

gff52S r 21~r212x0r cosf!1r 11r2
2

r2
2 D 2

sinh2~Arr22a!

1S r 22~r212x0r cosf!1r 12r2
2

r2
2 D 2

cosh2~Arr22a!

1
x0

4r sin22f

r2
3

1S ]a

]f D 2

12
x0

2Ar sin 2f

r2
3/2 S ]a

]f D , ~56!
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whenr50. We must choosea in order to make the vecto
field ]f lightlike at x5x0. For a with ]fa50 whenr50,
the condition that]f becomes lightlike becomes

gff52~r 11!2sinh2a1~r 12!2cosh2a50

⇒a5arctanhS r 12

r 11
D . ~57!

In the same way we can change to polar coordinates cent
aroundx52x0 which instead would lead us to the conditio

gff52~r 21!2sinh2a1~r 22!2cosh2a50

⇒a5arctanhS r 22

r 21
D . ~58!

In order to have both these conditions satisfieda can only be
a constant in the caser 12 /r 115r 22 /r 21 . Still, there are
many ways of choosing ana(r,f) that does not affect the
singularities or the asymptotics of the solutions. We m
choosea to be a constant at infinity, for instance

a5arctanhS r 12r21r 22r1

r 11r21r 21r1
D . ~59!

We see that in the caser 12 /r 115r 22 /r 21 this a will re-
duce to a constant. This will also be the case whenx050, i.e.
when the singularities are in the same point. The requirem
]fa50 whenr50 is also easily seen to be fulfilled.

To make the analogy with the BTZ case complete
different regions we had can be generalized to

I:0,r,a⇒0,Ar1r2,a

II: a,r,a1
p

2
⇒a,Ar1r2,a1

p

2

III: a1
p

2
,r⇒a1

p

2
,Ar1r2. ~60!

In Fig. 1 we have plotted the ‘‘horizons’’ when we have fixe
r 1 andr 2 but varying distancesx0 between the singularities
Although the equations determining the boundaries of
regions are similar to the single-BTZ case we cannot be
tain that we are dealing with true horizons, unless we tr
light rays through the new geometries. This explains the q
tation marks.

B. Singularities

In this subsection we discuss the nature of the space
singularities we necessarily encounter by interpreting gra
tationally the multi-source generalizations of the Che
Simons solutions giving rise to BTZ black hole metrics. O
goal is to find gauge choices in Chern-Simons theory wh
yield physically sensible geometries. Thus the metrics
consider should be thought of as composite fields in Che
Simons theory, and the discussion of gauge equivalenc
entirely in the Chern-Simons framework. For a clear disc
5-9
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FIG. 1. The inner and oute
‘‘horizons’’ in the xy plane at
fixed t for different x0.
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sion of the distinction between gauge equivalence in Che
Simons theory and in Einstein gravity see Matschull@26#.

The metric~34! may locally be written

ds252g0
2dT21g2

2dF21dh2, ~61!

with dT5r 2dt2 f 1 and dF5r 1dt2 f 2, since f 1 and f 2

are closed forms. This metric degenerates whereg0 or g2
vanishes, where one of the functionsT(t,x,y), F(t,x,y) or
h(t,x,y) has critical point, and wheredT, dF and dh are
linearly dependent. The coordinate singularities at the B
horizons and their multi-black-hole generalizations belong
the first case, but our solutions also display the other type
degeneracies, and we now proceed to investigate their in
pretation.

In the case when one of the functionsT, F or h has a
critical point, one may ignore the effects of the functionsg0
or g2 locally, since they may be absorbed into redefinitio
of T, F or h only in exceptional cases at the expense
changing the nature of the critical point~but see the follow-
ing subsection to appreciate the importance of these ex
tions!. Then the singularity is precisely of the kind discuss
by Horowitz @29# for zero cosmological constant. The sim
plest such singularity occurs between two equal char
separated by some distance.

To see what happens we study the equal charge solu
close to the origin. Theref 15 f 250 because the contribu
tions from the two charges cancel by symmetry. The me
~61! then degenerates at the origin at all times, becausedT
and dF both become parallel to the Killing directiondt.
Furthermore,h, which approaches infinity at infinity and as
sumes local minima at the positions of the charges, ha
have a saddle point. Due to gauge invariance~36! the posi-
tion of the saddle point may be chosen to be at the orig
making the metric on this line~in spacetime! even more
degenerate, of rank one. Generically we instead expect
generations to rank-two metrics on two-dimensional surfa
@29,30#. In fact, we have found that the map (t,x,y)
→(T,F,h) has three singular fold surfaces joined pairw
at three cusp lines if the saddle point ofh is displaced
slightly. The geometries of such complicated singularities
serve a special study, but for our purposes it is enough to
the simplest singularities in a gauge equivalence class.

Returning to the case of coinciding saddles we procee
determine the geometry close to the saddles. There we
approximately
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h5ax22by2

r 2 f 15r 1 f 25cd~xy!. ~62!

By rescaling coordinates andh we find a spatial line elemen

ds25d~xy!21
1

4
d~x22y2!25~x21y2!~dx21dy2!.

~63!

The areaAO and circumferenceCO of circles around the
origin are then related byCO

2 58pAO in contrast to the Eu-
clidean relationC254pA. Since the metric is manifestly fla
the difference can only be due to a conical singularity at
origin, and we conclude that there is a negative deficit an
of 2p.

We have argued that simple conical singularities with
surplus angle of 2p appear in the geometries with two equ
sources provided the gauge is chosen so that saddlesh
coincide with zeros off 1 and f 2. For n sourcesh typically
hasn21 saddles since it is chosen to haven local minima at
the sources and a maximum~infinity! at infinity. Similarly
f 1 and f 2 typically have n21 zeros, because of then
sources and the behavior at infinity. Iff 1 and f 2 are propor-
tional their zeros coincide, andh may be chosen to hav
saddles at the same points. Fixing the behavior ofh appro-
priately close to its saddles the local calculation is then
same as between two sources, and we conclude that ther
n21 conical singularities. Physically the proportionality
f 1 and f 2 means that the sources all have the same r
J/M of spin and mass. Other source distributions gener
lead to more complicated singularities in the geometry. So
of these may be removable like the coordinate singularite
the BTZ geometry, but some are likely to be required
global arguments, like the conical singularities we have j
discussed.

1. Geodesic singularities

The stationary conical singularities discussed above h
been found before by Clement@21# and by Coussaert an
5-10
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MULTI-BLACK-HOLE SECTORS OF AdS3 GRAVITY PHYSICAL REVIEW D 65 024025
Henneaux@20#. These authors have also remarked that s
singularities do not follow geodesics. This is quite disturbi
for the commonly used hypothesis that Chern-Simons the
should be relevant to the counting of black hole states.
ready at the classical level would Chern-Simons theory g
rise to geometries which seem to leak energy and mom
tum.

Fortunately, Chern-Simons theory itself contains t
answer to the problem. By asking under what prec
conditions the singularities are non-geodesic we may
an exception: when the singularity is located at a horiz
This case was already mentioned by Clement, but no
the Chern-Simons context where it becomes truly importa
While the set of geometries with singularities fixed
horizons may seem like an exceptional set of meas
zero, in Chern-Simons theory they are not exceptional
fact, large class of solutions~and all those considered b
Coussaert and Henneaux! may be written in a gauge suc
that the singularities are located at the horizon and t
follow geodesics. We now proceed to give some details
this argument.

We need to evaluate the Christoffel symbolsG tt
x and G tt

y

which vanish precisely where there are static geodesic
they can be made to vanish at the conical singularities
puzzle of the unphysical geometries is solved. We study
Coussaert-Henneaux solutions, which are essentially o
nary BTZ solutions, but with the mass and angular mom
tum distributed in the same proportions on several sour
In our language this means that

r 2 f 15r 1 f 25r 2r 1 f , ~64!

where the single formf encodes the source distribution. A
has been pointed out several times above this assump
simplifies the interpretation of the solutions considerab
Now

G tt
x 56~r 1

2 2r 2
2 !

f xgi~h!gi8~h!

f y]xh2 f x]yh
, ~65!

where the sign~and the labeli! depends on the region. I
general this expression and the one forG tt

y diverge at a com-
mon zero off and critical point ofh, but if g or g8 vanishes
at the same point the whole expression instead goes to z
This is what happens if the conical singularity is located a
horizon.

It only remains to argue that the singularities can
moved to a horizon. Indeed, in region III a infinitesimal sh
of h is equivalent to an infinitesimal gauge transformati
~36!, and similar relations exist in the other regions. Assu
ing that these transformations can be integrated, we conc
that changes of functionh are gauge transformations. B
adjustingh we can then makeg or g8 vanish at a conica
singularity, i.e. a gauge transformation may take the sin
larity to a horizon, where it follows a~null! geodesic simply
by being stationary.
02402
h

ry
l-
e
n-

e
e
d
.

in
t.

re
n

s
f

If
e
e
i-
-
s.

on
.

ro.
a

e

-
de

-

V. CONCLUSIONS

We have constructed and investigated solutions to th
dimensional AdS gravity which generalize the BTZ solutio
While the ordinary BTZ black hole can be viewed as a sin
source solution in the Chern-Simons formulation, we ha
constructed multi-source solutions. These solutions give
to a kind of multi-black-hole solutions, which however als
display other singularities. In the simplest cases the ad
tional singularities are fixed conical singularities, but mo
complicated cases also occur. Einstein’s equations br
down at these singularities, so they represent geome
which are not allowed in pure Einsteinian gravity. On t
other hand, they occur very naturally in the Chern-Simo
framework, which is natural for quantization, so we belie
that these multi-black-hole solutions should be included i
full Chern-Simons treatment of BTZ black hole entropy.

We have also shown that a large class of these mu
black-hole solutions allow a gauge choice which ensures
the singularities in the corresponding geometries follow g
desics. Geometrically the solutions then precisely encode
BTZ solution outside a number of horizons. These horizo
are however all connected with each other, since the con
singularities which join them cannot appear outside the
rizons without violating the geodesic equation. The union
all these horizons appears to the outside observer as a s
horizon. Only at the horizon~and inside! is the difference to
the single black hole solution noticable. In this picture o
single horizon, special light-like geodesics on the horizon
identified pairwise, since they in fact represent the sa
conical singularity, only approached from two different d
rections~two different ridges on the saddle point of the fun
tion h!.

Although we have not attempted in this paper to fi
the quantum states corresponding to the multi-black-h
solutions, we have provided evidence that such states sh
be included in the black hole spectrum. Namely, t
asymptotics at infinity of the classical solutions approa
the single-BTZ solutions so rapidly that the differen
cannot be detected by any asymptotic charges. O
non-asymptotic observables like the holonomies distingu
between the solutions. It then seems quite unnatura
exclude the sectors with multiple sources, in particu
since the sources may be hidden inside the horizon. Pres
ably, the additional sectors of the boundary conformal fi
theory that are required to represent multi-black-h
solutions can also be understood by purely two-dimensio
considerations, for instance by the requirement of modu
invariance.

ACKNOWLEDGMENTS

We would like to thank So¨ren Holst and Max Karlovini
for useful discussions. It is a pleasure to also tha
Marc Henneaux for a conversation about Ref.@20# and
Ingemar Bengtsson for one on papers@24,25#. The
work of B.S. was financed by the Swedish Science Rese
Council.
5-11



lli

cl.

n

ity
g on

n,

um

TERESIA MÅNSSON AND BO SUNDBORG PHYSICAL REVIEW D65 024025
@1# M. Banados, C. Teitelboim, and J. Zanelli, Phys. Rev. Lett.69,
1849 ~1992!.

@2# M. Banados, M. Henneaux, C. Teitelboim, and J. Zane
Phys. Rev. D48, 1506~1993!.

@3# S. Carlip, Phys. Rev. D51, 632 ~1995!.
@4# M. Banados and A. Gomberoff, Phys. Rev. D55, 6162~1997!.
@5# A. Strominger, J. High Energy Phys.02, 009 ~1998!.
@6# M. Banados, T. Brotz, and M.E. Ortiz, Nucl. Phys.B545, 340

~1999!.
@7# J.D. Brown and M. Henneaux, Commun. Math. Phys.104, 207

~1986!.
@8# J.L. Cardy, Nucl. Phys.B270, 186 ~1986!.
@9# S. Carlip, Phys. Rev. Lett.82, 2828~1999!.

@10# S. Carlip, gr-qc/9305020.
@11# A. Achucarro and P.K. Townsend, Phys. Lett. B180, 89

~1986!.
@12# E. Witten, Nucl. Phys.B311, 46 ~1988!.
@13# E. Witten, Commun. Math. Phys.121, 351 ~1989!.
@14# G. Moore and N. Seiberg, Phys. Lett. B220, 422 ~1989!.
@15# S. Elitzur, G. Moore, A. Schwimmer, and N. Seiberg, Nu

Phys.B326, 108 ~1989!.
@16# M. Banados, ‘‘Three-dimensional quantum geometry a

black holes,’’ hep-th/9901148.
@17# K. Ezawa, Int. J. Mod. Phys. A10, 4139~1995!.
02402
,

d

@18# J. Navarro-Salas and P. Navarro, Phys. Lett. B439, 262
~1998!.

@19# A. Strominger and C. Vafa, Phys. Lett. B379, 99 ~1996!.
@20# O. Coussaert and M. Henneaux, inGeometry of Constrained

Dynamical Systems, edited by John M. Charap~Cambridge
University Press, Cambridge, England, 1995!, pp. 150–157.

@21# G. Clement, Phys. Rev. D50, 7119~1994!.
@22# D. Brill, in Mathematical and Quantum Aspects of Relativ

and Cosmology: Proceedings of the Second Samos Meetin
Cosmology, Geometry and Relativity, edited by S. Cotsakis
and G. W. Gibbons~Springer, Berlin, 2000!, gr-qc/9904083.

@23# D. Brill, Ann. Phys.~Leipzig! 9, 217 ~2000!.
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