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Scalar field induced oscillations of relativistic stars and gravitational collapse
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We study the interaction of massless scalar fields with relativistic stars by means of fully dynamic numerical
simulations of the Einstein-Klein-Gordon perfect fluid system. Our investigation is restricted to spherical
symmetry and the stars are approximated by relativistic polytropes. Studying the nonlinear dynamics of iso-
lated compact objects is very effectively performed within the characteristic formulation of general relativity,
in which the spacetime is foliated by a family of outgoing light cones. We are able to compactify the entire
spacetime on a computational grid and simultaneously impose natural radiative boundary conditions and
extract accurate radiative signals. We study the transfer of energy from the scalar field to the fluid star. We find,
in particular, that depending on the compactness of the stellar model, the scalar wave forces the star either to
oscillate in its radial modes of pulsation or to undergo gravitational collapse to a black hole on a dynamical
time scale. The radiative signal, read off at future null infinity, shows quasinormal oscillations before the
setting of a late time power-law tail.
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I. INTRODUCTION

Obtaining reliable estimates for gravitational wave sign
emitted from the collapse of massive stars is one of the
motivations for numerical relativity. The strength of actu
astrophysical sources is still under investigation, as the
evance of such sources for the first and second generatio
interferometric detectors depends on the details of signal
plitude and frequency, but also on the occurrence rates~for a
current view, see@1#!. In any case, relativistic collapse is
fundamental physical process, and the development of
evant computational procedures has been a long steady
cess over the past three decades~see, e.g.,@2–4#; see also@5#
and references therein!. In contrast with a Newtonian ap
proximation, where the computational problem is well d
fined and attention can be devoted to astrophysical de
@5,6#, there is no consensus as to what is the optimal, o
least adequate, framework for developing relativistic simu
tions.

We will use here the so-calledcharacteristicformulation
of general relativity@7,8#. The formalism has been develope
specifically for addressing ambiguities concerning grav
tional radiation and is well adapted to handle the propaga
of signals. It allows for spacetime compactification, whi
avoids problems due to the artificial reflection of the fields
outer boundaries. In addition, it allows for the extraction
physically relevant global quantities, such as the News fu
tion and the Bondi mass. Nevertheless, the computatio
the dynamics ofsourcesof signals is a separate issue alt
gether, which has not been addressed in this early work.
framework for computing a complete spacetime within t
characteristic approach has been laid out in@9# and more
explicitly in @10#. The translation of this framework into
computational tool for vacuum spacetimes, in any dim
sions, has been a largely successful process~see @11# and
references therein!.

There are some noteworthy issues. First, the domain
0556-2821/2001/65~2!/024021~10!/$20.00 65 0240
s
y

l
l-
of
-

l-
ro-

-
ils
at
-

-
n

t
f
c-
of

he

-

of

applicability of the approach is limited to configurations
which the set of light cones that forms the backbone of
coordinate system does not fold itself into caustics. This p
a limit, for example, on the type of binary system that can
studied. Second, to obtain a completeregular spacetime~in
contrast with a black hole spacetime!, one must include in
the computational domain the vertex of the light cones. T
involves regularity conditions~and for explicit integration
methods, severe time-step restrictions!, which at present
have been resolved only up to axisymmetric configuratio
@12#. Nevertheless, the approach has remarkable econ
and stability, which makes it a good candidate for studies
isolated relativistic objects emitting gravitational radiatio
For the simulation of realistic astrophysical sources, o
would have to include suitable matter models. It was de
onstrated in @13# that the modern techniques of high
resolution shock-capturing schemes for solving the equat
of relativistic fluid dynamics can be effectively integrate
within this framework. A separate study, implementing th
new approach, focused on the gravitational radiation prop
ties of an accreting black hole@14#.

This work is the first example of the use of characteris
numerical relativity for the study of dynamical relativist
star spacetimes, collapse and generation of radiative sig
The present numerical study is performed in spherical sy
metry and uses a self-gravitating, massless, scalar field.
latter serves as a simple matter model which mimics gra
tational waves. It has been used frequently to study glo
properties of spacetimes, black hole formation and the pr
erties of radiative signals. This includes the interaction
scalar waves and black holes~e.g.@15,16#! and especially the
emergence of power-law tails@17–20#, which arise from late
time backscattering of the scalar field at the exterior spa
time geometry@21#. There are few studies of the interactio
of scalar fields with fluid stellar objects. Recently@22# ana-
lyzed the scattering of scalar fields off boson stars and
©2001 The American Physical Society21-1
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SIEBEL, FONT, AND PAPADOPOULOS PHYSICAL REVIEW D65 024021
emergence of critical solutions for this setup. They fou
that the scalar field can make the boson star either collaps
a black hole or disperse its mass to infinity.

Time-dependent simulations of the scattering of grav
tional wave packets off relativistic stars, as a means of co
puting the frequency spectrum of the relativistic star~see,
e.g., @23# for a recent review!, have been studied by Allen
et al. @24# for polytropic equations of state~EOS’s!, and by
Ruoff @25# for more realistic EOS’s. Such simulations we
performed using linear perturbation techniques. Pavlid
et al. @26# studied the radiative falloff of scalar fields in ne
tron star spacetimes, using~idealized! analytic, constant den
sity relativistic star models and assuming stationarity for
fluid and the geometry.

In the present work we investigate the nonlinear dynam
of relativistic stars interacting with scalar fields. We are
pecially interested in the following questions: How does
stable relativistic star react when it interacts with the sca
field? Can the scalar field induce gravitational collaps
What is the result of the interaction on the scalar field?
order to answer these questions we obtain numeric
spherically symmetric evolutions of the Einstein-Klei
Gordon perfect fluid system. We study the reflection of fin
scalar wave packets off relativistic stars for a series of m
els, parametrized, for a given polytropic EOS of polytrop
index n51, by the central density. Our study focuses on
dynamics of the system during the interaction, both the g
eration of nonlinear fluid oscillations and the gravitation
collapse of the fluid component to a black hole.

The paper is organized as follows. Section II describes
basic mathematical foundations of our approach. In Sec.
we discuss the numerical techniques and the implementa
used in the simulations. In Sec. IV, we present several
merical tests of the algorithms, aimed at assessing the co
implementation of the different code components: the hyd
dynamic evolution, the scalar field evolution, and the me
solver. Section V describes the actual numerical investiga
of the interaction between the relativistic stars and the sc
field. Finally, Sec. VI summarizes our findings. Througho
the paper we use geometrized unitsG5c51 and further
assume thatM (51. Greek indices run from 0 to 3.

II. MATHEMATICAL FRAMEWORK

We consider a general spherically symmetric spacet
with a two component stress energy tensor of a perfect fl
and a scalar field,Tmn5TF

mn1TF
mn . The geometry of our

setup follows the lines of the Tamburino-Winicour formalis
@9#, in particular as it is applied in regular spacetimes, wh
the foliation of light cones emanates from a freely fallin
central observer@10#.

A. Einstein equations

By adopting the Bondi-Sachs@7,8# form of the metric
element in spherical symmetry,

ds252
e2bV

r
du222e2bdudr1r 2~du21sinu2df2!,

~1!
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the spacetime geometry is completely described by the
functionsb(u,r ) andV(u,r ).

A sufficient set of Einstein equations for obtaining th
spacetime development are grouped as

Gur5kTur , ~2!

Grr 5kTrr , ~3!

GuuuG5kTuuuG , ~4!

where theu coordinate is defined by the level surfaces o
null scalar ~i.e., a scalaru satisfying ¹mu¹mu50). The r
coordinate is chosen to make the spheres of rotational s
metry have area 4pr 2. The x2,x3 coordinates in this geom
etry are simply taken to be the angular coordinates (u,f)
propagated along the generators of the null hypersurface,
they parametrize the different light rays on the null con
With our choice of units the constantk is simply k58p.
The first two Einstein equations, Eqs.~2! and ~3!, contain
only radial derivatives and are to be integrated along e
null surface. The last equation~4! is a conservationcondi-
tion, satisfied on the vertex of the null conesG due to the
regularity conditions. We chooseG to be a timelike geodesic
which coincides with the origin of a relativistic star atr 50.
Equation~3! may be substituted for by the equivalent expre
sion gABRAB58pgAB(TAB2gABT/2), where Rmn is the
Ricci tensor and the indices (A,B) run over the angular co
ordinatesx2,x3.

Using the line element and Eqs.~2! and ~3! the b andV
hypersurface equations are given by

b ,r52prTrr , ~5!

V,r5e2b@124pr 2~gABTAB2T!#. ~6!

The comma in the above equations indicates, as usual, pa
differentiation. Boundary conditions for„b(u)G ,V(u)G…,
needed for the radial integrations, are provided by impos
regularity at the origin, where the coordinate system is
sumed to be a local Fermi system, leading tob5O(r 2), V
5r 1O(r 3). By imposing such conditions at the origin, th
lapse of coordinate timedu is related to the correspondin
lapse of ‘‘retarded time’’dt measured by distant observers
r→` by

dt5e2Hdu, ~7!

whereH5 limr→`b.

B. Scalar field equations

The dynamics of a scalar fieldF is governed by the mini-
mally coupled Klein-Gordon equation in spherical symmet

¹m¹mF50, ~8!

where ¹m is the covariant derivative. The correspondin
stress energy tensor is given by

TF
mn5¹mF¹nF1Lgmn ~9!
1-2



-

n-

a

st
h

nt

eld

on

to
sis-

es

on

ral
r-
al
the

se
vo-

ull

-

be

the
tant
-
ta-
ing
tiv-
e

SCALAR FIELD INDUCED OSCILLATIONS OF . . . PHYSICAL REVIEW D 65 024021
where L is the massless scalar field Lagrangian (2L5
2¹mF¹mF). Using a characteristic foliation, Eq.~8! takes
the form

2~rF ,u! ,r5
1

r
~rVF ,r ! ,r . ~10!

In terms of the intrinsic 2-metric of the (u,r ) submanifold,

hCDdxCdxD52e2bduS V

r
du12dr D , ~11!

where the indices (C,D) run over the coordinates (u,r ), Eq.
~10! reduces to

h (2)g5
e22bg

r S V

r D
,r

, ~12!

whereg5rF andh (2) is the D’Alembertian operator asso
ciated withhCD .

C. Hydrodynamic equations

The evolution of the fluid is determined by the local co
servation laws of stress energy and density current:

¹mTF
mn50, ~13!

¹m~rum!50, ~14!

whereTF
mn is the stress energy tensor of a perfect fluid,

TF
mn5rhumun1pgmn. ~15!

All quantities in the above expression have their usual me
ings:r is the rest mass density,h511«1p/r is the specific
enthalpy,« is the specific internal energy andp is the pres-
sure of the fluid. Moreover,um is the four-velocity which
satisfies the normalization conditiongmnumun521.

Following @13#, after introducing the definitionsD
5ru0, Sr5TF

0r andE5TF
00, the fluid equations can be ca

into a first-order flux-conservative, hyperbolic system for t
state vectorU5(D,Sr ,E):

D ,u1F ,r
r052~ lnA2g! ,uD2~ lnA2g! ,rF

r0, ~16!

S,u
r 1F ,r

r152~ lnA2g! ,uSr2~ lnA2g! ,rF
r1

2Gmn
r TF

mn , ~17!

E,u1F ,r
r452~ lnA2g! ,uE2~ lnA2g! ,rF

r4

2Gmn
u TF

mn , ~18!

whereA2g5r 2 sinue2b is the square root of the determina
of the four dimensional metric andGmn

a are the Christoffel
symbols. The precise form of the vector of fluxesF can be
obtained by using Eqs.~13!,~14! ~see also@13#!. The explicit
relations between the primitive variablesw5(r,«,ur) and
02402
n-

e

the conserved variablesU5(D,Sr ,E), for a perfect fluid
EOS, p5(G21)r«, whereG is the adiabatic index of the
fluid, are given in@13#.

With the above definitions, the metric Eqs.~5!,~6! read,
for the combined stress energy tensor of a fluid-scalar fi
system,

b ,r52pr @rh~ur !
21~F ,r !

2#, ~19!

V,r5e2b@124pr 2~rh22p!#. ~20!

Following @27# we express the hydrodynamic quantities
the right-hand side of Eqs.~19!,~20! solely in terms of the
conserved hydrodynamic quantitiesU. This avoids the addi-
tional iterations required, when using explicit algorithms,
integrate the hypersurface equations for the metric con
tently with the normalization condition for the fluid.

In summary, the initial value problem consists of Eqs.~4!,
~12!, ~16!–~18!, and ~19!,~20!, the scalar field initial data
F(r ,u0) and initial and boundary data for the fluid variabl
(r,«,ur) on the initial sliceS0 ~at timeu0). Those equations
and initial data are sufficient for obtaining a global soluti
to the problem.

D. Global quantities

Making use of the characteristic formulation of gene
relativity and covering the infinite range of the radial coo
dinate with a finite grid allows us to refer to some glob
quantities of the spacetime such as the Bondi mass and
news function. Apart from their physical relevance, the
quantities can be used in global tests of our numerical e
lutions, as we will show below.

Instead of extracting the Bondi mass directly at future n
infinity we use the expression

M54pE
0

`

r 2e22bTrudr ~21!

for the Bondi mass at timeu in our numerical implementa
tion. Similarly, the news can be rewritten as@15#

N5
1

2
e22HE

0

`V

r
F ,rdr. ~22!

With these definitions, global energy conservation can
established:

M ~u!2M ~0!5E
0

u

24pN~ û!2e2H(û)dû. ~23!

III. NUMERICAL IMPLEMENTATION

In order to study the interaction of the scalar field and
relativistic star in a global spacetime we use nonequidis
grids for the radial coordinater. Furthermore, to avoid deal
ing with complicated stencils in the numerical implemen
tion, we make use of the following procedure, generaliz
previous implementations in characteristic numerical rela
ity ~see, e.g.,@12#!: Starting with an equidistant grid in th
1-3
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SIEBEL, FONT, AND PAPADOPOULOS PHYSICAL REVIEW D65 024021
coordinatexP@0,1#, we allow for a general coordinate tran
formation r 5r (x). Using the chain rule we rewrite the pa
tial derivatives appearing in the above equation with

~ !,r5~ ! ,x

dx

dr
, ~24!

thus effectively rewriting all our equations in the coordina
x. Unless otherwise stated we use the relation

r 5
15x

12x4
~25!

for all computations presented in this work. Using such
coordinate transformation, the repartition of grid points
the coordinater is almost equidistant for small radii and ge
infinitely sparse forx→1, which corresponds to future nu
infinity J 1.

We use a second order Runge-Kutta method to solve
metric equations~19! and~20!. To determine the equilibrium
models for the fluid configuration, we also use the Run
Kutta method to solve the Tolman-Oppenheimer-Volk
equations, formulated on a null hypersurface as in@13#.

The integration of the evolution equation for the sca
field Eq. ~12! @or equivalently Eq.~10!# proceeds with the
specification of initial dataF(u0 ,r ) on the initial null cone
u0. For the characteristic evolution we have used and co
pared two different algorithms. The first procedure is ba
upon the construction of a null parallelogram built up fro
incoming and outgoing radial characteristics@28#. In this
procedure one needs first to determine the right hand sid
Eq. ~12! at the center of the parallelogram to the desir
order of accuracy. Then, an integral relation between
source term and the values ofg at the four corners of the
parallelogram—which do not necessarily have to coinc
with grid points—has to be employed in order to compu
the scalar field at that corner of the parallelogram lying n
to the grid point that is to be updated. Suitable interpolatio
then give the scalar field at the new grid point to seco
order accuracy. The second alternative procedure we h
implemented to solve the scalar field equation is based o
direct discretization of Eq.~10! using a second order, finit
difference, nondissipative algorithm discussed in@29#.

Because of the stencils of the two algorithms, we can
use them at the origin, where regular behavior of the sc
field asF5a1br1cr2 is assumed. The linear term intro
duces a kink at the origin, but this is necessary in o
foliation—as can be seen from the analytic solution for
wave equation in Minkowski space consisting of an ingo
and an outgoing wave. Note that the scalar field enters
metric only through Eq.~19!, thus respecting the regularit
conditions at the origin. Substituting this ansatz into Eq.~10!
and grouping those terms with the same powers ofr we find
that a,u5b, b,u51.5c. Extracting the coefficientsa,b andc
on the null coneu0, we updatea andb to obtain the scalar
field at the first two grid points of the new hypersurfac
which then allows us to start the marching procedure al
the null hypersurface with either of the two algorithms d
scribed above.
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By experimenting with both algorithms, we found that, o
the one hand, the scheme based upon a direct discretiz
of the wave equation is more accurate in the long-term
havior in the interior of the numerical domain. This wa
relevant to resolve the late time falloff behavior of the sca
field, as we describe below in Sec. V. On the other hand,
algorithm based upon the null parallelogram is superior cl
to future null infinity, where we regularized the equatio
following the work of @12#. Therefore, for the results pre
sented in this work we have used a ‘‘hybrid algorithm’’ in
which a direct discretization of Eq.~10! is used in the inte-
rior of the computational domain and the parallelogram
gorithm is used close to future null infinityJ 1.

Concerning the numerical integration of the system of h
drodynamic equations, its hyperbolic mathematical chara
allows for a solution procedure based on the computation
~local! Riemann problems at each cell interface of the n
merical grid. At celli the state vectorU is updated in time
~from un to un11) using a conservative algorithm

Ui
n115Uj

n2
Du

Dx
~ F̂i 11/22F̂i 21/2!1DuSj , ~26!

where the numerical fluxes,F̂, are evaluated at the cell inte
faces according to some particularflux formulawhich makes
explicit use of the full spectral decomposition of the syste
For our particular formulation of the hydrodynamic equ
tions such characteristic information was presented in@13#.

In more precise terms the hydrodynamics solver of o
code uses a second order Godunov-type algorithm, base
piecewise linear reconstruction procedures at each cell in
face @30# and the Harten–Lax–van Leer–Einfeldt~HLLE!
approximate Riemann solver@31,32#. General information
on such schemes in relativistic hydrodynamics can be fou
e.g., in@33# and references therein.

IV. CODE TESTS

We now describe results of code calibration procedur
We present a range of tests in some detail, motivated by
central role of the present developments in future high
dimensional algorithms. The assessment of the numer
implementation is achieved primarily by comparing with i
dependent physical results and performing global ene
conservation tests.

A. Null cone evolution of stable stars

As a first step to validate the algorithms we start by stu
ing their ability to maintain the equilibrium of initially stable
relativistic star models. For this purpose we perform lon
term simulations of such initial data and analyze the stabi
of the code. Furthermore, we use these evolutions to c
pute the frequencies of the radial modes of pulsation.
compare the frequencies obtained with our nonlinear cod
results of linear evolutions from perturbation theory.

For all simulations presented in this paper the star mod
are approximated by a polytropic EOS, defined byp5KrG,
with polytropic constantK5100 and adiabatic exponentG
1-4
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SCALAR FIELD INDUCED OSCILLATIONS OF . . . PHYSICAL REVIEW D 65 024021
[111/n52. Hence, the index of the polytrope isn51. For
the simulation presented in this section we choose the m
with central densityrc51.531023 ~recall that we are using
units in whichG5c5M (51). This model is located in the
stable branch of the central density—total mass—diagr
When evolving this model with our numerical code we a
able to maintain a stable equilibrium for thousands of lig
crossing times of the star without any sign of numerical
stabilities.

To validate the code further we compute the frequenc
of radial pulsation modes. To achieve this, in the pres
Eulerian framework, we must allow the star to~radially! con-
tract and expand during the evolution. Following@34# ~see
also @35#!, we surround the star with a few zones represe
ing an artificial ‘‘atmosphere’’ filling an otherwise vacuum
region. The density in this atmosphere is set to sufficien
small values such that its presence does not affect the
namics of the system. Typical values we choose
1027–1028 times the central density of the star. Furthe
more, to avoid any numerical problems due to~shock! heat-
ing in the atmosphere~the fluid in those zones is not i
equilibrium and, therefore, it will collapse/accrete onto t
star!, we follow the recipe described in@34# and enforce
adiabatic evolution~by using the polytropic EOS! in the at-
mosphere and in the outer layers of the relativistic star~com-
prising the outermost 10 grid points!. After each time step, if
the density has fallen below 1.5 times the density of
atmosphere, the hydrodynamic quantities are reset to t
atmosphere values. The innermost location where this pr
dure is done defines the radius of the star. As describe
more detail in the next section the above values of the at
sphere density are small enough to guarantee conservati
energy despite the artificial resetting procedure.

When evolving our stellar model in time, we find sma
deviations around the equilibrium values due to the discr
zation errors. As a result, the star oscillates in a superpos
of radial modes. Figure 1 shows the radial velocity at h
stellar radius for the above model as a function of the
tarded time measured by distant observers. This simula
was performed with a grid of 800 zones covering the co
plete radial domain. This amounts to using about half of
available grid in resolving the relativistic star.~We choose
this resolution here to allow for comparisons with the resu
of Sec. V, where we resolve the scalar field as well!. As
shown in @35# one can use such evolutions to obtain t
frequencies of the excited modes of pulsation of the star
simply Fourier transforming those data. In general, howe
the excitation of the different modes by the truncation er
of the numerical schemes may not be sufficient to accura
determine the mode frequencies. The truncation error of
discretization scheme introduces at each grid point a non
tionary perturbation. The pointwise nature of those pertur
tions implies that the spectrum of induced oscillations
fairly broad, essentially covering all wave numbers rep
sentable on a given grid resolution, but with varying pow
in different regimes. In order to excite the relevant mod
more strongly, we perturb the density of the equilibriu
models with an explicit functionr5r01Arc sin(pr/R),
whereR denotes the radius of the star~see Table I below!
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and r0 is the density of the unperturbed star. The typic
amplitude we use for this perturbation isA51026.

Figure 2 shows the frequencies of the fundamental m
and the first two overtones obtained by a Fourier transfo
of the radial velocity profiles. The dashed vertical lines
this plot were obtained using a code@36# that solves the
linearized perturbation equations. The agreement betw
the two codes is very good. Similar results were obtained
a relativistic polytrope withrc52.831023, for which the
fundamental mode is already rather small, the star be
close to the unstable branch. We note that the code is ab
track considerably higher overtones as well, but for the s
of clarity in the comparison it is sufficient to show only th
first two harmonics.

B. Scalar field dynamics in a regular spacetime
In this section we present results aimed to validate

numerical implementation of the Einstein-Klein-Gordo
solver. For this purpose we investigate the reflection o

FIG. 1. Time evolution of the radial velocityux at the half
radius of the star. The stellar model has a central densityrc51.5
31023. The oscillations are essentially undamped for the evolut
shown, which reflects the small viscosity of the hydrodynam
scheme employed.

TABLE I. Equilibrium properties of theK5100, n51 relativ-
istic star models in units in whichc5G5M (51. The entries are
as follows: rc is the central density,M and R are the mass and
radius of the star, respectively, andC52M /R is the compactness
parameter.

rc (1023) M R C52M /R

1.5 1.47 9.26 0.317
2.2 1.60 8.45 0.379
2.8 1.63 7.91 0.412
2.9 1.64 7.84 0.418
3.0 1.64 7.76 0.423
1-5
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SIEBEL, FONT, AND PAPADOPOULOS PHYSICAL REVIEW D65 024021
scalar field at the origin of the coordinate system, turning
the hydrodynamics module of the code. The initial data
the scalar field packet are

F05231023e2(r 214)2. ~27!

The location of this Gaussian pulse is chosen in such a
that, if superposed on the relativistic star spacetimes of
previous section, the scalar field data would initially lie ou
side the relativistic star. Evolving these data, the initial pu
approaches the origin, is reflected, and radiates away, lea
behind Minkowski space. Such a sequence can be follo
in Fig. 3, for a simulation employing a grid of 800 zones. W

FIG. 2. Fourier transform of the time evolution shown in Fig.
The peaks in the Fourier transform indicate the mode frequencie
the fundamental radial mode~aroundf 51.4 kHz! and the first two
harmonics. The relativistic star model has a central densityrc

51.531023. The dashed vertical lines indicate the correspond
frequencies obtained with a perturbative~linear! code. The units on
the y axis are arbitrary.

FIG. 3. Radial profiles of the scattering of a scalar field off t
origin of the coordinate system. The number labels refer to the t
coordinateu. For timesu>35 the pulse has completely radiate
away, leaving Minkowski spacetime behind.
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note the stability and smoothness of the solution, both at
origin and atJ 1. By evaluating global energy conservatio
according to Eq.~23!, after the pulse has reflected off th
origin, we find that the energy is conserved~as expected! to
second order accuracy. As an aside we note that by sim
changing the origin treatment in the code, it is possible
study the evolution of a scalar field outside a spherical bl
hole. We performed such a simulation finding agreem
with the results of@19#.

C. Global energy conservation

We consider now the full set of equations and prescr
initial data consisting of a scalar field component given
Eq. ~27!, together with a stable, equilibrium, relativistic st
model with initial central densityrc51.2831023, K5100
andG52. We calculate for this stellar model a total mass
1.4M ( , in agreement with@35#. We perform simulations of
the scalar field scattering off the relativistic star, focusing o
study in this section on the assessment of the global en
conservation properties of the coupled numerical algorith
A comprehensive study of the dynamics of the scattering
deferred to Sec. V.

Figure 4 shows the Bondi mass of the relativistic sta
scalar field spacetime as a function of retarded time, co
bined with the total mass of the scalar field radiated away
null infinity. As one can clearly see from this figure, th
spacetime is losing mass exactly at the rate that energ
radiated to null infinity by the scalar field.

By computing Eq.~23! at a fixed retarded time oft
50.5 ms for different grid resolutions, we find that our co

of

g

e

FIG. 4. Bondi mass of the spacetime and total radiated energ
the scalar field as a function of retarded time for different reso
tions. At the beginning, the scalar field contributes to the Bo
mass of the spacetime (1.405M (), before the Bondi mass drops i
a small time interval, when the main part of scalar field mass~about
531023M () is emitted to future null infinityJ 1. As the sum of
the two curves is constant, the energy is globally conserved~with a
relative error of about 531026 for the run with 1600 zones.!. The
mass drops in two steps around 0.2 ms, which can be seen from
magnified figure obtained for the case of 1600 zones.
1-6
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conserves the energy globally with a convergence rate
lies between 1 and 2. The fact that the convergence rate
drops below second order is, however, to be expected, s
the approximate Riemann solver used for the integration
the hydrodynamic equations is only~locally! first order ac-
curate at discontinuities~i.e., the surface of the star! and at
local extrema~i.e., the center of the star! ~see the related
discussion in@35#!. Nevertheless, for the highest resolutio
we have used, 2000 radial grid points, the relative erro
the energy conservation is of the order of 231026 for this
very dynamical simulation.

At first sight the decay of the scalar field mass in tw
steps as shown in Fig. 4 around 0.2 ms seems surpris
However, looking at the radiated powerdMB /du5
24pe22H(limr→`g,u)2 and approximating the solution o
Eq. ~12! by the solution in Minkowski spaceg(u,r )
5 f (u/21r )2 f (u/2), where f is determined by the initia
profile with suitable falloff behavior for large radii, the rad
ated power readsdMB /du52pe22Hf 8(u/2)2. Hence the
radiated power as a function of time measures the squar
the derivative of the initial scalar field profile.

V. DYNAMICS OF SCALAR FIELD –RELATIVISTIC
STAR INTERACTIONS

In this section we present our main results concerning
scattering of a scalar field pulse off a relativistic star.
mentioned before, we usen51 relativistic polytropes as the
underlying star model. All configurations we construct a
stable and are characterized by increasing central dens
and compactness. Their basic properties are summarize
Table I.

On the initial outgoing light cone, in addition to the flui
data we introduce a scalar field component in the shape
Gaussian pulse according to Eq.~27!, thus fixing the pulse
amplitude, width and location. For these initial data there
no significant initial overlap between the star and the sc
field which then makes it possible to associate a spec
initial mass with each one of the matter fields.

In our exploration of the parameter space, we use
central density as the only free parameter, maintainin
single polytropic EOS and fixing the profile and amplitude
the scalar field. This is clearly a severe restriction in
parameter space of the scattering problem. Nevertheless
choose this particular setup since we are interested in in
tigating the relativistic effects of the interaction, where t
scalar field has a strong impact on the dynamics of the r
tivistic star. A detailed analysis of the whole parameter sp
is beyond the scope of this work.

When evolving in time the initial data, the scalar fie
travels inwards, enters the relativistic star and is finally
flected at the origin of the coordinate system. Contrary to
Einstein-Klein-Gordon system in vacuum~which was briefly
discussed in Sec. IV B!, the presence of the star and its a
sociated potential well may give rise to a phase of multi
reflections of the scalar field. This, in turn, is reflected in t
existence of quasiperiodic signals~trapped modes!, as dis-
cussed, e.g., by@26#, before its energy is radiated away. Fu
thermore, our relativistic star models have been chosen
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veniently close to the maximum of the stability curve
aboutrc53.231023. Depending on the compactness of t
neutron star onto which the wave pulse impacts, the stars
forced to either oscillate violently, or collapse to a black ho
on a dynamical time scale. Figure 5 shows the spacet
diagram for the least compact relativistic star model of o
sample, withrc51.531023. For this model, the scalar field
is able to force the star to contract and to expand, pulsa
radially, as can clearly be identified in the varying location
the star’s radius~the vertical solid line in Fig. 5!.

Figure 6 displays the time evolution of the central dens
of the different relativistic stars in our setup. The solid lin
correspond to the relativistic star–scalar field system. Co
spondingly, the dashed horizontal lines indicate the evolut
of the equilibrium relativistic star modelswithout the pres-
ence of the scalar field. As already mentioned the initial flu
configurations are stable. The evolution is characterized
the appearance of small-amplitude oscillations associa
with the radial modes of pulsation of the star~which are too
small to be seen in the figure!. On the other hand, all rela
tivistic star–scalar field models with initial central densi
below 2.831023 also oscillate around the stable equilibriu
model. The oscillation frequencies of the two least comp
models correspond to the frequencies calculated in the lin
regime, even though the amplitude of the oscillations is n
much larger due to transfer of energy from the scalar fie
This is no longer the case for the model with a central d
sity of rc52.831023. For this model, which is close to th

FIG. 5. Spacetime diagram of the reflection of a Gaussian sc
field pulse off a relativistic star (K5100, n51 and rc51.5
31023). The diagram focuses in the strong field region but w
obtained from a global simulation of the spacetime. The dot
curves covering the whole diagram are outgoing light cones, wh
bend due to the spacetime curvature~the thicker dashed line corre
sponds to the initial light cone!. The scalar field pulse, initially
located atr 514, travels inward, enters the relativistic star and
reflected at the origin of the coordinate system~the solid line cor-
responds to the maximum value of the scalar field!. The interaction
with the scalar field triggers the oscillation of the relativistic st
which can be seen from the vertical solid line of varying location
the diagram, which indicates the radius of the star.
1-7
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threshold of black hole formation, the amplitude of the o
cillations is big enough to show nonlinear effects, the os
lation frequency being much smaller than the value obtai
from linear studies. For the models with central densities
rc52.931023 and 3.031023 the interaction with the scala
field is able to trigger their gravitational collapse to a bla
hole on a dynamical time scale. Unfortunately, due to
merical inaccuracies arising at the end of the simulation
are not able to follow the collapse process once the ev
horizon is about to form~similar problems were reported i
@27# for the collapse of supermassive stars!. However, con-
vergence studies show clear evidence that these models
lapse to black holes. Further evidence is given by the ev
tion of the relativistic star radii, as shown in Fig. 7, and t
blow-up of the redshift between the stellar center and fut
null infinity. We have plotted in Fig. 8 the redshift factore2H

relating the lapse of local proper time at the origin to t
lapse of proper time at infinity according to Eq.~7!. For
example, for the model with central densityrc52.931023,
initially, the redshift factore2H between the center of the sta
and observers located atr→` is 2.1. By the end of the
simulation it has increased to a value of 59.5. This h
redshift factor explains the appearance of a kink in the c
tral density toward the end of our numerical evolution~see
Fig. 6!. We note that global energy conservation is w
maintained, even for these extreme hydrodynamic sim
tions. The relative deviation from energy conservation
cording to Eq.~23! when the evolution stops is of the ord
of 1024.

By analyzing the energy transfer from the scalar field
the relativistic star during the interaction we find that it i
creases with the compactness of the stellar model. This

FIG. 6. Central density of the relativistic stars interacting w
the scalar field as a function of retarded time. The curves are lab
according to the stellar compactness in Table I. The three less c
pact models, withrc<2.831023, oscillate strongly around thei
equilibrium value after interacting with the scalar field. The oth
two more compact models collapse to a black hole instead o
dynamical time scale. The dashed lines are taken from our ev
tions of the equilibrium model without the presence of the sca
field.
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havior is shown in Table II. We remark that the initial ma
of the scalar field is not strictly the same in all cases cons
ered, due to the different underlying geometry on which
initial scalar field data are set. We evaluate the total radia
mass in the scalar field at a retarded time oft50.6 ms. The
mass radiated away to infinity after this time is negligible

Next we analyze the behavior of the scalar field in the
scattering simulations. In Fig. 9 we plot the~retarded! time
evolution of the news, Eq.~22!, for the whole sample of our
star models. The scalar field signal measured at null infin
can be divided into three phases. The first phase, before
main pulse reflects off the origin~not shown in the figure! is

ed
m-

r
a

u-
r

FIG. 7. Time evolution of the radius of the different relativist
stars interacting with the scalar field. The radius of the two m
compact models decreases dramatically, indicating that they
dergo gravitational collapse to a black hole.

FIG. 8. Time evolution of the redshift factore2H relating the
lapse of proper time at the origin to the lapse of proper time
infinity according to Eq.~7!. The rapid increase in the redshift fac
tor for the two most compact models gives clear evidence for
formation of black holes.
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dominated by an initial backscattering with small signal a
plitude. The second phase, whose duration depends on
compactness of the relativistic star@26#, is characterized by
the reflection of the main scalar field back and forth betwe
the origin and the maximum of the relativistic star curvatu
potential, which, in turn, induces the appearance of quasi
mal oscillations on the scalar field. Most of the energy
radiated away in this period. Once the pulse has lost su
cient energy it enters a third phase, during which the beh
ior of the signal is dominated by a power-law tailN}t2a,
with a53, due to the reflection of the scalar field at t
exterior Schwarzschild geometry@21,17,18,26#. Since the
compactness of our models is well below the Buchdahl li
C58/9, the quasinormal mode ringing phase does not
for an extended period of time. Therefore, after a few refl
tions trapped inside the curvature potential, the signal rap
enters the power-law tail phase. From Fig. 9 one can see
the more compact the relativistic star, the larger the qu

TABLE II. Energy transfer from the scalar field to the relativi
tic star during the scattering process. The entries are as followsrc

is the central density of the relativistic star,M0
F is the initial mass of

the scalar field,Erad is the total radiated mass, andEtrans is the
percentage of the energy transferred in the interaction. We use
in which G5c5M (51.

rc (1023) M0
F (1023) Erad (1023) Etrans (%)

1.5 4.90 4.86 0.8
2.2 4.80 4.72 1.7
2.8 4.76 4.65 2.3
2.9 4.75 4.63 2.5
3.0 4.75 4.62 2.7

FIG. 9. Time evolution of the news function during the scatt
ing problem. The different lines correspond to the different mod
in our sample of Table I, and are labeled in the plot with respec
the compactness parameter. The duration of the more dynamic
sinormal ringing phase strongly depends on the compactness o
relativistic star model, increasing as the compactness increases
late time behavior of the signal decays as an inverse power la
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normal ring-down phase. We also point out that by going
more compact models, increasing the central density of
relativistic star beyond the maximum of the stability cur
~i.e., going into the unstable branch! and freezing the hydro-
dynamics and metric evolution to avoid gravitational co
lapse, we are able to find a much longer ring-down pha
Our results, obtained for fully self-gravitating, polytrop
relativistic star models, are in good agreement with previo
findings by Pavlidouet al. @26#, who used a more idealize
setup consisting of constant density, static stars.

The study of the late time power-law tails requires i
creased resolution, especially for large radii; hence we h
used a different radial coordinate for these simulationsr
530x/(12x4). This allowed us to resolve the power-la
behavior in Fig. 9, preventing the evolution from bein
dominated by numerical noise mainly due to reflections.
performing a linear regression study of the tails in the tim
interval log(t @ms#)P@0.3;0.7#, we obtain the results sum
marized in Table III. We find the correct power-law behavi
of the scalar field in our fully dynamical evolutions, as pr
dicted by both linear analysis and nonlinear numerical e
lutions of scalar fields in the exterior black hole geome
@17–19#. Note that we measure the tails on the new
whereas the results of the above references read off the q
tity g at future null infinity J 1. The two quantities are re
lated by

N5e22Hg,u . ~28!

VI. SUMMARY

We have analyzed numerically the interaction of relat
istic stars and scalar fields by means of nonlinear evoluti
of the Einstein-Klein-Gordon perfect fluid system in sphe
cal symmetry. We have built a sequence of stable, s
gravitating,K5100, n51 relativistic polytropes, increasing
the central density fromrc51.531023 to 3.031023 (G
5c5M (51). Using a compactified spacetime foliatio
with outgoing null cones we have studied the fate of t
relativistic stars when interacting with a sufficiently stron
scalar field wave packet, as well as the dynamics and e
getics of the process.

We have found that by choosing a strong~finite ampli-
tude! scalar field pulse with energy of the order of 1023M ( ,
the relativistic star is forced either to oscillate in its rad
modes of pulsations or to collapse to a black hole on a
namical time scale. The fate of the star depends on its cen
density and, since we fix the polytropic equation of state,
its compactness. The energy transferred to the relativistic

its

-
s
o
a-

the
he

TABLE III. Late time power-law behavior of the newsN}t2a

for the ~stable! relativistic star—scalar field scattering problem. Th
results agree with the valuea53 predicted by linear theory.

rc (1023) a

1.5 3.06
2.2 3.05
2.8 3.05
1-9
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increases with increasing compactness of the model. The
diative signals we have found in our fully nonlinear simu
tions consist of several quasinormal oscillations and a
time power-law tail, in agreement with the results predic
by ~linear! perturbation analysis of wave propagation in
exterior Schwarzschild geometry@21#.
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