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Scalar field induced oscillations of relativistic stars and gravitational collapse
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We study the interaction of massless scalar fields with relativistic stars by means of fully dynamic numerical
simulations of the Einstein-Klein-Gordon perfect fluid system. Our investigation is restricted to spherical
symmetry and the stars are approximated by relativistic polytropes. Studying the nonlinear dynamics of iso-
lated compact objects is very effectively performed within the characteristic formulation of general relativity,
in which the spacetime is foliated by a family of outgoing light cones. We are able to compactify the entire
spacetime on a computational grid and simultaneously impose natural radiative boundary conditions and
extract accurate radiative signals. We study the transfer of energy from the scalar field to the fluid star. We find,
in particular, that depending on the compactness of the stellar model, the scalar wave forces the star either to
oscillate in its radial modes of pulsation or to undergo gravitational collapse to a black hole on a dynamical
time scale. The radiative signal, read off at future null infinity, shows quasinormal oscillations before the
setting of a late time power-law tail.
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[. INTRODUCTION applicability of the approach is limited to configurations in

Obtaining reliable estimates for gravitational wave signalswhich the set of light cones that forms the backbone of the
emitted from the collapse of massive stars is one of the kegoordinate system does not fold itself into caustics. This puts
motivations for numerical relativity. The strength of actual a limit, for example, on the type of binary system that can be
astrophysical sources is still under investigation, as the relstudied. Second, to obtain a compleggular spacetime(in
evance of such sources for the first and second generation obntrast with a black hole spacetim®ne must include in
interferometric detectors depends on the details of signal anthe computational domain the vertex of the light cones. This
plitude and frequency, but also on the occurrence rdtesa  involves regularity conditiongand for explicit integration
current view, se¢l]). In any case, relativistic collapse is a methods, severe time-step restrictipnshich at present
fundamental physical process, and the development of rehave been resolved only up to axisymmetric configurations
evant computational procedures has been a long steady pridt2]. Nevertheless, the approach has remarkable economy
cess over the past three decages, e.g[2—4]; see alsg5]  and stability, which makes it a good candidate for studies of
and references therginin contrast with a Newtonian ap- isolated relativistic objects emitting gravitational radiation.
proximation, where the computational problem is well de-For the simulation of realistic astrophysical sources, one
fined and attention can be devoted to astrophysical detailwould have to include suitable matter models. It was dem-
[5,6], there is no consensus as to what is the optimal, or abnstrated in[13] that the modern techniques of high-
least adequate, framework for developing relativistic simula+tesolution shock-capturing schemes for solving the equations
tions. of relativistic fluid dynamics can be effectively integrated

We will use here the so-calletharacteristicformulation  within this framework. A separate study, implementing this
of general relativity 7,8]. The formalism has been developed new approach, focused on the gravitational radiation proper-
specifically for addressing ambiguities concerning gravitaties of an accreting black holé4].
tional radiation and is well adapted to handle the propagation This work is the first example of the use of characteristic
of signals. It allows for spacetime compactification, whichnumerical relativity for the study of dynamical relativistic
avoids problems due to the artificial reflection of the fields atstar spacetimes, collapse and generation of radiative signals.
outer boundaries. In addition, it allows for the extraction of The present numerical study is performed in spherical sym-
physically relevant global quantities, such as the News funcmetry and uses a self-gravitating, massless, scalar field. The
tion and the Bondi mass. Nevertheless, the computation datter serves as a simple matter model which mimics gravi-
the dynamics ofourcesof signals is a separate issue alto- tational waves. It has been used frequently to study global
gether, which has not been addressed in this early work. Theroperties of spacetimes, black hole formation and the prop-
framework for computing a complete spacetime within theerties of radiative signals. This includes the interaction of
characteristic approach has been laid ouf9h and more scalar waves and black holésg.[15,16)) and especially the
explicitly in [10]. The translation of this framework into a emergence of power-law tail8 7—20, which arise from late
computational tool for vacuum spacetimes, in any dimentime backscattering of the scalar field at the exterior space-
sions, has been a largely successful prodesg[11] and time geometry{21]. There are few studies of the interaction
references therejn of scalar fields with fluid stellar objects. RecenfB2] ana-

There are some noteworthy issues. First, the domain dfyzed the scattering of scalar fields off boson stars and the
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emergence of critical solutions for this setup. They foundthe spacetime geometry is completely described by the two

that the scalar field can make the boson star either collapse fanctions(u,r) andV(u,r).

a black hole or disperse its mass to infinity. A sufficient set of Einstein equations for obtaining the
Time-dependent simulations of the scattering of gravitaspacetime development are grouped as

tional wave packets off relativistic stars, as a means of com-

puting the frequency spectrum of the relativistic stsee, Gur=«Tyr, 2
e.g.,[23] for a recent revieyw have been studied by Allen

et al. [24] for polytropic equations of statEOS’s, and by Gn=«Ty, €)
Ruoff [25] for more realistic EOS’s. Such simulations were

performed using linear perturbation techniques. Pavlidou Guulr=«Tur, (4)

et al.[26] studied the radiative falloff of scalar fields in neu-
tron star spacetimes, usiliglealized analytic, constant den-

sity relativistic star models and assuming stationarity for th ) . .
fluid and the geometry. coordinate is chosen to make the spheres of rotational sym-

In the present work we investigate the nonlinear dynamicgntEtry hav_e arleatﬁli ) Tthet;< ,)t(h coord|r|1ates mdt_hlstgeom—
of relativistic stars interacting with scalar fields. We are es Sy areé simply taken 1o beé he angufar coordina A

pecially interested in the following questions: How does aProPagated along the generators of the null hypersurface, i.e.,
hey parametrize the different light rays on the null cone.

stable relativistic star react when it interacts with the scalaf’ ' - . ==
ith our choice of units the constart is simply k=8r.

field? Can the scalar field induce gravitational collapse The fi Ei X . E 403 .
What is the result of the interaction on the scalar field? In' "€ first two Einstein equations, Eq&) and (3), contain
nly radial derivatives and are to be integrated along each

order to answer these questions we obtain numericall i surf The | ) i . di
spherically symmetric evolutions of the Einstein-Klein- il surtace. The ast equatidf) is a conservationcondi-
tion, satisfied on the vertex of the null conEsdue to the

Gordon perfect fluid system. We study the reflection of finite lari " h ielik .
scalar wave packets off relativistic stars for a series of modr€gularity conditions. We choodeto be a timelike geodesic

els, parametrized, for a given polytropic EOS of p0|ytropicwhich_coincides with the (_)rigin of a relativistiq starrat 0.
indexn=1, by the central density. Our study focuses on theEauation(3) may be substituted for by the equivalent expres-

dynamics of the system during the interaction, both the gen§'9n_gABRAB:8T’9AB_(TA_B_gABT/Z)* where R, is the
eration of nonlinear fluid oscillations and the gravitational RICCI tensc2>r %nd the indicesA(B) run over the angular co-
collapse of the fluid component to a black hole. ordinatesx®,x".

The paper is organized as follows. Section Il describes the USing the line element and Eq2) and (3) the 8 andV
basic mathematical foundations of our approach. In Sec. Iliypersurface equations are given by
we discuss the numerical techniques and the implementation B.=2mT ®)
used in the simulations. In Sec. IV, we present several nu- ! e
merical tests of the algorithms, aimed at assessing the correct Ty 2, ABT
implementation of the different code components: the hydro- Vr=e¥[1-4mri(g*Tag—T)]. ®
dynamic evolution, the scalar field evolution, and the metricthe comma in the above equations indicates, as usual, partial
solver. Section V describes the actual numerical investigatioQifferentiation. Boundary conditions fofB(u)r,V(u)p),
of the interaction between the relativistic stars and the scalafeeded for the radial integrations, are provided by imposing
field. Finally, Sec. VI summarizes our findings. Throughoutregmarity at the origin, where the coordinate system is as-
the paper we use geometrized un@s=c=1 and further  gymed to be a local Fermi system, leadingdte O(r?), V
assume thalo =1. Greek indices run from 0 to 3. =r+0(r®. By imposing such conditions at the origin, the

lapse of coordinate timdu is related to the corresponding
Il. MATHEMATICAL FRAMEWORK lapse of “retarded timelT measured by distant observers at

We consider a general spherically symmetric spacetim(5_>oo by
with a two component stress energy tensor of a perfect fluid dr=e?"du @)
and a scalar fieldT#"=TE£"+T4". The geometry of our '
setup follows the lines of the Tamburino-Winicour formalism whereH =lim, .. 8.
[9], in particular as it is applied in regular spacetimes, where
the foliation of light cones emanates from a freely falling B. Scalar field equations
central observef10].

where theu coordinate is defined by the level surfaces of a
é’lu” scalar(i.e., a scalau satisfying V#uv,u=0). Ther

The dynamics of a scalar fietll is governed by the mini-

A. Einstein equations mally coupled Klein-Gordon equation in spherical symmetry,

By adopting the Bondi-Sachs7,8] form of the metric vV, V#®=0, (8)
element in spherical symmetry,
where V,, is the covariant derivative. The corresponding

e’k stress energy tensor is given by

Vv
ds’=— du?—2e?Adudr+r?(d 6%+ sin #2d ¢?),

(1) TgVZVMCDVVCI)-FLg'U“V 9
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where L is the massless scalar field LagrangianL€2 the conserved variables=(D,S',E), for a perfect fluid
—V,®V#®). Using a characteristic foliation, E¢8) takes EQS, p=(I'—1)pe, wherel is the adiabatic index of the
the form fluid, are given in[13].
With the above definitions, the metric Eq%),(6) read,
Z(rq),u),r:%(rvq),r),r- (10 fSor the combined stress energy tensor of a fluid-scalar field
ystem,

In terms of the intrinsic 2-metric of theu(r) submanifold, Br=2mt[ph(u,)?+(P )?], (19

Vv V =e?P[1-4xmr?(ph—2p)]. (20)
NepdxCdxP = —ezﬁdu(?dqu 2dr

: (12)

Following [27] we express the hydrodynamic quantities on

the right-hand side of Eq$19),(20) solely in terms of the

conserved hydrodynamic quantitiels This avoids the addi-

tional iterations required, when using explicit algorithms, to

(V) integrate the hypersurface equations for the metric consis-
r

where the indices@,D) run over the coordinatesu(r), Eq.
(10) reduces to

e %fg
;

O®g= — (12)  tently with the normalization condition for the fluid.
In summary, the initial value problem consists of E@,
) ) (12), (16)—(18), and (19),(20), the scalar field initial data
whereg=r® and(J(® is the D'Alembertian operator asso- ¢(r,u,) and initial and boundary data for the fluid variables
ciated withzcp . (p,&,u") on the initial sliceS , (at timeu,). Those equations
and initial data are sufficient for obtaining a global solution

C. Hydrodynamic equations to the problem.

r

The evolution of the fluid is determined by the local con- -
servation laws of stress energy and density current: D. Global quantities
Making use of the characteristic formulation of general
relativity and covering the infinite range of the radial coor-
dinate with a finite grid allows us to refer to some global
V.(pu#)=0, (14 quantities of the spacetime such as the Bondi mass and the
) ) news function. Apart from their physical relevance, these
whereTg" is the stress energy tensor of a perfect fluid,  quantities can be used in global tests of our numerical evo-
lutions, as we will show below.
TE"=phu*u"+pg"”. (19 Instead of extracting the Bondi mass directly at future null

o ] ) infinity we use the expression
All quantities in the above expression have their usual mean-

ings: p is the rest mass density= 1+ ¢+ p/p is the specific

enthalpy,e is the specific internal energy andis the pres- M :47Tf

sure of the fluid. Moreoveru* is the four-velocity which

satisfies the normalization conditia),,u“u”=—1. for the Bondi mass at time in our numerical implementa-
Following [13], after introducing the definitionsD tion. Similarly, the news can be rewritten 5|

=pu®, S =T andE=T, the fluid equations can be cast

into a first-order flux-conservative, hyperbolic system for the N= } o 2H f w! o .dr 22)

state vectotJ=(D,S',E): 2 ol T

v, TE=0, (13)

, r2e 2AT, dr (21)

D+ Ffroz—(In\/—g),uD—(In\/—g)’rFrO, (16)  With these definitions, global energy conservation can be

established:
S +Ft=—(ny-g),S—(Iny—g) F" . ) o
M(u)—M(0)= fo —47N(u)?e?"Wdu. (23

-, (17
4 4
EutF=—(nVy=-9) E=(Iny—g) F' IIl. NUMERICAL IMPLEMENTATION
-, TEY, (18) In order to study the interaction of the scalar field and the

relativistic star in a global spacetime we use nonequidistant
where—g=r2sin6e? is the square root of the determinant grids for the radial coordinate Furthermore, to avoid deal-
of the four dimensional metric anbl;,, are the Christoffel ing with complicated stencils in the numerical implementa-
symbols. The precise form of the vector of fludésan be tion, we make use of the following procedure, generalizing
obtained by using Eq$13),(14) (see alsq13]). The explicit  previous implementations in characteristic numerical relativ-
relations between the primitive variables=(p,e,u") and ity (see, e.g.[12]): Starting with an equidistant grid in the
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coordinatex e[ 0,1], we allow for a general coordinate trans- By experimenting with both algorithms, we found that, on
formationr =r(x). Using the chain rule we rewrite the par- the one hand, the scheme based upon a direct discretization

tial derivatives appearing in the above equation with of the wave equation is more accurate in the long-term be-
havior in the interior of the numerical domain. This was

=0 d_X (24) relevant to resolve the late time falloff behavior of the scalar

" Xdr’ field, as we describe below in Sec. V. On the other hand, the

. N _ _ . algorithm based upon the null parallelogram is superior close
thus effectively rewriting all our equations in the coordinateto future null infinity, where we regularized the equations

X. Unless otherwise stated we use the relation following the work of[12]. Therefore, for the results pre-
sented in this work we have used a “hybrid algorithm” in
o 15x (25 which a direct discretization of Eq10) is used in the inte-

rior of the computational domain and the parallelogram al-
gorithm is used close to future null infinity .

for all computations presented in this work. Using such a Concerning the numerical integration of the system of hy-
coordinate transformation, the repartition of grid points indrodynamic equations, its hyperbolic mathematical character
the coordinate is almost equidistant for small radii and gets &llows for a solution procedure based on the computation of
infinitely sparse forx— 1, which corresponds to future null (local) Riemann problems at each cell interface of the nu-
infinity J+. merical grid. At celli the state vectol is updated in time
We use a second order Runge-Kutta method to solve thérom u” to u"*) using a conservative algorithm
metric equation$19) and(20). To determine the equilibrium
models for the fluid configuration, we also use the Runge-
Kutta method to solve the Tolman-Oppenheimer-Volkoff
equations, formulated on a null hypersurface aglii.

~ The integration of the evolution equation for the scalaryhere the numerical fluxe§, are evaluated at the cell inter-
field Eq. (12) [or equivalently Eq(10)] proceeds with the 5ces according to some particufax formulawhich makes
specification of initial datab(up.r) on the initial null cone  gypjicit use of the full spectral decomposition of the system.
Up. For the characteristic evolution we have used and comgqr oyr particular formulation of the hydrodynamic equa-
pared two different algorithms. The first procedure is basegions such characteristic information was presentefd 8).

upon the construction of a null parallelogram built up from |y more precise terms the hydrodynamics solver of our
incoming and outgoing radial characteristif8]. In this  code uses a second order Godunov-type algorithm, based on
procedure one needs first to determine the right hand side @fiecewise linear reconstruction procedures at each cell inter-
Eqg. (12) at the center of the parallelogram to the desiredsyce [30] and the Harten—Lax—van Leer—EinfeltLLE)
order of accuracy. Then, an integral relation between thi%pproximate Riemann solvéB1,37. General information

source term and the values gfat the four corners of the 4 gych schemes in relativistic hydrodynamics can be found,
parallelogram—which do not necessarily have to coincide g in[33] and references therein.

with grid points—has to be employed in order to compute
the scalar field at that corner of the parallelogram lying next
to the grid point that is to be updated. Suitable interpolations

then give the scalar field at the new grid point to second e now describe results of code calibration procedures.
order accuracy. The second alternative procedure we havge present a range of tests in some detail, motivated by the
implemented to solve the scalar field equation is based on @ntral role of the present developments in future higher-
direct discretization of Eq(10) using a second order, finite  gimensional algorithms. The assessment of the numerical
difference, nondissipative algorithm discussed2a]. implementation is achieved primarily by comparing with in-

Because of the stencils of the two algorithms, we cannofiependent physical results and performing global energy
use them at the origin, where regular behavior of the scalaggnservation tests.

field asd=a+br+cr? is assumed. The linear term intro-
duces a kink at the origin, but this is necessary in our
foliation—as can be seen from the analytic solution for the
wave equation in Minkowski space consisting of an ingoing As a first step to validate the algorithms we start by study-
and an outgoing wave. Note that the scalar field enters thimg their ability to maintain the equilibrium of initially stable
metric only through Eq(19), thus respecting the regularity relativistic star models. For this purpose we perform long-
conditions at the origin. Substituting this ansatz into @)  term simulations of such initial data and analyze the stability
and grouping those terms with the same powersweé find  of the code. Furthermore, we use these evolutions to com-
thata ,=b, b ,=1.5c. Extracting the coefficienta,b andc  pute the frequencies of the radial modes of pulsation. We
on the null coneu,, we updatea andb to obtain the scalar compare the frequencies obtained with our nonlinear code to
field at the first two grid points of the new hypersurface,results of linear evolutions from perturbation theory.

which then allows us to start the marching procedure along For all simulations presented in this paper the star models
the null hypersurface with either of the two algorithms de-are approximated by a polytropic EOS, definedpbyKp",
scribed above. with polytropic constanK =100 and adiabatic exponeht

1—x4

Au . A
U{Hl:U]n_H(Fi+1/2_Fi—1/2)+AUS" (26)

IV. CODE TESTS

A. Null cone evolution of stable stars
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=1+1/n=2. Hence, the index of the polytropens=1. For 0.001 . ,
the simulation presented in this section we choose the mode
with central density.=1.5x 102 (recall that we are using
units in whichG=c=Mg=1). This model is located in the
stable branch of the central density—total mass—diagram. 0.0005 ¢ ‘ -
When evolving this model with our numerical code we are

able to maintain a stable equilibrium for thousands of light- -
crossing times of the star without any sign of numerical in-
stabilities. 0 i \

To validate the code further we compute the frequencies® .’ |
of radial pulsation modes. To achieve this, in the presentg \
Eulerian framework, we must allow the star(tadially) con- U
tract and expand during the evolution. Followifg¢] (see -0.0005
also[35]), we surround the star with a few zones represent-
ing an artificial “atmosphere” filling an otherwise vacuum
region. The density in this atmosphere is set to sufficiently
small values such that its presence does not affect the dy -0.001 : w : .
namics of the system. Typical values we choose are 0 2 4 6 8 10
10" 7—10 8 times the central density of the star. Further- retarded time [ms]
rnorg, to avoid any numerical .prc.)blems due($hoc!§ heat-. FIG. 1. Time evolution of the radial velocity* at the half
ing ,'_n t,he atmospherethe f,lu'd, in those zones is not in radius of the star. The stellar model has a central dengityl.5
equilibrium and, therefore, it will collapse/accrete onto theX 10" 3. The oscillations are essentially undamped for the evolution

stap, we follow the recipe described if84] and enforce  gnown, which reflects the small viscosity of the hydrodynamic
adiabatic evolutior{by using the polytropic EOSn the at-  scheme employed.

mosphere and in the outer layers of the relativistic &am-

prising the outermost 10 grid pointAfter each time step, if and p, is the density of the unperturbed star. The typical
the density has fallen below 1.5 times the density of theamplitude we use for this perturbationAs=10"°.
atmosphere, the hydrodynamic quantities are reset to their Figure 2 shows the frequencies of the fundamental mode

atmosphere values. The innermost location where this procey, g the first two overtones obtained by a Fourier transform

dure is done defines the radius of the star. As described igt the radial velocity profiles. The dashed vertical lines in
more detail in the next section the above values of the atmoy

X ""™hjs plot were obtained using a cod@6] that solves the
sphere density are small enough to guarantee conservation ﬁ#earized perturbation equations. The agreement between
energy despite the artificial resetting procedure.

: e i the two codes is very good. Similar results were obtained for
When evolving our stellar model in time, we find small

" o ; a relativistic polytrope withp.=2.8x10" 3, for which the
deviations around the equilibrium values due to the d'scret'fundamental mode is already rather small, the star being

zation errors. As a result, the star oscillates in a superpositio&Ose to the unstable branch. We note that the code is able to
of radial modes. Figure 1 shows the radial velocity at hahctrack considerably higher overtones as well, but for the sake

stellar radius for the above model as a function of the res ¢iarjty in the comparison it is sufficient to show only the
tarded time measured by distant observers. This simulatiop.«; nvo harmonics

was performed with a grid of 800 zones covering the com-
plete radial domain. This amounts to using about half of the B. Scalar field dvnamics in a reqular spacetime
available grid in resolving the relativistic stakVe choose ) 4 g P

this resolution here to allow for comparisons with the results In th'S section we present results §|meq to \{al|date the
of Sec. V, where we resolve the scalar field as wells numerical implementation of the Einstein-Klein-Gordon

shown in[35] one can use such evolutions to obtain thesolver. For this purpose we investigate the reflection of a

frequencies of the excited modes of pulsation of the star by o _ _
simply Fourier transforming those data. In general, however, TABLE I. Equilibrium properties of theK =100,n=1 relativ-
the excitation of the different modes by the truncation errop/Stic Star models in units in which=G=Mq =1. The entries are
of the numerical schemes may not be sufficient to accuratel sd_follov:‘/shpc Is the centrgl ?ens&yll/lziﬂn/dRR arﬁ the mass and
determine the mode frequencies. The truncation error of thezr:;ec;e: e star, respectively, a Is the compactness

discretization scheme introduces at each grid point a nonsta-

City

velo

e
—————

T
————
—_—
——
———

t!onary perturbation. The pointwise nature of thosg pgrturb_a— pe (10°9) M R C=2M/R
tions implies that the spectrum of induced oscillations is

fairly broad, essentially covering all wave numbers repre- 15 1.47 9.26 0.317
sentable on a given grid resolution, but with varying power 2.2 1.60 8.45 0.379
in different regimes. In order to excite the relevant modes 2.8 1.63 7.91 0.412
more strongly, we perturb the density of the equilibrium 2.9 1.64 7.84 0.418
models with an explicit functionp=py+ Ap.sin(mr/R), 3.0 1.64 7.76 0.423

where R denotes the radius of the st@ee Table | beloy
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FIG. 2. Fourier transform of the time evolution shown in Fig. 1.

The peaks in the Fourier transform indicate the mode frequencies of FIG. 4. Bondi mass of the spacetime and total radiated energy of
the fundamental radial modaroundf=1.4 kH2 and the first two  the scalar field as a function of retarded time for different resolu-
harmonics. The relativistic star model has a central dengjty tions. At the beginning, the scalar field contributes to the Bondi
=1.5x 10 3. The dashed vertical lines indicate the correspondingmass of the spacetime (1.4d@5%,), before the Bondi mass drops in
frequencies obtained with a perturbatii@earn code. The units on a small time interval, when the main part of scalar field n{as®ut
they axis are arbitrary. 5X10 3M) is emitted to future null infinity7 . As the sum of

the two curves is constant, the energy is globally conse(wétti a
scalar field at the origin of the coordinate system, turning offrelative error of about %10~ ° for the run with 1600 zones.The
the hydrodynamics module of the code. The initial data formass drops in two steps around 0.2 ms, which can be seen from the
the scalar field packet are magnified figure obtained for the case of 1600 zones.

Dy=2X 10 3~ (r—147 (27 note the stability and smoothness of the solution, both at the
origin and at7*. By evaluating global energy conservation,

The location of this Gaussian pulse is chosen in such a wagccording to Eq(23), after the pulse has reflected off the
that, if superposed on the relativistic star spacetimes of therigin, we find that the energy is conservisd expectexdto
previous section, the scalar field data would initially lie out-second order accuracy. As an aside we note that by simply
side the relativistic star. Evolving these data, the initial pulsechanging the origin treatment in the code, it is possible to
approaches the origin, is reflected, and radiates away, leavirgjudy the evolution of a scalar field outside a spherical black
behind Minkowski space. Such a sequence can be followelole. We performed such a simulation finding agreement
in Fig. 3, for a simulation employing a grid of 800 zones. Wewith the results of19].

C. Global energy conservation

0.015 We consider now the full set of equations and prescribe

initial data consisting of a scalar field component given by
Eq. (27), together with a stable, equilibrium, relativistic star
7 model with initial central density,=1.28<10 3, K=100
andI’=2. We calculate for this stellar model a total mass of
1.4M, in agreement with35]. We perform simulations of
-0.005 1 the scalar field scattering off the relativistic star, focusing our
study in this section on the assessment of the global energy
conservation properties of the coupled numerical algorithm.
~0.015 | 1 A comprehensive study of the dynamics of the scattering is
deferred to Sec. V.
Figure 4 shows the Bondi mass of the relativistic star—
~0.025 ‘ , , s scalar field spacetime as a function of retarded time, com-
0 02 04 0.6 08 1 bined with the total mass of the scalar field radiated away to
radial coordinate x null infinity. As one can clearly see from this figure, the
FIG. 3. Radial profiles of the scattering of a scalar field off the SPacetime is losing mass exactly at the rate that energy is
origin of the coordinate system. The number labels refer to the timgadiated to null infinity by the scalar field.
coordinateu. For timesu=35 the pulse has completely radiated By computing Eq.(23) at a fixed retarded time of
away, leaving Minkowski spacetime behind. =0.5 ms for different grid resolutions, we find that our code

0.005

scalar field amplitude
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conserves the energy globally with a convergence rate tha
lies between 1 and 2. The fact that the convergence rate no\
drops below second order is, however, to be expected, sinc
the approximate Riemann solver used for the integration of
the hydrodynamic equations is onflocally) first order ac-
curate at discontinuitief.e., the surface of the staand at
local extrema(i.e., the center of the stafsee the related
discussion in35]). Nevertheless, for the highest resolution ©
we have used, 2000 radial grid points, the relative error in§
the energy conservation is of the order ok 20 ° for this S04
very dynamical simulation.

At first sight the decay of the scalar field mass in two
steps as shown in Fig. 4 around 0.2 ms seems surprising 02 f—"
However, looking at the radiated powedMg/du=
—4me ?H(lim,_..g,,)? and approximating the solution of
Eq. (12) by the solution in Minkowski spaceg(u,r) 0
=f(u/2+r)—f(u/2), wheref is determined by the initial radial coordinate r
profile with suitable falloff behavior for large radii, the radi- _ ) ) _
ated power readsMg/du=—me 2"’ (u/2)2. Hence the FIG. 5. Spacetime diagram of the reflection of a Gaussian scalar

; : : ield pulse off a relativistic star =100, n=1 and p.=1.5
radlateq power as a 'fuln.ctlon of tlme measures the square E>J<{!310’3). The diagram focuses in the strong field region but was
the derivative of the initial scalar field profile.

obtained from a global simulation of the spacetime. The dotted
curves covering the whole diagram are outgoing light cones, which
V. DYNAMICS OF SCALAR FIELD —RELATIVISTIC bend due to the spacetime curvatqitee thicker dashed line corre-
STAR INTERACTIONS sponds to the initial light cone The scalar field pulse, initially
éocated atr =14, travels inward, enters the relativistic star and is
reflected at the origin of the coordinate systére solid line cor-
responds to the maximum value of the scalar ji€ldhe interaction

06 .

er time [ms]

neutrori’star ..~ | e

local

In this section we present our main results concerning th
scattering of a scalar field pulse off a relativistic star. As

mentioned before, we use=1 relativistic polytropes as the with the scalar field triggers the oscillation of the relativistic star,

underlying star model. A!I conflgl-Jratlons- we construct a_r(,awhich can be seen from the vertical solid line of varying location in
stable and are characterized by increasing central densitigg, diagram, which indicates the radius of the star.

and compactness. Their basic properties are summarized in
Table I. veniently close to the maximum of the stability curve at
On the initial outgoing light cone, in addition to the fluid aboutp,=3.2x10 3. Depending on the compactness of the
data we introduce a scalar field component in the shape of meutron star onto which the wave pulse impacts, the stars are
Gaussian pulse according to EQ7), thus fixing the pulse forced to either oscillate violently, or collapse to a black hole
amplitude, width and location. For these initial data there ison a dynamical time scale. Figure 5 shows the spacetime
no significant initial overlap between the star and the scaladiagram for the least compact relativistic star model of our
field which then makes it possible to associate a specifisample, withp.=1.5x 10 3. For this model, the scalar field
initial mass with each one of the matter fields. is able to force the star to contract and to expand, pulsating
In our exploration of the parameter space, we use theadially, as can clearly be identified in the varying location of
central density as the only free parameter, maintaining &he star’s radiugthe vertical solid line in Fig. b
single polytropic EOS and fixing the profile and amplitude of  Figure 6 displays the time evolution of the central density
the scalar field. This is clearly a severe restriction in theof the different relativistic stars in our setup. The solid lines
parameter space of the scattering problem. Nevertheless, werrespond to the relativistic star—scalar field system. Corre-
choose this particular setup since we are interested in invespondingly, the dashed horizontal lines indicate the evolution
tigating the relativistic effects of the interaction, where theof the equilibrium relativistic star modelsithout the pres-
scalar field has a strong impact on the dynamics of the relaence of the scalar field. As already mentioned the initial fluid
tivistic star. A detailed analysis of the whole parameter spaceonfigurations are stable. The evolution is characterized by
is beyond the scope of this work. the appearance of small-amplitude oscillations associated
When evolving in time the initial data, the scalar field with the radial modes of pulsation of the starhich are too
travels inwards, enters the relativistic star and is finally resmall to be seen in the figuteOn the other hand, all rela-
flected at the origin of the coordinate system. Contrary to theivistic star—scalar field models with initial central density
Einstein-Klein-Gordon system in vacuufwhich was briefly  below 2.8< 10" 2 also oscillate around the stable equilibrium
discussed in Sec. IV Bthe presence of the star and its as-model. The oscillation frequencies of the two least compact
sociated potential well may give rise to a phase of multiplemodels correspond to the frequencies calculated in the linear
reflections of the scalar field. This, in turn, is reflected in theregime, even though the amplitude of the oscillations is now
existence of quasiperiodic signalsapped modes as dis- much larger due to transfer of energy from the scalar field.
cussed, e.g., bj26], before its energy is radiated away. Fur- This is no longer the case for the model with a central den-
thermore, our relativistic star models have been chosen comity of p.=2.8x 10" 3. For this model, which is close to the
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FIG. 6. Central density of the relativistic stars interacting with

the scalar field as a function of retarded time. The curves are labeled FIG. 7. Time evolution of the radius of the different relativistic
according to the stellar compactness in Table I. The three less constars interacting with the scalar field. The radius of the two most
pact models, withp,<2.8x10"3, oscillate strongly around their compact models decreases dramatically, indicating that they un-
equilibrium value after interacting with the scalar field. The otherdergo gravitational collapse to a black hole.
two more compact models collapse to a black hole instead on a
dynamical time scale. The dashed lines are taken from our evoluaavior is shown in Table Il. We remark that the initial mass
tions of the equilibrium model without the presence of the scalarof the scalar field is not strictly the same in all cases consid-
field. ered, due to the different underlying geometry on which the

initial scalar field data are set. We evaluate the total radiated
threshold of black hole formation, the amplitude of the 0S-mass in the scalar field at a retarded timeref0.6 ms. The
cillations is big enough to show nonlinear effects, the oscil-mass radiated away to infinity after this time is negligible.
lation frequency being much smaller than the value obtained Next we analyze the behavior of the scalar field in these
from linear studies. For the models with central densities Ofscattering simulations. In Fig. 9 we plot tiieetarded time
pc=2.9x10"° and 3.0 10" * the interaction with the scalar evolution of the news, Eq22), for the whole sample of our
field is able to trigger their gravitational collapse to a blackstar models. The scalar field signal measured at null infinity
hole on a dynamical time scale. Unfortunately, due to nutan be divided into three phases. The first phase, before the
merical inaccuracies arising at the end of the simulation wenain pulse reflects off the origifnot shown in the figureis
are not able to follow the collapse process once the event

horizon is about to forngsimilar problems were reported in 100 . . . .

[27] for the collapse of supermassive sjatdowever, con- [

vergence studies show clear evidence that these models ca ol

lapse to black holes. Further evidence is given by the evolu- : | =037

tion of the relativistic star radii, as shown in Fig. 7, and the “ “ ------------ C=0.379

blow-up of the redshift between the stellar center and future ;| ----C=0412

null infinity. We have plotted in Fig. 8 the redshift factet” - i | - 8f8'ﬂ§

relating the lapse of local proper time at the origin to the "'g; 0l ] o |
lapse of proper time at infinity according to E(). For g i Pl

example, for the model with central densjiy=2.9x 10 3, = [ i ,'

initially, the redshift factoe?" between the center of the star i il

and observers located at-= is 2.1. By the end of the ////

simulation it has increased to a value of 59.5. This high D
redshift factor explains the appearance of a kink in the cen- e S St S
tral density toward the end of our numerical evolutiGee -
Fig. 6. We note that global energy conservation is well 10 : s : . .

maintained, even for these extreme hydrodynamic simula-

tions. The relative deviation from energy conservation ac-

cording to Eq.(23) when the evolution stops is of the order  FG. 8. Time evolution of the redshift fact@®" relating the

of 10°%. lapse of proper time at the origin to the lapse of proper time at
By analyzing the energy transfer from the scalar field toinfinity according to Eq(7). The rapid increase in the redshift fac-

the relativistic star during the interaction we find that it in- tor for the two most compact models gives clear evidence for the

creases with the compactness of the stellar model. This b&ermation of black holes.

retarded time [ms]
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TABLE II. Energy transfer from the scalar field to the relativis- TABLE lll. Late time power-law behavior of the newsot™“
tic star during the scattering process. The entries are as follews: for the (stablg relativistic star—scalar field scattering problem. The
is the central density of the relativistic stmg> is the initial mass of  results agree with the value=3 predicted by linear theory.
the scalar field,E,,q is the total radiated mass, arff} .. is the
percentage of the energy transferred in the interaction. We use units pe (1079) a
in whichG=c=Mg=1.

15 3.06
pc (1079 MG (107 Eug (107°)  Eyans (%) 2:2 3.05
2.8 3.05
1.5 4.90 4.86 0.8
2.2 4.80 4.72 1.7
2.8 4.76 4.65 2.3 normal ring-down phase. We also point out that by going to
29 4.75 4.63 2.5 more compact models, increasing the central density of the
3.0 4.75 4.62 2.7 relativistic star beyond the maximum of the stability curve

(i.e., going into the unstable brancand freezing the hydro-
dynamics and metric evolution to avoid gravitational col-
dominated by an initial backscattering with small signal am-lapse, we are able to find a much longer ring-down phase.
plitude. The second phase, whose duration depends on tur results, obtained for fully self-gravitating, polytropic
compactness of the relativistic s{@6], is characterized by relativistic star models, are in good agreement with previous
the reflection of the main scalar field back and forth betweedindings by Pavlidotet al. [26], who used a more idealized
the origin and the maximum of the relativistic star curvatureSetup consisting of constant density, static stars.

potential, which, in turn, induces the appearance of quasinor- The study of the late time power-law tails requires in-
mal oscillations on the scalar field. Most of the energy iscreased resolution, especially for large radii; hence we have
radiated away in this period. Once the pulse has lost suffiused a different radial coordinate for these simulatians,
cient energy it enters a third phase, during which the behav=30x/(1—x?). This allowed us to resolve the power-law
ior of the signal is dominated by a power-law talbt ~¢, behavior in Fig. 9, preventing the evolution from being
with a=3, due to the reflection of the scalar field at the dominated by numerical noise mainly due to reflections. By
exterior Schwarzschild geometfy21,17,18,26 Since the performing a linear regression study of the tails in the time
compactness of our models is well below the Buchdahl limitinterval log@ [ms]) €[0.3;0.7, we obtain the results sum-
C=8/9, the quasinormal mode ringing phase does not lagharized in Table Ill. We find the correct power-law behavior
for an extended period of time. Therefore, after a few reflecof the scalar field in our fully dynamical evolutions, as pre-
tions trapped inside the curvature potential, the signal rapidlgicted by both linear analysis and nonlinear numerical evo-
enters the power-law tail phase. From Fig. 9 one can see théttions of scalar fields in the exterior black hole geometry

the more compact the relativistic star, the larger the quasitl7—19. Note that we measure the tails on the news,
whereas the results of the above references read off the quan-

tity g at future null infinity 7*. The two quantities are re-
lated by

-1 T T T T T T T

-2
5 N=e *g,. (28)
-4

- VI. SUMMARY
° We have analyzed numerically the interaction of relativ-
istic stars and scalar fields by means of nonlinear evolutions
of the Einstein-Klein-Gordon perfect fluid system in spheri-
cal symmetry. We have built a sequence of stable, self-
gravitating,K=100,n=1 relativistic polytropes, increasing
the central density fronp,=1.5x10" 2 to 3.0x10 3 (G
=c=Mg=1). Using a compactified spacetime foliation
I with outgoing null cones we have studied the fate of the
-1 : : relativistic stars when interacting with a sufficiently strong

-10 =08 '0-6| 'o-? d_%zt' 00 02 04 06  gcalar field wave packet, as well as the dynamics and ener-
og(retarded time [ms]) getics of the process.

FIG. 9. Time evolution of the news function during the scatter- W& have found that by choosing a stroffgite ampli-
ing problem. The different lines correspond to the different modeldude scalar field pulse with energy of the order of M,
in our sample of Table I, and are labeled in the plot with respect tdhe relativistic star is forced either to oscillate in its radial
the compactness parameter. The duration of the more dynamic qui?odes of pulsations or to collapse to a black hole on a dy-
sinormal ringing phase strongly depends on the compactness of tigmical time scale. The fate of the star depends on its central
relativistic star model, increasing as the compactness increases. THensity and, since we fix the polytropic equation of state, on
late time behavior of the signal decays as an inverse power law. its compactness. The energy transferred to the relativistic star

-6

log(news)

-7
-8

-9

-10
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increases with increasing compactness of the model. The rédundamental modes of the neutron star models of Sec. IV A,
diative signals we have found in our fully nonlinear simula- obtained with his perturbation code. We further thank Nigel
tions consist of several quasinormal oscillations and a lat@ishop and Carsten Gundlach for helpful comments on the
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