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Quantum inequalities for the electromagnetic field
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A quantum inequality for the quantized electromagnetic field is developed for observers in static curved
spacetimes. The quantum inequality derived is a generalized expression given by a mode function expansion of
the four-vector potential, and the sampling function used to weight the energy integrals is left arbitrary up to
the constraints that it be a positive, continuous function of unit area and that it decays at infinity. Examples of
the quantum inequality are developed for Minkowski spacetime, Rindler spacetime and the Einstein closed
universe.
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[. INTRODUCTION decays for longer characteristic sampling times. However
there are some known exceptions, such as four-dimensional

Nearly four decades ago, it was shown by Epstein, Glasetle Sitter and Rindler spacetimes, where the func8anly
and Jaffe[1] that a positive definite energy density was in- grows only as fast asg.
compatible with the usual postulates of a quantized field The quantum inequalities were first derived by Fgttito
theory. Worse yet, it appears that the energy density is natonstrain negative energy fluxes for the quantized, massless,
even bounded from below. Thus, all standard quantized fielehinimally coupled scalar field in Minkowski spacetime.
theories are capable of violating all the pointwise and averThese results were then expanded to the energy density of
aged energy conditions in general relativity. However, thisthe massive scalar field in Minkowski spaf&7] and in
does not mean that the energy density can remain negatigatic curved spacetimd8,12,13. In all of these cases, a
for an arbitrarily long period of time. Over the last decade,Lorentzian sampling function
new forms of energy conditions involving various temporal
and spatial averagings have been develofzd2l]. One
such example is the quantum inequality, which is the f(r)= — 2
weighted temporal average of the energy density along the ™ T+ Ty
worldline of an observer. Derived directly from quantum
field theory, these inequalities limit the magnitude and temwas used to simplify the calculations. However, Flanagan
poral duration of the existence of negative energy densitie§10] showed it was possible to derive optimum quantum in-
The quantum inequalities say that if an observer tries taequalities for the massless scalar field in two dimensions for
make a measurement of the energy density for some charagn arbitrary, smooth positive choice of the sampling function.
teristic sampling timery, then the maximal negative energy This was followed by the work of Fewster and colleagues
that he might ever measure is bounded below by an inversel4,15,19 who have established the quantum inequality for
power of the characteristic sampling time. Given an observthe minimally coupled scalar field in static curved space-
er's four-velocity u* and a samplingweighting function  times of any dimension with an arbitrary, smooth positive
f(7) of characteristic widthry, then the quantum inequality sampling function.

To 1

is given by Although much of the previous work has been for the
scalar field, work is now progressing for higher spin fields.
~_ [~ v Vollick has shown that an optimum quantum inequality can
= T # f(r)d ) e . . .
P f—oo< p(T)Ren U (D)F(7)d 7 be derived for the Dirac field in two spacetime dimensions

[20] for an arbitrary sampling function using the conformal
- _ iS(T )+ 1) properties of the field theory. More recently, Fewster and
A0 Poacuum: Verch have established “quantum weak energy inequalities”
for the Dirac and Majorana fields of nonzero mass in four-
Herea is a dimensionless constant of order unity arid the  dimensional globally hyperbolic spacetimg21]. Making
dimension of the spacetime. For a massless field iruse of microlocal analysis techniques, Fewster and collabo-
Minkowski spacetime, the functio8(7,) is equal to 1 and rators[19,21] have vastly extended the applicability of the
the vacuum energy density vanishes. For massive fieldguantum inequalities to arbitrary globally hyperbolic space-
and/or curved spacetimeS(ry) represents the modification times.
of the quantum inequality away from its massless, flat space The first quantum inequality for the electromagnetic field
functional form. It has the generic behavior that it is approxi-was derived by Ford and Rom4ii] for a Lorentzian sam-
mately 1 for smallrg, and in most spacetimes it typically pling function in flat spacetime. This was immediately gen-
eralized to curved static spacetimes by the aufli@i, al-
though both of these calculations relied on the specific
*Email address: mitchel@physics.uoguelph.ca choice of the Lorentzian sampling function. In addition, the
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proof in both cases was mathematically long and at soméext, can represent either the two physical polarization states

times quite complicated, particularly in some of the lemmasl and 2, or the full set of polarization states 0, 1, 2 and 3 in

required. the Gupta-Bleuler formalism which includes the scalar and
In this paper, we will show that it is possible to derive a axial photon polarization states. Also, the complex conjugate

generalized quantum inequality for the quantized electroof f, will be denoted byf. Units ofi=c=G=1 will be used

magnetic field in static curved spacetimes with a length elethroughout.

ment of the form

d2=— Igoo(x)ldt2+gi,-(x)dxidxj. (3) II. ELECTROMAGNETIC FIELD IN STATIC
CURVED SPACETIMES

The proof presented here is greatly simplified, in large part We begin our discussion of the electromagnetic field by

due to generalization of a more direct positivity lemma Origi'defining the classical Maxwell action for a source free field
nally developed by Fewster and colleag(i#4,15. In addi- in curved space
tion, the electromagnetic field quantum inequality is proven '
for an arbitrary choice of sampling function so long as it is a 1
positive, continuous function of unit area that decays at in- gMaxwell— _ ZJ FQBF“'B\/—_gd“X, (6)
finity. The end result of our calculations is the quantum in- v

equality written as a mode function expansion: whereF ,; is the antisymmetric field-strength tensor related

1 (= to the four-vector potentialh,, by
~ 31| FU 2 "
=5 du}Q d3k| Y4 v+ w(K)]|

1 — Joo=————— HereV represents covariant differentiation
X | ——F: . NE. X))+ | —| B: . . P . . ’
|900|E'()\'k'x)g Ej(\kix) Bith, k%) Varying the Maxwell action with respect to the vector

potential and setting the variation equal to zero leads to the
4 source free inhomogeneous Maxwell equation for the elec-
+ Pvacuum: (4)

X (g") 1B (N, k;x
(g") i ) tromagnetic field in curved spacetime,

whereE;(\,k;x) andB;(\,k;x) are the modes for the elec- VF,z=0. (8)
tric and magnetic components of the field-strength tensor,

Due to the Bianchi identities, the electromagnetic field also
fl’z(w)z f“ FL2() e~ ot ) satisfies the subsidiary condition,

ViFn=0, 9
is the Fourier transform of the square root of the samplinqN S . .
- ; ; : hich is the homogeneous Maxwell equation. The combined
function and the summation ovirand integration oved3k . ) . :
. ; oo : et of equations represents classical electrodynamics written
'S Over a” possible polarizations and momentum elgenstate§n covar(iqant form I? we insert the four-vector )p/)otential into
respectively. As was the case for the scalar field, the electr Soth expressions. it is found that the homogeneous Maxwell

magnetic field quantum inequalit{d) tells us how much tion(9) is trivial tisfied. The inhomoaen i
negative energy an observer may measure relative to ﬂ}%qua on's) 1S ally satustied. 1he inhnomogeneous equa
ion (8) yields the second order wave equation

vacuum energy of the electromagnetic field.
In Sec. Il we will discuss the canonical quantization of the VOV A—V (VA )—R.EA =0 10
electromagnetic field in curved space and elucidate the par- A= Vsl @) "R A.=0. (10

ticle state structure and the form of the stress-tensor. In PalereR,; is the Ricci tensor which arises due to the commu-

ticular, two different forms of quantization will be discussed: ation relation for the covariant derivatives acting on a vector
direct quantization in the classical Coulomb gauge and thgg|g.

more elegant Gupta-Bleuler form of quantization. In Sec. lll - The stress-tensor for the classical electromagnetic field is
we develop the positivity lemma for generic inner-productsfgng by varying the Maxwell action with respect to the

of vector fields, which is a generalization of work developedspacetime metric. A straightforward calculation yields
by Fewster and colleagug$4,15 for the scalar field. In Sec.

IV we lay out the remainder of the proof of the quantum Maxwell 1

inequality, finally arriving at the expression above. Lastly, in Tuo = F R = ZQWFaﬁF“B- (13)
Sec. V we will look at the resulting quantum inequalities for

Minkowski spacetime, Rindler spacetime and the Einstein The field-strength tensor, the Maxwell equations and the

closed universe. _ stress tensor are invariant under the gauge freedom
We will follow the the convention of Walfi22] where the
signature of the metric is,+,+,+). Greek indices are AeW= p0ld_y A (12)

summed over0,1,2,3 while Latin indices denote the spatial
componentg1,2,3. However, the letteh has been singled where A=A(x) is an arbitrary scalar function. In classical
out as the polarization state label, and depending on the comlectromagnetism, the correct choice of gauge can often sim-
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plify finding the solution to the field equations. In many let £&* be a timelike vector field. Then we require thaj,
cases, it is convenient to choose the Lorentz gauge conditiosatisfy the additional condition

V*ANY=0, (13 £*A,=0. (17)

which immediately removes the middle term in the wavelt is this second condition that can be ensured by the homo-
equation(10). This can always be achieved by choosingo geneous part of the gauge freedom. Also, note that is is not
satisfy true that the Coulomb gauge is noncovariant as is sometimes
stated.
VeV, A=VeAd. (14 In flat spacetime there is no preferred choice®f how-
o . ever for the static metric of the forif8), a natural choice is
It should be noted that there is still a restricted gauge freeg et ¢« pe the global timelike Killing vector field. This will
dom remaining in that we can still add to the vector potentialye the same Killing vector that will be used to define the
any function that satisfies the homogeneous equation positive frequency mode functions. Singéx(1,0,0,0), the
o Hom. _ net effect is to set thé\,-component of the stress tensor
VeV A =0. (15 ; . .
@ equal to zero. This solves two problems simultaneously. First

As we shall see below, this restricted gauge freedom will bdl "émMovesA, from the action, thus there is no longer a

used to impose the Coulomb gauge. It should be noted th&foblem of it not having a conjugate momenta. Secondly, it
we will drop the identifiers ofnew and old in all further has reduced the physical degrees of freedom of the solution

calculations. to the two physically realizable photon states.
There is some difficulty in directly quantizing electrody- Canonical quantization is now straightforward. The metric

namics in the form so far described. If one does not specify3) Possesses a timelike Killing vector, which allows us to
a gauge, then any four-vector wave equation such agl|y.  Write the positive frequency mode function solutions of the
will in general have four orthonormal solutiofolarization ~ Wave equatior10) as

state$, A,(\;x) wherex=0, 1, 2 or 3. In Minkowski space- ) _ oA —iwt

time thex=0 solution is typically the scalar photon polar- Aah kXD =Ua(h kix)e (18)

ization,\=1 and 2 are the two transverse photon polarizayherek is the mode label for the propagation vectoiis the
tions, and\=3 is the axial photon polarization. In curved o|arization state and=w(k). The four-vector functions,
spacetime the “perfect” separation of the modes into theSEEJM()\,k;x), are the spatial portion of the solution of the

three “distinct” types is not always possible, but we will a6 equation and carry all the information about the curva-
continue to use the flat space nomenclature. It is found tha{,ie of the spacetime. In addition they satisfy

for one of the polarizations, sa#,(0;x), there does not

exist a conjugate momenta when the Hamiltonian is calcu- VU (N K;X)=0=VU (\,k;X). (19)
lated. This is a long known problem in flat spacetime elec-

trodynamics and there are several known approaches whicthe mode functions for the vector potential are normalized
have been developed to quantize the electromagnetic fielsuch that

that can be generalized to curved spacetime. The simplest is
to work in a specific gaug23,24]. A more elegant possibil-

ity is to use the Gupta-Bleulé25—27 formalism of indefi-

nite metrics on the Hilbert space of states. Both of these
forms of quantization are discussed below. —F#"(N\ KA, (N K')]

(ANK), AN K))=—i jEdEﬂ[A,,()\,k)F“”()\’,k’)

A. Direct quantization in the Coulomb gauge =M B (k—k), (20

This is probably the simplest and most direct method Ofyhereds. ,=do n,, is a three-volume element in the Cauchy
quantizing the electromagnetic field. The problem so fargyrfaces, with unit normaln®, thus each mode contributes
stems from the fact that the vector potential has four polar—%  to the vacuum expectation value of the stress tensor be-

ization states, while it is known that the photons of the freetore renormalization. The general solution to the vector po-
field theory only come in two different polarizations. Thus, tential can then be expanded as

before the theory is quantized we would like to remove the

two superfluous polarizations at the classical level. To do this 2
we require that solutions to the wave equati@f) also sat- A (xt)= E j d3k[ax(k)AM()\,k;x,t)
isfy the Lorentz gauge condition A=1
VoA, =0. (16) +al (KA, KX, D] (21)

This removes one degree of freedom between the compdiereal (k) anda, (k) are the creation and annihilation op-
nents of the vector potential. The next condition that weerators for the photon which obey the commutation relations
would like to require is that the time component of the four- ) N .

vector potential vanish in some frame. To accomplish this we [ax(k),ay (k") ]=0=[a\(k),a,,(k")] (22)
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and wheresM@well is the Maxwell action given by Ed6), and
. the gauge breaking action is given by
[ax(k),a,, (k") ]= &\ o(k—=k"). (23
1
The Fock representation of the number states can now be SoB=— EJV(V“AQ)Z\/—QdA'X- (32)

constructed from the vacuum state denoted @) where
the first slot is for particles of polarization type 1 and the\/ariation of the new action with respect #" yields the
second slot is for polarization type 2. The vacuum state hag,ye equation,

the property

VeF 5+ V4(VEA,) =0, 32
a,(k)|0;0)=0, V{\,k}. (24) aptVp(V A (32

One-particle states are obtained by acting on the vacuumy hich can be rewritten in terms &, as

with the creation operator, vey AB_RﬁaA —0. (33)

0\— At . AN ot .
|1;0)=21(k)|0;0) and |0;1)=a;(k)[0:0). (25 This would correspond to Maxwell's equations if the field

Multi-particle states can likewise be created by repeated ag?!S© satisfied the Lorentz gauge condition.

plication of the creation operators, There are four.possi_ble solutionipolarization$ to the
above wave equation. First, there are the two physical polar-
|lmk1’ o ,J'mk_;lnkl, coo0ng) izations which are labeled with=1 or 2. These two polar-
: ) _ izations satisfy the wave equati¢®3) and the Lorentz con-
£ m g Jmo o n dition,
Clagkp)] .. Tag(ky] [axky)] .. .[ax(kj)] 10:0)
N (Im! .. imtInr L inn)t2 T VeAL (N K;x,1)=0 for A=1,2. (39
(260 Thus, these two polarizations correspond to the two standard
where thek, ,k,, . .. k; are all distinct. The above state con- solutions to Maxwell's equations. The remaining two un-

physical polarizations, labeled with=0 or 3, also satisfy

e 1 2 j 1,42 i i
ﬂge ano;nt;e.n%.;ergjmno;;ntu}ﬁ ' ;Lng tcglaalriggg(')cr:ef the wave equatiof33), but not necessarily the Lorentz con-
! P ' dition. For ultra-static spacetimes, whémgy =1, the most

n are of momenturik, and polarlzat'lon 2, etc. Effectively, ?atural choice is to use the scalar photon polarization,
the general number states are a direct product of elements

from two different Hilbert spaces, one for each of the polar- 1
ization states. In order to reduce the index notation to a more A, (0k;x,t)=—(3,0,0,0 ¢(k;X,1), (35
manageable form, define the two vectors @

m:(lmkl, o ,jmkj) and n:(lnk1, o ,jnkj)’ (27) and the longitudinal photon polarization,

. . 1
then the states can be written more simply|asn). The AL(BK;%,1) = —(0,041,0y2,053) p(K; X, 1), (36)
most general state that can then be written as a linear super- w

osition of all the possible number states is . . -
P P where ¢(k;x,t) is the solution to the massless, minimally

coupled scalar wave equation,
lyy= 2 c(m,n)|m;n), (28)
" VeV (ki) =0. 37

wherec(m,n) are complex coefficients and the sum is as-|, the more general case of a static spacetime, it is useful to

sumed to range over all the allowed vectorsondn. For  chppse the two orthogonal modes which satisfy the condi-
the state to be properly normalized, tbem,n)’s must sat- g

isfy

1
% le(m.m)[2=1. (29 Aa(O,k,X,t)+Aa(3,k,X,t)=ZVaqﬁ(k,X,t). (38

In both cases, the resulting modes then satisfy
B. Gupta-Bleuler formalism

VoA (0k;x,t)=—V*A_(3K;X,t) (39
A more elegant form of quantization is to use the Gupta-
Bleuler method of imposing an indefinite metric on the Hil- and
bert space of allowable states. We begin by forming the
Gupta action, Fap(0K X, 1) =—F,5(3Kx1), (40
Seupta_ gMaxwell gG.B. (30)  for every moment.
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In addition, if we define the generalized conjugate mo-now define the vacuum state [@50;0;0) where the first slot
menta, is for photons of the unphysical polarizatiar0, the sec-
ond and third slots are for the two real photon polarizations,
[#7=—(F*"+g*"VeA,), (41)  and the final slot is for the unphysical polarization wkh
then the modes are required to be orthogonal and normalized 3. The vacuum state vanlsh(_as i any of the four destrgcﬂon
by Operators act on fit, and mgltl-part|cle states are again ob-
tained by the repeated application of the creation operators.
Unlike the states for the Coulomb gauge quantization, the

(AOVK), AN K)) =i Ldzﬂ[mn’”(?\',k') states of the Gupta-Bleuler formalism have indefinite norm,

{,m,n,p[l’,m’",n",p")
~IFGOALLLKD] Y424 4]

:nhklb\o’(k—k’), (42 =(-1) 5II’5mm’5nn'5pp’a (47)

where we have added two new vectdrgndp, for the un-
physical photon polarization states. The most general state in
the Gupta-Bleuler formulation can be written as a superpo-
sition of all the particle number states as

where d2M=donM is a three-volume element in the

Cauchy surfaceS with unit normal n“, and 7" = 7,,.
=diag(—1,1,1,1). The general solution #, then has the
Fourier mode-decomposition

° 5 |y= >, c(l,m,n,p)[l,m,n,p). (48)
A,u,(xrt):)\zofd k[a)\(k)AM()\,k,X,t) l,m,n,p

In order for the Gupta-Bleuler formalism to be equivalent
+a{(k)Aﬂ()\,k;x,t)]. (43 to Maxwell's theory, we need to impose an additional condi-
tion on the Hilbert space of states, namely that the expecta-
If we wish to canonically quantize the field,, we im-  tjon value of the Lorentz condition be satisfied for all physi-

pose the equal-time commutation relations cally realizable statefsp),
[AL),A (X D)]=0=[TI"(x,t),[T"(x',t)] (44) (P| VA (x,1)| ) =0. (49)
and This condition can be accomplished simply by requiring that
the states obey
[A, (x,t),IT"(x",t)]= 'O 83(x—x") (45) VAT (x,1)|¢)=0 (50)

whereA is the positive frequency part @, . The applica-
fion of this condition to the stathp) above means that the
‘c(l,m,n,p)’s with the same total number af=0 and 3 pho-
tons of the same momenta are related to one another by

Using the mode decomposition and the normalization condi
tion, we find that the above equal-time commutation rela
tions are equivalent to

[ay(k), ), (k')]= 7y 8%k —K'), (46) JVA (0K mn (p— 1))
with all other commutators vanishing. + \/EV“A&(S,k)C((I —1),,m,n,p)=0. (51)

The state structure is similar in form to that found for the
Coulomb gauge, except there are now a greater number afnder this constraint the Hilbert space structure of the state
allowable states due to the two unphysical polarizations. We¢) takes the form,

[p)="--- +c(0,,m,n,00|0c,mn,0)+ -+ %[V“Aa(&kﬂlk ,m,n,0,) = VEA,(0k)[0, ,m,n, )]

4o c(L.m.n. 1) {[VAL(3K)12|2¢,m,n,0)
V2VA,(0K) VA (3K) o« KTk

— V2V A(0K) VA (3K)| L, m.n, 1) — [ VAL (0K) 12|06, m.n 20} + - - -. (52)
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With the definition of a new operator
|y)=">, ¢(0,m,n,0/0m,n,0)=>, c(m,n)|m,n).
m,n m,n

O'(k)=V*A,(3K)a}(k)—V*A,(0k)ak(k), (53 62

it is [?oss_ible to define a new set of_stat{an,n,q}, where  Thus, the only physically observable states are the two
each'qy, in g is the total number ok =0 and 3 photons of v sjcal photon polarization states. In summary we have
momentak;. The new states are formed by the repeated

action of the operato®'(k) acting on the state with zero (Pl TOMP: )= (|- T T B | )

unphysical photons,
= (T ). (63)

|m!n1{lqk1’ZQk21 s 1iqki}>
. POSITIVITY RESULT

1q %q 'q
= [O7(ky)] TO'(k)] o [07(kp)] 10,m,n,0). In this section we prove the following inequality: List')
(q'%g! ... 'gH*? o be a real, symmetriax n matrix with non-negative eigen-
(54) values. Further lelP;(\ k) be a complex-vector, which is a
function of the mode label& and \. Also, let f(t) be a

The inner products of the new states are smooth, non-negative function édwhich decays rapidly at
infinity, with pointwise square root*%(t)= \/f(t) and Fou-
(m,n,0lm,n,0)=1 (55  rier transform given by

for the states with no unphysical photons and - o i
f(w)EJ dt f(t)e 't (64)
(m,n,q,|m,n,q) ={|VA,(0K)|>—|V¥A(3Kk)|Z9=0 o

(56) Then in an arbitrary quantum state), the following in-

for all other states. It is now possible to rewrite the superpo€duality holds:

sition of particle number stat€g8) with the embodiment of
the supplementary conditiaf%0) built in as ReD>, | d*k d*k'{flw(k’)—w(k)(al(k)ay (k"))

AN
|<l>>=m2nq b(m,n,q)|m,n,q). (57) XPi(NKMIP; (N k) = w(k) + (k)]

o X (a, (K)a,:(k"))Pi(N, K)MITP (N k")
The stress tensor found from the Gupta action is (@llan (k)P i I

1 (= .
Gupta_ TMaxwell, ~G.B. S — 3k| £V 2
Tp(;lpta_-l—p(raxwe +Tpu’ ’ (58) = Zﬂ'fo dyg J'd k|f 2[v+w(k)]|
where T)2*“¢!'is given by Eq.(11) and the contribution to X Pi(nKIMITP (A k). (65)

the stress-tensor from the gauge breaking term is

6B The above inequality is a generalization of the scalar field

Tor == AV V*A)—AV,VA,) positivity lemma derived by Fewster and colleag(ib$,15.

1 In order to prove this relation, first define the vector operator
000 AgVEVIALH S(VIA)? | (59
Q=3 [ G ok Tay (WP, K)
Due to the physical photon polarization modes satisfying the
Lorentz condition(34) and the Hilbert space of states satis- +g[v+w(k)]al (k)Pi(\,k)}, (66)
fying the subsidiary conditiort50), it is relatively straight-
forward to show that the expectation value of the normalyhere
ordered gauge-breaking portion of the stress-tensor vanishes,

1 .
(Bl: 5| #)=0. (60) 9(w)= Tfl’%). (67)

ko

In addition, due to the relationships between tifem,n,p)
coefficients and Eq40), it is simple to show for the normal-
ordered Maxwell portion of the stress-tensor that the un-

physical photon modes do not contribute, thus (hl*hz)(w)=f

(@ T ) = (T ), 6) .
it follows that (g*g)="f.

where Next, note that

From the definition of the convolution

o0

do'hi(w— o' )hy(w"), (68)
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n

M= kV(,Vi

a=1

(69

a)

where theV(,, are the eigenvectors dfi'l, and thex®=0
are the corresponding eigenvalues. Now

([QIIMIQ )= 2« ([Q Vi Vial Q)

=2 <IVlQIlwP=0. (70

PHYSICAL REVIEW D 65 024009

From Eg.(70) we know that the right hand side of E(.1)
is manifestly positive, so we conclude tha@") obeys the
following bound:

<St>>—J:dV§}\: Jd3k|g[v+w(k)]|2

XPi(NK)MIP; (N k),

1 g A
:_ﬂjo dv; fd3k|f“2[v+w(k)]|2

X Pi(k, N )MUIP;(\ k), (77

Furthermore, using the commutation relations and symme-

trizing the integrand inX,k) and (\',k"), we find

f;dquf]?M”[Qf]o

=<si>+rdyE fd3k|g[v+w(k)]|2
0 N
XPi(N,K)MIP;(N k), (71

where

(Sf>=ReE d3kd3k’[F(k,k’)(a{(k)aw(k’»
AN

XPi(NKMIP; (N K" ) =G(K,k')
X(ay(k)ay (k") PN K)MIP; (N k)] (72)
and the function$ and G are given by
F(kk')= | “dvfalv— (k) Tolr— o(k)]
+olv+o(k)]glv+w(k)]} (73
and
Gk k)= | “anfal v+ oK) Talr— (k)]
+olv—w(k)]g[v+w(k)]}. (74)
The expressions fdF and G may be simplified to

Pk = [ dvglak) - lal—w(k)]

=(g*g)[w(k')—w(k)]
=flw(k")—w(k)] (75
and

G(k,k")=Fw(k)+ wk)]. (76)

thus proving Eq(65).

IV. THE QUANTUM INEQUALITY

Consider a stationary observer whose four-velocity is
given by

ulu:(|900|71/21010!0)' (78)

In both the simple quantization scheme using the Coulomb
gauge and in the Gupta-Bleuler quantization scheme, the en-
ergy density measured by this observer is given by the Max-
well portion of the stress-tensor,

p= T%SXWGHU“UV

:E LF- g'F; +E|:..gi|gjm|: (79
2 |gOO| i0 jo 2 i Im |-

Now make the identification
1
Ei:FiO and BiZEQinijl (80)

whereg;;, is the completely antisymmetric Levi-Civita sym-
bol. The energy density can then be written as

1 . ..
p:§|g|71/2[Ei€”Ej+Bi(fll)ilBj]v (81

wheree is an ordinary % 3 matrix with elements

11 12 13

g g g

E=E(x)=|—'g_('|:] g%t g# g%, (82
00l

g31 g32 g33

The definitions ofE;, B; and e have been shown to recast
the curved space Maxwell field equations into the form of
the Maxwell equations inside an anisotropic material me-

dium in Cartesian coordinates. In this interpretatiemplays
the role of the dielectric tensor in the constitutive relations.
We will not push this interpretation any further and refer the
reader to Refg.28—-3( for further discussion.

Upon substitution of the mode function expansion into the
stress-tensor, and making use of constitutive relations and the
commutation relations we find
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p=|g|1’2{Re2 dk d%[af(kK)ay (K )Ei(\ ki) eTEj(N k' sxel (oot
AN
+ay(K)ay (KE Nk x)ETE;(N Kk xe e+ Red, | d®kd3k’[a](k)ay: (k" )Bi(\,k;x)
AN

x(€l) 1B (N k' x)€/ @™ a, (K)ay (K)Bi(N kix) (1) 1Bj(N k" ;x)e (@@t

+%g fd3k[Ei(>\,k;x)2iiE,-(x,k;x)+Bio\,k;x)(;ii)—1Bj(>\,k;x)]], (83)

where 1PI= P Pyacuum (86)

Ei(N K;x) = diUo(N K x) +iw(K)Ui(NK;X) (84 |t is now our intention to show that given a temporal sam-
pling function f(t) then the sampled energy density defined

and by

Bi(N,K;x)=@ij1 d;U (N, K;X). (89 e
The last line of Eq.(83) is the vacuum self-energy of the Ap= Jiwdth(X,t)Z}f(t), &7
photons. As was the case for the scalar field, we will look at
the difference between the energy in an arbitrary state reldas bounded from below. Using Eq&83) and(86), along with

tive to the vacuum energy using the normal order prescripthe definitions ofF(k,k’) and G(k,k’) given by Eqs.(73)
tion, i.e., and(74), the sampled energy density is

.1 -
Ap=—Re>, | d*kdk w(k)w(k)[F(k,k ){al(k)ay (k)ENKX)GTE (N k' ;x)+G(k,k')

|gOO| AN
X (ay(k)ay (k) E(Nk;x)gIEj(N K’ 5x) ]+ I0ReY | d a3k TF(k.k')(al(K)ay (k')
AN
XBi(Nk;x)(g") 1Bj(k" A ";x)+ G(k, k" )@y (K)ay (k")) Bi(\, k;x)(g) " *Bj(N" k';X)]. (89)

Clearly, both parts of the above expression are of the fornis found by adding the suitably renormalized vacuum energy
(S*), so we may apply the boun@®5) with M=g" and  density to the above expression.

Pi(\,k)=E;(\,k;x) for the first part of the expression and

M =(g") "t andP;(\,k)=B;(\,k;x) for the second part of

the expression. This yields a difference inequality of V. EXAMPLES
A. Minkowski spacetime
AE? _ ifdeE j d3k|f1’2[y+ w(k)]|? This quantum inequality is easily evaluated in Minkowski
2mJo A spacetime with no boundaries. Using quantization in the

Coulomb gauge, the four-vector mode functions are

1 —
. . 1] . .
X[ Tgog MR AL kix) = OAN kix, 1), (90)
900 =————, ii.—
g (B 'Bj(NKiX) | 89 \where
This expression is similar in form to the mode function ex-
pansion of the scalar field quantum inequality found by Few- AN KX, t)= grel(kx—on, (92)
ster and colleagud44,15. The quantum inequality, E¢4), 2w(2m)°

024009-8
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TABLE I. Electromagnetic field quantum inequalities in Minkowski spacetime and difference inequalities
in Rindler spacetime calculated for various unit area sampling functions.

Sampling function Minkowski spacetime Rindler spacetime

: to ~_ 2 ~ 27 32( |2
Lorentzian P Y P= " 1024700 APB_W alE
- 2t5 ~__ 8 - 3 2 o)?
Lorentza T U S|l
1 2 - 3 ~ 3 4 70 2
Gaussian ——e (o) P=— 2522 Ap=— — +_(_
’Tl'to 327 tO P 327727_8 3 g
4 ¢ Mttt 2
S—tOCO EO 0 0 ;27% oo 1 8 (2)2
Cosiné 0 elsewhere 98t P~ 96T WP\ E

&} is a unit electric polarization vector ang= k- k. Due to

Using Parseval’s identity, the quantum inequality is found to

the Coulomb gauge condition, the propagation vector is or= e

thogonal to the polarization vector, i.e.,
(92

A third, orthogonal unit vector along the magnetic field di-
rection is defined by
by=kxz}. (93

Inserting the mode functions into E¢B9), and usingg'
=4, we find

1
(2m)*

p=

o3

N

f k(Y v+ w(k)]}2

X w(K)[ k- sk +by-by],

4 [o] o0 ~
T Wfo dvfo do *{f v+ w]}?,
(94

~_ 1 f‘”
p= 87 ) _.

This is the most general expression for the quantum inequal-
ity in Minkowski spacetime with an arbitrary sampling func-
tion. For the choice of a Lorentzian sampling functi(2)

with characteristic widthy, it is straightforward to calculate

d2
dt| —

.I:l/2 ?

97

27
10247°t5"

p= (98)

This is a slightly stronger result, by 9/64, than the inequality
proven by Ford and Romdr] using an alternative method.
Comparison with the quantum inequality for the scalar field
in Minkowski space derived by Fewster and Eve$aH],
shows that the electromagnetic field quantum inequality in
Minkowski space always differs by a factor of 2. This is a
result of the electromagnetic field having two polarization
degrees of freedom, unlike the scalar field which has only
one, and both the scalar and electromagnetic field modes
having the same energy spectrum. Electromagnetic field

integration to spherical coordinates and have already carrie@arized in Table |.
out the angular integration and summation over polarization

states. The next step is to make another change of variable B. Rindler spacetime

Next, we would like to find the quantum inequality in

usrtoe, v=o, (99) Rindler spacetime. We begin with the Minkowski space
to find length element,
4 (e . ds?=—dt?+dx?+dy?+dZ. (99)
== (ZT)gfo du[%llz(u)]zfo dov®, Next we apply the coordinate transformation
1 % . t= ¢ sinhy,
- mLmdu[qum(U)]Z_ (96) <= & coshn, (100

024009-9
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to arrive at the Rindler length element jwdﬁﬁ K2.(8E) Tw (107
o = S ain

ds’=— £2dp?+d&2+dy?+d 2. (102 0 ' 2&%sinh(w)

In this form, the metric is static, but thgg, component is not Thus

a constant, so we cannot quantize the theory in the Coulomb

gauge but must use the Gupta-Bleuler formalism. Thus we Ap=—

are looking for mode solutions to the vector wave equation

(33). These have been calculated by Candelas and Deutsch

[31] for the two physical polarizations. The unphysical solu-

tions have also been calculatg®8R,33. The modes can be

conveniently expressed in terms of the mode solutions to the

massless scalar field wave equation in Rindler space,

1
27T3§4

fdvf dww(w2+1)|?l/2[1/+w]|2,
0 0

1 °C -
:_W(f |u2f1/2(u)|2du

+2f |u}1’2(u)|2du},

1 2 2 —
0e€d+ 32+ 32| p(x)=0.

~2%t 102
g0 ¢ (102 - 1 o T g2 » 5
T8t . Wf (n)| dn
The positive frequency scalar mode solutions, normalized for °
the Klein-Gordon inner product of scalar fields, §8d] =T d 2
+2f 4y | dny, (108
2 . —
Ky K, ;X) = —=—=(sinh V2 ailkyy+koz—on)
preokte (2m) ( omRiL A where we have again changed the variables of integration in

(103 accordance with Eq95) in the second line and used Parse-
val's identity to arrive at the third line. The quantum inequal-

ity is found by adding the Rindler space vacuum energy den-
sity [31],
s 0t
f do =
0 e271'a)_ 1

to the above expression. For the Lorentzian sampling func-
tion, Eqg. (2), and the definition of the proper time of the
static observerr=¢7, we find
2
£

g)nce again we find that the Rindler space difference inequal-
ity for the electromagnetic field is twice that of the scalar
field result found by Fewster and Evesfd] for the same
reason as discussed in the previous example. The electro-
magnetic field quantum inequalities for other sampling func-
tions are also summarized in Table I.

We need to be careful about the interpretation of this
quantum inequality in Rindler spacetime, as it appears that

where B=(k;+kZ)*? and K;,(x) are the modified Bessel
functions of the second kindMacdonald functions of
imaginary order The two physical modes that are important

to our calculations are the transverse electric madés, 1

77_254

11
240m°&¢d”
(109

Pvacuum— —

1

Aa(law;ky-kz;x): B

(0,0ﬂz,_ay)(ﬁ(w,ky,kz;X),
(104

and the transverse magnetic modéM),

27
102474

N 32
27

1 1
ﬁ ( §(9§,E(9n,0,0) d)(w,ky ,kZ;X).
(105

These two modes are properly normalized with respect t
Eqg. (42) and are also orthogonal. If they are inserted into Eq
(89) for the difference inequality, and after a little algebra,
we find

Al(2,0,ky K, %)= Ap= ) (110

-~ L= (= . —
Ap?——f dvf dw|f1’2[v+w]|2f dkydkz[ﬂ%(/)
mJo 0 R?

W o both the vacuum energy density and the expression for the
+—z¢¢+(&§¢)(a§¢)}, difference inequality, Eq(108), diverge in the limit as¢
¢ —0. This does not mean the quantum inequality fails on the
1 2 4 particle horizon in Rindler spacetime. This divergence is
oo o0 ~ w . B -
——— | d dolf¥ v+ 0112l = + —g.£9 ) really a pathology of the coordinates and spacetime trajec-
7T4fo Vfo o v+l & 4 £ tory used. Recall that the quantum inequality found above is

for a static observer in the Rindler coordinates. This trajec-
tory is not that of a geodesic observer but one undergoing
constant acceleration. A “static” observer &0 would re-

quire a constant infinite acceleration, an impossible scenario.
where we have switched to polar coordinates to carry out th&he divergence in the quantum inequality expresses this. We

X sinh( ) f:dﬂ BKZ,(BE), (106

angular portion of thelk dk, integrals. With the aid of Eq.
6.521.3 of[35], it is easily demonstrated that

can then ask what is the quantum inequality along the world-
line of a geodesic observer in Rindler space? Well, a geode-
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sic observer in Rindler spacetime is the same as a constabbth of which satisfy the vector wave equatid®), the Lor-
velocity geodesic in Minkowski spacetime, with the resultingentz gauge and Coulomb gauge conditions, and are orthonor-
guantum inequality in the geodesic observer’s rest frame almal.

ready found in the preceding Minkowski space example. Itis Inserting these modes into E@9) yields

obvious that there is nothing “unique” happening as the geo-

desic observer crosses the point in space which is associated . 1> < 2y )

with the particle horizon in Rindler coordinates. Thus, in APB—;L danz [fY4 v+ w,]]

Rindler space, the quantum inequality along a geodesic -
worldline does not fail. *

1

|
J— 1
X mzﬁ YimYim+ E[(I?XVm)ZJF N2V

1
2 2
Eé’x‘f' 2n

2
VnI
C. Static Einstein spacetime

Finally, we study the quantum inequality in the static
closed universe where the length element is given by

ds?’=—dt?+a?[dy?+sir’x(d#?+sirf8d¢?)], 1 1, e
(111 X(mﬁgsmaﬂg‘f' Si—nzet?‘p)mz_l YimYimf( -

anda is the radius of the universe. The modes of the elec- (117
tromagnetic field in this spacetime have been studied by vari-

ous authorg36,37,3Q. In terms of the vector potential, the However, the spherical harmonics satisfy an addition theo-
mode solutions are the vector spherical harmonicsonith rem,

harmonic time dependence. In a fashion similar to the previ-

ous examples, the four-vector mode functions can be found e 21+1
from a scalar function that satisfies the partial differential E Y|mY|m=?, (119
equation m=-1

2 cosy which is independent of thé and ¢ coordinates, thus the

VY o= =0y | ¥rim(t.x, 0,0)=0, (112 terms in the expression for the difference inequality involv-
arsiny ing derivatives with respect t@ and ¢ will vanish. The

L L . . . remaining terms can then be written as
which is not the scalar wave equation in the Einstein uni- g

verse. The scalar mode solutions are

f dvz |?1lz[v+ wn]|2
0 n=2

iy Ap=—
Ynim(tX,0,0) =V () Yim( 6, @)1, (113 27t
wherew,=n/a andY,,(0,¢) are the scalar spherical har- «| n2 1 2
monics on 3. The functionsV,(x) are defined as e+ 4 sirfy axs'an
-1
2 in=1-nr ., < (+DI(I+1)
= Si X - Vi, . 119
Va0 = amnre X Cal-a(cosy), 2t Ve (119

(114
The Gegenbauer polynomials also satisfy an addition theo-
Wherecﬁl(x) are the Gegenbauer polynomials as defined irrem, Eq. 8.934.3 df35], which for our case can be written as
[35]. The primary quantum number ranges over the inte-

gers greater than 1, i.e=2,3,4 ... . For agivenn there ' (21+1)22(1)2(n—1—1)1 - )
aren’—1 harmonic states with the same energy labeled by<, (n+n)! [siny CLo_ (cosy)]?=n.
the quantum numbers)=1,...n—1 and n=-1,-I (120
+1,...,0,..1-1].

The two physical four-vector potential modes are the elecUsing this in the difference inequality leads to
tric J-pole modes,

1/ 1(1+1) Ap=— 5= 4] dv, |%1/2[V+wn]|2
Aa(lynllvm;x):ﬁ(oim'&)(&a'a)(&q’) ‘ﬂnlm(t’XﬁiﬁD)- 2ma’Jo n=2
(115 1/sinny)\?
X n2+4$.nz Jisirty n-— S.nX ,
and the magnetic J-pole modes, X nx
A (2,0, K, X)= 0.0~ Sinxdy | rim(t,Xxs 0, @) =—%de2 wp(N?=1)[F¥7 v+ w,]]2.
A SOyt iny Ce ST | Pnimin A T80, 2m%a’ o i)
(116) (121)
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1.2 . o — It should also be pointed out that unlike the Minkowski
lectromagnatic Field — and Rindler spacetime examples, the quantum inequality for
T the electromagnetic field is not simply twice that of the sca-
08 \\ lar field quantum inequality. In both of the previous cases,
’ the spacetimes are flat with the Riemann curvature term in
So6 N\ the wave equation vanishing. Therefore, the electromagnetic
\ \\ wave equatior(10) in the Lorentz gauge can be reduced to
0.4 the scalar field wave equation. Thus, the energy spectra are
\ N identical for the scalar and electromagnetic fields in each
0.2 spacetime with the factor of 2 coming from the degeneracy
\\\\ of the electromagnetic field having two orthogonal polariza-
0 05 15 e tion states. However, for the Einstein universe, and in curved
z spacetimes in general, the energy spectrum for the scalar and

, . . electromagnetic field modes is not the same, thus the scalar
FIG. 1. Plot of the scale functions for a Lorentzian sampling and electromaanetic quantum inequalities have different
function in the four-dimensional static Einstein universe. The solidforms 9 q q
line is the electromagnetic field result, while the dotted line is the h .

g Using the work of Fewster and Tg&5], the scalar field

scalar field result. Note, for smafi=ty/a both scale functions . . R . . . .
approach 1, while for large they decay to zero. dlﬁerenpe mequa_hty in thg Emstem closed universe with a
Lorentzian sampling function is

The resulting expression is spatially invariant, as expected in

a homogeneous and isotropic universe. In addition, it has the P 27

general form of a sum over all the energies times the multi- Ap 2048772t385°a'aﬁ(t0/a)’ (125
plicity for each energy times the Fourier transform of the

square root of the sampling function, a form similar to thatwhere

found by Fewster and Tdd 5] for the scalar field in both the N

three-dimensional closed universe and in the four- 2048 _, )
dimensional static Robertson-Walker spacetimes. In order to Sscalal 2) = 5722 HEO vn(n+2)(n+1)

find the quantum inequality, we need to add to the above

expression the renormalized vacuum energy density for the °° 2

electromagnetic field which is found to 8] X f\n — ZKO(u)du. (126

11

Pracun= 535725 (122) This scale function is also plotted in Fig. 1 where we again

see the generic behavior of the scale function being 1 for
) ] o small values of,/a and decaying for large values. However,
When the difference inequality is evaluated for theypjike the electromagnetic case which is a monotonically

Lorentzian sampling function we find decreasing function, the scalar case has a bump which peaks
atty/a~0.75 and then smoothly decays. The bump is due to
Ap=— LMSEM(tO/a)a (123  then=1 term in the summation, a term which has no elec-
102477ty tromagnetic counterpart. If this term is removed from the

) ) ) summation, the remaining portion of the scale function does
where Sgy(2) is the scale function for the closed universe regyt in a monotonically decreasing behavior more akin to,
given by but not exactly like the electromagnetic case. At present, it is

2048 = not known if the bump in the scalar case has any physical

_ 4 2_ * 2 meaning, as no state has yet been demonstrated which actu-

Sem(2) 272" nZZ n(n 1)fnZK0(u)du, (129 ally achieves this bound, although it may be a good guess

that such a state would include=1 modes. There has also

andKy(u) is the zero-order modified Bessel function of the been an alternative conjecture that the bump may be an arti-
second kind. It is straightforward to evaluate this functionfact of the inequalities not being optimal. In either case, fur-
numerically and is plotted in Fig. 1. For sampling times veryther research on the scalar field quantum inequality should
small compared to the radius of the universe, the scale fungventually clarify this issue.
tion is approximately 1, for which we effectively recover the
flat space quantum inequality. This makes sense because
over such sampling times the region of the universe over
which the observer moves is indistinguishable from | would like to thank C.J. Fewster, L.H. Ford, E. Poisson
Minkowski space. However, for sampling times on the orderand T.A. Roman for useful discussions and comments on the
of, or larger than the radius of the universe, the obselaedl  manuscript. In addition, | would like to thank George Leib-
thus the quantum inequaljtyhas time to “see” the large brandt for his aid on the quantization section of the manu-
scale structure of the universe. Thus the scale functioscript. This work was supported by the National Sciences
changes appreciably away from 1. and Engineering Research Council of Canada.
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