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Quantum inequalities for the electromagnetic field
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A quantum inequality for the quantized electromagnetic field is developed for observers in static curved
spacetimes. The quantum inequality derived is a generalized expression given by a mode function expansion of
the four-vector potential, and the sampling function used to weight the energy integrals is left arbitrary up to
the constraints that it be a positive, continuous function of unit area and that it decays at infinity. Examples of
the quantum inequality are developed for Minkowski spacetime, Rindler spacetime and the Einstein closed
universe.
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I. INTRODUCTION

Nearly four decades ago, it was shown by Epstein, Gla
and Jaffe@1# that a positive definite energy density was i
compatible with the usual postulates of a quantized fi
theory. Worse yet, it appears that the energy density is
even bounded from below. Thus, all standard quantized fi
theories are capable of violating all the pointwise and av
aged energy conditions in general relativity. However, t
does not mean that the energy density can remain neg
for an arbitrarily long period of time. Over the last decad
new forms of energy conditions involving various tempo
and spatial averagings have been developed@2–21#. One
such example is the quantum inequality, which is t
weighted temporal average of the energy density along
worldline of an observer. Derived directly from quantu
field theory, these inequalities limit the magnitude and te
poral duration of the existence of negative energy densit
The quantum inequalities say that if an observer tries
make a measurement of the energy density for some cha
teristic sampling timet0, then the maximal negative energ
that he might ever measure is bounded below by an inv
power of the characteristic sampling time. Given an obse
er’s four-velocity um and a sampling~weighting! function
f (t) of characteristic widtht0, then the quantum inequalit
is given by

r̃[E
2`

`

^Tmn~t!&Ren. um~t!un~t! f ~t!dt

>2
a

t0
n S~t0!1rvacuum. ~1!

Herea is a dimensionless constant of order unity andn is the
dimension of the spacetime. For a massless field
Minkowski spacetime, the functionS(t0) is equal to 1 and
the vacuum energy density vanishes. For massive fi
and/or curved spacetimes,S(t0) represents the modificatio
of the quantum inequality away from its massless, flat sp
functional form. It has the generic behavior that it is appro
mately 1 for smallt0, and in most spacetimes it typicall
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decays for longer characteristic sampling times. Howe
there are some known exceptions, such as four-dimensi
de Sitter and Rindler spacetimes, where the functionS only
grows only as fast ast0

2.
The quantum inequalities were first derived by Ford@2# to

constrain negative energy fluxes for the quantized, mass
minimally coupled scalar field in Minkowski spacetim
These results were then expanded to the energy densit
the massive scalar field in Minkowski space@5,7# and in
static curved spacetimes@8,12,13#. In all of these cases, a
Lorentzian sampling function

f ~t!5
t0

p

1

t21t0
2 ~2!

was used to simplify the calculations. However, Flanag
@10# showed it was possible to derive optimum quantum
equalities for the massless scalar field in two dimensions
an arbitrary, smooth positive choice of the sampling functi
This was followed by the work of Fewster and colleagu
@14,15,19# who have established the quantum inequality
the minimally coupled scalar field in static curved spac
times of any dimension with an arbitrary, smooth positi
sampling function.

Although much of the previous work has been for t
scalar field, work is now progressing for higher spin field
Vollick has shown that an optimum quantum inequality c
be derived for the Dirac field in two spacetime dimensio
@20# for an arbitrary sampling function using the conform
properties of the field theory. More recently, Fewster a
Verch have established ‘‘quantum weak energy inequaliti
for the Dirac and Majorana fields of nonzero mass in fo
dimensional globally hyperbolic spacetimes@21#. Making
use of microlocal analysis techniques, Fewster and colla
rators @19,21# have vastly extended the applicability of th
quantum inequalities to arbitrary globally hyperbolic spac
times.

The first quantum inequality for the electromagnetic fie
was derived by Ford and Roman@7# for a Lorentzian sam-
pling function in flat spacetime. This was immediately ge
eralized to curved static spacetimes by the author@13#, al-
though both of these calculations relied on the spec
choice of the Lorentzian sampling function. In addition, t
©2001 The American Physical Society09-1
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MICHAEL J. PFENNING PHYSICAL REVIEW D65 024009
proof in both cases was mathematically long and at so
times quite complicated, particularly in some of the lemm
required.

In this paper, we will show that it is possible to derive
generalized quantum inequality for the quantized elec
magnetic field in static curved spacetimes with a length e
ment of the form

ds252ug00~x!udt21gi j ~x!dxidxj . ~3!

The proof presented here is greatly simplified, in large p
due to generalization of a more direct positivity lemma ori
nally developed by Fewster and colleagues@14,15#. In addi-
tion, the electromagnetic field quantum inequality is prov
for an arbitrary choice of sampling function so long as it is
positive, continuous function of unit area that decays at
finity. The end result of our calculations is the quantum
equality written as a mode function expansion:

r̃>2
1

2pE0

`

dn(
l
E d3ku f̂ 1/2@n1v~k!#u2

3F 1

ug00u
Ei~l,k;x!gi j Ej~l,k;x!1Ug00

g UBi~l,k;x!

3~gi j !21Bj~l,k;x!G1rvacuum, ~4!

whereEj (l,k;x) andBj (l,k;x) are the modes for the elec
tric and magnetic components of the field-strength tenso

f̂ 1/2~v!5E
2`

`

f 1/2~ t !e2 ivtdt ~5!

is the Fourier transform of the square root of the sampl
function and the summation overl and integration overd3k
is over all possible polarizations and momentum eigensta
respectively. As was the case for the scalar field, the elec
magnetic field quantum inequality~4! tells us how much
negative energy an observer may measure relative to
vacuum energy of the electromagnetic field.

In Sec. II we will discuss the canonical quantization of t
electromagnetic field in curved space and elucidate the
ticle state structure and the form of the stress-tensor. In
ticular, two different forms of quantization will be discusse
direct quantization in the classical Coulomb gauge and
more elegant Gupta-Bleuler form of quantization. In Sec.
we develop the positivity lemma for generic inner-produ
of vector fields, which is a generalization of work develop
by Fewster and colleagues@14,15# for the scalar field. In Sec
IV we lay out the remainder of the proof of the quantu
inequality, finally arriving at the expression above. Lastly,
Sec. V we will look at the resulting quantum inequalities f
Minkowski spacetime, Rindler spacetime and the Einst
closed universe.

We will follow the the convention of Wald@22# where the
signature of the metric is (2,1,1,1). Greek indices are
summed over~0,1,2,3! while Latin indices denote the spatia
components~1,2,3!. However, the letterl has been singled
out as the polarization state label, and depending on the
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text, can represent either the two physical polarization sta
1 and 2, or the full set of polarization states 0, 1, 2 and 3
the Gupta-Bleuler formalism which includes the scalar a
axial photon polarization states. Also, the complex conjug
of f, will be denoted byf̄ . Units of\5c5G51 will be used
throughout.

II. ELECTROMAGNETIC FIELD IN STATIC
CURVED SPACETIMES

We begin our discussion of the electromagnetic field
defining the classical Maxwell action for a source free fie
in curved space,

SMaxwell52
1

4EV
FabFabA2gd4x, ~6!

whereFab is the antisymmetric field-strength tensor relat
to the four-vector potential,Am , by

Fab5¹aAb2¹bAa . ~7!

Here¹ represents covariant differentiation.
Varying the Maxwell action with respect to the vect

potential and setting the variation equal to zero leads to
source free inhomogeneous Maxwell equation for the e
tromagnetic field in curved spacetime,

¹aFab50. ~8!

Due to the Bianchi identities, the electromagnetic field a
satisfies the subsidiary condition,

¹ [aFbg]50, ~9!

which is the homogeneous Maxwell equation. The combin
set of equations represents classical electrodynamics wr
in covariant form. If we insert the four-vector potential in
both expressions, it is found that the homogeneous Maxw
equation~9! is trivially satisfied. The inhomogeneous equ
tion ~8! yields the second order wave equation

¹a¹aAb2¹b~¹aAa!2Rb
aAa50. ~10!

HereRab is the Ricci tensor which arises due to the comm
tation relation for the covariant derivatives acting on a vec
field.

The stress-tensor for the classical electromagnetic fiel
found by varying the Maxwell action with respect to th
spacetime metric. A straightforward calculation yields

Tmn
Maxwell5FmrFn

r2
1

4
gmnFabFab. ~11!

The field-strength tensor, the Maxwell equations and
stress tensor are invariant under the gauge freedom

Aa
new5Aa

old2¹aL, ~12!

whereL5L(x) is an arbitrary scalar function. In classic
electromagnetism, the correct choice of gauge can often s
9-2
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QUANTUM INEQUALITIES FOR THE . . . PHYSICAL REVIEW D 65 024009
plify finding the solution to the field equations. In man
cases, it is convenient to choose the Lorentz gauge cond

¹aAa
new50, ~13!

which immediately removes the middle term in the wa
equation~10!. This can always be achieved by choosingL to
satisfy

¹a¹aL5¹aAa
old . ~14!

It should be noted that there is still a restricted gauge fr
dom remaining in that we can still add to the vector poten
any function that satisfies the homogeneous equation

¹a¹aLHom.50. ~15!

As we shall see below, this restricted gauge freedom will
used to impose the Coulomb gauge. It should be noted
we will drop the identifiers ofnew and old in all further
calculations.

There is some difficulty in directly quantizing electrod
namics in the form so far described. If one does not spe
a gauge, then any four-vector wave equation such as Eq.~10!
will in general have four orthonormal solutions~polarization
states!, Aa(l;x) wherel50, 1, 2 or 3. In Minkowski space
time thel50 solution is typically the scalar photon pola
ization, l51 and 2 are the two transverse photon polari
tions, andl53 is the axial photon polarization. In curve
spacetime the ‘‘perfect’’ separation of the modes into th
three ‘‘distinct’’ types is not always possible, but we w
continue to use the flat space nomenclature. It is found
for one of the polarizations, sayAa(0;x), there does not
exist a conjugate momenta when the Hamiltonian is ca
lated. This is a long known problem in flat spacetime el
trodynamics and there are several known approaches w
have been developed to quantize the electromagnetic
that can be generalized to curved spacetime. The simple
to work in a specific gauge@23,24#. A more elegant possibil-
ity is to use the Gupta-Bleuler@25–27# formalism of indefi-
nite metrics on the Hilbert space of states. Both of th
forms of quantization are discussed below.

A. Direct quantization in the Coulomb gauge

This is probably the simplest and most direct method
quantizing the electromagnetic field. The problem so
stems from the fact that the vector potential has four po
ization states, while it is known that the photons of the fr
field theory only come in two different polarizations. Thu
before the theory is quantized we would like to remove
two superfluous polarizations at the classical level. To do
we require that solutions to the wave equation~10! also sat-
isfy the Lorentz gauge condition

¹aAa50. ~16!

This removes one degree of freedom between the com
nents of the vector potential. The next condition that
would like to require is that the time component of the fou
vector potential vanish in some frame. To accomplish this
02400
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let ja be a timelike vector field. Then we require thatAa
satisfy the additional condition

jaAa50. ~17!

It is this second condition that can be ensured by the ho
geneous part of the gauge freedom. Also, note that is is
true that the Coulomb gauge is noncovariant as is someti
stated.

In flat spacetime there is no preferred choice ofja, how-
ever for the static metric of the form~3!, a natural choice is
to let ja be the global timelike Killing vector field. This will
be the same Killing vector that will be used to define t
positive frequency mode functions. Sinceja}(1,0,0,0), the
net effect is to set theA0-component of the stress tens
equal to zero. This solves two problems simultaneously. F
it removesA0 from the action, thus there is no longer
problem of it not having a conjugate momenta. Secondly
has reduced the physical degrees of freedom of the solu
to the two physically realizable photon states.

Canonical quantization is now straightforward. The met
~3! possesses a timelike Killing vector, which allows us
write the positive frequency mode function solutions of t
wave equation~10! as

Aa~l,k;x,t !5Ua~l,k;x!e2 ivt, ~18!

wherek is the mode label for the propagation vector,l is the
polarization state andv5v(k). The four-vector functions,
Um(l,k;x), are the spatial portion of the solution of th
wave equation and carry all the information about the cur
ture of the spacetime. In addition they satisfy

¹aUa~l,k;x!505¹aUa~l,k;x!. ~19!

The mode functions for the vector potential are normaliz
such that

„A~l,k!,A~l8,k8!…52 i E
S
dSm@An~l,k!Fmn~l8,k8!

2Fmn~l,k!An~l8,k8!#

5dll8d3~k2k8!, ~20!

wheredSm5ds nm is a three-volume element in the Cauch
surfaceS with unit normalnm, thus each mode contribute
1
2 v to the vacuum expectation value of the stress tensor
fore renormalization. The general solution to the vector p
tential can then be expanded as

Am~x,t !5 (
l51

2 E d3k@al~k!Am~l,k;x,t !

1al
†~k!Am~l,k;x,t !#. ~21!

Hereal
†(k) andal(k) are the creation and annihilation op

erators for the photon which obey the commutation relatio

@al~k!,al8~k8!#505@al
†~k!,al8

†
~k8!# ~22!
9-3
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MICHAEL J. PFENNING PHYSICAL REVIEW D65 024009
and

@al~k!,al8
†

~k8!#5dll8d~k2k8!. ~23!

The Fock representation of the number states can now
constructed from the vacuum state denoted byu0;0& where
the first slot is for particles of polarization type 1 and t
second slot is for polarization type 2. The vacuum state
the property

al~k!u0;0&50, ;$l,k%. ~24!

One-particle states are obtained by acting on the vacu
with the creation operator,

u1k ;0&5a1
†~k!u0;0& and u0;1k&5a2

†~k!u0;0&. ~25!

Multi-particle states can likewise be created by repeated
plication of the creation operators,

u1mk1
, . . . , jmk j

;1nk1
, . . . , jnk j

&

5
@a1

†~k1!#
1m

. . . @a1
†~k j !#

jm
@a2

†~k1!#
1n

. . . @a2
†~k j !#

j n

~1m! . . . jm! 1n! . . . jn! !1/2
u0;0&,

~26!

where thek1 ,k2 , . . . ,k j are all distinct. The above state co
tains 1m12m1 . . . 1 jm11n12n1 . . . 1 jn total particles
where 1m of them are of momentumk1 and polarization 1,
1n are of momentumk1 and polarization 2, etc. Effectively
the general number states are a direct product of elem
from two different Hilbert spaces, one for each of the pol
ization states. In order to reduce the index notation to a m
manageable form, define the two vectors

m5~1mk1
, . . . , jmk j

! and n5~1nk1
, . . . , jnk j

!, ~27!

then the states can be written more simply asum;n&. The
most general state that can then be written as a linear su
position of all the possible number states is

uc&5(
m,n

c~m,n!um;n&, ~28!

wherec(m,n) are complex coefficients and the sum is a
sumed to range over all the allowed vectors ofm andn. For
the state to be properly normalized, thec(m,n)’s must sat-
isfy

(
m,n

uc~m,n!u251. ~29!

B. Gupta-Bleuler formalism

A more elegant form of quantization is to use the Gup
Bleuler method of imposing an indefinite metric on the H
bert space of allowable states. We begin by forming
Gupta action,

SGupta5SMaxwell1SG.B., ~30!
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whereSMaxwell is the Maxwell action given by Eq.~6!, and
the gauge breaking action is given by

SG.B.52
1

2EV
~¹aAa!2A2gd4x. ~31!

Variation of the new action with respect toAa yields the
wave equation,

¹aFab1¹b~¹aAa!50, ~32!

which can be rewritten in terms ofAa as

¹a¹aAb2Rb
aAa50. ~33!

This would correspond to Maxwell’s equations if the fie
also satisfied the Lorentz gauge condition.

There are four possible solutions~polarizations! to the
above wave equation. First, there are the two physical po
izations which are labeled withl51 or 2. These two polar-
izations satisfy the wave equation~33! and the Lorentz con-
dition,

¹aAa~l,k;x,t !50 for l51,2. ~34!

Thus, these two polarizations correspond to the two stand
solutions to Maxwell’s equations. The remaining two u
physical polarizations, labeled withl50 or 3, also satisfy
the wave equation~33!, but not necessarily the Lorentz con
dition. For ultra-static spacetimes, whereug00u51, the most
natural choice is to use the scalar photon polarization,

Aa~0,k;x,t !5
1

v
~] t,0,0,0!f~k;x,t !, ~35!

and the longitudinal photon polarization,

Aa~3,k;x,t !5
1

v
~0,]x1,]x2,]x3!f~k;x,t !, ~36!

where f(k;x,t) is the solution to the massless, minimal
coupled scalar wave equation,

¹a¹af~k;x,t !50. ~37!

In the more general case of a static spacetime, it is usefu
choose the two orthogonal modes which satisfy the con
tion,

Aa~0,k;x,t !1Aa~3,k;x,t !5
1

v
¹af~k;x,t !. ~38!

In both cases, the resulting modes then satisfy

¹aAa~0,k;x,t !52¹aAa~3,k;x,t ! ~39!

and

Fab~0,k;x,t !52Fab~3,k;x,t !, ~40!

for every momentak.
9-4
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QUANTUM INEQUALITIES FOR THE . . . PHYSICAL REVIEW D 65 024009
In addition, if we define the generalized conjugate m
menta,

Pmn[2~Fmn1gmn¹aAa!, ~41!

then the modes are required to be orthogonal and norma
by

„A~l,k!,A~l8,k8!…5 i E
S
dSm@An~l,k!Pmn~l8,k8!

2Pmn~l,k!An~l8,k8!#

5hll8d3~k2k8!, ~42!

where dSm5ds nm is a three-volume element in th
Cauchy surfaceS with unit normal nm, and hll85hll8
5diag(21,1,1,1). The general solution toAm then has the
Fourier mode-decomposition

Am~x,t !5 (
l50

3 E d3k@al~k!Am~l,k;x,t !

1al
†~k!Am~l,k;x,t !#. ~43!

If we wish to canonically quantize the fieldAm , we im-
pose the equal-time commutation relations

@Am~x,t !,An~x8,t !#505@P tm~x,t !,P tn~x8,t !# ~44!

and

@Am~x,t !,P tn~x8,t !#5
idm

n

A2g
d3~x2x8!. ~45!

Using the mode decomposition and the normalization con
tion, we find that the above equal-time commutation re
tions are equivalent to

@al~k!,al8
†

~k8!#5hll8d
3~k2k8!, ~46!

with all other commutators vanishing.
The state structure is similar in form to that found for t

Coulomb gauge, except there are now a greater numbe
allowable states due to the two unphysical polarizations.
02400
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now define the vacuum state asu0;0;0;0& where the first slot
is for photons of the unphysical polarizationl50, the sec-
ond and third slots are for the two real photon polarizatio
and the final slot is for the unphysical polarization withl
53. The vacuum state vanishes if any of the four destruct
operators act on it, and multi-particle states are again
tained by the repeated application of the creation operat
Unlike the states for the Coulomb gauge quantization,
states of the Gupta-Bleuler formalism have indefinite nor

^ l,m,n,pu l8,m8,n8,p8&

5~21!
1l 12l 1 . . . 1 j l

d l l8dm m8dn n8dp p8 , ~47!

where we have added two new vectors,l andp, for the un-
physical photon polarization states. The most general sta
the Gupta-Bleuler formulation can be written as a super
sition of all the particle number states as

uf&5 (
l,m,n,p

c~ l,m,n,p!u l,m,n,p&. ~48!

In order for the Gupta-Bleuler formalism to be equivale
to Maxwell’s theory, we need to impose an additional con
tion on the Hilbert space of states, namely that the expe
tion value of the Lorentz condition be satisfied for all phy
cally realizable statesuf&,

^fu¹aAa~x,t !uf&50. ~49!

This condition can be accomplished simply by requiring th
the states obey

¹aAa
1~x,t !uf&50, ~50!

whereAa
1 is the positive frequency part ofAa . The applica-

tion of this condition to the stateuf& above means that th
c( l,m,n,p)’s with the same total number ofl50 and 3 pho-
tons of the same momenta are related to one another by

Al k¹
aAa~0,k!c„l k ,m,n,~p21!k…

1Apk¹
aAa~3,k!c„~ l 21!k ,m,n,pk…50. ~51!

Under this constraint the Hilbert space structure of the s
uf& takes the form,
uf&5•••1c~0k ,m,n,0k!u0k ,m,n,0k&1•••1
c~1k ,m,n,0k!

¹aAa~3,k!
@¹aAa~3,k!u1k ,m,n,0k&2¹aAa~0,k!u0k ,m,n,1k&]

1•••2
c~1k ,m,n,1k!

A2¹aAa~0,k!¹aAa~3,k!
$@¹aAa~3,k!#2u2k ,m,n,0k&

2A2¹aAa~0,k!¹aAa~3,k!u1k ,m,n,1k&2@¹aAa~0,k!#2u0k ,m,n,2k&%1•••. ~52!
9-5
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With the definition of a new operator

O†~k!5¹aAa~3,k!a0
†~k!2¹aAa~0,k!a3

†~k!, ~53!

it is possible to define a new set of states,um,n,q&, where
each iqki

in q is the total number ofl50 and 3 photons of

momentak i . The new states are formed by the repea
action of the operatorO†(k) acting on the state with zer
unphysical photons,

um,n,$1qk1
,2qk2

, . . . ,iqki
%&

5
@O†~k1!#

1q
@O†~k2!#

2q
. . . @O†~k i !#

i q

~1q! 2q! . . . iq! !1/2
u0,m,n,0&.

~54!

The inner products of the new states are

^m,n,0um,n,0&51 ~55!

for the states with no unphysical photons and

^m,n,qkum,n,qk&5$u¹aAa~0,k!u22u¹aAa~3,k!u2%q50
~56!

for all other states. It is now possible to rewrite the super
sition of particle number states~48! with the embodiment of
the supplementary condition~50! built in as

uf&5 (
m,n,q

b~m,n,q!um,n,q&. ~57!

The stress tensor found from the Gupta action is

Trs
Gupta5Trs

Maxwell1Trs
G.B. , ~58!

whereTrs
Maxwell is given by Eq.~11! and the contribution to

the stress-tensor from the gauge breaking term is

Trs
G.B.52Ar~¹s¹aAa!2As~¹r¹aAa!

1grsFAb¹b¹aAa1
1

2
~¹aAa!2G . ~59!

Due to the physical photon polarization modes satisfying
Lorentz condition~34! and the Hilbert space of states sat
fying the subsidiary condition~50!, it is relatively straight-
forward to show that the expectation value of the norm
ordered gauge-breaking portion of the stress-tensor vanis

^fu:Trs
G.B. :uf&50. ~60!

In addition, due to the relationships between thec( l,m,n,p)
coefficients and Eq.~40!, it is simple to show for the normal
ordered Maxwell portion of the stress-tensor that the
physical photon modes do not contribute, thus

^fu:Trs
Maxwell :uf&5^cu:Trs

Maxwell :uc&, ~61!

where
02400
d

-

e

l
es,

-

uc&5(
m,n

c~0,m,n,0!u0,m,n,0&5(
m,n

c~m,n!um,n&.

~62!

Thus, the only physically observable states are the
physical photon polarization states. In summary we have

^fu:Trs
Gupta:uf&5^fu:Trs

Maxwell1Trs
G.B. :uf&

5^cu:Trs
Maxwell :uc&. ~63!

III. POSITIVITY RESULT

In this section we prove the following inequality: LetMi j

be a real, symmetricn3n matrix with non-negative eigen
values. Further letPi(l,k) be a complexn-vector, which is a
function of the mode labelsk and l. Also, let f (t) be a
smooth, non-negative function onR which decays rapidly at
infinity, with pointwise square rootf 1/2(t)5Af (t) and Fou-
rier transform given by

f̂ ~v![E
2`

`

dt f~ t !e2 ivt. ~64!

Then in an arbitrary quantum stateuc&, the following in-
equality holds:

Re(
l,l8

E d3k d3k8$ f̂ @v~k8!2v~k!#^al
†~k!al8~k8!&

3Pi~l,k!Mi j Pj~l8,k8!6 f̂ @v~k!1v~k8!#

3^al~k!al8~k8!&Pi~l,k!Mi j Pj~l8,k8!%

>2
1

2pE0

`

dn(
l
E d3ku f̂ 1/2@n1v~k!#u2

3Pi~l,k!Mi j Pj~l,k!. ~65!

The above inequality is a generalization of the scalar fi
positivity lemma derived by Fewster and colleagues@14,15#.
In order to prove this relation, first define the vector opera

@Qn
6# i5(

l
E d3k$g@n2v~k!#al~k!Pi~l,k!

6g@n1v~k!#al
†~k!Pi~l,k!%, ~66!

where

g~v!5
1

A2p
f̂ 1/2~v!. ~67!

From the definition of the convolution

~h1!h2!~v!5E
2`

`

dv8h1~v2v8!h2~v8!, ~68!

it follows that (g!g)5 f̂ .
Next, note that
9-6
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Mi j 5 (
a51

n

kaV(a)
i V(a)

j , ~69!

where theV(a)
i are the eigenvectors ofMi j , and theka>0

are the corresponding eigenvalues. Now

^@Qn
6# i

†Mi j @Qn
6# j&5 (

a51

n

ka^@Qn
6# i

†V(a)
i V(a)

j @Qn
6# j&

5 (
a51

n

kauV(a)
i @Qn

6# i uc&u2>0. ~70!

Furthermore, using the commutation relations and sym
trizing the integrand in (l,k) and (l8,k8), we find

E
0

`

dn^@Qn
6# i

†Mi j @Qn
6# j&

5^S6&1E
0

`

dn(
l
E d3kug@n1v~k!#u2

3Pi~l,k!Mi j Pj~l,k!, ~71!

where

^S6&5Re(
l,l8

E d3k d3k8@F~k,k8!^al
†~k!al8~k8!&

3Pi~l,k!Mi j Pj~l8,k8!6G~k,k8!

3^al~k!al8~k8!&Pi~l,k!Mi j Pj~l8,k8!# ~72!

and the functionsF andG are given by

F~k,k8!5E
0

`

dn$g@n2v~k!#g@n2v~k8!#

1g@n1v~k!#g@n1v~k8!#% ~73!

and

G~k,k8!5E
0

`

dn$g@n1v~k!#g@n2v~k8!#

1g@n2v~k!#g@n1v~k8!#%. ~74!

The expressions forF andG may be simplified to

F~k,k8!5E
2`

`

dn g@v~k8!2n#g@n2v~k!#

5~g!g!@v~k8!2v~k!#

5 f̂ @v~k8!2v~k!# ~75!

and

G~k,k8!5 f̂ @v~k!1v~k8!#. ~76!
02400
e-

From Eq.~70! we know that the right hand side of Eq.~71!
is manifestly positive, so we conclude that^S6& obeys the
following bound:

^S6&>2E
0

`

dn(
l
E d3kug@n1v~k!#u2

3Pi~l,k!Mi j Pj~l,k!,

52
1

2pE0

`

dn(
l
E d3ku f̂ 1/2@n1v~k!#u2

3Pi~k,l!Mi j Pj~l,k!, ~77!

thus proving Eq.~65!.

IV. THE QUANTUM INEQUALITY

Consider a stationary observer whose four-velocity
given by

um5~ ug00u21/2,0,0,0!. ~78!

In both the simple quantization scheme using the Coulo
gauge and in the Gupta-Bleuler quantization scheme, the
ergy density measured by this observer is given by the M
well portion of the stress-tensor,

r5Tmn
Maxwellumun

5
1

2 F 1

ug00u
Fi0gi j F j 01

1

2
Fi j g

il gjmFlmG . ~79!

Now make the identification

Ei5Fi0 and Bi5
1

2
% i jkF jk , ~80!

where% i jk is the completely antisymmetric Levi-Civita sym
bol. The energy density can then be written as

r5
1

2
ugu21/2@Ei ê

i j Ej1Bi~ ê i j !21Bj #, ~81!

whereê is an ordinary 333 matrix with elements

ê5 ê~x!5
A2g

ug00u S g11 g12 g13

g21 g22 g23

g31 g32 g33
D . ~82!

The definitions ofEi , Bi and ê have been shown to reca
the curved space Maxwell field equations into the form
the Maxwell equations inside an anisotropic material m
dium in Cartesian coordinates. In this interpretation,ê plays
the role of the dielectric tensor in the constitutive relation
We will not push this interpretation any further and refer t
reader to Refs.@28–30# for further discussion.

Upon substitution of the mode function expansion into t
stress-tensor, and making use of constitutive relations and
commutation relations we find
9-7
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r5ugu21/2H Re(
ll8

E d3k d3k8@al
†~k!al8~k8!Ei~l,k;x!ê i j Ej~l8,k8;x!ei (v2v8)t

1al~k!al8~k8!Ei~l,k;x!ê i j Ej~l8,k8;x!e2 i (v1v8)t#1Re(
ll8

E d3k d3k8@al
†~k!al8~k8!Bi~l,k;x!

3~ ê i j !21Bj~l8,k8;x!ei (v2v8)t1al~k!al8~k8!Bi~l,k;x!~ ê i j !21Bj~l8,k8;x!e2 i (v1v8)t#

1
1

2(l
E d3k@Ei~l,k;x!ê i j Ej~l,k;x!1Bi~l,k;x!~ ê i j !21Bj~l,k;x!#J , ~83!
e
a

el
rip

m-
ed
where

Ei~l,k;x!5] iU0~l,k;x!1 iv~k!Ui~l,k;x! ~84!

and

Bi~l,k;x!5% i j l ] jUl~l,k;x!. ~85!

The last line of Eq.~83! is the vacuum self-energy of th
photons. As was the case for the scalar field, we will look
the difference between the energy in an arbitrary state r
tive to the vacuum energy using the normal order presc
tion, i.e.,
r

d
f

x
w

02400
t
a-
-

:r:5r2rvacuum. ~86!

It is now our intention to show that given a temporal sa
pling function f (t) then the sampled energy density defin
by

Dr̃5E
2`

`

dt^:r~x,t !:& f ~ t !, ~87!

is bounded from below. Using Eqs.~83! and~86!, along with
the definitions ofF(k,k8) and G(k,k8) given by Eqs.~73!
and ~74!, the sampled energy density is
Dr̃5
1

ug00u
Re(

ll8
E d3k d3k8v~k!v~k8!@F~k,k8!^al

†~k!al8~k8!&Ei~l,k;x!gi j Ej~l8,k8;x!1G~k,k8!

3^al~k!al8~k8!&Ei~l,k;x!gi j Ej~l8,k8;x!#1Ug00

g URe(
ll8

E d3k d3k8@F~k,k8!^al
†~k!al8~k8!&

3Bi~l,k;x!~gi j !21Bj~k8,l8;x!1G~k,k8!^al~k!al8~k8!&Bi~l,k;x!~gi j !21Bj~l8,k8;x!#. ~88!
rgy

ki
the
Clearly, both parts of the above expression are of the fo
^S6&, so we may apply the bound~65! with Mi j 5gi j and
Pi(l,k)5Ei(l,k;x) for the first part of the expression an
Mi j 5(gi j )21 andPi(l,k)5Bi(l,k;x) for the second part o
the expression. This yields a difference inequality of

Dr̃>2
1

2pE0

`

dn(
l
E d3ku f̂ 1/2@n1v~k!#u2

3F 1

ug00u
Ei~l,k;x!gi j Ej~l,k;x!

1Ug00

g UBi~l,k;x!~gi j !21Bj~l,k;x!G . ~89!

This expression is similar in form to the mode function e
pansion of the scalar field quantum inequality found by Fe
ster and colleagues@14,15#. The quantum inequality, Eq.~4!,
m

-
-

is found by adding the suitably renormalized vacuum ene
density to the above expression.

V. EXAMPLES

A. Minkowski spacetime

This quantum inequality is easily evaluated in Minkows
spacetime with no boundaries. Using quantization in
Coulomb gauge, the four-vector mode functions are

Aa~l,k;x,t !5„0,A~l,k;x,t !…, ~90!

where

A~l,k;x,t !5
i

A2v~2p!3
«̂k

lei (k•x2vt), ~91!
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TABLE I. Electromagnetic field quantum inequalities in Minkowski spacetime and difference inequa
in Rindler spacetime calculated for various unit area sampling functions.

Sampling function Minkowski spacetime Rindler spacetime

Lorentzian
t0

p(t21t0
2)

r̃>2
27

1024p2t0
4 Dr̃>2

27

1024p2t0
4 F11

32

27S t0

j D 2G
Lorentzian2

2t0
3

p(t21t0
2)2 r̃>2

3

16p2t0
4 Dr̃>2

3

16p2t0
4 F11

2

3 S t0

j D 2G
Gaussian

1

Apt0

e2(t/t0)2 r̃>2
3

32p2t0
4 Dr̃>2

3

32p2t0
4 F11

4

3 S t0

j D 2G

Cosine4
H 4

3t0
cos4Spt

2t0
D 2t0,t,t0

0 elsewhere
r̃>2

p2

96t0
4 Dr̃>2

p2

96t0
4 F11

8

p2 S t0

j D 2G
o

i-

tu
ri

tio
b

to

ual-
c-

lity
.
ld

in
a

on
nly
des
eld
m-

n
ce
«̂k
l is a unit electric polarization vector andv5Ak•k. Due to

the Coulomb gauge condition, the propagation vector is
thogonal to the polarization vector, i.e.,

k• «̂k
l50. ~92!

A third, orthogonal unit vector along the magnetic field d
rection is defined by

b̂k
l5 k̂3 «̂k

l . ~93!

Inserting the mode functions into Eq.~89!, and usinggi j

5d i j , we find

r̃>2
1

~2p!4E
0

`

dn(
l
E d3k$ f̂ 1/2@n1v~k!#%2

3v~k!@ «̂k
l
• «̂k

l1b̂k
l
•b̂k

l#,

52
4

~2p!3E
0

`

dnE
0

`

dv v3$ f̂ 1/2@n1v#%2,

~94!

where we have made a change of variable in the momen
integration to spherical coordinates and have already car
out the angular integration and summation over polariza
states. The next step is to make another change of varia

u5n1v, v5v, ~95!

to find

r̃>2
4

~2p!3E
0

`

du@ f̂ 1/2~u!#2E
0

u

dv v3,

52
1

2~2p!3E
2`

`

du@u2 f̂ 1/2~u!#2. ~96!
02400
r-

m
ed
n
le

Using Parseval’s identity, the quantum inequality is found
be

r̃>2
1

8p2E
2`

`

dtF d2

dt2
f 1/2~ t !G2

. ~97!

This is the most general expression for the quantum ineq
ity in Minkowski spacetime with an arbitrary sampling fun
tion. For the choice of a Lorentzian sampling function~2!
with characteristic widtht0, it is straightforward to calculate

r̃>2
27

1024p2t0
4 . ~98!

This is a slightly stronger result, by 9/64, than the inequa
proven by Ford and Roman@7# using an alternative method
Comparison with the quantum inequality for the scalar fie
in Minkowski space derived by Fewster and Eveson@14#,
shows that the electromagnetic field quantum inequality
Minkowski space always differs by a factor of 2. This is
result of the electromagnetic field having two polarizati
degrees of freedom, unlike the scalar field which has o
one, and both the scalar and electromagnetic field mo
having the same energy spectrum. Electromagnetic fi
quantum inequalities for various sampling functions are su
marized in Table I.

B. Rindler spacetime

Next, we would like to find the quantum inequality i
Rindler spacetime. We begin with the Minkowski spa
length element,

ds252dt21dx21dy21dz2. ~99!

Next we apply the coordinate transformation

t5j sinhh,
~100!

x5j coshh,
9-9



m
w
io
ts

lu

th

fo

l

n

t
q

a

th
.

n in
e-
l-

en-

nc-
e

ual-
lar

ctro-
c-

his
that
the

the
is

jec-
e is
ec-
ing

rio.
We

rld-
de-

MICHAEL J. PFENNING PHYSICAL REVIEW D65 024009
to arrive at the Rindler length element

ds252j2dh21dj21dy21dz2. ~101!

In this form, the metric is static, but theg00 component is not
a constant, so we cannot quantize the theory in the Coulo
gauge but must use the Gupta-Bleuler formalism. Thus
are looking for mode solutions to the vector wave equat
~33!. These have been calculated by Candelas and Deu
@31# for the two physical polarizations. The unphysical so
tions have also been calculated@32,33#. The modes can be
conveniently expressed in terms of the mode solutions to
massless scalar field wave equation in Rindler space,

S 2
1

j2 ]h
21

1

j
]jj]j1]y

21]z
2Df~x!50. ~102!

The positive frequency scalar mode solutions, normalized
the Klein-Gordon inner product of scalar fields, are@34#

f~v,ky ,kz ;x!5
2

~2p!2 ~sinhvp!1/2Kiv~bj!ei (kyy1kzz2vh),

~103!

where b5(ky
21kz

2)1/2 and Kin(x) are the modified Besse
functions of the second kind~Macdonald functions! of
imaginary order. The two physical modes that are importa
to our calculations are the transverse electric modes~TE!,

Aa~1,v,ky ,kz ;x!5
1

b
~0,0,]z ,2]y!f~v,ky ,kz ;x!,

~104!

and the transverse magnetic modes~TM!,

Aa~2,v,ky ,kz ;x!5
1

b S j]j ,
1

j
]h ,0,0Df~v,ky ,kz ;x!.

~105!

These two modes are properly normalized with respec
Eq. ~42! and are also orthogonal. If they are inserted into E
~89! for the difference inequality, and after a little algebr
we find

Dr̃>2
1

pE0

`

dnE
0

`

dvu f̂ 1/2@n1v#u2E
R2

dkydkzFb2f̄f

1
v2

j2 f̄f1~]jf̄ !~]jf!G ,
52

1

p4E
0

`

dnE
0

`

dvu f̂ 1/2@n1v#u2S v2

j2 1
1

4j
]jj]jD

3sinh~pv!E
0

`

db b Kiv
2 ~bj!, ~106!

where we have switched to polar coordinates to carry out
angular portion of thedkydkz integrals. With the aid of Eq
6.521.3 of@35#, it is easily demonstrated that
02400
b
e
n
ch

-

e

r

t

to
.

,

e

E
0

`

db b Kiv
2 ~bj!5

pv

2j2sinh~pv!
. ~107!

Thus

Dr̃>2
1

2p3j4E
0

`

dnE
0

`

dv v~v211!u f̂ 1/2@n1v#u2,

52
1

16p3j4 H E
2`

`

uu2 f̂ 1/2~u!u2du

12E
2`

`

uu f̂1/2~u!u2duJ ,

52
1

8p2j4 H E
2`

` F d2

dh2 f 1/2~h!G2

dh

12E
2`

` F d

dh
f 1/2~h!G2

dhJ , ~108!

where we have again changed the variables of integratio
accordance with Eq.~95! in the second line and used Pars
val’s identity to arrive at the third line. The quantum inequa
ity is found by adding the Rindler space vacuum energy d
sity @31#,

rvacuum52
1

p2j4E
0

`

dv
v31v

e2pv21
52

11

240p2j4 ,

~109!

to the above expression. For the Lorentzian sampling fu
tion, Eq. ~2!, and the definition of the proper time of th
static observer,t5jh, we find

Dr̃>2
27

1024p2t0
4F11

32

27S t0

j D 2G . ~110!

Once again we find that the Rindler space difference ineq
ity for the electromagnetic field is twice that of the sca
field result found by Fewster and Eveson@14# for the same
reason as discussed in the previous example. The ele
magnetic field quantum inequalities for other sampling fun
tions are also summarized in Table I.

We need to be careful about the interpretation of t
quantum inequality in Rindler spacetime, as it appears
both the vacuum energy density and the expression for
difference inequality, Eq.~108!, diverge in the limit asj
→0. This does not mean the quantum inequality fails on
particle horizon in Rindler spacetime. This divergence
really a pathology of the coordinates and spacetime tra
tory used. Recall that the quantum inequality found abov
for a static observer in the Rindler coordinates. This traj
tory is not that of a geodesic observer but one undergo
constant acceleration. A ‘‘static’’ observer atj50 would re-
quire a constant infinite acceleration, an impossible scena
The divergence in the quantum inequality expresses this.
can then ask what is the quantum inequality along the wo
line of a geodesic observer in Rindler space? Well, a geo
9-10
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sic observer in Rindler spacetime is the same as a con
velocity geodesic in Minkowski spacetime, with the resulti
quantum inequality in the geodesic observer’s rest frame
ready found in the preceding Minkowski space example. I
obvious that there is nothing ‘‘unique’’ happening as the g
desic observer crosses the point in space which is assoc
with the particle horizon in Rindler coordinates. Thus,
Rindler space, the quantum inequality along a geode
worldline does not fail.

C. Static Einstein spacetime

Finally, we study the quantum inequality in the sta
closed universe where the length element is given by

ds252dt21a2@dx21sin2x~du21sin2udw2!#,
~111!

and a is the radius of the universe. The modes of the el
tromagnetic field in this spacetime have been studied by v
ous authors@36,37,30#. In terms of the vector potential, th
mode solutions are the vector spherical harmonics on S3 with
harmonic time dependence. In a fashion similar to the pre
ous examples, the four-vector mode functions can be fo
from a scalar function that satisfies the partial differen
equation

S ¹a¹a2
2 cosx

a2sinx
]xDcnlm~ t,x,u,w!50, ~112!

which is not the scalar wave equation in the Einstein u
verse. The scalar mode solutions are

cnlm~ t,x,u,w!5Vnl~x!Ylm~u,w!e2 ivnt, ~113!

wherevn5n/a and Ylm(u,w) are the scalar spherical ha
monics on S2. The functionsVnl(x) are defined as

Vnl~x!5
2l l !A~n2 l 21!!

Al ~ l 11!p~n1 l !!
sinl 11x Cn2 l 21

l 11 ~cosx!,

~114!

whereCh
l(x) are the Gegenbauer polynomials as defined

@35#. The primary quantum numbern ranges over the inte
gers greater than 1, i.e.n52,3,4, . . . . For agiven n there
aren221 harmonic states with the same energy labeled
the quantum numbers,l 51, . . . ,n21 and n52 l ,2 l
11, . . . ,0, . . .l 21,l .

The two physical four-vector potential modes are the el
tric J-pole modes,

Aa~1,n,l ,m;x!5
1

n S 0,
l ~ l 11!

sin2x
,]x]u ,]x]wDcnlm~ t,x,u,w!,

~115!

and the magnetic J-pole modes,

Aa~2,v,ky ,kz ;x!5S 0,0,
1

sinx
]w ,sinx]uDcnlm~ t,x,u,w!,

~116!
02400
nt
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both of which satisfy the vector wave equation~10!, the Lor-
entz gauge and Coulomb gauge conditions, and are ortho
mal.

Inserting these modes into Eq.~89! yields

Dr̃>2
1

pE0

`

dn (
n52

`

u f̂ 1/2@n1vn#u2

3(
l 51

`
1

a4sin2x H l ~ l 11!F1

2
]x

212n2GVnl
2

3 (
m52 l

l

YlmYlm1
1

2
@~]xVnl!

21n2Vnl
2 #

3S 1

sinu
]usinu]u1

1

sin2u
]w

2 D (
m52 l

l

YlmYlmJ .

~117!

However, the spherical harmonics satisfy an addition th
rem,

(
m52 l

l

YlmYlm5
2l 11

4p
, ~118!

which is independent of theu and w coordinates, thus the
terms in the expression for the difference inequality invo
ing derivatives with respect tou and w will vanish. The
remaining terms can then be written as

Dr̃>2
1

2p2a4E
0

`

dn (
n52

`

u f̂ 1/2@n1vn#u2

3S n21
1

4 sin2x
]x

2sin2x D
3 (

l 51

n21
~2l 11!l ~ l 11!

sin2x
Vnl

2 . ~119!

The Gegenbauer polynomials also satisfy an addition th
rem, Eq. 8.934.3 of@35#, which for our case can be written a

(
l 50

n21
~2l 11!22l~ l ! !2~n2 l 21!!

~n1 l !!
@sinlx Cn2 l 21

l 11 ~cosx!#25n.

~120!

Using this in the difference inequality leads to

Dr̃>2
1

2p3a4E
0

`

dn (
n52

`

u f̂ 1/2@n1vn#u2

3S n21
1

4 sin2x
]x

2sin2x D Fn2
1

n S sinnx

sinx D 2G ,
52

1

2p3a3E
0

`

dn (
n52

`

vn~n221!u f̂ 1/2@n1vn#u2.

~121!
9-11
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The resulting expression is spatially invariant, as expecte
a homogeneous and isotropic universe. In addition, it has
general form of a sum over all the energies times the mu
plicity for each energy times the Fourier transform of t
square root of the sampling function, a form similar to th
found by Fewster and Teo@15# for the scalar field in both the
three-dimensional closed universe and in the fo
dimensional static Robertson-Walker spacetimes. In orde
find the quantum inequality, we need to add to the ab
expression the renormalized vacuum energy density for
electromagnetic field which is found to be@38#

rvacuum5
11

240p2a4 . ~122!

When the difference inequality is evaluated for t
Lorentzian sampling function we find

Dr̃>2
27

1024p2t0
4 SEM~ t0 /a!, ~123!

whereSEM(z) is the scale function for the closed univer
given by

SEM~z!5
2048

27p2 z4(
n52

`

n~n221!E
nz

`

K0
2~u!du, ~124!

andK0(u) is the zero-order modified Bessel function of t
second kind. It is straightforward to evaluate this functi
numerically and is plotted in Fig. 1. For sampling times ve
small compared to the radius of the universe, the scale fu
tion is approximately 1, for which we effectively recover th
flat space quantum inequality. This makes sense bec
over such sampling times the region of the universe o
which the observer moves is indistinguishable fro
Minkowski space. However, for sampling times on the ord
of, or larger than the radius of the universe, the observer~and
thus the quantum inequality! has time to ‘‘see’’ the large
scale structure of the universe. Thus the scale func
changes appreciably away from 1.

FIG. 1. Plot of the scale functions for a Lorentzian sampli
function in the four-dimensional static Einstein universe. The so
line is the electromagnetic field result, while the dotted line is
scalar field result. Note, for smallz5t0 /a both scale functions
approach 1, while for largez they decay to zero.
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It should also be pointed out that unlike the Minkows
and Rindler spacetime examples, the quantum inequality
the electromagnetic field is not simply twice that of the sc
lar field quantum inequality. In both of the previous cas
the spacetimes are flat with the Riemann curvature term
the wave equation vanishing. Therefore, the electromagn
wave equation~10! in the Lorentz gauge can be reduced
the scalar field wave equation. Thus, the energy spectra
identical for the scalar and electromagnetic fields in ea
spacetime with the factor of 2 coming from the degenera
of the electromagnetic field having two orthogonal polariz
tion states. However, for the Einstein universe, and in cur
spacetimes in general, the energy spectrum for the scalar
electromagnetic field modes is not the same, thus the sc
and electromagnetic quantum inequalities have differ
forms.

Using the work of Fewster and Teo@15#, the scalar field
difference inequality in the Einstein closed universe with
Lorentzian sampling function is

Dr̃>2
27

2048p2t0
4Sscalar~ t0 /a!, ~125!

where

Sscalar~z!5
2048

27p2 z4(
n50

`

An~n12!~n11!2

3E
An(n12)z

`

K0
2~u!du. ~126!

This scale function is also plotted in Fig. 1 where we ag
see the generic behavior of the scale function being 1
small values oft0 /a and decaying for large values. Howeve
unlike the electromagnetic case which is a monotonica
decreasing function, the scalar case has a bump which p
at t0 /a;0.75 and then smoothly decays. The bump is due
the n51 term in the summation, a term which has no ele
tromagnetic counterpart. If this term is removed from t
summation, the remaining portion of the scale function do
result in a monotonically decreasing behavior more akin
but not exactly like the electromagnetic case. At present,
not known if the bump in the scalar case has any phys
meaning, as no state has yet been demonstrated which
ally achieves this bound, although it may be a good gu
that such a state would includen51 modes. There has als
been an alternative conjecture that the bump may be an
fact of the inequalities not being optimal. In either case, f
ther research on the scalar field quantum inequality sho
eventually clarify this issue.
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