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Instability of extremal relativistic charged spheres
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Tony Rothman†

Department of Physics, Bryn Mawr College, 101 North Merion Avenue, Bryn Mawr, Pennsylvania 19010
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With the question ‘‘Can relativistic charged spheres form extremal black holes?’’ in mind, we investigate the
properties of such spheres from a classical point of view. The investigation is carried out numerically by
integrating the Oppenheimer-Volkov equation for relativistic charged fluid spheres and finding interior
Reissner-Nordstro¨m solutions for these objects. We consider both constant density and adiabatic equations of
state, as well as several possible charge distributions, and examine stability by both a normal mode and an
energy analysis. In all cases, the stability limit for these spheres lies between the extremal (Q5M ) limit and
the black hole limit (R5R1). That is, we find that charged spheres undergo gravitational collapse before they
reachQ5M , suggesting that extremal Reissner-Nordstro¨m black holes produced by collapse are ruled out. A
general proof of this statement would support a strong form of the cosmic censorship hypothesis, excluding not
only stable naked singularities, but stable extremal black holes. The numerical results also indicate that
although the interior mass-energym(R) obeys the usualm/R,4/9 stability limit for the Schwarzschild interior
solution, the gravitational massM does not. Indeed, the stability limit approachesR1 as Q→M . In the
Appendix we also argue that Hawking radiation will not lead to an extremal Reissner-Nordstro¨m black hole.
All our results are consistent with the third law of black hole dynamics, as currently understood.

DOI: 10.1103/PhysRevD.65.024003 PACS number~s!: 04.70.Bw, 97.60.Lf
o
y
t

lu
s
m
ob
e
g

zo
ec
e
,
ob
-
ul

k

es
po
d

ch
s

u-
cts
he
lls.
le,
for

nd
u-
in-

d

on-
e.
out

ith
-
n
ity
.,
e
or
ruct
atic
We
ses
.

ic
eral
I. INTRODUCTION

Extremal black holes, black holes for which the charge
angular momentum parameter equals the mass, occup
exceptional position in black hole thermodynamics: due
their vanishing surface gravity they represent the abso
zero state of black hole physics. Over the past five or
years, compelling evidence has accumulated that extre
black holes represent a fundamentally different class of
jects than their nonextremal counterparts. In some resp
this is not surprising because the horizon structure chan
completely at extremality~see, e.g.@1#! and all the thermo-
dynamic properties of black holes depend on the hori
structure. The exact nature of extremality is still the subj
of some debate. Semiclassical calculations for eternal,
tremal black holes@2,3# indicate that the entropy is zero
while more recent semiclassical calculations for extremal
jects collapsing into black holes@4,5# find that the tempera
ture, and hence entropy, is not well defined. Similar res
have been found for Ban˜ados-Teitelboim-Zanelli~BTZ!
black holes@6#. String theory calculations for extremal blac
holes, on the other hand@7#, have yielded the ordinary
Bekenstein-Hawking value for the entropy.

Given the pathological properties of extremal black hol
at least from the semiclassical side, one reasonable sup
tion is that such objects are, for reasons as yet unclear,
allowed by nature. Israel@8#, for example, has proven a form
of the third law, which shows that it is impossible to rea
extremality by any finite-time, continuous accretion proce
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~with some caveats!. On the other hand, some simple sol
tions of the Einstein equations for extremally charged obje
are known @9–11#. These studies, however, consider t
rather unrealistic scenario of collapsing, infinitely thin she
Moreover, the extremal solutions are evidently unstab
which again casts doubt on their relevance as models
genuine physical objects.

In this paper, we take a purely classical point of view a
consider the stability of charged, spherical matter distrib
tions that satisfy the Einstein equations. Essentially we
vestigate interior Reissner-Nordstro¨m solutions, focusing on
the extremalQ5M case. A study of relativistic charge
spheres was undertaken thirty years ago by Bekenstein@12#,
but without numerics he was unable to reach many firm c
clusions about the ability of charge to prohibit collaps
More recently a numerical investigation has been carried
by de Felice Siming and Yunqiang.@13# ~dFSY!. The dFSY
study was limited in that it considered only spheres w
constant matter densityr and a power-law charge distribu
tion. Furthermore, althoughr was taken to be constant i
deriving the equation of hydrostatic equilibrium, the stabil
analysis assumed an adiabatic equation of state, i.ep
}r rm

g , wherer rm is the rest mass density. As will becom
clear below, ther5const case is the only convenient one f
numerical integration; nevertheless, it is possible to const
a scheme capable of handling the more general adiab
equation of state, as well as other charge distributions.
have done this for the present study and find that in all ca
examined, instability sets in before extremality is reached

II. EINSTEIN AND OPPENHEIMER-VOLKOV
EQUATIONS FOR CHARGED SPHERES

To derive the relativistic hydro- and electro-dynam
equations for a charged fluid sphere, we assume a gen
©2001 The American Physical Society03-1
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spherically symmetric metric in the form

ds252e2Fdt21e2Ldr21r 2du21r 2sin2udf2, ~2.1!

whereF5F0(r )1F1(r ,t) andL5L0(r )1L1(r ,t). In this
section we are concerned only with the zeroeth-order~static!
Einstein equations and so setF15L150. The first-order
quantities will be employed for the stability analysis in Se
IV. We write the Einstein equations in the form

Gmn[Rmn2
1

2
gmnR58pTmn , ~2.2!

with c5G51. For charged spheres, the energy-momen
tensor will consist of a perfect-fluid part

~Tmn!hydro5~r1p!umun1pgmn ~2.3!

plus an electromagnetic part

4p~Tmn!EM5Fm
aFna2

1

4
gmnFabFab. ~2.4!

In these expressionsr5r rm1e is the total mass density,r rm
is the rest mass density,e is the internal energy density,p is
the fluid pressure,um is the four-velocity, andFmn is the
electromagnetic field strength tensor. As in the derivation
the exterior Reissner-Nordstro¨m solution, we take the mag
netic fieldB to be zero. Due to spherical symmetry, the ele
tric field E must be entirely radial and the electromagne
field tensor Fmn , which has only two components,F01
52E andF105E, must satisfy the Maxwell equations

1

A2g
~A2gFmn!,n54p j m, ~2.5!

where j m is the four-current. The only nonvanishing deriv
tive for the static case isn5r . Working out Eq.~2.5! gives

E~r !5
eF(r )1L(r )Q~r !

r 2
, ~2.6!

where

Q~r ![4pE
0

r

eF(r 8)1L(r 8)r 82 j 0~r 8!dr8. ~2.7!

Equation~2.6! immediately implies

F015
e2(F(r )1L(r ))Q~r !

r 2
. ~2.8!

Note that Eqs.~2.6! and~2.8! are of exactly the same form a
the exterior Reissner-Nordstro¨m solution, as they must be b
Gauss’ law. The only difference is that for the interior caseQ
representsQ(r ) rather than the total charge. (Tmn)EM must
also be of the standard Reissner-Nordstro¨m form, or from
Eqs.~2.4! and ~2.8!
02400
.
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~Tmn!EM5
Q2~r !

8pr 4
diag@e2F,2e2L,r 2,r 2sin2u#. ~2.9!

Also note thatTEM[(Tm
m)EM50 due to the antisymmetry o

Fmn .
The left-hand side of the Einstein equations are the sa

as for any static, spherically symmetric solution. With t
above expressions forTmn , the (00) equation is found to b

1

r 2
1

2L8e22L

r
2

e22L

r 2
58pr1

Q2

r 4
, ~2.10!

and the~11! equation is

1

r 2
2

2F8e22L

r
2

e22L

r 2
5

Q2

r 4
28pp, ~2.11!

where (8) denotes derivative with respect tor.
If one multiplies Eq.~2.10! by r 2, one gets

d~e22Lr !

dr
5128prr 22

Q2~r !

r 2
,

or

e22L512
2m~r !

r
2

F~r !

r
, ~2.12!

where

m~r ![4pE
0

r

rr 82 dr8 and_F~r ![E
0

r Q2~r 8!

r 82
dr8.

In the case wherer is a constant andQ is taken to obey a
power law inr, these expressions reduce to those in dF
However, we will not restrict ourselves to this situation.

To eliminate the metric functionsF andL and to get the
basic hydrodynamic equations we consider the conserva
lawsT ;n

mn 50. The fluid part is the same as can be found
the derivation of the ordinary Oppenheimer-Volkov equati
~see, e.g.@14#! and is found to be

T ;r
rr 5e22L@p81F8~r1p!#. ~2.13!

The electromagnetic part is found to be

~TEM
rr ! ;r52

e22LQQ8

4pr 4
.

Setting the sum of these terms to zero and solving forF8
yields

F85
1

r1p F QQ8

4pr 4
2p8G . ~2.14!

Solving Eq.~2.11! for F8 and inserting the result into Eq
~2.14! yields
3-2
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2
p8

r1p
52

1

2r
1e2LF4prp1

1

2r
2

Q2

2r 3G2
QQ8

4pr 4~r1p!
.

~2.15!

With the form ~2.12! for e22L and some rearrangement
terms this can be written as

p85
QQ8

4pr 4
2

~r1p!

r 2 F4pr 3p1m~r !1
F
2

2
Q2

2r G
3S 12

2m~r !

r
2

F
r D 21

. ~2.16!

This is the Oppenheimer-Volkov~OV! equation for relativis-
tic charged spheres, which will be the basis for our analy

We point out that the Newtonian version of this equati
is

p85
QQ8

4pr 4
2

rm~r !

r 2
,

which shows that in the Newtonian limit the Coulomb rep
sion opposes the gravitational force, as expected, helpin
stabilize charged spheres against collapse. However in
relativistic OV equation with power-law charge distributio
Q;r k, F/22Q2/(2r ),0. Thus these terms decrease the
fective mass in the numerator of the second term, tendin
‘‘stabilize.’’ At the same time charge decreases the deno
nator, tending to ‘‘destabilize.’’ The final outcome is not e
tirely clear, which is why one needs to investigate the O
equation numerically.

III. INTEGRATION OF THE OPPENHEIMER-VOLKOV
EQUATION

The basic strategy is simply to integrate Eq.~2.16! and
test for the stability of solutions. Before doing this one mu
specify the charge distribution and an equation of state.
have no serious models of any sort for charged ‘‘stars,’’
even know whether such objects exist. It seems intuitiv
reasonable that due to electrical repulsion the charge di
bution should be weighted toward the surface, but otherw
all choices are basicallyad hoc. One can imagine severa
plausible distributions. dFSY confined themselves to the s
plest case,Q}r k. We consider two distributions:

Q~r !5QTS r

RD k

ecr/R[Abr kecr/R, ~3.1!

whereR andb are adjustable input parameters that define
radius of the star and the total chargeQT respectively, and

Q~r !5Ab tanhkS r

cRD , ~3.2!

which flattens out forr @cR. Note that in both these case
the charge density, obtained by differentiating Eq.~2.7!, di-
verges at the origin unlessk>3. In point of fact, although we
have been able to find solutions for the charge distribut
02400
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~3.2!, the stability analysis is generally inconclusive since
absolute boundary separation can be found consistently
all b of a given g across the entire range of paramete
considered here. The one exception isg54 in which case
the results are qualitatively similar to the exponential dis
bution ~3.1! for all b, and so we confine ourselves to th
case.

Scarcely less arbitrariness applies to the equation of s
~EOS! than to the charge distribution. Three obvious pos
bilities suggest themselves:r5const, the adiabatic EOSp
}r rm

g with arbitrary adiabatic indexg, and the ultrarelativis-
tic EOS, p5r/3. However, despite the fact that an exa
solution with infinite central densityr}r 22 for the last case
is known whenQ50 ~see@14#!, we have found it difficult to
find convergent solutions for this EOS whenQÞ0 when
iterating over central pressure.~This is as opposed to iterat
ing over central density, which we do for arbitrary adiaba
index, below.! Thus we confine ourselves to the first tw
choices. We do, however, consider theg54/3 adiabatic
EOS, which includes relativistic matter with non-negligib
rest mass density~typically r rm /e;102– 104 at the origin for
g54/3, depending onpc andb, and substantially lower ra
tios for largerg). We reiterate thatr represents the tota
mass-energy density of the matter plus gravitational fie
Generally, the EOS is assumed to relate only the rest en
density,r rm , and the pressure. As mentioned in Sec. II, t
total local energy density isr5r rm1e, wheree is the inter-
nal energy density. We consider only polytropes, for wh
e5p/(g21).

Once the charge distribution and EOS are specified
can integrate the OV equation. For virtually any case one
imagine, however, integrating Eq.~2.16! is impossible ana-
lytically and the integration must be carried out numerica
Even then, except for the caser5const, this turns out to be
nontrivial. For r5const, the total mass will be simpl
m(r )5(4/3)pr 3r. With the boundary conditionp(R)50
and a form ofQ to makeF analytically integrable, this al-
lows convenient integration from the outer boundary inwa
For more reasonable equations of state, however, one exp
r to vanish atr 5R as well@e.g., ifr5kp1/g1p/(g21)#. In
such cases the entire second term in Eq.~2.16! vanishes at
the outer boundary, which causes a serious problem num
cally becausedp/drur 5R5QQ8/(4pr 4).0, while p(R
2Dr )'2QQ8uDr u/(4pR4). Thus, unlessQQ8,0, an in-
ward integration scheme immediately predicts a nega
pressure unless the integration is initiated from some a
trary outer pressure and surface radius values to compen
for the charge distribution.

For this reason, we choose to integrate outwards fromr
50. This strategy also presents difficulties. We can, s
chooseR as the prespecified ‘‘radius’’ of the star, but in sta
ing the integration at the origin, we have no prior knowled
of which combination of parametersrc ~central density!, pc
~central pressure!, g, b, k, c, andQ will actually produce a
star with radiusR. In other words, if we define the physica
surface radiusRp to be the point at which the pressure fir
goes negative, there is no reason thatRp will equal R. We
have therefore adopted the following procedure: For a gi
3-3
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parameter set (R,b,g,k,c,Q,rc ,pc) we take a first guess a
rc51/(Rpc

1/g) with arbitrary pc , then iterate onrc using a
bisection algorithm untilRp converges toR. The bisection
method assumes a locally monotonic correlation betw
drc /rc anddR/R, where the (n11)-th estimate of the cen
tral density is given byrc

(n11)5rc
(n)1drc

(n) . One chooses
drc

(n) by rc
(n)dR/R5src

(n)(Rp2R)/R, wheres is a coeffi-
cient initially set to unity, but is halved for convergenc
wheneverdR changes sign. We find in most cases we c
converge onR to a relative tolerance ofdr/r<0.1%.

The numerical integration is performed using an adap
fourth order Runge-Kutta scheme to maintain a constant
ror tolerance of 10212 over a grid constructed with cell spac
ing scaled to the surface radius such thatDr /R<531024.
Further accuracy is achieved at the outer surface where p
sure and density vary sharply by adaptively refining the m
spacing to a minimum levelDr'10212 when the pressure i
observed to change sign. This procedure works well ifR is
sufficiently small. However, asR is increased one eventuall
hits a barrierR5Rmax beyond which convergence to th
0.1% tolerance is impossible or„2m(r )1F…/r becomes so
large that the metric function~2.12! becomes negative. Thi
latter marks the black-hole limitR5R15M1AM22Q2,
whereM is the exterior gravitational mass. The upper bou
on Rmax generally depends on all input parameters, and
computed numerically for each case presented in this pa
For example, considering an adiabatic EOS withQ5Abr 3,
Fig. 1 shows the maximum surface radius as a function ob
for the differentg considered in this paper. We are unable
find convergent solutions at radii above each of the curv

Figure 2 plots the total massm(R) as a function of sur-
face radius forg54,100 and fixedb51. Here the surface
radius is increased from 5% ofRmax to the maximum com-
puted valueRmax. Each of the solid lines represent differe

FIG. 1. Maximum surface radius as a function of charge para
eterb found by converging in the central density to a tolerance
Drc /rc51023 for a charge distributionQ5Abr 3 and the different
adiabatic indexes considered in this paper. For fixedb, the numeri-
cal solutions do not converge to the specified tolerance at r
above the plotted curves.
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central pressurespc with the larger pressures resulting
greater masses. Also plotted in Fig. 2 are the correspon
black hole and extremal charge solutions for comparis
The black hole solution forr 5R is found by setting the
metric function~2.12! equal to zero at that point, which give
m(R)5„R2F(R)…/2. By contrast, the extremal solution~not
necessarily a black hole! is found by first matching the exte
rior Reissner-Nordstro¨m metric to the interior solution~2.1!
at r 5R:

12
2M

R
1

Q2

R2
5

1

RE0

RS 128prr 22
Q2

r 2 D dr ~3.3!

which gives the definition of gravitational mass

M5
1

2E0

RS 8prr 21
Q2

r 2 D dr1
Q2

2R
. ~3.4!

Setting Q5M gives the extremal curve form(R)
54p*rr 2dr:

m~R!5Q2
Q2

2R
2

F~R!

2
. ~3.5!

Finally we note that the total charge to total mass ra
Q/M generally increases monotonically with increasingR
and fixedb, as Fig. 3 demonstrates. Since we are interes
in the maximum or extremal limit ofQ/M , the subsequen
stability plots presented in Sec. IV are computed for tho
parameter values at the upper bounds ofR (5Rmax) for
which we are able to find convergent solutions.

As a reminder, we point out that because we do not kn
beforehand the exterior mass of the star, the radiusR in our

-
f

ii

FIG. 2. Total mass densitym as a function of outer surface
radiusR ~up toR5Rmax) for fixed charge parameterb51. Each of
the solid lines are solutions to the OV equations with differe
central pressures~the larger pressures correspond to greater m
densities!. Also plotted are the densities for the corresponding bla
hole (R5R1) and extremal charge (Q5M ) limits.
3-4
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graphs is not given in units ofM. R is merely where the
pressure drops to zero expressed in geometric units.

IV. STABILITY I: NORMAL MODE ANALYSIS

We provide two stability analyses. The first, discussed
detail in this section, is a normal-mode analysis for rad
pulsations of the charged sphere, similar to that performed
dFYS ~see also@15# or @16#!. The second, discussed in Se
V, is based on the variation of energy.

We consider radial pulsations of the sphere with the g
of writing the Sturm-Liouville equation:

~Fz8!81~H1v2W!z50. ~4.1!

Herez is a ‘‘renormalized displacement function,’’ andF,H
and W are functions of the zeroth-order~equilibrium! solu-
tion to the Einstein equations.v is the angular frequency o
the assumed sinusoidal time dependence ofz. Once these
functions are known, we evaluate

v25

E
0

R

~F z̃822H z̃2!dr

E
0

R

Wz̃2 dr

, ~4.2!

FIG. 3. Total charge to mass ratioQ/M is a monotonic function
of surface radius up to the maximum computed radiusRmax, and
peaks atQ;M for large g. The results are shown for a centr
pressurepc51.
02400
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and deduce that the solution is stable under radial pertu
tions if v2.0 for approximate trial functionsz̃ that satisfy
the same boundary conditions asz.

To deriveF, H, andW is a tedious undertaking; becaus
we are now dealing with a time-dependent problem, the m
ric functions in Eq.~2.1! must be taken to beF5F0(r )
1F1(r ,t) and L5L0(r )1L1(r ,t), where we assume th
first-order quantities are small. Once the perturbation eq
tions are derived, to get the Sturm-Liouville form, the firs
order quantities are eliminated in favor of the zeroth-ord
solutions. Nevertheless, because our equations differ slig
from dFYS, we now outline the procedure. The developm
basically follows that of Misner, Thorne, and Wheel
~MTW! @15#, Chap. 26.

We first consider the total energy-momentum tensor. W
the conditiongmnumun521, and raising and lowering with
the full metric, one gets to first orderu052eF0(11F1) and
u15e2L02F0j̇, where j(r ,t)!r represents the small dis
placement of a fluid element initially at radiusr. For the
electromagnetic part ofTmn , we let Q5Q01Q1, with Q1
52Q08(r )j(r ,t) to first order. This is equivalent to assum
ing that the charge distribution in the oscillating system is
same as in the unperturbed system, i.e., that the Lagran
perturbations vanish and no electric currents are introdu
for the comoving observer. Then,

T005S r01
Q0

2

8pr 4D e2F01e2F0Xr11F1S Q0
2

4pr 4
12r0D

2
Q0Q08j

4pr 4 C
T0152e2L0~p01r0!j̇

T115S p02
Q0

2

8pr 4D e2L01e2L0Xp11L1S 2p02
Q0

2

4pr 4D
1

Q0Q08j

4pr 4 C. ~4.3!

Note the presence ofT01, due to the fluid motion. This is
entirely a first-order quantity.

The left-hand side of the Einstein equations are most e
ily computed with the help ofMATHEMATICA or MAPLE. Then
the ~00! Einstein equation is found to be
e2F0

r 2
~112F1!1

2

r 2
e22L012F0F2

1

2
1rL081L1~122rL08!2F1~122rL08!1rL18G

58pe2F0S r01
Q0

2

8pr 4D 18pe2F0S r112F1S r01
Q0

2

8pr 4D 2
2Q0Q08j

8pr 4 D . ~4.4!
3-5
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Equating orders on each side leads to the 0th-order equation
~2.10!, which minus the charge term is also MTW E
~26.1b!. The first-order equation, after some simplificatio
comes out to be

2e22L0

r 2
@L1~122rL08!1rL18#58pr12

2Q0Q08j

r 4
.

~4.5!

With T01 given by Eq.~4.3!, the ~01! Einstein equation is
then nontrivial and gives

L1524pre2L0~p01r0!j52~L081F08!j, ~4.6!

where the second equality follows from the zeroth-ord
equations~2.10! and ~2.11!.

We will shortly need an expression for the perturbed pr
surep1. One can get this from the law of baryon conserv
tion d(Dn)/dt52n(“•u)5(2g)21/2(A2gua),a . Taking
a5t,r yields

Dn52n0@r 22e2L0~r 2eL0j!81L1#, ~4.7!

whereDn represents the Lagrangian perturbation inn. As-
suming adiabatic fluctuations such thatDp/Dn5gp/n then
gives

p152gp0@r 22e2L0~r 2eL0j!81L1#2jp08 , ~4.8!

which is MTW Eq.~26.9!.
The first-order~11! Einstein equation is found to be

F1854pre2L0Xp112L1S p02
Q0

2

8pr 4D C1
L1e2L0

r

1e2L0
Q0Q08j

r 3
. ~4.9!

With Eqs.~4.6! and~4.8!, L1 andp1 can be eliminated to ge

F18524pre2L0@gp0r 22e2L0~r 2eL0j!8#

24pre2L0jF p081~L081F08!S 2p02gp02
Q0

2

4pr 4

1
1

4pr 2D 2
Q0Q08

4pr 4 G . ~4.10!

By considering the parallel component of the conser
tion equationumT ;n

mn 50, using Eq.~4.7! and assuming the
Lagrangian perturbationDQ vanishes, one can show

r152~p01r0!@r 22e2L0~r 2eL0j!81L1#2jr08 ,
~4.11!

which is MTW Eq.~26.11!.
The transverse component of the conservation equa

hn
mT m;s

s 50, where the projection tensorhn
m5dn

m1umun

eventually yields
02400
,

r

-
-

-

n,

e2L022F0~r01p0!j̈52F08~r11p1!2F18~r01p0!2p18

2
1

4pr 4
~Q08

2j1Q0Q09j1Q0Q08j8!.

~4.12!

We note that theQ09 term does not appear in dFSY.
With these expressions we are finally able to write do

the Sturm-Liouville equation. We define the renormaliz
displacement function z5r 2e2F0j and assume z
5z(r )e2 ivt. Then

F5gp0r 22eL013F0,

W5r 22~r01p0!e3L01F0,

H5r 22eL013F0F4pr ~r01p0!e2L0S 2p081
Q0Q08

4pr 4

1
1

r
~r01p0!D 12p08F081p091F08r08

2
2p08

r
2

1

4pr 4 S Q08
21Q0Q091Q0Q08S F082

2

r D D G .

~4.13!

We have not attempted to reconcile this expression foH
with the one in dFSY.

Physically reasonable solutions requirez/r 3 finite or zero
asr→0 andgp0r 22eF0z8→0 asr→R. Any trial functionz
that satisfies these conditions and that extremizes Eq.~4.2! is
acceptable. Following Chandrasekhar and dFSY, we cho
z}r 3.

Figure 4 shows the stability curves for the adiabatic E
with Q5Abr 3. The results are generated by choosing
initial central pressure~equal to unity! and iteratively solving
the OV equation to convergence in the central density
fixed b and surface radiusR5Rmax. The central pressure i
then monotonically increased and the OV equation rep
edly solved until the angular frequency defined in Eq.~4.2!
becomes negative. The data points connected by solid l
are the solutions at which the frequency first becomes ne
tive. Also shown are the black hole limitR5R1 and theQ
5M limit, generated from Eq.~3.5!. Note that the stability
limit falls between the Q5M curve and the black-hole
curve. As can be seen from Fig. 3,Q/M varies over a broad
range atR5Rmax, but is constrained byQ/M,1 in the
limit of large g. Thus instability sets inbeforeextremality is
reached sinceQ/M decreases as theR5R1 curve is ap-
proached~say by increasing the central pressure!, even in the
limit g→` where all the curves come together.

Although for reasons of clarity we have not shown t
g54/3 and 5/3 solutions in Fig. 4, they are qualitative
similar to the other cases, except that the extremal, stab
and black hole curves are more widely separated. A m
detailed plot of theg5100 case is shown in Fig. 5 for two
3-6
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different values ofb, and varying the surface radius up
R5Rmax. Also shown in Fig. 5 with solid lines are the co
responding limits for the interior Schwarzschild solutio
when Q50, m(R)54R/9. This absolute limit is a good
match to the numerically computed results even for re
tively large ratios ofQ/M and radiiR;Rmax. However, a
more useful extension of this limit should employ the gra
tational massM deriving this constraint. Figure 6 plots th
same result as 5, but for the gravitational massM (R). The
solid lines are now the limits for the exterior Schwarzsch
solutionM (R)54R/9. Notice that the upper bound of stab
ity with this definition is always below, but approaches t
black hole limitR→R1→M asQ→M andR→Rmax. This
result is consistent with that of@17# who find no non-singular
static solutions withR→R1 for Q,M .

The overall behavior is repeated in Figs. 7 and 8, wh
show similar graphs for two additional cases: the adiab
EOS with Q5Abr 3er /R, and a constant density profile re
spectively. Once again, unstable solutions separate thQ
5M and black hole states. This is our main result: that
onset of instability always occurs before extremality
reached.

V. STABILITY II: ENERGY ANALYSIS

Admittedly, the above stability analysis is not exceptio
ally transparent. Somewhat more insight into the stability

FIG. 4. Total mass function corresponding to the stability lim
as a function of the maximum computed surface radius forg
54,10,100. The solid lines are found by increasing the central p
sure from unity and plotting the first points which become unsta
The four points in theg54 curve represent for this distributio
Q5Abr 3, b50.01,0.1,1.0,10~right to left!. The three points for
g510 representb50.01,0.1,1.0; the two points forg5100 repre-
sentb50.01,0.1. The displayed data are chosen to prevent ove
of the differentg curves, but we note that the general conclus
remains the same for all cases and choices ofb investigated: the
limit of stability lies between theQ5M curves~dashed lines! and
the black holeR5R1 limit ~dotted lines!, even forg54/3 and 5/3
which are not shown here for clarity. Thus instability sets in bef
extremality is reached.
02400
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relativistic charged spheres can be gained by considerin
energy analysis. Following@16# and neglecting the electro
static energy which is invariant with respect to changes
density, one can write the internal~thermal plus gravita-
tional! energy of a spherical gas cloud as

s-
.

ap

e

FIG. 5. As Fig. 4, except here we show closeups of the
tremal, black hole, and stability curves for the more interesting h
adiabatic index (g5100) case over a range of surface radii leadi
up to the maximumR5Rmax. Also plotted is the solid linem(R)
54R/9. The usual stability limit for the interior Schwarzschild s
lution is actually given byM54R/9, where M is the gravitationa
mass. The two expressions are equivalent only in the limitQ50;
see also Fig. 6. In all cases, the stability curves separate the
tremal charge and black hole states.

FIG. 6. As Fig. 5, except here we plot solutions for the gravi
tional massM as a function of surface radiusR. This time the solid
lines show the stability limit M (R)54R/9 for the interior
Schwarzschild solution. Notice there is no absolute upper bound
stability other than the black hole limitR→M asR→Rmax andQ
→M .
3-7
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E5E
0

RFrS 12
2m~r !

r
2

F~r !

r D 1/2

2r rmGdV, ~5.1!

where the invariant volume element dV54p(122m(r )/r
2F(r )/r )21/2r 2dr. An equilibrium configuration is deter
mined by the condition]E/]r rmc50, wherer rmc is the cen-
tral rest-mass density, and the transition from a stable
unstable configuration is determined by the condit
]2E/]r rmc

2 50 at the point where]E/]r rmc50. We find the
transition numerically by first iteratively solving the O
equation for a given central pressurepc until convergence is
reached inrc . The energy integral~5.1! is then evaluated

FIG. 7. As Fig. 4, but for a charge distribution ofQ
5Abr 3er /R. The symbols representb50.01~right-most points! and
1.0 ~left-most points!.

FIG. 8. As Fig. 4, but for a constant density distribution. T
symbols representb50.01,0.1,1.0,10~right to left!. Although diffi-
cult to see, an unstable solution~sold line! always lies between the
extremal and black hole curves for all surface radiiR<Rmax we
have studied. This figure is shown forR5Rmax as are most of the
other stability plots.
02400
to

and tabulated as a function of total mass and central r
mass density. The inflection point is then easily computed
a function ofM by discretizing the tabulated data with re
spect tor rmc . Figure 9 shows a comparison of this meth
of evaluating stability with the normal mode analysis of Se
IV for the g54 case of Fig. 4, but on a linear-linear sca
The results agree remakably well. However, we note that
energy approach is much more sensitive to numerical re
lution and accuracy than the normal mode method. In fa
this method proves generally inconclusive for extreme~both
small and large! values ofg. Hence we rely exclusively to
the more robust normal mode method of Sec. IV to ass
stability.

Equation~5.1! is already suggestive in that one can im
mediately see that the functionF enters with the same sig
as m(r ). In other words, charge effectively increases t
magnitude of the gravitational potential energy, against
internal energy included inr, which should tend to destabi
lize the charged sphere. This can be confirmed by a pe
bation analysis. Letr5r rm(11u), where nowu is the in-
ternal energy per unit mass, and assume that bothu!1 and
m(r )/r !1. Note that F/r;Q2/r 25(Q2/m2)(m2/r 2), so
this is at least a second order effect,F/r;m2/r 2 if Q;m,
and even higher order ifQ!m. Expanding Eq.~5.1! to low-
est order inF, gives

E5E
0

R

r rmFu2
m

r
2

um

r
2

m2

2r 2
2

F
2r GdV. ~5.2!

The first four terms are those found in computing t
standard relativistic corrections to a Newtonian star~see
@16#, Chap. 6!. The last term, which we denote asI Q

FIG. 9. Comparison of the energy variation and normal mo
methods in evaluating the stability of solutions for the sameg54
case as Fig. 4, but displayed on a linear-linear scale to disting
the stability lines. Over the parameter range that both methods
be applied to reliably~mostly restricted by the energy metho
which is less robust from a numerical point of view!, the results
agree remarkably well.
3-8
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[(1/2)*r rm(F/r )dV is the correction due to charge. No
that I Q>0 always. For ag54/3 polytrope one finds with the
correction due to charge

E5~AM2BM5/3!r rmc
1/3 1CMr rmc

21/32DM7/3r rmc
2/3 2I Q ,

~5.3!

whereA,B,C,D are positive numbers that depend on fund
mental constants as well as on results of the numerical i
gration @see@16#, Eq. ~6.10.23!#.

The condition]E/]r rmc50 gives

1

3
~AM2BM5/3!r rmc

22/32
1

3
CMr rmc

24/32
2

3
DM7/3r rmc

21/32I Q8 50.

~5.4!

Here, I Q8 []I Q /]r rmc'(1/2)*(a(r )F/r )dV, where a(r )
represents the normalized density profiler rm5r rmca(r )
with a(r 50)51. We have also neglected higher order co
tributions from the invariant volume elementdV. For real
stars, equating the first term in equation~5.4! to zero leads to
the Chandrasekhar limit. The remaining terms are small
rections. Solving for the first term in the above equation a
using the result in the condition]2E/]r rmc

2 50 yields

2

9
CMr rmc

27/32
2

9
DM7/3r rmc

24/32
2

3
r rmc

21 I Q8 50. ~5.5!

To leading orderM'(A/B)3/2, so the onset of instability
occurs at

CS A

BD 3/2

2DS A

BD 7/2

rcrit23rcrit
4/3 I Q8 50. ~5.6!

When I Q50, this gives the standard resultrcrit5(C/
D)(B/A)2. However, sinceI Q8 >0, the presence of the las
term clearly lowersrcrit , decreasing the threshold of inst
bility by making the star unstable at lower densities a
massesm(r ) at fixedR. This behavior is observed in Fig.
where asQ and Q/M are increased the stability curve fal
further below theR5(9/4)m(R) Schwarzschild stability
limit. But, since we are increasing charge, we are increas
the gravitational massM over m(r ) @see Eq.~3.4!#, and so,
paradoxically, when measured inM, the stability limit in-
creases, as seen in Fig. 6.

VI. CONCLUSIONS

We have seen that, contrary to Newtonian intuition,
general relativity charge does not tend to stabilize or co
terbalance the interior energy density of fluid spheres. To
sure, our numerical results indicate that for a fixed rad
instability sets in at a smaller massm(r ) than in the fluid
only case. Nevertheless, charge does increase the gra
tional massM, and the instability threshold for relativisti
charged spheres monotonically approaches the black
horizon in the extremal limit. Most important, though, for a
cases studied the onset of instability of relativistic charg
spheres takes place before the attainment of extremality
that point, gravitational collapse into black holes takes pla
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but these are not extremal holes. All these results are
tainly consistent with the currently accepted form of the th
law of black hole dynamics, which forbids attainment of t
extremal state by finite time processes involving accretion
positive energy@8# ~see also Appendix!.

One might legitimately doubt whether studies such as
one have any bearing on reality given that astrophysical
jects tend not to be charged. For precisely this reason it
long been doubted that Reissner-Nordstro¨m solutions can
represent astrophysical objects. On the other hand, to
extent that charged solutions shed light on the third law, th
have been of great interest. Regardless, however, of whe
one chooses to interpret charged spheres as stars or as
tons or as models for elementary particles, our results m
it difficult to see how extremal objects could arise from a
remotely realistic collapse scenario. A general theorem ru
out stable extremal black holes altogether would be de
able; it would effectively be an alternate formulation of th
third law, as well as a strong version of the cosmic cens
ship hypothesis~or theorem, in that case!; not only are stable
naked singularities excluded, but stable extremal black ho
as well.

Note added in proof.Since writing this paper we hav
learned that the results of the Appendix have also b
achieved by S. Daset al. @20#.
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APPENDIX: A NOTE ON HAWKING RADIATION
AND THE THIRD LAW

Israel’s proof of the third law@8#, that the surface gravity
of a black hole can never be forced to zero in a finite-tim
continuous process, assumed accreting charged shells
that the energy flux crossing the outer apparent horizon
the black hole was positive. Therefore the proof has noth
to say about Hawking radiation, because in this case a n
tive energy flux crosses the apparent horizon, violating
assumptions of the theorem. Moreover, at first glance
might seem that Hawking radiation would drive a black ho
toward extremality: If a black hole is emitting neutral pa
ticles, for example, the charge would remain constant wh
the mass decreased, forcingQ/M→1. It is not terribly diffi-
cult to see that this does not happen.

The power radiated by the black hole is

P5
dM

dt
;R2T4;R2k4, ~A1!

where k is the surface gravity. For a Schwarzschild bla
hole,R52M andk51/4M . This immediately gives the wel
known result for the evaporation timet;M3.

For a Reissner-Nordstro¨m black hole, however,R5R1

5M1AM22Q2 and the surface gravity is given by
3-9
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k5
~M22Q2!1/2

2M @M1~M22Q2!1/2#2Q2
~A2!

@see Wald@18#, Eq. ~12.5.4!#. Of course, asQ→M , k ap-
proaches zero, and therefore the flux, which goes as
fourth power ofk is rapidly decreasing. This suggests that
infinite amount of time is required to reachQ5M . The state-
ment can be made rigorous by integrating Eq.~A1! for
Reissner-Nordstro¨m black holes. WithR5R1 and the above
expression fork we have

t5E @2M ~M1AM22Q2!2Q2#4

~M1AM22Q2!2~M22Q2!2
dM, ~A3!

where the limits should be fromM to Q, assumingM.Q
initially. With Q5const, the expression can be integrat
analytically. The result for the indefinite integral is

t~M !5
32M3

3
116MQ21

MQ4

2~Q22M2!

1
2~16M4116M2Q2241Q4!

3AM22Q2

2
35Q3tanh21~M /Q!

2
. ~A4!

Assuming, for example, thatMinitial @Q and M f inal5Q(1
1e) with e,1, then
f
n-

02400
he
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d

t;
64M3

3
1

Q3

4e
1O~e21/2!, ~A5!

which clearly diverges in the limitQ→M ~equivalentlye
→0).

Although we have done this only forQ5const, it may
hold true generally. If the Hawking temperatureT is initially
below the rest mass of the electron, the black hole will ra
ate only neutral particles and soQ will remain constant while
M decreases. Plotting Eq.~A2! shows thatk and henceT will
actually increasewith decreasing mass untilQ5(A3/2)M ,
at which pointk52/(9M ) then monotonically decrease t
zero ask;A2e/Q in the limit M5Q(11e). Assuming the
maximum temperature is always less than the mass of
electron, thenQ can be expected to remain constant, a
evaporation cannot proceed in finite time, as discus
above.

If at any timeT becomes greater thanme , the hole will
evaporate charge. But for any charged elementary par
q@m due to negligible size of the gravitational interactio
Assuming that for temperatures above the rest mass, all
cies of particles are radiated with roughly equal probabi
~equipartition!, under evaporationQ will become negligible
compared toM and extremality will never be approached.

We emphasize that, as Israel points out, the entire dis
sion neglects any superradiant component which is nont
mal, but it is not clear whether this would alter the conc
sion. We have also neglected other processes, such
discharge from pair production mentioned by Page@19#,
which in this case would likely only strengthen the conc
sion. In any case, certainly forQ5const, Hawking radiation
cannot violate the third law of black hole dynamics and p
haps not in general. This is consistent with the early work
Page and with the point of view that extremal black holes
not exist.
,
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