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With the question “Can relativistic charged spheres form extremal black holes?” in mind, we investigate the
properties of such spheres from a classical point of view. The investigation is carried out numerically by
integrating the Oppenheimer-Volkov equation for relativistic charged fluid spheres and finding interior
Reissner-Nordstr solutions for these objects. We consider both constant density and adiabatic equations of
state, as well as several possible charge distributions, and examine stability by both a normal mode and an
energy analysis. In all cases, the stability limit for these spheres lies between the ext@eaidl)(limit and
the black hole limit R=R_.). That is, we find that charged spheres undergo gravitational collapse before they
reachQ=M, suggesting that extremal Reissner-Nordstinlack holes produced by collapse are ruled out. A
general proof of this statement would support a strong form of the cosmic censorship hypothesis, excluding not
only stable naked singularities, but stable extremal black holes. The numerical results also indicate that
although the interior mass-energyR) obeys the usuah/R<4/9 stability limit for the Schwarzschild interior
solution, the gravitational madsl does not. Indeed, the stability limit approachies as Q—M. In the
Appendix we also argue that Hawking radiation will not lead to an extremal Reissner-Nandsizok hole.

All our results are consistent with the third law of black hole dynamics, as currently understood.
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[. INTRODUCTION (with some caveajs On the other hand, some simple solu-

tions of the Einstein equations for extremally charged objects

Extremal black holes, black holes for which the charge odre known[9-11]. These studies, however, consider the
angular momentum parameter equals the mass, occupy sather unrealistic scenario of cqllapsing, infinitely thin shells.
exceptional position in black hole thermodynamics: due tgloreover, the extremal solutions are evidently unstable,
their vanishing surface gravity they represent the absoIutgvgrﬂi]ngg;r'];;:asltib?ggtzt on their relevance as models for
zero state of plack hple physics. Over the past five or si? In this paper, we take a purely classical point of view and

years, compelling evidence has accumulated that extrem%

: nsider the stability of charged, spherical matter distribu-
black holes represent a fundamentally different class of Obﬂons that satisfy the Einstein equations. Essentially we in-

jects than their nonextremal counterparts. In some respecigiigate interior Reissner-Nordatmosolutions, focusing on
this is not surprising bgcause the horizon structure changgge extremalQ=M case. A study of relativistic charged
comple_tely at ex_tremaht&see, e.g[1]) and all the thermo.- spheres was undertaken thirty years ago by Bekeng&in
dynamic properties of black holes depend on the horizomyt without numerics he was unable to reach many firm con-
structure. The exact nature of extremality is still the subjecklusions about the ability of charge to prohibit collapse.
of some debate. Semiclassical calculations for eternal, exviore recently a numerical investigation has been carried out
tremal black holeq2,3] indicate that the entropy is zero, by de Felice Siming and Yungianfl3] (dFSY). The dFSY
while more recent semiclassical calculations for extremal obstudy was limited in that it considered only spheres with
jects collapsing into black hold4,5] find that the tempera- constant matter density and a power-law charge distribu-
ture, and hence entropy, is not well defined. Similar resultdion. Furthermore, although was taken to be constant in
have been found for Baulos-Teitelboim-Zanelli(BTZ) deriving the equation of hydrostatic equilibrium, the stability
black holed6]. String theory calculations for extremal black analysis assumed an adiabatic equation of state, p.e.,
holes, on the other hanfi7], have yielded the ordinary «pl,, wherep, is the rest mass density. As will become
Bekenstein-Hawking value for the entropy. clear below, thep=const case is the only convenient one for
Given the pathological properties of extremal black holespumerical integration; nevertheless, it is possible to construct
at least from the semiclassical side, one reasonable suppo&i-scheme capable of handling the more general adiabatic
tion is that such objects are, for reasons as yet unclear, digguation of state, as well as other charge distributions. We
allowed by nature. Israg8], for example, has proven a form have done this for the present study and find that in all cases
of the third law, which shows that it is impossible to reach€xamined, instability sets in before extremality is reached.

extremality by any finite-time, continuous accretion process I EINSTEIN AND OPPENHEIMER-VOLKOV

EQUATIONS FOR CHARGED SPHERES

*Electronic address: anninos1@Iinl.gov To derive the relativistic hydro- and electro-dynamic
"Electronic address: trothman@brynmawr.edu equations for a charged fluid sphere, we assume a general
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spherically symmetric metric in the form Q¥(r)
(Tuem=——"7 diade*®,—e?,r? rsing]. (2.9
ds?=—e?Pdt?+e? dr?+r2dg’+r2sirfodp?, (2.1) 8ar

where®=®y(r)+®(r,t) andA=Ay(r)+Ay(r,t). Inthis  Also note thafTgy=(T4)gnm=0 due to the antisymmetry of
section we are concerned only with the zeroeth-ofd&itio Fuv-

Einstein equations and so sét;=A;=0. The first-order The left-hand side of the Einstein equations are the same
quantities will be employed for the stability analysis in Sec.as for any static, spherically symmetric solution. With the
IV. We write the Einstein equations in the form above expressions fdr,, , the (00) equation is found to be
B - 1 2A/e*2A e*ZA_ Q2
G..=R,,— EgMVR_Sﬂ-TMV’ (2.2 r—2+7— 2 =8mp+ pra (2.10

with c=G=1. For charged spheres, the energy-momentunand the(11) equation is
tensor will consist of a perfect-fluid part
1 Z(I)re*ZA e*ZA QZ
(T,uv)hydro:(P_"p)uMuv"_ pg/.LV (23) r_2_ r - rz =r_4_87Tp1 (21]7)

lus an electromagnetic part o .
P 9 P where () denotes derivative with respect ito

If one multiplies Eq.(2.10 by r?, one gets

1
47T(T,u.1/)EM:Fsza_Zg,quaﬁFaﬂ- (24)
de o o, QD
In these expressions= p,,+ € is the total mass density,, dr P 2’
is the rest mass density,is the internal energy densitg,is
the fluid pressureu, is the four-velocity, and~,, is the ~ Of
electromagnetic field strength tensor. As in the derivation of
the exterior Reissner-Nordstrosolution, we take the mag- e 2h_q_ 2m(r) _ @ (2.12
netic fieldB to be zero. Due to spherical symmetry, the elec- r r
tric field E must be entirely radial and the electromagnetic
field tensorF,,, which has only two components;g, where
= —E andF,y=E, must satisfy the Maxwell equations ) %t
m(r)E4wJ pr’zdr’and}'(r)zf dr’.
1 . 0 o r’?
f<ﬁF“V>,V=4w1ﬂ, (25
-9 In the case where is a constant an€) is taken to obey a

power law inr, these expressions reduce to those in dFSY.
However, we will not restrict ourselves to this situation.

To eliminate the metric function® and A and to get the
basic hydrodynamic equations we consider the conservation
(2.6) lawsT#" =0. The fluid part is the same as can be found in
the derivation of the ordinary Oppenheimer-Volkov equation
(see, e.g[14]) and is found to be

wherej* is the four-current. The only nonvanishing deriva-
tive for the static case is=r. Working out Eq.(2.5) gives

e®M+AMQ(r
E(N=——7F—— A ),
r

where

T =e ?Mp' +®'(p+p)]. (2.13

)
— D' )V+A(r")12:07 1 ’
Q(r)=47rfoe (A 210 dr (27 The electromagnetic part is found to be

Equation(2.6) immediately implies — e 24QQ’
(Tem);r=— Tt

B e (®M+AMQ(r)

01
F r2 (2.8 Setting the sum of these terms to zero and solvingdior
yields
Note that Eqs(2.6) and(2.8) are of exactly the same form as ,
the exterior Reissner-Nordstrosolution, as they must be by o' = 1 1QQ —p’ (2.14
Gauss' law. The only difference is that for the interior c&se pPTP| 4qr? ' '

represent€(r) rather than the total chargeT {,)gy must
also be of the standard Reissner-Nordstriorm, or from  Solving Eq.(2.11) for ®' and inserting the result into Eq.
Egs.(2.4) and (2.8 (2.19 yields
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/ 1 Q2 QQ’ (3.2), the stability analysis is generally inconclusive since no
P — 2A i i
T o o e dmrp+ o 53| Aa absolute boundary separation can be found consistently over
pTP 2r°| Amri(p+p) all B of a given y across the entire range of parameters

(2.15 considered here. The one exceptionyis 4 in which case
With the form (2.1 for e 2* and some rearrangement of the results are qualitatively similar to the exponential distri-

terms this can be written as bution (3.1) for all 8, and so we confine ourselves to that
case.
., QQ" (pt+p) 3 Q? Scarcely less arbitrariness applies to the equation of state
P = amrt 2 4ariprm(n)+ 5 -5 - (EOS than to the charge distribution. Three obvious possi-

bilities suggest themselveg:=const, the adiabatic EOB
2m(r) F|1 o« pX, with arbitrary adiabatic indexy, and the ultrarelativis-
(1_ r _T) : (216 ¢ EOS, p=p/3. However, despite the fact that an exact
solution with infinite central densityocr ~2 for the last case
This is the Oppenheimer-VolkoDV) equation for relativis- s known whenQ=0 (se€[14]), we have found it difficult to
tic charge_d spheres, which will b_e the ba_lsis for our analy_siSf.ind convergent solutions for this EOS wh&®0 when
We point out that the Newtonian version of this equat'oniterating over central pressur€lhis is as opposed to iterat-
ing over central density, which we do for arbitrary adiabatic
index, below Thus we confine ourselves to the first two
choices. We do, however, consider the=4/3 adiabatic
EOS, which includes relativistic matter with non-negligible

, _ o rest mass densititypically p,, /e~ 10°— 10" at the origin for
which shows that in the Newtonian limit the Coulomb repul- y=4/3, depending o, and 8, and substantially lower ra-

sion opposes the gravitational force, as expected, helping s for |arger ). We reiterate thap represents the total
stabilize charged spheres against collapse. However in the,qq energy density of the matter plus gravitational field.
relativistic OV equation with power-law charge distribution Generally, the EOS is assumed to relate only the rest energy

K 2
Q~r", F12—Q%/(2r)<0. Thus these terms decrease the ef-yongjty »,  and the pressure. As mentioned in Sec. II, the

fective mass in the numerator of the second term, tending ttal local energy density is=p,,+e, wheree s the inter-
. rm i)

‘stabilize.” At the same time charge decreases the denomix | energy density. We consider only polytropes, for which
nator, tending to “destabilize.” The final outcome is not en- e=pl(y—1).

tirely clear, which is why one needs to investigate the OV Once the charge distribution and EOS are specified we

equation numerically. can integrate the OV equation. For virtually any case one can
imagine, however, integrating ER.16) is impossible ana-
Il INTEGRATION OF THE OPPENHEIMER-VOLKOV lytically and the integration must be carried out numerically.
EQUATION Even then, except for the cape= const, this turns out to be

The basic strategy is simply to integrate §8.16 and nontrivial. Forgpchnst, the total mass vyilll be simply
test for the stability of solutions. Before doing this one must™(r)=(4/3)mr"p. With the boundary conditiorp(R)=0
specify the charge distribution and an equation of state. W&nd @ form ofQ to makeF analytically integrable, this al-
have no serious models of any sort for charged “stars,” orloOws convenient integration from the outer boundary inward.
even know whether such objects exist. It seems intuitively™OF more reasonable equations of state, however, one expects
reasonable that due to electrical repulsion the charge distri2 10 vanish ar =R as well[e.q., if p=kp”+p/(y—1)]. In
bution should be weighted toward the surface, but otherwis€UCh cases the entire second term in E416 vanishes at
all choices are basicallpd hoc One can imagine several the outer boundary, which causes a serious problem numeri-
plausible distributions. dFSY confined themselves to the simally becausedp/dr|,_r=QQ’/(4mr*)>0, while p(R

plest caseQocrk. We consider two distributions: _Ar),”_QQf|Ar|/(47TR4)-_ Thus, unlesQQ’<0, an in-
ward integration scheme immediately predicts a negative

K pressure unless the integration is initiated from some arbi-
e”/R=/prkec®, (3.1 trary outer pressure and surface radius values to compensate
for the charge distribution.
whereRand are adjustable input parameters that define the For this reason, we choose to integrate outwards from
radius of the star and the total charQe respectively, and ~ =0. This strategy also presents difficulties. We can, say,
chooseR as the prespecified “radius” of the star, but in start-
ing the integration at the origin, we have no prior knowledge
of which combination of parametefs, (central density, p.
(central pressujey, B, k, ¢, andQ will actually produce a
which flattens out for >cR. Note that in both these cases star with radiusR. In other words, if we define the physical
the charge density, obtained by differentiating E2}7), di-  surface radiu, to be the point at which the pressure first
verges at the origin unle&s=3. In point of fact, although we goes negative, there is no reason tRatwill equal R. We
have been able to find solutions for the charge distributiorhave therefore adopted the following procedure: For a given

is

!

_QQ"  pm(r)

4ar? r2

Q=0

.
R/ (3.2

Q(r)= /B tant
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FIG. 1. Maxi ‘ di functi t ch FIG. 2. Total mass densityn as a function of outer surface
- +. Maximum surface radius as a function ot charge params, ; ;g (up toR=R,5,) for fixed charge paramet¢=1. Each of
eter 8 found by converging in the central density to a tolerance of

the solid lines are solutions to the OV equations with different
—10-3 stribitior = 3 i
Ap.clpc._ 1.0 for a chqrge dls_trlbu_tlo@—\/ﬁr ""F‘d the dlfferer_n central pressureéhe larger pressures correspond to greater mass
adiabatic indexes considered in this paper. For figethe numeri-

. - densitie$. Also plotted are the densities for the corresponding black
cal solutions do not converge to the specified tolerance at radthole (R=R,) and extremal chargeQd(=M) limits
=R, = )

above the plotted curves.

central pressurep. with the larger pressures resulting in
greater masses. Also plotted in Fig. 2 are the corresponding
black hole and extremal charge solutions for comparison.
The black hole solution for=R is found by setting the
thetric function(2.12 equal to zero at that point, which gives
m(R) = (R— F(R))/2. By contrast, the extremal solutignot

parameter setR, B,7v,k,c,Q,p.,p.) We take a first guess at
pc=1/(R pé’y) with arbitrary p., then iterate orp. using a
bisection algorithm untiR;, converges taR. The bisection
method assumes a locally monotonic correlation betwee
o6pc!lp: and SR/R, where the (+ 1)-th estimate of the cen-

T i (n+1)_ (n) (n)
tral density is given byoc ™ "'=pc+dpc” . One chooses ocassarily a black holés found by first matching the exte-

3p(" by p{"oRIR=0p{" (R, —R)/R, whereo is a coeffi- ior Reissner-Nordstra metric to the interior solutio2.1)
cient initially set to unity, but is halved for convergence 4¢; =R

wheneverdR changes sign. We find in most cases we can
converge orR to a relative tolerance afp/p<0.1%.

The numerical integration is performed using an adaptive 1——+ = =_
fourth order Runge-Kutta scheme to maintain a constant er- R R? RJo
ror tolerance of 102 over a grid constructed with cell spac-
ing scaled to the surface radius such thatR<5x10"%.  which gives the definition of gravitational mass
Further accuracy is achieved at the outer surface where pres-

sure and density vary sharply by adaptively refining the mesh 1 (R 2 Q2
spacing to a minimum levelr ~ 10~ 2 when the pressure is M= EJ 8mpr?+ — dr+ﬁ. (3.9
observed to change sign. This procedure works welt i§ 0 r

sufficiently small. However, aR is increased one eventually

hits a barrierR=R,,x beyond which convergence to the Setting Q=M gives the extremal curve form(R)

0.1% tolerance is impossible ¢m(r)+ F)/r becomes so =4mfprédr:

large that the metric functiof2.12 becomes negative. This X

latter marks the black-hole limiR=R,=M+M?2—Q? m(R)=Q— Qe @ 3.5

whereM is the exterior gravitational mass. The upper bound 2R 2 '

on R,,ax generally depends on all input parameters, and is

computed numerically for each case presented in this paper. Finally we note that the total charge to total mass ratio

For example, considering an adiabatic EOS v@@tk Br3,  Q/M generally increases monotonically with increasiRg

Fig. 1 shows the maximum surface radius as a functiof of and fixeds, as Fig. 3 demonstrates. Since we are interested

for the differenty considered in this paper. We are unable toin the maximum or extremal limit o/M, the subsequent

find convergent solutions at radii above each of the curvesstability plots presented in Sec. IV are computed for those
Figure 2 plots the total masa(R) as a function of sur- parameter values at the upper boundsRof=R,,,) for

face radius fory=4,100 and fixed3=1. Here the surface which we are able to find convergent solutions.

radius is increased from 5% &, to the maximum com- As a reminder, we point out that because we do not know

puted valueR,,,x. Each of the solid lines represent different beforehand the exterior mass of the star, the raRius our
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100 [ ‘ ‘ ’ ’ ’ ’ ad] i and deduce that the solution is stable und(ir radial perturba-
e—> v=4/3, 3=0.01 & éﬁ@ tions if w2>0 for approximate trial functiong that satisfy
» Eyj%ﬁ):éio g f the same boundary conditions &s
0¥ }_EL’ B=1.0 e 3 To deriveF, H, andW is a tedious undertaking; because
e——ey:]b, B=0.01 & & we are now dealing with a time-dependent problem, the met-
102 L |=--87=10,B=1.0 “ Q@ 5 ric functions in Eq.(2.1) must be taken to b& =®d(r)
oo vfm, g:‘l’-gl a’ +®y(r,t) and A=Aq(r)+Ay(r,t), where we assume the
g 10° L i a o ] f!rst-order quantities are small. Once the. perturbation equa-
< tions are derived, to get the Sturm-Liouville form, the first-
o i order quantities are eliminated in favor of the zeroth-order
10" ¢ o A 3 solutions. Nevertheless, because our equations differ slightly
“ from dFYS, we now outline the procedure. The development
10° L i basically follows that of Misner, Thorne, and Wheeler
(MTW) [15], Chap. 26.
- We first consider the total energy-momentum tensor. With
2 =

-7 -6 -5 -4

0° 107 10 1 10" the conditiong,,,u“u”=—1, and raising and lowering with

R the full metric, one gets to first ordep= —e*o(1+ ®,) and
u;=e?o"®og where £(r,t)<r represents the small dis-
placement of a fluid element initially at radius For the
electromagnetic part of ,,, we letQ=Qqy+Q, with Q
=—Qq(r)&(r,t) to first order. This is equivalent to assum-
ing that the charge distribution in the oscillating system is the
same as in the unperturbed system, i.e., that the Lagrangian
perturbations vanish and no electric currents are introduced
for the comoving observer. Then,

10 10 10

FIG. 3. Total charge to mass ratig/ M is a monotonic function
of surface radius up to the maximum computed rad®ys,, and
peaks atQ~M for large y. The results are shown for a central
pressurep.=1.

graphs is not given in units dfl. R is merely where the
pressure drops to zero expressed in geometric units.

IV. STABILITY I: NORMAL MODE ANALYSIS

2 2
We provide two stability analyses. The first, discussed in  Tgo=| po+ QO4> e2%o+ e2<1’o(p1+ D, 04 +2p0)
detail in this section, is a normal-mode analysis for radial g 4t
pulsations of the charged sphere, similar to that performed by /
dFYS (see alsd15] or [16]). The second, discussed in Sec. _ Q0Q0§)
V, is based on the variation of energy. 4arr?

We consider radial pulsations of the sphere with the goal

of writing the Sturm-Liouville equation: oA :
To1=—€77%(pPo+po)é

(FZ")'+(H+ w®W)¢=0. (4.2
2 2
Herel is a “renqrmalized displacement funqtiqn,” afdH Ty= ( Po— - e2Mo4 @2A0 o1+ Aql 2po— Qo4>
and W are functions of the zeroth-ordéequilibrium) solu- ar Ay
tion to the Einstein equations is the angular frequency of
the assumed sinusoidal time dependenceg.oDnce these QoQoé
functions are known, we evaluate + At | (4.3

Note the presence ofy;, due to the fluid motion. This is
entirely a first-order quantity.
= = , (4.2 The left-hand side of the Einstein equations are most eas-
f WZ2dr ily computed with the help oIATHEMATICA or MAPLE. Then
0 the (00) Einstein equation is found to be

fR<FZ'2—HZZ>dr
2 0

w

23,

2 1
(1+ 2<I>1)+—2e*2A0+2‘D0 - E+rA(’)+A1(1—2rA5)—<I>1(1—2rA(’,)+rA4
r

r2

2

0
pot
8mrt

2®o +8me?®o

8mr 8mr?

Q5 ) - ZQOQag)
. .
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Equating orders on each side leads to tHeddder equation

(2.10, which minus the charge term is also MTW Eq.
(26.1b. The first-order equation, after some simplification,

comes out to be

26_2A0
I,.2

2QoQ0é

r4

[A(1-2rA{)+rAi]=8mp,—

(4.9

With Ty, given by Eq.(4.3), the (01) Einstein equation is
then nontrivial and gives

Ay=—4mre* o(potpo)é=— (Aot Pg)é,  (4.6)

PHYSICAL REVIEW D65 024003

e 2%0(po+po)é= —Dy(p1+p1) — P1(po+ Po) — Py

1
4m4(Q62§+ QoQoé+QoQpé").

(4.12

We note that th&)y term does not appear in dFSY.

With these expressions we are finally able to write down
the Sturm-Liouville equation. We define the renormalized
displacement  function {=r?e"®o¢ and assume ¢
=¢(r)e 't Then

F= YPor *ZeAOJrS(I)O’

where the second equality follows from the zeroth-order

equationg2.10 and(2.117).

W=r~2(po+pg)e® o,

We will shortly need an expression for the perturbed pres-

surep;. One can get this from the law of baryon conserva-

tion d(An)/dr=—n(V-u)=(—g) Y4J-gu®),,. Taking
a=t,r yields
An=—ng[r2e Mo(r2etog)’ + A ],

(4.7

where An represents the Lagrangian perturbatiominAs-
suming adiabatic fluctuations such th&p/An= yp/n then
gives

p1=—ypolr 2e to(r?etog)’ + Ay]—£py, (4.9

which is MTW Eg.(26.9.
The first-order(11) Einstein equation is found to be

AleZAO

Q5
87Tr4) )+ r

®1=4wre2A0(p1+ 2A1( Po—

QoQoé
—

r

+e%ho (4.9

With Egs.(4.6) and(4.8), A, andp; can be eliminated to get

O =—4mre?Mo[ ypor ~2e Mo(r2etog)’]

2

! ! ! 0
_47Tre2A0§ po+(Ao+(I)o) 2p0_ YPo~ 4
4ar
1 QoQq
- =29 (4.10
4qr? Agrt

QoQ¢
4t (po+ po)e“"( —ppt
4ar

H=r 2ehot3®o

1

+ F(Po*‘ Po) | +2pe®Po+ pot+ Popg

2p; 1

r 4ar?

2
(Q62+Q0Q6+Q0Q6<¢6——)) .

r
(4.13

We have not attempted to reconcile this expressionHor
with the one in dFSY.

Physically reasonable solutions requite® finite or zero
asr—0 andypor ~2e®0;’ —0 asr—R. Any trial function¢
that satisfies these conditions and that extremize$48).is
acc%ptable. Following Chandrasekhar and dFSY, we choose
Joer®,

Figure 4 shows the stability curves for the adiabatic EOS
with Q= /Br3. The results are generated by choosing an
initial central pressuréequal to unity and iteratively solving
the OV equation to convergence in the central density for
fixed B and surface radiuR=R,,,4. The central pressure is
then monotonically increased and the OV equation repeat-
edly solved until the angular frequency defined in E42)
becomes negative. The data points connected by solid lines
are the solutions at which the frequency first becomes nega-
tive. Also shown are the black hole limlR=R, and theQ
=M limit, generated from Eq(3.5). Note that the stability
limit falls betweenthe Q=M curve and the black-hole

By considering the parallel component of the conservaCurve. As can be seen from Fig. Q/M varies over a broad

tion equationu, T#". =0, using Eq.(4.7) and assuming the
Lagrangian perturbatioA Q vanishes, one can show

p1=—(Po+po)[r ~2e Ao(r2etog)’ + A 11— épy,
(4.11

which is MTW Eq.(26.1).

range atR=R,.y, but is constrained byQ/M <1 in the
limit of large y. Thus instability sets itbeforeextremality is
reached sinc&)/M decreases as the=R, curve is ap-
proachedsay by increasing the central presgueven in the
limit y—oo where all the curves come together.

Although for reasons of clarity we have not shown the
vy=4/3 and 5/3 solutions in Fig. 4, they are qualitatively

The transverse component of the conservation equatiojmilar to the other cases, except that the extremal, stability

hyT?,.,=0, where the projection tensdm,=d,+u*u,
eventually yields

and black hole curves are more widely separated. A more
detailed plot of they=100 case is shown in Fig. 5 for two
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FIG. 4. Total mass function corresponding to the stability limit

as a function of the maximum computed surface radius yor FIG. 5. As Fig. 4, except here we show closeups of the ex-
=4,10,100. The solid lines are found by increasing the central pregremal, black hole, and stability curves for the more interesting high
sure from unity and plotting the first points which become unstableadiabatic index ¢=100) case over a range of surface radii leading
The four points in they=4 curve represent for this distribution up to the maximunR=R,,,. Also plotted is the solid linen(R)
Q= \/Er{ B=0.01,0.1,1.0,1Qright to lef). The three points for ~=4R/9. The usual stability limit for the interior Schwarzschild so-
y=10 represen8=0.01,0.1,1.0; the two points foy=100 repre- lution is actually given byM =4R/9, where M is the gravitational
sent3=0.01,0.1. The displayed data are chosen to prevent overlaflass. The two expressions are equivalent only in the Irit0;
of the differenty curves, but we note that the general conclusionsee also Fig. 6. In all cases, the stability curves separate the ex-
remains the same for all cases and choice® dfivestigated: the tremal charge and black hole states.
limit of stability lies between th&@ =M curves(dashed lingsand
the black holeR=R_ limit (dotted line$, even fory=4/3 and 5/3
which are not shown here for clarity. Thus instability sets in before
extremality is reached.

relativistic charged spheres can be gained by considering an
energy analysis. Followinf16] and neglecting the electro-
static energy which is invariant with respect to changes in
density, one can write the internéhermal plus gravita-
different values ofg, and varying the surface radius up to tional) energy of a spherical gas cloud as
R=Rnax- Also shown in Fig. 5 with solid lines are the cor-

responding limits for the interior Schwarzschild solution

when Q=0, m(R)=4R/9. This absolute limit is a good 18 ' '

match to the numerically computed results even for rela- (;__:2 g:(l):(l) /

tively large ratios ofQ/M and radiiR~R,,,,. However, a ---- Q=M {

more useful extension of this limit should employ the gravi- || = R=R, |
tational massM deriving this constraint. Figure 6 plots the UL M=9R

same result as 5, but for the gravitational mds&R). The
solid lines are now the limits for the exterior Schwarzschild
solutionM (R) =4R/9. Notice that the upper bound of stabil- DE:’ 1L

ity with this definition is always below, but approaches the P

black hole limtR—R, —M asQ—M andR— R,,x. This 2

result is consistent with that §17] who find no non-singular 2

static solutions witPR— R, for Q<M. 06 - Z’J .
The overall behavior is repeated in Figs. 7 and 8, which .

show similar graphs for two additional cases: the adiabatic :f”/

EOS with Q= /Br3e''R, and a constant density profile re- ‘

spectively. Once again, unstable solutions separateQthe 025 ] 15 >

=M and black hole states. This is our main result: that the R (y=100)

onset of instability always occurs before extremality is

reached. FIG. 6. As Fig. 5, except here we plot solutions for the gravita-

tional masaM as a function of surface radid® This time the solid

Schwarzschild solution. Notice there is no absolute upper bound on
Admittedly, the above stability analysis is not exception-stability other than the black hole limR—M asR— R, andQ
ally transparent. Somewhat more insight into the stability of—M.
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FIG. 7. As Fig. 4, but for a charge distribution d®
= /Br3e"R. The symbols represept= 0.01(right-most pointsand

1.0 (left-most points.

R
e- |
0

p

where the invariant volume elemenVd4m(1—2m(r)/r
—F(r)Ir)"Y&2dr. An equilibrium configuration is deter-
mined by the conditio@E/dp,,,.=0, wherep, . is the cen-
tral rest-mass density, and the transition from a stable t
unstable configuration is determined by the condition
9°Eldp?,.=0 at the point wher@E/dp,m.=0. We find the
transition numerically by first iteratively solving the OV
equation for a given central pressurguntil convergence is
reached inp.. The energy integral5.1) is then evaluated

1 2m(r)
r

F(r)

1/2
) _Prm}dvv (5.9

1.2

m(R)

06 -

FIG. 9. Comparison of the energy variation and normal mode
methods in evaluating the stability of solutions for the saysed
case as Fig. 4, but displayed on a linear-linear scale to distinguish
the stability lines. Over the parameter range that both methods can
be applied to reliably(mostly restricted by the energy method
which is less robust from a numerical point of vigwhe results
agree remarkably well.

and tabulated as a function of total mass and central rest-
mass density. The inflection point is then easily computed as
a function of M by discretizing the tabulated data with re-
spect top,mc. Figure 9 shows a comparison of this method

At evaluating stability with the normal mode analysis of Sec.

IV for the y=4 case of Fig. 4, but on a linear-linear scale.
The results agree remakably well. However, we note that this
energy approach is much more sensitive to numerical reso-
lution and accuracy than the normal mode method. In fact,
this method proves generally inconclusive for extreiineth
small and largevalues ofy. Hence we rely exclusively to
the more robust normal mode method of Sec. IV to assess
stability.

Equation(5.1) is already suggestive in that one can im-
mediately see that the functigh enters with the same sign
as m(r). In other words, charge effectively increases the
magnitude of the gravitational potential energy, against the
internal energy included ip, which should tend to destabi-
lize the charged sphere. This can be confirmed by a pertur-
bation analysis. Lep=p,n(1+u), where nowu is the in-
ternal energy per unit mass, and assume that beth and
m(r)/r<1. Note that F/r~Q?%r2=(Q*m?)(m?/r?), so

o—o p = constant this is at least a second order effeir ~m?/r? if Q~m,
04 r ----Q=M and even higher order ®<m. Expanding Eq(5.1) to low-
- R=R, est order inF, gives
0_2 I 1 1 1
0.5 1 15 2 25 3

FIG. 8. As Fig. 4, but for a constant density distribution. The

R

m um m?

].'
U= —— —— —— ——|dV.

r r 212  2r 5.2

R
E:f Prm
0

symbols represent=0.01,0.1,1.0,1@right to left). Although diffi-
cult to see, an unstable soluti¢sold ling always lies between the
extremal and black hole curves for all surface réi&R,,,, We
have studied. This figure is shown fB=R,,,x as are most of the
other stability plots.

The first four terms are those found in computing the
standard relativistic corrections to a Newtonian stsee
[16], Chap. 6. The last term, which we denote ds,
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=(1/2)[ p;m(FIr)dV is the correction due to charge. Note but these are not extremal holes. All these results are cer-
thatl =0 always. For ay=4/3 polytrope one finds with the tainly consistent with the currently accepted form of the third

correction due to charge law of black hole dynamics, which forbids attainment of the
extremal state by finite time processes involving accretion of
E=(AM—BM%®)p!B +CMp, B-DM"3p23 — 1, positive energy8] (see also Appendjx
(5.3 One might legitimately doubt whether studies such as this

. one have any bearing on reality given that astrophysical ob-
whereA,B,C,D are positive numbers that depend on funfja"ects tend not to be charged. For precisely this reason it has
mental constants as well as on results of the numerical int ong been doubted that Reissner-Nordstrsolutions can
gra_lt_lr?n[seeo[l_l_G], EEq/. (6'10'_23]'_ represent astrophysical objects. On the other hand, to the

e conditiondE/dprm:=0 gives extent that charged solutions shed light on the third law, they
2 have been of great interest. Regardless, however, of whether
—4/3 7/13 —1/3 r_ i -
CMp,me— sDM™p 15—14,=0.  one chooses to interpret charged spheres as stars or as soli
3 tons or as models for elementary particles, our results make
(5.4 it difficult to see how extremal objects could arise from any

remotely realistic collapse scenario. A general theorem ruling
Here, 15=0lo/dp;mc=~(1/12)f(a(r)Fr)dV, where a(r .
' 1Q= 7 Q/?Prme (. ) (a( ).f ) V’. - (r) out stable extremal black holes altogether would be desir-
represents the normalized density profie,= p;mca(r) . . .

. N ! able; it would effectively be an alternate formulation of the
with a(r=0)=1. We have also neglected higher order con-, . . ;

L . . third law, as well as a strong version of the cosmic censor-
tributions from the invariant volume elemedd. For real

stars, equating the first term in equati@¥) to zero leads to ship hypothesisor theorem, in that caenot only are stable

the Chandrasekhar limit. The remaining terms are small Cor|_1aked singularities excluded, but stable extremal black holes

. . ) ; : s well.
rections. Solving for the first term in the above equation and® . . " .
using the result in the conditiof’E/dp2,.=0 yields Note added in proofSince writing this paper we have

learned that the results of the Appendix have also been
achieved by S. Dast al.[20].

1 1
§(AM_ BM5/3)p*2/3_ -

rmc 3

2 2 s 2
§CMpm,|7é3—§DM7/3pmfé3—§prmlC|Q=0. (5.9
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When 15=0, this gives the standard resul;=(C/
D)(B/A)“. However, sincd ,=0, the presence of the last
term clearly lowersp,i;, decreasing the threshold of insta-
bility by making the star unstable at lower densities and Israel’s proof of the third lawW8], that the surface gravity
massesn(r) at fixedR. This behavior is observed in Fig. 5 of a black hole can never be forced to zero in a finite-time,
where asQ and Q/M are increased the stability curve falls continuous process, assumed accreting charged shells and
further below theR=(9/4)m(R) Schwarzschild stability that the energy flux crossing the outer apparent horizon of
limit. But, since we are increasing charge, we are increasinghe black hole was positive. Therefore the proof has nothing
the gravitational masM over m(r) [see Eq.{3.4)], and so, to say about Hawking radiation, because in this case a nega-
paradoxically, when measured M, the stability limit in-  tive energy flux crosses the apparent horizon, violating the

APPENDIX: ANOTE ON HAWKING RADIATION
AND THE THIRD LAW

creases, as seen in Fig. 6. assumptions of the theorem. Moreover, at first glance, it
might seem that Hawking radiation would drive a black hole
VI. CONCLUSIONS toward extremality: If a black hole is emitting neutral par-

ticles, for example, the charge would remain constant while

We have seen that, contrary to Newtonian intuition, inthe mass decreased, forciQgM — 1. It is not terribly diffi-
general relativity charge does not tend to stabilize or councuylt to see that this does not happen.
terbalance the interior energy density of fluid spheres. To be The power radiated by the black hole is
sure, our numerical results indicate that for a fixed radius,
instability sets in at a smaller mass(r) than in the fluid dM o, L .
only case. Nevertheless, charge does increase the gravita- P= WNR T'~R%%, (A1)
tional massM, and the instability threshold for relativistic
charged spheres monotonically approaches the black holghere « is the surface gravity. For a Schwarzschild black
horizon in the extremal limit. Most important, though, for all hole,R=2M andx=1/4M. This immediately gives the well
cases studied the onset of instability of relativistic chargednown result for the evaporation time~M?3.
spheres takes place before the attainment of extremality. At For a Reissner-Nordstno black hole, howeverR=R

that point, gravitational collapse into black holes takes place= M +M?—QZ? and the surface gravity is given by
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(MZ_Q2)1/2 64M3 Q3

- ~ =~ -1
T 2MIM+(M2— Q)2 Q? (A2) T3+ 4.0, (A5)

which clearly diverges in the limiQ—M (equivalently e
[see Wald[18], Eq. (12.5.9]. Of course, afQ—M, « ap- —0).

proaches zero, and therefore the flux, which goes as the Although we have done this only fa@=const, it may
fourth power ofx is rapidly decreasing. This suggests that anhold true generally. If the Hawking temperatufés initially
infinite amount of time is required to reaCh=M. The state-  below the rest mass of the electron, the black hole will radi-
ment can be made rigorous by integrating E41) for  ate only neutral particles and §will remain constant while
Reissner-Nordstro black holes. WittR=R, and the above M decreases. Plotting EGA2) shows thatc and hencd will
expression fow we have actually increasewith decreasing mass un=(\/3/2)M,
at which pointk=2/(9M) then monotonically decrease to
zero ask~/2¢€/Q in the limit M=Q(1+ €). Assuming the
[2M(M+{M?—Q?) —Q?]* M (A3) maximum temperature is always less than the mass of the
T= 7 N2\2/ 012 ~2\2 , electron, thenQ can be expected to remain constant, and
(MH+M7= Q)M =Q% evaporation cannot proceed in finite time, as discussed
above.

If at any timeT becomes greater than,, the hole will
evaporate charge. But for any charged elementary particle
g>m due to negligible size of the gravitational interaction.
Assuming that for temperatures above the rest mass, all spe-
cies of particles are radiated with roughly equal probability

where the limits should be frorM to Q, assumingM >Q
initially. With Q=const, the expression can be integrated
analytically. The result for the indefinite integral is

32m3 ) MQ* (equipartition, under evaporatio® will become negligible
7(M)=—3—+16MQ"+ 2(02—M2) compared toM and extremality will never be approached.
Q ) We emphasize that, as Israel points out, the entire discus-
2(16M%+ 16M2Q%—410%) sion neglects any superradiant component which is nonther-
mal, but it is not clear whether this would alter the conclu-
3yM?-Q? sion. We have also neglected other processes, such as
S p 1 discharge from pair production mentioned by Pd446],
_ 35Q"tanh (M/Q)_ (A4)  Wwhich in this case would likely only strengthen the conclu-
2 sion. In any case, certainly f@ = const, Hawking radiation

cannot violate the third law of black hole dynamics and per-
haps not in general. This is consistent with the early work of
Assuming, for example, tha¥l;,itia;>Q and Mjn.=Q(1 Page and with the point of view that extremal black holes do

+¢€) with e<1, then not exist.
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