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We investigate the dynamics of dilatonicD-dimensional 0-branes in the near-horizon regime. The theory is
given in a twofold form: two-dimensional dilaton gravity and the nonlinear sigma model. Using asymptotic
symmetries, duality relations, and sigma model techniques we find that the theory has three conformal points
which correspond to~a! the asymptotic~anti–de Sitter! region of the two-dimensional spacetime,~b! the
horizon of the black hole, and~c! the infinite limit of the coupling parameter. We show that the conformal
symmetry is perturbatively preserved at one loop, identify the corresponding conformal field theories, and
calculate the associated central charges. Finally, we use the conformal field theories to explain the thermody-
namical properties of the two-dimensional black holes.
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I. INTRODUCTION

Dilatonic 0-branes are solutions ofD-dimensional super-
gravity coupled toU(1) gauge fields that describe effectiv
low-energy approximations to the D0-brane solutions
string theory. Their investigation is relevant to understand
the anti–de Sitter/conformal field theory~AdS/CFT! corre-
spondence@1# in two spacetime dimensions@2–5#. Though
the AdS2 /CFT1 correspondence is quite well known in th
dilaton gravity context@3,5#, little is known in the more gen-
eral framework of string theory.

In a recent paper@6# Youm has shown that in the dua
frame near-horizon regimeD-dimensional dilatonic 0-brane
can be described by an effective two-dimensional dila
gravity model with nonconstant dilaton and asymptotica
AdS2 black hole solutions. The SL~2,R! isometry group of
AdS2 is thus broken, a feature which has prevented any
tempt to using the asymptotic symmetries of AdS2 to gener-
ate an infinite-dimensional conformal symmetry associa
with the dynamics of the 0-brane. However, previous inv
tigations @7–10# of the Jackiw-Teitelboim~JT! model @11#
~which describes the near-horizon behavior of a spec
0-brane! have shown that the breaking of conformal symm
try due to a nontrivial dilaton can actually be controlled a
is essential to understanding features of the CFT such as
existence of a nonvanishing central charge in the Viras
algebra@7#. Thus, applying similar arguments we can inve
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tigate the existence of conformal symmetries for a gene
0-brane.

In this paper we show that the asymptotic symmetries
the near-horizon 0-brane solutions are generated by a V
soro algebra. Using a canonical realization of the asympt
symmetries we calculate the central charge of the alge
and give an explicit realization of the conformal symmetry
terms of the fields that describe deformations of the bou
ary of AdS2. For a particular range of the coupling parame
a we identify the one-dimensional conformal mechanics t
lives on the boundary of AdS2 and realizes the conforma
symmetry. In the limita→` the dilaton gravity model is
shown to be equivalent to a free CFT. Thanks to a previ
result by Carlip@12# we also argue that the horizon of th
two-dimensional black hole defines a CFT with well-defin
central charge. In the sigma model formulation the existe
of these three conformal points is recovered, at the class
level, by relating the asymptotic symmetries of the gravi
tional theory to the conformal symmetries of the sigm
model and by implementing the duality symmetries of t
theory. The calculation of one-loop beta functions shows t
the conformal symmetry is perturbatively preserved. Fina
the CFT results are used to discuss the thermodynamica
havior of the two-dimensional black holes.

The structure of the paper is the following. In Sec. II w
review the two-dimensional dilaton gravity model that d
scribes the near-horizon regime ofD-dimensional dilatonic
0-branes. We consider the~asymptotically AdS2) black hole
solutions and discuss different limiting cases in the mod
space of the theory. In Sec. III we investigate the asympt
symmetry group~ASG! of the solutions. We show that th
ASG is generated by a Virasoro algebra and we calculate
central charge. We discuss the dynamics induced on
©2001 The American Physical Society02-1
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AdS2 boundary by the bulk gravity theory. In Secs. IV and
we identify the CFT that lives on the horizon of the bla
hole and we use the sigma model formulation to describe
relation between the conformal symmetries of the sig
model and the asymptotic symmetry group of dilaton grav
We also show that the weak-coupling region can be
scribed by a free CFT. Section VI deals with the dual
symmetries of the theory. The sigma model approach is u
to prove that the horizon of the black hole defines a CFT
Sec. VII we calculate the one-loop beta functions of the th
CFTs and show that the conformal symmetry is preserve
one-loop at the~classical! conformal points. In Sec. VIII we
discuss the thermodynamical properties of the tw
dimensional black holes. Finally, we state our conclusion
Sec. IX.

II. EFFECTIVE THEORY OF DILATONIC 0-BRANES

In the Einstein frame the bosonic part of the supergrav
action that describes dilatonic 0-branes solutions inD dimen-
sions is

S5
1

2kD
2 E dDxA2gFR2

4

D22
~]f!22

1

4
e2dfF2G , ~1!

wherekD is the D-dimensional gravitational coupling con
stant,f is the dilaton field,d is the dilaton coupling param
eter, andF is the field strength of theU(1) gauge field.

In the dual frame@13# the static solution of the model ha
the near-horizon form AdS23SD22. The 0-brane admits an
effective description in terms of a two-dimensional dilat
gravity theory. Following Ref.@6# we write

S5
1

2k2
2E d2xA2gedf@R1g~]f!21L#. ~2!

Settingk251 and redefining the dilatonF5edf, Eq. ~2! is
cast in the form

S5
1

2E A2g d2x FS R1a
~]F!2

F2 1L D , ~3!

where

a5
g

d2
5

1

D22 FD212
4

d2 S D23

D22D 2G . ~4!

The field equations are

R1L1
a

F2
~¹F!22

2a

F
¹2F50, ~5!

Tmn5
a

FS ¹mF¹nF2
1

2
gmn~¹F!2D2¹m¹nF1gmn¹2F

2
1

2
gmnLF

50. ~6!

The trace of Eq.~6! gives
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¹2F2LF50, ~7!

which is independent froma.
The two-dimensional dilaton gravity model, Eq.~3!, has

been extensively investigated in the literature@14,15#. For
the sake of completeness we briefly summarize the main
sults. If a,1 Eq. ~3! admits the asymptotically AdS blac
hole solutions

ds252@b2r 22A2~br !2h#dt21@b2r 22A2~br !2h#21dr2,

F5F0~br !122h, ~8!

where

h5
a

2~a21!
, b25

L

2~12h!~122h!
, h,

1

2
. ~9!

The integration constantA in Eq. ~8! is related to the black
hole massmbh by the relation

mbh5
1

2
~122h!F0A2b. ~10!

The scalar curvature is

R522@b21h~122h!A2~br !2hr 22#. ~11!

If hÞ0,1/2 the metric~8! has a curvature singularity atr
50. Since the geometry is asymptotically AdS the bound
at r 5` is timelike.

The thermodynamical behavior of the black hole is ch
acterized by the power-law mass-temperature relation

mbh5
122h

2~12h!
F0@b~12h!#2h21~2pT!2(12h). ~12!

Below we shall restrict attention to21<h<1/2. In this case
we havembh;Ts, 1<s<4. The entropy of the black hole i

S52p~F0!1/2(12h)F 2mbh

~122h!bG (122h)/2(12h)

. ~13!

The model~3! includes two interesting special cases:a50
(h50) anda→2` (h51/2). The former is the so-called
Jackiw-Teitelboim~JT! model @11#. The spacetime has con
stant curvature, i.e., is locally AdS2, and the dilaton is linear
Since the JT model has been widely investigated in the
erature~see, e.g.,@16,3#! we shall not discuss it here. Th
second case deserves a brief discussion. Taking the limh
51/2 in Eq.~8!, we obtain the AdS2 spacetime with constan
dilaton

ds252~b2r 22A2br !dt21~b2r 22A2br !21dr2,

F5F0 , b25L/2. ~14!

Since the dilaton is constant we can interpret the solut
~14! as the near-horizon regime of the extremal Reissn
Nordström black hole~or its string theory generalizations!.
2-2
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CONFORMAL DYNAMICS OF 0-BRANES PHYSICAL REVIEW D65 024002
Settingh51/2 in Eq.~10! and Eq.~13! we find states of zero
energy which are characterized by constant nonzero ent

S52pF0 . ~15!

Equation ~15! describes the typical behavior of extrem
Reissner-Nordstro¨m black holes in the near-horizon regim
@4,17#. Theh51/2 model is equivalent to a two-dimension
free CFT. In the limita→2` the field equations~5! and~6!
become

R1L50, ~16!

Tmn5¹mF¹nF2
1

2
gmn~¹F!250. ~17!

Equation ~17! describes the energy-momentum tensor o
free two-dimensional CFT of a single bosonF.

III. ASYMPTOTIC SYMMETRIES

If hÞ0,1/2 the spacetime~8! is not maximally symmetric;
it admits a single Killing vectorT which generates transla
tions in time. In contrast, ifh50,1/2 Eq.~8! describes the
maximally symmetric AdS2 spacetime with theSL(2,R)
isometry group. Forh50 a suitable choice of boundary con
ditions @3# shows that the ASG, i.e., the isometry group th
preserves the asymptotic form of the metric, is generated
a Virasoro algebra. For a generic value ofh the discussion of
the group of asymptotic symmetries is more involved. T
boundary conditions must indeed allow both an ASG wh
is larger thanT and finite associated charges@18#. We will
see below that these requirements are fulfilled only fo
<h<1/2.

From now on we shall restrict attention to21<h<1/2
and discuss21<h<0 and 0,h<1/2 separately. In the firs
case suitable boundary conditions for the metric and the
laton are

gtt52~br !21g tt1O~r 2h!,

gtr5g tr~ t !~br !231O~r 2h23!, ~18!

grr 5~br !221g rr ~br !241O~r 2h24!,

F5F0@r~br !122h1gFF~br !2122h1O~r 21!#,

where the fieldsr(t) andg(t) describe deformations of th
dilaton and of the timelike boundary of the spacetime. B
O(1) deformations ingtt and O(r 24) in grr dominate the
deformations that generate the black hole in Eq.~8!. The
O(1) terms in the boundary conditions are essential to
tending the isometry group of the metric to an ASG gen
ated by a Virasoro algebra. However, their presence lead
divergent charges associated with the generators of the s
metry.

If 0 ,h< 1
2 the boundary conditions are
02400
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gtt52~br !21g̃ tt~ t !~br !2h1O~1!,

gtr5g̃ tr~ t !~br !2h231O~r 23!, ~19!

grr 5~br !221g̃ rr ~ t !~br !2h241O~r 24!,

F5F0@r~br !122h1g̃FF~br !211O~r 2122h!#.

The O(1) deformations ingtt and theO(r 24) deformations
in grr are subleading with respect to deformations that g
erate the black hole in Eq.~8!. They become of the sam
order only forh50. In this case we have an ASG which
characterized by a Virasoro algebra and finite charges.

The Killing vectors that generate the ASG are

j t5e~ t !1
ë~ t !

2b4r 2
1O~r 241d!, ~20!

j r52r ė~ t !2
a r~ t !

2
~br !211d1O~r 231d!, ~21!

whered50 if 21<h<0 andd52h if 0 ,h< 1
2 . The func-

tion a r(t) describes diffeomorphisms of the two-dimension
gravity theory that die off rapidly asr goes to infinity
~‘‘pure’’ gauge diffeomorphisms!. The leading terms of the
Killing vectors ~20! and~21! are identical to the JT case@3#.
The generatorsLk of the ASG satisfy the Virasoro algebra

@Lk ,Ll #5~k2 l !Lk1 l1
c

12
~k32k!dk1 l ,0 , ~22!

where we allow for a nonvanishing central charge. We sh
see below that the ASG has a natural realization in term
the conformal group in one dimension~the Diff1 group!
which describes reparametrizations of either the circle or
line, depending on the topology of ther→` boundary.

If hÞ1/2 the black hole solutions~8! are characterized by
a nonconstant dilaton. For consistency, the leading term
the asymptotic expansion of the dilaton must be of the fo
~18! or ~19!. In Ref. @7# it has been shown that forh50 the
ASG of the metric is broken by the nontrivial dilaton and t
presence of a nonvanishing central charge in the Viras
algebra is related to the symmetry breaking. The bound
fields span a representation of the conformal group. T
conclusion holds also for negative values ofh. For 0,h
,1/2 the central charge vanishes identically. Forh51/2 the
dilaton is constant, so the boundary conditions imply that
~on-shell! Lie derivative vanishes. Both the SL~2,R! isometry
group and the ASG of the metric are preserved.

Using suitable boundary conditions and introducing a
propriate boundary fields we could also considerh,21. For
instance, for 22,h,21 we could introduce the term
G tt(br)22 in the expansion ofgtt , the termG rr (br)26 in the
expansion ofgrr , etc. However, larger values ofuhu require
an increasing number of boundary fields. So in this paper
will consider only21<h<1/2.
2-3



r

ic

ar

ra

ei

ds

dy
ls

y

e
ec.

that

e

t

l

the
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A. Transformation laws and equations of motion
for the boundary fields

Using the boundary conditions~18! and~19!, and the Kill-
ing vectors~20! and~21! we find the transformation laws fo
the boundary fields. They are

dr5eṙ2~122h!ėr, ~23!

and

dg tt5eġ tt12ėg tt2
ê

b2
1ba r , ~24!

dg rr 5eġ rr 12ėg rr 12ba r , ~25!

dgFF5eġFF1~112h!ėgFF1
ë ṙ

2b2
2

1

2
~122h!ba rr,

~26!

dg̃ tt5eġ̃ tt1~222h!ėg̃ tt1ba r , ~27!

dg̃ rr 5eġ̃ rr 1~222h!ėg̃ rr 1~222h!ba r , ~28!

dg̃FF5eġ̃FF1 ė g̃FF2
1

2
~122h!ba rr, ~29!

for h<0 andh.0, respectively.
As was expected, the boundary fieldsg and g̃ transform

according to a representation of the conformal group wh
is realized as time reparametrizationsdt5e(t) of the bound-
ary. In general the conformal dimensions of the bound
fields depend on the parameterh. Anomalous pieces in the
transformation law of the fields imply a nonvanishing cent
charge in the Virasoro algebra. The boundary fieldsg tr and
g̃ tr transform as conformal fields as well. However, th
deformations are irrelevant~they do not contribute to the
charges and do not affect the dynamics of the boundary!, so
we have omitted their transformation laws for simplicity.

Let us now consider the dynamics of the boundary fiel
In Ref. @19# it has been shown that forh50 the two-
dimensional gravitational dynamics in the bulk induces a
namics of the fields on the boundary. This result holds a
for generic values ofh,0. At leading order the boundar
fields satisfy the equations

r̈

b2
5~122h!rg tt2~122h!2rg rr 22~124h!gff ,

~30!

ṙ2

b2r
1~122h!2rg rr 14~122h!gff50, ~31!

~122h!ṙg tt1
1

2
~122h!2rġ rr 12~122h!ġff14h

ṙ

r
gff

50,
~32!
02400
h

y

l

r

.

-
o

and

r~g̃ rr 2g̃ tt!12g̃ff50, ~33!

~12h!ṙg̃ tt1
122h

2
rġ̃ rr 1~222h!ġ̃ff1

4h~12h!

122h

ṙ

r
g̃ff

50, ~34!

for h,0 andh.0, respectively. Note that Eq.~30! follows
from Eqs.~31! and~32!. The equations above determine th
dynamics on the boundary, which will be investigated in S
III C.

B. Determination of the central charge of the Virasoro algebra

To evaluate the central charge of the Virasoro algebra
generates the ASG we turn to the Hamiltonian formalism@3#.
With the parametrization

ds252N2dt21s2~dr1Nrdt!2, ~35!

the Hamiltonian of the theory reads

H5E dr~NH1NrHr !. ~36!

As usual,N andNr act as Lagrange multipliers and enforc
the constraints

H52PFPs1s21F92s22s8F82
L

2
sF

1
a

2
~sF21Ps

22s21F21F82!50,

Hr5F8PF2sPs850, ~37!

where

Ps5N21~2Ḟ1NrF8!,

PF5N21~2ṡ1~Nrs!8!1asF21Ps , ~38!

are the momenta conjugate tos andF, respectively. Here a
prime denotes derivative with respect tor.

For noncompact spacelike surfaces a boundary termJ
must be added to the Hamiltonian~36! to obtain well-defined
variational derivatives@20#. Although the above requiremen
fixes only the variationdJ, with a suitable choice of
asymptotic boundary conditionsdJ can be written as a tota
variation of a functionalJ of the canonical fields on the
boundary. In our case the boundary reduces to a point and
variation ofJ is

dJ52 lim
r→`

@N~s21dF82s22F8ds2as21F21F8dF!

2N8~s21dF!1Nr~PFdF2sdPs!#. ~39!
2-4
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Let us now consider the symmetries associated with the K
ing vectorsj. These are generated by the phase space f
tionals @21#

H@j#5E dr~j'H1j iHr !1J@j#, ~40!

where j'5Nj t and j i5j r1Nrj t. In general, the Poisso
algebra ofH@j# yields a projective representation of th
asymptotic symmetry algebra,

$H@j#,H@x#%5H@ @j,x# #1K~j,x!, ~41!

whereK(j,x) is a central charge.
The simplest way to calculate the central charge is

evaluate the Poisson brackets~41! using the explicit expres
sion for ~40! obtained above. A straightforward calculatio
gives

K~@j,x#!5 lim
r→`

2~j'8x'2x'8j'!s21Ps

1~j'8x i2x'8j i!s21F82~j'x i2x'j i!

3FL2 sF1PsPF2
a

2
~sF21Ps

2

1s21FF82!G . ~42!

For the two-dimensional AdS space, however, the bound
at infinity is a point, so the functional derivatives that appe
in the Poisson brackets are well defined only for pure ga
transformations, for whichJ@j# vanishes. This problem ca
be overcome by defining the time-averaged generatorsĤ@j#

and chargesK̂@j# ~see Ref.@3#!1

Ĥ@j#5
b

2pE0

2p/b

dt H@j#, K̂@j#5
b

2pE0

2p/b

dt K@j#.

~43!

Here we assume that the time coordinatet is periodic with
periodb.

We can obtain the Virasoro algebra~22! by expanding the
parameterse(t) of the Killing vectors~20! and ~21! in Fou-
rier modes:

j~ t !5(
k

i

b
eikbtLk , ~44!

where Lk are the generators of the Virasoro algebra. T
central charge of the algebra is evaluated by substituting
~44! and the black hole ground state solution (mbh50) in
Eq. ~42! and then integrating with respect tot,

K̂~Lk ,Ll !5 lim
r→`

22i ~122h!F0~br !22hk3dk1 l ,0 . ~45!

1An analogous problem was encountered in a slightly differ
context in Ref.@12#.
02400
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K̂ vanishes forh.0. In contrast, forh,0 we have a diver-
gent contribution. This is due to the infinite energy of t
excitations on the boundary. Using Mann’s formula for t
mass@22#, or evaluating directlyH@L0#, the energy of the
excitations is

m5
bF0

2
@~122h!g̃ rr 14g̃ff#~br !22h, ~46!

which diverges forr→`. Note that all generatorsH@Lk#
exhibit the same divergence. Nevertheless, they span a
resentation of the Virasoro algebra. Indeed, neglecting
divergences and shiftingL0 by a constant,L0→L02F0, we
obtain the Virasoro algebra in the standard form~22! with
central charge

c5H 24~122h!F0 , h<0,

c50, h.0.
~47!

The central charge can also be evaluated from the algeb
the chargesJ@j# on the constraint surfaceH50. If h<0
from Eqs.~18! and ~39! we have

dJ@«#5F0Fb«S ~12h!g̃ ttdr1
~122h!

2
rdg̃ rr 12dg̃ff

1
4h

122h

g̃ff

r
dr D 1

«̇

b
S dṙ1

2h

122h

ṙ

r
dr D 2

«̈

b
drG

3~br !22h. ~48!

The equation above is not globally integrable in the f
phase space. However, it can be integrated in a neighborh
of the classical solution, i.e., nearr51 @7#. Using the equa-
tions of motion~30!–~32!, and expanding Eq.~48! around
the classical solutionsr511 r̄ we have, at the leading orde
in r̄,

J~«!5
F0

b
~ «̇rG 2 «̈ r̄ !~br !22h1«m, ~49!

wherem is the mass of the excitations~46!.
The charge~49! is defined up to an additive constant th

has been fixed by settingJ(«51)5m. Since we are inter-
ested in the value of the central charge of the Virasoro a
bra ~which is independent fromm) we consider onlym50,
i.e., variations near the ground state. Equations~43! imply
that J is defined up to a total time derivative. So we write

J~«!522
F0

b
~br !22h«rJ 5«Q tt . ~50!

Using the transformation laws~23!–~26! with parameterv,
we obtain

«dvQ tt5«~vQ̇ tt12v̇Q tt!1K~«,v!, ~51!

where K(«,v)52(122h)b21F0(br)22h( «̈ v̇2v̈ «̇), in
agreement with Eq.~45!. Q tt can be interpreted as the on
t

2-5
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dimensional stress-energy tensor associated with the co
mal symmetry.Ĵ(«) are the charges which generate the c
tral extension of the Virasoro algebra.

We may repeat the previous calculations forh.0. In this
casedJ is

dJ@«#5F0Fb«S ~12h!g ttdr1
~122h!

2
rdg rr

12~12h!dgff1
4h~12h!

122h

gff

r
dr D G . ~52!

We integrate again this expression nearr51. Using the
equations of motion~33! and~34!, and expanding around th
classical solutionsr511 r̄ we obtain, at the leading order i
r̄,

J~«!5«m, ~53!

wherem is the mass of the excitations,

m5
bF0

2
@~122h!g rr 14~12h!gff#. ~54!

SinceJ has no anomalous term, the central charge vanis

C. Dynamics of the boundary

To get some clue on the origin of the boundary degree
freedom whenh,0 we investigate the dynamics that
obeyed by the boundary fields@19#. It is convenient to intro-
duce new fields which are invariant under the pure ga
diffeomorphisms parametrized byam,

b5
1

2
~122h!rg rr 12gff ,

g5g tt2
1

2
g rr . ~55!

In terms of the new fields, the equations of motion~30!–~32!
take the form

b22r̈5~122h!rg2~124h!b, ~56!

b22ṙ212~122h!br50, ~57!

~122h!~ ṙg1ḃ !12hb
ṙ

r
50. ~58!

Since the one-form

z[F ~122h!g12h
b

r Gdr1~122h!db ~59!

is not exact, Eqs.~56!–~58! determine a mechanical syste
with one anholonomic constraint. Equation~57! is a first in-
tegral of Eqs.~56! and ~58!. It implies that the total energy
vanishes:
02400
or-
-

s.

of

e

E5T1V5
ṙ2

2b2
1~122h!br50. ~60!

This condition is absent in the JT model@19#, where the total
energyE is not constrained.E is proportional to the mass o
the excitations~46!.

The Lagrange equations of the first kind for the fieldsw i
5$r,b,g% are

Fi2mi ẅ i1lz i50, ~61!

whereFi is the force that follows from the potentialV de-
fined above,Fi52] iV. mi denote the mass of the fields,l
is a Lagrange multiplier, andz i are the components of th
one-formz. Setting

mr5b22, mb5mg50, ~62!

the Lagrange equations~61! yield Eq. ~56! and fix the
Lagrange multiplier asl5r. The boundary fieldsw i span a
representation of the full infinite dimensional group which
generated by the Killing vectors~20! and ~21!.

The dynamical system~56!–~58! can also be described i
terms of a harmonic oscillator coupled to an external sou
Introducing the new fieldq5r1/2(122h) of conformal dimen-
sion 21/2 and eliminatingb from Eq. ~57! by means of Eq.
~56!, we have

q̈5
b2

2
gq. ~63!

Equation~57! becomes

q̇2

2
1

b2

4~122h!
bq4h50. ~64!

The equivalence of Eqs.~56!–~58! and Eqs.~63! and~64! is
straightforward. Equation~63! is the equation of motion of a
harmonic oscillator coupled to the external sourceg. It can
be derived from the effective action

I 5E dtF1

2
q̇21

1

4
b2gq2G . ~65!

The external sourceg which couples to the fieldq is not
constant. Rather, it represents an operator of conforma
mension two.~Note that in the calculation ofdI , g, which is
an external source, must not be varied.! The action~65! can
be shown to be invariant~up to a total derivative! under the
conformal transformations~23!–~26!. It is interesting to
compare this result with the JT case, where the action ha
extra potential term@19# of de Alfaro–Fubini–Furlan type
@23#.

For h.0 Eqs.~33! and ~34! are nondynamical, in agree
ment with the vanishing of central charge.~Although bound-
ary degrees of freedom do exist. See, e.g.,@24–26#.!
2-6
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IV. CONFORMAL FIELD THEORY AT THE HORIZON

In the previous sections we have shown that the ASG
the metric~8! is generated by a Virasoro algebra. Hence,
asymptotic region of the black hole is described by a CFT
addition tor→`, we also expect the region near the bla
hole horizon to be described by a CFT. By investigating
algebra of constraints in the presence of a boundary Ca
has shown that when the boundary is a Killing horizon
can impose a natural set of boundary conditions which le
to a Virasoro algebra@12#. Moreover, on a manifold with
boundary the algebra of surface deformations acquires a
tral term that depends uniquely on the boundary values of
dynamical fields. Consequently, the algebra takes the f
given in Eq. ~22!, where the explicit value of the centra
chargec depends on the model under consideration. In
case of a general dilaton gravity model the central chargc
and the eigenvalue ofL0 are @12#

c

6
5L05Fh , ~66!

whereFh is the value of the dilaton at the horizonr h .
We conclude that the black hole geometry~8! has two

conformal regions which are associated to the space
boundaries:r 5` and r 5r h . In both cases the algebra o
surface deformations has the form of a centrally exten
Virasoro algebra with a central charge given in Eqs.~47! and
~66!, respectively. The existence of the first conformal po
(r 5`) follows from the AdS asymptotic behavior of th
metric. The existence of the second conformal pointr
5r h) does not depend on the details of the solution, be
simply a consequence of the existence of a Killing horiz
Using the sigma model formulation of dilaton gravity the
ries we can interpret the two conformal regions as differ
coupling regimes of the gravitational theory. In Secs. V–V
we will show thatr 5` and r 5r h correspond to the weak
coupled regime (F→`) and to the strong-coupled (F
→Fh) regime of the gravitational theory, respectively.

V. SIGMA MODEL FORMULATION AND CONFORMAL
SYMMETRIES

The conformal structure described in the previous s
tions can be traced back to the conformal invariance of
two-dimensional dilaton gravity theory~3!. Classically, the
generic two-dimensional dilaton gravity theory

S5
1

2E d2xA2gFFR@g#2
d lnuW~F!u

d F
~¹F!21V~F!G ,

~67!

is invariant under the generalized~conformal! Weyl transfor-
mation @27#

V~F!→V~F!/V~F!, W~F!→V~F!W~F!,

gmn→V~F!gmn . ~68!

HereW(F), V(F), andV(F) are arbitrary function of the
dilaton field. The classical conformal invariance is genera
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broken by quantum effects. It is, however,~perturbatively!
preserved for models with vanishing beta function.

The conformal invariance of the theory can be ma
manifest by implementing the canonical transformati
( f ,F)→(M ,F) @28#, where f is the conformal degree o
freedom of the two-dimensional metric,gmn5 f (x)hmn , and

M5N~F!2W~F!~¹F!2,

N~F!5EF

dF8@W~F8!V~F8!#. ~69!

The new fieldM is invariant under Weyl and gauge transfo
mations and is locally conserved. Apart from a constant n
malization factor,M coincides~on-shell! with the ADM mass
of the system. Neglecting inessential surface terms, in
new canonical chart the action~67! reads

Ss5
1

2E d2xA2g
¹mF¹mM

N~F!2M
. ~70!

Let us first discuss ther 5` conformal region of the black
hole geometry~8!. Since the~coordinate-dependent! cou-
pling constant of the gravitational model~3! is F21 from Eq.
~8! it follows that r 5` corresponds to the weak-couple
regime of the theory. The weak-coupled regime of the act
~70! describes a free open string. It is convenient to introdu
the Weyl-rescaled frame2

Gmn5F12agmn , ~71!

wherea5(122h)21.0. In this frame the action~3! reads

S5
1

2E d2XA2G@FR@G#1~11a!Fal̃2#, ~72!

wherel̃25l2/(11a) anda512a. Equation~70! takes the
form

Ss5
1

2E d2XA2G
¹mF¹mM

l̃2Fa112M
. ~73!

At the tree level in the weak-coupling expansion Eq.~73!
describes a bosonic string that propagates in a t
dimensional flat spacetime. WhenF→` we have

Sstring5
1

2pE d2X ]mja]mja , ~74!

where

M5
1

Ap
~j11j0!,

1

al̃2
F2a52

1

Ap
~j12j0!. ~75!

Using the same arguments of Ref.@5# we can work out a
nontrivial relationship between the asymptotic symmetries

2From now on we denote with upper-case letters the quantitie
the rescaled frame.
2-7
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the model~3! and the conformal symmetries of the~Dirich-
let! open string~74!. We find that the Weyl transformatio
~71! transforms the conformal symmetries of the open str
into the asymptotic symmetries of the gravitational theor

In the Weyl-rescaled frame the solution~8! reads@29#

ds252@~ l̃R!a112m#dT21@~ l̃R!a112m#21dR2,

F5l̃R, R.0, ~76!

where

m5
M

l̃2
. ~77!

M is related to the black hole mass byM52l̃F0
ambh . Equa-

tion ~76! can be obtained directly from Eq.~8! by rescaling
the metric according to Eq.~71! and setting

l̃R5F0~br !1/a, T5tF0
2a , ~78!

where b5l̃a and m5A2F0
11a . The weak-coupled

asymptotic form of the metric~76! is obtained taking the
limit R→`:

ds2'2~ l̃R!a11dT21~ l̃R!2a21dR2. ~79!

The boundary is timelike fora.0 and lightlike for21,a
,0. In conformal coordinates the asymptotic metric~79! is

ds2'~al̃X!2(a11)/a~2dT21dX2!, ~80!

where

al̃X5~ l̃R!2a, X.0. ~81!

The usual conformal symmetries of the string correspond
conformal symmetries of the metric~76!. Using light-cone
coordinatesU5(T1X)/2 and V5(X2T)/2 the conformal
Killing vectors of the string are

x5xU~U !]U1xV~V!]V . ~82!

Following Ref. @5# and imposing Dirichlet boundary cond
tions on the string,

]Txmuboundary50, ~83!

we have

xU,V5
1

2
F6e~T!1 ė~T!X6

ë~T!

2
X21O~X3!G . ~84!

In the (T,R) frame the conformal Killing vectors are

xT5e~T!1
1

2a2l̃2
~ l̃R!22aë~T!1O~R24a!, ~85!

xR52
1

a
Rė~T!1O~R122a!. ~86!
02400
g

to

Performing the change of coordinates~78! and fixing the
pure gauge diffeomorphisms the Killing vectors~20! and
~21! are recognized to coincide with Eqs.~85! and~86!. The
Virasoro generators are

Lk52FTk111
k~k11!

2a2l̃2
~ l̃R!22aTk211O~R24a!G]T

1F1

a
~k11!RTk1O~R122a!G]R . ~87!

Using the Weyl transformation~71! in Eqs.~18! and~19! we
obtain the boundary conditions for the Weyl-rescaled me
Gmn . With a common notation forh,0 andh.0 we write

GTT5GTT
(0)~R!1GTT

(1)~T,R!,

GRR5GRR
(0)~R!1GRR

(1)~T,R!, ~88!

GTR5GTR
(0)~R!1GTR

(1)~T,R!,

where

GTT
(0)52~ l̃R!a11, GRR

(0)5~ l̃R!2a21, GTR
(0)50,

~89!

and

GTT
(1)5gTT~T!1g̃TT~T!~ l̃R!2a111O~R22a!1O~R23a11!,

GTR
(1)5gTR~T!~ l̃R!22a211g̃TR~T!~ l̃R!23a1O~R24a21!

1O~R25a!, ~90!

GRR
(1)5gRR~T!~ l̃R!22a221g̃RR~T!~ l̃R!23a21

1O~R24a22!1O~R25a21!.

The asymptotic boundary conditions for the dilaton are

F5F0@r~ l̃R!1gFF~l̃R!2a1g̃FF~l̃R!22a111O~R23a!

1O~R24a11!#. ~91!

The Killing vectors~85! and ~86! generate conformal trans
formations of the asymptotic fields. At the second order
asymptotic metric~76! is

ds252~ l̃R!a11@12m~l̃R!2a21#dT2

1~ l̃R!2a21@11m~l̃R!2a211O~R22a22!#dR2.

~92!

Taking the Lie derivatives of the metric and of the dilato
with respect to the Killing vectors~85! and ~86! we find

dGmn5
a21

a
ė~T!Gmn

(0)1O~Gmn
(1)! ~93!

and
2-8
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dF52
1

a
ėF. ~94!

~The dilaton has been evaluated on shell.! The conformal
transformation reduces to the asymptotic symmetry iffa
51 ~AdS!, i.e., when the Weyl transformation~71! is the
identity. The Weyl rescaling~71! transforms the conforma
symmetries of the metricGmn into the asymptotic symme
tries of the metricgmn . From Eq.~71! we have

dgmn5Fa21dGmn1~a21!Fa22GmndF. ~95!

Finally, substituting Eqs.~93! and~94! in Eq. ~95! we obtain

dLgmn5O~Fa21Gmn
(1)!. ~96!

Recalling Eq.~91! it is straightforward to verify that Eq.~96!
coincides with Eqs.~18! and ~19!.

Let us now consider ther 5r h conformal region. The ho-
rizon is defined by the equationl̃2Fh

a112M50. Since on

the horizonF21;(l̃/mbh)
1/a11 the latter does not belong t

the weak-coupled regime~unless we consider macroscop
black holes for whichmbh@l̃). Moreover, the sigma-mode
description breaks down at the horizon because the metr
the target space has a curvature singularity atF5Fh . So the
sigma model is strong-coupled and the action~73! cannot be
used to describe ther 5r h conformal region.

VI. DUALITY SYMMETRIES

The black hole horizon can still be described in the sig
model formalism if we make use of duality symmetrie
Two-dimensional dilaton gravity possesses a symmetry@30#
that acts on the space of~classical! solutions; the field equa
tions ~5! and~6! are invariant under duality transformation
The explicit form of the duality transformations depen
both on the gauge and on the conformal frame. For insta
in the gauge

ds252Y~s!dt21F12a~s!ds2, ~97!

the duality transformation for the Weyl-rescaled model~72!
takes the simple form

Y→Fa11, F→Y1/(a11). ~98!

In this gauge the black hole solutions~76! read

Y5
1

4
~el̃s~a11)/ 22me2l̃s~a11)/2!2,

F5
1

2
~el̃s~a11)/21me2l̃s~a11)/2!2/(a11). ~99!

Applying the duality transformation~98! to Eqs. ~99!, we
find that they only change the mass parameterm into 2m.
So their overall effect is to interchange the zero ofY ~the
horizon of the black hole! with the zero ofF ~the singular-
ity!, namely the value of the coupling at the horizonF
5Fh with the coupling at the singularityF50.
02400
of
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In order to implement the duality transformation in th
sigma model action we need to repeat the calculation for
~off-shell! mass function~69!. It is convenient to work in the
Schwarzschild gauge

ds252Y~r !dt21Y21~r !dr2. ~100!

In this gaugedF/dr5l̃ and the mass function is

M5l̃2~Fa112Y!. ~101!

From Eqs.~100! and~97! we haveY5Fa21(dr/ds)2. Sub-
stituting this result in the duality relation~98! we obtain

Y5Fa21~dr/ds!2→Fa11, Fa11→Fa21~dr/ds!25Y.
~102!

So the duality transformation changes the sign of the m
function. Since the latter is a scalar function this statemen
gauge independent. Now we can implement the duality tra
formation in the sigma model action~73!. The dual action
reads

Ss,dual52
1

2E d2XA2G
¹mF¹mM

l̃2Fa111M
. ~103!

The horizonF5Fh is mapped intoF50. This value be-
longs to the weak-coupled region of the dual sigma mod
Therefore, we can expand the dual action~103! aroundF
50. At leading order we obtain the free CFT

Ss,dual5
1

2E d2XA2G¹mF¹mM̃ , ~104!

whereM̃52 ln(M/l̃ 2). Classically, the black hole horizon i
described by a two-dimensional CFT~bosonic string!.

VII. PERTURBATIVE CONFORMAL POINTS

We have shown that at the classical level the gravitatio
dynamics in the limit~a! F→` and~b! F→Fh is described
by free CFTs. Moreover, as we have discussed at the en
Sec. II, the limit~c! a→` (h→1/2) also leads to a free CFT
The classical conformal invariance of the sigma model~73!
is generally broken at quantum level. Conformal invarian
is ~perturbatively! preserved only for those values of the co
pling with vanishing beta function. Now we show that th
classical conformal invariance is preserved at the one-l
level, i.e., that~a!, ~b!, and~c! are three perturbative confor
mal points of the sigma model.

Let us first consider~a! and ~c!. Changing coordinates in
the target space to the dimensionless fieldsja,

F5a2~j1!21/a, M5a2a11l̃2j0, ~105!

the sigma-model action~73! is cast in the standard form
2-9
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Ss5
1

2E d2XA2G Gab]mja]mjb, ~106!

where the metric of the target space is

Gab52
a/2

a2j0~j1!(a11)/a
Vab , Vab5S 0 1

1 0D .

~107!

For j150 (F5`) and a5` the sigma model describes
free two-dimensional CFT. So we can consistently use
perturbation theory around these vacua. The one-loop
function is

bab[
1

2p
Rab52

a11

2p

~j1!1/a

@a2j0~j1!(a11)/a#2
Vab ,

~108!

whereRab is the Ricci tensor of the target space metric. T
beta function is always negative and vanishes forj150 and
a5`. Hence,j150 anda5` are perturbative~stable! con-
formal points of the dilaton gravity theory.

Let us now consider the behavior of the sigma mode
the horizon. Using the duality symmetries of the model
near-horizon behavior can be described by the dual ac
~103! in the limit F→0. Introducing the dimensionless field

M5l̃2e2j0
, F5j1, ~109!

the sigma model action~103! is cast in the standard form
~106! with target space metric

Gab5
1/2

11ej0
~j1!a11

Vab . ~110!

For j150 the sigma model describes a two-dimensional f
conformal field theory and we can consistently use pertur
tion theory nearF50. The one-loop beta function is

bab5
a11

2p

ej0
~j1!a

@11ej0
~j1!a11#2

Vab . ~111!

The beta function is now positive and vanishes forj150.
The dilaton gravity model has three perturbative conf

mal points where it behaves as a free two-dimensional c
formal field theory. Point~a! corresponds to the weak
coupled regime. Since the beta function is negative this p
is stable. The free conformal theory, CFT` , describes the
gravitational model near the asymptotic region. Point~b! cor-
responds to the horizon of the black hole. In this case
beta function is positive and the point is perturbatively u
stable. The two-dimensional free conformal theory, CFTh ,
describes the gravitational model near the horizon of
black hole. Point~c! is of a different nature, since it corre
sponds to the limita→`; in this case the model become
identically equivalent to a free CFT. Both the existence a
structure of the conformal points have important con
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quences on the derivation of the thermodynamical proper
of the black hole. We will discuss this point in the ne
section.

VIII. MICROSCOPIC ENTROPY OF THE BLACK HOLE

Though we have identified three distinct perturbative co
formal points and their corresponding CFTs, a complete
scription of the 0-brane dynamics is still missing. We a
dealing with a strong-coupled system which cannot
solved exactly at the quantum level. Since we do not kn
how to deal with the regions between the conformal poin
the behavior of the system near these points is not suffic
to fully characterize the properties of the theory. Con
quently, it is not clear whether the CFTs can be used
explain the ~semiclassical! thermodynamical properties o
the black hole.

As far as the algebra CFT` is concerned we can reason
ably identify the eigenvalueL0

` of L0 with the energyE of
the gravitational configuration,L0

`5E/b. The energyE is
indeed the eigenvalue of the Killing vector which genera
time translations and thus coincides withL0

` . The two pa-
rameters that characterize the CFT` algebra,L0

` , and the
central chargec` @see Eq.~47!#, are completely determined
by the energy and the zero mode of the dilaton, i.e., by
observables which are associated with the gravitational c
figuration. We can use the Cardy formula@31#

S52pAcL0

6
~112!

to compute the entropy of the gravitational configuration a
function of the density of states of CFT` . Substituting Eq.
~47! in Eq. ~112! we obtain

S5H 4pA~122h!EF0

b
, h<0

0, h.0.

~113!

SettingE5mbh we should recover the thermodynamical e
tropy of the black hole. However, for generic nonzero valu
of h Eq. ~113! does not coincide with Eq.~13!.3 This result
has different origins depending on the sign ofh. We stressed
in Sec. III that forh,0 the deformations that generate th
Virasoro algebra do not generate the black hole. Theref
we cannot identifyE with the black hole mass. Conversel
for h.0 the deformations that generate the Virasoro alge
also generate the black hole and we can identifyE with mbh .
However, the deformations do not correspond to truly d
namical degrees of freedom and the central charge vanis
This is no surprise, since forhÞ0 there is no obvious reaso
why the dynamics of a strong-coupled system such as
black hole should be described by a free CFT.4

3For h50 ~the JT model! Eq. ~113! leads to a mismatch of aA2
factor between the thermodynamical and the CFT entropy. H
ever, the origin of the discrepancy is known@19#.

4For h50 one can invoke the AdS/CFT correspondence.
2-10
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As far as the CFTh algebra is concerned bothL0
h andch

are determined by the value of the dilaton at the horiz
Inserting Eq.~66! in Eq. ~112! we recover the thermody
namical entropy of the black hole~13! @12#. Although the
density of states of CFTh explains correctly the entropy o
the black hole, bothL0

h andch depend on the Hawking tem
perature of the horizonTh @see Eq.~66!#. Therefore, we can-
not identify Th with the temperatureTCFT of CFTh ; the
energy-temperature relation for a general CFT isE
}cTCFT

2 /b. From this relation and from Eqs.~112! and ~66!
it follows that TCFT is determined by the curvature of th
AdS space,TCFT}b. Though we expect that the thermod
namical properties of the black hole are described by a C
at the horizon, the relation between the CFT and the par
eters of the black hole is far from being trivial.

The conclusions above have a counterpart in the sig
model formulation. The asymptotic region represents a p
turbative stable conformal fixed point. In contrast, the ho
zon lies deep in the strong-coupled region of the sig
model and its CFT description is obtained through a dua
transformation whose physical meaning is not complet
clear.

Let us conclude this section by briefly discussing thea
→` regime. In this case the dilaton is constant and the
lution ~14! can be described by a CFT everywhere. The m
ric ~14! possesses a Killing horizon; we can use Eq.~66! to
computeL0 and c. SinceF5F0 we obtainc/65L05F0.
Substituting the latter in the Cardy formula we recover
thermodynamical entropy~15!. It should be noticed that if
we used ther→` boundary calculation of Sec. III to com
pute the central charge we would obtainc50, i.e., S50.
This is consistent with the fact that there are no dynam
degrees of freedom on the boundary of AdS2. The degrees of
freedom which are responsible for the entropy are not lo
ized on the boundary of AdS2 but on the Killing horizon of
the solution~14!. Therefore, we have a realization of holo
raphy.

IX. CONCLUSIONS

In this paper we have investigated dilatonic 0-branes
the near-horizon approximation. In the dual frame the so
tions have the AdS23SD22 form. Using different approache
d

ys

rg
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such as the canonical realization of asymptotic symmet
as deformation algebra, the sigma model, and dualities,
have found that the dynamics is characterized by three c
formal points both at classical and at~one-loop! quantum
levels. The ensuing CFTs have been identified by the fie
which describe the boundary deformations and/or by the
grees of freedom of the sigma model. We have calculated
central charges of the Virasoro algebra.

The use of the CFTs to describe the thermodynamics
black holes~in particular their entropy! seems problematic
Though the CFT̀ description is natural from the black hol
point of view ~the black hole mass is identified withL0 and
the central charge is a function ofF0), nevertheless it does
not reproduce the black hole entropy for generic couplin
Technically, this may be explained either by the absence
dynamical degrees of freedom on the~AdS! boundary of the
spacetime (h.0) or by the impossibility of relating them to
the degrees of freedom of the black hole (h,0). Only in the
JT model, where the spacetime is AdS2 and there is no cur-
vature singularity, CFT̀ reproduces the black hole thermo
dynamical relations. In this case we have a genuine real
tion of the AdS2 /CFT1 correspondence.

In contrast, the CFT at the horizon seems to give a go
description of black hole thermodynamical relations. This
sensible because we expect the thermal properties of b
holes to be associated with the horizon. However, the h
zon lies deep in the strong-coupled region of the sig
model and in order to describe its dynamics by a free C
we must employ a nonperturbative tool: the duality symm
try of the model. So from the black hole point of view th
CFTh description remains obscure. Both the central cha
and the eigenvalue ofL0 depend on the Hawking tempera
ture of the horizon, whereas we would likec to depend on
F0 only. Something fundamental is still missing in the pi
ture, hidden perhaps in the full quantum dynamics of
black hole.
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