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We investigate the dynamics of dilatorilzdimensional O-branes in the near-horizon regime. The theory is
given in a twofold form: two-dimensional dilaton gravity and the nonlinear sigma model. Using asymptotic
symmetries, duality relations, and sigma model techniques we find that the theory has three conformal points
which correspond tqa) the asymptotic(anti—de Sitter region of the two-dimensional spacetimg) the
horizon of the black hole, angt) the infinite limit of the coupling parameter. We show that the conformal
symmetry is perturbatively preserved at one loop, identify the corresponding conformal field theories, and
calculate the associated central charges. Finally, we use the conformal field theories to explain the thermody-
namical properties of the two-dimensional black holes.
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[. INTRODUCTION tigate the existence of conformal symmetries for a general
O-brane.
Dilatonic 0O-branes are solutions BFdimensional super- In this paper we show that the asymptotic symmetries of

gravity coupled toJ(1) gauge fields that describe effective the near-horizon 0-brane solutions are generated by a Vira-
low-energy approximations to the DO-brane solutions ofsoro algebra. Using a canonical realization of the asymptotic
string theory. Their investigation is relevant to understandingsymmetries we calculate the central charge of the algebra
the anti—de Sitter/conformal field theotAdS/CFT) corre-  and give an explicit realization of the conformal symmetry in
spondencgl] in two spacetime dimensio®2-5|. Though terms of the fields that describe deformations of the bound-
the AdS /CFT, correspondence is quite well known in the ary of AdS,. For a particular range of the coupling parameter
dilaton gravity contexf3,5], little is known in the more gen- a we identify the one-dimensional conformal mechanics that
eral framework of string theory. lives on the boundary of AdSand realizes the conformal
In a recent papef6] Youm has shown that in the dual- symmetry. In the limita—c the dilaton gravity model is
frame near-horizon regime-dimensional dilatonic 0-branes shown to be equivalent to a free CFT. Thanks to a previous
can be described by an effective two-dimensional dilatorresult by Carlip[12] we also argue that the horizon of the
gravity model with nonconstant dilaton and asymptoticallytwo-dimensional black hole defines a CFT with well-defined
AdS, black hole solutions. The 3$2,R) isometry group of central charge. In the sigma model formulation the existence
AdS; is thus broken, a feature which has prevented any atef these three conformal points is recovered, at the classical
tempt to using the asymptotic symmetries of Ad8 gener- level, by relating the asymptotic symmetries of the gravita-
ate an infinite-dimensional conformal symmetry associatedional theory to the conformal symmetries of the sigma
with the dynamics of the 0-brane. However, previous invesimodel and by implementing the duality symmetries of the
tigations[7-10] of the Jackiw-TeitelboimJT) model[11]  theory. The calculation of one-loop beta functions shows that
(which describes the near-horizon behavior of a specifithe conformal symmetry is perturbatively preserved. Finally,
0-brang have shown that the breaking of conformal symme-the CFT results are used to discuss the thermodynamical be-
try due to a nontrivial dilaton can actually be controlled andhavior of the two-dimensional black holes.
is essential to understanding features of the CFT such as the The structure of the paper is the following. In Sec. Il we
existence of a nonvanishing central charge in the Virasoroeview the two-dimensional dilaton gravity model that de-
algebra[7]. Thus, applying similar arguments we can inves-scribes the near-horizon regime Dfdimensional dilatonic
0-branes. We consider tHasymptotically Ad$) black hole
solutions and discuss different limiting cases in the moduli

*Email address: cadoni@ca.infn.it space of the theory. In Sec. Il we investigate the asymptotic
TEmail address: carta@ca.infn.it symmetry group(ASG) of the solutions. We show that the

*Email address: cavaglia@mitins.mit.edu ASG is generated by a Virasoro algebra and we calculate the
$Email address: mignemi@ca.infn.it central charge. We discuss the dynamics induced on the
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AdS, boundary by the bulk gravity theory. In Secs. IV and V V2d—-AP=0, 7

we identify the CFT that lives on the horizon of the black

hole and we use the sigma model formulation to describe th#hich is independent frora.

relation between the conformal symmetries of the sigma The two-dimensional dilaton gravity model, E@), has

model and the asymptotic symmetry group of dilaton gravity.been extensively investigated in the literatlifet, 15. For

We also show that the weak-coupling region can be dethe sake of completeness we briefly summarize the main re-

scribed by a free CFT. Section VI deals with the dualitysults. If «<1 Eq. (3) admits the asymptotically AdS black

symmetries of the theory. The sigma model approach is usé@ole solutions

to prove that the horizon of the black hole defines a CFT. In o2 o ol 2 o2 o o142

Sec. VIl we calculate the one-loop beta functions of the three d5°=—[b?r?—A%(br)?"dt*+[b?r?—A%(br)?"]~*dr?,

CFTs and show that the conformal symmetry is preserved at 1ooh

one-loop at theéclassical conformal points. In Sec. VIII we D =Po(br) ' ®

discuss the thermodynamical properties of the two-

dimensional black holes. Finally, we state our conclusions iﬁ/vhere

Sec. IX. A 1

th, b?°=————— h<=. (9

Il. EFFECTIVE THEORY OF DILATONIC 0-BRANES 2(a—1) 2(1=h)(1=2h) 2
In the Einstein frame the bosonic part of the supergravity! he integration constark in Eq. (8) is related to the black

action that describes dilatonic 0-branes solutior® timen- ~ nole massny;, by the relation

sions is

1
S=—| d°J~-g

2KD

1
4 1 Mpn== (1—2h)D,A%Db. (10)
R— m((ﬁﬁ)z— ZGZd¢F2 (1) 2

The scalar curvature is
where «p is the D-dimensional gravitational coupling con-
stant, ¢ is the dilaton fieldd is the dilaton coupling param- R=—2[b?+h(1-2h)A%(br)?"r ~2]. (11)
eter, andF is the field strength of th&J(1) gauge field. ) , )
In the dual framéd13] the static solution of the model has 'f h#0,1/2 the metric(8) has a curvature singularity at
the near-horizon form AdS<SP~2. The 0-brane admits an =0. Since the geometry is asymptotically AdS the boundary

effective description in terms of a two-dimensional dilatont "= is timelike.

gravity theory. Following Ref[6] we write The thermodynamical behavior of the black hole is char-
acterized by the power-law mass-temperature relation
1
S=— | d®\/—ge’[R+y(d¢)*+A]. 2 1—2h
2k5 mbhzz(l—_h)(bo[b(l—h)]Zh‘l(erT)z(l‘h). (12)
Settingx,=1 and redefining the dilato®=e’?, Eq. (2) is
cast in the form Below we shall restrict attention te 1<h=<1/2. In this case
2 we havem,,~T?%, 1<s<4. The entropy of the black hole is
S—Ef V—g d?x ®| R+ (90) +A (3
=3 g a P2 ) . h)[ 2myy (1—2h)/2(1—h)
S=2m(d T 13
where (®o) (1-2h)b (13
vy _ 1 D1 4 (D=3 2 @ The model(3) includes two interesting special cases=0
a= 52 D-2 d2\D-2/ |’ (h=0) anda— —« (h=1/2). The former is the so-called
Jackiw-Teitelboim(JT) model[11]. The spacetime has con-
The field equations are stant curvature, i.e., is locally AdSand the dilaton is linear.
5 Since the JT model has been widely investigated in the lit-
R+ A + &(Vq))z__avzq):o, (5)  erature(see, e.g.[16,3]) we shall not discuss it here. The
®? % second case deserves a brief discussion. Taking the timit
=1/2 in Eq.(8), we obtain the Adgspacetime with constant
a 1 ) 5 dilaton
T;w:a VMCDVVCI)—EQW(V@) -v,v,&+g,, VO
ds’=—(b?r?—A%br)dt®+ (b?r>—AZ%pbr) dr?,
1
59 AP d=dy, b*=AL2. (14
=0. (6)  Since the dilaton is constant we can interpret the solution
(14) as the near-horizon regime of the extremal Reissner-
The trace of Eq(6) gives Nordstran black hole(or its string theory generalizations
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Settingh=1/2 in Eq.(10) and Eq.(13) we find states of zero 9= —(br)2+7,(H)(br) 2"+ O(1)
energy which are characterized by constant nonzero entropy " " ’
S= 27, (15) 9= ()(bN)?" 3+ 0(r~3), (19
Equation (15) describes the typical behavior of extremal Ure = (b1) 24+, (D) (br) 24+ O(r %),
Reissner-Nordstr black holes in the near-horizon regime
[4,17). Theh=1/2 model is equivalent to a two-dimensional =Dy p(br) 1 2"+ Fpe(br) T+ O(r~1-2m7.
free CFT. In the limita— — < the field equation$5) and(6)
become The O(1) deformations irg,, and theO(r ~*) deformations
in g,, are subleading with respect to deformations that gen-
R+A=0, (16)  erate the black hole in Eq8). They become of the same

order only forh=0. In this case we have an ASG which is

1 ) characterized by a Virasoro algebra and finite charges.
Tw=V, oV, @—5g,,(VP)"=0. 17 The Killing vectors that generate the ASG are
Equation(17) describes the energy-momentum tensor of a L () + e(t) + —4+45 2
free two-dimensional CFT of a single bosdn §=e) 2b%r? ol )y (20
. ASYMPTOTIC SYMMETRIES a'(t)

g=—re(t)———(bn~F+Or*T), (21
If h#0,1/2 the spacetimg) is not maximally symmetric;

it admits a single Killing vectorZ which generates transla- ) . N
tions in time. In contrast, ih=0,1/2 Eq.(8) describes the v_vhererazo if —1<h=<0 andé=2h if 0 <h<3. The func-
maximally symmetric Ad$ spacetime with theSL(2,R) tion o' (t) describes diffeomorphisms of the two-dimensional

isometry group. Foh=0 a suitable choice of boundary con- 9ravity theory that die off rapidly as goes to infinity
ditions [3] shows that the ASG, i.e., the isometry group that( Pure” gauge diffeomorphisms The leading terms of the

preserves the asymptotic form of the metric, is generated bifi!iNg vectors (20) and(21) are identical to the JT ca$8].

a Virasoro algebra. For a generic valuehdhe discussion of 1 N€ generatorg of the ASG satisfy the Virasoro algebra

the group of asymptotic symmetries is more involved. The c

boundary conditions must indeed allow both an ASG which L Lo

is larger than7 and finite associated charggks]. We will (Lo b= k=Dl 75K =K) o (22

see below that these requirements are fulfilled only for O

<h=<1/2. where we allow for a nonvanishing central charge. We shall
From now on we shall restrict attention tel<h<1/2  see below that the ASG has a natural realization in terms of

and discuss- 1=h=<0 and 0<h=1/2 separately. In the first the conformal group in one dimensiqgthe Diff; group

case suitable boundary conditions for the metric and the diwhich describes reparametrizations of either the circle or the

laton are line, depending on the topology of the-«~ boundary.
If h=1/2 the black hole solution®8) are characterized by
gu=—(br)?+ y+O(r?"), a nonconstant dilaton. For consistency, the leading term in
the asymptotic expansion of the dilaton must be of the form
i = 7o, () (br) 3+ 0O(r2h-3), (18) (18) or (19). In Ref.[7] it has been shown that fdr=0 the

ASG of the metric is broken by the nontrivial dilaton and the
presence of a nonvanishing central charge in the Virasoro
algebra is related to the symmetry breaking. The boundary
fields span a representation of the conformal group. This

D=Do[p(br) "+ ygqe(br) P+ O(r Y], conclusion holds also for negative values tof For 0<h

<1/2 the central charge vanishes identically. Rer1/2 the
where the fieldg(t) and y(t) describe deformations of the dilaton is constant, so the boundary conditions imply that its
dilaton and of the timelike boundary of the spacetime. Both(on-shel) Lie derivative vanishes. Both the &,R) isometry
O(1) deformations ing,; and O(r %) in g,, dominate the group and the ASG of the metric are preserved.
deformations that generate the black hole in E). The Using suitable boundary conditions and introducing ap-
O(1) terms in the boundary conditions are essential to expropriate boundary fields we could also consider— 1. For
tending the isometry group of the metric to an ASG generdinstance, for —2<h<-1 we could introduce the term
ated by a Virasoro algebra. However, their presence leads #,(br) ~2 in the expansion of; , the terml",,(br)~® in the
divergent charges associated with the generators of the syrexpansion ofy,, , etc. However, larger values | require
metry. an increasing number of boundary fields. So in this paper we
If 0<h=<3 the boundary conditions are will consider only—1<h=<1/2.

Ui =(br) "2+ 5, (br) “ 4+ O(r2 %),
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A. Transformation laws and equations of motion
for the boundary fields

Using the boundary conditior{48) and(19), and the Kill-
ing vectors(20) and(21) we find the transformation laws for
the boundary fields. They are

Sp=ep—(1-2h)ep, (23
and
. . €
57tt267tt+257tt_ﬁ+barv (24
57rr=6'y”+2leyrr+2bar, (25)
. . ep 1 r
Vo= E’yfl,q,+(1+2h)6’)’q)q)+ﬁ_ E(l—Zh)ba 0,
(26)
57}’&:'ETYtt"'(Z_Zh)'.Eh)"tt*‘barv (27
8y =€y +(2—2h) v, +(2—2h)ba, (28)
- a1 r
57¢¢:€7¢¢+67¢¢—§(1—2h)ba P, (29

for h=<0 andh>0, respectively.
As was expected, the boundary fielgsandy transform
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and
p(¥r = 1) +2744=0, (33)
.~ 1-2h - < 4h(1-h) po
(1=h)pyy+ TP?’rr+(2_2h)7’¢¢+ 1-on ;74;45
=0, (34)

for h<0 andh>0, respectively. Note that E¢30) follows
from Egs.(31) and(32). The equations above determine the
dynamics on the boundary, which will be investigated in Sec.
1 C.

B. Determination of the central charge of the Virasoro algebra

To evaluate the central charge of the Virasoro algebra that
generates the ASG we turn to the Hamiltonian formali8in
With the parametrization

ds?=—N2dt>+ o?(dr+N'dt)?, (35)
the Hamiltonian of the theory reads
H=f dr(NH+N"H,). (36)

As usual,N andN" act as Lagrange multipliers and enforce
the constraints

according to a representation of the conformal group which

is realized as time reparametrizatiosis= (t) of the bound-

ary. In general the conformal dimensions of the boundary

fields depend on the parameterAnomalous pieces in the

transformation law of the fields imply a nonvanishing central

charge in the Virasoro algebra. The boundary fiejgsand

;tr transform as conformal fields as well. However, their

deformations are irrelevar{they do not contribute to the
charges and do not affect the dynamics of the boundany
we have omitted their transformation laws for simplicity.

A
H=—Ipll,+o ®"—c 2c'dD' - EO’@

(¢4
+ 5 (0@ HIZ -0 '2) =0,

Let us now consider the dynamics of the boundary fields.

In Ref. [19] it has been shown that fon=0 the two-

dimensional gravitational dynamics in the bulk induces a dy-

namics of the fields on the boundary. This result holds also

for generic values oh<0. At leading order the boundary
fields satisfy the equations

;
E:(1_2h)P7tt_(1_2h)2P7’rr_2(1_4h)7¢¢y

(30)

2

v +(1-2h)%p Y +4(1-2h) y,44=0, (31)
p

. 1 : . p
(1=2h)pyy+ 5(1—2h)2p7n+2(1—2h)7¢¢+4h;7¢¢

=0,
(32

H,=®'Ily—oll =0, (37)
where

H,=N"Y(—D+ND"),

Hp=N"Y—o+(N'o))+acd I, (38)

are the momenta conjugate doand®, respectively. Here a
prime denotes derivative with respectrto

For noncompact spacelike surfaces a boundary térm
must be added to the Hamiltoni&®6) to obtain well-defined
variational derivative$20]. Although the above requirement
fixes only the variationdJ, with a suitable choice of
asymptotic boundary condition®] can be written as a total
variation of a functionald of the canonical fields on the
boundary. In our case the boundary reduces to a point and the
variation ofJ is

8J=—Ilim[N(o 160" — 072D o— ac 1® 1d’' 5P)

r—o

—N'(016®)+ N (18P — 0'5T1,)]. (39)
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Let us now consider the symmetries associated with the K|IIK vanishes foh>0. In contrast, foh<0 we have a diver-
ing vectors¢. These are generated by the phase space fungent contribution. This is due to the infinite energy of the
tionals[21] excitations on the boundary. Using Mann’s formula for the
mass[22], or evaluating directhyH[L,], the energy of the
H[§]=J dr(&"H+dH,)+I[£], (40)  excitations is

where £&-=N¢' and &l= ¢ +N'&. In general, the Poisson m= &[(1_%)}”+4§/¢¢](br)—2h, (46)
algebra ofH[£] yields a projective representation of the 2

asymptotic symmetry algebra, which diverges forr—oo. Note that all generatorsi[L,]

{HLELHIXT=HL [£x] 1+ K(Ex), (41  exhibit the same divergence. Nevertheless, they span a rep-
resentation of the Virasoro algebra. Indeed, neglecting the
whereK(&,x) is a central charge. divergences and shifting, by a constantlg—Ly—®,, we

The simplest way to calculate the central charge is taobtain the Virasoro algebra in the standard fo{22) with
evaluate the Poisson bracké#d) using the explicit expres- central charge

sion for (40) obtained above. A straightforward calculation
gives C_[24(1—2h)(l>0, h=<0,

K([&x]) = lim = (&' x" —x"" o 1, c=0, h>0.

r—oo

(47)

The central charge can also be evaluated from the algebra of
(e eyl — (gl — gl the chargesl[ £] on the constraint surfacel=0. If h<0
(Ex=xe) (Ex—x &) from Egs.(18) and(39) we have

A a 2
X EU(D+H0H¢_§(U(D HU _ ( ) - _
be| (1=h)yudp+ ——5—p&vu 28744

sJ[e]=,

+01<I><I>’2)}. (42
4h
7’¢>«/>5

1-2h

For the two-dimensional AdS space, however, the boundary b

at infinity is a point, so the functional derivatives that appear X (br)=2". (48)

in the Poisson brackets are well defined only for pure gauge

transformations, for whicl[¢] vanishes. This problem can The equation above is not globally integrable in the full

be overcome by defining the time-averaged generaiped phase space. Howev_er, |t_ can be integrated ina neighborhood

and charge&[ £] (see Ref[3])! qf the cIasspaI solution, i.e., near=1 [7]. Using the equa-
tions of motion(30)—(32), and expanding Eq48) around

R b [2wb . b [2mb the classical solutions=1+ p we have, at the leading order
H[f]—zfo dtH[¢l, K[&]—EL dtk[él.
(43)
J(e)= %(' p—ep)(br)~2"+em (49)
Here we assume that the time coordintis periodic with (2)= - (ep=ep)( et
periodb. _ o
We can obtain the Virasoro algebi22) by expanding the wheremiis the mass of the excitatiorid6).
parameterg(t) of the Killing vectors(20) and(21) in Fou- The chargg49) is defined up to an additive constant that
rier modes: has been fixed by settind(e=1)=m. Since we are inter-
ested in the value of the central charge of the Virasoro alge-
P bra (which is independent frorm) we consider onlyn=0,
=N aikbt
f(t)_Ek: beI Lic (44 i.e., variations near the ground state. Equati¢t® imply

thatJ is defined up to a total time derivative. So we write
where L, are the generators of the Virasoro algebra. The
central charge of the algebra is evaluated by substituting Eq. Je)= —2—(br)
(44) and the black hole ground state solutiamy(=0) in
Eq. (42) and then integrating with respect to

8[)':8®n. (50)

Using the transformation law®3)—(26) with parameterw,
K(Ly,L))=lim —2i(1—2h)®y(br) 2"k38,, 0. (45  We obtain

r—oo

£8,04=c(00+200,)+K(s,0), (51

IAn analogous problem was encountered in a slightly differentwhere K(e,w)=2(1—2h)b 1dy(br) 2"(e io—c'i):s), in
context in Ref[12]. agreement with Eq(45). ®, can be interpreted as the one-
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dimensional stress-energy tensor associated with the confor- ‘2
mal symmetryJ(e) are the charges which generate the cen-

tral extension of the Virasoro algebra.
We may repeat the previous calculations fior 0. In this
cased is

bs((l—h)ytt5p+ (T

8e]=Dd PSYrr

——=6p
1-2h p

We integrate again this expression ngar1. Using the

equations of motiori33) and(34), and expanding around the

classical solutiong= 1+ p we obtain, at the leading order in

P

. (52

J(g)=em, (53
wherem is the mass of the excitations,
bd,
m=—-[(1-2h)y, +4(1-h)y,el. (64

SinceJ has no anomalous term, the central charge vanishe

C. Dynamics of the boundary

PHYSICAL REVIEW D 65 024002

p

E=T+V=——+(1-2h)Bp=0. 60
07 ( )Bp (60)

This condition is absent in the JT mod&B], where the total
energyE is not constrainedE is proportional to the mass of
the excitationg46).

The Lagrange equations of the first kind for the fielgs

={p.B.y} are

Fi—miei+\{=0, (61)
whereF; is the force that follows from the potenti®l de-
fined aboveF;= —¢;V. m; denote the mass of the fields,
is a Lagrange multiplier, and; are the components of the
one-form{. Setting

2

m,=b"%,

mg=m,=0, (62

the Lagrange equation&l) yield Eqg. (56) and fix the
Lagrange multiplier asa = p. The boundary fieldg; span a
representation of the full infinite dimensional group which is
generated by the Killing vector0) and (21).

s The dynamical systerf66)—(58) can also be described in
terms of a harmonic oscillator coupled to an external source.
Introducing the new fieldj= p*?(1~2" of conformal dimen-
sion —1/2 and eliminatings from Eq. (57) by means of Eq.

To get some clue on the origin of the boundary degrees of56), we have

freedom whenh<0 we investigate the dynamics that is
obeyed by the boundary field&9]. It is convenient to intro-

duce new fields which are invariant under the pure gauge

diffeomorphisms parametrized hy*,

1
B= E(l_Zh)pYrr+27¢¢a

1

Y= YT 5 Ve (59

In terms of the new fields, the equations of mot{86)—(32)
take the form

b~?p=(1-2h)py—(1—4h)B, (56)

b~2p2+2(1—2h)Bp=0, (57)
(1—2h)(py+'ﬁ)+2h32=o. (59

Since the one-form
(= (l—2h)y+2h§ dp+(1—2h)dg (59

is not exact, Eqs(56)—(58) determine a mechanical system
with one anholonomic constraint. EquatitBv) is a first in-
tegral of Egs.(56) and (58). It implies that the total energy
vanishes:

. b?
9=7% 9 (63
Equation(57) becomes
qz 2
- 4h_
> T aa—2nPI =0 €4

The equivalence of Eq$56)—(58) and Eqs(63) and(64) is
straightforward. Equatiof63) is the equation of motion of a
harmonic oscillator coupled to the external souscdt can
be derived from the effective action

[ o

The external sourcer which couples to the field| is not
constant. Rather, it represents an operator of conformal di-
mension two(Note that in the calculation afl, y, which is
an external source, must not be varjethe action(65) can
be shown to be invariariup to a total derivativeunder the
conformal transformationg23)—(26). It is interesting to
compare this result with the JT case, where the action has an
extra potential ternf19] of de Alfaro—Fubini—Furlan type
[23].

For h>0 Egs.(33) and(34) are nondynamical, in agree-
ment with the vanishing of central chargélthough bound-
ary degrees of freedom do exist. See, §24,—26.)

1., 1
T2 T h2.42
54"+ zb%va

. (65)
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IV. CONFORMAL FIELD THEORY AT THE HORIZON broken by quantum effects. It is, howevéperturbatively
Preserved for models with vanishing beta function.

the metric(8) is generated by a Virasoro algebra. Hence, the The conformal invariance of the theory can be made
9 y 9 manifest by implementing the canonical transformation

asymptotic region of the black hole is described by a CFT. In(]c ®)— (M, D) [28], wheref is the conformal degree of

addition tor—c, we also expect the region near the black freedom of the two-dimensional metri £(x) and
hole horizon to be described by a CFT. By investigating the Gpur= Mpv» &

algebra of constraints in the presence of a boundary Carlip M=N(®)—W(P) (VD)2

has shown that when the boundary is a Killing horizon we

can impose a natural set of boundary conditions which leads ®

to a Virasoro algebr&l2]. Moreover, on a manifold with N(®)= [ dO'[W(D")V(D')]. (69
boundary the algebra of surface deformations acquires a cen-

tral term that depends uniquely on the boundary values of th&he new fieldM is invariant under Weyl and gauge transfor-
dynamical fields. Consequently, the algebra takes the forrmations and is locally conserved. Apart from a constant nor-
given in Eq.(22), where the explicit value of the central malization factorM coincides(on-shel) with the ADM mass
chargec depends on the model under consideration. In theof the system. Neglecting inessential surface terms, in the
case of a general dilaton gravity model the central charge new canonical chart the actiqf7) reads

and the eigenvalue df, are[12]

In the previous sections we have shown that the ASG o

V L PV
c f d?xy/— N(q)) R (70
E = LOZ (I)h y (66)
Let us first discuss the=c conformal region of the black
whered,, is the value of the dilaton at the horizop. hole geometry(8). Since the(coordinate-dependentou-

We conclude that the black hole geometB) has two pling constant of the gravitational mod@) is ® ~* from Eq.
conformal regions which are associated to the spacetime) it follows that r=o corresponds to the weak-coupled
boundariesr =« andr=ry. In both cases the algebra of regime of the theory. The weak-coupled regime of the action
surface deformations has the form of a centrally extended70) describes a free open string. It is convenient to introduce
Virasoro algebra with a central charge given in Ed3) and  the Weyl-rescaled franie
(66), respectively. The existence of the first conformal point
(r=x) follows from the AdS asymptotic behavior of the G.,=®'"%g,,, (71)
metric. The existence of the second conformal point ( _ _ .
=ry) does not depend on the details of the solution, beind"herea:(l_zm '>0. In this frame the actiofd) reads
simply a consequence of the existence of a Killing horizon. 1
Using the sigma model formulation of dilaton gravity theo- S= —f d?X\V—G[PR[G]+(1+a)d\?], (72
ries we can interpret the two conformal regions as different 2
coupling regimes of the gravitational theory. In Secs. V-VII
we will show thatr =0 andr=ry, correspond to the weak-
coupled regime ¢ —=) and to the strong-coupleddX
—®,)) regime of the gravitational theory, respectively.

wherex?=\?/(1+a) anda=1— a. Equation(70) takes the
form

vV, eVEM

2(1) at+l__ M ’ (73)

fsz_~

V. SIGMA MODEL FORMULATION AND CONFORMAL

SYMMETRIES . . .
At the tree level in the weak-coupling expansion E#J)

The conformal structure described in the previous secedescribes a bosonic string that propagates in a two-
tions can be traced back to the conformal invariance of th&imensional flat spacetime. Whdn— o we have
two-dimensional dilaton gravity theor§B). Classically, the

ic two-dimensi i i 1
generic two-dimensional dilaton gravity theory Sstringzﬂf d2x 3, £, (74)
1 dIn|W(d)|
— 2 2
—5 | g eRigl- T O V@) e
©7 1 1 1
is invariant under the generalizéconforma) Weyl transfor- M=—=(£'+¢&%), —d 2=-—=(&-¢&. (719
mation[27] V7 an Vm
V(D)= V(D) Q(D), W(D)—Q(D)W(D), Using the same arguments of R€8] we can work out a
nontrivial relationship between the asymptotic symmetries of
9= Q(P)g,,, - (68)

HereW(®), V(®), andQ(P) are arbitrary function of the  ?From now on we denote with upper-case letters the quantities in
dilaton field. The classical conformal invariance is generallythe rescaled frame.
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Performing the change of coordinaté&8) and fixing the

let) open string(74). We find that the Weyl transformation pure gauge diffeomorphisms the Killing vecto{20) and
(71) transforms the conformal symmetries of the open string21) are recognized to coincide with Eq85) and(86). The
into the asymptotic symmetries of the gravitational theory. Virasoro generators are

In the Weyl-rescaled frame the solutié8) reads[29]

ds’=—[(AR)*" 1~ u]dT?+[(XR)*" !~ u] *dR?,
®=XR, R>0, (76)
where
M
k=33 (77)

M is related to the black hole mass b= 2\ &2 oMpp . Equa-
tion (76) can be obtained directly from E@8) by rescaling
the metric according to Ed71) and setting

NR=dy(br)¥a,  T=td,?, (78)
where b=Xa and w=A?®}"2. The weak-coupled
asymptotic form of the metri¢76) is obtained taking the
limit R—oo:

ds?’~—(AR)2"1d T2+ (AR) 2 1dR2. (79

The boundary is timelike foa>0 and lightlike for—1<a

<0. In conformal coordinates the asymptotic meti®) is
ds?~(axX) @R —dT2+dX?), (80)

where

=(\R)"%,

X>0. (81

The usual conformal symmetries of the string correspond to

conformal symmetries of the metri@6). Using light-cone
coordinatesU = (T+X)/2 andV=(X—T)/2 the conformal
Killing vectors of the string are

x=x"(U)ay+xV(V)dy. (82)

Following Ref.[5] and imposing Dirichlet boundary condi-

tions on the string,
‘9T)(M|boundary: 0, (83

we have

1
XY +e(T)+e(T)X+—X2+(9(X3) . (89

In the (T,R) frame the conformal Killing vectors are

(AR)"23¢(T)+ O(R™ ),

; 1
x =e(T)+ aZi? (85)

xXR=— gRé(T)vLO(Rl‘za). (86)

k(k+1)

Ly=—| T+ ————(AR)"22T* 1+ O(R™*?) |9
K { 2612)\2( ) (R™*®)

(87)

1
+|  (k+ DRT+O(RT2%) |4

Using the Weyl transformatiofv1) in Egs.(18) and(19) we
obtain the boundary conditions for the Weyl-rescaled metric
G, - With a common notation fon<0 andh>0 we write

Grr=GR(R)+GH(TR),

Grr=GR)+GHYXT,R), (89

Grr=G{R(R)+G{A(T,R),

and

G =yrr(T)+yr(T(AR) ™3 T+ O(R™2) + O(R™37Y),

= yrr(T(AR) "2 14+ (T)(AR) 328+ O(R 427 1)
(90)

G
+O(R™>),
GRE=7re(T)(AR) 22 2+ ypgT)(XR) 3
+O(R™%72) 4+ O(R™%27 1,
The asymptotic boundary conditions for the dilaton are
®=0o[ p(AR) + 700 (AR) 2+ Ypa(\R) 221+ O(R™3)
+O(R 421, (91)

The Killing vectors(85) and(86) generate conformal trans-
formations of the asymptotic fields. At the second order the
asymptotic metrid76) is

ds’=—(AR)**[1-u(XR) 2 1]dT?

"1+ u(XR) ¥ 1+ O(R™%72)dR2
(92

+(\R)

Taking the Lie derivatives of the metric and of the dilaton
with respect to the Killing vector&85) and(86) we find

oG

(93

nv

a—1.
_ (0) (1)
=——e(MG+OGY)

and
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1.
0b=——€ed.
a

(94)

(The dilaton has been evaluated on shélhe conformal
transformation reduces to the asymptotic symmetryaiff
=1 (AdS), i.e., when the Weyl transformatiofr1) is the

identity. The Weyl rescaling71) transforms the conformal
symmetries of the metriG,,,
tries of the metriag,,, . From Eq.(71) we have

89,,=P* 158G, ,+(a-1)®* G, 5P. (95)

Finally, substituting Eq9(93) and(94) in Eqg. (95) we obtain

8.0,,= 0(@371GM). (96)

Recalling Eq{(91) it is straightforward to verify that Eq96)
coincides with Eqs(18) and (19).

Let us now consider the=r, conformal region. The ho-
rizon is defined by the equatio®®2"*—M=0. Since on

the horizon® ~

into the asymptotic symme-

PHYSICAL REVIEW D65 024002

In order to implement the duality transformation in the
sigma model action we need to repeat the calculation for the
(off-shell) mass functior69). It is convenient to work in the
Schwarzschild gauge

ds®=—Y(r)dt>+ Y (r)dr? (100
In this gauged®/dr=X and the mass function is
M=X%(P3"1-Y). (10D

From Eqgs.(100) and(97) we haveY=®2"(dr/do)?. Sub-

stituting this result in the duality relatio{®8) we obtain

Y=d2 L(dr/do)?—®3*t,  d3t1 2 L(dr/do)?=Y.
(102

So the duality transformation changes the sign of the mass
function. Since the latter is a scalar function this statement is

L— (N\Impp) ¥2* 1 the latter does not belong to gauge independent. Now we can implement the duality trans-

the weak-coupled regim@inless we consider macroscopic formation in the sigma model actiof73). The dual action

black holes for whichm,,>X). Moreover, the sigma-model reads
description breaks down at the horizon because the metric of

the target space has a curvature singularitp at®,,. So the
sigma model is strong-coupled and the acti@8) cannot be
used to describe the=r conformal region.

VI. DUALITY SYMMETRIES

vV, evH

2(1) at+1l M (103)

adual

ez,

The horizon® =®,, is mapped intod=0. This value be-
longs to the weak-coupled region of the dual sigma model.

The black hole horizon can still be described in the sigmalherefore, we can expand the dual actid@®3 around®
model formalism if we make use of duality symmetries. =0. At leading order we obtain the free CFT

Two-dimensional dilaton gravity possesses a symm{eéy
that acts on the space @flassical solutions; the field equa-

tions (5) and(6) are invariant under duality transformations.
The explicit form of the duality transformations depends

1 .
s(,,dua.=§f d’X\—GV ,®V#M,

(104

both on the gauge and on the conformal frame. For instance,

in the gauge
ds?=—-Y(o)dt?+ d1 3(g)da?, (97

the duality transformation for the Weyl-rescaled mo(#)
takes the simple form

Y_)q)a+l’ q)_)Yl/(a+l)' (98)
In this gauge the black hole solutiofig6) read
1 No(a+1)/2 ~No(a+1)/2\2
Y= Z(e —ue )%
1 No(a+1)/2 ~No(a+1)/2y2/(a+1)
®=2(e + e ) : (99

Applying the duality transformatiori98) to Egs. (99), we
find that they only change the mass parameiento — u
So their overall effect is to interchange the zeroYofthe
horizon of the black holewith the zero of® (the singular-
ity), namely the value of the coupling at the horizdn
=&, with the coupling at the singularitgp =0.

whereM = —In(M/X?). Classically, the black hole horizon is
described by a two-dimensional CRBosonic string

VIl. PERTURBATIVE CONFORMAL POINTS

We have shown that at the classical level the gravitational
dynamics in the limita) ®—c and(b) ® —d, is described
by free CFTs. Moreover, as we have discussed at the end of
Sec. Il, the limit(c) a—« (h—1/2) also leads to a free CFT.
The classical conformal invariance of the sigma mddé)
is generally broken at quantum level. Conformal invariance
is (perturbatively preserved only for those values of the cou-
pling with vanishing beta function. Now we show that the
classical conformal invariance is preserved at the one-loop
level, i.e., that(a), (b), and(c) are three perturbative confor-
mal points of the sigma model.

Let us first considefa) and(c). Changing coordinates in
the target space to the dimensionless figltls

(D:aZ(é_—l)—l/a, M =a23+17\250,

(105

the sigma-model actio(¥3) is cast in the standard form
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1( . guences on the derivation of the thermodynamical properties
ngzf d°X =G Gpd  E%0"EP, (1060 of the black hole. We will discuss this point in the next
section.

where the metric of the target space is
VIIl. MICROSCOPIC ENTROPY OF THE BLACK HOLE

G=— al2 Q O = ( 0 1) Though we have identified three distinct perturbative con-
B g gOglyara B Ftab g o) formal points and their corresponding CFTs, a complete de-

(107 scription of the 0-brane dynamics is still missing. We are

dealing with a strong-coupled system which cannot be

For £'=0 (®=x) anda=« the sigma model describes a solved exactly at the quantum level. Since we do not know
free two-dimensional CFT. So we can consistently use théow to deal with the regions between the conformal points,
perturbation theory around these vacua. The one-loop bethe behavior of the system near these points is not sufficient

function is to fully characterize the properties of the theory. Conse-
quently, it is not clear whether the CFTs can be used to
B a+1 (gl explain the (semiclassical thermodynamical properties of
Bap= ERaB: T on [a— £0(&h)(a+Diaj2 ap: the black hole.
(108 As far as the algebra CETis concerned we can reason-

ably identify the eigenvalugg of Ly with the energyE of
whereR 4 is the Ricci tensor of the target space metric. Thethe gravitational configurationl,; =E/b. The energyE is
beta function is always negative and vanisheséfor 0 and  indeed the eigenvalue of the Killing vector which generates
a=o. Hence =0 anda=« are perturbativéstablg con-  time translations and thus coincides witfj. The two pa-
formal points of the dilaton gravity theory. rameters that characterize the CFalgebra,L,, and the

Let us now consider the behavior of the sigma model atentral charge™ [see Eq.47)], are completely determined

the horizon. Using the duality symmetries of the model thepy the energy and the zero mode of the dilaton, i.e., by the
near-horizon behavior can be described by the dual actiopbservables which are associated with the gravitational con-
(103 in the limit ®—0. Introducing the dimensionless fields figuration. We can use the Cardy formqii]

_52,-8° _ /1
M=2\2%e"¢, d=¢, (109 S= 2 /CTLO 112
the sigma model actionl03) is cast in the standard form
(106) with target space metric to compute the entropy of the gravitational configuration as a
function of the density of states of CET Substituting Eq.
1/2 (47) in Eq. (112 we obtain

1+e§° l)a+1 @ —
(& . (1 ZE)EQDO, h=0
For ¢'=0 the sigma model describes a two-dimensional free S= (113

conformal field theory and we can consistently use perturba- 0, h>0.

tion theory nead =0. The one-loop beta function is ) )
SettingE=my, we should recover the thermodynamical en-

atl efo(gl)a tropy of the black hole. However, for generic nonzero values

Bap= 5 iy (111  of h Eq. (113 does not coincide with Eq13).2 This result
27 [1+ef (£1)371)2 has different origins depending on the signhofVe stressed
in Sec. Il that forh<0 the deformations that generate the
The beta function is now positive and vanishes §b+=0. Virasoro algebra do not generate the black hole. Therefore,

The dilaton gravity model has three perturbative confor-we cannot identifyE with the black hole mass. Conversely,
mal points where it behaves as a free two-dimensional confor h>0 the deformations that generate the Virasoro algebra
formal field theory. Point(a) corresponds to the weak- also generate the black hole and we can iderEifyith my,, .
coupled regime. Since the beta function is negative this poinHowever, the deformations do not correspond to truly dy-
is stable. The free conformal theory, CFTdescribes the namical degrees of freedom and the central charge vanishes.
gravitational model near the asymptotic region. P@micor-  This is no surprise, since for+0 there is no obvious reason
responds to the horizon of the black hole. In this case thevhy the dynamics of a strong-coupled system such as the
beta function is positive and the point is perturbatively un-black hole should be described by a free CFT.
stable. The two-dimensional free conformal theory, GFT
describes the gravitational model near the horizon of the———
black hole. Pointc) is of a different nature, since it corre-  3rorh=0 (the JT model Eq. (113 leads to a mismatch of &2
sponds to the limila—; in this case the model becomes factor between the thermodynamical and the CFT entropy. How-
identically equivalent to a free CFT. Both the existence andever, the origin of the discrepancy is knoio].
structure of the conformal points have important conse- “Forh=0 one can invoke the AdS/CFT correspondence.
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As far as the CF algebra is concerned bottf andc"  such as the canonical realization of asymptotic symmetries
are determined by the value of the dilaton at the horizonas deformation algebra, the sigma model, and dualities, we
Inserting Eq.(66) in Eq. (112 we recover the thermody- have found that the dynamics is characterized by three con-
namical entropy of the black holel3) [12]. Although the formal points both at classical and @ine-loop quantum
density of states of CRTexplains correctly the entropy of levels. The ensuing CFTs have been identified by the fields
the black hole, boti.” andc" depend on the Hawking tem- which describe the boundary deformations and/or by the de-
perature of thé horiz(c))fﬁh [see Eq/(66)]. Therefore, we can- grees of freedom of the sigma model. We have calculated the

. . . . central charges of the Virasoro algebra.
not identify Ty with the temperaturélcer of CFTy; the The use of the CFTs to describe the thermodynamics of

energy-temperature relation for a general CFT BS 501 holes(in particular their entropyseems problematic.
CTcpr/b. From this relation and from Eq¢l12 and(66)  Though the CFT description is natural from the black hole
it follows that Tcg7 is determined by the curvature of the point of view (the black hole mass is identified with, and
AdS spaceTcer=b. Though we expect that the thermody- he central charge is a function df,), nevertheless it does
namical properties of the black hole are described by a CFFq¢ reproduce the black hole entropy for generic couplings.
at the horizon, the relation between the CFT and the paramrgchnically, this may be explained either by the absence of
eters of the blapk hole is far from being trivial. _ _ dynamical degrees of freedom on tfdS) boundary of the
The conclusions above have a counterpart in the sigmapacetime If>0) or by the impossibility of relating them to
model formulation. The asymptotic region represents a pefg,q degrees of freedom of the black hole<(0). Only in the
turbative stable conformal fixed point. In contrast, the hori- ;7 model, where the spacetime is Adshd there is no cur-
zon lies deep in the strong-coupled region of the SigMa,ayre singularity, CFT reproduces the black hole thermo-
model and its CFT description is obtained through a dualityyy o micay relations. In this case we have a genuine realiza-
transformation whose physical meaning is not completel;iion of the AdS/CFT, correspondence.
clear. _ _ _ _ _ In contrast, the CFT at the horizon seems to give a good
Let us conclude this section by briefly discussing &e qescription of black hole thermodynamical relations. This is

—oo regime. In this case the dilaton is constant and the soggngihle hecause we expect the thermal properties of black
lution (14) can be described by a CFT everywhere. The mety a5 to be associated with the horizon. However, the hori-

ric (14) possesses a Killing horizon; we can use B 10 ;5 jies deep in the strong-coupled region of the sigma
computeL, andc. Since®=d, we obtainc/6=Lo=%o.  model and in order to describe its dynamics by a free CFT
Substituting the latter in the Cardy formula we recover the,e must employ a nonperturbative tool: the duality symme-
thermodynamical entropyl5). It should be noticed that if v of the model. So from the black hole point of view the
we used the —c boundary calculation of Sec. Ill to com- et gescription remains obscure. Both the central charge
pute the central charge we would obtair=0, i.e., S=0.  gnq the eigenvalue df, depend on the Hawking tempera-
This is consistent with the fact that there are no dynamica} ;e of the horizon, whereas we would liketo depend on
degrees of freedom on the boundary of AdBhe degrees of ¢, 1y Something fundamental is still missing in the pic-
freedom which are responsible for the entropy are not |°Calture, hidden perhaps in the full quantum dynamics of the
ized on the boundary of AdSut on the Killing horizon of 3¢k hole.

the solution(14). Therefore, we have a realization of holog-
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