
PHYSICAL REVIEW D, VOLUME 65, 023512
Gauge-ready formulation of the cosmological kinetic theory in generalized gravity theories
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We present cosmological perturbations of kinetic components based on relativistic Boltzmann equations in
the context of generalized gravity theories. Our general theory considers an arbitrary number of scalar fields
generally coupled with gravity, an arbitrary number of mutually interacting hydrodynamic fluids, and compo-
nents described by the relativistic Boltzmann equations such as massive or massless collisionless particles and
the photon with the accompanying polarizations. We also include direct interactions among fluids and fields.
The background Friedmann-Lemaiˆtre-Robertson-Walker model includes the general spatial curvature and the
cosmological constant. We consider three different types of perturbation, and all the scalar-type perturbation
equations are arranged in a gauge-ready form so that one can easily implement convenient gauge conditions
depending on the situation. In the numerical calculation of the Boltzmann equations we have implemented four
different gauge conditions in a gauge-ready manner where two of them are new. By comparing solutions
obtained separately in different gauge conditions we can naturally check the numerical accuracy.
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I. INTRODUCTION

The relativistic cosmological perturbation plays a fund
mental role in the modern theory of large-scale cosmic str
ture formation based on gravitational instability. Because
the extremely low level anisotropies of the cosmic mic
wave background radiation~CMBR!, the cosmological dy-
namics of the structures on the large scale and in the e
universe are generally believed to operate as small deviat
from the homogeneous and isotropic background wo
model. The relativistic cosmological perturbation analy
works as the basic framework in handling such cosmolog
structure formation processes. Recent observations of
CMBR anisotropies on a small angular scale by the Boom
ang and Maxima-1 experiments@1,2#, for example, confirm
the validity of the basic assumptions used in cosmolog
perturbation theory, i.e., the linearity of the relevant cosm
structures.

Soon after the discovery of the CMBR by Penzias a
Wilson in 1965@3#, Sachs and Wolfe in 1967@4# pointed out
that the CMBR should show temperature anisotropy cau
by photons traveling in the perturbed metric that is asso
ated with large-scale structure formation processes base
gravitational instability. The detailed dynamics at last sc
tering is not important on the large angular scale that can
handled using the null geodesic equations, whereas
physical processes of last scattering including the recom
nation process are important on the small angular s
where we need to solve the Boltzmann equations for
photon distribution function@5#. When we handle the evolu
tions of collisionless particles, such as the massive or m
less neutrinos or collisionless dark matter, we need the
responding Boltzmann equations as well.

The relativistic gravity theory, including Einstein’s gen
eral theory of relativity as a particular case, is a non-Abel
0556-2821/2001/65~2!/023512~26!/$20.00 65 0235
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gauge theory of a special type. The original perturbat
analysis was made by Lifshitz in 1946 based on Einst
gravity with a hydrodynamic fluid@6#. In handling the gauge
degrees of freedom arising in the perturbation analysis
relativistic gravity, Lifshitz started by choosing the synchr
nous gauge condition and properly sorted out the remain
gauge degrees of freedom incompletely fixed by his ga
condition. Other approaches based on other~more suitable!
gauge conditions were taken by Harrison using the ze
shear gauge in 1967@7# and by Nariai using the comoving
gauge in 1969@8#. Each of these two gauge conditions com
pletely removes the gauge degrees of freedom. Now,
know that the zero-shear gauge is suitable for handling
gravitational potential perturbation and the velocity perturb
tion, and the comoving gauge is suitable for handling
density perturbation. Since each of these two gauge co
tions completely fixes the gauge transformation propert
all the variables in the gauge condition are the same as
gauge-invariant ones: that is, each variable uniquely co
sponds to a gauge-invariant combination of the variable c
cerned and the variable used in the gauge condition.

The gauge-invariant combinations were explicitly intr
duced by Bardeen in 1980@9#; see also Lukash 1980@11# for
a similarly important contribution. This became a semin
work due to timely introduction of the early inflation sce
nario@10# which provides a casual mechanism for explaini
the generation and evolution of the observed large-scale
mic structures. We believe, however, that a more import
suggestion in practice concerning the gauge issue was m
by Bardeen in 1988@12#, and this was elaborated in@13#. In
gauge theory it is well known that a proper choice of t
gauge condition is often necessary for proper handling of
problem. Either by fixing certain gauge conditions or
choosing certain gauge-invariant combinations in the ea
calculation stage we are likely to lose possible advanta
©2001 The American Physical Society12-1
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available in other gauge conditions. According to Barde
‘‘the moral is that one should work in the gauge that is ma
ematically most convenient for the problem at hand.’’ In o
der to use the various gauge conditions as advantage
handling cosmological perturbations we have propose
gauge-ready method that allows the flexible use of the v
ous fundamental gauge conditions. In this paper we will f
ther elaborate the gauge-ready approach for more gen
situations of generalized gravity theories including comp
nents described by the relativistic Boltzmann equations.

Our formulation is made based on the gauge-ready
proach; using this approach our new formulation of the c
mological perturbation is more flexible and adaptable
practical applications compared with previous work. Als
the formulation is made for a Lagrangian that is very gene
and thus includes most of the practically interesting gene
ized versions of gravity theories considered in the literatu
We pay particular attention to the contribution of the kine
components in the context of the generalized gravity th
ries. As an application of the gauge-ready approach mad
this paper, we implemented the numerical integration of
Boltzmann equations for CMBR anisotropies in four diffe
ent gauge conditions. In addition to the previously used s
chronous gauge~without the gauge mode! and the zero-shea
gauge, we also implemented the uniform-expansion ga
and the uniform-curvature gauge in a gauge-ready man
These two gauge conditions have not been employed in
study of the CMBR power spectra previously. We will sho
that by comparing solutions obtained separately in differ
gauge conditions we can naturally check the numerical ac
racy.

In Sec. II we present the classical formulation of the c
mological perturbations of fields and fluids in the context
generalized gravity in a unified manner; i.e., diverse grav
theories are handled in a unified form. The formulation
based on the gauge-ready strategy which is explained t
oughly in Sec. II E. In Sec. III we present the gauge-rea
formulation of the kinetic components based on the rela
istic Boltzmann equations in the context of generalized gr
ity again in a unified manner; i.e., we handle the massive
massless collisionless particles and the photon with Thom
scattering simultaneously, and all three types of perturba
are handled in a single set of equations. In Sec. IV we ext
the formulation to include the photon with polarizations, a
implement the numerical calculation of the CMBR tempe
ture and polarization anisotropy power spectra. Our pres
code is based on Einstein gravity including the baryon, c
dark matter~CDM!, photon~including polarizations!, mass-
less or massive neutrinos, the cosmological constant, and
background curvature, for both the scalar- and tensor-t
perturbations. The scalar-type perturbation is implemen
using several gauge conditions; some of them are new.
explain how to generalize the Boltzmann code easily in
context of the generalized gravity theories including the
cently popular time varying cosmological constant. Sect
V is a discussion. In Appendixes A and B we present
conformal transformation properties of our generalized gr
ity theories and the effective fluid quantities. In Appendix
we present useful kinematic quantities appearing in th
02351
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11 Arnowitt-Deser-Misner~ADM ! formulation and the 1
13 covariant formulation of the cosmological perturbati
theory.

We setc[1.

II. CLASSICAL FORMULATION

A. Generalized gravity theories

We consider a gravity with an arbitrary number of sca
fields generally coupled with the gravity, and with an arb
trary number of mutually interacting imperfect fluids as w
as the kinetic components. As the Lagrangian we consid

L5A2gF1

2
f ~fK,R!2

1

2
gIJ~fK!f I ;cf ,c

J 2V~fK!1LmG .
~1!

R is the scalar curvature.f I is theI th component ofN scalar
fields. The capital indicesI ,J,K, . . . 51,2,3, . . . ,N indi-
cate the scalar fields, and the summation convention is u
for repeated indices.g[det(gab) wherea,b, . . . are space-
time indices.f (fK,R) is a general algebraic function ofR
and the scalar fieldsf I , andgIJ(fK) andV(fK) are general
algebraic functions of the scalar fields;f (fK,R) andV(fK)
indicatef (f1, . . . ,fN,R) andV(f1, . . . ,fN). We include a
nonlinear sigma-type kinetic term where the kinetic mat
gIJ is considered as a Riemannian metric on the manif
with the coordinatesf I . The matter part of the Lagrangia
Lm includes the fluids, the kinetic components, and the in
action with the fields, as well.

Equation ~1! contains many interesting gravity theorie
with scalar fields as subsets. Einstein gravity is a case
minimal coupling with the gravity; thusf 5R/(8pG); this
case still includes the nonlinear sigma type couplings am
fields, and for the minimally coupled scalar fields we ha
gIJ5d IJ . General couplings of the scalar fields with gravi
and the nonlinear sigma type kinetic term generically app
in various attempts to unify the gravity with other fundame
tal forces, like the Kaluza-Klein, the supergravity, the sup
string, and theM-theory programs; these terms also app
naturally in the quantization processes of gravity theory
the way toward quantum gravity. The Lagrangian in Eq.~1!
includes the following generalized gravity theories as subs
@for simplicity, we consider one scalar field withf[f1 and
gIJ5g11(f)#:

~a! Einstein theory: f 5~1/8pG!R, g1151,

~b! Brans-Dicke theory: f 5~1/8p!fR,

g115
v

8pf
, V50,

~c! low-energy string theory:

f 5e2fR, g1152e2f, V50,

~d! Nonminimally coupled scalar field:
2-2
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f 5S 1

8pG
2jf2DR, g1151,

~e! Induced gravity: f 5ef2R, g1151,

V5
1

4
l~f22v2!2,

~ f!R2gravity: f 5~1/8pG!~R1R2/6M2!,

f50, ~2!

etc. These gravity theories without additional fields and m
ter can be considered as second-order theories. How
even with a single scalar field, thef (f,R) gravity is gener-
ally a fourth-order theory. Although such gravity theories
not have an immediate interest in the context of curren
considered generalized gravity theories, one simple exam
is the case withf 5 f 1(f) f 2(R) where f 2(R) is a nonlinear
function of R.

By conformal transformation Eq.~1! can be transformed
to Einstein gravity with nonlinear sigma model type sca
fields, and the transformed theory also belongs to the typ
Eq. ~1!; see Appendix A. The authors of@14# considered a
less general form of Lagrangian than in Eq.~1! in perturba-
tion analyses; however, since they used the conformal tr
formation, they actually considered Einstein gravity w
nonlinear sigma type couplings.

Variations with respect togab andf I lead to the gravita-
tional field equation and the equations of motion:

Gab5
1

F FTab1gIJS f ,a
I f ,b

J 2
1

2
gabf

I ;cf ,c
J D

1
1

2
~ f 2RF22V!gab1F ,a;b2gabF c

;c G
[8pGTab

(eff) , ~3!

f c
I ;c 1

1

2
~ f 22V! ;I1GJK

I fJ;cf ,c
K

52Lm
;I[G I , ~4!

Ta;b
b 5Lm,Jf ,a

J , ~5!

where F[] f /]R; gIJ is the inverse metric ofgIJ , GJK
I

[ 1
2 gIL(gLJ,K1gLK,J2gJK,L), andV,I[]V/(]f I). Equation

~5! follows from Eqs.~3!,~4! and the Bianchi identity.Tab is
the energy-momentum tensor of the matter part defined
d(A2gLm)[ 1

2 A2gTabdgab . We have assumed that th
matter part of the LagrangianLm also depends on the scal
fields asLm5Lm(matter,gab ,fK). In Eq. ~4! the G I term
considers the phenomenological couplings among the sc
fields and matter. In Eq.~3! we introduced an effective
energy-momentum tensorTab

(eff) where the matterTab in-
cludes the fluids and the kinetic components. The effec
fluid quantities to the perturbed order are presented in
02351
t-
er,

y
le

r
in

s-

as

lar

e
-

pendix B. UsingTab
(eff) we can derive the fundamental cosm

logical equations in generalized gravity without much alg
bra: we use the same equations derived in Einstein gra
with the fluid energy-momentum tensor and reinterpret
fluid quantities as the effective ones@58#. The direct deriva-
tion is also straightforward.

The matter energy-momentum tensor can be decompo
covariantly into the fluid quantities using a normalize
(uaua[21) four-vectorua which is not necessarily the flow
four-vector@63#:

Tab5muaub1phab1qaub1qbua1pab ,

m[Tabu
aub, p[

1

3
Tabh

ab, qa[2Tcdu
cha

d ,

pab[Tcdha
chb

d2phab , ~6!

wherehab[gab1uaub is a projection tensor of theua vec-
tor, andqaua505pabu

b, pab5pba , andpa
a50. The mat-

ter energy-momentum tensor can be decomposed into
sum of the individual ones as

Tab5(
l

T( l )ab , ~7!

and energy-momentum conservation gives

T( i )a;b
b [Q( i )a , (

l
Q( l )a52G If ,a

I , ~8!

where ~i! indicates thei th component ofn types of matter
with i , j ,k, . . . 51,2,3, . . . ,n. The matter includes not only
the general imperfect fluids, but also the contributions fro
multiple components of the collisionless particles and
photon described by the corresponding distribution functio
and the Boltzmann equations. These kinetic components
be considered in Secs. III and IV.Q( i )a takes into account
possible interactions among the matters and fields.

B. Perturbed world model

We consider the most general perturbations in
Friedmann-Lemaiˆtre-Robertson-Walker ~FLRW! world
model. As the metric we take

ds252a2~112A!dh222a2Badhdxa

1a2~gab
(3)12Cab!dxadxb, ~9!

wherea(t) is the cosmic scale factor anddt[adh. A(x,t),
Ba(x,t), and Cab(x,t) are generally spacetime-depende
perturbed order variables.Ba , Ca , and Cab are based on
gab

(3) , i.e., indices are raised and lowered withgab
(3) .

The scalar fields are decomposed into the background
perturbed parts as

f I~x,t !5f̄ I~ t !1df I~x,t !, ~10!
2-3
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and similarly forR andF. In the following, unless necessar
we neglect the overbars which indicate the background o
quantities.

The energy-momentum tensor is decomposed as

T0
052m[2~m̄1dm!,

Ta
05

1

a
@qa1~m1p!ua#[~m1p!va ,

Tb
a5pdb

a1pb
a[~ p̄1dp!db

a1p b
(3)a ,

~11!

where va and p b
(3)a are based ongab

(3) . va is a frame-
independent definition of the velocity~or flux related! vari-
able@13#. In the multicomponent fluid situation from Eq.~7!
we have

m̄5(
l

m̄ ( l ) , dm5(
l

dm ( l ) , ~12!

and similarly forp̄, dp, (m1p)va , andp b
(3)a .

C. Decompositions

In a spatially homogeneous and isotropic background
can decompose the perturbed variables into three diffe
types, and to linear order different perturbation types
couple from each other and evolve independently. We
compose the metric perturbation variablesA, Ba , andCab as

A[a,

Ba[b ,a1Ba
(v) ,

Cab[gab
(3)w1g ,aub1C(aub)

(v) 1Cab
(t) , ~13!

where a vertical baru indicates a covariant derivative base
on gab

(3). (s), (v), and ~t! indicate the scalar-, vector-, an
tensor-type perturbations, respectively. The perturbed o
variablesa(x,t), b(x,t), w(x,t), andg(x,t) are scalar-type
metric perturbations.Ba

(v)(x,t) and Ca
(v)(x,t) are transverse

(B ua
(v)a 505C ua

(v)a ) vector-type perturbations correspon
ing to the rotational perturbation.Cab

(t) (x,t) is a transverse
tracefree (C a

(t)a505C aub
(t)b ) tensor-type perturbation corre

sponding to the gravitational wave. Thus, we have four
grees of freedom for the scalar-type, four degrees of freed
for the vector-type, and two degrees of freedom for
tensor-type perturbations. Two degrees of freedom for
tensor-type perturbation indicate the graviational wa
whereas, two out of the four degrees of freedom for each
the scalar-type and vector-type perturbations are affecte
coordinate transformations that connect the physical p
turbed spacetime with the fictitious background spaceti
This is often called the gauge effect and a way of using i
anadvantagein handling problems will be described in Se
II E. It is convenient to introduce the following combination
of the metric variables:
02351
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x[a~b1aġ !, k[3~Ha2ẇ !2
D

a2 x,

C (v)[b(v)1aċ(v), ~14!

where an overdot indicates a time derivative based ont, and
H[ȧ/a; D is a comoving three-space Laplacian, i.e.,Dx
[x a

ua . Later we will see that these combinations are s
tially gauge invariant. The perturbed metric variables ha
clear meaning based on the kinematic quantities of
normal-frame four-vector; see Eqs.~C3!,~C14!.

We introduce three-space harmonic functions depend
on the perturbation type. The harmonic functions based
gab

(3) were introduced in@9,15#:

Y g
(s)ug [2k2Y(s), Ya

(s)[2
1

k
Y,a

(s) ,

Yab
(s)[

1

k2Y,aub
(s) 1

1

3
gab

(3)Y(s),

Ya
~v !ug

g[2k2Ya
(v) , Yab

(v)[2
1

k
Y(aub)

(v) ,

Ya
(v)ua[0,

Yab
(t)ug

g[2k2Yab
(t) , Yab

(t) [Yba
(t) ,

Y a
(t)a[0[Yab

(t)ub , ~15!

wherek is a wave vector in Fourier space withk5uku; the
wave vector for individual types of perturbation is defined
the Helmholtz equations in Eq.~15!. In terms of the har-
monic functions we havea(x,h)[a(k,h)Y(s)(k;x) and
similarly for b, g, and w; Ba

(v)[b(v)Ya
(v) , Ca

(v)[c(v)Ya
(v) ,

andCab
(t) [c(t)Yab

(t) . Since we are considering linear perturb
tions the same forms of equation will be valid in the config
ration and the Fourier spaces. Thus, without causing
confusion, we often do not distinguish the Fourier spa
from the configuration space by an additional subind
Also, since each Fourier mode evolves independently to
ear order, without causing any confusion we ignore the su
mation over eigenfunctions indicating the Fourier expansi

The perturbed scalar fieldsdf I in Eq. ~10! couple only
with the scalar-type perturbations, and are expanded as

df I~x,t !5df I~k,t !Y(s)~k;x!, ~16!

and similarly fordR anddF as well.
Now, we consider perturbations in the fluid quantities. W

decomposeva andp b
(3)a into three types of perturbation a

va[v (s)Ya
(s)1v (v)Ya

(v) ,

p a
(3)b[p (s)Y a

(s)b 1p (v)Y a
(v)b1p (t)Y a

(t)b .
~17!

The energy-momentum tensor in Eq.~11! becomes
2-4
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T0
052~m̄1dm!,

Ta
052

1

k
~m1p!v ,a

(s)1~m1p!v (v)Ya
(v) ,

Tb
a5~ p̄1dp!db

a1p (s)Y b
(s)a 1p (v)Y b

(v)a1p (t)Y b
(t)a .

~18!

In terms of the individual matter’s fluid quantities we hav

m̄5(
l

m̄ ( l ) , dm5(
l

dm ( l ) , ~19!

and similarly for p̄, dp, (m1p)v (s,v), andp (s,v,t). We use
the notation introduced by Bardeen in 1988@12#; comparison
with Bardeen’s 1980 notation@9# can be found in Sec. 2.2 o
@13#; compared with our previous notation in@13# we have
p (s)5(k2/a2)s andv (s)52k/@a(m1p)#C. We often write
v[v (s).

The interaction terms among fluids introduced in Eq.~8!
are decomposed as

Q( i )0[2a@Q̄( i )~11A!1dQ( i )#,

Q( i )a[J( i )
(s)Y,a

(s)1J( i )
(v)Ya

(v) . ~20!

From Eq.~8! we have

(
l

Q̄( l )5Ḡ I ḟ̄
I ,

(
l

dQ( l )5dG Iḟ
I1G I~dḟ2ḟa!,

(
l

J( l )
(s)52G Idf I , (

l
J( l )

(v)50. ~21!

Thus, the right-hand side of the second equation in Eq.~8!
contributes only to the scalar-type perturbation.

D. Background equations

The equations for the background are

H25
1

3F Fm1
1

2
gIJḟ IḟJ2

1

2
~ f 2RF22V!23HḞG2

K

a2 ,

~22!

Ḣ52
1

2F
~m1p1gIJḟ IḟJ1F̈2HḞ !1

K

a2 , ~23!

R56S 2H21Ḣ1
K

a2D , ~24!

f̈ I13Hḟ I1GJK
I ḟJḟK1

1

2
~2V2 f ! ;I52G I , ~25!

ṁ ( i )13H~m ( i )1p( i )!5Q( i ) , ~26!
02351
where m, p, and Q( i ) follow Eqs. ~19!,~21!. Equations
~22!,~23! follow from the G0

0 and Ga
a23G0

0 components of
Eq. ~3!, respectively. Equation~25! follows from Eq. ~4!.
Equation~26! follows from Eq.~8!. By adding Eq.~26! over
components we have

ṁ13H~m1p!5G Iḟ
I . ~27!

By settingF51/(8pG) we can recover the 8pG factor in
Einstein gravity. The gravity theory in Eq.~1! includes the
cosmological constantL. The cosmological constant intro
duced in Eq.~1! as an additional2LA2g term can be simu-
lated using either the scalar field or the fluid. Using the sca
field we letV→V1L/(8pG). Using the fluid, sinceL con-
tributesTab

L 52Lgab /(8pG) to the energy-momentum ten
sor, we letm→m1L/(8pG) and p→p2L/(8pG). This
causes a change only in Eq.~22!. In the presence of the
kinetic components we additionally have the Boltzma
equations for the components and the sum over fluid qua
ties should include the contributions from the kinetic co
ponents; see Sec. III C.

E. Gauge strategy

In the following we explain briefly our gauge-ready stra
egy. Due to the general covariance of relativistic grav
theory we need to take care of the fictitious degrees of fr
dom arising in the relativistic perturbation analysis. Th
freedom appears because relativistic gravity is a constra
system: there exist some constraint equations with only a
braic relations among variables. In perturbation analysis
is known as the gauge degree of freedom. The gauge f
dom in perturbation analysis arises from the different wa
of defining the correspondence between the perturbed sp
time and the fictitious background. For example, by int
ducing a spacetime dependent coordinate transforma
even the FLRW background can be changed into a pertur
form which is simply due to the coordinate~gauge! transfor-
mation. Only in a special coordinate system does the FL
metric look simple as in Eq.~9! without perturbation.

As in other gauge theories, there are some redundant
grees of freedom in the equations which can be fixed with
affecting the physics. Certainly it would be advisable, and
often essential, to take a proper gauge condition which ei
simplifies the mathematical analysis or allows an eas
physical interpretation. Usually we do not know the be
gauge condition~which differs depending on each problem!
a priori, but it is desirable~actually often necessary! to find
the best one. In this regard, the advantage of managing
equations in a gauge-ready form was suggested by Bard
in 1988 @12#, and the formulation was elaborated in@13#.

Contrary to many works in the literature which often co
sider the gauge freedom as causing problems in the the
we believe that, as in other gauge theories~e.g., the Maxwell
theory and the Yang-Mills theory!, the gauge freedom ca
and should be used as anadvantagein solving each specific
problem. Our gauge-ready form arrangement of the eq
tions will allow the optimal use of the advantageous asp
of the gauge degrees of freedom present in the theory. To
2-5
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purpose all the scalar-type perturbation equations are
sented in a uniquely significant~see below! spatially gauge-
invariant form but without fixing the temporal gauge cond
tion. In this way, we can easily implement the seve
available temporal gauge conditions depending on the si
tion, and in this sense the set of equations is in a gauge-re
form. The tensor-type perturbation describing the grav
tional wave is gauge invariant, and the vector-type pertur
tion describing the rotation is presented using uniquely s
nificant gauge-invariant combinations of the variables. T
particular choice of a gauge implies no loss of generality
a solution of a variable is known in a specific gauge, the r
of the variables, even in other gauges, can easily be re
ered. Therefore, if possible, it would be convenient to s
from the gauge condition that allows easier manipulation
the equations. However, since the optimum gauge condi
is usually unknowna priori, often it is convenient to carry
out the analyses in the available pool of various gauge c
ditions and to find the distinguished gauge condition; su
analyses in single-component situations have been ca
out in fluid @16#, in scalar field@17#, and in generalized grav
ity theories @18#. Our experience tells that different gaug
conditions fit different problems, or even different aspects
a given system. Often, problematic aspects of the gauge
dom appear if one sticks to a particular gauge condition fr
the beginning and if that gauge condition turns out to be
a suitable choice for the problem. Our gauge-ready strat
is not a particularly new suggestion in the context of gau
theory except that such a strategy, and itssystematic use, has
been largely ignored in the cosmology literature despite
rather clear advantage. In the present work we extend
formulation in @13# to more general situations including k
netic components and arrange the equations for conven
usage in diverse situations.

In perturbation analyses we have to deal with two me
systems; one is the physical perturbed model and the oth
the fictitious background model. The gauge degrees of f
dom arise because we have different ways of relating
perturbed spacetime points to the arbitrary backgro
spacetime points. Since we are considering a spatially ho
geneous and isotropic background the spatial corresp
dences~spatial gauge transformation! can be handled trivi-
ally: according to Bardeen@12#, ‘‘Since the background
three-space is homogeneous and isotropic, the perturba
in all physical quantities must in fact be gauge invaria
under purely spatial gauge transformations.’’ We will sho
that only the variablesb, g, b(v), and c(v) depend on the
spatial gauge transformation. But these appear always in
combinationsx and C (v) in Eq. ~14!, which are spatially
gauge-invariant combinations; see Eq.~31! below. These
combinations are unique in the sense that other combinat
fail to fix the spatial gauge degrees of freedom complet
Thus, using these~uniquely significant! spatially gauge-
invariant combinations we take care of the effects of spa
gauge transformation of the scalar- and vector-type pertu
tions completely; the corresponding spatial gauge trans
mation properties of the kinetic components will be cons
ered below Eq.~72!.
02351
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Gauge transformation properties of the perturbed cos
logical spacetime were nicely discussed in@19,9,15,12,20#.
Under a gauge transformation of the formx̃a5xa1ja the
metric and the energy-momentum tensor transform as

g̃ab~ x̃e!5
]xc

] x̃a

]xd

] x̃b
gcd~xe!, ~28!

thus,

g̃ab~xe!5gab~xe!2gab,cj
c2gbcj ,a

c 2gacj ,b
c , ~29!

and similarly for Tb
a . By introducing j t[aj0 (05h) and

ja[j ,a1ja
(v) with ja

(v) based ongab
(3) andja

(v)ua50, the per-
turbed metric quantities and the collective fluid quantit
change as follows:

ã5a2 j̇ t, w̃5w2Hj t, b̃5b2
1

a
j t1aj̇,

g̃5g2j, dm̃5dm2ṁj t, d p̃5dp2 ṗj t,

ṽ5v2
k

a
j t,

B̃a
(v)5Ba

(v)1aj̇a
(v) , C̃a

(v)5Ca
(v)2ja

(v) , ~30!

and v (v), Cab
(t) , p (s,v,t) are gauge invariant. Thus, from Eq

~14! we have

x̃5x2j t, k̃5k1S 3Ḣ1
D

a2D j t,

C̃ (v)5C (v), ~31!

and these are spatially gauge invariant. From the scalar
ture of f I , R, F, andG I we have

df̃ I5df I2ḟ Ij t, dG̃ I5dG I2Ġ Ij
t,

dR̃5dR2Ṙj t, dF̃5dF2Ḟj t. ~32!

From Eq.~30! we notice that the tensor-type perturbatio
variables are gauge invariant. For the vector-type pertur
tion we notice thatC (v) defined in Eq.~14! is a unique
gauge-invariant combination. Thus, usingC (v) the vector-
type perturbation becomes gauge invariant. For the sca
type perturbation usingx instead ofb andg individually, all
the variables are spatially gauge invariant. Considering
temporal gauge transformation properties, there exist sev
fundamental gauge conditions based on the metric and
energy-momentum tensor:

synchronous gauge:a[0,

comoving gauge:v/k[0,

zero-shear gauge:x[0,
2-6
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uniform-curvature gauge:w[0,

uniform-expansion gauge:k[0,

uniform-density gauge:dm[0,

uniform-pressure gauge:dp[0,

uniform-field ~f I ! gauge: df I[0,

uniform-R gauge: dR[0,

uniform-F gauge: dF[0, ~33!

etc. The names of the gauge conditions usingx, w, and k
can be justified: these variables correspond to the shear
the three-space curvature of the normal frame vector fi
and the perturbed part of the trace of extrinsic curvat
~equivalently, the negative of the expansion scalar based
the normal frame!, respectively@see Eqs.~C3!,~C14!#. v/k
[0 is a frame-invariant definition of the comoving gau
condition based on the collective velocity.

The original definition of the synchronous gauge in@6#
fixed b50 as the spatial gauge condition in addition toa
50 as the temporal gauge condition. In this case, from
~30! we note that the spatial gauge fixing also leaves a
maining~spatial! gauge degree of freedom. By using the sp
tially gauge-invariant combinationsx and v we can avoid
this unnecessary complication caused by the spatial ga
transformation, which is trivial due to the homogeneity
the FLRW background@12#. From Eq.~14! x is the same as
ab in the g50 gauge condition. But in theb50 gauge
condition we havex5a2ġ, thusg is undetermined up to a
constant~in time only! factor which is the~spatially varying!
remaining gauge mode.

By examining Eqs.~30!–~33! we notice that, out of the
several gauge conditions in Eq.~33!, except for the synchro
nous gauge condition, each of the gauge conditions fixes
temporal gauge mode completely; the synchronous ga
a50, leaves spatially varying nonvanishingj t(x) which is
the remaining gauge mode even after the gauge fixing. T
a variable in such a gauge condition uniquely correspond
a gauge-invariant combination that combines the varia
concerned and the variable used in the gauge condition.
eral interesting gauge-invariant combinations are the follo
ing:

dmv[dm2
a

k
ṁv, wx[w2Hx, vx[v2

k

a
x,

wv[w2
aH

k
v, dfw

I [df I2
ḟ I

H
w[2

ḟ

H
wdf I.

~34!

For example, the gauge-invariant combinationdfw
I is

equivalent todf I in the uniform-curvature gauge whic
takesw[0 as the gauge condition, etc. In this way, we c
systematically construct various gauge-invariant combi
tions for a given variable. Since we can make several gau
02351
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invariant combinations even for a given variable, this way
writing the gauge-invariant combination will turn out to b
convenient in practice.

In the multicomponent case of fluids there are some ad
tional ~temporal! gauge conditions available. From the te
sorial property ofT( i )ab and using Eq.~29! we can show that

dm̃ ( i )5dm ( i )2ṁ ( i )j
t, d p̃( i )5dp( i )2 ṗ( i )j

t,

ṽ ( i )5v ( i )2
k

a
j t, ~35!

and v ( i )
(v) ,p ( i )

(s,v,t) are gauge invariant. Thus, the addition
temporal gauge conditions are

dm ( i )[0, dp( i )[0, v ( i ) /k[0, df I[0, ~36!

etc. Any one of these gauge conditions also fixes the tem
ral gauge condition completely. From the vector nature
Q( i )a and using Eq.~8! we have

dQ̃( i )5dQ( i )2Q̇( i )j
t, J̃( i )

(s)5J( i )
(s)1Q( i )j

t,

J̃( i )
(v)5J( i )

(v) . ~37!

As mentioned previously, in general we do not know t
suitable gauge conditiona priori. The proposal made in
@12,13# is that we write the set of equation without fixing th
~temporal! gauge condition and arrange the equation so t
we can easily implement various fundamental gauge co
tions. We call this approach a gauge-ready method. Any
of the fundamental gauge conditions in Eqs.~33!,~36! and
suitable linear combinations of them can turn out to be
useful gauge condition depending on the problem. A parti
lar gauge condition is suitable for handling a particular
pect of the individual problem. The gauge transformati
properties of the kinetic components will be considered
Sec. III; see the paragraphs surrounding Eqs.~72!, ~98!, and
~105!.

F. Scalar-type perturbation

In this section we present a complete set of equati
describing the scalar-type perturbation without fixing t
temporal gauge condition, i.e., in the gauge-ready form. T
definition of k is

ẇ5Ha2
1

3
k1

1

3

k2

a2 x. ~38!

The ADM energy constraint (G0
0 component of the field

equation! is
2-7
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2
k223K

a2 w1S H1
Ḟ

2F
D k2

1

2F
~gIJḟ IḟJ23HḞ !a

52
1

2F H dm1gIJḟ IdḟJ1
1

2
@gIJ,Kḟ IḟJ2~ f

22V! ,K#dfK23HdḞ1S 3Ḣ13H22
k2

a2D dFJ .

~39!

The momentum constraint (Ga
0 component! is

k2
k223K

a2 x1
3

2

Ḟ

F
a

5
3

2F Fa

k
~m1p!v1gIJḟ IdfJ1dḞ2HdF G .

~40!

The ADM propagation (Gb
a2 1

3 db
aGg

g component! is

ẋ1S H1
Ḟ

F
D x2a2w5

1

F S a2

k2 p (s)1dF D . ~41!

The Raychaudhuri equation (Gg
g2G0

0 component! is given
by

k̇1S 2H1
Ḟ

2F
D k1

3

2

Ḟ

F
ȧ1F3Ḣ1

1

2F
~6F̈13HḞ

14gIJḟ IḟJ!2
k2

a2Ga
5

1

2FH dm13dp14gIJḟ IdḟJ1@2gIJ,Kḟ IḟJ

1~ f 22V! ,K#dfK13dF̈13HdḞ

1S 26H21
k226K

a2 D dFJ . ~42!

The scalar field equations of motion are

df̈ I13Hdḟ I12GJK
I ḟJdḟK1

k2

a2 df I1F1

2
~2V2 f ! ,L

;I

1GJK,L
I ḟJḟKGdfL

5ḟ I~k1ȧ !1~2f̈ I13Hḟ I

12GJK
I ḟJḟK!a1

1

2
F ;IdR2dG I . ~43!

The trace equation (Ga
a component! is
02351
dF̈13HdḞ1S k2

a22
R

3 D dF1
2

3
gIJḟ IdḟJ1

1

3
@gIJ,Kḟ IḟJ

12~ f 22V! ,K#dfK

5
1

3
~dm23dp!1Ḟ~k1ȧ !

1S 2

3
gIJḟ IḟJ12F̈13HḞ Da2

1

3
FdR. ~44!

The scalar curvature is given by

dR52F2k̇24Hk1S k2

a223Ḣ Da12
k223K

a2 wG . ~45!

The energy conservation of the fluid components@from
T( i )0;b

b 5Q( i )0 and using Eq.~38!# gives

dṁ ( i )13H~dm ( i )1dp( i )!52
k

a
~m ( i )1p( i )!v ( i )1ṁ ( i )a

1~m ( i )1p( i )!k1dQ( i ) ~46!

and the momentum conservation of the fluid compone
~from T( i )a;b

b 5Q( i )a) gives

1

a4~m ( i )1p( i )!
@a4~m ( i )1p( i )!v ( i )#

•

5
k

a Fa1
1

m ( i )1p( i )
S dp( i )2

2

3

k223K

k2 p ( i )
(s)2J( i )D G .

~47!

By adding Eqs.~46!,~47! properly over all components of th
fluids, and using the properties in Eqs.~19!, ~21!, and ~27!,
we get the equations for the collective fluid quantities as

dṁ13H~dm1dp!5~m1p!S k23Ha2
k

a
v D1G Idḟ I

1dG Iḟ
I , ~48!

1

a4~m1p!
@a4~m1p!v#•

5
k

aFa1
1

m1p S dp2
2

3

k223K

k2 p (s)1G Idf I D G .
~49!

It is convenient to introduce

dp~k,t ![cs
2~ t !dm~k,t !1e~k,t !, d[

dm

m
,

w~ t ![
p

m
, cs

2~ t ![
ṗ

ṁ
. ~50!
2-8
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Equations~38!–~49! provide a redundantly complete s
for handling the most general scalar-type perturbation of
FLRW world model allowed by the Lagrangian in Eq.~1!;
for example, Eq.~44! follows from Eqs.~39!, ~42!, and~45!.
Equations~48!,~49! follow from Eqs. ~46!,~47!. Following
the prescriptions below Eq.~27! these equations also includ
the cosmological constant; theL term does not appear ex
plicitly in our set of equations in the form Eqs.~38!–~49!.
Notice that Eqs.~46!–~49!, which follow from the fluid
energy-momentum conservation in Eqs.~6!,~8!, are not af-
fected formally by the generalized nature of the gravity
are considering. In Secs. III and IV we will see that t
presence of kinetic components additionally introduces
corresponding Boltzmann equations, and their contributi
to the energy-momentum content can be included as the
dividual fluid quantity in the above set of equations.

Equations~38!–~49! are written in a gauge-ready form. I
handling the actual problem we have aright to imposeone
temporal gauge condition according to the mathematica
physical convenience we can achieve. As long as we cho
a gauge condition that fixes the temporal gauge mode c
pletely, the resulting equations and the solutions are c
pletely free from the gauge degrees of freedom and the v
ables are equivalently gauge invariant. Some recommen
fundamental gauge conditions are summarized in E
~33!,~36!. Equations~38!–~49! are designed so that we ca
easily accommodate any of these gauge conditions.

If we take an ansatz for theG I term in Eq.~4! as

G I[DJ
I f ;a

J ua, ~51!

to perturbed order we have

Ḡ I1dG I[D̄J
I ḟ̄J1DJ

I dḟJ2DJ
I ḟJa1dDJ

I ḟJ, ~52!

where we usedu05(1/a)(12a). Such a phenomenologica
damping term was considered in@14#.

G. Rotation

The equations for the vector-type~rotational! perturbation
are

k222K

2a2 C (v)5
1

F (
l

~m ( l )1p( l )!v ( l )
(v) , ~53!

1

a3 @a4~m1p!v (v)#•52
k222K

2k
p (v), ~54!

1

a3 @a4~m ( i )1p( i )!v ( i )
(v)#•52

k222K

2k
p ( i )

(v)1J( i )
(v) . ~55!

Equation~53! follows from the Ga
0 component of Eq.~3!,

and Eq.~54! follows from Ta;b
b 50. Equation~55! follows

from Eq. ~8!. By adding Eq.~55! over all components we
have Eq.~54!. Notice that Eqs.~54!,~55! are not affected
formally by the generalized nature of gravity theory. In fa
these two equations are derived from the conservation of
energy-momentum tensors in Eqs.~5!,~8! without using the
02351
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gravitational field equation. The presence of kinetic comp
nents additionally introduces the corresponding Boltzma
equations, and contributes to the fluid quantities in the ab
equations; see Sec. III and IV.

The vorticity tensors based on frame-invariant fou
vectors are~see Appendix C!

vab5av (v)Y[aub]
(v) , v ( i )ab5av ( i )

(v)Y[aub]
(v) . ~56!

Thus, we havev[Avabvab/2 and similarly forv ( i ) . Equa-
tions~53!–~55! show that the fluid velocities of the rotationa
perturbation do not explicitly depend on the generalized
ture of the gravity, whereas only the metric connected w
the rotation modeC (v) depends on the nature of the gene
alized gravity; aC (v) term appears in the Boltzmann equ
tions though @see Eqs.~95!,~102!#. Equations ~54!,~55!,
which are independent of the field equations, tell us that i
medium without anisotropic stress termsp ( i )

(v) or mutual in-
teraction terms among componentsJ( i ) , the angular momen-
tum combination of an individual component is conserved

angular momentum;a3~m ( i )1p( i )!3a3v ( i )
(v)

5constant in time. ~57!

The presence of anisotropic pressure can work as a sink
source of rotational perturbation of the individual fluid. An
gular momentum conservation of rotational perturbation
Einstein gravity was noted in the original work by Lifshit
@6#.

In the presence of kinetic components we additiona
have the corresponding Boltzmann equations, and the c
ponents contribute to the anisotropic pressure in the ab
equations; see Secs. III and IV.

H. Gravitational wave

The tensor-type perturbation~gravitational wave! equa-
tion in Einstein gravity was derived originally by Lifshitz in
@6#. We can easily derive the wave equation for the m
general situation covered by the Lagrangian in Eq.~1! as

c̈(t)1S 3H1
Ḟ

F
D ċ(t)1

k212K

a2 c(t)5
1

F (
l

p ( l )
(t) , ~58!

which follows from theGb
a component of Eq.~3! using Eqs.

~13!, ~18!, and ~19!. The generalized nature of the gravi
appears in theF terms: one in the damping term and th
other in modulating the amplitude of the fluid source ter
This equation is valid for the general theory in Eq.~1!, and
the presence of an arbitrary number of minimally coup
scalar fields~with generalgIJ) does not formally affect the
equation for the cosmological gravitational wave. The pr
ence of kinetic components additionally introduces the c
responding Boltzmann equations, and contributes to the
isotropic pressure in the above equations; see Secs. III
IV.

Equation~58! can be arranged in the following form:
2-9
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v t91S k212K2
zt9

zt
D v t5

a3

AF
(

l
p ( l )

(t) ,

v t[aAFc(t), zt[aAF, ~59!

where the prime denotes the time derivative based onh. In
the large-scale limit, thus ignoring thek2 term in Eq.~59!,
and assumingK50 andp (t)50, we have the general inte
gral form solution@13#

c(t)~k,t !5c~k!2d~k!E t 1

a3F
dt, ~60!

wherec(k) andd(k) are integration constants for relative
growing and decaying solutions, respectively. This solut
is valid considering the general time evolution of the ba
ground dynamics as long as the perturbation is in the su
horizon. The growing solution is simplyconservedon the
superhorizon scale and the generalized nature of the gra
does not affect the conserved nature of the growing solut
Only in the decaying solution does the generalized natur
the gravity appear explicitly.

Similar equations and solutions as above can be der
for a single component scalar-type perturbation in unifi
forms for the fluid, the field, and the generalized grav
theory as well@16–18#.

III. KINETIC THEORY FORMULATION

A. Relativistic Boltzmann equation

The evolutions of collisionless particles and the pho
are described by specifying distribution functions that
governed by the corresponding Boltzmann equations.
relativistic Boltzmann equation is given as@21,22#

d

dl
f 5

dxa

dl

] f

]xa1
dpa

dl

] f

]pa5pa
] f

]xa 2Gbc
a pbpc

] f

]pa

5C@ f #, ~61!

where f (xa,pb) is a distribution function with the phas
space variablesxa andpa[dxa/dl, andC@ f # is the collision
term. The energy-momentum tensor of the kinetic com
nent with massm is given as

T(c)
ab5E 2u~p0!d~pcpc1m2!papbfA2gd4p0123. ~62!

Assuming the mass-shell condition, after integrating overp0,
we have

T(c)
ab5E A2gd3p123

up0u
papbf . ~63!

Equations~3!–~5! together with Eqs.~61!, ~63!, including
T(c)ab in the individual fluid energy-momentum tensor, pr
vide a complete set of equations for considering the con
bution of a component based on the distribution function~we
call it the kinetic component!. The corresponding fluid quan
02351
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tities can be identified using Eq.~6!. In the case of multiple
kinetic components, we have Eqs.~61!, ~63! now valid for
the individual kinetic component. The corresponding flu
quantities of the individual component can be identified
ing Eqs.~6!, ~7!.

B. Boltzmann equation in the perturbed FLRW model

Under the perturbed FLRW metric in Eq.~9!, usingpa as
the phase space variable, Eq.~61! becomes

p0f 81pa f ,a2Fa8

a
~p0p01gab

(3)papb!1A8p0p0

12S A,a2
a8

a
BaD p0pa1S 22

a8

a
gab

(3)A1Baub1Cab8

12
a8

a
CabD papbG ] f

]p02S 2
a8

a
p0pa1Gbg

(3)apbpgD ] f

]pa

5C@ f #. ~64!

In handling the Boltzmann equation and the energ
momentum tensor in perturbed FLRW spacetime, it is c
venient to introduce special phase space variables based
tetrad frame. In the literature we find several differe
choices for the phase space variables@23–25,15#. As the
phase space variables we use (q,ga) introduced as

p0[
1

a2 ~12A!Aq21m2a2,

pa[
1

a2~qga1Aq21m2a2Ba2qgbCb
a!, ~65!

wherega is based ongab
(3) with gaga51. The advantage o

this choice in our gauge-ready approach will become cl
below Eq.~72!. Using (q,ga) as the phase space variabl
Eq. ~64! becomes

f 81
q

Aq21m2a2 S ga f ,a2Gbg
(3)agbgg

] f

]gaD
2FAq21m2a2

q
A,aga1~Baub1Cab8 !gagbGq ] f

]q

5
a2

Aq21m2a2
~11A!C@ f #. ~66!

We decompose the distribution function into the backgrou
and the perturbed order as

f ~h,xa,q,ga!5 f̄ ~h,q!1d f ~h,xa,q,ga!. ~67!

Assuming that the collision term has no role in the bac
ground order, in which Thomson scattering is a case,
have

f̄ 850. ~68!
2-10
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Thus, f̄ is a function ofq only. The energy-momentum tenso
in Eq. ~63! becomes

T(c)
ab5

1

a2E papbf
q2dqdVq

Aq21m2a2
. ~69!

The fluid quantities defined in Eq.~11! become

m (c)5
1

a4E fAq21m2a2q2dqdVq ,

p(c)5
1

3a4E f
q4dqdVq

Aq21m2a2
,

~m (c)1p(c)!v (c)a5
1

a4E d f gaq3dqdVq ,

p (c)b
(3)a5

1

a4E d f S gagb2
1

3
db

aD q4dqdVq

Aq21m2a2
.

~70!

Under the gauge transformationx̃a5xa1ja, consideringpa

[dxa/dl, we havep̃a5pa1j ,b
a pb. Using the definition of

q in Eq. ~65! and using Eq.~30! we have

q̃5q1qHj t1Aq21m2a2
1

a
j ,a

t ga. ~71!

Since f̄ depends only onq, we haved f̃ 5d f 2(] f̄ /]q)(q̃
2q); thus

d f̃ 5d f 2q
] f

]qS Hj t1
Aq21m2a2

q

1

a
j ,a

t gaD . ~72!

Notice that with our phase space variables in Eq.~65! the
perturbed distribution functiond f is spatially gauge invari-
ant. Thus, our choice of phase space variables is particu
convenient for the gauge-ready formulation where, as a s
egy for later convenient use, we do not fix the tempo
gauge condition while fixing the spatial gauge conditi
without losing any advantage; ourd f is spatially gauge in-
variant. We can show that the gauge transformation prop
of d f is consistent with the gauge transformation proper
of the fluid quantities identified in Eq.~70!.

C. Background equations

Equations~22!–~27! describe the evolution of the FLRW
world model. The sum over fluid quantities in Eq.~19!
should include the kinetic components. To the backgrou
order, from Eq.~70! we have

m (c)5
4p

a4 E f eq2dq, p(c)5
4p

3a4E f
q4

e
dq, ~73!

where e(q,h)[Aq21m2a2; hereafter, the massm appears
only in e. Thus, for massless particles we have
02351
rly
t-
l

ty
s

d

m (c)5
4p

a4 E f q3dq, p(c)5
1

3
m (c) . ~74!

We can show that Eq.~26! applies to the kinetic component
as well with (i )5(c) for both massless and massive pa
ticles. This identification gives

Q(c)50. ~75!

When we have the matter (m), radiation (r ), and massive
neutrino (nm), it is convenient to introduce

Vm[
mm

mc
, V r[

m r

mc
, Vnm

[
mnm

mc
, VK[2

K

a2H2 ,

VL[
L

3H2 , mc[
3H2

8pG
. ~76!

The matter includes the baryon and the cold dark matter w
Vm5Vb1VC , and the radiation includes photons an
massless collisionless particles like the massless neutrinon)
with V r5Vg1Vn . In this case we have

m5(
l

m ( l )5mb1mC1mg1mn1mnm
1mL ,

p5(
l

p( l )5pg1pn1pnm
1pL , ~77!

where we have recovered the cosmological constant u
the prescription below Eq.~27!.

The distribution function of the Fermi or Bose (6 sign!
particle is given by

f ~e!5
gs

hP
3

1

ee/(kBaT)61
, ~78!

wheregs is the number of spin degrees of freedom, andhP
and kB are the Planck and Boltzmann constants. If dec
pling of the massive particle occurs while it is relativist
~thus for neutrino mass much less than 1 MeV!, e in Eq. ~78!
can be approximated asq, and afterward the distribution
function is well approximated by the Fermi-Dirac distrib
tion with zero rest mass.

Since Q( i )50, from Eq. ~26! we have mm[mb1mC
}a23 and m r[mg1mn}a24. For the photon and massles
neutrinos we have

pg5
1

3
mg , pn5

1

3
mn , mn5Nn

7

8 S 4

11D
4/3

mg , ~79!

Tn5S 4

11D
1/3

Tg , ~80!

whereNn is the number of massless neutrino species.
Equations~22!–~26! together with Eqs.~75!, ~77! de-

scribe the background evolution in the context of generali
gravity theories. The generalization to include multicomp
2-11
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nent massive/massless collisionless components is trivial
simply consider the fluid quantities in Eqs.~73!, ~74! for
each component.

D. Massless particle

For a massless particlem50, it is convenient to introduce
a frequency integrated perturbed intensity

dI ~xa,ĝ ![4Q~xa,ĝ ![
E d f q3dq

E f̄ q3dq

. ~81!

For photons, unless we have an energy injection process
the CMBR, the spectral distortion vanishes to linear ord
Assuming the photon distribution function

f 5
gs

hP
3

1

eq/(kBa0T0)21
, ~82!

we can expand the temperature fluctuationQ[dT/T in the
following form as well:

Q~xa,q,ĝa![
d f

2q] f /]q
. ~83!

In terms ofQ the perturbed part of Eq.~66! becomes

Q81S ga
]

]xa2Gbg
(3)agbgg

]

]gaDQ

52gaA,a2~Baub1Cab8 !gagb1 collision term.

~84!

The fluid quantities in Eq.~70! become

dm (c)

m̄ (c)

54E Q
dVq

4p
, dp(c)5

1

3
dm (c) ,

v (c)a53E Qga

dVq

4p
,

p (c)b
(3)a54m (c)E QS gagb2

1

3
db

aDdVq

4p
.

~85!

Using the spatial and momentum harmonic functions int
duced by Huet al. in @26#, we expand

Q~x,h,ĝ ![(
k

(
l 50

`

(
m522

2

Q ( l )
(m)~k,h!G( l )

(m)~k;x,ĝ !,

~86!

G( l )
(m)~k;x,ĝ ![~2 i ! lA 4p

2l 11
Yl

m~k,ĝ !eid(k;x), ~87!
02351
e

to
r.

-

wherel>umu, andm50, 61, 62 correspond to the scalar
vector-, and tensor-type perturbations, respectively. Thus
the scalar-type perturbation we have

G( l )
(0)5~2 i ! l Pl~ k̂•ĝ !eid(k;•x), ~88!

where d(k;x) is a spatially dependent phase factor whi
depends on the harmonic functions@see Eq.~92!#; in the flat
background we haveeid(k;x)5eik•x. As the normalization we
have

E uG( l )
(m)G( l 8)

(m8)* u
dVp

4p
5

1

2l 11
d l l 8dmm8 . ~89!

We have the recursion relation@26#

G( l )ua
(m) ga[S ga

]

]xa 2Gbg
(3)agbgg

]

]gaDG( l )
(m)

5
k

2l 11
~k l

mG( l 21)
(m) 2k l 11

m G( l 11)
(m) !,

~90!

wherek0
0[1 and forl>1

k l
m[A~ l 22m2!F12~ l 2212umu!

K

k2G . ~91!

The harmonic functions are introduced such that we h
(0), (61), and (62) superscripts instead of the (s), (v),
and~t! indices introduced in Eq.~15!. In terms of the spatial
harmonic functions we identify

G(umu)
(m) [ga1

•••ga umuYa1•••a umu

(m) . ~92!

Then, from Eqs.~90!, ~15! we can show

G(0)
(0)[Y(0), G(1)

(0)5gaYa
(0) ,

2

3
A123

K

k2G(2)
(0)5gagbYab

(0) ,

G(1)
(61)[gaYa

(61) ,

1

A3
A122

K

k2G(2)
(61)5gagbYab

(61) ,

G(2)
(62)[gagbYab

(62) . ~93!

Now, from Eqs.~84! using the expansion in Eqs.~86!, ~87!
and the recursion relation in Eq.~90! we can derive

Q̇ ( l )
(m)5

k

a S 1

2l 21
k l

mQ ( l 21)
(m) 2

1

2l 13
k l 11

m Q ( l 11)
(m) D1M ( l )

(m)

1C( l )
(m) , ~94!

where M ( l )
(m) and C( l )

(m) are the metric perturbation and th
collision term, respectively. The collision terms for Thoms
scattering in the photon distribution function together w
2-12
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polarization will be considered in Sec. IV A. The metric pe
turbations in Eq.~84! can be calculated using Eqs.~13!, ~93!
as

M ( l )
(m)5S 2ẇ1

k2

3a2 x
k

a
a 2

2

3
A123

K

k2

k2

a2 x

0 0
1

A3
A122

K

k2

k

a
C (61)

0 0 2 ċ(62)

D ,

~95!

where the rows indicatem50,61,62, and the columns in-
dicate l 50,1,2, respectively. Using Eq.~86! the perturbed
order fluid quantities in Eq.~85! become

d (c)[
dm (c)

m (c)
54Q (0)

(0) , dp(c)5
1

3
dm (c) , v (c)5Q (1)

(0) ,

p (c)
(0)

m (c)
5

4

5

1

A123K/k2
Q (2)

(0) ,

v (c)
(61)5Q (1)

(61) ,
p (c)

(61)

m (c)

5
8

15
A 3

122K/k2 Q (2)
(61) ,

p (c)
(62)

m (c)
5

8

15
Q (2)

(62) , ~96!

where we used Eqs.~17!, ~18!, and~93!.
Under the gauge transformation, from Eq.~72! we have

Q̃5Q1Hj t1
1

a
j ,a

t ga. ~97!

By expandingj t5(kj
tY(0) we have

Q̃ (0)
(0)5Q (0)

(0)1Hj t, Q̃ (1)
(0)5Q (1)

(0)2
k

a
j t, ~98!

and the otherQ ( l )
(m) are gauge invariant. These are consist

with the identifications in Eq.~96! and the gauge transforma
tion properties in Eqs.~30!, ~35!. Thus, the temporal gaug
conditions fixingQ (0)

(0) andQ (1)
(0) can be considered as belon

ing to Eq.~36!.

E. Massive collisionless particle

For massive collisionless particles the perturbed Bo
mann equation in Eq.~66! becomes

d f 81
q

e S gad f ,a2Gbg
(3)agbgg

]d f

]gaD2F e

q
A,aga1~Baub

1Cab8 !gagbGq ] f

]q
50. ~99!
02351
t

-

In the massive case we can expand the perturbed distribu
function directly. Instead ofd f we use the following vari-
able:

Q̂~x,h,q,ĝ ![
d f

2q] f /]q

[(
k

(
l 50

`

(
m522

2

Q̂ ( l )
(m)~k,h,q!G( l )

(m)~k;x,ĝ !.

~100!

From Eq.~99!, using Eqs.~100!, ~90!, ~13!, and~93! we can
derive

Q̂
˙

( l )
(m)5

q

e

k

aS 1

2l 21
k l

mQ̂ ( l 21)
(m) 2

1

2l 13
k l 11

m Q̂ ( l 11)
(m) D1M̂ ( l )

(m) ,

~101!

M̂ ( l )
(m)5S 2ẇ1

k2

3a2 x
e

q

k

a
a 2

2

3
A123

K

k2

k2

a2 x

0 0
1

A3
A122

K

k2

k

a
C (61)

0 0 2 ċ(62)

D ,

~102!

where l>umu. The rows and columns ofM̂ ( l )
(m) indicate m

50,61,62, andl 50,1,2, respectively. In the massless lim
M̂ ( l )

(m) reduces toM ( l )
(m) in Eq. ~95!, and Eq.~101! reduces to

Eq. ~94!. Thus, we can regard Eqs.~101!, ~102! as being
valid for both massless and massive collisionless particle

From Eqs.~70!, ~100! the perturbed order fluid quantitie
become

dm (c)5
4p

a4 E Q̂ (0)
(0)S 2

] f

]qD eq3dq,

dp(c)5
4p

3a4E Q̂ (0)
(0)S 2

] f

]qDq5

e
dq,

~m (c)1p(c)!v (c)
(m)5

4p

3a4E Q̂ (1)
(m)S 2

] f

]qDq4dq ~m50,61!,

p (c)
(0)5

1

A123K/k2

4p

5a4E Q̂ (2)
(0)S 2

] f

]qDq5

e
dq,

p (c)
(61)5A 3

122K/k2

8p

15a4

3E Q̂ (2)
(61)S 2

] f

]qD q5

e
dq,

p (c)
(62)5

8p

15a4E Q̂ (2)
(62)S 2

] f

]qD q5

e
dq,

~103!
2-13



as

en
-
l
s

f
en

in
m
de
li-
rb

as

itu
m
n

-

o

am
b
R
s

-

ic
ed

ar-

r-

d

are
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where we used Eqs.~17!, ~18!, and ~93!. In the massless
limit, assumingQ̂ ( l )

(m) is independent ofq, the fluid quantities
in Eqs. ~73!, ~103! reduce to the ones in the massless c
Eqs.~74!, ~96! with Q̂ ( l )

(m)5Q ( l )
(m) .

Under the gauge transformation, using Eq.~72! we have

Q̃̂5Q̂1Hj t1
e

q

1

a
j ,a

t ga. ~104!

Thus,

Q̃̂ (0)
(0)5Q̂ (0)

(0)1Hj t, Q̃̂ (1)
(0)5Q̂ (1)

(0)2
e

q

k

a
j t, ~105!

and the otherQ̂ ( l )
(m) are gauge invariant. These are consist

with the identifications in Eq.~103! and the gauge transfor
mation properties in Eqs.~30!, ~35!. Thus, the tempora
gauge conditions fixingQ̂ (0)

(0) and Q̂ (1)
(0) can be considered a

belonging to Eq.~36!.
Thus, we have complete sets of perturbation equations

three types of perturbation including a single-compon
massive collisionless particle. Equation~101! together with
the gravitational field equations in Eqs.~38!–~47!, ~53!–~55!,
and ~58!, and the fluid quantities for the massive particle
Eq. ~103! provide the complete sets. In the case of multico
ponent massive collisionless particles we simply consi
Eqs. ~101!, ~103! for each component of the massive col
sionless particle. The equations for the scalar-type pertu
tion are designed in a gauge-ready form. The collective~or
the sum over individual! fluid quantities in Eqs.~39!–~42!,
~44!, ~54!, and~58! include the kinetic components, where
~i! in Eqs. ~46!, ~47!, and ~55! does not include the kinetic
components. Using Eqs.~103!, ~75!, however, we can show
that Eq.~101! gives Eqs.~46!, ~47!, and~55! with ( i )5(c).
This identification gives

dQ(c)505J(c)
(s,v) . ~106!

This follows because we have assumed a collisionless s
tion ~and with no direct interaction between the kinetic co
ponent and the other components!. For the case of a photo
with Thomson scattering, see Eq.~121! below.

IV. CMBR ANISOTROPY

A. Thomson scattering and polarizations

In addition to the photon distribution function for the tem
perature~or total intensity! fluctuationf 5 f Q , we have three
other photon distribution functions describing the state
polarization,f Q , f U , and f V . Q, Q, U, andV form the four
Stokes parameters. We will ignore the fourth Stokes par
eter V describing circular polarization because it cannot
generated through Thomson scattering in standard FL
cosmological models. While the temperature behaves a
scalar quantityQ andU do not. It is known that the combi
nationsQ6 iU behave like spin62 quantities@27#. Thus,
while Q can be expanded in ordinary spherical harmon
Ylm , Q6 iU should be expanded in the spin-weight
harmonics62Ylm @28,29#.
02351
e

t

or
t

-
r
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a-
-

f

-
e
W

a

s

Following the convention in@26# we expandQ and Q
6 iU in terms of spin-weighted spatial and momentum h
monic functions:

Q~x,h,ĝ ![(
k

(
m522

2

(
l

Q ( l )
(m)~k,h! 0G( l )

(m)~k;x,ĝ !,

Q~x,h,ĝ !6 iU ~x,h,ĝ !

[(
k

(
m522

2

(
l

@E( l )
(m)~k,h!6 iB ( l )

(m)~k,h!#

3 62G( l )
(m)~k;x,ĝ !, ~107!

where

sG( l )
(m)~k;x,ĝ ![~2 i ! lA 4p

2l 11 sYl
m~k,ĝ !eid(k;x),

~108!

with 0Yl
m[Yl

m ; thus 0G( l )
(m)5G( l )

(m) . We have the recursion
relation @26#

sG( l )ua
(m) ga5

n

2l 11
~ sk l

m
sG( l 21)

(m) 2 sk l 11
m

sG( l 11)
(m) !

2 i
mns

l ~ l 11! sG( l )
(m) , ~109!

where

sk l
m[A~ l 22m2!~ l 22s2!

l 2 S 12
l 2

n2 K D ,

n[Ak21~11umu!K; ~110!

thus, compared with Eq.~91! we haven3 0k l
m5kk l

m . In the
hyperbolic~negative curvature! background we have supe
curvature (0<k,AuKu) and subcurvature (k.AuKu) scales
for the scalar-type perturbation; by consideringn>0 we ex-
clude the supercurvature scale@30#. It is convenient to have

2sYl
m5(21)l

sYl
m , and other useful relations can be foun

in @31,26#.
In terms of the notation

TW [S Q

Q1 iU

Q2 iU
D , ~111!

the Boltzmann equation can be written as

TẆ 1
1

a
TW uaga5MW @TW #1CW @TW #, ~112!

where the metric perturbations and the collision terms
expanded as
2-14
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MW @Q#[(
k

(
m522

2

(
l

M ( l )
(m)G( l )

(m) , ~113!

CW @Q#[(
k

(
m522

2

(
l

C( l )
(m)G( l )

(m) . ~114!

The collision and the polarization terms are not affected
the perturbed metric; thusMW @Q6 iU #50.

The collision term is derived using the total angular m
mentum method in Eqs.~25!, ~26! of @26#:

CW @TW #52 ṫTW ~V!1 ṫS E Q8
dV8

4p
1gav (b)a

0

0

D
1

1

10
ṫE (

m522

2

P(m)~V,V8!•TW ~V8!dV8,

~115!

wherev (b)a is the baryon’s perturbed velocity variable, an
P(m) is given in Eq.~52! of @31#; ṫ[nexesT wherene is the
electron density,xe is the ionization fraction, andsT is the
Thomson cross section. The time evolution ofnexe is deter-
mined by the recombination history. UsingP(m) in @31# the
collision term becomes

C( l )
(m)52 ṫQ ( l )

(m)1 ṫS Q (0)
(0) v (b)

(0) P(0)

0 v (b)
(61) P(61)

0 0 P(62)
D , ~116!

CW @Q6 iU #52 ṫ(
k

(
m522

2

(
l

~E( l )
(m)6 iB ( l )

(m)

1A6P(m)d l2! 62G(2)
(m) , ~117!

where

P(m)[
1

10
~Q (2)

(m)2A6E(2)
(m)!. ~118!

From Eqs.~112!, ~107!, using the recursion relation in Eq
~109! and the collision term in Eq.~117!, we can show that

Ė( l )
(m)5

n

a S 1

2l 21 2k l
mE( l 21)

(m) 2
1

2l 13 2k l 11
m E( l 11)

(m) D
2

n

a

2m

l ~ l 11!
B( l )

(m)2 ṫ~E( l )
(m)1A6P(m)d l2!, ~119!

Ḃ( l )
(m)5

n

a S 1

2l 21 2k l
mB( l 21)

(m) 2
1

2l 13 2k l 11
m B( l 11)

(m) D
1

n

a

2m

l ~ l 11!
E( l )

(m)2 ṫB( l )
(m) , ~120!
02351
y
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where l>2 and m>0, and we haveBl
(0)50. Notice that

with the identification B( l )
(2umu)52B( l )

(umu) , E( l )
(6umu) and

Q ( l )
(6umu) satisfy identical equations for both signs@31#. The

equations forQ ( l )
(m) follow from Eqs. ~94!, ~95!, and ~116!.

Polarization properties of the CMBR in the perturbed FLR
world model have been actively studied in the literatu
some selected references are@29,32,33,27,34–36#.

Now we have complete sets of equations for three ty
of perturbation including Thomson scattered photons w
polarization. Equations~94!, ~95!, and~116! for the intensity
~temperature! and Eqs.~119!, ~120! for the photon polariza-
tion together with the gravitational field equations in Eq
~38!–~47!, ~53!–~55!, and~58! and the fluid quantities for the
massless particle in Eq.~96! provide the complete sets. For
massless collisionless particle Eq.~94! remains valid with
vanishing collision terms and polarization. The generali
tion to include multicomponent massless collisionless p
ticles is trivial: we simply consider Eqs.~94!, ~96! for each
component of the massless collisionless particle. We can
include additional multicomponent massive collisionless p
ticles by considering Eqs.~101!, ~103! for each componen
of the massive collisionless particle. The equations are
signed in a gauge-ready form.

The collective~or sum over individual! fluid quantities in
Eqs.~39!–~42!, ~44!, ~54!, and~58! include the kinetic com-
ponents. Using Eqs.~96!, ~75!, however, we can show tha
Eq. ~94! gives Eqs.~46!, ~47!, and~55! with ( i )5(c); we are
using the indexc to indicate the kinetic component. Thi
identification implies

dQ(c)50, J(c)
(0)5

4

3

a

k
m (c)ṫ~v (c)2v (b)!,

J(c)
(61)52

4

3
am (c)ṫ~v (c)

(61)2v (b)
(61)!. ~121!

Because of Thomson scattering there exists an interac
between photons and baryons. From Eq.~21! we have
( ldQ( l )5dQ(b)1dQ(g)50 and ( lJ( l )

(m)5J(b)
(m)1J(g)

(m)50.
Thus

dQ(b)50, J(b)
(0)52

4

3

a

k
m (g)ṫ~v (g)2v (b)!,

J(b)
(61)52J(g)

(61)5
4

3
am (g)ṫ~v (g)

(61)2v (b)
(61)!.

~122!

For the baryon~b! we havep(b)505dp(b) ; thus w(b)50.
However, we keep the sound speed of the baryon fluid wh
behaves as@37#

c(b)
2 [

ṗ(b)

ṁ (b)

5S 12
1

3

d ln Tb

d ln a D kBTb

m̄mH

, ~123!

wherem̄ is the mean molecular weight. Thus, Eqs.~46!, ~47!,
and ~38! become:
2-15
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ḋ (b)52
k

a
v (b)23Ha1k, ~124!

v̇ (b)1Hv (b)5
k

a
~a1c(b)

2 d (b)2J(b)
(0)/m (b)!.

~125!

For the cold dark matter~C! we additionally haveQ(C)50
5dQ(C) andJ(C)

(0) 50; thus Eqs.~46!, ~47! become

ḋ (C)52
k

a
v (C)23Ha1k, ~126!

v̇ (C)1Hv (C)5
k

a
a. ~127!

We emphasize that compared with previous work, besi
the equations being valid in the context of generalized gr
ity theories, our sets of equations in this paper are al
gauge-ready forms.

B. Tight coupling era

In the early universe, the Thomson scattering term is la
enough and the baryons and the photons are tightly coup
For large values ofṫ (5tc

215lc
21) compared withH

(5tH
215lH

21) and k/a(52pl21), it is difficult to handle
Eqs.~94!, ~125! numerically; the polarizations are negligib
in that stage. In this case, it is convenient to arrange
equations in the following way@37#. From Eq.~125! and the
l 51 component of Eq.~94! we have

v̇ (b)52
1

11r
Hv (b)2

r

11r
~ v̇ (g)2 v̇ (b)!

1
k

a Fa1
1

11r
c(b)

2 d (b)1
r

11r S 1

4
d (g)2

1

5
k2

0Q (2)
(0)D G ,

~128!

where we introducedr[ 4
3 m (g) /m (b) . From thel 52 compo-

nent of Eq.~94! we have

Q (2)
(0)5

10

9

ct

H F2Q̇ (2)
(0)1

k

a S 1

3
k2

0v (g)2
1

7
k3

0Q (3)
(0)D

2
2

3
A123

K

k2S k

aD 2

xG2
A6

9
E(2)

(0) , ~129!

where ct[H/ ṫ. Thus, Q (2)
(0) is of the ct or ctk/aH order

higher than d (g) , and we haveQ ( l 11)
(0) ;(k/aH)ctQ ( l )

(0) .
From thel 51 component of Eq.~94! and Eq.~128! we have

v (b)2v (g)5
ct

H

1

11r F2Hv (b)1 v̇ (g)2 v̇ (b)1
k

a S c(b)
2 d (b)

2
1

4
d (g)1

1

5
k2

0Q (2)
(0)D G . ~130!
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Taking the time derivative of Eq.~130! and using Eqs.~128!,
~130!, to first order in thect expansion, we can derive

v̇ (b)2 v̇ (g)5
2r

11r
H~v (b)2v (g)!2

ct

H

1

11r F 6r 2

~11r !2 H2~v (b)

2v (g)!1
k

a S Ha2c(b)
2 ḋ (b)1

1

4
ḋ (g)1

1

2
Hd (g)D G ,

~131!

where weassumedthe radiation era witha}t1/2, which ap-
plies for Einstein gravity with negligibleK andL contribu-
tions in that era. Thus,ċt5Hct , ṙ 52Hr , and we used
(c(b)

2 )•52Hc(b)
2 which follows from Eq. ~123! assuming

Tb5Tg .
To the zeroth order inct , from Eqs.~128!, ~131! we have

v̇ (b)5 v̇ (g)1
2r

11r
H~v (b)2v (g)!

52
1

11r
Hv (b)2

2r 2

~11r !2 H~v (g)2v (b)!

1
k

a S a1
1

11r
c(b)

2 ḋ (b)1
r

11r

1

4
d (g)D . ~132!

Equations~125!, ~131! imply v (b)2v (g)50 to the zeroth or-
der in ct . Thus, usingvgb[v (b)5v (g) , and ignoring the
c(b)

2 ḋ (b) term, we have

v̇gb52
1

11r
Hvgb1

k

aS a1
r

11r

1

4
d (g)D . ~133!

Equation~124! and thel 50 component of Eq.~94! give

ḋ (b)52
k

a
vgb23Ha1k, ~134!

ḋ (g)5
4

3S 2
k

a
vgb23Ha1k D ,

~135!

and for the CDM we have Eqs.~126!, ~127!.
Thus, in the tight coupling era, instead of Eqs.~94!, ~125!,

we can use Eqs.~133!–~135!. As the criteria for the tight
coupling era we can use@38#

z.ztc52000, ct,0.01, ct

k

aH
,0.01, ~136!

where

ct5
14.47

xeVb0h S a

a0
D 3 H

H0
. ~137!

If any one of the three conditions is violated we use the f
set of equations based on the Boltzmann equation.
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C. Numerical implementation

The different gauge conditions available in the scalar-ty
perturbation provide a useful check of the numerical ac
racy. The gauge-ready formulation is especially suitable
handling the case. When we solve the scalar-type pertu
tion equations we have a right to choose one temporal ga
condition. Any one of the fundamental gauge conditions
Eqs. ~33!, ~36! would be a fine gauge condition; except f
the synchronous gauge condition any one of the other ga
conditions completely fixes the temporal gauge and the
maining variables are equivalent to the gauge-invariant o
If we have the solution of a variable in a given gauge we c
derive solutions of the rest of the variables in the sa
gauge, and from these we can derive all the solutions in o
gauge conditions. For such translations the set of equat
in the gauge-ready form is convenient. Meanwhile, in a
merical study, if we solve a given problem in two differe
gauge conditions independently, by comparing the value
any gauge-invariant variable evaluated in the two gauge c
ditions we can check the numerical accuracy@39#.

In the literature, the synchronous gauge is the most wid
adopted gauge condition. The synchronous gauge does
fix the gauge condition completely. We can choose any of
gauge conditions mentioned in Eqs.~33!, ~36!, ~98!, and
~105! as well. The comoving gauge condition closely r
sembles the synchronous gauge in the matter dominated
however, see the various possible combinations of the
moving gauge conditions in Eqs.~36! available in the multi-
component situation. Reference@40# adopted a comoving
gauge condition which fixes the velocity variable based
the cold dark matter; thusv (C) /k[0. From Eq.~127! we
note thatv (C)50 impliesa50, the synchronous gauge co
dition; in the synchronous gauge, however, we havev (C)
}a21 which leads to the remaining gauge mode. Thus,
synchronous gauge with an additional conditionv (C)50 is
equivalent to thev (C)50 gauge. We may emphasize that o
equations in the gauge-ready form are ready to be im
mented using any of these available gauge conditions.

In the following, as an example, we consider the Einst
gravity limit without fields but with arbitrary numbers o
fluids and kinetic components; including the fields and
generalized gravity will affect the gravity sector only. In th
numerical work we implemented the comoving gauge ba
on the CDM (v (C)50 which includes the synchronou
gauge!, the zero-shear gauge, the uniform-curvature gau
and the uniform-expansion gauge. The latter two gauge c
ditions were not previously used in the literature. These f
gauge conditions fix the perturbed metric variables. Un
these gauge conditions we can see that the differential e
tions can be set up using only the variables that represen
fluids and kinetic components: Eqs.~101!, ~94!, ~119!, ~120!,
~46!, and ~47! provide a set of differential equations to b
solved. The remaining metric variables can be expresse
terms of the fluids and kinetic quantities. The metric va
ablesa, w, Hx ~or x/a), andk/H ~or ak) are dimension-
less. Using Eqs.~38!–~42! we can express the metric var
ables in terms of the fluid quantities in each of these ga
conditions.
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In order to check the numerical accuracy we can evalu
any gauge-invariant variable in two different gauge con
tions; if the integration has good numerical accuracy
gauge-invariant combination evaluated in all gauge con
tions should give the same value. In order to have the sa
solution we need to start from the same initial conditio
Thus, we need to have relations of the variables among
ferent gauge conditions. The set of equations in a gau
ready form is convenient for this purpose. In the followin
we consider relations between the zero-shear gauge an
uniform-curvature gauge as an example. Using the ga
transformation properties in Eqs.~30!, ~31!, ~35!, ~98!, and
~105! we can construct the following relations:

d ( i )w[d ( i )13~11w( i )!w5d ( i )x13~11w( i )!wx ,

v ( i )w5v ( i )x2
k

aH
wx , Q (0)w

(0) 5Q (0)x
(0) 1wx ,

Q (1)w
(0) 5Q (1)x

(0) 2
k

aH
wx , ~138!

and Q ( l )w
(0) 5Q ( l )x

(0) for l>2; and similarly forQ̂ ( l )
(0) . wx fol-

lows from Eqs.~39!, ~40! as

wx5
4pGa2

k223K(
l

Fdm ( l )w13
aH

k
~m ( l )1p( l )!v ( l )wG

52Hxw . ~139!

Using Eqs.~138!, ~139! we can translate the solutions~in-
cluding the initial conditions! in the zero-shear gauge int
those in the uniform-curvature gauge, and vice versa.

Each of the four gauge conditions considered above fi
the metric variables as the gauge condition, and uses
fluid, field, and kinetic variables as the unknown variables
be solved. In such cases we can make a numerical code
allows us to choose one of the gauge conditions as an op
In numerical studies it is known that the zero-shear ga
has difficulty in setting up the initial condition in the ear
universe@12,37#. The other three gauge conditions show
such difficulty and run equally well.

We have implemented our gauge-ready formulation int
numerical code. The code includes the baryon, CDM, p
ton, massless and massive neutrino species, the spatial
vature, and the cosmological constant. We included pho
polarizations. We solved separately for the gravitatio
wave with accompanying tensor-type photon intensity a
polarizations, massless and massive neutrino species. Th
of differential equations is solved directly. For the recom
nation process we adopt theRECFAST code of@41# which is
recently available to the public. The code is complete in
context of Einstein gravity. We made no artifical truncatio
for multipoles of kinetic components in the photon intens
and polarization, and massless and massive neutrinos. F
useful truncation scheme, however, see@37#. Since the higher
l multipoles are generated from the lower multipoles,
monitored the values of the highest multipoles of all t
kinetic components and increased the allowed multipoles
2-17
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JAI-CHAN HWANG AND HYERIM NOH PHYSICAL REVIEW D 65 023512
tomatically @42#. In this manner we included quantities wit
higher multipoles as long as the values were larger tha
certain minimum threshold value. We made the code so
we can choose a gauge condition from the four differ
gauge conditions mentioned above as an option; we could
other gauge conditions as well. The inclusion of the sca
fields and generalized gravity is a trivial generalization
fecting only the gravity sector, and will be considered
future.

At the present epoch we have

k

a0H0
5

2998

h

k

a0
Mpc, ~140!

whereH0[100h km/sec Mpc. Thus,k/a051 Mpc21 corre-
sponds tol052pa0 /k52p Mpc, andk/(a0H0)52998/h;
the comoving wave numberk is dimensionless. In Einstein’
gravity from Eq.~22! we haveK/(aH)25V21. Thus, in the
nonflat case we have

a05
2998 Mpc

Au12V0uh
. ~141!

In the hyperbolic model, the curvature scale correspond
k252K51 and the subcurvature scales (k2.1) correspond
to k/a0.A12V0h/(2998 Mpc). In the spherical model, th
wave numbern introduced in Eq.~110! takes integer values
n53,4,5, . . . (n51,2 correspond to pure gauge modes@6#!.

In the following we present several results from our n
merical study. In the numerical integration of the different
equations we adopted the Runge-Kutta method. The inte
tions were made at equal intervals of lna. In Figs. 1~a,b! we
show the evolution ofd ( i )v( i )

which is the density perturba
tion of the ~i! component in the corresponding comovin
gauge condition based on the component

d ( i )v( i )
[d ( i )13

aH

k
~11w( i )!v ( i ) , ~142!

which follows from Eqs.~35!, ~26!; w( i )[p( i ) /m ( i ) and we
ignored Q( i ) . The component~i! includes the baryon (b),
photon (g), CDM (C), massless neutrino (n), and massive
neutrino (nm). As the initial conditions, we implemented th
five different nondecaying initial conditions available in th
four-component (b, C, g, and n) system in the radiation
dominated era@43#: these are the adiabatic mode, the bary
isocurvature mode, the CDM isocurvature mode, the n
trino isocurvature density mode, and the neutrino isocur
ture velocity mode, where the last one appears due to
kinetic nature of the neutrino perturbation. The complete
of initial conditions was recently presented by Bucheret al.
in @43# in the v (C)50 gauge condition. The correspondin
initial conditions in the other gauge conditions can be o
tained by using gauge transformations similar to Eqs.~138!,
~139!. In the early radiation dominated era we used the ti
coupling approximation for the baryon and the photon
Eqs. ~133!–~135! with the criteria in Eq.~136!. The small
scale considered in Fig. 1~a! crosses the horizon in the radia
tion dominated era. After the perturbation comes inside
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horizon, the baryon, photon, and massless neutrino show
cillations, and after the recombination near log(a/a0);23
the baryon decouples from the photon and catches up
the evolution of the cold dark matter. The behavior of t
massive neutrino is also shown. The large-scale perturba
in Fig. 1~b! crosses the horizon in the matter dominated
and the oscillations do not appear.

In Figs. 1~a,b! we present the behavior ofwv as well.wv

FIG. 1. We present the evolutions of the adiabatic density p
turbations in the corresponding comoving gaugesd ( i )v( i )

for several
components.~i! includes the baryon~dot!, CDM ~dot-long dash!,
photon ~long dash!, massless neutrino~short dash!, and massive
neutrino~solid!. The two figures are~a! k/a050.1 Mpc21 and ~b!
k/a050.01 Mpc21. Also presented iswv ~dot-short dash! wherev
is the collective fluid velocity. The parameters areh50.5, Vb

52.031022, VC55.431021, Vg59.931025, Vn56.731025,
andVnm

54.431021 at present. We consider a flat background w
vanishingL. The absolute value of the vertical scale is arbitrary
2-18



s in
ntly
er-
a-

d in
its

o

e
:

r-

w
am

re

the

th
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FIG. 2. We present the evolution ofw in various comoving
gauge conditions based on fixing the various velocity variables
the components, i.e.,wv( i )

andwv : the baryonwv(b)
~dot!, the CDM

wv(C)
~dot–long dash!, the photonwv(g)

~long dash!, the massless
neutrino wv(n)

~short dash!, and the one based on the collectiv
velocity wv ~dot–short dash!. We consider two different scales
k/a050.001 ~upper! and 0.1 Mpc21 ~lower!. For k/a0

50.001 Mpc21, the baryon, CDM, and the collective variable ove
lap ~top!, and the photon and massless neutrino overlap~bottom!. In
order to present the behaviors on two scales in one frame,
change the absolute scale of the amplitude arbitrarily. The par
eters areVb52.031022, VC59.831021, Vg59.931025, and
Vn56.731025 at present.

FIG. 3. The evolution ofwv for different scales:k/a050.0001
~top!, 0.001, 0.01, 0.1, and 0.3 Mpc21 ~bottom!. The cases of
k/a050.0001 and 0.001 Mpc21 almost overlap. The parameters a
the same as in Fig. 2.
02351
was first introduced by Lukash in 1980@11# ~see also@9#!,
and is known to be one of the best conserved quantitie
the single-component situation: it is conserved independe
of changing gravity theories or field potential on the sup
horizon scale@17,18#, and independently of a changing equ
tion of state on the super-sound-horizon scale@16#. It shows
nearly conserved behavior on the superhorizon scale an
the matter dominated era after recombination; however,

f

e
-

FIG. 4. We present the evolution of density perturbation in
comoving gauge of the massive neutrino,d (nm)v(nm)

, for different

scales:k/a050.01 ~top!, 0.1,0.2, and 0.25 Mpc21 ~bottom!. The
photon is calculated based on both the Boltzmann equation~dot–
long dash! and the fluid approximation~solid!. ~a! considers the
massive neutrino dominated model with parameterVnm

59.8
31021 at present.~b! considers a substantial amount of CDM wi
parametersVC55.431021 and Vnm

54.431021. In ~b! we show
the evolution of CDMd (C)v(C)

~dotted! as well. The parameters
common in both models~a,b! are Vb52.031022 and Vg59.9
31025 at present.
2-19
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JAI-CHAN HWANG AND HYERIM NOH PHYSICAL REVIEW D 65 023512
amplitude changes near a horizon crossing and is affecte
the recombination process if the scale is inside the horiz
We show the detailed behavior ofwv andwv( i )

in Figs. 2 and

3. Figure 2 shows the behavior ofw in various comoving
gauge conditions based on fixingv or v ( i ) for two chosen
scales. In Fig. 2 we found thatwv is better at presenting
conserved behavior. We show the evolution ofwv for several
different scales in Fig. 3.

In Figs. 4~a,b! we present the evolution ofd (nm)v(nm)

which is the density perturbation of the massive neutrino
the comoving gauge based on the massive neutrino. We c
pared the evolution when the photon was treated base
the Boltzmann equation and on the fluid approximation.
Fig. 4~a! we considered a model dominated by the mass
neutrino, showing the collisionless damping of the neutr
density fluctuations. The result based on treating the pho
as a fluid can be compared with@25#; @25# used the synchro
nous gauge, thus theird (nm)5d (nm)v(C)

. The case with a sub
stantial amount of cold dark matter is presented in Fig. 4~b!.
In the massive neutrino the fluid quantities include the in
gral of the distribution function over the momentum variab
q in Eq. ~103!: in our numerical work we considered abo
100 values ofq for a range ofq/(kBa0T0).

As the wave numberk increases, i.e., as we consid
smaller scales, we need to solve a larger number of the
ferential equations. As examples, fork/a050.001 and
0.1 Mpc21 considered in Figs. 1~a,b! l is excited up to
around 600 and 5000, respectively. We increasedl automati-
cally by monitoring the values of the individual kinetic com
ponents~including the polarization!.

Aspects of the role of massless neutrinos in the evolu
of cosmic structures were studied in@44#. The role of mas-
sive collisionless particles~the massive neutrino is the prim
example! as the hot dark matter in the context of structu
evolution has been investigated in the literatu
@24,25,33,45,37,38,42#. Gravitational instability using the
particle distribution function was originally studied by Gi
bert in 1965 in the Newtonian context@46#.

D. CMBR anisotropy

The anisotropies of the temperature can be derived
expanding the observed temperature in the sky into a sph
cal harmonic function as

Q~x,h0 ,ĝ![(
l

(
m52 l

l

alm
Q ~x!Ylm~ ĝ!. ~143!

The polarization anisotropies can be expanded in term
the spin-weighted harmonic functions as

Q~x,h0 ,ĝ!6 iU ~x,h0 ,ĝ!

[(
l

(
m52 l

l

@alm
E ~x!6 ialm

B ~x!# 62Ylm~ ĝ!. ~144!

We can derive
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XY[

1

2l 11 (
m52 l

l

^alm
X ~x!alm

Y* ~x!&x

5
1

~2l 11!2

2

pE n2dn (
m522

2

X( l )
(m)~n,t0!

3Y( l )
(m)* ~n,t0!, ~145!

whereX and Y can be any one ofQ, E, andB. In flat and
hyperbolic backgrounds (K<0) we haven>0; see below

FIG. 5. We present the power spectral ( l 11)Cl of the scalar-
type perturbation: the temperatureCl

QQ ~top!, the polarizationCl
EE ,

and the cross correlationCl
QE ~bottom!. We take an adiabatic initia

condition with a scale-invariant (nS51) spectrum.~a! shows the
spectra in logarithmic scale, and~b! in linear scale. We normalize
the spectra usingl ( l 11)Cl

QQ51 for l 510. The parameters ar
Vb56.031022, VC52.531021, Vg55.931025, Vn54.0
31025, andVnm

50 at present.
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Eq. ~110!. In a background with positive curvature, we ha
discreten with n53,4,. . . ; seebelow Eq.~141!. In such a
case the integration should be changed to a sum overn with
n53,4,. . . . Because of the parity, we haveCl

QB505Cl
EB

@26#. If the distributions are Gaussian, all statistical inform
tion is contained in the three angular power spectra and
correlation power spectrum betweenQ andE:

Cl
QQ , Cl

EE , Cl
BB , Cl

QE . ~146!

Both scalar-type and gravitational waves contribute to
correlation functionsCl

QQ , Cl
EE , andCl

QE , whereas only the
gravitational wave~and the rotation! contributes toCl

BB @34#.
In Figs. 5~a,b! and Fig. 6 we present the power spectra

the scalar- and tensor-type perturbations. In both the sc
and tensor-type perturbation spectra, for the integration o
k in Eq. ~145!, we took 500k’s at equal intervals of logk for
the rangek/a051024–0.5 Mpc21; to haveCl complete to
l;2000@which would well cover the Microwave Anisotrop
Probe ~MAP! and Planck Surveyor results# we need
kmax/a0;0.2 Mpc21. The spectra are filtered using
smoothing method. IntroducingCl

QQ[*Cl(n)dn, we
presentCl(n) for the scalar- and tensor-type structures
Figs. 7~a,b!.

Pioneering work concerning the CMBR anisotropy bas
on relativistic gravity and the Boltzmann equation was do
by Peebles and Yu in 1970@5#. Early theoretical work can be
found in @47–49#. Significant progress was made on the th
oretical side of CMBR anisotropy immediately following th
first detection of the quadrupole and higher order multip
anisotropies by the Cosmic Background Explorer~COBE!-
Differential Microwave Radiometer~DMR! and subsequen
ground based experiments; some selected references

FIG. 6. We present the power spectral ( l 11)Cl of the gravita-
tional wave: the temperatureCl

QQ ~top!, the cross correlationCl
QE ,

and the polarizationsCl
EE andCl

BB ~bottom!. As the initial condition
we take the scale-invariant (nT50) spectrum and the solution wit
constant amplitude. We normalize the spectra usingl ( l 11)Cl

QQ

51 for l 510. The parameters are the same as in Fig. 5.
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are

@50,38,34,35,37,41,26,51#. The authors of@52# have devel-
oped aCMBFAST code which calculates the CMBR angul
power spectra in an efficient way using line of sight integ
tion of the Boltzmann’s equation.CMBFAST is based on the
synchronous gauge and is applicable to Einstein gravity.
authors of @40# modified the code, adopting a comovin
gauge condition based on the velocity variable of the c
dark matter~our v (C) /k50 gauge!. In our code, we solve the
full Boltzmann hierarchy without any approximation. A ru
takes less than an hour~without the massive neutrino! on a
workstation for all three gauge conditions we used.

The power spectra in Eq.~146! are known to be sensitive
to various combinations of the background world mod
~these include the Hubble constant, spatial curvature, cos
logical constant, and density parameters of baryons, CD

FIG. 7. We presentCl(n) defined asCl
QQ[*Cl(n)dn, for the

scalar-type~a! and the tensor-type~b! structures. We considered 50
k/a0’s from 1025 to 0.5 Mpc21 in equal steps of lnk. The vertical
scale is arbitrary.
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JAI-CHAN HWANG AND HYERIM NOH PHYSICAL REVIEW D 65 023512
and massless and massive neutrinos!, the initial amplitudes
and spectra of both the primordial density and gravitatio
wave, and the possible reionization history, etc. Thus, in
turn, observational progress in determining the power spe
can give strong constraints on the above mentioned par
eters with higher precision.

There has been a significant improvement of the CM
power spectrum measurements in the past decade, and
ther improvements are expected from ground based, ball
and flight experiments, and particularly from the plann
MAP and Planck Surveyor satellite missions with high ac
racy and small angular resolution. The recent balloon ob
vations of CMBR by the Boomerang and Maxima-1 expe
ments have already provided a strong constraint on
global curvature of our observed patch of the universe:
location of the first peak in Figs. 5~a,b! corresponds, in mod
els withV0 near 1, tol peak.200/AV0, whereas the Boomer
ang experiment showsl peak519766, thus supporting a fla
universe@1#.

The small-l plateau region in Fig. 5 can be interpreted,
the context of the inflationary scenario, as reflecting the
mordial scale-invariant spectrum, which has arisen from
quantum fluctuations in the context of the inflation scena
Small l corresponds to a large angular scale, and the pla
region corresponds to the superhorizon scale in the last s
tering epoch where local scattering would be unimporta
Thus, the Sachs-Wolfe effect based on the null geod
equations is expected to be enough to explain the phy
~based on the relativistic gravitation relating the spacet
metric to matter!. Meanwhile, the oscillatory features at larg
l ~small angular scale! come from regions well inside th
horizon at the last scattering; thus in addition to gravity
local physics including direct couplings between photons
baryons is important. Now, the physics behind these osc
tory features is well understood as being due to the osc
tory evolution of the photon fluctuation~and tightly coupled
baryons! pictured or frozen at the last scattering epoch: th
the oscillatory evolution of eachk mode ~reaching the last
scattering epoch with different phases! together with the ini-
tial spectrum is reflected into the corresponding oscillat
feature ink space, which can be converted into the oscil
tory feature ofCl in l ~angular! space. In hindsight, the origi
nal prediction of this oscillatory feature can be traced back
Sakharov as early as 1966@53# ~which was before the dis
covery of CMBR!; for a clear exposition, see@54–56#, and
for more elaborated forms see@50#. More visually, the oscil-
latory feature ink space can be found in Refs.@5,54#, and a
more developed analysis was made by Doroshkevichet al.
@47#. To our knowledge, however, the first clear and co
plete picture of the oscillatory features~including the polar-
ization as well as the isocurvature case! in Fig. 5 can be
found in Fig. 7 of@48#.

V. DISCUSSION

Compared with previous work we have made some
table advances in formulation. The formulation is made
the general form of the Lagrangian in Eq.~1! which is more
general than in our previous work. The kinetic theory tre
02351
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ments in Sec. III and IV are presented in a gauge-ready fo
for the scalar-type perturbation. Also, the kinetic theory fo
mulation is made in the full context of the generalized gra
ity theory covered by the Lagrangian in Eq.~1!.

For the scalar-type structure all the equations are arran
in a gauge-ready form which enables the optimal use of v
ous gauge conditions depending on the problem. Usually
do not know the most suitable gauge conditiona priori. In
order to take advantage of the gauge choice in the opti
way it is desirable to use the gauge-ready form equati
presented in this paper. Our set of equations is arrange
that we can easily impose various fundamental gauge co
tions in Eqs.~33!, ~36!, and their suitable combinations a
well. Our notation for the gauge-invariant combinations p
posed in Eq.~34! is convenient in practice for connectin
solutions in different gauge conditions as well as tracing
associated gauge conditions easily.

In handling the Boltzmann equations numerically, w
showed that the uniform-expansion gauge and the unifo
curvature gauge could also handle the numerical integra
successfully. By comparing solutions solved separately
different gauge conditions we can naturally check the
merical accuracy. It may be worth examining the physics
CMBR temperature and polarization anisotropies from
perspective of these new gauge conditions and others w
might still deserve a closer look. Our set of equations in
gauge-ready form is particularly suitable for such investig
tions where we can easily switch our perspective based
one gauge condition to another.

In this paper one can find general cosmological pertur
tion equations that are ready for use in diverse FLRW wo
models based on the gravity theories in Eq.~1!. More atten-
tion will be paid in future to the generalized versions
gravity theories especially in the context of the early u
verse. In such a context, the formulation made in this pa
will be useful for studying the structure formation aspects
future cosmological models.
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APPENDIX A: CONFORMAL TRANSFORMATION

By a conformal transformation the gravity theories i
cluded in Eq.~1! can be transformed into Einstein gravi
@57#. Under conformal transformation of the spacetime m
ric, ĝab5V2gab , and the field redefinitionV[A8pGF
[e1/2A(2/3)c, Eq. ~1! becomes

L̂5
1

16pG
R̂2

1

16pG S c ;̂cc ,c1
1

F
gIJf I ;̂cf ,c

J D2V̂,

~A1!
2-22
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with

V̂[
1

~16pGF!2 ~2V2 f 1RF!, ~A2!

where we have ignored theLm term. Thus, in general, sinc
c5c(fK,R), we have an additional minimally coupled sc
lar field c. However, if c5c(fK) which is the case forf
5F(fK)R and for the gravity theories in Eq.~2!, Eq. ~A1!
becomes

L̂5
1

16pG
R̂2

1

2
ĝIJf I ;̂cf ,c

J 2V̂, ~A3!

where

ĝIJ[
1

8pG S 1

F
gIJ1c ,Ic ,JD . ~A4!

The relations we need to derive the above results can
found in @58,59#.

As a simpler situation we consider a case withg1l50 and
c5c(f) wherel ,m52,3, . . . ,N, andf[f1. By introduc-
ing

df̂[A 1

8pG S g11

F
df21dc2D , ~A5!

we can show that Eq.~A1! becomes

L̂5
1

16pG
R̂2

1

2 S f̂ ;̂cf̂ ,c1
1

8pGF
glmf l ;̂cf ,c

mD2V̂,

~A6!

where we have a canonical form of the kinetic term forf̂.
Equation~A6! also follows directly from Eq.~A3!. Notice
that Eqs.~A1!, ~A3!, and ~A6! all belong to our original
Lagrangian in Eq.~1!.

The conformal transformation in the context of cosm
logical perturbation has been considered in@14,58,59#. We
decompose the conformal factorV into the background and
the perturbed part as

V~x,t ![V̄~ t !@11dV~x,t !#. ~A7!

Thus, we have

V̄5A8pGF̄5e1/2A(2/3)c̄, dV5
dF

2F
5

1

2
A2

3
dc.

~A8!

In @58,59# we showed that the only changes under the c
formal transformation are the following:

â5aV̄, d t̂5V̄dt, â5a1dV, ŵ5w1dV.
~A9!

Thus, in our multicomponent situation, assuming that
conditions used to derive Eq.~A6! are met, we have
02351
be

-

-

e

Ĥ5
1

V
S H1

V̇

V
D , x̂5Vx,

ḟ̂5A 1

8pGS g11

F
ḟ21

3Ḟ2

2F2D ,
df̂

ḟ̂
5

df

ḟ
5

dF

Ḟ
.

~A10!

@In @58,59# we considered the situation with a single fie
with g115v(f). In the present caseg11 andglm are arbitrary
algebraic functions off and f l .# From these we can als
show that

dh, ¹2, k, wdf52
H

ḟ
dfw , Cab

(t) ~A11!

are invariant under the conformal transformation. Relatio
amongf̂, f, andF in the individual gravity are summarize
in Table 2 of @59#. The advantages of using the conform
transformation in cosmological perturbation as a mathem
cal trick to simplify the analysis are presented in@58,59#.

APPENDIX B: EFFECTIVE FLUID QUANTITIES

We present the effective fluid quantities based on the
fective energy-momentum tensor introduced in Eq.~3!. The
effective energy-momentum tensor in Eq.~3! is decomposed
into the effective fluid quantities as in Eqs.~6!, ~11!, and
~18!. To background order we have

8pGm (eff)5
1

F Fm1
1

2
gIJḟ IḟJ2

1

2
~ f 2RF22V!23HḞG ,

8pGp(eff)5
1

F Fp1
1

2
gIJḟ IḟJ1

1

2
~ f 2RF22V!1F̈

12HḞG ,
qa

(eff)505pab
(eff) . ~B1!

The scalar-type perturbed order effective fluid quantities
@use Eqs.~B4!, ~B5! in @18##

8pGdm (eff)5
1

FH dm1gIJḟ IdḟJ

1
1

2
@gIJ,KḟJḟJ2~ f 22V! ,K#dfK23HdḞ

1S 3Ḣ13H22
k2

a2D dF1Ḟk

1~3HḞ2gIJḟ IḟJ!aJ ,
2-23
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8pGdp(eff)5
1

FH dp1gIJḟ IdḟJ1
1

2
@gIJ,Kḟ IḟJ

1~ f 22V! ,K#dfK1dF̈12HdḞ2S Ḣ

13H22
2

3

k223K

a2 D dF2ḞS ȧ1
2

3
k D

2~2F̈12HḞ1gIJḟ IḟJ!aJ ,

8pG~m (eff)1p(eff)!v (eff)

5
1

F
~m1p!v1

k

a

1

F
~gIJḟ IdfJ

1dḞ2HdF2Ḟa!,

8pGp (s,eff)5
1

FFp (s)1
k2

a2 ~dF2Ḟx!G . ~B2!

The vector-type effective energy-momentum tensor is

8pGdT a
(v,eff)05

1

F
dT a

(v)0 ,

8pGdT b
(v,eff)a5

1

F
dT b

(v)a2
Ḟ

F

1

2a
@B ub

a

1Bb
ua1a~C ub

a 1Cb
ua!•#. ~B3!

The tensor-type effective energy-momentum tensor is

8pGdT b
(t,eff)a5

1

F
~dT b

(t)a 2ḞĊb
a!. ~B4!

APPENDIX C: KINEMATIC QUANTITIES

The 311 ADM equations@62# and the 113 covariant
equations@63# are convenient for analyzing the cosmologic
perturbations@9,60,20,61#. The kinematic quantities and th
Weyl curvatures appearing in the formulations are usefu
characterize the variables used in the perturbation anal
In the following we present various quantities appearing
the two formulations in the context of our perturbed FLR
metric. For the basic sets of the ADM and the covaria
equations, see Sec. VI in@9#, @63# and the Appendix in@61#.

The covariant decomposition of the normalized (nana[
21) normal frame vector fieldna provides clear meaning
of the perturbed metric variables. The normal frame vec
field is introduced as

n0[2a~11A!, na[0. ~C1!

The kinematic quantities based on the normal frame ve
are

ûab[ĥa
cĥb

dn(c;d)5n(a;b)1â(anb) , û[n ;a
a ,
02351
l

o
is.
n

t

r

or

ŝab[ûab2
1

3
ûĥab , âa[na;bnb, ~C2!

where t (ab)[
1
2 (tab1tba) and t [ab][

1
2 (tab2tba). ĥab[gab

1nanb is the projection tensor based onna . û, ŝab , andâa
are the expansion scalar, shear tensor, and acceleration v
based onna , respectively. The vorticity tensor of the norm
vector,v̂ab naturally vanishes; see Eq.~C5!. From Eq.~C2!
using Eqs.~9!, ~C1!, ~13!, and~14! we can show that

û53H2k,

ŝab5x ,aub2
1

3
gab

(3)Dx1aC (v)Y(aub)
(v) 1a2ċ(t)Yab

(t) ,

âa5a ,a . ~C3!

Therefore,2k and x can be interpreted as the perturb
expansion scalar and the scalar part of the shear of the
mal frame, respectively. The trace of the extrinsic curvat
is equal to minus the expansion scalar.a andb can be seen
as perturbations in the lapse function and shift vector, resp
tively. C (v) and ċ(t) also cause the shear in the perturb
normal hypersurface.

In order to interprete the velocity related quantities w
introduce frame-invariant combinations of the four-vecto
as @64#

ũa[ua1
qa

m1p
. ~C4!

As in Eq. ~C2! we can introduce the kinematic quantitie
based on theũa vector

uab[h̃a
ch̃b

du(c;d)5ũ(a;b)1a(aũb) , u[ũ ;a
a ,

sab[uab2
1

3
uh̃ab ,

vab[h̃a
ch̃b

du[c;d] , aa[ũa;bũb, ~C5!

whereh̃ab[gab1ũaũb is the projection tensor based onũa .
u, sab , vab , andaa are the expansion scalar, shear tens
vorticity tensor, and the acceleration vector based onũa ,
respectively. From Eq.~C5! using Eqs.~C4!, ~9!, ~13!, ~14!,
and ~17! we can show that

ũ05u0 , ũa52
a

k
v ,a

(s)1av (v)Ya
(v) ,

u53H2k1
k

a
v (s),
2-24
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sab5x ,aub2
1

3
gab

(3)Dx2
a

k S v ,aub
(s) 2

1

3
Dv (s)gab

(3)D
1a~C (v)1v (v)!Y(aub)

(v) 1a2ċ(t)Yab
(t) ,

vab5av (v)Y[aub]
(v) ,

aa5Fa2
1

k
~av (s)!•G

,a

1~av (v)!•Ya
(v) ,

~C6!

and similarly for the kinematic quantities based on the in
vidual fluid four-vectorsũ( i )a .

The Weyl curvature tensor is introduced as

Cabcd[Rabcd2
1

2
~gacRbd1gbdRac2gbcRad2gadRbc!

1
R

6
~gacgbd2gadgbc!. ~C7!

It is decomposed into electric and magnetic parts as

Eab[Cacbdu
cud, Hab[

1

2
hac

e fCe f bdu
cud. ~C8!

Both are symmetric, trace-free, and orthogonal toua; Eab

5Eba , Ea
a505Eabu

b, and the same forHab . The nonvan-
ishing electric and magnetic parts of the Weyl curvature

Eab52C a0b
0

5
1

2
k2~a2w2ẋ1Hx!Yab

(s) 1
1

2
akĊ (v)Yab

(v)

2
1

2
a2F c̈(t)1Hċ(t)1

D22K

a2 c(t)GYab
(t) ,

Hab52
1

2
h0(a

gdC b)gd
0

5h0(a
gd~2kC (v)Yb)gud

(v) 1aċ(t)Yb)gud
(t) !,

~C9!

which follow from the Riemann curvature tensors and E
~15!, ~14!.

In the ADM notation

g00[2N21NaNa , g0a[Na , gab[hab , ~C10!
02351
-

e

.

whereNa is based onhab with hab the inverse metric; in the
rest of this Appendix onlyhab indicates the ADM three-
space metric. The normal four-vector isn0[2N and na
[0. The extrinsic curvature is

Kab[
1

2N
~Na:b1Nb:a2hab,0!,

K[habKab , ~C11!

where a colon : indicates a covariant derivative based
hab . Gbg

(h)a is the connection based onhab . The ADM fluid
quantities are

E[nanbTab, Ja[2nbTa
b , Sab[Tab ,

S[habSab , S̄ab[Sab2
1

3
habS. ~C12!

Comparing with the perturbed metric in Eq.~9! we have

hab5a2~gab
(3)12Cab!,

N5a~11A!, Na52a2Ba ,

Gbg
(h)a5Gbg

(3)a1Cbug
a 1Cgub

a 2Cbg
ua . ~C13!

Thus we can show that

Kab52aFa8

a
gab

(3)~12A!1B(aub)1Cab8 12
a8

a
CabG ,

K52
1

a F3
a8

a
~12A!1B ua

a 1Ca
a8G

523H1k52 û,

R bgd
(h)a 5R bgd

(3)a 1Cbudg
a 2Cbugd

a 1Cdubg
a 2Cgubd

a

2Cbd
ua

g1Cbg
ua

d ,

R(h)5
1

a2 @6K̄24~D13K̄ !w#,

E52T0
05m, Ja5aTa

05qa1~m1p!ua ,

S53p, S̄b
a5p b

(3)a , ~C14!

where the intrinsic curvatureR bgd
(h)a is a Riemann curva-

ture based onhab ; K̄ is the sign of the three-space curvatur
Thus,w is proportional to the perturbed three-space cur
ture of the hypersurface normal tona .
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