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We present cosmological perturbations of kinetic components based on relativistic Boltzmann equations in
the context of generalized gravity theories. Our general theory considers an arbitrary number of scalar fields
generally coupled with gravity, an arbitrary number of mutually interacting hydrodynamic fluids, and compo-
nents described by the relativistic Boltzmann equations such as massive or massless collisionless particles and
the photon with the accompanying polarizations. We also include direct interactions among fluids and fields.
The background Friedmann-Lertra-Robertson-Walker model includes the general spatial curvature and the
cosmological constant. We consider three different types of perturbation, and all the scalar-type perturbation
equations are arranged in a gauge-ready form so that one can easily implement convenient gauge conditions
depending on the situation. In the numerical calculation of the Boltzmann equations we have implemented four
different gauge conditions in a gauge-ready manner where two of them are new. By comparing solutions
obtained separately in different gauge conditions we can naturally check the numerical accuracy.
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[. INTRODUCTION gauge theory of a special type. The original perturbation
analysis was made by Lifshitz in 1946 based on Einstein
The relativistic cosmological perturbation plays a funda-gravity with a hydrodynamic fluidi6]. In handling the gauge
mental role in the modern theory of large-scale cosmic strucdegrees of freedom arising in the perturbation analysis in
ture formation based on gravitational instability. Because ofelativistic gravity, Lifshitz started by choosing the synchro-
the extremely low level anisotropies of the cosmic micro-nous gauge condition and properly sorted out the remaining
wave background radiatiofCMBR), the cosmological dy- gauge degrees of freedom incompletely fixed by his gauge
namics of the structures on the large scale and in the earlgondition. Other approaches based on otlmeore suitablg
universe are generally believed to operate as small deviatiorgauge conditions were taken by Harrison using the zero-
from the homogeneous and isotropic background worldshear gauge in 196[77] and by Nariai using the comoving
model. The relativistic cosmological perturbation analysisgauge in 19698]. Each of these two gauge conditions com-
works as the basic framework in handling such cosmologicapletely removes the gauge degrees of freedom. Now, we
structure formation processes. Recent observations of tHaow that the zero-shear gauge is suitable for handling the
CMBR anisotropies on a small angular scale by the Boomergravitational potential perturbation and the velocity perturba-
ang and Maxima-1 experiment$,2], for example, confirm tion, and the comoving gauge is suitable for handling the
the validity of the basic assumptions used in cosmologicatiensity perturbation. Since each of these two gauge condi-
perturbation theory, i.e., the linearity of the relevant cosmictions completely fixes the gauge transformation properties,
structures. all the variables in the gauge condition are the same as the
Soon after the discovery of the CMBR by Penzias andgauge-invariant ones: that is, each variable uniquely corre-
Wilson in 1965[3], Sachs and Wolfe in 1964] pointed out  sponds to a gauge-invariant combination of the variable con-
that the CMBR should show temperature anisotropy causederned and the variable used in the gauge condition.
by photons traveling in the perturbed metric that is associ- The gauge-invariant combinations were explicitly intro-
ated with large-scale structure formation processes based aluced by Bardeen in 1980]; see also Lukash 19401] for
gravitational instability. The detailed dynamics at last scat-a similarly important contribution. This became a seminal
tering is not important on the large angular scale that can baork due to timely introduction of the early inflation sce-
handled using the null geodesic equations, whereas theario[10] which provides a casual mechanism for explaining
physical processes of last scattering including the recombithe generation and evolution of the observed large-scale cos-
nation process are important on the small angular scalmic structures. We believe, however, that a more important
where we need to solve the Boltzmann equations for theuggestion in practice concerning the gauge issue was made
photon distribution functiom5]. When we handle the evolu- by Bardeen in 198812], and this was elaborated j&3]. In
tions of collisionless patrticles, such as the massive or masgrauge theory it is well known that a proper choice of the
less neutrinos or collisionless dark matter, we need the cogauge condition is often necessary for proper handling of the
responding Boltzmann equations as well. problem. Either by fixing certain gauge conditions or by
The relativistic gravity theory, including Einstein’s gen- choosing certain gauge-invariant combinations in the early
eral theory of relativity as a particular case, is a non-Abeliarcalculation stage we are likely to lose possible advantages
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available in other gauge conditions. According to Bardeent1 Arnowitt-Deser-Misner(ADM) formulation and the 1

“the moral is that one should work in the gauge that is math-+ 3 covariant formulation of the cosmological perturbation

ematically most convenient for the problem at hand.” In or-theory.

der to use the various gauge conditions as advantages in We setc=1.

handling cosmological perturbations we have proposed a

gauge-ready method that allows the flexible use of the vari- II. CLASSICAL EORMULATION

ous fundamental gauge conditions. In this paper we will fur-

ther elaborate the gauge-ready approach for more general

situations of generalized gravity theories including compo- We consider a gravity with an arbitrary number of scalar

nents described by the relativistic Boltzmann equations. fields generally coupled with the gravity, and with an arbi-
Our formulation is made based on the gauge-ready aprary number of mutually interacting imperfect fluids as well

proach; using this approach our new formulation of the cosas the kinetic components. As the Lagrangian we consider

mological perturbation is more flexible and adaptable in . 1

ractical applications compared with previous work. Also, . K Ky glic 4J K

!cohe formuIaF'zir())n is made forg Lagrangiarer that is very general, £=\-g 217 R = 20u(¢1) g = V(4T + Lm}

and thus includes most of the practically interesting general- (N)

ized versions of gravity theories considered in the literature.

We pay particular attention to the contribution of the kineticR is the scalar curvatures' is thelth component oN scalar

A. Generalized gravity theories

components in the context of the generalized gravity theofields. The capital indice$,J,K, ...=1,2,3, ... ,N indi-
ries. As an application of the gauge-ready approach made igate the scalar fields, and the summation convention is used
this paper, we implemented the numerical integration of thdor repeated indicegy=det(g,,) wherea,b, ... are space-

Boltzmann equations for CMBR anisotropies in four differ- time indices.f(¢X,R) is a general algebraic function &

ent gauge conditions. In addition to the previously used synand the scalar fieldg', andg,;(¢*) andV(¢X) are general

chronous gaugéwithout the gauge modeand the zero-shear algebraic functions of the scalar fieldg;¢¥,R) andV(4)

gauge, we also implemented the uniform-expansion gaugiadicatef(¢?, ... ,¢",R) andV(e?, ... ,¢"). We include a

and the uniform-curvature gauge in a gauge-ready mannenonlinear sigma-type kinetic term where the kinetic matrix

These two gauge conditions have not been employed in thg,; is considered as a Riemannian metric on the manifold

study of the CMBR power spectra previously. We will show with the coordinatesp'. The matter part of the Lagrangian

that by comparing solutions obtained separately in different.,, includes the fluids, the kinetic components, and the inter-

gauge conditions we can naturally check the numerical accuaction with the fields, as well.

racy. Equation (1) contains many interesting gravity theories
In Sec. Il we present the classical formulation of the cos-with scalar fields as subsets. Einstein gravity is a case of

mological perturbations of fields and fluids in the context ofminimal coupling with the gravity; thus=R/(87G); this

generalized gravity in a unified manner; i.e., diverse gravitycase still includes the nonlinear sigma type couplings among

theories are handled in a unified form. The formulation isfields, and for the minimally coupled scalar fields we have

based on the gauge-ready strategy which is explained thog,;= 8,;. General couplings of the scalar fields with gravity

oughly in Sec. Il E. In Sec. Ill we present the gauge-readyand the nonlinear sigma type kinetic term generically appear

formulation of the kinetic components based on the relativin various attempts to unify the gravity with other fundamen-

istic Boltzmann equations in the context of generalized gravtal forces, like the Kaluza-Klein, the supergravity, the super-

ity again in a unified manner; i.e., we handle the massive ostring, and theM-theory programs; these terms also appear

massless collisionless particles and the photon with Thomsomaturally in the quantization processes of gravity theory on

scattering simultaneously, and all three types of perturbatiothe way toward quantum gravity. The Lagrangian in Eqg.

are handled in a single set of equations. In Sec. IV we extenthcludes the following generalized gravity theories as subsets

the formulation to include the photon with polarizations, and[for simplicity, we consider one scalar field with= ¢* and

implement the numerical calculation of the CMBR tempera-g,;=g,,(¢)]:

ture and polarization anisotropy power spectra. Our present

code is based on Einstein gravity including the baryon, cold (@) Einstein theory: f=(1/87G)R, g11=1,

dark matter(CDM), photon(including polarizations mass-

less or massive neutrinos, the cosmological constant, and the (b) Brans-Dicke theory: f = (1/87) ¢R,

background curvature, for both the scalar- and tensor-type

perturbations. The scalar-type perturbation is implemented

using several gauge conditions; some of them are new. We

explain how to generalize the Boltzmann code easily in the

context of the generalized gravity theories including the re- i

cently popular time varying cosmological constant. Sectior{ ¢) low-energy string theory:

V is a discussion. In Appendixes A and B we present the

conformal transformation properties of our generalized grav- f=e ’R, gu=-e’ V=0,

ity theories and the effective fluid quantities. In Appendix C

we present useful kinematic quantities appearing in the 3d) Nonminimally coupled scalar field:

-2 V=0
gll—m, =y,
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. ) B pendix B. UsingT&™ we can derive the fundamental cosmo-
- %_fd’ R gn=1, logical equations in generalized gravity without much alge-
bra: we use the same equations derived in Einstein gravity
(e) Induced gravity: f=e¢’R, g;=1, with the fluid energy-momentum tensor and reinterpret the
fluid quantities as the effective onfs8]. The direct deriva-
1 tion is also straightforward.
V= Z)\(d>2—v2)2, The matter energy-momentum tensor can be decomposed
covariantly into the fluid quantities using a normalized
5 e 21an 02 (u?u,= —1) four-vectoru, which is not necessarily the flow
(f)R°gravity: f=(1/87G)(R+R“/6M~), four-vector[63]:

¢=0, )

etc. These gravity theories without additional fields and mat-
ter can be considered as second-order theories. However,
even with a single scalar field, tHé ¢,R) gravity is gener-

ally a fourth-order theory. Although such gravity theories do
not have an immediate interest in the context of currently Tan=Tcedhhd—ph,p, (6)
considered generalized gravity theories, one simple example

is the case withf =f,(¢)f,(R) wherefy(R) is a nonlinear  \yhereh,,=g,,+u,u, is a projection tensor of the, vec-
function of R tor, andgu?=0=m,,U°, 7.,= s, and72=0. The mat-

By conformal transformation Ed1) can be transformed o gnergy-momentum tensor can be decomposed into the
to Einstein gravity with nonlinear sigma model type scalarg,m of the individual ones as

fields, and the transformed theory also belongs to the type in

Eq. (1); see Appendix A. The authors ¢14] considered a

less general form of Lagrangian than in Edj) in perturba- Tabzz Tyab: (7
tion analyses; however, since they used the conformal trans- !

formation, they actually considered Einstein gravity with

Tap= mUaUp+ Pphapt daup+gpUa+ map,

1
METabuaubi p= §Tabhaba an—TCdUChg,

nonlinear sigma type couplings. and energy-momentum conservation gives
Variations with respect tg,, and ¢' lead to the gravita-
tional field equation and the equations of motion: T(i)g;bEQ(i)aa 2| Quya= —F|¢!a, ®
Gab= | Tavt G| Hatbs— 50074
ab™ g | fab T Y| Pa¥b o 5 Fab . where (i) indicates theth component of types of matter
1 with i,j,k, ...=1,2,3 ... ,n. The matter includes not only
+Z(f—=RF=2V N = the general imperfect fluids, but also the contributions from
2 J9a0t F aip™ Gab C} multiple components of the collisionless particles and the

photon described by the corresponding distribution functions
EBWGTg%ﬁ) , (3 and the Boltzmann equations. These kinetic components will
be considered in Secs. Il and 1Q ), takes into account
o+ 1(f V)T gk possible interactions among the matters and fields.
c E - ' KPP ¢

B. Perturbed world model

_ 1l
=—La =l ) We consider the most general perturbations in the
b ; Friedmann-Lemaie-Robertson-Walker (FLRW)  world
Tab=Lmai®la: (5 model. As the metric we take
where F=9f/4R; g" is the inverse metric ofy;, ') ds?’=—a?(1+2A)d»*—2a’B,dndx*
=39""(gLak T 9Lk~ uk,L), andV,=dV/(d¢'). Equation 2, (3) aqoB
(5) follows from Eqs.(3),(4) and the Bianchi identityT ,, is +a%(gapt 2C,p)dx7dX7, ©)

the energy-momentum tensor of the matter part defined as _ .

S(V=9gLy)=3%V—gT?sg,,. We have assumed that the Wherea(t) is the cosmic scale factor amtt=adz. A(x,t),
matter part of the Lagrangian, also depends on the scalar Ba(X,1), and C,4(x,t) are generally spacetime-dependent
fields asL =L (matterg.p, ). In Eq. (4) the ' term  Perturbed order variable®,, C,, andC,z are based on
considers the phenomenological couplings among the scalit.g - i-€.. indices are raised and lowered wif) .

fields and matter. In Eq(3) we introduced an effective The scalar fields are decomposed into the background and

energy-momentum tensoFS" where the mattefT,, in- ~ Perturbed parts as
cludes the fluids and the kinetic components. The effective o
fluid quantities to the perturbed order are presented in Ap- o (x,1)='(t)+ 5¢' (x,1), (20
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and similarly forR andF. In the following, unless necessary,

we neglect the overbars which indicate the background order

guantities.
The energy-momentum tensor is decomposed as

To=—u=—(u+op),

1
To= S10at (14 P)ULI= (1t P)vg,

3)a

T4=pds+mh=(p+op) 5+ 75,

(1)
where v, and 7% are based org). v, is a frame-
independent definition of the velocitpr flux related vari-
able[13]. In the multicomponent fluid situation from E)
we have

;:zll ;(l)’ 5M:§|: Oy s (12
and similarly forp, p, (u+p)v,, and=s.

C. Decompositions

In a spatially homogeneous and isotropic background we

PHYSICAL REVIEW D 65 023512

. . A
x=a(pt+ay), k=3(Ha—¢)— 22X

Y@ =p®) +acM), (14)

where an overdot indicates a time derivative based amd
H=a/a; A is a comoving three-space Laplacian, i&y
E)('“a. Later we will see that these combinations are spa-
tially gauge invariant. The perturbed metric variables have
clear meaning based on the kinematic quantities of the
normal-frame four-vector; see EqE3),(C14).

We introduce three-space harmonic functions depending
on the perturbation type. The harmonic functions based on
9%} were introduced i9,15];

Y(S)lny _ |(2Y(5)7 YEYS)E _ %Y(Z) ’

1 1
) — T8 4 T (3l
Yes=12YalptT 3957
v @y = _2y®  ye)= _ Ly
a = ar Yap="1Y(dp)

Y(U)MEO,

can decompose the perturbed variables into three different

types, and to linear order different perturbation types de-
couple from each other and evolve independently. We de-

compose the metric perturbation variabhes,, andC,z as

A=q,

B,=B..+B,

Cap=000+ V.05 Cllg +CLL, 13

O]

Oly = _ g2y 0 =
Yaﬁ"y— KYapr Yap=Ypa,

YOe=0=YW)s, (15)
wherek is a wave vector in Fourier space wikh=|k|; the
wave vector for individual types of perturbation is defined by
the Helmholtz equations in Eq15). In terms of the har-
monic functions we havex(x,7)=a(k,7)Y®(k;x) and
similarly for 8, y, and ¢; BM=b®Y) c)=c)yl)
andC{h=cY{). Since we are considering linear perturba-

where a vertical baf indicates a covariant derivative based tions the same forms of equation will be valid in the configu-
on ggig_ (s), (v), and(t) indicate the scalar-, vector-, and ration and the Fourier spaces. Thus, without causing any
tensor-type perturbations, respectively. The perturbed ordetonfusion, we often do not distinguish the Fourier space
variablesa(x,t), B(x,t), ¢(x,t), andy(x,t) are scalar-type from the configuration space by an additional subindex.
metric perturbationsB{)(x,t) and C{”)(x,t) are transverse Also, since each Fourier mode evolves independently to lin-
(B(v)am:OZC(v)a\a) vector-type perturbations correspond- €ar _order, Wlthout causing any _con_fu5|on we ignore the sum-
ing to the rotational perturbatiorc‘;};(x,t) is a transverse Mation over eigenfunctions indicating the Fourier expansion.

. | .
tracefree C(t)gzozc(t)ﬁlﬂ) tensor-type perturbation corre- The perturbed scalar fieldS¢' in Eq. (10) couple only

sponding to the gravitational wave. Thus, we have four de? ith the scalar-type perturbations, and are expanded as

grees of freedom for the scalar-type, four degrees of freedom
for the vector-type, and two degrees of freedom for the
tensor-type perturbations. Two degrees of freedom for th@nd similarly for SR and 5F as well.

tensor-type perturbation indicate the graviational wave, Now, we consider perturbations in the fluid quantities. We

the scalar-type and vector-type perturbations are affected by p

coordinate transformations that connect the physical per-
turbed spacetime with the fictitious background spacetime.
This is often called the gauge effect and a way of using it as
anadvantagen handling problems will be described in Sec.

5! (x,t) =8¢ (k,t) YO (k;x), (16)

0,=00OYE 4, @yE)

7= Oy OF 4 7Y OB L L OVOB

Il E. It is convenient to introduce the following combinations
of the metric variables:

17

The energy-momentum tensor in E41) becomes
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To=—(u+op),

1
To=— 1w+ PoQ+(u+po®Yy,

a

T4=(p+0p) 84+ 7OYO 4+ 7Y M)e 4 7Oy O
(18)

In terms of the individual matter’s fluid quantities we have

;=Z ey 5,U~:EI Opqy s (19

and similarly forp, &p, (u+p)v®?), and #5*:Y. We use
the notation introduced by Bardeen in 198&]; comparison

with Bardeen’s 1980 notatioi®] can be found in Sec. 2.2 of

[13]; compared with our previous notation i3] we have
7= (k?’/a?) o andv® = —k/[a(u+p)]¥. We often write
=,(9)
V=0"".
The interaction terms among fluids introduced in E).
are decomposed as

Qqiyo=—alQq)(1+A)+ Qg ],

Quya=JYE +I YY) (20
From Eq.(8) we have
2 Qn=I4,
2. 8Qqy=0L'¢'+T'(8¢— ¢pa),
2 If=-Ts¢', 2 If=0 (21)

Thus, the right-hand side of the second equation in (Bp.

contributes only to the scalar-type perturbation.

D. Background equations

The equations for the background are

, 1 1 .1 ] K
H =3—F ,u,+§g|Jd)¢ —E(f—RF—ZV)—3HF —g,
(22
) 1 g . K
H:_E(M+p+glJ¢¢ +F—HF)+;- (23
o v K

R=6| 2HZ+H+ ), (24)

o Sl 3K, b d_
¢'+3HP + T +§(2V—f)'——r, (25
iy +3H gy + Pay) = Qg » (26)
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where u, p, and Q, follow Egs. (19),(21). Equations
(22),(23) follow from the GJ and G*—3GJ components of
Eq. (3), respectively. Equatiori25) follows from Eq. (4).
Equation(26) follows from Eq.(8). By adding Eq(26) over
components we have

put+3H(u+p)=T 4" (27)

By settingF=1/(87G) we can recover the 8G factor in
Einstein gravity. The gravity theory in Eq1) includes the
cosmological constanh. The cosmological constant intro-
duced in Eq(1) as an additionat- A y— g term can be simu-
lated using either the scalar field or the fluid. Using the scalar
field we letV—V+ A/(87G). Using the fluid, sincé\ con-
tributesTQb: —Ag.,/(87G) to the energy-momentum ten-
sor, we letu— u+A/(87G) and p—p—A/(87G). This
causes a change only in ER2). In the presence of the
kinetic components we additionally have the Boltzmann
equations for the components and the sum over fluid quanti-
ties should include the contributions from the kinetic com-
ponents; see Sec. Il C.

E. Gauge strategy

In the following we explain briefly our gauge-ready strat-
egy. Due to the general covariance of relativistic gravity
theory we need to take care of the fictitious degrees of free-
dom arising in the relativistic perturbation analysis. This
freedom appears because relativistic gravity is a constrained
system: there exist some constraint equations with only alge-
braic relations among variables. In perturbation analysis this
is known as the gauge degree of freedom. The gauge free-
dom in perturbation analysis arises from the different ways
of defining the correspondence between the perturbed space-
time and the fictitious background. For example, by intro-
ducing a spacetime dependent coordinate transformation,
even the FLRW background can be changed into a perturbed
form which is simply due to the coordinatgauge transfor-
mation. Only in a special coordinate system does the FLRW
metric look simple as in Eq9) without perturbation.

As in other gauge theories, there are some redundant de-
grees of freedom in the equations which can be fixed without
affecting the physics. Certainly it would be advisable, and is
often essential, to take a proper gauge condition which either
simplifies the mathematical analysis or allows an easier
physical interpretation. Usually we do not know the best
gauge conditioriwhich differs depending on each problgm
a priori, but it is desirablgactually often necessaryo find
the best one. In this regard, the advantage of managing the
equations in a gauge-ready form was suggested by Bardeen
in 1988[12], and the formulation was elaborated[i3].

Contrary to many works in the literature which often con-
sider the gauge freedom as causing problems in the theory,
we believe that, as in other gauge theofeg., the Maxwell
theory and the Yang-Mills theojythe gauge freedom can
and should be used as advantagen solving each specific
problem. Our gauge-ready form arrangement of the equa-
tions will allow the optimal use of the advantageous aspect
of the gauge degrees of freedom present in the theory. To that
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purpose all the scalar-type perturbation equations are pre- Gauge transformation properties of the perturbed cosmo-
sented in a uniquely significaéee below spatially gauge- logical spacetime were nicely discussed[19,9,15,12,20
invariant form but without fixing the temporal gauge condi- Under a gauge transformation of the fomf= x2+ £ the
tion. In this way, we can easily implement the severalmetric and the energy-momentum tensor transform as
available temporal gauge conditions depending on the situa-

tion, and in this sense the set of equations is in a gauge-ready ~ e ax° gx¢ .

form. The tensor-type perturbation describing the gravita- Jan(X )—%ﬁgcd(x ) (28)
tional wave is gauge invariant, and the vector-type perturba-

tion describing the rotation is presented using uniquely sigthus,

nificant gauge-invariant combinations of the variables. The 5

particular choice of a gauge implies no loss of generality. If Jab(X®) = 0an(X®) — Gab.c Ut 2= Gact’p, (29

a solution of a variable is known in a specific gauge, the rest

of the variables, even in other gauges, can easily be reco@nd similarly for T§. By introducing é'=a&® (0=7) and
ered. Therefore, if possible, it would be convenient to star€,=¢ .+ &%) with ¢ based org'®) and¢(*=0, the per-
from the gauge condition that allows easier manipulation ofurbed metric quantities and the collective fluid quantities
the equations. However, since the optimum gauge conditioghange as follows:

is usually unknowra priori, often it is convenient to carry

out the analyse_s in the a_va_ilabl_e pool of various gauge con- a=a—-¢&, p=¢p—HE&, B=p- £§‘+a'§,

ditions and to find the distinguished gauge condition; such a

analyses in single-component situations have been carried

out in fluid [16], in scalar field17], and in generalized grav- y=y—& op=ou—ué, op=op—pé,
ity theories[18]. Our experience tells that different gauge
conditions fit different problems, or even different aspects of ~ kK .
- i v=v— &
a given system. Often, problematic aspects of the gauge free- a

dom appear if one sticks to a particular gauge condition from
the beginning and if that gauge condition turns out to be not BW=BW+az® CO=cl)_ o) (30)
a suitable choice for the problem. Our gauge-ready strategy
is not a particularly new suggestion in the context of gaugendv, C{),, 75 are gauge invariant. Thus, from Eq.
theory except that such a strategy, andsitstematic usehas  (14) we have
been largely ignored in the cosmology literature despite its
rather clear advantage. In the present work we extend the
formulation in[13] to more general situations including ki-
netic components and arrange the equations for convenient
usage in diverse situations. PO =g @) (32)

In perturbation analyses we have to deal with two metric
systems; one is the physical perturbed model and the other &nd these are spatially gauge invariant. From the scalar na-
the fictitious background model. The gauge degrees of freeure of ¢', R, F, andI’, we have
dom arise because we have different ways of relating the

3+ 5
a2

}:X_gtr }:K—’— gt'

perturbed spacetime points to the arbitrary background S5d'=68¢'—'&, oT,=oT,—-T,&,

spacetime points. Since we are considering a spatially homo-

geneous and isotropic background the spatial correspon- sR=6R—R¢, SF=oF—F¢. (32)
dences(spatial gauge transformatipean be handled trivi-

ally: according to Bardeen12], “Since the background From Eq.(30) we notice that the tensor-type perturbation

three-space is homogeneous and isotropic, the perturbatiariables are gauge invariant. For the vector-type perturba-
in all physical quantities must in fact be gauge invarianttion we notice that¥(") defined in Eq.(14) is a unique
under purely spatial gauge transformations.” We will showgauge-invariant combination. Thus, usifig”) the vector-
that only the variableg, y, b®), andc®®) depend on the type perturbation becomes gauge invariant. For the scalar-
spatial gauge transformation. But these appear always in th§pe perturbation using instead of8 and y individually, all
combinationsy and ¥ in Eq. (14), which are spatially the variables are spatially gauge invariant. Considering the
gauge-invariant combinations; see H&1) below. These temporal gauge transformation properties, there exist several

combinations are unigue in the sense that other combinatiofandamental gauge conditions based on the metric and the
fail to fix the spatial gauge degrees of freedom completelyenergy-momentum tensor:

Thus, using thesduniquely significant spatially gauge-

invariant combinations we take care of the effects of spatial synchronous gaugea=0,
gauge transformation of the scalar- and vector-type perturba-

tions completely; the corresponding spatial gauge transfor- comoving gauge:v/k=0,
mation properties of the kinetic components will be consid-

ered below Eq(72). zero-shear gaugey =0,
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uniform-curvature gaugeip=0, invariant combinations even for a given variable, this way of
writing the gauge-invariant combination will turn out to be
uniform-expansion gaugex=0, convenient in practice.
In the multicomponent case of fluids there are some addi-
uniform-density gauge:su=0, tional (temporal gauge conditions available. From the ten-

sorial property ofT ., and using Eq(29) we can show that
uniform-pressure gaugesp=0,

uniform-field (¢') gauge: 8¢'=0, Sty = Smqiy— €' Pay= Peiy— Peir €',

uniform-R gauge: 6R=0, K
- t

uniform-F gauge: SF=0, (33 vH=UHT ¢ (35

etc. The names of the gauge conditions usinge, and

can be justified: these variables correspond to the shear agid v{l) , m(5"" are gauge invariant. Thus, the additional

the three-space curvature of the normal frame vector fieldemporal gauge conditions are

and the perturbed part of the trace of extrinsic curvature

(equivalently, the negative of the expansion scalar based on

the normal framg respectively[see Eqs(C3),(C14)]. v/k

=0 is a frame-invariant definition of the comoving gauge

condition based on the collective velocity. etc. Any one of these gauge conditions also fixes the tempo-
The original definition of the synchronous gauge[6]  ral gauge condition completely. From the vector nature of

fixed B=0 as the spatial gauge condition in additiondo Q(iya and using Eq(8) we have

=0 as the temporal gauge condition. In this case, from Eq.

(300 we note that the spatial gauge fixing also leaves a re- 5 ) _

maining(spatia) gauge degree of freedom. By using the spa- 6Q(iy=6Qiy— Q(i)gt, Jgf) =JE?))+ Q(i)ft.

tially gauge-invariant combinationg andv we can avoid

this unnecessary complication caused by the spatial gauge _

transformation, which is trivial due to the homogeneity of I =3 (37)

the FLRW backgroun@12]. From Eq.(14) y is the same as

apB in the y=0 gauge condition. But in thgg=0 gauge

condition we havey=a?y, thus y is undetermined up to a

constantin time only) factor which is thgspatially varying

Sui=0, dpi=0, v k=0, §¢'=0, (36)

As mentioned previously, in general we do not know the
suitable gauge conditiom priori. The proposal made in
= [12,13 is that we write the set of equation without fixing the
remaining gauge mode. . (temporal gauge condition and arrange the equation so that
By examining Eq_s.(30).—(33) we notice that, out of the we can easily implement various fundamental gauge condi-
several gauge conditions in E@3), except for the synchro- i, \we call this approach a gauge-ready method. Any one
nous gauge condition, each of the gauge conditions fixes th((;r the fundamental gauge conditions in E¢33),(36) and
temporal gauge mode completely; the synchronous gaud§yitable linear combinations of them can turn out to be a

‘:]:0' 'ef%V?S spatially v?jrying nonfvaniﬁhitggx) thif:h Is h useful gauge condition depending on the problem. A particu-
the remaining gauge mode even after the gauge fixing. Thug, gauge condition is suitable for handling a particular as-

avariablg in Sl.JCh a gauge cpndition uniqugly correspon.dst ect of the individual problem. The gauge transformation
a gauge-invariant combination that combines the variabl

. . . roperties of the kinetic components will be considered in
concerned and the variable used in the gauge condition. Se ec. Ill; see the paragraphs surrounding E@g), (98), and
eral interesting gauge-invariant combinations are the foIIow—(lO5')_ ' ' '

ing:

Sy =S — E,iw, ¢, =9~ Hyx, UXEU_EX- F. Scalar-type perturbation

In this section we present a complete set of equations
describing the scalar-type perturbation without fixing the
temporal gauge condition, i.e., in the gauge-ready form. The

definition of x is

L SR
Po=¢T Y O0p,=06¢ — H =T H P
(34)
: 1 1k?
For example, the gauge-invariant combinatigip), is e=Ha—zx+z X (39
equivalent to8¢' in the uniform-curvature gauge which
takese=0 as the gauge condition, etc. In this way, we can
systematically construct various gauge-invariant combinaThe ADM energy constraint@J component of the field
tions for a given variable. Since we can make several gaugequation is
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k?2—3K " F
2F

o+

1 S .
K= ﬁ(9|J¢I¢J_3HF)a

=—i{fm+g P58+ S0 $' (1
2F N 5181k

. . k2

—2V) k]8¢K—3HSF+| 3H+3H?— ;) 5F}.
(39

The momentum constrainGC component s

k2-3K 3F
K— X+§Ea
_22 b 57+ OF —H SF
=5F E(M"‘p)v‘*‘gu‘l’ ¢"+ oF — .
(40)

The ADM propagation G — z 5;65 componentis

+ H+F _ie )+ 6F 41
ElXx—ame=gliam . (4D

The Raychaudhuri equatiorG(— G8 component is given
by

E
2H+ o=

1
5E 3H + 5 (6F +3HF

+3 +
K EFaf

2

g K
+4g1y¢' ¢~ 7|

Su+38p+4g,,4' 66 +[29,; k' ¢’

ToF

+(f—2V) (164" + 38F + 3H 6F

?—6K
—6H*+ — )5F : (42)
The scalar field equations of motion are
71 n I 4 JoK k2 | 1 i
8¢ +3H ¢ + 2T j b 8 +;5¢ + E(zv—f)’ L
+F5K,L¢J¢K}6¢L
=¢'(k+a)+(2¢'+3H¢'
I 43K 1 i |
+20 ¢ ¢t SFIOR— T (43

The trace equation&3 componentis

PHYSICAL REVIEW D 65 023512

k2

SF +3HF + 23

2 5,1 APE
oF + §9|J¢ o™+ §[9|J,K¢ ¢

+2(f—2V) k]8¢*

1 . .
=§(5M_35p)+F(K+ a)

2 .. . : 1
+§glJ¢'¢J+2F+3HF)a—§F5R. (44)

The scalar curvature is given by

2

k 2
2 3H

SR=2| — k—4H K+ a+2

¢|. (45

The energy conservation of the fluid componeffi®m
Tion=Qqyo and using Eq(38)] gives

. k .
Syt 3H Oy + PGy = = 5 (maiy F Payv iy + mepye

+(miyt Py k+ Qe  (46)

and the momentum conservation of the fluid components

(from T(i)(ﬁ’;b=Q(i)a) gives

1
—[a* (g +pa)viy]
34(M(i)+ Paiy) I v
_k 1 5 2 k?—3K
“al " wnrre p(i)—g—kz ™3 =0y

(47)

By adding Eqgs(46),(47) properly over all components of the
fluids, and using the properties in Eq49), (21), and (27),
we get the equations for the collective fluid quantities as

) k .
du+3H(dp+8p)=(utp)| k—3Ha— —v +T,6¢'
+6T,¢', (48
1 4yt .
m[a (n+pv]
_k 1 2 k2 94T, 50
= a at —— atp p 3 + ¢
(49
It is convenient to introduce
2 o
5p(k,t)ECS(t)5,U/(k,t)+e(k,t), 5571
p p
w(t)=—, c3(t)=—. (50)
M M
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Equations(38)—(49) provide a redundantly complete set gravitational field equation. The presence of kinetic compo-
for handling the most general scalar-type perturbation of th@ents additionally introduces the corresponding Boltzmann
FLRW world model allowed by the Lagrangian in EQ); equations, and contributes to the fluid quantities in the above
for example, Eq(44) follows from Egs.(39), (42), and(45). equations; see Sec. Il and IV.

Equations(48),(49) follow from Egs. (46),(47). Following The vorticity tensors based on frame-invariant four-

the prescriptions below E@27) these equations also include vectors argsee Appendix €

the cosmological constant; the term does not appear ex-

plicitly in our set of equations in the form Eq&38)—(49). “’aB:aU(U)YEZ)\B] , w(i)aﬂ:avg}))YEZ)\ﬁ] _ (56)

Notice that Egs.(46)—(49), which follow from the fluid

energy-momentum conservation in E@6),(8), are not af-  Thys, we haves= 0™ w.,/2 and similarly forwy . Equa-

fected formally by the generalized nature of the gravity wetjons (53)—(55) show that the fluid velocities of the rotational

are considering. In Secs. Il and IV we will see that the pertyrbation do not explicitly depend on the generalized na-

presence of kinetic components additionally introduces theyre of the gravity, whereas only the metric connected with

corresponding Boltzmann equations, and their contributionghe rotation model *) depends on the nature of the gener-

to the energy-momentum content can be included as the ingjizeq gravity; a¥®) term appears in the Boltzmann equa-

dividual fluid quantity in the gbovg set of equations. tions though[see Egs.(95),(102)]. Equations (54),(55),
Equations(38)—(49) are written in a gauge-ready form. In \yhich are independent of the field equations, tell us that in a

handling the actual problem we haveight to imposeone  eqiym without anisotropic stress termg) or mutual in-
temp_oral gauge_condition accordi_ng to the mathematical Oferaction terms among componeds , the :);mgular momen-
physical convenience we can achieve. As long as we choo%m combination of an individual component is conserved as
a gauge condition that fixes the temporal gauge mode com-
pletely, the resulting equations and the solutions are com-
pletely free from the gauge degrees of freedom and the vari-

ables are equivalently gauge invariant. Some recommended

angular momentum-a®(s )+ py) X ax vy

fundamental gauge conditions are summarized in Egs. =constant in time. (57

(33),(36). Equations(38)—(49) are designed so that we can

easily accommodate any of these gauge conditions. The presence of anisotropic pressure can work as a sink or a

If we take an ansatz for thE' term in Eq.(4) as source of rotational perturbation of the individual fluid. An-
) gular momentum conservation of rotational perturbation in
I'=D}¢’ U, (51)  Einstein gravity was noted in the original work by Lifshitz
[6].
to perturbed order we have In the presence of kinetic components we additionally

n L . ) ) have the corresponding Boltzmann equations, and the com-
I'+6I'=D¢’+D}6¢’~ D' ¢’a+ 6D ¢’, (52  ponents contribute to the anisotropic pressure in the above
equations; see Secs. Il and IV.
where we usedi®=(1/a)(1— «). Such a phenomenological

damping term was considered [ih4]. H. Gravitational wave

G. Rotation The tensor-type perturbatiofgravitational wavg equa-
) ) _ tion in Einstein gravity was derived originally by Lifshitz in
The equations for the vector-tygetationa) perturbation [6]. We can easily derive the wave equation for the most

are general situation covered by the Lagrangian in 8g.as
k2—2K 1 2
— . F\. ke+2K 1
2z VU= E 2 (oteol). (63 cO+|3H+ |+ ———cO== 2 n{], (59
|
ias )7 = k*—2K (v) which follows from theG% component of Eq(3) using Eqgs
Fla(ptpo?]' == —F—m%, (54) 5 ComMp q g Egs.

(13), (18), and (19). The generalized nature of the gravity
1 2 2K appears in thdé= terms: one in the damping term and the

a, ) () 4 1(v) other in modulating the amplitude of the fluid source term.
2L (ko TPava]T = TEIOREIOR (55) This equation is valid for the general theory in Etj), and

the presence of an arbitrary number of minimally coupled

Equation(53) follows from the G% component of Eq(3),  scalar fieldswith generalg,;) does not formally affect the
and Eq.(54) follows from Tg;b=0. Equation(55) follows  equation for the cosmological gravitational wave. The pres-
from Eq. (8). By adding Eq.(55) over all components we ence of kinetic components additionally introduces the cor-
have Eq.(54). Notice that Eqs(54),(55) are not affected responding Boltzmann equations, and contributes to the an-
formally by the generalized nature of gravity theory. In fact,isotropic pressure in the above equations; see Secs. Il and
these two equations are derived from the conservation of th/.
energy-momentum tensors in E@S),(8) without using the Equation(58) can be arranged in the following form:
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7" a3 tities can be identified using E¢6). In the case of multiple
k24 2K — —t)vtz — > ), kinetic components, we have Eq$1), (63) now valid for
2 JF 1 the individual kinetic component. The corresponding fluid

. quantities of the individual component can be identified us-
vi=aJFc®, z=ayF, (59  ing Egs.(6), (7).

where the prime denotes the time derivative basedyom
the large-scale limit, thus ignoring the term in Eq.(59),
and assumingK =0 and7('=0, we have the general inte-  Under the perturbed FLRW metric in E(®), usingp? as
gral form solution[13] the phase space variable, E1) becomes

v+

B. Boltzmann equation in the perturbed FLRW model

aI
— (PP +glhpp) + A’pp°

t 1
c(t)(k,t)zc(k)—d(k)fﬁdt, 60)  pf'+pf ,—

. . . a’ a’
wherfac(k) and d(k)_ are integration constants for relatlvel_y +2(A,a_ _Ba) p%p«+ _2_95133)AJr Ba\ﬁ+cz;ﬁ
growing and decaying solutions, respectively. This solution a a

is valid considering the general time evolution of the back-

ground dynamics as long as the perturbation is in the super- +2—,C )papﬁ ifﬁ_ Za_’ pOp+T Rphp? of
horizon. The growing solution is simplgonservedon the a ap a By ap“
superhorizon scale and the generalized nature of the gravity —[f] (64)

does not affect the conserved nature of the growing solution.
Only in the decaying solution does the generalized nature %
the gravity appear explicitly.

Similar equations and solutions as above can be derive,
for a single component scalar-type perturbation in unifieq
forms for the fluid, the field, and the generalized gravity
theory as well[16-18.

handling the Boltzmann equation and the energy-
omentum tensor in perturbed FLRW spacetime, it is con-
enient to introduce special phase space variables based on a
etrad frame. In the literature we find several different
choices for the phase space variab]g8—-25,19. As the
phase space variables we usg®) introduced as

lll. KINETIC THEORY FORMULATION 1
22

0—
A. Relativistic Boltzmann equation P a

(1—-A)Vo?+m?a2,

The evolutions of collisionless particles and the photon 1
are described by specifying _distribution functions_that are pr= —(qy*+ [o?+ mzazB“—quC;‘;), (65)
governed by the corresponding Boltzmann equations. The a

relativistic Boltzmann equation is given p21,22 ) 3
where y“ is based orggﬁ) with y“y,=1. The advantage of

d dx* of dp® of _of a pcof this choice in our gauge-ready approach will become clear
o aE an apt P @ LbcP’P p? below Eq.(72). Using (q,y%) as the phase space variables
Eq. (64) becomes
=C[f], (61)
where f(x3,pP) is a distribution function with the phase RN - Y o~ T5 Py i )
) [21 242 a Y Ive
space variables® andp®=dx®/d\, andC[ f] is the collision g~+ma 4
term. The energy-momentum tensor of the kinetic compo- /q2+m2a2 of
nent with massn is given as —[TA,QV‘”F(Baw C.p) vy’ 95
(5= | 2009 8(p°pe+m*)pp°F V= gd*p™ (62) _ 1+ AL -
g2+ e

Assuming the mass-shell condition, after integrating @fer
we have We decompose the distribution function into the background
and the perturbed order as
—gdipi2 .
Tab: f -  p@ f, 63 a o ry @ o
© ol PP ©3 f(7.x0,y) =T(n,0) + SF (70509 (67

Equations(3)—(5) together with Eqs(61), (63), including  Assuming that the collision term has no role in the back-
T(¢)ab in the individual fluid energy-momentum tensor, pro- ground order, in which Thomson scattering is a case, we
vide a complete set of equations for considering the contrihave

bution of a component based on the distribution functiea
call it the kinetic component The corresponding fluid quan- f'=0. (68)
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Thus,f is a function ofg only. The energy-momentum tensor
in Eq. (63) becomes

1 g’dqdQ
ab _ anb a
The fluid quantities defined in Eq11) become
1
pio= | e IPae?dgan,,
1 ff q*dqdQ,
P07 30" P mia
1 3
()t PV (c)a= gf ofy,0°dqdQg,
1 1 g*dqdQ
(3a_ — 51:( a _ _5a) q )
T(c)B a“f Y YsT 3% JoP T mZa2
(70)

Under the gauge transformatiofi=x2+ £2, consideringp?
=dx?/d\, we havep®=p?+ ¢ p®. Using the definition of
g in Eq. (65 and using Eq(30) we have

~ 1
a=q+qH& + VJg?+m?a? agfay“. (7
Since f depends only org, we have sf = 5f — (9f/q) (q
—q); thus

(72

_ of Jo?+méa? 1
5t=st-az; H§t+qT5§fw“

Notice that with our phase space variables in Ef) the
perturbed distribution functiodf is spatially gauge invari-

PHYSICAL REVIEW D 65 023512

41 3 1
/'L(c):?f fg>da, Pe)=3H() - (74)

We can show that Eq26) applies to the kinetic components
as well with ()=(c) for both massless and massive par-
ticles. This identification gives

Q(C) =0.

When we have the mattem(, radiation ¢), and massive
neutrino (v,,), it is convenient to introduce

(79

FIE

Mm m
Q=" 0= 0, == Q=
"o 9

0. A _ 3H? 76
AEZHZ K= g (76)
The matter includes the baryon and the cold dark matter with
On=0,+Qc, and the radiation includes photons and
massless collisionless particles like the massless neutrino (
with Q,=Q +Q,. In this case we have

M:Z BT MpT et iy T py T p, 0y,

P=2 P1y=Py* Pyt Py, P (77)

where we have recovered the cosmological constant using
the prescription below Eq27).

The distribution function of the Fermi or Bose-(sign
particle is given by

s 1

fle)= h3 eelkean+ 1

(78

wheregg is the number of spin degrees of freedom, dnpd

ant. Thgs, our choice of phase space vgriables is particularly,,q kg are the Planck and Boltzmann constants. If decou-
convenient for the gauge-ready formulation where, as a strakjing of the massive particle occurs while it is relativistic

egy for later convenient use, we do not fix the temporal(thus for neutrino mass much less than 1 Me¥/in Eq. (78)

gauge condition while fixing the spatial gauge condition

without losing any advantage; odif is spatially gauge in-

can be approximated a3 and afterward the distribution
function is well approximated by the Fermi-Dirac distribu-

variant. We can show that the gauge transformation property, \vith zero rest mass.

of &f is consistent with the gauge transformation properties

of the fluid quantities identified in Eq70).

C. Background equations

Equations(22)—(27) describe the evolution of the FLRW
world model. The sum over fluid quantities in EL9)

should include the kinetic components. To the background

order, from Eq.(70) we have
4 ) 4 q*
M(c)zyf feq-dq, p(c)zyj f?dq, (73

where (g, 7) =g+ m?a?; hereafter, the mass appears
only in e. Thus, for massless particles we have

Since Q(;)=0, from Eq. (26) we have un=up+ puc
xa ?andu,=pu,+pu,xca * For the photon and massless
neutrinos we have

1 1 7 4/3
py:§My1 pvzgll’v! ILLV:NVg(l_l) Moy (79)
4 1/3
Tvz(ﬁ) Ty, (80)

whereN, is the number of massless neutrino species.
Equations(22)—(26) together with Eqs.75), (77) de-

scribe the background evolution in the context of generalized

gravity theories. The generalization to include multicompo-
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nent massive/massless collisionless components is trivial: waherel =|m|, andm=0, =1, +2 correspond to the scalar-,

simply consider the fluid quantities in Eq&3), (74) for
each component.

D. Massless particle

For a massless particte=0, it is convenient to introduce
a frequency integrated perturbed intensity

5fg3dq

ff_q3dq

S1(x3,7)=40 (X2, y)= (81

vector-, and tensor-type perturbations, respectively. Thus, for
the scalar-type perturbation we have
Gy =(—1)'Py(k- y)e' k™, (88)
where 6(k;x) is a spatially dependent phase factor which
depends on the harmonic functioreee Eq(92)]; in the flat

background we have'®¥ =gk As the normalization we

For photons, unless we have an energy injection process inif¢ have the recursion relatig@e]

the CMBR, the spectral distortion vanishes to linear order.

Assuming the photon distribution function

_9s 1
r= h3 eal(kgaoTo) — 1’ (82)

we can expand the temperature fluctuatds: ST/T in the
following form as well:

of

—qofloq’ (83

O(x%,q,y")=
In terms of® the perturbed part of Eq66) becomes

Jd 07
,ya o F (3)a @

0+
X«

=—7'A = (Bypt c;ﬁ) y*yP+ collision term.

(84)
The fluid quantities in Eq(70) become
5,u 1
== ®—q' 9P(0) =3 OM(0)
IU“(C)
dQ
U(c)ya™ J'®7a
(3)a 1 149,
m&=4u | O Y v~ 35| 4
(85)

have
dQ, 1
(M) (m")* -
f |G({;‘ G 477 2|+15||/5mmr. (89
Gl ye= ol _p@ays Gim
Wa? = Yax py77(9 0)
_ k me (m) m (m)
—m(’ﬂ G(|—1)_K|+1G(|+1)),
(90
wherexg=1 and forl=1
m 2_ 2 2 K
k'=\/(I“=m)| 1—(I —1—|m|)P. (91

The harmonic functions are introduced such that we have
(0), (£1), and (*2) superscripts instead of the)( (v),
and(t) indices introduced in Eq15). In terms of the spatial
harmonic functions we identify

Then, from Eqs(90), (15) we can show
(0)— (0 (0) — @y (0)
G(O)_Y( )1 G(l)_y Ya )
2 | K
Z _ (0) _ (0)
3 1 3k26(2)—7 VﬁYa,g,
Gy =rY{Y,
1 K
I (1) @ (£1)
\/§ 1- 2k2 (2) Y YﬂYa/; )
Gl =y vV 2. 93)

Now, from Eqgs.(84) using the expansion in Eq&36), (87)

Using the spatial and momentum harmonic functions introung the recursion relation in E¢QO) we can derive

duced by Huet al. in [26], we expand

£ 2
O 7= 2 2 Ok nGkxy),
(86)
k _ il Am — Y k |6(kx) 8
G (kix,y)=(—1) \/z|+1 "(k,y)e (87)

k 1
_ me (m)
=algr—1 X 0121~ 2|+3K|+1®(|+1) JFM(

where M{}) and C{{}’ are the metric perturbation and the
collision term, respectively. The collision terms for Thomson
scattering in the photon distribution function together with
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polarization will be considered in Sec. IV A. The metric per- In the massive case we can expand the perturbed distribution

turbations in Eq(84) can be calculated using Eq4.3), (93)

as
N k2 k 2 K k2
32X a® T3V 3y
(m) _
M({T; 0 0 i 1-2 55«1;(*1) ’

2

\/§ ka

0 0 _é(tZ)

(95
where the rows indicattn=0,+1,+2, and the columns in-

dicatel =0,1,2, respectively. Using Eq86) the perturbed
order fluid quantities in Eq85) become

Ott(c)

1

— _ 0 _ _ 0
8= o =40}, =30k, V=0,
o 4 1
Ko 5 1-3K/K2 3K/|<2
(=1)_ g(x1) o) 8 2 geu
Vigy '— y = P 2y s
© 7wy 15 Vi-2k/ikE @
(x2)
T 8 (ea

=017, (96)

e 15 @

where we used Eq$17), (18), and(93).
Under the gauge transformation, from E@2) we have

~ 1
O=0+He+ agfaya. (97)
By expandings'==,£'Y(© we have
B=0+He, 8= E&’%——f‘ (98)

PHYSICAL REVIEW D 65 023512

function directly. Instead obf we use the following vari-
able:

of

O 7.9.9)="45%/aq

M

>

I=0m

%

O (K, 7,0)G{Y (KX, ).
(100

From Eq.(99), using Eqs(100), (90), (13), and(93) we can
derive

X 1 1
®EP;):— R ®(| 1)~ 2|+3K|+1®(|+1))+M(|) ’
(109
- k2 e k 2 K k2
¢t 32X ga® T3V1 X
M

(m) — /
(In;_ 0 0 i 1— Kk\p(ﬂ) '
V3 “Ka

_o*2)
(102

wherel=|m|. The rows and columns aff{}’ indicate m
=0,+1,=2, andl =0,1,2, respectively. In the massless limit
M{} reduces tav () in Eq. (95), and Eq.(101) reduces to
Eq. (94). Thus, we can regard Eq$101), (102 as being
valid for both massless and massive collisionless particles.

From Egs.(70), (100 the perturbed order fluid quantities
become

A7 [ of
Ott(e)= gf 283( - %) eq’da,

A [ . of
and the otheﬁ)(”)‘) are gauge invariant. These are consistent ()t p(c))v(c) =37 f EE"))( - ﬁ) q*dg (m=0,%1),

with the identifications in Eq96) and the gauge transforma-
tion properties in Eqs(30), (35). Thus, the temporal gauge
conditions fixing® (g} and® ()} can be considered as belong-

ing to Eq.(36).

E. Massive collisionless particle

For massive collisionless particles the perturbed Boltz-

mann equation in Eq66) becomes

5fr+q o (3)a (95f € o
PRI ylyr P ) {qA,av +(Byp
+C!’ ) }qﬁ= . (99

0)_
7TEC))_

1 A [, af\q®
—_‘J 0@ - 2L gq,
Ji-3k/kZ5at] @1 aqg

ey 3 8m
(© 1-2K/k? 15a*

" af\ g°
+1
Xf ®22) )( aq) € da,

(103
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where we used Eq917), (18), and (93). In the massless Following the convention if26] we expand® and Q
limit, assuming® ([}’ is independent ofj, the fluid quantities *iU in terms of spin-weighted spatial and momentum har-
in Egs. (73), (103 reduce to the ones in the massless casénonic functions:

Egs.(74), (96) with /=0 2
Under the gauge transformation, using EZR) we have O(x,7,y)= E > z ®E|”)])(kﬂ7) oGgT)')(k;X,af),
m=-2
= ~ € 1
O=0+HE+ = = ¢y~ (104 N .
qa” Q(X, 7, y) iU(X,7,7)
Thus,
B B =2 2 25 [E{{ (k) +iB{(k, 7)]
HO—HO L He 0= €k, m= -2
=0 +HE, O@=0n)—5 78 (109
X oG (kix, ), (107)

and the otheﬁ) m) are gauge invariant. These are consistent
with the |dent|f|cat|ons in Eq(103 and the gauge transfor- Where
mation properties in Eqs(30), (35). Thus, the temporal

itions fixin®(©) and ®() - | 4w
gauge .cond|t|ons fixing) o) and ©7) can be considered as (|) M (k:x, y)=(—i)' —— YM(k, %)l dx),
belonging to Eq(36). 21+1
Thus, we have complete sets of perturbation equations for (108

three types of perturbation including a single-component

massive collisionless particle. Equatiétol) together with ~ With oY"=Y["; thus ¢G{[’=G(}. We have the recursion
the gravitational field equations in Eq88)—(47), (53—(55),  relation[26]

and (58), and the fluid quantities for the massive particle in

Eq. (103 provide the complete sets. In the case of multicom-

(m a_ m (m) _ m (m)
ponent massive collisionless particles we simply consider SG(')M’ 2|+1($KI Ci-1)~ sKi+1sC(+ 1)
Egs. (101, (103 for each component of the massive colli-
sionless particle. The equations for the scalar-type perturba- ;MNS (m) (109
tion are designed in a gauge-ready form. The collectore I(I 1(1+1)s°0

the sum over individualfluid quantities in Eqs(39)—(42),

(44), (54), and(58) include the kinetic components, whereas where

(i) in Egs.(46), (47), and (55) does not include the kinetic

components. Using Eq$103), (75), however, we can show \/(|2 2)(I2 )( 12 K)
sKI - )

that Eq.(101) gives Eqs.(46), (47), and(55) with (i)=(c). n2

This identification gives
8Q(=0=3(" (108 n=k*+(1+[m)K; (110

This follows because we have assumed a collisionless situshus, compared with Eq91) we haven X o«"=kx". In the
tion (and with no direct interaction between the kinetic com-hyperbolic (negative curvatupebackground we have super-
ponent and the other componentSor the case of a photon curvature (8sk< \|K|) and subcurvaturekt \|K]|) scales

with Thomson scattering, see Ed.21) below. for the scalar-type perturbation; by considerimg 0 we ex-
clude the supercurvature scq]. It is convenient to have
IV. CMBR ANISOTROPY _JY"=(—1)'sY", and other useful relations can be found
in [31,26].

A. Thomson ring an larization .
omson scattering and polarizations In terms of the notation

In addition to the photon distribution function for the tem-
perature(or total intensity fluctuationf=fg, we have three G
other photon distribution functions describing the state of F=| Q+iu (111)
polarization,fo, fy, andfy,. ©®, Q, U, andV form the four . '
Stokes parameters. We will ignore the fourth Stokes param- Q—iU
eter V describing circular polarization because it cannot be
generated through Thomson scattering in standard FLRWhe Boltzmann equation can be written as
cosmological models. While the temperature behaves as a
scalar quantityQ andU do not. It is known that the combi-
nationsQ=*iU behave like spint2 quantities[27]. Thus,
while ® can be expanded in ordinary spherical harmonics
Yim, QxiU should be expanded in the spin-weightedwhere the metric perturbations and the collision terms are
harmonics,Y,, [28,29. expanded as

1. e oo
T+ 5T|ay“=M[T]+C[T], (112

023512-14



GAUGE-READY FORMULATION OF THE COSMOLOGICA . ..

G(m
(OR

M[O]= Z E E M{G

(113

E| civaiy. (114)
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where|=2 andm=0, and we haveB{®’=0. Notice that
with the identification B! )‘m‘)——B(f"‘D E(;I™ and
O™ satisfy identical equatlons for both Slngl] The
equatlons for® () follow from Egs. (94), (95), and (116).
Polarization properties of the CMBR in the perturbed FLRW
world model have been actively studied in the literature;
some selected references §2€,32,33,27,34—-36

The collision and the polarization terms are not affected by Now we have complete sets of equations for three types

the perturbed metric; thLM[Q+|U] 0.

of perturbation including Thomson scattered photons with

The collision term is derived using the total angular mo-polarization. Equationé4), (95), and(116) for the intensity

mentum method in Eq$25), (26) of [26]:

!

d
f@ EWL?’QU(b)a
0
0

Cl[T]=—71T(Q)+7

2

(m) '
+ 167 Z PM(Q,07)-T(Q)dQ',

(119

(temperaturgand Eqs(119), (120 for the photon polariza-
tion together with the gravitational field equations in Egs.
(38)—(47), (53)—(55), and(58) and the fluid quantities for the
massless particle in E¢O6) provide the complete sets. For a
massless collisionless particle E@4) remains valid with
vanishing collision terms and polarization. The generaliza-
tion to include multicomponent massless collisionless par-
ticles is trivial: we simply consider Eq$94), (96) for each
component of the massless collisionless particle. We can also
include additional multicomponent massive collisionless par-
ticles by considering Eq€101), (103 for each component

of the massive collisionless particle. The equations are de-

wherev ), is the baryon's perturbed velocity variable, and signed in a gauge-ready form.

P(M s given in Eq.(52) of [31]; 7=ngX.0r wheren, is the
electron densityx, is the ionization fraction, and is the
Thomson cross section. The time evolutionngk,, is deter-
mined by the recombination history. UsiiR§™ in [31] the
collision term becomes

0 0 0
of oy PO

CE{;‘)=—%®§F)“)+% 0 UEb)l) pt=1) (116

o o0 P2

2
ClQ=iu]=—7> > X (EfP=iB{)
k m=-2 1
+V6PM5,) L ,GHY, (117)
where

p(m)__(@gfzn)) \/—EE?))) (118

From Egs.(112), (107), using the recursion relation in Eq.

(109 and the collision term in Eq.117), we can show that

1
E(l) alo =12k E(| 1)~ 2|+32K|+1E(|+1)
n 2m )
(m)
Cal(l+1) 31 Bl — T(EQY +VBP™Ma,), (119
. (m)_ n 1 1
B o1—12K B(| 1)~ 2|+32K|+1B(|+1)
n 2m .
(m)
al(l+1) T B - 7B (120

The collective(or sum over individualfluid quantities in
Eqgs.(39—(42), (44), (54), and(58) include the kinetic com-
ponents. Using Eq996), (75), however, we can show that
Eq. (94) gives Eqs(46), (47), and(55) with (i) =(c); we are
using the indexc to indicate the kinetic component. This
identification implies

o _4a .
Q=0 Jo=3 ooV w)

4 .

*1 +1 +1
IGH=— §a,u(C)T(UEC) '—vipM). (121
Because of Thomson scattering there exists an interaction
between photons and baryons. From El) we have
316Q(y=0Q(p)+ 8Q(y=0 and I[P =3 +IW=0.
Thus

S =0 J(O)___E - _
Q=0 Ji)= = 3 LT (0~ V),

1))

4
(1) _ 3(=1)_
Iy = =36y =gamm (vl vt

(122

For the baryonb) we havep,)=0=dpp,); thusw,=0.
However, we keep the sound speed of the baryon fluid which
behaves af37]

1d|nTb
3 dlna

kgTh

, (123

MmH

where;is the mean molecular weight. Thus, E¢6), (47),
and(38) become:
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. k
5(b)=—av(b)—3Ha+K, (124)

by + H :E( + %y 8y — I 1)
U(b) V)= 14T Eb) O(0) ™ Y(b) H(b))-
(125

For the cold dark mattefC) we additionally haveQ c)=0
=0Qc) andJ(c)—O thus Eqs(46), (47) become

3=~ gV~ 3Hatx, (126

(127

U(C)+ HU(C): aa

We emphasize that compared with previous work, besides
the equations being valid in the context of generalized grav-
ity theories, our sets of equations in this paper are all in

gauge-ready forms.

B. Tight coupling era

In the early universe, the Thomson scattering term is large k
enough and the baryons and the photons are tightly coupled.

For Iarge values ofr (=t;*=\_') compared withH
(—t; =Ny 1 andk/a(=2=\"1), it is difficult to handle

Egs.(94), (125 numerically; the polarizations are negligible der in c.

PHYSICAL REVIEW D 65 023512

Taking the time derivative of Eq130) and using Eqs(128),
(130), to first order in thec, expansion, we can derive

6r?

2r c, 1 H
(1+r1)?

1+ 1 CoTve) Ty Ty

S ,
V(o) ~U(y)= (v (b)

k , . 1.1
—v) T 7| Ha=Clpydmy + 780 T 5H | |
(131)

where weassumedhe radiation era witta=t*2, which ap-
plies for Einstein gravity with negligibl& and A contribu-
tions in that era. Thus¢.=Hc,, r=—Hr, and we used
(cfy) = —Hcf,) which follows from Eg. (123 assuming
Tb: v
To the zeroth order ic,, from Egs.(128), (131) we have

. . 2r
V)=V T 7 Hvm—v )

1 2r2
T e gzt e Tve)

+ a a+ (132)

1, . r1
T3 ST 157 290

Equationg(125), (131) imply v ) —v(,,=0 to the zeroth or-
. Thus, usingv ,,=v ) =v(,), and ignoring the

in that stage. In this case, it is convenient to arrange th%(b)(s(b) term, we have

equations in the following wa}37]. From Eq.(125 and the
=1 component of Eq(94) we have

. roo. :
G U O e IO R )
k 1 1
_ —_ 2,90
2 1+rc(b)5(b)+1+r 45(y) 5"2@(2)”'
(129
where we introducedz‘g‘u(y)/#(b). From thel =2 compo-
nent of Eq.(94) we have
10c k 1 1
0 Cr 0 0 0@ (0
0f-3 1| -0+ 5| 307508
2 K(k\2 ] V6
__ - T _ Y "E(0)

where c,=H/7. Thus, ®(3) is of thec or c,k/aH order
higher than &,), and we have®{), ~(k/aH)c, 0.

From thel =1 component of Eq94) and Eq.(128) we have
c, 1 : : kK[,
V)TV TR T3y et Um T om T | S o
1 1 ©)

1

yb:_mHU7b+a a+ (133)

v

r
1+r 25(7))'

Equation(124) and thel =0 component of Eq(94) give

k
5(b)———vyb 3Ha+K (134)

4

Sn=31 73

be_3Ha+K ,
(135

and for the CDM we have Eq$126), (127).

Thus, in the tight coupling era, instead of E¢34), (125),
we can use Eqs(133—(135). As the criteria for the tight
coupling era we can ugdea8|

k
z>1z,.=2000, c,<0.01, CTE<O.01, (136
where
1447 SH 13
C = Xelnoh | ag) Ho- (137

If any one of the three conditions is violated we use the full

set of equations based on the Boltzmann equation.
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C. Numerical implementation In order to check the numerical accuracy we can evaluate

The different gauge conditions available in the scalar—typ@iny gauge-invariant .var|able In two dlﬁergnt gauge condi-
tions; if the integration has good numerical accuracy the

perturbation provide a useful check of the numerical accu- auGe-invariant combination evaluated in all aaude condi-
racy. The gauge-ready formulation is especially suitable fogaud . gaug

handling the case. When we solve the scalar-type perturb tl_ons_should give the same value. In order 'go_have the_ same
. : ' . Lolution we need to start from the same initial condition.
tion equations we have a right to choose one temporal gau

o . ~JThus, we need to have relations of the variables among dif-
condition. Any one of the fundamental gauge conditions Nearent gauge conditions. The set of equations in a gauge-

Egs.(33), (36) would be a fine gauge condition; except for reaqy form is convenient for this purpose. In the following
the synchronous gauge condition any one of the other gaugge consider relations between the zero-shear gauge and the
conditions completely fixes the temporal gauge and the regniform-curvature gauge as an example. Using the gauge
maining variables are equivalent to the gauge-invariant onegsansformation properties in Eq&30), (31), (35), (98), and

If we have the solution of a variable in a given gauge we can105) we can construct the following relations:
derive solutions of the rest of the variables in the same

gauge, and from these we can derive all the solutions in other  6(i)o= 6y 3(1+Wi)) = iy, +3(L+W)) @,
gauge conditions. For such translations the set of equations
in the gauge-ready form is convenient. Meanwhile, in a nu-
merical study, if we solve a given problem in two different
gauge conditions independently, by comparing the value of
any gauge-invariant variable evaluated in the two gauge con- 00 — g k. (139
ditions we can check the numerical accurf8g]. W™ P Wx ™ g P
In the literature, the synchronous gauge is the most widely
adopted gauge condition. The synchronous gauge does nand ® (), =0(P), for 1=2; and similarly for®{Y. ¢, fol-
fix the gauge condition completely. We can choose any of théows from Eqgs.(39), (40) as
gauge conditions mentioned in Eg83), (36), (98), and
(105 as well. The comoving gauge condition closely re- _ 4nGa’ aH
sembles the synchronous gauge in the matter dominated era; ¥x~— |<2—3|<EI 5“(')<P+3T('“(')+p('))U(W
however, see the various possible combinations of the co-
moving gauge conditions in Eq&36) available in the multi- =—Hyx,. (139
component situation. Referen¢d0] adopted a comoving
gauge condition which fixes the velocity variable based orUsing Eqgs.(138), (139 we can translate the solutiortis-
the cold dark matter; thusc,/k=0. From Eq.(127) we  cluding the initial conditionsin the zero-shear gauge into
note that )=0 impliesa=0, the synchronous gauge con- those in the uniform-curvature gauge, and vice versa.
dition; in the synchronous gauge, however, we hayg Each of the four gauge conditions considered above fixes
«a~! which leads to the remaining gauge mode. Thus, thehe metric variables as the gauge condition, and uses the
synchronous gauge with an additional conditiog)=0 is  fluid, field, and kinetic variables as the unknown variables to
equivalent to the ¢,=0 gauge. We may emphasize that our be solved. In such cases we can make a numerical code that
equations in the gauge-ready form are ready to be impleallows us to choose one of the gauge conditions as an option.
mented using any of these available gauge conditions. In numerical studies it is known that the zero-shear gauge
In the following, as an example, we consider the Einsteirhas difficulty in setting up the initial condition in the early
gravity limit without fields but with arbitrary numbers of universe[12,37. The other three gauge conditions show no
fluids and kinetic components; including the fields and thesuch difficulty and run equally well.
generalized gravity will affect the gravity sector only. In the  We have implemented our gauge-ready formulation into a
numerical work we implemented the comoving gauge basedumerical code. The code includes the baryon, CDM, pho-
on the CDM @ )=0 which includes the synchronous ton, massless and massive neutrino species, the spatial cur-
gauge, the zero-shear gauge, the uniform-curvature gaugejature, and the cosmological constant. We included photon
and the uniform-expansion gauge. The latter two gauge corpolarizations. We solved separately for the gravitational
ditions were not previously used in the literature. These fouwave with accompanying tensor-type photon intensity and
gauge conditions fix the perturbed metric variables. Undepolarizations, massless and massive neutrino species. The set
these gauge conditions we can see that the differential equaf differential equations is solved directly. For the recombi-
tions can be set up using only the variables that represent th@tion process we adopt tiReCcFAST code of[41] which is
fluids and kinetic components: Eq4.01), (94), (119, (120, recently available to the public. The code is complete in the
(46), and (47) provide a set of differential equations to be context of Einstein gravity. We made no artifical truncations
solved. The remaining metric variables can be expressed ifor multipoles of kinetic components in the photon intensity
terms of the fluids and kinetic quantities. The metric vari-and polarization, and massless and massive neutrinos. For a
ablesa, ¢, Hy (or x/a), and«/H (or ax) are dimension- useful truncation scheme, however, §8€|. Since the higher
less. Using Eqs(38)—(42) we can express the metric vari- | multipoles are generated from the lower multipoles, we
ables in terms of the fluid quantities in each of these gaugenonitored the values of the highest multipoles of all the
conditions. kinetic components and increased the allowed multipoles au-

K
Y Y Y ()
Ve~V T g Pxr Q0= Ot ey
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tomatically[42]. In this manner we included quantities with
higher multipoles as long as the values were larger than & 0 :
certain minimum threshold value. We made the code so tha
we can choose a gauge condition from the four different
gauge conditions mentioned above as an option; we could try

other gauge conditions as well. The inclusion of the scalar %
fields and generalized gravity is a trivial generalization af- =
fecting only the gravity sector, and will be considered in =
future. o,
At the present epoch we have %

k 2998 k ap

— Mpc, (140 o)

agHg " h ag

whereHy=100h km/sec Mpc. Thusk/ag=1 Mpc * corre-
sponds to\g=27agy/k=2m Mpc, andk/(agHg)=2998h;
the comoving wave numbéeris dimensionless. In Einstein’s
gravity from Eq.(22) we haveK/(aH)?=Q—1. Thus, in the
nonflat case we have

2998 Mpc
Qpg=——7—.
* 1-04h

In the hyperbolic model, the curvature scale corresponds tc
k?=—K=1 and the subcurvature scalé€¥ 1) correspond

to k/ag>\1—Q3h/(2998 Mpc). In the spherical model, the
wave numbenmn introduced in Eq(110 takes integer values
n=3,45... (n=1,2 correspond to pure gauge mogép.

In the following we present several results from our nu-
merical study. In the numerical integration of the differential
equations we adopted the Runge-Kutta method. The integra
tions were made at equal intervals ofalnin Figs. Xa,b we
show the evolution oﬁ(i)v(i) which is the density perturba-

tion of the (i) component in the corresponding comoving
gauge condition based on the component

(142)

log (amplitude)

aH
5(i)v(i)E 5(|)+3T(1+W(|))U(|) y (142) . ‘6 - - - ; ! ! - '2 . . : o

which follows from Egs.(35), (26); w(j,=pi)/xq) and we (b) log (a/a)

ignored Q). The componenti) includes the baryonh), FIG. 1. We present the evolutions of the adiabatic density per-
photon (y), CDM (C), massless neutrinov}, and massive  tyrbations in the corresponding comoving gaudgs  for several
neutrino (v,). As the initial conditions, we implemented the components(i) includes the baryoridot, CDM (dotdong dash

five different nondecaying initial conditions available in the photon (long dash, massless neutringshort dash and massive
four-component I, C, y, and v) system in the radiation neutrino(solid). The two figures aréa) k/a,=0.1 Mpc ! and (b)
dominated er§43]: these are the adiabatic mode, the baryork/a,=0.01 Mpc'*. Also presented ig, (dot-short dashwherev
isocurvature mode, the CDM isocurvature mode, the neuis the collective fluid velocity. The parameters dre=0.5, Q
trino isocurvature density mode, and the neutrino isocurva=2.0x10"2, Qc=5.4x10"1, Q,=9.9x10°° Q,=6.7x10°,

ture velocity mode, where the last one appears due to thendQ, =4.4x 10 ! at present. We consider a flat background with
kinetic nature of the neutrino perturbation. The complete setanishingA. The absolute value of the vertical scale is arbitrary.

of initial conditions was recently presented by Buckeal.

in [43] in the vc)=0 gauge condition. The corresponding horizon, the baryon, photon, and massless neutrino show os-
initial conditions in the other gauge conditions can be ob<illations, and after the recombination near kgg)~—3
tained by using gauge transformations similar to E488), the baryon decouples from the photon and catches up with
(139. In the early radiation dominated era we used the tighthe evolution of the cold dark matter. The behavior of the
coupling approximation for the baryon and the photon inmassive neutrino is also shown. The large-scale perturbation
Egs. (133 (135 with the criteria in Eq.(136). The small in Fig. 1(b) crosses the horizon in the matter dominated era
scale considered in Fig(d) crosses the horizon in the radia- and the oscillations do not appear.

tion dominated era. After the perturbation comes inside the In Figs. Xa,b we present the behavior @f, as well. ¢,
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-4 T T T
. \\;\\
[} R
o L — i
- Ve
2 !l
o, L
£ ]
3 |
a0 g B
S
10 M R P R R
6 -4 -2 [i]
log (a/a,)

FIG. 2. We present the evolution @f in various comoving
gauge conditions based on fixing the various velocity variables of
the components, i.eq, i ande, : the baryorkpv(b) (dot), the CDM
Poe (dot—long dash the photonqov(y) (long dash, the massless
neutrino o, (short dash and the one based on the collective
velocity ¢, (dot—short dash We consider two different scales:
k/lag=0.001 (uppey and 0.1 Mpc! (lower. For ki/a,
=0.001 MpCl, the baryon, CDM, and the collective variable over-
lap (top), and the photon and massless neutrino oveihaptom). In
order to present the behaviors on two scales in one frame, we
change the absolute scale of the amplitude arbitrarily. The param-
eters areQ,=2.0x10 %, Q=9.8x10"%, 0,=9.9<10°, and
Q,=6.7X10"° at present.

log (amplitude)

log (amplitude)

log (amplitude)
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L 1 L L L 1
6 -4 2 Q

(b) log (a/ay)

FIG. 4. We present the evolution of density perturbation in the

comoving gauge of the massive neutring
j scales:k/ag=0.01 (top), 0.1,0.2, and 0.25 Mpc (bottom). The

= photon is calculated based on both the Boltzmann equatiot--
long dash and the fluid approximatiorisolid). (a) considers the
massive neutrino dominated model with paramefegm=9.8
X101 at present(b) considers a substantial amount of CDM with
parameter€)c=5.4x10"" and 2, =4.4x10"". In (b) we show

7 the evolution of CDM 5((:)”((:) (dotted as well. The parameters
common in both modelga,b are Q,=2.0x10"? and 0,=9.9

for different

Vm)”'(um) ’

FIG. 3. The evolution ofp, for different scalesk/ay,=0.0001
(top), 0.001, 0.01, 0.1, and 0.3 Mpt (bottom). The cases of

4

log (a/a)

2

X 10°° at present.

was first introduced by Lukash in 198Q1] (see alsd9]),

and is known to be one of the best conserved quantities in
the single-component situation: it is conserved independently
of changing gravity theories or field potential on the super-
horizon scal¢17,18, and independently of a changing equa-
tion of state on the super-sound-horizon s¢d&. It shows

k/ag=0.0001 and 0.001 Mpc almost overlap. The parameters are nearly conserved behavior on the superhorizon scale and in

the same as in Fig. 2.

the matter dominated era after recombination; however, its
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amplitude changes near a horizon crossing and is affected by I A B
the recombination process if the scale is inside the horizon.
We show the detailed behavior of, andcpvm in Figs. 2 and

3. Figure 2 shows the behavior @f in various comoving
gauge conditions based on fixingor v;, for two chosen
scales. In Fig. 2 we found thag, is better at presenting
conserved behavior. We show the evolutionggffor several
different scales in Fig. 3.

In Figs. 4a,bp we present the evolution Oﬁ(vm)v(um)

which is the density perturbation of the massive neutrino in
the comoving gauge based on the massive neutrino. We com- i ]
pared the evolution when the photon was treated based on 6 -
the Boltzmann equation and on the fluid approximation. In i ' 1
Fig. 4@ we considered a model dominated by the massive L : |
neutrino, showing the collisionless damping of the neutrino 8 o -
density fluctuations. The result based on treating the photon L L L ]
as a fluid can be compared with5]; [25] used the synchro- 0 1 2 3
nous gauge, thus the&(Vm)= 6(Vm)U(C)' The case with a sub- (a) log 1
stantial amount of cold dark matter is presented in Fig).4
In the massive neutrino the fluid quantities include the inte- 10 —————————————————
gral of the distribution function over the momentum variable -
g in Eq. (103): in our numerical work we considered about
100 values of for a range ofg/(kgagTy). I

As the wave numbek increases, i.e., as we consider
smaller scales, we need to solve a larger number of the dif-
ferential equat|ons As examples, fdday,=0.001 and
0.1 Mpc! considered in Figs. (&,b | is excited up to
around 600 and 5000, respectively. We incredsaatomati-
cally by monitoring the values of the individual kinetic com-
ponents(including the polarization

Aspects of the role of massless neutrinos in the evolution
of cosmic structures were studied [i#4]. The role of mas- I
sive collisionless particleghe massive neutrino is the prime oL
example as the hot dark matter in the context of structure
evolution has been investigated in the literature r Co
[24,25,33,45,37,38,42 Gravitational instability using the [

log [1(1+1)C|]

1 (1+1) ¢

particle distribution function was originally studied by Gil- % 1 2 3
bert in 1965 in the Newtonian contepd6]. (b) log 1

FIG. 5. We present the power spect{a+1)C, of the scalar-
type perturbation: the temperatl.(té’@ (top), the polarizatiorCFE,

The anisotropies of the temperature can be derived bynd the cross correlatia®® (bottom). We take an adiabatic initial
expanding the observed temperature in the sky into a sphergondition with a scale-invariantng=1) spectrum.(a) shows the
cal harmonic function as spectra in logarithmic scale, artl) in linear scale. We normalize
the spectra using(l+1)CP®=1 for I=10. The parameters are
0,=6.0x10"2, Qc=25x10"1, 0,=59x10° ,=40

D. CMBR anisotropy

®(x,no,3/)52| m;I () Yim( 7). (143 x107s, andQ, =0 at present.
The polarization anisotropies can be expanded in terms of CXY— aX(x)ar* (x
the spin-weighted harmonic functions as 2|+1 2 (@m(aln ()

2

~ - 1 2
Qx,7 ,wtlwx,n ) f
0 0 (2I+l) ndn 2 Xl)(n,to)
=2 2 [affm(¥) =120 ] +2Yim(7)- (144 XY (n,to), (145
whereX andY can be any one o®, E, andB. In flat and
We can derive hyperbolic backgroundsK(=0) we haven=0; see below
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log [1(1+1)C,]
log [C, (n)]

R R E R
' ' ) ) | ) ) ) f | ) f f f 1 i i -19

8

0 1 2 3 5 4 s

log 1 (a) log [(k/ay) Mpc]

FIG. 6. We present the power spect(a+1)C, of the gravita- 20
tional wave: the temperatu@®® (top), the cross correlatiogP €, I
and the polarization€FF andCE® (bottom. As the initial condition
we take the scale-invarianh{=0) spectrum and the solution with
constant amplitude. We normalize the spectra usifig- 1)C{”°
=1 for |=10. The parameters are the same as in Fig. 5.

Eq. (110. In a background with positive curvature, we have
discreten with n=3,4,. .. ; seebelow Eq.(141). In such a
case the integration should be changed to a sum ovéth
n=3,4,....Because of the parity, we ha@’®=0=CF?

[26]. If the distributions are Gaussian, all statistical informa-
tion is contained in the three angular power spectra and one
correlation power spectrum betweeénand E: oa |

22 -

[C, ()]

Qf
O
—_

cP?, cff, cP?, cPF. (146)

Both scalar-type and gravitational waves contribute to the ® " > ; o
correlation function€?® , CFE, andCPE, whereas only the (b) log [(k/a) Mpc]
gravitational waveand the rotationcontributes taCP® [34]. g o/ MP

In Figs. 9a,b and Fig. 6 we present the power spectra of g1 7. we presen€,(n) defined asc®®=[C(n)dn, for the
the scalar- and tensor-type perturbations. In both the scalagzajar-typea) and the tensor-typb) structures. We considered 500

and tensor-type perturbation spectra, for the integration oveg/a s from 105 to 0.5 Mpc * in equal steps of lik. The vertical
kin Eqg. (145, we took 500k’s at equal intervals of log for scale is arbitrary.

the rangek/a,=10 4-0.5 Mpc !; to haveC, complete to
| ~2000[which would well cover the Microwave Anisotropy [50,38,34,35,37,41,26,51The authors of52] have devel-
Probe (MAP) and Planck Surveyor resultswe need oped acMmBrAST code which calculates the CMBR angular
kmax/@~0.2 Mpc . The spectra are filtered using a power spectra in an efficient way using line of sight integra-
smoothing method. IntroducingC’®=/C,(n)dn, we tion of the Boltzmann’s equatiortMBFAST is based on the
presentC,(n) for the scalar- and tensor-type structures insynchronous gauge and is applicable to Einstein gravity. The
Figs. Ma,b. authors of[40] modified the code, adopting a comoving
Pioneering work concerning the CMBR anisotropy basedyauge condition based on the velocity variable of the cold
on relativistic gravity and the Boltzmann equation was donedark matteourv cy/k=0 gauge. In our code, we solve the
by Peebles and Yu in 1978]. Early theoretical work can be full Boltzmann hierarchy without any approximation. A run
found in[47-49. Significant progress was made on the the-takes less than an howithout the massive neutrinmn a
oretical side of CMBR anisotropy immediately following the workstation for all three gauge conditions we used.
first detection of the quadrupole and higher order multipole The power spectra in Eq146) are known to be sensitive
anisotropies by the Cosmic Background Explof€OBE)-  to various combinations of the background world models
Differential Microwave RadiometefDMR) and subsequent (these include the Hubble constant, spatial curvature, cosmo-
ground based experiments; some selected references dogiical constant, and density parameters of baryons, CDM,
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and massless and massive neutripdise initial amplitudes ments in Sec. Il and IV are presented in a gauge-ready form
and spectra of both the primordial density and gravitationafor the scalar-type perturbation. Also, the kinetic theory for-
wave, and the possible reionization history, etc. Thus, in remulation is made in the full context of the generalized grav-
turn, observational progress in determining the power spectrigy theory covered by the Lagrangian in Eq).
can give strong constraints on the above mentioned param- For the scalar-type structure all the equations are arranged
eters with higher precision. in a gauge-ready form which enables the optimal use of vari-
There has been a significant improvement of the CMBRous gauge conditions depending on the problem. Usually we
power spectrum measurements in the past decade, and fute not know the most suitable gauge conditempriori. In
ther improvements are expected from ground based, balloownyder to take advantage of the gauge choice in the optimal
and flight experiments, and particularly from the plannedway it is desirable to use the gauge-ready form equations
MAP and Planck Surveyor satellite missions with high accu-presented in this paper. Our set of equations is arranged so
racy and small angular resolution. The recent balloon obsethat we can easily impose various fundamental gauge condi-
vations of CMBR by the Boomerang and Maxima-1 experi-tions in Egs.(33), (36), and their suitable combinations as
ments have already provided a strong constraint on thevell. Our notation for the gauge-invariant combinations pro-
global curvature of our observed patch of the universe: thgposed in Eq.(34) is convenient in practice for connecting
location of the first peak in Figs(&,b corresponds, in mod- solutions in different gauge conditions as well as tracing the
els with Qg near 1, td yea=200A/Q, whereas the Boomer- associated gauge conditions easily.
ang experiment showl.,=197=6, thus supporting a flat In handling the Boltzmann equations numerically, we
universe[1]. showed that the uniform-expansion gauge and the uniform-
The smallt plateau region in Fig. 5 can be interpreted, in curvature gauge could also handle the numerical integration
the context of the inflationary scenario, as reflecting the prisuccessfully. By comparing solutions solved separately in
mordial scale-invariant spectrum, which has arisen from thglifferent gauge conditions we can naturally check the nu-
quantum fluctuations in the context of the inflation scenariomerical accuracy. It may be worth examining the physics of
Smalll corresponds to a large angular scale, and the plateaddMBR temperature and polarization anisotropies from the
region corresponds to the superhorizon scale in the last scaterspective of these new gauge conditions and others which
tering epoch where local scattering would be unimportantmight still deserve a closer look. Our set of equations in a
Thus, the Sachs-Wolfe effect based on the null geodesigauge-ready form is particularly suitable for such investiga-
equations is expected to be enough to explain the physidéns where we can easily switch our perspective based on
(based on the relativistic gravitation relating the spacetimene gauge condition to another.
metric to mattex. Meanwhile, the oscillatory features at large  In this paper one can find general cosmological perturba-
| (small angular scajecome from regions well inside the tion equations that are ready for use in diverse FLRW world
horizon at the last scattering; thus in addition to gravity themodels based on the gravity theories in Ef. More atten-
local physics including direct couplings between photons andion will be paid in future to the generalized versions of
baryons is important. Now, the physics behind these oscillagravity theories especially in the context of the early uni-
tory features is well understood as being due to the oscillaverse. In such a context, the formulation made in this paper
tory evolution of the photon fluctuatiofand tightly coupled  Wwill be useful for studying the structure formation aspects of
baryons$ pictured or frozen at the last scattering epoch: thuguture cosmological models.
the oscillatory evolution of eack mode (reaching the last
scattering epoch with different phagésgether with the ini- ACKNOWLEDGMENTS
tial spectrum is reflected into the corresponding oscillatory
feature ink space, which can be converted into the oscilla-
tory feature ofC, in | (angulaj space. In hindsight, the origi-
nal prediction of this oscillatory feature can be traced back t
Sakharov as early as 19663] (which was before the dis-
covery of CMBR); for a clear exposition, seé4-56, and
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APPENDIX A: CONFORMAL TRANSFORMATION

ization. as_weII as the isocurvature cpse Fig. 5 can be By a conformal transformation the gravity theories in-
found in Fig. 7 of[48]. cluded in Eq.(1) can be transformed into Einstein gravity
[57]. Under conformal transformation of the spacetime met-

V. DISCUSSION fic, Gap=%0a, and the field redefinition)=\87GF

=el2(Z3)¥ Eq. (1) becomes
Compared with previous work we have made some no-

table advances in formulation. The formulation is made for [ — 1 A oy 4 1 egd | — ¥/
the general form of the Lagrangian in E4) which is more T 167G 167G e F 999" !
general than in our previous work. The kinetic theory treat- (A1)
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with

.1 -
X 1 H=§ H+6 y X=QX,
V=m(zv—f+RF), (AZ)
, , , 5 1 (9u.,, 3F?| o8¢ o¢ OF
where we have ignored tHe,, term. Thus, in general, since = 8.G\E vy Pt N
= ($X,R), we have an additional minimally coupled sca- & 2F 1) ¢ F
lar field . However, if y= () which is the case fof (Al10)
=F(4*)R and for the gravity theories in Eq2), Eq. (A1)
becomes [In [58,59 we considered the situation with a single field
1 1 with g11= w(¢). In the present cagp; andg,, are arbitrary
r_ 5o e d ) algebraic functions ofp and ¢'.] From these we can also
L=T6nGR 29 e Vs A3 ghow that
where

H
d7, V% K, #ay= =7 0% Cly  (ALD)

~ 1 1
guE%(EglJ"‘l/{H/{J . (A4)

are invariant under the conformal transformation. Relations

The relations we need to derive the above results can b&mongfj) &, andF in the individual gravity are summarized
found in[58,59. , o in Table 2 of[59]. The advantages of using the conformal
As a simpler situation we consider a case vgih=0 and  yansformation in cosmological perturbation as a mathemati-

I‘/r’]; ¥(¢) wherel,m=23, ... N, and¢=¢". By introduc- 5| rick to simplify the analysis are presented 8,59

R 1 (g4 APPENDIX B: EFFECTIVE FLUID QUANTITIES
dop= \/—(—d¢2+d¢2), (A5)
887G\ F We present the effective fluid quantities based on the ef-
fective energy-momentum tensor introduced in B). The
effective energy-momentum tensor in Eg) is decomposed
A 1 A into the effective fluid quantities as in Eqg&), (11), and
(= R- _( bh o+ mglmd)l,cd)’rg) Y (18). To background order we have

we can show that EJA1) becomes

(A6) 1.1 .
,u+§g|3¢'¢3—§(f—RF—2V)—3HF ,

R 877G,u,(eﬁ)= E
where we have a canonical form of the kinetic term far F
Equation(A6) also follows directly from Eq(A3). Notice

that Egs.(Al), (A3), and (A6) all belong to our original 1
Lagrangian in Eq(1). 87Gpeh= E

1 .. 1 .
p+§g,3¢'¢3+§(f—RF—2V)+F
The conformal transformation in the context of cosmo-

logical perturbation has been considered 14,58,59. We .
decompose the conformal factfr into the background and +2HF|,
the perturbed part as

_ ff) _ n_ ff
QOxO=0(D[1+5Q(x1)]. (A7) alP=0=m30. (BD)
Thus, we have The scalar-type perturbed order effective fluid quantities are
[use Eqgs(B4), (B5) in [18]]
_ — — oF 1 |2
Q= \8rGF=e2T,  50=_-= 5\[5&//.

87GS @t Su+g,b' 667
(A8) mGou E| oM 01,9 69

In [58,59 we showed that the only changes under the con- 1 o _
formal transformation are the following: + E[g,J,Kdﬂqu— (f—2V) ]84 —3HSF

2

éza(_l, dAIZ(_ldt, a=a+6Q, &J:(p-l-(‘)‘ﬂ. ) k ]
3H+3H2—¥)5F+FK

(A9) +

Thus, in our multicomponent situation, assuming that the _ o
conditions used to derive E¢AG) are met, we have +(3HF—g,J¢'¢J)a],
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R R 1.. -
87GoptM=— 5p+9u¢ 5¢J+ [gIJ «®' ¢’ Tap=0ap— §‘9haba ay=n,pn°, (C2
+ (f - 2V),K] 5¢K+ 5F +2H 5F — ( H where t(ab)E %(tab"_tba) and t[ab]E %(tab_tba)- ﬁabEgab
+n,n, is the projection tensor based op. 8, o,;,, anda,
) k?—3K . 2 are the expansion scalar, shear tensor, and acceleration vector
+3H"— 37 22 —Fla+ 3K based om,, respectively. The vorticity tensor of the normal
vector, w,, naturally vanishes; see E€C5). From Eq.(C2)
—(2#+2HF+g,J¢'¢J)a], using Egs.(9), (C1), (13), and(14) we can show that
817G (w6 + p(ef)y, (eff) 6=3H— k,
= ! + + 8¢’ 5 1 (3) (v)y(v) 26()y (1)
__(lu‘ p)v __(g|J¢ ¢ O-aﬁ:X,a\ﬁ_ §gaBAX+a’\I, Y(alﬂ)‘l'a C Yaﬁ’
+6F—HO6F—Fa), .
A= ,. (C3

2

1 k .
SWG”(S'eﬁ):E 77(5)"'52(5':_':)() : (B2)  Therefore,— « and y can be interpreted as the perturbed

expansion scalar and the scalar part of the shear of the nor-
The vector-type effective energy-momentum tensor is mal frame, respectively. The trace of the extrinsic curvature
is equal to minus the expansion scalarand 8 can be seen
as perturbations in the lapse function and shift vector, respec-

tively. ¥ and c® also cause the shear in the perturbed
normal hypersurface.
In order to interprete the velocity related quantities we

8rGoTeM)= éaﬂv)g,

v,eff)a v)a a
8mGsT )B E =T )ﬁ_ E Z[B |8 introduce frame-invariant combinations of the four-vectors
as[64]
+Bg“+a(Cs+Ch" 1. (B3)
The tensor-type effective energy-momentum tensor is Uy=Uy+ % (C9
1 ..
8rGoT*Mo= E(5T(t)‘/§—FCE)- (B4  As in Eq. (C2) we can introduce the kinematic quantities

based on thei, vector

APPENDIX C: KINEMATIC QUANTITIES ~ o -
b= NS h =UgpTaalpy, 6=U%,,
The 3+1 ADM equations[62] and the &3 covariant btieid) = Heaib) T Aatl) 2

equationg 63] are convenient for analyzing the cosmological
perturbation§9,60,20,61. The kinematic quantities and the
Weyl curvatures appearing in the formulations are useful to
characterize the variables used in the perturbation analysis.
In the following we present various quantities appearing in o=h¢ hg U, @ =T P (C5)
the two formulations in the context of our perturbed FLRW
metric. For the basic sets of the ADM and the covariant
equations, see Sec. VI [8], [63] and the Appendix ii61].  Whereha,=gap+UaUy is the projection tensor based ag.

The covariant decomposition of the normalizettrf,= ¢ Tan. @ap, anda, are the expansion scalar, shear tensor,
—1) normal frame vector fielth, provides clear meanings vorticity tensor, and the acceleration vector basedugn
of the perturbed metric variables. The normal frame vectorespectively. From Eq.C5) using Egs(C4), (9), (13), (14),
field is introduced as and(17) we can show that

Tap=Oap— 3 eﬁab )

no=—a(l+A), n,=0. (C1) ~ ~ a
Up=Up, U,=—7 v +av®vy),
The kinematic quantities based on the normal frame vector

are

k
S .a 0=3H—k+ —U(S)
0=n a !

~ _repd -
Oap= hghbn(c;d):n(a:b)+a(anb)’ ar
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1 @) al 1 ©n(3) whereN, i_s based 0|_1na,3 with h“_ﬁ the inverse metric; in the
Oap=X,alp™ §gaBAX_ K\ Vg™ §AU Yop rest of this Appendix onlyh,, indicates the ADM three-
space metric. The normal four-vector iy=—N and n,
+a(‘I'(”)Jrv(”))YEZjB)Jrazé(t)YS)ﬁ, =0. The extrinsic curvature is

— ap )y !
Wap= a0 Yialg) Kap= 55 (Na:stNp:a=Nap ),

a,= +(av®) YO, K=h*fK .z, (C1y

,

1
a— E(av(s))'

(C6)  where a colon : indicates a covariant derivative based on
and similarly for the kinematic quantities based on the indi-has- ') is the connection based ¢n,;. The ADM fluid

vidual fluid four-vectorsl, . quantities are
The Weyl curvature tensor is introduced as EEnaanab, J,=— an’;, Sup=Tap.
1 S=h*S. .. S.,=S.,— —h..S c12
Cabch Rabcd_ E(gacRbd+ gbdRac_ gbcRad_ gadec) o ap ap™ Zap § ap= ( )

R Comparing with the perturbed metric in E@) we have
+ g(gacgbd_gadgbc)- (C7) haﬁzaz(g(fng ZCQB),
It is decomposed into electric and magnetic parts as N=a(1+A), N,=-a’B,,
(ha_ p3)a @ a @
T =T )"+ Ch,+C5—Cp,) . (C13

1
Ean= C.':1cbd{'lcudv HabEE 77acefCefboUCud- (C8)
Thus we can show that
Both are symmetric, trace-free, and orthogonaufp E,,
=Ep,, E2=0=E,,uP, and the same foH,,. The nonvan- Kep=—2
ishing electric and magnetic parts of the Weyl curvature are

a’ - , a’
ggaﬁ(l_A)—’_B(aLB)—i_Caﬁ—’_zgcaﬁ s

Ea,B_ _COaOB K=

a’' )
- 2|37 (1-A)+B,+Cq }
a a
=§k (a—<p—X+Hx)Yaﬁ+§ak\I’ Yosh
(h)a _ p3)a a _ ~a a  _ ~a
. A—2K R Byﬁ_R B75+CB|57 CB|y5+C5IB7 Cy|55
__a2 6(1)+Hé(t)+_rc(t) Y(t) -C |a +C |

1 5o R<h):i2[6i—4(A+3E)¢]
Hap= =500 "C pyys a ’

: E=—-To=p, J,=aTo=q,+(u+pu
— o 0~ M, a Pl ® P MTP)Ug,
= 7o (— KOV s +actYi, ),

(€9 S=3p, §§= 77(3)‘;;, (C14)
which follow from the Riemann curvature tensors and Egs, . (e ,
(15), (14) where the intrinsic curvatur®"’“,, ; is a Riemann curva-
Ir’1 the ADM notation ture based oh,;; K is the sign of the three-space curvature.

Thus, ¢ is proportional to the perturbed three-space curva-
Joo=—N?+NN,, 00,=N,, 0.s=has, (C10  ture of the hypersurface normal tg.
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