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Quintessence as a runaway dilaton
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We consider a late-time cosmological model based on a recent proposal that the infinite-bare-coupling limit
of superstring or M theory exists and has good phenomenological properties, including a vanishing cosmo-
logical constant, and a massless, decoupled dilaton. As it runs away tdhe dilaton can play the role of the
quintessence field recently advocated to drive the late-time accelerated expansion of the Universe. If, as
suggested by some string theory examples, appreciable deviations from general relativity persist even today in
the dark matter sector, the Universe may smoothly evolve from an initial “focusing” stage, lasting until
radiation-matter equality, to a “dragging” regime, which eventually gives rise to an accelerated expansion with
frozen ) (dark energy){) (dark matter).

DOI: 10.1103/PhysRevD.65.023508 PACS nuni®er98.80.Cq, 04.56-h, 11.25.Mj, 95.35+d

[. INTRODUCTION While doing so, quintessence produces an effective, time-
dependent, cosmic energy densityaccompanied by a suf-

According to recent astrophysical observations, our Unificiently negative pressure, i.e. a sort of effective cosmologi-
verse, since a redshift @»(1), appears to have undergone a cal constant. By making\.;;~H? time dependent, this can
phase of accelerated expansjdr2]. This result can be com- naturally explain the smallness of theresent effective
bined with the recent estimates of the average mass densiacuum energy density. However, if, as in general relativity,
of the Universe[3], Q,=0.3—0.4 (in critical unity, and  dust energy and an effective cosmological constant have dif-
with recent measurements of the cosmic microwave backferent time dependence, it can hardly explain whw p .
ground (CMB) anisotropy peak$4], pointing at a nearly For a recent review of the relative merits of a cosmological
critical total energy density)r=1. One is then led to the constant and quintessence, see Ref.
conclusion that the present cosmological evolution, when de- As far as identifying quintessence is concerned, the infla-
scribed in terms of an effective fluid entering Einstein’ston itself could be a candidaf®]. But also more exotic
equations, should benarginally dominated by a “dark en- possibilities have been considered, in particular some moti-
ergy” componentp, characterized by &sufficiently) nega- vated by the wish to solve the above-mentioned cosmic co-
tive effective pressurgy),<— p,/3. incidence probleni10,11]. In any case, as is the case for the

The simplest candidate for such a missing energy is dnflaton, the quintessence field does not have, as yet, an ob-
positive cosmological constant, of orderHZ. Such an iden-  vious place in any fundamental theory of elementary par-
tification, however, unavoidably raises a series of difficultticles. One should also mention, at this point, that, if quin-
questions. In particulara@) why is A so small in particle tessence may help with the problems typical of the
physics units? Explaining a finite but very small value for  cosmological constant interpretation, it is likely to create a
may turn out to be even harder than finding a reason why inew one of its own: in order to play its role, the quintessence
is exactly zero. This is the so-called fine-tuning problem forfield must be extremely light and can thus mediate a new
A, see for instancEs]. (b) Why is A~ po, Wherepo is the  long-range (of order Hy ') force, which is strongly con-
presentvalue (in Planck unitg of the (dark matter energy strained observationally. This is an important constraint to be
density? This is the so-called “cosmic coincidence” problemimposed on any specific scalar field model of quintessence,
[6]. either minimally or non-minimallyf12] coupled to gravity.

At present, the most promising scenarios for solviag At first sight, the search for a quintessence candidate in
least part of the above problems introduce a single scalarmparticle physics looks easier than the one for an inflaton. For
field, dubbed “quintessencel7], whose potential goes to instance, fundamental or effective scalar fields with poten-
zero asymptotically(leaving therefore just the usual puzzle tials running to zero at infinity are ubiquitous in supersym-
of why the “true” cosmological constant vanishe¥he sca- metric field theories and/or in string/M theory. They are usu-
lar field slowly rolls down such a potential reaching infinity ally referred to as moduli fields since, in perturbation theory,
(and zero energyonly after an infinite(or very long time.  they parametrize the space of inequivalent vacua and corre-
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spond to exactly flat directiongequivalently, to exactly late times(such as today not by evolving towards-« and
massless fields Non-perturbative effectée.g. gauge-theory triviality, but by going towards+c and strong coupling.
instantong are expected to lift these flat directions, just pre-Such a proposal looks absurd at first since, if we do not see
serving those that correspond to small or vanishing couplinga drift towards zero coupling, we do not experience one to-
Examples are the run-away vacua of supersymmetric gaugeards increasing strength either. In order for this idea to
theories (see, for instance[13] for quintessence models make sense we have to assume that the strong-coupling limit
based on the latter possibiljtyor the dilaton modulugb in of string or M theory exists, is smooth, and resembles our
the limit ¢— —oo. world. Can this make sense at all?

However, if we were to take one of these moduli as quin- It has been argued by one of [&l] that the answer to the
tessence, we would immediately run into the problem thaabove question can be affirmative, if we assume a certain
the acceleration of the Universe should be accompanied by structure of the quantum loop corrections to the string effec-
drift of interactions towards triviality. For Newton’s constant, tive action suggested by largé-counting arguments. In the
and even more so for the fine-structure constant, this kind otrong coupling limit(which could either be the self-dual
time variation is very strongly constrained. Furthermore,valueS=1 or, if S-duality is broken,$— + <) gravitational
typical couplings of moduli fields to ordinary matter are of and gauge coupling would be determined entirely by loop
gravitational order, and this creates the already mentionedorrections(as in the so-called induced-gravity/gauge idea
problem of new, unwanted long-range forces. For all thes¢22]), and would “saturate” at “small” values because of the
reasons the conventional attitude towards moduli fields hakrge number of fields entering the loofgsg. the large num-
been (see e.g.[14]) to postulate that they develop non- ber N of gauge bosons, or the large value of the quadratic
perturbative potentials, providing them with both a mass an€CasimirC,, for gauge groups lik&g). Typically, Eq.(1.1)

a freezing mechanisrtsee howevef15] for an alternative would be replacedat ¢>1) by
that is closer, in spirit, to the one advocated here

Another possible problem with the identification of a agi~CatO(e %), (Mp/Mg?~N+0O(e™?).
string modulus with quintessence is that we would like to (1.2
freeze the moduli at values that provide the correct values of

the coupling constant and unification scale of grand unifieqy, this picture there is naturally an asymptotic decoupling
theories(GUTS). For instance, the dilaton and compactifica- jechanism of ordinary matter to the dilaton, whose effective

tion volumeVg should be frozen at values such thz6] mass goes to zero at late times. The problem remains, of
71 2 o e course, of explaining why the cosmological constant van-
agur~ (Mp/Mg)*~e % Mp/Mgyr~agyT Js ishes in superstring/M theory, not only at zero coupling

(1.))  where supersymmetry protects it, but also at infiritiare
coupling. Possibly, some new, stringy symmetry can explain

whereMp, Mg and Mgy are the Planck, string and GUT this. It will simply be assumed to be the case in this paper.
scales,gs=e*VgM¢ is the string coupling, an@? is the As the dilaton is non-universally coupled to different
tree-level effective four-dimensional couplitigpus, in more  types of matter fields, its coupling to ordinary matter can be
standard string-theory notati¢a7], our dilaton is related to asymptotically tiny(as to satisfy constraints from gravita-
the real part of thes modulus by RS} =e™%). tional experimentg15]), and much stronge(as first sug-

Unfortunately, it looks unlikely that non-perturbative ef- gested in(23]) to typical dark matter candidates, such as the
fects will be significant enough in this region to stabilize theaxion. In that case, the dilaton to dark-matter coupling leads
moduli. Also, perturbative unification gives too low a value to an initial evolution, which is similar to the “tracking”
for Mp/Mgyr [16,18. In this respect, the situation can be regime [24] of conventional models of quintessence, but
drastically improved by considering thd-theory limit, gs  takes placebefore potential energy becomes appreciable.
—, while still keeping the four-dimensional effective cou- Later on, the interplay of the dark-matter dilatonic charge
plings perturbative $>1) [18]. Even then, the moduli and of the dilaton potential leads to an accelerated expansion
would presumably freeze out in a typicend cosmologi- in which the relative fraction of dark energy and dark matter
cally tiny) particle-physics time, and therefore cannot imple-remains fixed(and of order 1}, thus offering a possible ex-
ment the conventional, slow-roll quintessential scenario. Irplanation of the cosmic coincidence, as we will illustrate
spite of these difficulties, unconventional models of quintesthrough explicit examples.
sence based on the stabilization of the dilaton in the pertur- The paper is organized as follows. In Sec. Il we present
bative regime are not completely excluded, as recently disthe effective string cosmology equations, in the small
cussed by one of Ud9]. curvature—but arbitrary coupling—regime, with generic

There is, however, another possibility for making the di-matter sources non-minimally coupled to the dilaton. In Sec.
laton a candidate for quintessence. As we have already meili we discuss analytically a possible late-time attractor char-
tioned, the region of large negatiwé corresponds to the acterized by a constant positive acceleration and a fixed ratio
trivial vacuum. The idea that the Universe may have startedpf dark matter and dark energy. In Sec. IV we provide a
long before the big bang, in this region is actually the basisemi-quantitative description of the previous phase, during
of the so-called pre-big-bang scenario in string cosmologwhich the dilaton potential can be neglected. This phase is
(for recent reviews seg20]). Here we are asking instead characterized by a “focusing” of the energy densities of the
whether the dilaton can play the role of quintessence at veryarious components of the cosmological flgwhich occurs
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before the epoch of matter-radiation equilibriyrand by a G 'V b+TelZ— o' 2+ 0"V &V
subsequent “dragging” regime in which the dilaton energy G VVSdtle v VIVutV.é

density tends to follow that of non-relativistidarky matter. 1 o , = s
We also discuss here the main phenomenological constraints + 59wl (24" =24 —eZ)(Vop)?—2¢' (V2 o)
that have to be imposed on the scenario. In Sec. V we con-

sider a typical example of a string cosmology model includ- —e¢’V(¢)]=)\§e‘/’7I'M,,, (2.3

ing radiation, baryonic and cold dark matter, and we present
the results of explicit numerical integrations. Our conclu- whereG , is the Einstein tensor, and a prime denotes differ-

sions are summarized in Sec. VI. entiation with respect tap. The variation with respect te,
using the trace of E¢(2.3) to eliminateR, leads to the equa-
ll. COSMOLOGICAL EQUATIONS IN THE STRING tion

AND EINSTEIN FRAMES ~
. o : (3¢ 2=2e7Z)(V2g) +[e(Zy' =Z')+ ' (3¢ =3y )]
Our starting point is the string-frame, low-energy, gravi-

dilaton effective actiofi17], to lowest order in thex’ expan- x(§¢)2+e¢(2¢’v+ V) + N2 (' T+o)=0. (2.4
sion, but including dilaton-dependent loofand non-

perturbative corrections, encoded in a few “form factors” We shall assume an isotropic, spatially flat metric back-
U(P), Z(d), a(d), ..., and in an déctive dilaton poten- ground (appropriate to the present cosmological configura-
tial V(¢) (see alsd15]). In the formula, tion), and a perfect fluid model of source. In the cosmic-time

gauge we thus set

M 2 _ _ _ ~ ~p =y e~ =
s=—731 d*xV—g |e "IR+Z(¢)(Ve)2+ %v(qg) 9,,=diagl,—a*(t)s)), T,=diagp,—pd)),
S ~ ~ o~ o~
N p=¢(t), o=oa(), 2.9
_g _
- EJ d*x a($) F2,+ 'l 4,9, matte) (21 and one can easily check, combining the above equations,

that the matter stress tensor is not covariantly conserved
(even in this framg but satisfies the equation

[conventions metric  signature: +(—,—,—), Rwaﬁ
=9, ..., R,,=R,,,“]. HereM_ 1=\, is the fun- e~ O

e ' oth paramet@ris the si p+3H(b+D)= 54 2.6
damental string-length parametgris the sigma-model met- 27 :

ric minimally coupled to fundamental string, V are the

curvature and the covariant derivative referredt@ndF v
is the gauge field of some fundament@UT) group[ a(¢)

For the purpose of this paper, and for an easier compari-
son with previous discussions of the quintessential scenario,

i< th di . ine havi it is however convenient to represent the dynamical evolu-
is the corresponding gauge couplingVe imagine having o of the background in the more conventional Einstein

already compactified 6 dimensions and having frozen th?rame characterized by a metig,, minimally coupled to
corresponding moduli at the string scale. Following the bas"fhe dilaton, and defined by the conformal transformation

proposal made ifi21], we shall assume that the form factors~ v 4 h beh
(), Z(d), a(¢) approach a finite, physically interesting Yur= clg,we erecl parametrizes the asymptotic behav-

limit as ¢— + oo while, in the same limity—0. lor of ¢(4),
The fields appearing in the matter actioy are in general 2_ B
non-minimally and non-universally coupled to the dilaton €1 ¢lrr:wexp{ (b)) @7

(also because of the loop correctiofisf]). Their gravita-

tional and dilatonic “charge densitiesﬁ’w and o, are de- and thus controls the asymptotic ratio between the string and

fined as follows: the Planck scaleiM3=c3M?2. In the Einstein frame the ac-
tion (2.1) becomes

1 ~ 2 2
:_‘/ _:__\/_ Mp k() 2 .
gMV T"“” 2 90, (2.2) S:_Tf d4X\/_g R— 2 (V¢)2+ WV(¢)
P
and it is important to stress that, whew# 0, the gravidilaton f d%x |:2 +Fm(¢,C§9We‘/’y mattej,
effective theory is radically different from a typical, Jordan- (‘f’)
Brans-Dicke type model of scalar-tensor gravigb]. We (2.9
shall give a prototype form ofF , in the following section,
after passing to the Einstein frame. where we have defined
The variation of Eq(2.1) with respect tog,,, then gives .
the equations g k*(¢)=3y'?—2e"z, V=cie®V. (2.9
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For later use it is also convenient to define a canonical dila- 1
ton field by P=Prtpot pa=prtPm. P=3pr,
M (2.18
dp= Tpk(gﬁ)dfp. (2.10 T=0+ oyt og=0 o,
2

The dilaton equation and the Einstein equati@il? can
although, in solving the equations, it will be easier to workthen be written, respectively, as
directly with the original fielde.

We now choose, also in the Einstein frame, the cosmic- _ ., ,d°¢ (1 1 .\dé o, |98\
time gauge, according to the rescaling 2H% d_)(2+k ZPmT PtV @“LZH Kk dy
a=c,ae’? dt=c,dte’?, p=cie’p, +2V' + ' pput o=0, (2.19
2,204 2,207 2 2
=cie“Yp, o=cievo. 2.1 ke(d N
p=Cc&"p 1 (2.19 H2 6_?<£) =pmt+p,+V. (2.20

From the (0,0) andi(j) components of E¢2.3) we obtain,
respectively, the Einstein cosmological equatigims units  The matter evolution equatiof®.16 can be split into the

such thatM2=c?M?2=(87G) 1=2] various components as
6H?=p+p,, (212 d d
¢ d—‘;+ pr—%gzo, (2.21
4H+6H2=—p—p,, (2.13
. . . dpb 1 d(f)
while from the dilaton equatiof2.4) we get d—+3pb— §(¢’pb+ ab)d—=0, (2.22
X X
2 y i ’ 120N/
k() (p+3Hp) +k(p)k'(P)d"+V () dpg 1 do
1 a-ﬁ-gpd— z(lﬂ pat ad)a=0. (2.23
+ 500 ($)(p—3p) +01=0. (214

Finally, Eq.(2.19 is also equivalent to the dilaton conser-

In the above equatiorid =a/a, a dot denotes differentiation Vation equation2.17, which becomes

with respect to the Einstein cosmic time, and we have used

the definitions di

$ +6p,—6V Lo OI¢—o 2.2
gy HBPu— BV 5 (W prt o) g ~=0. (2.2

1 . “ 1 . “
) 2 T2 2
Ps 2k ($)P"HV(S). Py 2k ($)¢"=V(4). Ill. ACCELERATED LATE-TIME ATTRACTORS
(2.15 WITH CONSTANT Q,

The combination of Eqs(2.12—(2.14) leads finally to the As a first step towards a “dilatonic” interpretation of

coupled conservation equations for the matter and dilatoguintessence we will now discuss the possibility that the

energy density, respectively: above equations, together with a string-theory motivated po-
tential and loop corrections, are asymptotically solved by an

accelerated expansioa;>0, with frozen ratiop,/p 4 Of the
order of unity. This last property, in particular, is expected to
solve (or at least alleviafethe cosmic coincidence problem

. 1. [10,11].

pyt3H(py Py + 50LY (#)(p—3p)+0]=0. (217 Under the assumption made [ia1] that the form factors

appearing in Eq(2.1) have a finite limit as¢— +, and
For further applications, and for a more transparent nuassuming the validity of an asymptotic Taylor expansion, we

merical integration, it is also convenient to parametrize thewrite:
time evolution of all variables in terms of the logarithm of

. 1.
p+3H(p+p)=5¢l¥ () (p—3p)+0]=0, (2.1

the scale factory=In(a/a;), wherea; corresponds to the ini- e "W=ci+be ?+0(e ),
tial scale! and to separate the radiation, baryonic and non-
baryonic matter components of the cosmological fluid by Z(p)=—ci+be P+ 0(e"2%),
setting
a(p) l=ayt+be ¢+ 0(e 2%, (3.9

'The relation betweery and the redshiftz is y=—In(1+z  Wherec,c5 are assumed to be of the same oridgpically
+In(ay/a;), wherea, is the present value of the scale factor. of order 1@ since, as already notedi=(Mp/MS)2], and
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aq is to be identified with the unified gauge coupling at the . —

GUT scale, i.eay=1/25. Unlike the model discussed[i26] Fm(¢>,g,matteD=J d*xy—g N[id+my(¢)IN
our model thus describes, in the strong coupling lighit

+o%, a minimally coupled, canonical scalar fielgh . }f 40 [ed® (g D)2
=\2(c,/c,) ¢, see Eq.(2.10. In the opposite limit,¢— 2 =gl (9,D)

—, the gravi-dilaton string effective action reduces, as
usual, to an effective Brans-Dicke model with parameder

=—1. We note that it is not hard to chog¢®) andZ(#) in he first term representing baryonic matter, the sedsod-
such a way that the kinetic term of the dilaton keeps thgap) ¢olg dark matter, while the gauge term appearing explic-
correct sign at all values af (see the example given in Sec. jyy in Eq. (2.8) can already represent the radiation compo-

—e”?)2D?) (3.9

V). - . . nent of the cosmic fluid.

Similarly, the assumption tha¥ originates from non- The non-observation of appreciable cosmological varia-
perturbative effects, and that—0 as¢—, allows us 10 tjons of the coupling constanf80], as well as the precision
write, quite generically, tests of Newtonian gravitj31] in the context of long-range

dilatonic interactions, force us to assume that ordinary matter
and radiation have nearly metric couplings&py, i.e. that
0p,0,=0 as¢p—o. It is not hard to see how such a near-
anishing of dilatonic charges can be achieved starting from
he actiong2.9),(3.4). Following Ref.[14] we have

V(p)=Voe ?+0O(e 2%). (3.2

Since the overall normalization of the potentid} is non-
perturbative, it should be related to the asymptotic value o
the gauge coupling:y by an expression of the form:
o, J In A g, J

—M*, (3.3 oy agNheco) TG0

Given thatA gcp~Mexp(—1/Bsa) (with B3 the coefficient
with some model-dependeribne-loop B-function coeffi-  of the QCDB-function), and using Eq(3.1) for «, it is clear
cient 8. For a comparison with earlier studies of an expo-that bothoy, and o, are exponentially suppressed at large,
nential potentia[27,28 we also note that, when referred to positive ¢b. This decoupling mechanism is similar in spirit to
the canonically normalized dilaton fielg defined in Eq. the one proposed ifL5], although it is supposed to occur at
(2.10, the Einstein frame potentigB.2) asymptotically exi- infinite bare coupling.
bits an exponential behavioW~exp(—Ad/Mp), with \ In the dark matter sector, on the contrary, we shall assume
=c,/c,=\2/k at ¢— + . more generic quantum corrections. By taking for instance the

It is important to discuss the size of the potential neededction in Eq.(3.4), one has for the dilatonic charge of dark
for the viability of our scenario. Since the acceleration of theMatter:

Universe appears to be a relatively recent phenomenon ' () 24 (#),212
, =— + 7 . 3.
(even, possibly, amxtremelyrecent one, as recently argued Id ¢'($)et(,D)"+ 0’ ($)e"uD%. (3.6
in [29]), the potentia/ must enter the game very late, i.e. at pyrthermore, the equations of motion for thefield give a
an energy scale of the order pf*~10"2 eV. Unless we : . &) 2
. relation between the time-averaged quantities,”’(D*)
want to play with an unnaturally large present valuedof "5 4, 2 C ) . . .
. . L ne”?(D?) (which is consistent with the interpretation
this also fixes the scale of the potential in E§.2) asV, S a ;
of D as non-relativistic matterpy=0, as assumed in the

~(107% eV)*. As far as we know, this feature is common to ; .
. e .~ preceding section and relatesy and py by a (generally
all quintessence scenarios: the problem of an outstanding! . X
-dependentproportionality factor

small cosmological constant is traded for the introduction o

Vo=Mex 4 (In ). (3.5

Bag

another unnaturally small mass scale . ol pa= TN 3
In our context, we easily find that, in order to have a alpa=a($)=7'($)=L'(4). S
properly normalized potential, we need the consfarap- The late-time behavior we will discuss takes place if we

pearing in the exponent of E(B.3) to be some\_/vhat smaller assume that, in the strong coupling linfiite., ¢=1), q( )

than the coefficien; of the QCD beta functiofisee also  tends to a positive constant of order unity, and that the dark
the discussion after Eq3.5)], say ~0.683. Given our ig-  matter component dominates over baryonic matter and radia-
norance of the origin of the dilaton potential, this looks per-tion. Thus, the regime we are considering is characterized
fectly acceptablea priori. However, this apparent resolution [according to Eqs(3.1),(3.2)] by

of the fine-tuning problem should not hide the fact that the

potential has to be adjusted very precisely if one wants to k2(p)=2c3Ic2=2I\%, o=04, p=pq,

start the acceleration of the Universe not earlier than at red-

shift z~O(1), and notlater than today. To the best of our q(¢)=09=0(1), 04=9 pq. (3.9

knowledge there is no obvious explanation, at present, of this

aspect of the coincidence problem. It follows that the dilaton coupling to the stress tensor can be
Let us now come to the matter sector of the acti@r®). asymptotically neglected with respect to the coupling to the

As a typical example of ", we take dilatonic charge, ag)’=e ?/c?<1. The dilaton and dark
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matter conservation equatio®.23),(2.24 and the Einstein 4fr \ 0.5
equations(2.12,(2.13 can then be written, asymptotically,
in the form
. q - . q -
pat3Hpa— 5pmd=0, pyt6Hpt 5 pmd=0,
(3.9 &
S
1:Qd+Qk+QV1 ﬁ
q o
1+ 2% g0 (3.10 3
—_ — . 9]
3K2 VT Rk 9
where we have defined
pa=6H’Qq, pg=pitpy,
pr=6H2Q0, = ¢?/\2, py=6H2Q,=V. (3.11)
We now look for solutions with asymptotically frozen
dark-matter over dark-energy ratio, and frozen “equation of A

state.” From the constraint3.10 this is equivalent to the
requirement thap, , py andpy scale in the same way, i.e.,

dlogp, dlogpq
dy  dx

dlo dlo
gpv: gPd. (3.12
dx dx

The first condition and the conservation equations give

d 6
_d): a(Qv_Qk)-

dx (3.13

Expressingd¢p/dy throughQ, = (d¢/dy)?/6\2, and insert-
ing it in the second conditiofB.12), we obtain, respectively,

N =\ (-0 o e oy
q= Q—k(v K Q—m,(-“)

where in the latter the asymptotic form of the potenti&P)
has been used. The last two equations can be solveQ for
andQ,,

6 q
Q=——, Qy=0,+—— 3.1
giving easily
12+q(g+2)\? q(gq+2)A2
-_ W =,
¢ (q+2)A\2 7 12+q(q+2)\2
(3.16

where the last equation fav,= (Q,—Qy)/(Q+Qy) pro-
vides the dilaton’s equation of state.
The above asymptotic solution, first obained 2], and

FIG. 1. The asymptotic configurations in the planeq}. The
full bold curves correspond to asymptotic solutions with fixed ratios
py!pg and with the following values of),: 1,0.8,0.7,0.6,0.5,0.4.
On the right vertical axis we have reported the corresponding
g-dependent acceleration paramets/a?. The thin dashed curves
correspond to fixed asymptotic values of the dilatonic equation of
statew,=p,/p,, respectively—0.4, —0.7, —0.9 and—0.95.

tensor{10,35. Our Eq.(3.9) corresponds indeed, formally, to

a dissipative pressurl = —qp(#/6H) (in the notation of
[35]). See alsg33,34] for a discussion of the parameter val-
ues compatible with such an asymptotic solution.

Once(), and(},, are given, one can easily compute all the
relevant kinematic properties of the asymptotic solution as a
function of only two parameters,and\ =c, /c,, which are
in principle calculable for a given string theory model. The
asymptotic value of the acceleration, in particular, is fixed by
Eqg. (3.10 as

2 =1+ H (3.17
aH? '
One can also easily obtain, through a simple integration, the
asymptotic evolution of the Hubble factor and of the domi-
nant energy density,

H~a—3/(2+q) —6/(2+ q).

(3.18

In order to illustrate the range of parameters possibly
compatible with present phenomenology, we have plotted in
the{\,q} plane various curves & ,= (), +(,=const, and
W= (Q— Q) (Qy+ Qy) =const (Fig. 1). Note that the

p~a

recently studied i133,34), generalizes the results discussedcase discussed in RgR7] corresponds to staying on the
in Ref.[27] to the interacting dark matter case, and is veryaxis. In that case, the critical value of below which
similar to the results obtained by including suitable non-Q4/€,—0 is V3. The addition ofy makes parameter space

minimal couplings in a Brans-Dicke contep28], or by in-

two-dimensional, with the point = /3 replaced by the left-

cluding an effective bulk viscosity in the dark matter stressmost curve(),=1. Beyond that curve, i.e. fok?<6/(2
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+0q) (as well as for all values ok if q<—2), the ratio Forp,=p, we get

04/Q 4 goes to zero. However, while in the case[@f7]

acceleration and a finite rati /()4 are incompatible, this do \/1\2 25— 112

is perfectly possible in a large region of thie,q} plane. dy ?(1+e )
X

In fact, it is possible to determine the region of our pa-

rameter space that survives the various observational convhich, for k=const, leads to a solution with asymptotic

straints(type la supernovae, CMB anisotropies, large-scal@alue ¢= ¢4, related to the initial valuep,= ¢(0) by the

structure .. ). The present values 61, andw,, have to lie  constant shift

in the rangg 36,37/ 0.6<( ,<0.7, and— 1=w,=< — 0.4, but

the two allowed intervals are not uncorrelated. Assuming that 12 3 3¢

we are already in the asymptotic regime, the allowed region Ap=o1— = \/;m(lJr J2)= K= 26 (4.9

lies roughly between the two curvés,=0.6 and(2,=0.7 z

and aboveq=2. Other phenomenologicdbut somewhat i qenendently ofg; and of the initial y (the last equality

more model-dependentonstraints org and\ can be ob- 5145 for ¢, large enough to justify the asymptotic relation
tained from the recent measurements of the position of the _ NEN)

third anisotropy peak in the CMB distributidr38], which

constrains the value df), today. and at last scattering, as energy becomes of the same ordepas At that point, some
v_veII as the tlme;-averaged equation of statg,) [39]. In the oscillations are triggered by the interference term of Eq.
final part of this paper we shall present a model of Olark(2.24;, but the dilaton energy density keeps decreasing, on
matter that seems (o be compatible with all the abovey,q average, until it enters a “focusing” regime, during
mentioned constraints. which it is diluted at a much slower ratéke a~2), so as to
converge, at equality, towards the larger valueg ptindp, .

IV. FOCUSING AND DRAGGING WITH V=0: AN Eventually, when dark non-relativistic matter becomes the

ANALYTIC STUDY OF EARLY-TIME EVOLUTION dominant sourcedy=p,), the dilaton energy density tends
%Fc;follow the dark matter evolution, as if it were “dragged”

4.3

Such an initial regime is effective until the dilaton kinetic

Having discussed, in the previous section, the late-tim
accelerated expansion caused by the interplay of the dilato It . o .
potential and the dark-matter dilatonic charge, it looks appro- . Before tuming to a qqantltanve z.analy3|s. B the“se two re-
priate to illustrate the earlier evolution, ileeforethe dilaton gimes we note that the time evolution pf, in the “track-

potential starts entering the game. In this section we shal['9 quintessence, is determined by the slope of the poten-

provide a semi-quantitative, analytic analysis of this behav:“al' In the present context, instead, the focusing and

ior as it follows from the string cosmology equatiofs21)— dragging effects are not due to the potential, but they are

(2.24), by imposing on the non-perturbative normalization controlled by the nor_l-mmlmal coupling '”d“C.ed by (
(3.3 the constraint\/é""<Heq, where Hgq is the curvature +q) (thus implementing an attractor mechanism already
scale at the epoch of matter-radiation equality. In such a waglrj?ﬁt% Séiiriii{ilﬁias'?hcgnrlgn;E)m?rlwr;?oifjasliigteenf?eocrtm\(/)vi(iacli of
the dilaton potential may eventually become important only eems to be typical of the string effective acti@ven if

at late times, in the matter-dominated era. We will show thagimilar i 2 sense. to the “self-adiusting” solutions of gen-
this early evolution can be roughly divided in three eDOChS’eral rellativit with’ex onential thentie{?27]) the dilatogn
providing, altogether, an intermediate attractor that nicely Y P P !

connects to the accelerated behavior described in Sec. 11I. €"€"9Y density at the mattgr-r.a(.jilation equality turns ogt to be
Let us start by considering an initial, post-big bang andﬂxed mdependently fr_om its initial valu_e, and only slightly
post-inflationary regime of expansion driven by the standaréjependent on the initial value of the dilatog;. For large

radiation fluid, with negligible dilatonic charge, =0. Pos- enough values og, however, even the dependence uphn

sible non-relativistic matter, if present, is highly subdominanttenOIS to disappear, because the value of the dilaton itself gets

with respect to the other components,p,p;) and, con- focggfg{ ajam:!tak;ﬁ/éj I;ﬁ:lss'[iecillr;':l:]g noefX:hSeef‘:ft(I)(z:rl]J.sin " and
sequently, the dilatonic terms in E@.24) can be neglected. q y y 9

. ; A . “dragging” regimes, we start from EQgs(2.21)—(2.24).
The conservation equations can be easily integrated to glv?_um%?nggtoge?her baryonic and dark m?sltt(er 31)eg(jlect?};g

— . a—4x —p . e 6X 4.1 and assuming, according to E€.7), o=0,=d(¢}) pm,
Pr=pi® T Pe=Pei® @D those equations can be easily recast in the form:
Therefore, the dilatorikinetic) energy density, even if ini- d
tially of the same order ag,, is rapidly diluted likea™®. pr_lﬂ+4=0, (4.5)
The dilaton itself, starting from a valug;~O(1) typical of dx
the moderately-strong coupling post-big bang epoch, tends to q
settle down to a constant val(as already noticed if40]), —12Pm o 2 _
that can be easily estimated as follows Pm dy [3+\/§6(p¢/p) 1=0, (4.6
k> _[d¢p\? k%[(dg¢\? dp
—— H2 | =— = = ¢ 12_
PK=7 (dx) 12( dx) (prtpp)=py. (42 dx +6py* V3epm(py/p)?=0, (4.7
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where we have introduced the important parameter Incidentally, at the epoch of exact matter-radiation equality,
usingdp/dy= —3.50, we easily getstill at small ¢):
"(h)+
PPN Cons: (£} s iy
k(o) Pe 2¢ (4.19
. - . Peq 49’
and the sign ambiguity comes from solving Ed.2) for
d¢/dy in terms ofp,. The focusing solution is then char- which is always smaller than 6% fer<1.
acterized by the relation In order to understand what happens at larger values of
it is useful to find the reason why, for small p,,/p, stays
n?($)ps, constant. This comes about because the corrections to the
Po=— 5 (49 373 anda® laws forp,, andp,, due to the non-vanishing

€, push the two towards each other. It is easy to check that,
i.e. Q,=n?(¢)Q2, which holds under the assumption that precisely if p,/(pm+p,)=€/3, both energies scale like
both € andn are slowly varying. Indeed, we can establish thea~3+<), We note, incidentally, that the above ratio of ener-
connection between these two quantities by inserting the argies nicely fits with the value given in E@4.14 when e

satz(4.9) into (4.7). This gives: <1.If e<1, the decrease qf, is still slower than the ™4
of p,, which justifies neglecting the latter. However, df

_6:\/§f:2n71ﬂ+2p—1dﬂ_pfld_ﬂ >1, this is no longer the case and we have a third kind of

n dy M dy dy’ behavior, which can be called “total dragging.” In that case,

(4.10 as shown by a simple analysis, all three componentp of
) ] ] ) o scale like radiation, with the following sharing of the “en-
where on the right-hand side t_he logarithmic _derlvatlve ofergy budget’(remember that we are always@t=1):
Eq. (4.9 has been taken. By using E@.6) one finally has
Q, 1 e—1

Q(/):T:?, Qr: 62 . (416)

dp dn
-1F — -1 —on 1~
p dX+\/3e[n +2Q,n]=2n dx 0. (4.11

) ) ) In the next section we will see how numerical integration
We can now discuss a few cases of interest. During thonfirms in full detail the analytic behavior we have dis-

radiation-dominated phase, and after the kinetic energy of,ssed. We end this section by discussing some constraints
the dilaton is quickly red-shifted away, we can neglect they oyr parameters.

term with O, in Eq. (4.11, we setdp/dy=—4p, and ob- As already mentioned, we assume the ordinary compo-
tain: nents of mattefradiation and baryongo have a nearly met-
3p2 2 ric coupling_t_ogw [see the_discussion _after E®.49)]. To_be _
nZE, d_¢~_3pm6 Pme more specific, let us define the ratios between dilatonic

=- T =, (412
4 dx 2kp v 16 charges and energy densities in a way similar to that used for

We refer to this behavior as “focusing” since it implies that cold dark matter in Eq(3.7), i.e.

pm lies, modulo a factor (16/2) 2, at the geometric mean a(d)=a,lp,, qu(d)=ap/py. (4.1
betweenp~p, andp,. Hence, as we approach radiation-
matter equalityp,, is effectively focused towards the same Since it is precisely the ratio/{’ +d, )/, which controls
common value of the other two componefsége Eq.(4.15  both the effective coupling of the dilaton to ordinary macro-
below]. Note that, for a positive, this happens thanks to a scopic matter, as well as a possible time-dependence of the
negative dp/dy. fundamental constan{g2,43, we shall assume that botfy

In the matter-dominated regime it is no longer safe toandq, are at most of orders’, in agreement with the dis-
neglect the term i), in Eq. (4.11), unlesse<1. In that  cussion after Eq(3.5. We then find that there are neither

case, the solution is appreciable violations of the equivalence principle in the
. _2 context of .mac.:roscopic grqvitationgl ?nteractions, nor signifi-
nz\/ﬁe( _p_ld_P) 0 . ~36202 ( _p—1d_P) _ cant contributions to the time-variation of the fundamental

d ' ¢ m dy constants, both effects being controlled By/k for q;

(413 —0. In the strong coupling regime we have'/k

~e~%/(c,c,). For a non-negativep;, andc?,c5 of order
10, there is no appreciable deviation from the standard cos-
) mological scenario down to the epoch of matter-radiation
N~ € d_¢: _ E py= Pm€ (4.14 equality, so that one easily satisfies the early-Universe con-

J3' dx k'’ ¢ 3 ' straints on dark energy, as reported for instancet#.

The dilaton charge of dark matter is not restricted by the
In other words, the focusing regime has been turned into axperimental tests of long-range gravitational interactions:
dragging one: the dilaton energy is dragged along by théhis is the reason why we can play with it in order to produce
(dark) matter energy and keepssmal) constant ratio to it. an acceleration. Still, from the above discussion on the early

During matter domination, usindp/dy= —3p, one gets
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phases of the Universe, it is clear that high values of theotentia) come into play only at a late enough epoch. The
dark-matter parameter may result in dangerously high val- importance of this constraint was already discussed in the
ues for() 4, and thus in radical deviations from the standardcontext of other scalar-tensor models of quintess¢2&
cosmological scenario. Until radiation-matter equality thewhere, for instance, the non-minimal coupling of the scalar
situation is relatively harmless: we can easily estimate thdield to the trace of the dark matter stress tensor was assumed
dilaton energy density at the equality and at the nucleosynto be ¢-dependent, to interpolate between a small and a large
thesis scaleHy~10"H,,, using the fact that the dilaton, mixing regime.

during the focusing regime, is not significantly shifted away
from the valueg;+ A ¢, fixed by Eq.(4.4). Because of the
focusing behavior we find) ,(nucl)~10"° Q 4(eq), and
therefore the most stringent bound comes at equality, where, Finally, after the analytic discussion of the previous sec-
thanks to Eq(4.15), it is comfortably satisfied foe<<1. tion, it seems appropriate to illustrate the “runaway” dilaton

During the dragging phase, however, we must certainlyscenario with some numerical example, both in order to con-
impose e<1; otherwise, the phenomenon of “total drag- firm the validity of some approximations made in deriving
ging” takes place. This would represent a dramatic deviatiorthe analytic results, and in order to see how the various re-
from the standard cosmological scenario, since all the comgimes we discussed can be put together. To this aim, we shall
ponentsp, ,p; ,pg (€XCEP baryonic mattgwould redshiftin - numerically integrate Eq$2.19—(2.23), using Eq.(2.20 as
the same wayd~ %) from equality until the potential starts to a constraint on the set of initial data, and assuming an ex-
be felt. Even ife<1, but not sufficiently small, the unusual plicit model for the dilatonic charges and the dilaton poten-
scalingp,=a 3¢ tends to change the global temporal pic- tial. Also, following the “induced-gravity” ideag21], we
ture between now and the epoch of matter-radiation equalitghall specialize the loop form-factors according to E1),
and, from Eqgs(4.14), values ofQ ,~ €2/3 (while in agree-  Using the “minimal” choice
ment with possible constraints at last scatteffiid]) can be
dangerously high. In our context, a boufj,(drag)<0.1, e WD) =—g ¢4 Ci, Z(¢)=e**”—c§. (5.1)

i.e. e(drag)<0.3, appears to be necessary in order to agree
with the observed CMB spectrum and with the standard sc
nario of structure formation.

On the other hand, due to the smallnesg/bf-e~¢/c? in
the dragging regime, an upper bound emrffectively turns . .
into a bound on the value a@f/k, i.e. on the dilatonic charge c§=30, we have integrated Eq2.19—(2.23 for three dif-
of the dark matter component. The above constraints thuf@rent values of the charge=0, 81=0-01, anay=0.1, start-
translate into a bound for the combinati®n: ing from the initial scaleH; =10"H

Aq(¢drag><0-8v (4.18)

where we used the already mentioned asymptotic relation
= \/2/k. It is clear that a constamnt cannot satisfy the above
bound and, at the same time, provide the present accelerati@md usingp 4= p;i, ¢;=—2 as initial conditions. It should
of the Universe by means of the mechanism described ite noted that such initial conditions are generic, in the sense
Sec. lll (see also Fig. )}l that requiregiA=4. that different initial values op, and¢ may change the fixed
A time- (or, better,-) dependent, however, is allowed. value reached byp during the focusing phase, but do not
For this reason we have to consider cold dark matter modelgffect in a significant way the subsequent evolution, as will
like the one of Eq.(3.4), whose dilatonic charg€3.7) be discussed at the end of this section.
switches on at large enough values of the dilaton. The tran- The results of this first numerical integration are illus-
sition to large values o is rapidly activated as the potential trated in Fig. 2. The left panel clearly displays the initial
comes into playpy~p,. At that point, the dilaton energy regime of fast dilaton dilution p(¢~a*5), the subsequent
density stops decreasing and freezes at a constant value, néesusing regime[p¢~a‘2, see Eq.(4.12)] triggered (after
essarily crossing, at some later moment, the matter energsome oscillationssoon afterp 4 falls belowp,,, and the final
density,p,~pq. From then on, the dilaton starts rolling to- dragging regimg p,~pn,, see Eq.4.14] in the epoch of
wards +, triggering the effect of the dilatonic charge, matter domination(the epoch of matter-radiation equality
which rapidly freezes the ratip,/pr, and (for suitable val- ~ corresponds to¢=46). Note that the constant values qf
ues ofq) leads to the accelerated asymptotic regime dehave been chosen small enough to avoid the phenomenon of
scribed by Egs(3.16), (3.17). Explicit numerical examples “total dragging,” see Sec. IV. Note also that, in this example,
of such a behavior will be discussed in Sec. V. pm always coincides witlp . In the right panel the evolution
For a realistic picture, in which the positive accelerationof (2, , obtained through the numerical integration, is com-
regime starts around the present ep@id not much earligr  pared with the analytic estimaté¢4.12), (4.13), (4.14), for
and the standard scenario of structure formation is implethe three different values of In all cases(}, grows likea?
mented successfully, we have to require that the contributioduring the focusing regimén the radiation erg while the
of the dilatonic chargdéas well as the effect of the dilaton final stabilization () ,=const, after the epoch of matter-

V. NUMERICAL EXAMPLES

irst of all, for a clear illustration of the “focusing” and
“dragging” regimes, let us puV=0, o,=0=0y, and oy
=(Qpg, With g=const. By choosing, in particulam,'f:loo,

eq:

1/2 X

i

Aeq
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FIG. 2. Time evolution ofp,, for =0 (dash-dotted curyeq=0.01 (dashed curveandq=0.1 (dotted curvg The initial scale isy
= 10‘2°aeq, and the epoch of matter-radiation equality correspondg~t@6. Left panel: the dilaton energy density is compared with the
radiation(thin solid curve and mattexbold solid curve energy density. Right panel: the dilaton energy der(gitgritical unit9 is compared
with the analytical estimate@.12), (4.13, (4.14) for the focusing and dragging phases.

radiation equality {=46), clearly illustrates the effect of the V()= m\z,[exp( —e %18 —exp—e %B,)],
dragging phase during whighy,, andp, evolve in time with
the same behavior. 0< B,< B, (5.5

For a realistic model of quintessence, however, a constant

dilatonic charge cannot drive the Universe towards anyhich leads, asymptotically, to the largebehavior of Eq.
asymptotic accelerated regime and, simultaneously, satisf@glz). The mass scalen,, related to the massl, of Eq.

all the required phenomenological constraints during the ear3.3), will be fixed at my= 1073Heqv together with 8;

lier epochs(as discussed in the previous sectioiy keep-  —103,=5, for a realistic scenario that starts accelerating at
ing 0y,, o,=0 at large couplingsee Eq.(3.5 and the dis- 4 phenomenologically acceptable epoch.

cussion thereaft¢rwe shall thus consider the explicit model  '\wjith all the parameters fixed, we have numerically inte-
of scalar dark matte(3.4), with the following simple loop grated the evolution equatiori®.19—(2.23, for our model

form-factors of charge(5.4) and potential(5.5), using the same initial
conditions as in the previous example, but separating the
e i) =1+eW%/c2  e”P=const (5.3  dark and baryonic components insigg. In particular, we

have set, initially,pgi=10"2%,;, ppi=7Xx10 %, .
(note that, by a field redefinition, one of the two loop factors The resulting late-time evolution of the various energy
can always be taken to be trivial: what really matters is thedensities is shown in the left panel of Fig. 3. Dark matter and
ratio e/e”). Using Eq.(3.7) we immediately get baryonic energy densities evolve in the same way, until the
potential comes into play, starting at a scale aroyne49.
The potential first tends to stabilizg, to a constant but then
=gp———, (5.4) (thanks to the contribution of]) the system eventually
c?+ edo? evolves towards a final regime in which, and py are
closely tied up, and their asymptotic evolution departs from

which is exponentially suppressed in the perturbative regimeh€ trajectory of the standard, d(_ecelerat%/dzscer[mqnar-
and approaches=q at large couplingfor go>1 it is thus ticular, they both s.cale, asyrr_lptotlcally asf/ *qf’), see E_q.
compatible with an asymptotically accelerated cosmologicaf3-18]- It is amusing to conjecture that the different time-
configuration, see Fig.)1 For our numerical example we dependence gi, andrq could be responsible for the present
shall chooseq,=2.5 andc?= 150, but the behavior of the Small ratiopy/pq. _ _
solution is rather stable, at late times, against large variations I the right panel we have plotted the time evolution of
of the latter paramete(see the discussion at the end of this the dilatonic chargey, of the energy densitfl,, of the
section. equation of statew,, and of the acceleration parameter
In addition, we have to specify the form of the dilaton a/aH2. When the potential energy becomes important, all
potential. In agreement with its non-perturbative origin, andthe above quantities rapidly approach their asymptotic values
with the assumtion of exponential suppression at strong cowgiven in Egs.(3.16,(3.17. Note that, with our choice of
pling (see Sec. IV, the simplest choice is a difference of parameters, we havg,=2.5 and\ =c,/c,=+/10/3, corre-
terms of the typee™ #/*(#). We shall thus consider the bell- sponding to an asymptotic valék,=0.733, slightly exceed-
like potential(in unitsM,Z;,:Z) ing the best fit value suggested by present observations

o eq0¢
a(e)= oy
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FIG. 3. Left panel: Late-time evolution of the dark mattsolid curve, barionic mattedashed curve radiation(dotted curvg¢ and the
dilaton (dash-dotted curyeenergy densities, for the string cosmology model specified by (Ea,(5.5). The upper horizontal axis gives the
logy of the redshift parameter. Right panel: for the same model, the late-time evolutipffimé-dashed curyew,, (dash-dotted curye(} ,

(solid curve and of the acceleration parameia'ﬁll'a2 (dashed curve

[36,37). It is important to stress, however, that the asymptoticshown for instance in the left panel of Fig. 3. Because of this
attractor may be preceded by(shord oscillating regime, effect, however, the dilaton can easily satisfy, during the
which, as illustrated in the right panel of Fig. 3, can easilydragging phase, the phenomenological bounds discussed in
allow for values of the cosmological parameters differentthe previous sections. This does not require fine tuning, the
from the asymptotic ones to be compatible with present obvalidity of the bounds being guaranteed for a large basin of
servations. Note also that, when switching from the focusingnitial conditions by a convergent behavior of the solutions
to the dragging phases, the dilaton starts to move back tgiuring dragging.

wards decreasing values gfas will be illustrated also by a ~ During the focusing phase, in fact, the dilaton is practi-
subsequent numerical integration. This may slow down th&ally frozen, as can be argued from K4.12, and its effec-

evolution of p, with respect top,,, during the dragging, as tive constant value, as determined by E¢4), depends on
¢; . However, if such a value is high enough, the presence of

the dilatonic charge may become important, and may con-
tribute to the focalization towards the epoch of matter-
radiation equality, as already anticipated. This is illustrated in
8r Fig. 4, which shows the time evolution of the dilaton ob-
tained by numerically integrating the same model as in Fig.
3, for different initial values¢;=—4,—2,0,2. Although we
start with different dilaton values at th@ateau associated

log,, (z+1)
22 20 18 16 14 12 10 8 6 4 2 0

30
x

l
0 10 20 40

50

with the focusing regime, all the solutions tend to converge
as we enter the dragging regime, so as to make the subse-
quent (potential-dominatedevolution insensitiveto the ini-

tial value of the dilatorf.

This new focusing effect, which is very different from the
one of the energy densities during the radiation-dominated
phase, can also be understood analytically by writing the
solution of Eq.(4.14) as

FIG. 4. Time evolution of the dilaton field, for different initial

¢ k(p) —
X_Xeq:_f ﬂd‘ﬁ

(5.6

conditions¢;= —4,—2,0,2. All the other parameters are the same be?€( D)
as in the example of Fig. 3. After the plateau associated with the

focusing regime, and for a strong enough dilatonic charge, the so-

lutions tend to converge to a common valuedafThe subsequent  2The precedingevolution, of course, is not sensitive either, since
running to+ <, driven by the potential, is thus completely indepen- during focusing the order of magnitude Qf; is given byQ,zn asin

dent of the initial value. Eq. (4.12.
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log, (z+1) dimensional effective coupling goes to infinifyo called in-
22 2018 16 141210 8 6 4 2 0 duced gravity/gauge or compositeness l)mihould exist
L3 » o and make sense phenomenologically, i.e. should yield rea-
—_—— [ sonable values for the unified gauge coupling at the GUT
& / \ scale and for the ratiVMp/Mgyt, thanks to the large num-
ber of degrees of freedom MgT.
\ In the visible-matter sector, the couplings to the dilaton,
! \ either direct or through the trace of the energy-momentum
l tensor(i.e. via a conformally rescaled metrishould vanish
in the ¢— + o limit.
’ In the dark matter sector, there should be a surviving cou-
——_— pling to the dilaton(and thus violations of the strong and/or
Otz . . . . . ; weak equivalence principlegven in thegp— + o« limit.
0 10 20 30 40 50 60 The dilaton potential should be non-perturbative, go to
x zero asymptotically, and have an absolute scale not too far
FIG. 5. Time evolution ofy(¢), from Eq. (5.4), for three dif-  {fom the present energy density. _
ferent values of the parameter All the other parameters are the ~ Under these circumstances, it is natural for the dilaton
same as in the example of Fig. 3. During the dragging phase th8Nergy in critical units{},, to be (i) subdominant during
value ofq converges to the regimg<1. radiation domination{ii) a (small fraction of the total en-
ergy at matter-radiation equalityiii) a (smal) fraction of
Q, during the earlier epoch of matter dominatiainz) a

Sincek is almost constant, a variatiofig, on the initial ~ fraction of dark-matter energy since a redskéi(1). This
value of ¢ changes the solutions(y) by an amount Very last phase is characterlzed by an accelerated expansion.
5H(x)=[€($)€(beg) 18peq, Which rapidly decreasdsiith _ In other words, this framework seems to be naturally con-
q(#)] during the dragging phase. This is why the solutionsistent with present astrop_hysmal observatlon_s and_ with
has become independent of the initial valuefoby the time k_nown cosmological constraints. From gtheoreucal p0|_nt of
the potential becomes an important component. view the _model appears to combine mc_ely previous ideas
For the same reason, the model is only weakly affected b§15] on dilaton stablllz_atlon and decoupling with those' re-
variations of the parameter in Eq. (5.4), which roughly ~ cently advocatede.g. in[28]) so as to have acceleration
gives the transition scale between small and large dilatoni¥/nile keeping the ratid)(dark energy)) (dark matter) con-

charges: ¢=(2/go)logc. Indeed, because of the above Stant. ,
mechanism the dilaton is pushed back during the dragging 't Must be stressed, of course, that the analysis presented
phase, with a velocity as high as needed to reach, in an{! this paper is still preliminary, and that various problems

case, the safe zorg<1. This effect is illustrated in Fig. 5, are still open. In particular, a precise computation of th_e
where we have plotted the time evolution @f¢), for the CMB anisotropy spectrum, and of the spacing of acoustic

same model as Fig. 3, and for three different values. of peaks expected in this context, as well as a comparison with
It should be noted, in conclusion, that the above class ofUTently available measuremeritd, could provide signifi-

models depends in a crucial way on three important pararn(zant bounds on the parameters O.f the s_trin_g co_smology mod-
eters:my , qo and the ratio. =c, /c,. The first one controls els we have discussed. Such an investigation is postponed to

the transition time between the epoch of standard cosmolog[tturé work. Nevertheless, we believe that the results of this
cal evolution and the final accelerated regif@s can be PaPer are encouraging, as they suggest that the dilaton,

easily checked, for instance, by repeating the numerical inWhiCh can hardly play the role of the inflaton in the standard

tegration of Fig. 3 with different values ofi,). The other inflationary scenarid45], could play instead a successful

two parameters control the asymptotic properties of thJOIe as the quintessential field in post-inflationary, late-time

model(acceleration, equation of state, . ), asdiscussed in cosmology.

Sec. lll. Future precision data, both from supernovae obser-

vations and from measurements of the CMB anisotropy,

could give us a good determination of these parameters, thus ACKNOWLEDGMENTS
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