PHYSICAL REVIEW D, VOLUME 65, 023505

Analysis of CMB polarization on an incomplete sky
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The full sky cosmic microwave background polarization field can be decomposed into “electric” and
“magnetic” components. Working in harmonic space we construct window functions that allow clean separa-
tion of the electric and magnetic modes from observations over only a portion of the sky. We explicitly
demonstrate the method for azimuthally symmetric patches, but also present it in a form in principle applicable
to arbitrarily shaped patches. From the window functions we obtain variables that allow for robust estimation
of the magnetic component without risk of contamination from the probably much larger electric signal. The
variables have a very simple noise properties, and further analysis using them should be no harder than
analyzing the temperature field. For an azimuthally symmetric patch, such as that obtained from survey
missions when the galactic region is removed, the exactly separated variables are fast to compute. We estimate
the magnetic signal that could be detected by the Planck satellite in the absence of extra-galactic foregrounds.
We also discuss the sensitivity of future experiments to tensor modes in the presence of a magnetic signal
generated by weak lensing, and give lossless methods for analyzing the electric polarization field in the case
that the magnetic component is negligible. A series of Appendixes review the spin weight formalism and give
recursion relations for fast computation of the spin-weighted spherical harmonics and their inner products over
azimuthally symmetric patches of the sphere. A further Appendix discusses the statistics of weak signal
detection.
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[. INTRODUCTION decoupling. In this case the polarization has “magnetic”
(i.e., cur) and “electric” (i.e., gradient components at a
Observations of fluctuations in the temperature of the coscomparable level. A magnetic signal can also be produced by
mic microwave backgroundCMB) are now providing us Weak lensing of the electric polarization generated by scalar
with a direct view of the primordial inhomogeneities in the modes. Detection and analysis of the lensing signal would be
universe. The power spectrum of temperature fluctuationgiteresting in itself, but a detection of an additional tensor
yields a wealth of information on the nature of the primordial component would provide strong evidence for the presence
perturbations, and the values of the cosmological parameter8f primordial gravitational waves, a generic signature of
Mapping the polarization of the cosmic microwave sky is ansimple inflationary models.
important next step, offering a great deal of complementary Detecting or excluding a magnetic component is clearly
information, especially regarding the character of the primorof fundamental significance in cosmology. But there is a sig-
dial inhomogeneitie§1]. One of the most interesting ques- nificant obstacle to be faced. The problem is that for the
tions to resolve is whether the primordial perturbations posforeseeable future, the primordial sky polarization will only
sessed a tensdgravitational wavicomponent, as predicted be observable over the region of the sky which is not con-
by simple inflationary models. Here, polarization measuretaminated by emission from our galaxy and other foreground
ments offer a unique prob@—4. sources of polarization. Thus we shall only be able to mea-
Polarization of the cosmic microwave sky is produced bysure the polarization over a fraction of the sky. But the
electron scattering, as photons decouple from the primordigdlectric-magnetic decomposition is inherentiyn-local and
plasma. Linear polarization is produced when there is d&0n-uniquein the presence of boundaries.
quadrupole component to the flux of photons incident on a To understand this, consider the analogous problem of
scattering electron. Scalédensity perturbations generate an representing a vector field; (in two dimensionsas a gra-
“electric” (gradienj polarization pattern on the sky due to dient plus a curl:
gradients in the velocity field on the surface of last scatter- _
ing. For scalar perturbations the velocity field is curl-free, Vi=Vi®+€'Vix, (1)
and this leads directly to the production of an entirely “elec-
tric” pattern of linear polarization. In contrast, tensor pertur- the electric and magnetic components respectively. From this
bations(gravitational wavesproduce polarization by aniso- equation, one ha§2®=V'V;, andV2y= —V'e{Vj . For a
tropic redshifting of the energy of photons through manifold without a boundary, like the full sky, the Laplacian
may be inverted up to a constant zero mode, and the two
contributions toV; are uniquely determined. But for a finite
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example one can add tb and y pieces with equal but per- dow functions. We present a harmonic-based approach for
pendicular gradients so there is no net contributioVto constructing these window functions which is exact in the
Since full sky observations are unrealistic, so is the hopdimit of azimuthally-symmetric patches. The method is ex-
of a unique decomposition of the sky polarization into elec-pected still to perform well for arbitrary shaped patches of
tric and magnetic components. However, this does not at athe sky, but the separation will no longer be exact in that
mean that the hypothesis of a magnetic signal cannot bease. Constructing the window functions with our harmonic
tested. One possibility is to construct a local measure of thenethod automatically removes redundancy due to the finite
magnetic signal by differentiating the measured polarizatiorsize of the patch, keeps the information loss sifedtept for
(i.e. V'elV; vanishes ifV; is pure electric in the analogue very small patches and ensures that for idealized noise in
example above but this is problematic for noisy, sampled the polarization magisotropic and uncorrelat¢dthe noise
data. A more promising alternative, which avoids differenti-on the electric and magnetic variables preserves these prop-
ating the data, is to construct line integrals of the polarizatiorerties. In this respect the construction is analogous to the
[5,6]. For example, in the vector analogy above, any lineorthogonalized harmonics approach used in the analysis of
integral $dx'V; is guaranteed to vanish ¥; is purely elec- temperature anisotropi¢40,11. However in the polarized
tric. However, the problem with these line integrals is thatcase there is no simple interpretation in terms of a set of
there are an infinite number of them, and they are not statisarthogonalized harmonics.
tically independent. One would therefore prefer a set of In Ref.[12] it was shown how the lossless quadratic es-
“magnetic” variables to which the “electric” component timator technique can be applied to polarization. There, no
does not contribute, but which are finite in number and staattempt was made to separate the electric and magnetic con-
tistically independent, for a rotationally symmetric statisticaltribution to the estimators, so the resulting window functions
ensemble. Since polarization from a primordial scale invarifor the power displayed considerable leakage between the
ant spectrum of gravitational waves is predominantly generelectric and magnetic modes. The authors of Héf]
ated on scales of a degree or(#iee angle subtended by the showed how the leakage could be reduced, but it is arguably
horizon at last scatteringwe would expect to be able to still too large to allow robust estimation of the magnetic
characterize the cosmic magnetic signal by a set of statistsignal in the presence of an electric signal that is orders of
cally independent variables roughly equal in number to thenagnitude larger. We are able to perform a much cleaner
size of the patch in square degrees. However, the signaleparation at the level of the harmonic components in the
within a degree or so of the boundary cannot be unambigumap, and as we shall see the information loss in our ap-
ously characterized as magnetic, and hence one loses a nuproach is quite small for full sky surveys with a galactic cut.
ber of variables proportional to the length of the boundary. The electric-magnetic decomposition of the polarization
The amount of information about the magnetic signal therefield is exactly analogous to the corresponding decomposi-
fore increases as the patch area minus the area of this bountbn of projected galaxy ellipticities induced by weak lensing
ary layer. In this paper we shall find the set of observabld13,14. Referencg15] shows how to construct local real-
“magnetic” variables explicitly for circular sky patches: the space correlation functions for measuring the magnetic com-
method may be generalized to non-circular patches if neceponent. These are useful for distinguishing the purely electric
sary. signal due to gravitational lensing from intrinsic correlations
As mentioned above, the electric component of the polarin galaxy alignments, and the method has the advantage of
ization (due primarily to scalar perturbations expected to  working for arbitrarily shaped regions of sky. However the
be much larger than the magnetic signal. Therefore to deteehethod assumed a flat sky approximation, and includes only
the latter it may be useful to construct observables whichhe two-point information. For polarization observations the
suffer no electric contamination. We show how to constructsky curvature will be important and we aim to extract a set of
such variables, and use them to estimate what magnitude efatistically independent observables that contain as much of
magnetic signal the planned Planck satéllitéght be able to  the magnetic information as possible. This may also prove
detect. We also discuss the optimal survey size for futureiseful for weak lensing studies.
experiments aimed at detecting tensor modes via magnetic The paper is arranged as follows. In Sec. Il we present the
polarization, including the effects of “magnetic noise” due spin-weight 2 window technique for separating electric and
to weak lensing of the dominant electric polarizati@;7]. magnetic polarization on the sphere, generalizing results in
Even for observations that do not expect to detect the madrefs.[5,6]. Section Ill describes our harmonic-based tech-
netic signal the magnetic-only observables are likely to banique for constructing window functions with the properties
very useful in checking consistency of any residual polarizarequired to ensure separation of the electric and magnetic
tion with noise or indeed in identifying foreground contami- modes while keeping information loss small. Classical tech-
nation. They may also be useful for studying the small scaleiques for testing the hypothesis that there is no magnetic
weak lensing signdl9]. signal are discussed in Sec. IV, and estimates of the detection
To construct variables that depend only on the electric ofimits with the Planck satellite and future experiments are
magnetic polarization we integrate the polarization field overalso given. Lossless methods for estimation of the polariza-
the observed patch with carefully chosen spin-weight 2 wintion power spectra are contrasted with methods using the
separated variables in Sec. V. In a series of Appendixes we
outline our conventions for spin weight functions and their
http://astro.estec.esa.nl/Planck spherical harmonics. In addition we present a number of the
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standard integral theorems on 2-dimensional manifolds in 1

convenient spin weight form, and present recursive methods ~ Ew= E(Ié,\,\,wL " ow), By=-—i E“é,w_ 1Zow) (6

for the fast computation of the spin weight spherical harmon-

ics and their inner products over azimuthally symmetric ) ) L

patches of the sphere. A further Appendix discusses the st®rovide a measure of the electric and magnetic signals. Note

tistics of detecting weak signals from tensor modes. that Ey,. =E\; with an equivalent result foBy, . Using the
integral theoren{A23) in Appendix A we can write

Il. ELECTRIC AND MAGNETIC POLARIZATION

The observable polarization field is described in terms of ~ 1;,,= f ds P ,W* + é 10 (W 3P* — P*dW*), (7)
the two Stokes’ parametef@ and U with respect to a par- S S
ticular choice of axes about each direction on the sky. In this
paper we take these axes to form a right-handed set with the
incoming radiation directiorifollowing Ref. [3]). The real I ow= J dS P_,W* + § 10l (W* 0P — P dW*),
Stokes’ parameters are conveniently combined into a single S 7
complex field that represents the observed polarization

8

P=Q+iU. (2)  Where ;,W=00W is now a spin 2 window function,,W
=3 dWis a spin—2 window function, and,dl = ;dl* is the
The values of Stokes’ parameters depend on the choice apin 1 element of length around the bounda$ of S
axes; sinceQ is the difference of the intensity in two or- Clearly we do not wish to take derivatives of noisy observed
thogonal directions it changes sign under a rotation of 90°data and hence it is usually useful to choose the window
The Q field is related to thdJ field by a rotation of 45°. function to eliminate the derivative terms on the boundary.
More generally under a right-handed rotation of the axes by For CMB polarimetry we are interested in the polarization
an anglex about the incoming direction the complex polar- defined on the spherical sky. The surface integrals vanish if

ization transforms a®—e 2P and is therefore described we choosaV such thatddW= 6 SW=0, which will be true if
as having spin minus twsee Appendix A for our conven- s a linear combination of the spherical harmonics with
tions for spin weight functions The analysis of polarized =0 or 1, since these possess no spin 2 component. If we then
data is therefore rather more Complicated than for the ternsetW:O on the boundary, so as to eliminate the derivatives
perature which does not depend on making a choice of axesf the polarization, we are forced to consider circular patches
in each direction on the sky. S, in which case a combination of the two=0 harmonics

As described in Appendix A, one can define spin raisingworks. This implies that the electric and magnetic signals can
and lowering operators that can be used to relate quantitigse probed by performing line integrals around circles, as
of different spin[16,17]. The spin raising operator is denoted emphasized in Refd5,6]. These line integrals can be per-
d and the lowering operatad Since the polarization has formed around any circle that is enclosed in the observed
spin-weight—2 it can be written as the action of two spin region of the sky, and it is unclear how to obtain a complete

lowering operators on a spin zero complex number set of statistically independent observables in order to extract
all of the available information. Also for current experi-
P=33(Pe+iPg). ®) ments, performing one-dimensional line integrals on pixel-

ized maps is unlikely to be a good way to extract information
The underlying real scaldspin-zero fields Pg and Pg de-  robustly.
scribe electric and magnetic polarization respectijdly]. In this paper, we suggest choosing the window functions
They are clearly non-local functions of the Stokes’ param-so that the line integrals arounts that appear in the con-
eters. One can define a spin zero quantity which is local irstruction of E;, and By, contain no contribution from the
the polarization by acting with two spin raising operators.magnetic and electric polarization respectively. In the ab-
Using some results from Appendix A one obtains sence of special symmetrigsee below for exceptions that

arise in the case of circular patchdisis requires thatV, W,

and dW all vanish on the boundary. These conditions are

i i L equivalent to demanding that the window function and its
whereV is the covariant derivative on the sphere. The realnormal derivative vanish oaS. With such a choice of win-

and imaginary parts of this equation can therefore be used {gq,\ \e can measure the electric and magnetic signals using
determine the electric and magnetic parts of the polanzanorbmy the surface integrals
Performing a surface integral we define

OOP=(V2+2)V%(Pc+iPg) (4

ILZWEJdS\Af‘ééP, |ngfdsv\réép*, ® 'rz,wEEwiiBwELdsrz\"’*(QiiW- ©)
' S ' S

whereW is a complex window function defined over some Since the window functions are scalar functions on the
patchS of the observed portion of the sky. It follows that  sphere we can expand them in spherical harmonics,
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(1-2)! the patch(See e.g. Refl11] for a discussion of the equiva-
w=> ; T2 WinYim- (10)  lent problem in the case of scalar functioriEhe redundancy
122 |mi<I ( )! in the set of acceptable window functions can be removed by
expanding the spin 2 window functions in a smaller set of

(The square root factor is included for later conveme)”lce.functions which ardalmos) complete for band-limited sig-

We need not |ncl_udé=0 and l_sphe_rlcal ha_rmonlcs SINCE hals over the regiors. The construction of such a set by
they do not contribute to the spin-weight? window func- singular value methode.g. Refs[11,18)) forms the starting
tions, and the poundary mtegr.al terms automatl_cally Separfﬁ?oint of the method we present in Sec. IIl.
for these multipoles. In practice, we are only interested i
probing scales to some particulay,y (e.g. the magnetic sig-
nal from tensor modes has maximal power fer100 and
decreases rapidly with), so the sum in Eq(10) can be We construct window functions in harmonic space, so as a
truncated at some finitk, . useful preliminary we consider the harmonic expansion of

We shall focus on the case where the observed sky patcpin-weight 2 fields over the full sphef8,4]. The polariza-
is azimuthally symmetric in which case the construction oftion P=Q+iU is spin —2 and can be expanded over the
exact window functions becomes particularly simple. Thewhole sky in terms of the spin two harmonicee Appendix
harmonic-based method we describe in Sec. Ill provides & for our conventions and some useful results
practical solution to constructing a non-redundant set of win-
dow functions that separate the electric and magnetic modes o _ —
exactly. In addition, for the special case of isotropic, uncor- Q=1U _% a:z,m:ﬂm-% (Ein*1Bim) 2Yin-
related noise on the observed polarization, these simple prop- (12
erties are preserved in the variabeg andB,,. For obser-
vations over non-azimuthally symmetric patches our methodReality of Q and U requires a*,;,=(—1)"az (- m),
can, of course, be used over the largest inscribed circulego  that Ej,=(—1)"E;_n with an equivalent
patch, but in this case there is inevitable information lossesult for B),. Under parity transformationsEg,
since we use only a subset of the observed data. However> (—1)'E,, but B;,—(—1) "'B,,,, since JY,n(7—6,¢
we expect that the method presented in Sec. IIl could also be 7)=(—1)"'_.Y,m(6,¢). From the orthogonality of the
applied directly to the full observed region to construct win-spherical harmonics over the full sphere it follows that
dow functions that achieve approximate separation of elec-
tric and magnetic polarization. .

Consider the case of an azimuthally-symmetric patch so Eim= §(a2,|m+a_z,|m)
the boundarydS consists of one or two small circles. For
each azimuthal dependence mrwe can construct combina-

Harmonic expansion

1 1
=5 ds P_ZYikm‘i‘ Ef das P\'zYTm y (13)
41 4w

tions 2

{max [1=2)1 1

Wm:|:m§21m\) {2y VimYim 1y 'Bin= 3 (@2m=2-2im)

that satisfy the necessary bounc_iary conditi_ons_.rﬁero itis __ } dS P_,YE, + E f dS P,LYE . (14)
easy to see thdt,, andB,, contain no contribution fron®Pg 2)an 2)4n
and Pg respectively for any choice of th&/, [i.e. the
boundary integrals that distinguigh, (By) from EJy (B{\) In a rotationally-invariant ensemble, the expectation val-
vanish if the polarization is pure magnetiglectrig]. It fol- ues of the harmonic coefficients define the electric and mag-

lows that form=0 there arel .1 linearly independent netic polarization power spectra:
window functions that satisfy the boundary conditions. For EE N BB
Im|=1 it will be shown in the next section that there is only (EimEim)=810mmCi™,  (BliyBim)= 61 0mmCi™
one independent linear constraint per boundary circle, so
there arel n,—2 possible window functionsl {,,,—3 for a (15
boundary composed of two circlesFor |m|=2 there are _ _ ] )
two linear constraints per boundary circle which can be takerf the ensemble is parity-symmetric the cross term is zero,
to be the vanishing o#,, and its normal derivative. In this <E|*rmrB|m>:0-
case there arbyq,—|m—1 (I ma—|m/—3) window functions The form of the harmonic expansighO) of the window
for boundaries consisting of oevo) small circles. function ensures that the spin-weight2 windows are

Since we are only considering a fraction of the sky not alll
of the window functions counted above may return observ-
ablesE,y, and B,y containing independent information. This
arises because for lardg,.x, or small patches, there will
generally arise non-zero window coefficiems,, that pro-  where the sum is ovdr=2 and|m|<I. Evaluating the sur-
duce spin 2 window functions that are poorly supported oveface integrals in Eq(9) we find

W= % Wim +2Yim, (16)
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Ew=2 WiEim,  Bu=2 WiBm, (17 0.08 |

0.04 |

0.02 F
where the pseudo-harmonics are obtained by restricting the o
integrals in Eqs(13) and(14) to the regionS E———

0.06 |

B 1 0.04 £
Elm:§ > de[(EI’m’_iBl’m’)—ZYl’m/ —2Yin 0.02 F
"m’ S 0 ;
+(E|/m/+iB|/m/)2Y|/m/ 2Y|*m], (18) 0.06 E
0.04 |
~ i . . 002 f
B|m=§ 2 SdS[(EI’m’_|BI’m’)—2YI’m’72Y|m oF

I"'m’ F—+—+—+—t +—+—+—+ =

] 0.06 | 3

0.02 e

Defining Hermitian coupling matrices oF R

E. + v 5 Voo by by oy

1 50 100 150 200 250

Wt (imy(im)' = E( Wamyamy' = —2Wamyamy),  (20) 1

FIG. 1. The window functionsV, :mam) (solid lineg and
where W_'mam) (dashed lingsfor I'=100 and variousm for an azi-
muthally symmetric patch witl#<<10°. The dashed lines show the
SW(Im)(Im)’Ef dSeYE Y s (21)  Eim contamination oﬁl,m as a function of. Form=0 there isno
S contamination, and a® increases the functions decrease in ampli-
) tude as the corresponding harmonics become more localized outside
we can write of the patch.

Elm: > (Wt gmymy e +IW _ (imy (i Brrme ) different parity (i.e. for evenl the pseudo-harmonicB,
I'm’ depend orE;,,, only for odd!").
(22) We showed in the previous section that, for a general
window function, the contamination of, e.g, by the mag-
5 _ i netic polarization is due entirely to boundary terms. This
Bim |%r (Weamyam)Brrme =W amyqimy: Eyr). implies thatW_ ,mm)» can always be written as a line in-
(23)  tegral around the boundary & (We show in Appendix C
o o that the matricegY ;m)im)- can be transformed into line in-
In the limit | a2, + W)y DECOME projection operators eqrals forl 1. HoweverW_ jmam): can be written as a

as a consequence of the completeness of the spin—yveight hlie integral for alll and!1’.) Making use of Eq(C9), it is
monics. The matriXW_ mumy+ controls the contamination straightforward to show that

of Ey and B,y with magnetic and electric polarization re-

spectively. Our aim is to construct window functiokig,,, 1 [(1—2)
(1+2)!

that remove this contamination for &f,,, and B,,. Some W—(Im)(lm)’=2
elements of the matricéd/.. ;m)im): are shown in Fig. 1.

islcj—'[\/'(' +1) 1 Yim2Yirm

For azimuthally-symmetric patches the coupling matrices VI =D +2)YE 1 Y ]
are block diagonal W (im)(im)’* 6mny), and so window
functions can be constructed for eathseparatelysee Eq. U
(11)]. Form=0 we have + Sldl[ H(+1) 1 Yim —2Yirm

de82onsz0= Lds,zv,,o,zvro, (24) =1 (1" +2) fm_lemr])- (25)

so W_(i0y1'0y=0 and we have clean separation for anyThis can be put in manifestly Hermitian form using the re-

azimuthally-symmetric window function. The set of azi- cyrsjon relation derived from the action @ 38) on (Y,
muthally symmetric window functions givel$,,,—1 sepa-

rated variables that contain the same information as would be m-+ s coséd 1

obtained by computing line integrals around all those circles ~ —ging s m= V(I =S)(I+8+ 1)1 Yim
concentric with the boundary of the azimuthal patch. For

generalm there is leakage of,, into B,,; for parity- 1 —

symmetric cuts there is only leakage between modes with * 2 (I+9)(=8s+1)s-1Yim. (26)
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For a circular boundary at constant latitude-©® (i.e. the 100

boundary of an azimuthal patghwe find Bx10° searas 16-9071>20", 1,,,,=1000
6x108

W (1my('my = —4ma{ u(m)u}’,(m) +ov (Mo} (m)], 10
108

2x108

where the vectors 100 : 8<10°, 1q,,=1000
(—2) b
u(m)= (|+—2)|[f90Y|m(®'(D)_COtY|m(,q))], ok
(28 Bx10t E e l8-90>20", 1, =250
4x104 -
(|_2)| \/(m2_1) 2% 104 E_ ’_‘ 17642

E 62191
6x104 -

for =2 and some arbitrargp. [Note thatu;(m) andv,(m) ax104
will not generally be orthogonal so EQ7) is not the spec- ex10t 3
tral decomposition oV _ (. (1m) -] Any window W, whose E sz 208
inner products withu;(m) andv,(m) both vanish, i.e.

8<10°, 1, =250

>0.9 0.1-09 0.01-0.1 103-0.01 10~4-10-%  10™-10% <10

FIG. 2. The distribution of eigenvalues Wf, for two azimuth-
§|: Wikti(m) = Z Wi (M) =0, (30 ally symmetric sky cuts withmaxi{ZSO,loo(}. The distribution is
approximately bimodal, and the fraction of the eigenvalues corre-
will achieve clean separation of electric and magnetic polarsponding to well-determined modesigenvalue significantly non-
ization. For|m|>1 such window functions and their normal zero is given by the fraction of the sky area in the patch in the limit
derivative necessarily vanish on the boundary. As noted eatmax—*

lier, for [m|=1 there is actually only one constraint to be
satisfied which now follows from the fact thaf(+1)=0. limit of full sky coveragew_—0 andW, —1. We know that
for |m|=2, the range ofmth submatrix of W_ is two-

dimensional[spanned by (m) andv,(m)], so that all but
two of the eigenvalue of the submatrix are zero. Equiva-
lently, all but two linear combinations of th,,, are inde-

In this section we give a practical method for constructingpendent ofg,,,. The|m|=1 submatrices ofV_ have only
a non-redundant set of window functiof\#/,} wherel labels  one non-zero eigenvalue; the associated eigenvectors are
the particular window, that achieve exact separation for aziy,(+1). The m=0 submatrix is identically zero. The es-
muthal patches. The correspondi@eanly separatgcelec-  sence of our method for constructing the window functions is
tric and magnetic observables will be denofig andBy,.  to chooseWw to project out of the range aV._ .
We will make use of a notation where vectors are denoted by We first diagonalizéV, = U+D+U1 by performing a sin-
bold Roman font, e.gBy, has component8yy, andB has gular value decompositiof18]. Here, D, is a positive
componentsBy,, and matrices are denoted by bold italic (semijdefinite diagonal matrix whose elements are the ei-
font, e.g.W.. have component®/.. (mum- . We present the genvalues 9W+ . .The columns of the unit'ary matrid, are
method in a form that is app”cab(mough no |onger exagt the normalized eigenvectors W, . The Slngular value de-
to arbitrary shaped regionS; for azimuthal patches the composition allows us to identify the linear combinations
method is exact. For the azimuthal case all matrices areJJLB that are poorly determined l—those corresponding
block diagonal and the window functions can be constructedo the small diagonal elements Bf. . The eigenvectors with

Ill. ELECTRIC-MAGNETIC SEPARATION
ON THE CUT SKY

for eachm separately. very small eigenvalues correspond to polarization patterns
In matrix form, Eq.(17) is that essentially have no support inside the observed patch of

- - the sky, and would lead to a set of redundant window func-

Ew=W*E, Bw=W*B, (31)  tions if not removed from the analysis. The distribution of

eigenvalues ofV, is approximately bimodal as illustrated in
Fig. 2, and the exact definition of “small” is not critical
when considering the range of the matrix. This bimodality
arises because ,W are approximately projection operators
for largel .y, and the fact that the range @ _ is a rather

For an azimuthally-symmetric sky patch the block-diagonaSmall subspace. To remove redundant degrees of freedom
matrices ., W (with components,;Wmq+mydmm) from from the s_pin 2 window fu_nctions, we define an operalqr
which W.. are constructed can be computed very quicklywhich projects onto the eigenvectorsWf, whose eigenval-
using the recursion relations given in Appendix C. Alterna-ues are close to one. This amounts to removing the appropri-
tively, W_ can be computed directly from E€7). In the  ate columns o), . SinceU, is orthogonalU., is column

whereW=W,m is the matrix whoséth row contains the
harmonic coefficients of theth window function, and recall

E=W,E+iW_B, B=W,B—iW_E. (32
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orthogonal and hendB“;U+=l (butU+UL¢I). The matrix  that achieve separation can be estimated as the number of

ixels of linear size~ /1,5, contained in the patcfroughly
e number of modes that survive the diagonalizatiowaj

minus twice the number of pixels on the boundéamyughly

SRR Mt Tt the number of constraints in settifganddW to zero on the

U,B~D,U,B-IU.W.E. (33 boundary. Such window functions will only give an ap-

proximate separation of electric and magnetic polarization.

In practice, the accuracy of the separation, and the number of

D. is the corresponding smaller square diagonal matrix, an
we have

We now muliply by D;'?, defined by [D;?];

— 3 —-1/2 ;

=6;[D.];; 77, to give independent window functions constructed, will depend on
~ -~ ~ ~ the choice of threshold for retaining the singular values of
D, Y B~DYA! B-iD, YUt W_E. (34) B w._ g g

If we are only interested in constructing variables that
X . ; . . depend on the magnetic polarization, the maximum multi-

equivalent to constructing the spin 2 window functions from . : :

a reduced basis that is orthonormal a@admos) complete polel . in the window functions can be chosen~rather small

over the regiors (of the order of a few hundred The relationB=W,B

The remaining step is to project out the unwanted bound=W-E will only hold for squareW_ if I is chosen to
L= include all the significant power in the electric polarization,
ary terms that contaminat®B with E. For the case of an

4 . so for smallerl,,, we cannot assume th&V_ is square.
azimuthal patch, the ranges of the submatriceg/ofare all ! .
. . . However, for azimuthal patches, the range of each submatrix
two dimensionalor lower). It follows that the same is true

= 1t of W_ is still guaranteed to be of dimension two or less,
of D."U,W_, so we can remove the unwanted boundaryrespective of its shape, and so the exact separation can

term by ensuring thatV also includes a factor that projects proceed with W_ treated as square. For non-azimuthal
out of the range oD, 20T W_ . In practice, we perform this patches it would be prudent to monitor the effect of varying
projection by constructing its singular value decompositionthe number of columns ikiV_ on the range of this matrix.
which for a non-square matrix takes the fofdy ¥20" W_

=UDV". Here,D is a diagonal matrix with the same dimen- A. Noise

sion asD,, , U is a unitary matrix of the same dimension, and |t js straightforward to project the errors on the Stokes’
V is a column orthogonal rectangular matrix. There are abarameters to find the noise in the separated varidblgs
most two non-zero singular valuésliements of the diagonal zndB,,. In this section we consider the simple case of maps
matrix D) perm, and the corresponding left singular vectors yith idealized noise properties.

(columns ofU) form an orthonormal basis for the range of  \we assume that the noise correlation between pixels is
D; Y201 W_ . We can project out of this range by definidg  negligible, and that the noise on the Stokes’ paramet€s

as the matrix obtained by removing the columndJoivhere  and AU is un-correlated. The neglect of noise correlations
the corresponding singular value is non-zero. Thus, choosingetween pixels amounts to assuming white noise in the time

Including the factoD; 20" in the window functionsw is

the window functions stream of the measurement. In principle, correlations be-
o tween Stokes’ parameters can be eliminated with a careful
wr=0D; Y401, (35  choice of polarimeter directions in the experimén®,20.

_ _ _ With these assumptions, we have
we guarantee separation of the electric and magnetic polar-

ization for azimuthally-symmetric patches. Our separated po- (AQ(OQ)AU(Q'))=0, (38
larization observables become
and the noise correlation is given by
Bw=W*B=U'D; "0 B=~UDY4!B, (36)
" o o (AQUQ)AQ(Q )= 5o -0,
Ew=W*E=U'D; Y0 E~U'DYU'E. 3
W A o 37 (AU(D)AU(Q))=038(Q-Q"). (39
For azimuthal patches the separation is exact; the approxi- _ 5
mation sign arises only from our use W, ~U,D,U! in It follows that the noiseAB on the pseudo-multipoleB has

simplifying the matrix that premultiplie€ and B in Eqs.  correlations
(36) and (37).

For observations over nqn—azimuthal patche;, one can ei— <AEAET>: lf dS(cré-l—cra)E[ YR Y*)!
ther apply the exact separation over the largest inscribed azi- 2)s 2
muthal region or attempt to apply the method outlined above 1
to the entire patch. In the latter case the structur®Vofis *( oyt f 2_ 2

+,5Y* (LY -=|d -

less clear, but we can still expect a significant number of its 27 (2Y7)] 2)s oo ab)
eigenvalues to be very small; the associated eigenvectors 1
correspond to window functions that satisfy~0~0W on v * Y T y* *\T
the boundary. The number of independent window functions 2[ Y7 (YT RYT (Y], (40
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with a similar result for the noisAE on E. Here, vectors of
spin-weights functions ;Y have componentsY,,,. The po-
larimeter arrangements that give uncorrelated errors betwee -,
Stokes’ parameters also ensure thgt= 0o =0y, S0 that the

last integral in Eq(40) is zero. Here we concentrate on the

simple case where?, is isotropic in which case

(ABAB")=(AEAEN=0c2W, . (41)

The covariance of the nois®B,y, on By is therefore given
by

N=(AByAB)
=W+ (ABABT)(W*)T
~oZ 0D Y00, D, U0, D, Y0=0¢3l, (42

and hence the noise is diagon@nd isotropig; similarly
(AEWAE))=0?l. What is more, the noise o, and By
are uncorrelated for isotropic noise since

(AEA§T>=iU,2\,W_ , (43) FIG. 3. The real space window functions for an azimuthally
symmetric sky patch witl#<<10°. They are evaluated in the frame
and hence where the signal is diagonal, so the leftmost window produces the
largest signal for thain. The signal to noise falls off as a function of
(AEWAB!)=i020D Y0 W_U.D;Y0=0 (44 mas shown in Figé 4. Fom>0 the window functions correspond
to the real part oB&,\,) ; the imaginary part is a rotated version of the

~ - R—1/27t ; ; . _same window. The length of the lines shows the sampling weight at
asU' annihilatesD, U, W._ . For isotropic noise our po that point, and the orientation of the lines shows which polarization

larization vqriables therefore haye the same desiraple diag%—rientation gives maximal contribution.
nal properties as the scalar diagonalized harmonic coeffi-
cients used in the analysis of the cut-sky CMB temperature . . . . .
[10,11] a hon-ammuthally symmetric .Sl-Jrvey region with artiltrary
In the presence of a symmetric beam, white noise in thé0iSe can be treated by re-defining the pseudo-harmdnics
time stream of the experiment projects to whiteough gen- B and coupling matrice§V, , W_ with a factor of 14§
erally non-isotropig noise on the beam-convolved polariza- inside the integral. All the above results then follow with the
tion field. In multipole space, the convolved fields have elecnew definitions, though computing the matrices and manipu-
tric and magnetic multipoles that are related to thelating them may become computationally challenging. The
unconvolvedE,,, and B,,, by spin-weight 2 beam window assumption of isotropic noise is therefore not fundamental to
functions ,W, [21,22. For |, of a few hundred, appropri- our analysis, and the following results could be generalized
ate for probing magnetic polarization, the beam windowfor more realistic situations.
functions will be negligible for experiments with resolution
much better than one degree. For lower resolution experi-
ments, or highet .y, the effect of the beam window func- o . o
tion should be included in the theoreti¢algna) covariance The expected magnetic signal correlation matrix is given
of the variables€,, and B,y (see below. by
In general, non-uniform coverage of the sky will lead to
variations ino? . In this case it is still possible to define
harmonic variable8329= N~/2B,, that have isotropic noise. _ _ S
(Here N’1’2=UND§1’2UL whereN=UNDNUL, Uy is uni- where the diagonal magnencBgowgr spectrum matrlx is given
tary andDy, is diagonal) For azimuthal patches with general bY [_CBB](Im)(I’m’)= Smm 611°Cy" . Since the noise correla-
(everywhere finite noise patterns we can still construct the tion is proportional to the identity matrix for isotropic noise
magnetic-only variables for each value wf but the noise We can perform any rotatioB,— B{’=RBy, whereR is
will now couple variables with differentn (unlike the sig-  unitary, and still have a set of variables with uncorrelated
nal). While presenting no fundamental obstacles, thiserrors. The rotated variables are derived from window func-
m-mode coupling does increase the computational overhediPns R*W. For a particular theoretical model we can rotate
considerably. to the frame where the signal matrix is diagonal. The rotated
Sky patches of general shape are equivalent to azimuth@\(,?) will then be fully statistically independent. In Fig. 3 we
patches with regions of infinite noise, and the general case gflot the window functions for thBS,\F,‘) which give the largest

B. Real space window functions

S=(ByB!,)=U0"DY0! cB8U, DY, (45)
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contributions to the signal for a typical flatCDM model  *[
with a scale invariant tensor initial power spectrum and no 1|
reionization. The window functions are plotted as line seg- 5
ments of length/Q2Z,+ U2, at angle tan(Uy,/Qy)/2 to the E
6 direction where the real quantiti€, andU,, are defined %6}
in terms of the real paftW® of the (rotated scalar win- o4 |
dow functionW® as b
Qu+iUy=—i83RW®. (46) ob
This definition ensures that L2
e
RB{R = LdS(QWQJr UwU). @) osb  posopes
0.6 —
For the imaginary part oB{Y’ , Q\ and Uy, should be de- ,F
fined asQy+iUyw=—id3IWR*  For the case of azi- 025_
muthal patches, as considered in Fig. 3 where the windows [ l\
are constructed for each, the imaginary part would produce =~ 0 '—=———=== = -
a plot that is rigidly rotated by- 7/(2m) (m#0) about the m

center. Plotting the window functions in this form is useful

\?\;gicehttgis:egg:jh tc?ftrrgf I(')Tr?t S:r? dmt?]r: cgli\(/ei?attirc])?\ S?/rgghtrllqeensor amplitude chosen to give a detection at 99% confidence with
9 9 P ’ 9 robability 0.5(see Sec. IY. The noise is assumed isotropic and the

dirgction of the linear polarizatiqn that Cor_ltribuFes at eacrﬁmdel has reionization &=6.5. For the small sky patch most of

point. We could repeat the exercise for tg '_n_Wh'Ch Case  ihe signal is in the lowest few eigenmodes of eagtbut for larger

for the real part we would defin@y,+iU =338 RWR), patches a greater number of eigenmodes are required to encompass
In Fig. 4 we show the signal to noise in the magneticall the signal(in the bottom plot there are lots of contributions on

variables for two azimuthal patches. As the patch size intop of each other along the bottom ljndor the large patch there

creases the signal in the modes with larg@lso increases, are a small number of high signal to noise modes due to the extra

reflecting the fact that for small patches the diagonalizatiorarge scale reionization signal.

of W, removes a greater relative fraction of the modes at

eachm asm increases. For small patches of the sky most othis signal. Of more interest here is the larger scale contribu-

the signal at eacim is compressed into a small number of tion from tensor modes. In order to identify this component

modes, whereas for larger patches the signal is distributedle shall have to model the lensing contribution, which be-

more uniformly. For cosmological models with reionization comes increasingly important as one tries to observe smaller

the signal for large patches is distributed less uniformly, withtensor contribution$7,8]. In the first three of the following

a small number of modes giving big contributions due to thesubsections we assume that the magnetic signal is generated

FIG. 4. The eigenvalues o ~Y?SN™*2 at a givenm with the

greater large scale power. purely from the tensor modes, then in Sec. IV D we show
how our results can be adapted to account for the lensing
IV. MEASURING THE MAGNETIC SIGNAL signal.

We are now in a position to use the magnetic observable
By to constrain the magnetic signal without having to worry
about contamination with the much larger electric signal. The If the noise and signal are Gaussian Bygwill be Gauss-
simplest thing to do would be to test the null hypothesis thaian and the simplest thing to do is& test by computing
the magnetic signal is due entirely to noigeis hypothesisis  x*= B{yN"!By, (for isotropic noise this is justy?
unlikely to be ruled out pre-Plangkif the signal were not =B\TNBW/U§). Whilst the CMB magnetic polarization signal
consistent with noise it could indicate various things: theis from tensor modes is expected to be Gaussian, the lensing
presence of CMB magnetic polarization, the presence of posignal and any spurious or unexpected signal may not be.
larized foregrounds that have not been removed successfull@ne may therefore also wish to do a more sophisticated set
systematic leakage into the magnetic mode in the analysisf statistical tests at this point.

(e.g., due to unaccounted for pointing errors, or pixelization Assuming that the signal is as expected—adsignal
effecty, or Q—U leakage in the observatiofe.g. due to present is Gaussian and would have a power spectrum as
unaccounted for cross-polarization in the instrument optics predicted for a near scale-invariant tensor initial power

Magnetic polarization can originate from tensor modesspectrum—one can account for the expected form of the
but also by weak lensing of the scalar electric polarizationpower spectrum and thereby increase the chance of a detec-
[23]. The lensing signal should be dominant on small scalesjon. We assume that the main parameters of the universe are
and the magnetic variables could certainly be used to obserweell determined by the time magnetic polarization comes to

A. Is it just noise?
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be observed, so the shape of the magnetic polarization powe Ir
spectrum is known to reasonable approximatitme only
significant freedom arising from the shape of the primordial

tensor power spectrumWe compute the expected signal 2 08
correlationS for some particular tensor amplitude and say 3

that the real signal isS. Assuming Gaussian signal and 3 06
noise the likelihood in this case is then given by g
1 S

ex —EBJV(NHS)*lBW 5 o
L(Bulr)= S

IN+rg|t?

o
o

The likelihood distribution can be computed numerically
from the By, observed, and gives the posterior probability :
?ést)ribution on the value of after multiplying by the prior 101 Tensor g};{‘;mude A, 10-¢
r).
The magnetic signal is expected to be weak, and the de- FIG. 5. The probability of detecting magnetic polarization at 99
tailed statistics for analyzing such a signal are given in Ap-percent(thick line§ and 95 percentthin lines confidence as a

pendix D. There we show that function of the tensor initial power spectrum amplitutie for the
model of Planck observations described in the text. The dotted line
B\J;VN_lsN_lBW— tr(N~1S) is for a model with reionization az=6.5, using the unprojected
y' = (49 variables and treating the electric contamination as part of the noise
\/4B$VN‘1SN‘1SN‘1BW—2tr(N‘1SN‘1S) (see Sec. Y. The other curves are using the projected magnetic

variables for models with no reionizatigsolid) and reionization at
gives a measure of the number of “sigmas” of the z=6.5(dashed The vertical dashed line shows the tensor ampli-
detection—the number of standard deviations of the maxitude that would contribute about 1/10 of the COBE signal.

mum likelihoodr from pure noise (=0) assuming low sig-

nal to noise. We use this as a test statistic in Monte Carlahere is therefore no need to consider high resolutions so we
simulations to compute detection probabilities at a given sigean usd ,,,,=250 without significant loss of power. In Fig. 5
nificance. We have checked at isolated points that using opwve show the probability of obtaining a detection with Planck
timal statistics gains very little except for very small sky as a function of the true underlying scale-invariant tensor
patches(where there are only a small number of magneticpower spectrum amplitudd; (defined as in Ref[24]) as-
modes, each of which must have fairly high signal to noise irsuming a standard flat cold dark matter model with a cosmo-
order to get a detectign logical constant A CDM) model.

Using theB,y variables is clearly not optimal as we have A tensor amplitude ofAr~4x10"1° would contribute
thrown away some well determined linear combinationg of about 1/10 of the large scale temperat@iedetected by the
and B. However in the idealized situation considered hereCosmic Background ExplorgfCOBE), and is likely to be
they should provide a robust way for testing for magneticdetected by Planck if our model is at all realistic. This cor-
polarization. The number of modes thrown away is in anyresponds to being able to detect the signal from inflationary
case quite small—not more than two parmode for azi- models with energy scale at horizon crossiv}/*=2
muthal patches. We quantify this information loss further inx 10'®GeV. Such models include the simp§e' potentials,
Sec. V. with n=2.

B. Detection by Planck? C. Survey size

Of the current funded experiments, only Planck is likely  For a given detector sensitivity the magnitude of the sig-
to detect magnetic polarization if the levels are as predictedal that can be detected depends on the size of the sky patch
by standard cosmological models. As a toy model we conthat is observed. The signal to noise in each observable in-
sider the 143 and 217 GHz polarized channels of the Planckreases in proportion to the observation time per unit area.
high frequency instrument. We approximate the noise as isoFhe noise covariance is proportional dnf[, which varies in
tropic and ignore the variation of beam widtii.1 and 5.0 proportion to the observed area for a given survey duration.
arcmin full width at half maximum respectivgljoetween For large areas the number of observables varies approxi-
these channels. Combining maps from these two channelaately in proportion to the area, which would make the num-
with inverse variance weighting, we findoy~6 ber of “sigmas” of a chi-squared detection scale with the
X103 uKIK, whereQ andU are expressed as dimension- square root of the area. Combining these two effects, the
less thermodynamic equivalent temperatures in units of thexpected detection is therefore proportional to one over the
CMB temperature. We apply an azimuthally-symmetric ga-square root of the area, and is larger if a fixed survey time is
lactic cut of 20° either side of the equator. The expectedspent observing a smaller area. However for smaller areas
magnetic polarization power spectrum peak$-afl00, and the signal to noise on each observable becomes larger, and
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FIG. 6. The probability of being able to rule out the null hypoth- ~ FIG. 7. The smallest gravitational wave amplitulle (defined
esis at 95 percerfdashed lingsor 99 percentsolid lineg confi-  as in Ref[24]) that could be detected at 99 percent confidence with
dence for scale invariant tensor amplitudesttom to top of A probability (bottom to top of {0.5,0.8,0.95,0.99by an experiment
={1,2,4,8,16x 10 12 for a survey with detector sensitivitg with detector sensitivitg=10 wK\/sec that runs for one year and
=10uK+/sec that runs for one year and maps a circular patch ofnaps a circular patch of sky of a given radius assuming uniform
sky of a given radius assuming uniform noise, no reionization, andoise, no lensing, with reionization at=6.5 (right) and without
no lensing. The probabilities were computed by Monte Carlo simu+eionization(left). The result scales with the square of the detector
lation. sensitivity and inversely with the duration of the experiment. The

dotted lines show the equivalent result if one could perform perfect

the number of variables decreases. With fewer variables thi@SSIess separation of the magnetic modes.

probability of obtaining no detection increases significantly.incomplete sky(see Sec. Y With lossless separation, the
This is just the fact that if you observe a small patch of skypest upper bounds are obtained for smaller patches since the
you have a larger chance of being unlucky and having &jze of the boundary is no longer important. The dashed
patch which has a small magnetic polarization signal everycurves in Fig. 7 can be compared with those given in Ref.
where. Also the existence of the boundary becomes increa§25] where perfect Separation was assumed, the effects of
ingly important for small patches and a larger fraction of thefinite sky coverage were treated only approximately, and a
information is lost in order to obtain clean separation of theless rigorous approach to hypothesis testing was employed.
magnetic observables. Referencd26] gives an improved analysis along the lines of
The question of “optimal” survey size is somewhat deli- Ref.[25], and also performs calculations properly taking ac-
cate, as it depends on the probability distribution for thecount of the mixing of electric and magnetic polarization

detection significance that one thinks is optimal. In Fig. 6 wethrough a(brute-force Fisher analysis in pixel space.
plot the probability of detecting various tensor amplitudes at

95 percent and 99 percent confidence for different survey
sizes. In Fig. 7 we show the minimum gravitational wave ) ) ) )
(tensoy amplitude that might be detected at 99 percent con- Unlike most of the foreground signals that might contami-
fidence as a function of the radius of the survey size. It ig1ate the observation, the magnetic signal from the lensing of
clear that radii in the range 5°—9° are optimal, though onecalar electric polarization has the same frequency spectrum
cannot be more precise without defining more specifically?S the primordial magnetic signal and so cannot be removed
the aims of the observation. A radius of about 7° would be #£2asily by use of multi-frequency observations. In order to
good compromise between being able to place good uppé?olate the tensor contribution to the magnetic signal we can
limits if there was no detectiofwhich favors radii closer to  incorporate knowledge of the expected lensing power spec-
9°) and having a better chance of detecting small amplitude§Um [23] into the null-hypothesis covariance matfik (we
(which favors smaller radii neglect the non-Gaussianity of the lensed polarizatior

The solid curves in Fig. 7 fully take account of the need toth€ multipolesl=250 of interest for the tensor signal the
separate the magnetic signal from timeuch largey electric ~ lensing signal is approximately white, WitlCe,e~4.4
signal. By way of comparison, the dashed curves show thé< 10~ °uK? if the COBE signal is entirely generated by sca-
minimum detectable amplitude obtainable if one could dolar modes. For large patches of sky, where the marixis

perfect lossless separation, which is clearly impossible on anearly proportional to the identity matrix, the lensing signal

D. Lensing
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10-®

contributes like an additional isotropic noise witi’ﬁ’Iens
~CEB.. We have checked this approximation by computing
the following results exactly in particular cases, with agree-
ment to within a few percent for patch sizes with 08
=80°.

The effect of the lensing is therefore simply to increase _
the effective noise by a constant amount. For the Planck™ 1o=e
satellite the effect is small, reducing th#e that could be
observed by about 1.5 percent. However for the smaller sur=
veys with better sensitivity, considered in Figs. 6 and 7, theg‘
effect is much more important. For a one year survey of ® -
radius @ with sensitivitys= 10 4K /sec the noise variance is
given byf(6) O'S wheref(6)=(1—cos#)/2 is the fraction of
the sky which is observed antgh~4x 10~ 5uK?2. This noise
gives the tensor amplitudds;(6) plotted in Fig. 7. Incorpo-
rating the lensing effect the actual tensor amplitude one
could detect in an experiment with sensitiviiyand duration
Tis

T TAT T T

ude

10-11

Tensor

10-1 —
10 100
477f(0)52/'|'+0§ lens radius of observed area (degrees)
Ar(0) =A(0) 2 —, (50) o .
f(8) oy FIG. 8. The smallest gravitational wave amplitulethat could

be detected at 99 percent confidence with probability @sesid
where A(6) is the amplitude for a one year mission with Ii_nfes) and 0.5(dashed linesby an experiment with detector sensi-
s=10 uK./sec and lensing ignoreie. the amplitude plot- tivity (bottom to top §2:{0,25,50,100,200,4(}@_LK25ec that runs
ted in Fig. 7. This allows our previous results to be modified for year and maps a circular patch of sky of a given radius assuming
for inclusion of the lensing signal. We have plotted the modi-Uniform noise, a white lensing power spectrum, anti@M cos-
fied results for various survey sensitivities in Fig. 8. TheMology that reionizes at=6.5. The horizontal dotted line shows
optimal survey size now depends on the sensitivity—as se he amplitude which contributes about 1/10 of the COBE signal.
sitivity improves the lensing signal becomes more importan he long dashed line shows very roughly the dust foreground at

. 43 GHz.
and one needs to survey larger scales in order to accurately

measure the difference in variance expected with the tensgj pixel space has been considered recently in R2S]. In
signal. For large patch sizes the tensor amplitgléhat can  this section we consider lossless and nearly lossless methods
be detected in the absence of lensing is proportional t¢n harmonic space.
Vf(8). Allowing f02f lensing, there is an optimal survey size A simple way to incorporate most of the magnetic signal
at 47s?f(6)/T= o}, jens[if there is a solution witf (§)<1],  for constraining the tensor modes is to use the unprojected
in other words when the variance of the instrument noise i%ariablesﬁ;l’zﬁlﬁ, whereD, andU., were defined in Sec.
equailltzo the lensing signal. There is a lower limit&f~4 = || The null-hypothesis covariance matrM can be com-
X 10" *“ that can be measured even with perfect sensitivity ted including the expected signal from the electric polar-
when the tensor contribution cannot be distinguished from;aion  and the analysis can be performed as before. This is
raqdom sampling variations in _the lensing S|gnal d'St”bUt'On-marginally superior to using the projected variables if the
Trl‘/'f corres%onds to an inflation model with energy scal§ensor amplitude is quite high, as shown in Fig. 5 for the
V¥#=7x10"°GeV, in broad agreement with Rdf7] for @ pjanck mission. For smaller tensor amplitudes the entangled
fchree sigma d_etect|on. This situation Coulql only be improvedinear combinations oE andB modes are dominated by the
if one could find ways to obtain information about the par-ejectric component and performing the projection looses
ticular realization of the lensed signal. _ very little. Using the projection gives one clean separation,
We have assumed that component separation and sourg& there is no need to know the electric polarization power
subtraction can be performed exactly so that the observeghectrum. By identifying variables that depend only on the
signal is only lensed CMB. Polarized thermal dust emissiors|ectric and magnetic signals at the level of the map we also
is expected to generate a significant magnetic sigidlat 4o not need to assume Gaussianity, so we could for example
roughly the level shown by the line in Fig. 8 at 143 GHz. perform Gaussianity tests on the two physically distinct po-
Separation of this signal from the CMB signal should be|grization types independently.
possible with multi-frequency observations, and it should \ve now consider the full joint analysis of the electric and

then not have a significant effect on our results. magnetic polarization, with the pseudo-multipoEsand B

forming our fundamental data vector
V. LOSSLESS METHODS

. E W, iW_\[E
We now compare the above analysis with truly lossless = _ (51)
methods. Lossless, likelihood analysis for CMB polarization B —iW_ W, /\B
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Since we are no longer worrying abdtiB separation so we tion), so we now consider the case when one polarization

can equally well use the block-diagonal frame where type is absent. If th® signal can be neglected we have
E+iB W 0 \/E+iB W 0 E| (W
A=|_ _|=[? =[? A. |~ +)E=UDVTE, (57)
E_iB 0 _,W/\E-iB 0 _,W iB/ \W-
(52

where we have done a singular value decomposition as be-
Performing a singular value decomposition of the block-fore so that we can find the well determined linear combina-
diagonal matrix diagfW, _,W)=UDU" (where the matrices tions of theE,:
U and D should not be confused with those defined in Sec.

1), we can identify the well determined linear combinations e E = 1zt
as before: xe=D"YU " ~DVA/'E. (58)
1 = R-UTR ~ DU . : I .
A'=D UTA~DUTA. (53 The matrices one has to invert to do a likelihood analysis are

L L . - . now one half the size of those in the optimal method when
This diagonalization is equivalent to defining harmonic co-j ., polarization types are present, and so the problem is
e s . ;
efficientsA’ with respect to a complete set of spin o har-, merically much faster. However isotropic noise no longer
monics which are orthonormal over the patch of sky, in they; eq the simple diagonal noise covariance, though this can
same way as for the_: Spin zero _cut-sky temperature analy_s ways be rectified by usintl~Y?x¢. In practice a nearly
[10,11]. As before, this construction ensures that for 'SOtrOp'coptimal method would probably be more appropriate using

noise the noise correlation is diagonal only the unprojected variablds; Y20" E, whereD, andU,
were defined in Sec. lll. These variables have diagonal noise
properties like thek,y for isotropic noise, and the computa-
tional saving may be significant when analysing high resolu-
tion polarization maps. We have checked numerically that

including B in the analysis gains very little even for I,y
and small patches. For large area surveys at high resolution
CEE+CBB (CEE—(CBB\ _ the information loss will probably be negligible.
CEE_ (BB (EE, (BB ub'2, ‘There are exactly equivalent relations for the well deter-
(55 mined magnetic variables in the case wht‘ena.nlshes. This
case is of little practical interest, since tBesignal would
where theCEE and CB® are the diagonal electric and mag- have to be removed to within the magnitude of Bisignal,

netic power spectrum matrices respectively, and we have a&nd this is impossible on an incomplete sky since the two are
sumed thaCEB=0. If the noise and signal are Gaussian wehot unambiguously distinguishable without accurate bound-

can proceed to do a likelihood analysis for the power spectrd™Y data. However, supposing thatcould be removed is .
useful theoretically as we can then compute the best obtain-

(AAAATY=20Zdiag ,W, _,W)=N
=(AA’AA' TY=202). (54)

The signal correlation is given by

S: <A/AI T>:51/20T

using e . . )
able magnetic signal to compare with what we obtain using
1 our projected variables. The information lost due to the pro-
exp{ - EA’ T(N+S) A’ jection depends on the cosmology. Models with reionization
L(A’|CEE CBB)a . (560 have more power on large scales and a greater fraction of the
IN+ g|1/2 power is lost due to removal of the boundary terms. For our

toy model of the Planck satellite we find that the amplitude
The coupling matrices ,W can be computed quickly for an that could be detected at given significance and probability is
azimuthally symmetric patch of sky, as described in Appen+educed by about 30 percent by the projection for a cosmol-
dix C, and modes with differeth decouple. The problem is ogy with reionization az=6.5, but only by 2 percent for a
therefore tractable. However it is not nearly so simple to findzero reionization model. In the reionization model one is
a maximum likelihood estimate of the magnetic amplitude losing a lot of the additional information in the low multi-
and in general there will be complicated correlations bepoles that in the absence of the projection would have high
tween the recovered power spectra. By using the lossy praignal to noise. The net result is that the reionization model
jection in the previous sections we have essentially showihas an only slightly higher chance of giving a tensor detec-
that this likelihood function is “nearly” separable. Making it tion despite having more large scale power. By using the
separable costs something in terms of lost information, but itinprojected variables and incorporating the expected electric
significantly simplifies the problem. Using the projected polarization contamination as an extra noise term one can
variables also reduces the size of the matrices, so performirgpproximately halve this loss. The lossless result is com-
the matrix inversions is significantly faster. pared to the realistic projected result for general circular sky
If the B signal is determined to be negligible one would patches in Fig. 7 for an observation with much higher sensi-
want to apply an efficient nearly-lossless method to estimatévity. The cost we incur by using the non-optimal method in
the electric power spectrumFE (or to do parameter estima- terms of slightly larger error bars on ttesignal, or a less
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powerful test of detection at a given significance, is small forsevere due to the limited support of the higlspin-weight 2
large survey areas though it does increase for small skiarmonics in the patch. Although we have proved that our
patches. For these sensitive observations the electric signalnsethod gives exact separation for azimuthal patches, the
much larger than the magnetic signal and essentially nothingarmonic-based construction should produce window func-
is lost by performing the projection rather than includingtions that give approximate separation for arbitrarily shaped
electric contamination as a large extra noise. patches with similar information loss to the azimuthal case.
To make a detection of the magnetic signal on such a We showed how the variables constructed from our win-
small sky patch with the planned long duration balloon ob-dow functions could be used to constrain the amplitude of
servations the tensor-scalar ratio would need to be signifithe magnetic signal without contamination from the much
cantly larger than one, which is too large to be allowed bylarger electric signal. For the first time, we made predictions
the current temperature anisotropy observatip28]. Of  for the tensor amplitude that Planck should be able to detect
course, seeing if there is only a small magnetic signal is amaking proper account of excluding the galactic region. If
important consistency check for current models with lowother non-negligible foregrounds can be removed using the
tensor-scalar ratio to pass. other frequency channels, Planck should be able to detect the
One simple way to reduce the information loss in ourmagnetic signal predicted by some simple inflationary mod-
method would be to use data objects that include not only thels. For less sensitive observations, our window functions
surface integral$..,y, but also those parts of the boundary should nevertheless be useful to set upper limits on the mag-
terms in Egs(7) and(8) that do not depend odP on the netic signal, and may also aid the identification of systematic
boundary. Such objects would separate electric and magnetéffects in the instrument or analysis pipeline.
polarization exactly if the scalar window functions were con-  If the magnetic signal is shown to be consistent with noise
structed to vanish on the boundary. The problem of producthen we showed how one can use all the well determined
ing a non-redundant set of such windows could be tacklegbolarization pseudo-multipoles to analyze the electric polar-
with a simple variant of the harmonic-based method preization power spectrum without loss of information. The
sented in Sec. lll. The additional boundary contributionanalysis using these variables is no more complicated than
would cancel that part ofW_ that couples to the normal the analysis of temperature anisotropies using cut-sky or-
derivative of the window function on the boundary, leaving athogonalized scalar harmonic functiofi®,11].
single non-zero singular valugor |m|>0) to project out. We have only considered isotropic noise here, however, as
The net effect would be that for azimuthal patches we wouldong as the noise is azimuthally symmetric the separation of
gain one extra variable pen for |[m|>1, though the noise m modes will still work, and the problem remains computa-
properties of these variables would not be as simple as if thtionally tractable though rather less simple. In practice, there
line integrals were not included, and the problem of performwill be several other complications in real-life CMB polar-
ing line integrals with pixelized data is non-trivial. For reion- imetry observations that will impact on the map-making and
ization modelgwhich have significant large scale powtre  subsequent analysis stages. Further careful investigation of
reduction in information loss may be worth the effort re- the propagation of instrument effects such as beam asymme-
quired to overcome these obstacles, though a full analysities, straylight, cross-polar contamination, and pointing in-
with the non-separated variables would probably work betterstabilities through the map-making stage will be required
before the program for analyzing magnetic polarization out-

lined in this paper will be realizable.
VI. CONCLUSION
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magnetic polarization exactly over azimuthally-symmetric

patches of the sky. We presented a harmonic-based method ApPPENDIX A: SPIN RAISING AND LOWERING

for efficient construction of the windows that automatically OPERATORS

removes redundancy due to the finite sky coverage. In addi-

tion, our window functions return separated electric and In general a spin-weighs quantity s7 is defined over a
magnetic variables that have very simple diagonal noise cofWwo-dimensional Riemannian manifold with respect to an or-
relations for idealized noise on the polarization map. Fothonormal diad fielde, ,&}. The local freedom in the choice
azimuthal patches separating the electric and magnetic pola@f diad amounts to the transformations

ization comes at the cost of losing two pieces of information ) _

per m mode, or roughly twice the number of pixels of area e.=e*ie,—e’e. (A1)
(/1 maw? ON the boundary of the patch. For large patches this

information loss is small unless there is large scale power

due to reionization, but for smaller patches it can be more 2http://www.netlib.org/lapack/
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of the (complex null vectorse.. . A quantity is defined to be K,=idy, (A9)

of spin-weight s if under the transformation(Al) <7

— ¢1€'S7. To every spin-weighs object ;» we can associate K.=e"""(*xg,+i csad y+icotdd,), (A10)

a (compley symmetric trace-free, ranls| tensor A,

=7a,...a, for s=0, whereK .. =K, *iK, . These operators satisfy the commuta-

tion relations

As=2-S_pels A2
7e=2 el (A2 (Ko Ke]=5Ke, [Ky K ]=-2K, (AL)

. . A a a,
where the irreducible tensor produet*=e™...e™ The s a1k, are lowering or raising operators with respect to
inverse relation is the eigenvalues ok,. Note that the signs in these commu-

— . P (A3) tation relations are different from those for angular momen-
ST Ay tum operators on a fixed frame since on the body-fixed axes
A o—ls A o we have[KX ,Ky]=—iK,[30]. The action of the spi_n raising
Fors<0 we defines"lsi=2""»e . The spin raising and  anq |owering operators can then be formulated in terms of
lowering operators andd are defined by the null diad com- the angular momentum operators as
ponents of the covariant derivatives QIW

Ko sn(6,0,4)= =€ D (6, 9), (A12)
8i5m=— (€5 Vema el (Ad) o
K_sn(0,¢,40) =+ D50, ). (A13)
= (e Als|
O=|s/7 (e’VMAIs\)ei ' (AS) Several useful results for the spherical raising and lower-

) ) ) ing operators follow from the commutation relatiofsl1).
(The minus signs are conventional. [Similar relations on a general manifold can be found from

In CMB polarimetry we are concerned with fields defined Egs.(A4) and(A5).] For a spin-weighs quantity defined on
over the sphere, in which case the transformation in(Btj)  the coordinate basis

corresponds to &eft-handed rotation of the diad about the

outward normalr. Choosing the orthonormal diad to be (85— 308) (0, d)=257(0, ), (A14)
aligned with the coordinate basis vectofsand ¢ of a
spherical polar coordinate system, we haed V,e> [08—s(s—1)]<n(0,¢)=(V2—s’csCo

=cothe’. and e V,e% = —cot6e” . It follows that for this
choice of diad the spin raising and lowering operators reduce

to X n(6,¢), (A15)
dsn=—SinPA(d,+icsid,)(sin *04n), (AB)

+2iscotf cs )

where we have useld, K_=K?—K,—K?2 to derive the last
X o _aipS . ) identity. Applying these relations repeatedly to a spin-weight
dsm=—SsIN"°0(dy—1CSMd 4)(SiMCO 7). (A7) 0 quantity we find
An elegant interpretation of the spin raising and lowering . . 5 5
operators on the sphere can be obtained by considering spin-900 007(6,¢)=00007(6,¢)=(V°+2)V*75(0,¢),
weight s objects ;7( 6, ¢, ) defined on a diad afposition-

dependentangle ¢ to the coordinate directions, so that (A16)
(0,0, )= n(6, )€, (A8)  and the useful relation

where ;7(6, $) is defined ond and ¢. In this case, the spin (00°= 0% o 7(0,¢)=s(s—1)0° Yo7(6,¢). (AL7)

raising and lowering operators can be related to the angular

momentum operators for a rigid body6]. Working in a Integral theorems

representation where the orientation of the body is specified
in terms of Euler anglesd, 6, — ¢),° the angular momentum
operators on théody-fixed axetake the form

The integral of the spin-weight 0 quantity_,» over
some portionS of the two-dimensional manifold is deter-
mined by the integral around the bounda:.

30ur convention for Euler anglesy(3,y) follows Ref.[29], i.e., f dSd_,np= % dl 17, (A18)
successive right-handed rotations gy, anda about thez, y, and S S
z-axes respectively. The use @¢f which is minus the third Euler
angle, as a configuration variable for the rigid body is necessary t
relate the angular momentum operators directly to the spin raisin&oundary:
and lowering operators with th@onsistent conventions we have ) a
adopted here. 1di=idlel . (A19)

Wwhere ;dl is the spin-one element of length around the
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On the sphere in the spherical polar coordinate fraydie
=id#—sin#d¢. Equation(Al18) is the complex representa-
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J4 dSSY|m SYI*’m’ = 5” ’ 5mmr y (BS)

tion of Stokes’ theorem and the divergence theorem. An
equivalent result holds for spin-weight one quantities bytq)io\ys from the orthogonality of thed-matrices over the

forming the complex conjugate of the above, witfll
=—idle*.

SO(3) group manifold.
Applying K, K_ to Eqg. (B2), and using Eqs(A12) and

The spin raising and lowering operators obey Leibnitz'(A13), one can show that the spin weight harmonics satisfy

rule, so there is a “Green’s identity”
P30 Q—Qd3P=3(P3Q)—3(QdP),  (A20)

whereP andQ have definite spin weight. Fé*Q with spin-

the differential equation
6e-SSYIm:[S(S_]-)_I(I"':I-):lelm- (B4)

[An alternative proof of this result follows from EGA17).]

weight zero integrating over a surface gives the integral theofhe spin weighted harmonics are separable and can be writ-

rem

de(PééQ—QééP)= 35 dIPEQ— 3€ L,dIQ3P.
S JS JS
(A21)

A similar result is obtained using

P33Q—Q33P=03(P3Q—Q3P) (A22)

for PQ of spin weight—2 which gives

de(P(’SéQ—Q(‘SéP)= § 1dI(PBQ—Q0P),
s s
(A23)

with a similar result for a spin-weight 2 quantity.
APPENDIX B: SPIN WEIGHTED SPHERICAL
HARMONICS

The spin-weighs spherical harmonicgY),,,, are defined in
terms of the usual spherical harmoni¢g, by

[I=TsD
(s im:

where 8~ !8l=(—1)%3/%. They are non-zero fots|<I,|m|
<|. By making use of Eqs(A12) and(A13), and the prop-
erties of the K. operators when acting on Wigner
D-matriceé [29,31], it is straightforward to show th4®1]

| 4ar .
D—ms(¢-01_¢):(_1)m mSYm(G,d))e's‘/’.

(B2)

(B1)

sIm

With  the conventions adopted here, (Y},
=(—1)*""_gY|(_m. Orthonormality of the spin weight
harmonics over the full sphere,

4Our conventions for thé-matrices follow Refs[29,31]. We

ten as
Yim(6,8)= \im(cosf)e'™?. (B5)
The ¢\, satisfy the self-adjoint equation
o, 1, MPHs’+2msx
[(A=X) N ]’ — Ts)\m: —1(1+1) N,
(B6)

where a prime denotes differentiation with respectxto
= Co0s¥6.

The (\ |, can be evaluated recursively for=|s| starting
with

. (2m+1)!
Amm(X)=(=2) \/4W(m+ S (m—s)!

X ( 1— X)(m+s)/2(l+ X)(mfs)lz,

(B7)

and the recursion relatiofderived from standard results for
the WignerD-matrices; see e.g. Rdf31])

sm Csim
X+ == |Csimra-1)m— Co = SNi—2)m>
S(1— m

[(1—-1) 8

o [ 12(412—1)
TN (2-m?) (12—

The harmonics form=—|s| can be obtained frogh;_pm,
=(—1)""_\\,. A straightforward way to evaluate\,
for [m|<|s| is to compute.. ,\ 5 for 0=<n<]|s| and then use
the symmetny\,=(—1)™*S,\\s. Further useful results for
the spin weight harmonics can be found in Réf&22], and
expressions for the spin-weight2 harmonics in terms of
the associated Legendre functions are given in 3.

Nim=

where

(B9)

APPENDIX C: OVERLAP INTEGRALS

adopt the Condon-Shortley phase for the spherical harmonics, SettingP= sY|*rmr andQ= Y, in Eg. (A21), and using

which differs from that used by Goldberg al.[16] by a factor of
(=™

the differential equatioB4) to simplify the integrand on the
left-hand side, we have
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27T[Xs7\fnm]g
2m+1

s(m—1)

[I/(|/-}-1)—I(I+1)]JSdSSY|*,m,SY|m (m-1)(m—1)

sm _
Amm_

_ * X _ TR * S s(m—1
ﬁ;sldl sY|rmr65YIm ﬁvsldl sYIm65Y|rmr : + \/(Zm—l— 1)(m2—52) n"(l(m—l))' (Co)
€D 2 b
) ) ) AS(=m) — AS(—m+1) 271-l:xs)\f’ﬂ(*f’ﬂ)]a
This expresses the overlap integral fe#l' in terms of a mm (m—1)(m-1) 2m+1
line integral around the boundary &f
For an azimuthally symmetric surface the integrals are S s(—m+1)
particularly straightforward as the spin-weight harmonics N J2m+ 1) (m?—s?) m(m—1)
with different m are orthogonal over the patch. The overlap
integral for the samem but different! can be determined (m>]s|), (C7)
from Eq.(C1) to be
which follow from the explicit form of A,y given in Eq.
b (B7). Forl’=1=m=|sg| the integrals have the analytic solu-
[l(l+1)—|’(|’+1)]fadXsMrmst tions
2m+11b 2m+11b
:(1_X2)[S)\I,’ms)\lm_ s}\llms)\l’m]g- (C2 Amm:[(%) , Asnfmm)mZ %
a a
(&)

[This result also follows directly from E¢B6).] The deriva-

tives can be removed while maintaining homogeneity in th

spin weight by using

o 5 21+ 1)1
[(1=X%) A= —(sm+1°x) s)\lm+C—s)\(lfl)m
sim
(C3
to write thel’ #1 integral as
sm b
Ay =27 adxs)\l’ms}\lm
B 2
(I+1"+1)d-=1")
sm )
X X_”_, (l_l )skl’ms}\lm
' b
N 2I"+1 \ N 21+1 \ A
Cs|'m shM(I17=1)m st Im Cslms (I=1)ms™'m .
(CH
Note thatA>T=A{ 9™ Thel=1"+|m| integrals can be
evaluated recursively using
sim sm Cslm

sm

A=A —— = _
[ (I-1)(1—1) Cetir m (I+1)(1—1) Co—1ym I(1-2)

2sm

T (C5)

CoinATI-1) »

which follows from Eq.(B8). For |m|>|s|, the starting val-
uesAjiiy can be obtained from

&or |m|<]|s|, the starting valued\ijly for the recursion in

Eqg. (C5) can be obtained from the symmet&y7'= A’ and
the recursion relationeC6) and (C7).

If one is also generating the spin-weight zero overlap in-
tegrals for analysing the temperature field an alternative ap-
proach is to use EqA23) to relate the integrals of the spin-
weight two and zero harmonics. In general integrals for
different spin weights can be related by

kI’(s—l)kl 'sdeSsYrm sYI 'm’ I(I(s— 1)kls

X Lds s—2Yims—2Yim

= ﬁs 11Ky s—1)sYTms—1Yirm tKiss—2

XY|rm/ s— 1Yikm), (Cg)

wherek=/I(1+1)—s(s—1), and we have used the results

O0sYim= kI(er 1)s+ 1Yim (C10

0 Yim=—Kiss-1Yim (C1y
which follow from Eq. (B1). For s=0 ands=2 one can
obtain the spint2 integrals in terms of the spin zero inte-
grals. The spin zero integrals are computed using the above
relations withs=0, in agreement with the relations given in
Ref.[32].

For a small patch of sky a large number of the overlap
integrals are going to be very close to zero. This makes sense
intuitively, and is easy to see more quantitatively. From the
differential equation(B6) the character of the harmonics
changes from oscillatory to decaying at the point where
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m?+s?+2msx —f), wherer is the maximum likelihood estimate of so the
1—x2 =1(+1). (€12 test reduces to a likelihood ratio test with the alternative
hypothesisr =r.
For x nearer the poles than the critical value the harmonics By the time magnetic polarization comes to be observed
become very small. For a sky patch extending from the northve should have some prior information about the tensor am-
pole to x, for large | we see that forn? larger thanm?  plitude from accurate measurement of the temperature power
~1?(1—x?) the harmonics will be small within the patch. spectrum. However at this point we do not have very useful

Hence the overlap integrals with?>>min(1%1"2)(1—x2) will information about the prior distribution, and to consider the
be small, corresponding to orfer both of the harmonics possible results of future experiments it is useful to assume
being localized out of the sky patch. no information. The maximum entropy pridthe uniform
prior) is probably not appropriate in this case—do we really
APPENDIX D: STATISTICS OF WEAK SIGNAL think that all values of (below a certain boundare equally
DETECTION likely rather than, say, all values of irbeing equally likely?

The uniform prior gives radically different answers depend-
After obtaining a vector of observed daBg, two ques-  ing on the choice of variable. The Jeffreys prior
tions one might ask arél) What is the probability that the
signal is just noise?2) Given the signal is not noise, what 52 12
can we say about the amplitud® The likelihood function f(r)oc< - —2In L(r|BW)>
(48) encapsulates all the information in the data concerning ar
the amplituder, and gives the posterior probability distribu- 1
tion of r after multiplying by the prior. Questiofl) is really =—tr[(N+rS) " 'S(N+rS)~15]¥2, (D3)
asking for a comparison of two models, one in whichO 2

(or r<e wheree is smal), and one in whichr >0. Given L )
there is a prior probabilitp that the signal is pure noise (IS reparametrization invarianB4], and therefore does not

=0) and probability - p that r>0, distributed with the suffer from this problem. The Jeffreys prior goes like 1/(1

normalized prior probability distributiofi(r), the posterior 1) if N=S and in general is impropeidoes not have a
probability thatr =0 is given by finite integra), though this is not a problem for evaluating

test statistics since the integral of the product with the like-

pL(By|r=0) lihood function will be finite. It is also not a true prior in the
P(r=0[By)= = . sense that it depends on what data is going to be collected,
pL(BW|r=0)+(1—p)f drL (By|r)f(r) but this is really a good thing as it concentrates the prior
0, probability in the region where we need it in order to obtain

(D1) a detection. Since the prior is not localized the posterior
probability of the null-hypothesis will depend on where one
cuts off the prior. However if one only ever compares the
Bayes factorgt the cutoff is not very important since the
ikelihood function will be localized. For this reason per-
orming classical hypothesis tests using rather more in-
gependent of the prior information than considering the val-
ues of the posterior probability, though clearly it is the latter
which is rigorous and contains all the available information.
Classical hypothesis tests are useful for assessing prob-
- ability of getting a detection at a given significance, though it
f drL (By|r)f(r) should be remembered that getting a detection at 99 percent
0 confidence doersot mean a the probability of 1 percent that
the signal is pure noise. However for sensible priors there
will be a close correspondence; classical and Bayesian tech-
In classical hypothesis testing the likelihood ratio niques agree that high values bftorrespond to the null-
L(Bw|r")/L(By|r=0) is the most powerful test statistic for hypothesis being less likely. Using classical hypothesis tests
distinguishing a model witm=r" from one withr=0 (for ~ to compute the probability of getting a detection at a given
details see Ref33]). The largest fraction + « of the values  significance for a given true is significantly simpler than
of the likelihood ratio under the null-hypothesis<{0) de-  computing and interpreting the corresponding distribution of
termine a region, which, if the observed ratio falls in it, re- the posterior probability distributions.
jects the null hypothesis at significaneeThe distribution of For full sky surveys there are a large number of
the likelihood ratio is straightforward to compute using statistically-independent magnetic variables, which can be
Monte Carlo techniques. In general we do not have soméhought of as the eigenvectors dfl~ Y?SN™ 2. Those vari-
fixed alternative hypothesis=r’; one possibility is to use ables corresponding to large eigenvalues have high expected
the statistict, formed by marginalizing over some prior, in signal to noise and are most useful for obtaining detections.
place of the likelihood ratio. Often the prior is fixed &r If By has dimensiom there will ben independent variables.

The posterior probability tells us the probability that the sig-
nal is pure noise once we have a particular set of data. Ho
ever, it does not immediately tell us that we might expect toI
obtain from a given observation, just what we know once th
observation has been performed. The posterior distributio
can depend strongly on the prior.

The posterior probability is a monotonic function of the
Bayes factor

=" Byr=0 (©2)
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If the eigenvalues of N~ Y°SN~Y2 are distributed fairly uni- some then the likelihood for these modes can be computed
formly, and we consider expected chi-squared detections ¢#xactly. The likelihood for the remaining low signal to noise
order one sigma, all the eigenvalues will bel/\n and we Modes can be computed quickly using the approximation in

haver S<N. Using a second order approximation we thenWhiCh the likelihood is Gaussian. |\/|u|tlp|ylng these together
have allows the full likelihood function to be computed, and hence

the the probability distribution df While this is slower than
(N+rS) " I~(1—-rN"1S+r2N 1SN 1SN, (D4) using ther’ statistic it is a useful check, and may be essen-
tial when there are very high signal to noise modes.
and For good detections the prior is not very important as long
_ 1 as it is not small over the bulk of the likelihood. If the prior
In|N+rS|=In[N|+Inl+rN"*§ is approximately constant over most of the likelihood inte-

gral, the second order approximation is valid, ariet>0,
then t~e"2°g(f, o) whereg(f,o) depends weakly om
and o compared to the exponential. In this casdepends
almost entirely (and monotonically on the value ofv’

In this approximation the entire likelihood distribution is =r/¢, which is why v’ is a good statistic to use. We found
simple to compute since the matrix manipulations only needhat detection probabilities computed using full likelihood
be performed once, and is of the Gaussian form results with the Jeffreys prior tend to agree very closely with
Y N those computed using’.
L(Bw|r)=L(By|r=0)e""?7 e ("N72" ~ (Dg) The advantage of using’ rather than computing the full
likelihood distribution is that it is computationally signifi-
where cantly simpler and faster, which is useful, though by no
1 means essential, for performing accurate Monte Carlo com-
1/o?=B}N"ISN"ISN"1B,,— = tr((N"ISN™1S), putations. There is no problem computing using the full like-
2 lihood distribution exactly from single samples of actual ob-
(D7) served data.

1
~In|N|+tr{ rN"1S— Er2r\|—1SN—1s :

(D5)

and the maximum likelihood estimate foiis
Busting the null-buster

s L ot lant -1 In the limit thatr <1 the likelihood function can be ap-

o 27 [BuN SN By~ tr(NS)]. (b8) proximated by the first two terms in its Taylor series iThe

) o ) ) ) likelihood ratio for any giver(smal) r is then a monotonic
The maximum I|.keI|hood estimate faris only weakly bi-  f nction of N L(Bwl|r)|,~o, which is independent af and
ased for small signal to noise. A therefore provides the uniformly most powerful test. For

Consider fixing the signal hypothesisrte:r, which gives  gayssian signal and noise it is proportional 1o @. After

the largest likelihood ratio possible for any prior. The likeli- gjiding by the root of the variance in the null hypothesis
hood ratio is then a monotonic function of the test statistic ((2?/02)2)|r=0=2tr(N*18N*18) we obtain the quantity

ByN 'SN By~ tr(N"'S) BIN-ISN™1B,,— tr(N~1S)

V2t(N~ISN~IS) ’

(D9)  which is the optimal quadratic “null-buster” statistic intro-
duced to the CMB literature in Ref35]. In the limit in
The quantityr/o gives the number of standard deviations thewhich all the eigenvalues olN~Y2SN~2tend to zero this is
maximum likelihood is from pure noise, which is a good the optimal test statistic. In general it is not—a signal that
intuitive measure of the number of “sigmas” at which the can be detected will violate this assumption. For a very large
magnetic signal has been detected. If any eigenvalues baumber of approximately equal eigenvalues the value of
come large enough then the smalapproximation will fail | approximate (1/o?) " Y2=[Ltr(N"ISN"1S) 12 the
and one needs to compute the full likelihood ratio to obtaingjsher curvature for smatl. In this limit the null-buster re-
optimal results. They' statistic is a function only of the
vector N~Y2B,, and the matrixN~ 2SN~ so working in
the frame in which the matrix is diagonal the statistic is
simple to compute. Note that? andr can be negative and
correspond to a non-detection. %It is the quadratic statistic which gives the maximaixpected
The second order approximation can also be used to speegtection in units of thexpected standard deviatiamder the null
up computing the full likelihood function for integration hypothesis. None of these properties are required or even especially
against a prior. In the diagonal frame it is straightforward todesired(we are more interested in getting detections at Isiginifi-
identify any modes with high signal to noise—if there are cancewith high probability).

v'=rlo=

(D10)

V=

\/4B$VN—1SN—1SN—1BW—2tr(N—1SN—1S) '

mains a good statistic and /v— 1. However in generad’
performs significantly better when the eigenvalues are dis-
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tributed less evenly, or when there are not that many eigerbution unnecessarily broad at large values, and therefore
values. As the signal to noise increases also performs makes it harder to rule out the null hypothesis with good
much less sub-optimally than the null-buster. significance. The ' statistic has a much sharper distribution
For the case of magnetic polarization observationsithe than the null-bustefwhich has a distribution similar to chi-
statistic outperforms the null-buster for a wide range of patctsquared in the alternative hypothesis, and the valuevof
sizes in realistic reionization models. The large scale mageorresponds much more closely to the significaficea-
netic signal coming from low redshiftz& 10) reionization sured in Gaussian-like “sigmag’of the result.
gives a small number of modes with relatively high signal to A few points can be made in the null-buster’s defense.
noise(see Fig. 4, and the conditions under which the null- First it is slightly easier to compute thari. Secondly, since
buster is a good statistic are therefore not satisfied. Theve motivated ther’ by assuming a Gaussian signal it is
qualitative reason that the null-buster performs poorly is thatonceivable that the null-buster could perform better with
the position of the maximum and the curvature of the likeli-certain non-Gaussian signals. Lastly, the null-buster is qua-
hood function are correlated, so dividing the actual maxi-dratic which makes it easy to calculate the mean and vari-
mum by the expected curvature does not give you an accwance analytically. However it is clear that with Gaussian sig-
rate measure of the number of “sigmas” from zero for anals using the null-buster is in general significantly sub-
particular observation. This makes the null hypothesis distrioptimal.
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