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Analysis of CMB polarization on an incomplete sky
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The full sky cosmic microwave background polarization field can be decomposed into ‘‘electric’’ and
‘‘magnetic’’ components. Working in harmonic space we construct window functions that allow clean separa-
tion of the electric and magnetic modes from observations over only a portion of the sky. We explicitly
demonstrate the method for azimuthally symmetric patches, but also present it in a form in principle applicable
to arbitrarily shaped patches. From the window functions we obtain variables that allow for robust estimation
of the magnetic component without risk of contamination from the probably much larger electric signal. The
variables have a very simple noise properties, and further analysis using them should be no harder than
analyzing the temperature field. For an azimuthally symmetric patch, such as that obtained from survey
missions when the galactic region is removed, the exactly separated variables are fast to compute. We estimate
the magnetic signal that could be detected by the Planck satellite in the absence of extra-galactic foregrounds.
We also discuss the sensitivity of future experiments to tensor modes in the presence of a magnetic signal
generated by weak lensing, and give lossless methods for analyzing the electric polarization field in the case
that the magnetic component is negligible. A series of Appendixes review the spin weight formalism and give
recursion relations for fast computation of the spin-weighted spherical harmonics and their inner products over
azimuthally symmetric patches of the sphere. A further Appendix discusses the statistics of weak signal
detection.
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I. INTRODUCTION

Observations of fluctuations in the temperature of the c
mic microwave background~CMB! are now providing us
with a direct view of the primordial inhomogeneities in th
universe. The power spectrum of temperature fluctuati
yields a wealth of information on the nature of the primord
perturbations, and the values of the cosmological parame
Mapping the polarization of the cosmic microwave sky is
important next step, offering a great deal of complement
information, especially regarding the character of the prim
dial inhomogeneities@1#. One of the most interesting que
tions to resolve is whether the primordial perturbations p
sessed a tensor~gravitational wave! component, as predicte
by simple inflationary models. Here, polarization measu
ments offer a unique probe@2–4#.

Polarization of the cosmic microwave sky is produced
electron scattering, as photons decouple from the primor
plasma. Linear polarization is produced when there is
quadrupole component to the flux of photons incident o
scattering electron. Scalar~density! perturbations generate a
‘‘electric’’ ~gradient! polarization pattern on the sky due
gradients in the velocity field on the surface of last scat
ing. For scalar perturbations the velocity field is curl-fre
and this leads directly to the production of an entirely ‘‘ele
tric’’ pattern of linear polarization. In contrast, tensor pertu
bations~gravitational waves! produce polarization by aniso
tropic redshifting of the energy of photons throug
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decoupling. In this case the polarization has ‘‘magnet
~i.e., curl! and ‘‘electric’’ ~i.e., gradient! components at a
comparable level. A magnetic signal can also be produced
weak lensing of the electric polarization generated by sc
modes. Detection and analysis of the lensing signal would
interesting in itself, but a detection of an additional tens
component would provide strong evidence for the prese
of primordial gravitational waves, a generic signature
simple inflationary models.

Detecting or excluding a magnetic component is clea
of fundamental significance in cosmology. But there is a s
nificant obstacle to be faced. The problem is that for
foreseeable future, the primordial sky polarization will on
be observable over the region of the sky which is not c
taminated by emission from our galaxy and other foregrou
sources of polarization. Thus we shall only be able to m
sure the polarization over a fraction of the sky. But t
electric-magnetic decomposition is inherentlynon-local, and
non-uniquein the presence of boundaries.

To understand this, consider the analogous problem
representing a vector fieldVi ~in two dimensions! as a gra-
dient plus a curl:

Vi5¹iF1e i
j¹jx, ~1!

the electric and magnetic components respectively. From
equation, one has¹2F5¹ iVi , and¹2x52¹ ie i

jVj . For a
manifold without a boundary, like the full sky, the Laplacia
may be inverted up to a constant zero mode, and the
contributions toVi are uniquely determined. But for a finit
patch, one can always think of adding charged sources
the potentialsF and x outside of the patch on whichVi is
measured, which alterF and x without changingVi . For
©2001 The American Physical Society05-1



-

p
c

t a
t b
th
io
e
d
ti
io
in

a
ti
o

t
ta
a
r
e
e
o
is
th
gn
ig
nu
ry
re
u
bl
e
ce

la

te
ic
uc
e

ur
e
e

a
b

za
i-
a

o
ve
in

for
he
x-
of
at

nic
nite

in

rop-
the
s of

t of

s-
no
con-
ns
the

bly
tic

of
ner
the
ap-
t.

on
osi-
ng
l-
om-
tric
ns
e of
e
nly

he
of

h of
ve

the
nd
s in
h-

es
etic
ch-
etic
tion
re

iza-
the
we

eir
the

ANTONY LEWIS, ANTHONY CHALLINOR, AND NEIL TUROK PHYSICAL REVIEW D 65 023505
example one can add toF andx pieces with equal but per
pendicular gradients so there is no net contribution toVi .

Since full sky observations are unrealistic, so is the ho
of a unique decomposition of the sky polarization into ele
tric and magnetic components. However, this does not a
mean that the hypothesis of a magnetic signal canno
tested. One possibility is to construct a local measure of
magnetic signal by differentiating the measured polarizat
~i.e. ¹ ie i

jVj vanishes ifVi is pure electric in the analogu
example above!, but this is problematic for noisy, sample
data. A more promising alternative, which avoids differen
ating the data, is to construct line integrals of the polarizat
@5,6#. For example, in the vector analogy above, any l
integral rdxiVi is guaranteed to vanish ifVi is purely elec-
tric. However, the problem with these line integrals is th
there are an infinite number of them, and they are not sta
tically independent. One would therefore prefer a set
‘‘magnetic’’ variables to which the ‘‘electric’’ componen
does not contribute, but which are finite in number and s
tistically independent, for a rotationally symmetric statistic
ensemble. Since polarization from a primordial scale inva
ant spectrum of gravitational waves is predominantly gen
ated on scales of a degree or so~the angle subtended by th
horizon at last scattering!, we would expect to be able t
characterize the cosmic magnetic signal by a set of stat
cally independent variables roughly equal in number to
size of the patch in square degrees. However, the si
within a degree or so of the boundary cannot be unamb
ously characterized as magnetic, and hence one loses a
ber of variables proportional to the length of the bounda
The amount of information about the magnetic signal the
fore increases as the patch area minus the area of this bo
ary layer. In this paper we shall find the set of observa
‘‘magnetic’’ variables explicitly for circular sky patches: th
method may be generalized to non-circular patches if ne
sary.

As mentioned above, the electric component of the po
ization ~due primarily to scalar perturbations! is expected to
be much larger than the magnetic signal. Therefore to de
the latter it may be useful to construct observables wh
suffer no electric contamination. We show how to constr
such variables, and use them to estimate what magnitud
magnetic signal the planned Planck satellite1 might be able to
detect. We also discuss the optimal survey size for fut
experiments aimed at detecting tensor modes via magn
polarization, including the effects of ‘‘magnetic noise’’ du
to weak lensing of the dominant electric polarization@8,7#.
Even for observations that do not expect to detect the m
netic signal the magnetic-only observables are likely to
very useful in checking consistency of any residual polari
tion with noise or indeed in identifying foreground contam
nation. They may also be useful for studying the small sc
weak lensing signal@9#.

To construct variables that depend only on the electric
magnetic polarization we integrate the polarization field o
the observed patch with carefully chosen spin-weight 2 w

1http://astro.estec.esa.nl/Planck
02350
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dow functions. We present a harmonic-based approach
constructing these window functions which is exact in t
limit of azimuthally-symmetric patches. The method is e
pected still to perform well for arbitrary shaped patches
the sky, but the separation will no longer be exact in th
case. Constructing the window functions with our harmo
method automatically removes redundancy due to the fi
size of the patch, keeps the information loss small~except for
very small patches!, and ensures that for idealized noise
the polarization map~isotropic and uncorrelated!, the noise
on the electric and magnetic variables preserves these p
erties. In this respect the construction is analogous to
orthogonalized harmonics approach used in the analysi
temperature anisotropies@10,11#. However in the polarized
case there is no simple interpretation in terms of a se
orthogonalized harmonics.

In Ref. @12# it was shown how the lossless quadratic e
timator technique can be applied to polarization. There,
attempt was made to separate the electric and magnetic
tribution to the estimators, so the resulting window functio
for the power displayed considerable leakage between
electric and magnetic modes. The authors of Ref.@12#
showed how the leakage could be reduced, but it is argua
still too large to allow robust estimation of the magne
signal in the presence of an electric signal that is orders
magnitude larger. We are able to perform a much clea
separation at the level of the harmonic components in
map, and as we shall see the information loss in our
proach is quite small for full sky surveys with a galactic cu

The electric-magnetic decomposition of the polarizati
field is exactly analogous to the corresponding decomp
tion of projected galaxy ellipticities induced by weak lensi
@13,14#. Reference@15# shows how to construct local rea
space correlation functions for measuring the magnetic c
ponent. These are useful for distinguishing the purely elec
signal due to gravitational lensing from intrinsic correlatio
in galaxy alignments, and the method has the advantag
working for arbitrarily shaped regions of sky. However th
method assumed a flat sky approximation, and includes o
the two-point information. For polarization observations t
sky curvature will be important and we aim to extract a set
statistically independent observables that contain as muc
the magnetic information as possible. This may also pro
useful for weak lensing studies.

The paper is arranged as follows. In Sec. II we present
spin-weight 2 window technique for separating electric a
magnetic polarization on the sphere, generalizing result
Refs. @5,6#. Section III describes our harmonic-based tec
nique for constructing window functions with the properti
required to ensure separation of the electric and magn
modes while keeping information loss small. Classical te
niques for testing the hypothesis that there is no magn
signal are discussed in Sec. IV, and estimates of the detec
limits with the Planck satellite and future experiments a
also given. Lossless methods for estimation of the polar
tion power spectra are contrasted with methods using
separated variables in Sec. V. In a series of Appendixes
outline our conventions for spin weight functions and th
spherical harmonics. In addition we present a number of
5-2
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ANALYSIS OF CMB POLARIZATION ON AN INCOMPLETE SKY PHYSICAL REVIEW D65 023505
standard integral theorems on 2-dimensional manifolds
convenient spin weight form, and present recursive meth
for the fast computation of the spin weight spherical harm
ics and their inner products over azimuthally symmet
patches of the sphere. A further Appendix discusses the
tistics of detecting weak signals from tensor modes.

II. ELECTRIC AND MAGNETIC POLARIZATION

The observable polarization field is described in terms
the two Stokes’ parametersQ and U with respect to a par-
ticular choice of axes about each direction on the sky. In
paper we take these axes to form a right-handed set with
incoming radiation direction~following Ref. @3#!. The real
Stokes’ parameters are conveniently combined into a sin
complex field that represents the observed polarization

P5Q1 iU . ~2!

The values of Stokes’ parameters depend on the choic
axes; sinceQ is the difference of the intensity in two or
thogonal directions it changes sign under a rotation of 9
The Q field is related to theU field by a rotation of 45°.
More generally under a right-handed rotation of the axes
an anglea about the incoming direction the complex pola
ization transforms asP→e22iaP and is therefore describe
as having spin minus two~see Appendix A for our conven
tions for spin weight functions!. The analysis of polarized
data is therefore rather more complicated than for the t
perature which does not depend on making a choice of a
in each direction on the sky.

As described in Appendix A, one can define spin rais
and lowering operators that can be used to relate quant
of different spin@16,17#. The spin raising operator is denote
Z and the lowering operatorZp Since the polarization ha
spin-weight22 it can be written as the action of two sp
lowering operators on a spin zero complex number

P5Zp Zp ~PE1 iPB!. ~3!

The underlying real scalar~spin-zero! fields PE and PB de-
scribe electric and magnetic polarization respectively@17#.
They are clearly non-local functions of the Stokes’ para
eters. One can define a spin zero quantity which is loca
the polarization by acting with two spin raising operato
Using some results from Appendix A one obtains

ZZP5~¹212!¹2~PE1 iPB! ~4!

where¹ is the covariant derivative on the sphere. The r
and imaginary parts of this equation can therefore be use
determine the electric and magnetic parts of the polarizat
Performing a surface integral we define

I 22,W8 [E
S
dS W* ZZP, I 2,W8 [E

S
dS W* Zp Zp P* , ~5!

whereW is a complex window function defined over som
patchS of the observed portion of the sky. It follows that
02350
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EW8 [
1

2
~ I 2,W8 1I 22,W8 !, BW8 [2 i

1

2
~ I 2,W8 2I 22,W8 ! ~6!

provide a measure of the electric and magnetic signals. N
that EW*

8 5EW8* with an equivalent result forBW8 . Using the
integral theorem~A23! in Appendix A we can write

I 2,W8 5E
S
dS P* 2W* 1 R

]S
1dl̄ ~W* ZpP* 2P* ZpW* !, ~7!

I 22,W8 5E
S
dS P22W* 1 R

]S
1dl ~W* ZP2P ZW* !,

~8!

where 2W[ZZW is now a spin 2 window function,22W

[Zp ZpWis a spin22 window function, and1dl 5 1dl̄ * is the
spin 1 element of length around the boundary]S of S.
Clearly we do not wish to take derivatives of noisy observ
data and hence it is usually useful to choose the wind
function to eliminate the derivative terms on the boundar

For CMB polarimetry we are interested in the polarizati
defined on the spherical sky. The surface integrals vanis
we chooseW such thatZZW5Zp ZpW50, which will be true if
W is a linear combination of the spherical harmonics withl
50 or 1, since these possess no spin 2 component. If we
setW50 on the boundary, so as to eliminate the derivativ
of the polarization, we are forced to consider circular patc
S, in which case a combination of the twom50 harmonics
works. This implies that the electric and magnetic signals
be probed by performing line integrals around circles,
emphasized in Refs.@5,6#. These line integrals can be pe
formed around any circle that is enclosed in the obser
region of the sky, and it is unclear how to obtain a compl
set of statistically independent observables in order to ext
all of the available information. Also for current exper
ments, performing one-dimensional line integrals on pix
ized maps is unlikely to be a good way to extract informati
robustly.

In this paper, we suggest choosing the window functio
so that the line integrals around]S that appear in the con
struction of EW8 and BW8 contain no contribution from the
magnetic and electric polarization respectively. In the a
sence of special symmetries~see below for exceptions tha
arise in the case of circular patches! this requires thatW, ZW,
and ZpW all vanish on the boundary. These conditions a
equivalent to demanding that the window function and
normal derivative vanish on]S. With such a choice of win-
dow we can measure the electric and magnetic signals u
only the surface integrals

I 62,W[EW6 iBW[E
S
dS62W* ~Q7 iU !. ~9!

Since the window functions are scalar functions on
sphere we can expand them in spherical harmonics,
5-3
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ANTONY LEWIS, ANTHONY CHALLINOR, AND NEIL TUROK PHYSICAL REVIEW D 65 023505
W5(
l>2

(
umu< l

A~ l 22!!

~ l 12!!
WlmYlm . ~10!

~The square root factor is included for later convenienc!
We need not includel 50 and 1 spherical harmonics sinc
they do not contribute to the spin-weight62 window func-
tions, and the boundary integral terms automatically sepa
for these multipoles. In practice, we are only interested
probing scales to some particularl max ~e.g. the magnetic sig
nal from tensor modes has maximal power forl'100 and
decreases rapidly withl ), so the sum in Eq.~10! can be
truncated at some finitel max.

We shall focus on the case where the observed sky p
is azimuthally symmetric in which case the construction
exact window functions becomes particularly simple. T
harmonic-based method we describe in Sec. III provide
practical solution to constructing a non-redundant set of w
dow functions that separate the electric and magnetic mo
exactly. In addition, for the special case of isotropic, unc
related noise on the observed polarization, these simple p
erties are preserved in the variablesEW andBW . For obser-
vations over non-azimuthally symmetric patches our met
can, of course, be used over the largest inscribed circ
patch, but in this case there is inevitable information lo
since we use only a subset of the observed data. Howe
we expect that the method presented in Sec. III could also
applied directly to the full observed region to construct w
dow functions that achieve approximate separation of e
tric and magnetic polarization.

Consider the case of an azimuthally-symmetric patch
the boundary]S consists of one or two small circles. Fo
each azimuthal dependence onm we can construct combina
tions

Wm5 (
l 5max(2,umu)

l max A~ l 22!!

~ l 12!!
WlmYlm ~11!

that satisfy the necessary boundary conditions. Form50 it is
easy to see thatEW andBW contain no contribution fromPB
and PE respectively for any choice of theWl0 @i.e. the
boundary integrals that distinguishEW (BW) from EW8 (BW8 )
vanish if the polarization is pure magnetic~electric!#. It fol-
lows that for m50 there arel max21 linearly independen
window functions that satisfy the boundary conditions. F
umu51 it will be shown in the next section that there is on
one independent linear constraint per boundary circle,
there arel max22 possible window functions (l max23 for a
boundary composed of two circles!. For umu>2 there are
two linear constraints per boundary circle which can be ta
to be the vanishing ofWm and its normal derivative. In this
case there arel max2umu21 (l max2umu23) window functions
for boundaries consisting of one~two! small circles.

Since we are only considering a fraction of the sky not
of the window functions counted above may return obse
ablesEW and BW containing independent information. Th
arises because for largel max, or small patches, there wil
generally arise non-zero window coefficientsWlm that pro-
duce spin 2 window functions that are poorly supported o
02350
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the patch.~See e.g. Ref.@11# for a discussion of the equiva
lent problem in the case of scalar functions.! The redundancy
in the set of acceptable window functions can be removed
expanding the spin 2 window functions in a smaller set
functions which are~almost! complete for band-limited sig-
nals over the regionS. The construction of such a set b
singular value methods~e.g. Refs.@11,18#! forms the starting
point of the method we present in Sec. III.

Harmonic expansion

We construct window functions in harmonic space, so a
useful preliminary we consider the harmonic expansion
spin-weight 2 fields over the full sphere@3,4#. The polariza-
tion P[Q1 iU is spin 22 and can be expanded over th
whole sky in terms of the spin two harmonics~see Appendix
B for our conventions and some useful results!

Q6 iU 5(
lm

a72,lm 72Ylm5(
lm

~Elm7 iBlm! 72Ylm .

~12!

Reality of Q and U requires a22,lm* 5(21)ma2,l (2m) ,
so that Elm* 5(21)mEl (2m) with an equivalent
result for Blm . Under parity transformationsElm
→(21)lElm but Blm→(21)l 11Blm , since sYlm(p2u,f
1p)5(21)l

2sYlm(u,f). From the orthogonality of the
spherical harmonics over the full sphere it follows that

Elm5
1

2
~a2,lm1a22,lm!

5
1

2E4p
dS P22Ylm* 1

1

2E4p
dS P* 2Ylm* , ~13!

iBlm5
1

2
~a2,lm2a22,lm!

52
1

2E4p
dS P22Ylm* 1

1

2E4p
dS P* 2Ylm* . ~14!

In a rotationally-invariant ensemble, the expectation v
ues of the harmonic coefficients define the electric and m
netic polarization power spectra:

^El 8m8
* Elm&5d l 8 ldm8mCl

EE , ^Bl 8m8
* Blm&5d l 8 ldm8mCl

BB .

~15!

If the ensemble is parity-symmetric the cross term is ze
^El 8m8

* Blm&50.
The form of the harmonic expansion~10! of the window

function ensures that the spin-weight62 windows are

62W5(
lm

Wlm 62Ylm , ~16!

where the sum is overl>2 andumu< l . Evaluating the sur-
face integrals in Eq.~9! we find
5-4
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ANALYSIS OF CMB POLARIZATION ON AN INCOMPLETE SKY PHYSICAL REVIEW D65 023505
EW5(
lm

Wlm* Ẽlm , BW5(
lm

Wlm* B̃lm , ~17!

where the pseudo-harmonics are obtained by restricting
integrals in Eqs.~13! and ~14! to the regionS:

Ẽlm5
1

2 (
l 8m8

E
S
dS@~El 8m82 iBl 8m8! 22Yl 8m8 22Ylm*

1~El 8m81 iBl 8m8! 2Yl 8m8 2Ylm* #, ~18!

B̃lm5
i

2 (
l 8m8

E
S
dS@~El 8m82 iBl 8m8! 22Yl 8m8 22Ylm*

2~El 8m81 iBl 8m8! 2Yl 8m8 2Ylm* #. ~19!

Defining Hermitian coupling matrices

W6( lm)( lm)8[
1

2
~ 2W( lm)( lm)86 22W( lm)( lm)8!, ~20!

where

sW( lm)( lm)8[E
S
dSsYlm* sYl 8m8 , ~21!

we can write

Ẽlm5 (
l 8m8

~W1( lm)( lm)8El 8m81 iW2( lm)( lm)8Bl 8m8!,

~22!

B̃lm5 (
l 8m8

~W1( lm)( lm)8Bl 8m82 iW2( lm)( lm)8El 8m8!.

~23!

In the limit l max→`,62W(lm)(lm)8 become projection operator
as a consequence of the completeness of the spin-weight
monics. The matrixW2( lm)( lm)8 controls the contamination
of EW and BW with magnetic and electric polarization re
spectively. Our aim is to construct window functionsWlm
that remove this contamination for allElm and Blm . Some
elements of the matricesW6( lm)( lm)8 are shown in Fig. 1.

For azimuthally-symmetric patches the coupling matric
are block diagonal (W6( lm)( lm)8}dmm8), and so window
functions can be constructed for eachm separately@see Eq.
~11!#. For m50 we have

E
S
dS2Yl 80 2Yl0* 5E

S
dS22Yl 80 22Yl0* , ~24!

so W2( l0)(l 80)50 and we have clean separation for a
azimuthally-symmetric window function. The set of az
muthally symmetric window functions givesl max21 sepa-
rated variables that contain the same information as would
obtained by computing line integrals around all those circ
concentric with the boundary of the azimuthal patch. F
general m there is leakage ofElm into B̃lm ; for parity-
symmetric cuts there is only leakage between modes w
02350
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different parity ~i.e. for even l the pseudo-harmonicsB̃lm
depend onEl 8m only for odd l 8).

We showed in the previous section that, for a gene
window function, the contamination of, e.g.,EW by the mag-
netic polarization is due entirely to boundary terms. Th
implies thatW2( lm)( lm)8 can always be written as a line in
tegral around the boundary ofS. ~We show in Appendix C
that the matricessY( lm)( lm)8 can be transformed into line in
tegrals for lÞ l 8. HoweverW2( lm)( lm)8 can be written as a
line integral for all l and l 8.! Making use of Eq.~C9!, it is
straightforward to show that

W2( lm)( lm)85
1

2
A~ l 22!!

~ l 12!! S R
]S

1dl̄ @Al ~ l 11! 1Ylm* 2Yl 8m8

1A~ l 821!~ l 812!Ylm* 1Yl 8m8#

1 R
]S

1dl @Al ~ l 11! 21Ylm* 22Yl 8m8

1A~ l 821!~ l 812!Ylm* 21Yl 8m8# D . ~25!

This can be put in manifestly Hermitian form using the r
cursion relation derived from the action of (Z2Zp) on sYlm

m1s cosu

sinu sYlm5
1

2
A~ l 2s!~ l 1s11! s11Ylm

1
1

2
A~ l 1s!~ l 2s11! s21Ylm . ~26!

FIG. 1. The window functionsW1( l 8m)( lm) ~solid lines! and
W2( l 8m)( lm) ~dashed lines! for l 85100 and variousm for an azi-
muthally symmetric patch withu,10°. The dashed lines show th

Elm contamination ofB̃l 8m as a function ofl. For m50 there is no
contamination, and asm increases the functions decrease in amp
tude as the corresponding harmonics become more localized ou
of the patch.
5-5
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For a circular boundary at constant latitudeu5Q ~i.e. the
boundary of an azimuthal patch!, we find

W2( lm)( l 8m)524mp@ul~m!ul 8
* ~m!1v l~m!v l 8

* ~m!#,
~27!

where the vectors

ul~m!5A~ l 22!!

~ l 12!!
@]uYlm~Q,F!2cotQYlm~Q,F!#,

~28!

v l~m!5A~ l 22!!

~ l 12!!

A~m221!

sinQ
Ylm~Q,F! ~29!

for l>2 and some arbitraryF. @Note thatul(m) andv l(m)
will not generally be orthogonal so Eq.~27! is not the spec-
tral decomposition ofW2( lm)( l 8m) .# Any window Wlm whose
inner products withul(m) andv l(m) both vanish, i.e.

(
l

Wlm* ul~m!5(
l

Wlm* v l~m!50, ~30!

will achieve clean separation of electric and magnetic po
ization. Forumu.1 such window functions and their norm
derivative necessarily vanish on the boundary. As noted
lier, for umu51 there is actually only one constraint to b
satisfied which now follows from the fact thatv l(61)50.

III. ELECTRIC-MAGNETIC SEPARATION
ON THE CUT SKY

In this section we give a practical method for construct
a non-redundant set of window functions$WI% whereI labels
the particular window, that achieve exact separation for a
muthal patches. The corresponding~cleanly separated! elec-
tric and magnetic observables will be denotedEWI

andBWI
.

We will make use of a notation where vectors are denoted
bold Roman font, e.g.BW has componentsBWI

, andB has

componentsBlm , and matrices are denoted by bold ita
font, e.g.W6 have componentsW6( lm)( lm)8 . We present the
method in a form that is applicable~though no longer exact!
to arbitrary shaped regionsS; for azimuthal patches the
method is exact. For the azimuthal case all matrices
block diagonal and the window functions can be construc
for eachm separately.

In matrix form, Eq.~17! is

EW5W* Ẽ, BW5W* B̃, ~31!

whereW5WI ( lm) is the matrix whoseI th row contains the
harmonic coefficients of theI th window function, and recal

Ẽ5W1E1 iW2B, B̃5W1B2 iW2E. ~32!

For an azimuthally-symmetric sky patch the block-diago
matrices 62W ~with components62W( lm)( l 8m)dmm8) from
which W6 are constructed can be computed very quic
using the recursion relations given in Appendix C. Altern
tively, W2 can be computed directly from Eq.~27!. In the
02350
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limit of full sky coverageW2→0 andW1→I . We know that
for umu>2, the range ofmth submatrix of W2 is two-
dimensional@spanned byul(m) and v l(m)#, so that all but
two of the eigenvalue of the submatrix are zero. Equiv
lently, all but two linear combinations of theB̃lm are inde-
pendent ofEl 8m . The umu51 submatrices ofW2 have only
one non-zero eigenvalue; the associated eigenvectors
ul(61). The m50 submatrix is identically zero. The es
sence of our method for constructing the window functions
to chooseW to project out of the range ofW2 .

We first diagonalizeW15U1D1U1
† by performing a sin-

gular value decomposition@18#. Here, D1 is a positive
~semi-!definite diagonal matrix whose elements are the
genvalues ofW1 . The columns of the unitary matrixU1 are
the normalized eigenvectors ofW1 . The singular value de-
composition allows us to identify the linear combinatio
U1

† B that are poorly determined byB̃—those corresponding
to the small diagonal elements ofD1 . The eigenvectors with
very small eigenvalues correspond to polarization patte
that essentially have no support inside the observed patc
the sky, and would lead to a set of redundant window fu
tions if not removed from the analysis. The distribution
eigenvalues ofW1 is approximately bimodal as illustrated i
Fig. 2, and the exact definition of ‘‘small’’ is not critica
when considering the range of the matrix. This bimodal
arises because62W are approximately projection operato
for large l max, and the fact that the range ofW2 is a rather
small subspace. To remove redundant degrees of free
from the spin 2 window functions, we define an operatorŨ1

which projects onto the eigenvectors ofW1 whose eigenval-
ues are close to one. This amounts to removing the appro
ate columns ofU1 . SinceU1 is orthogonal,Ũ1 is column

FIG. 2. The distribution of eigenvalues ofW1 for two azimuth-
ally symmetric sky cuts withl max5$250,1000%. The distribution is
approximately bimodal, and the fraction of the eigenvalues co
sponding to well-determined modes~eigenvalue significantly non-
zero! is given by the fraction of the sky area in the patch in the lim
l max→`.
5-6
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orthogonal and henceŨ1
† Ũ15I ~but Ũ1Ũ1

† ÞI ). The matrix

D̃1 is the corresponding smaller square diagonal matrix,
we have

Ũ1
† B̃'D̃1Ũ1

† B2 i Ũ1
† W2E. ~33!

We now multiply by D̃1
21/2, defined by @D̃1

21/2# i j

[d i j @D̃1# i i
21/2, to give

D̃1
21/2Ũ1

† B̃'D̃1
1/2Ũ1

† B2 i D̃1
21/2Ũ1

† W2E. ~34!

Including the factorD̃1
21/2Ũ1

† in the window functionsW is
equivalent to constructing the spin 2 window functions fro
a reduced basis that is orthonormal and~almost! complete
over the regionS.

The remaining step is to project out the unwanted bou
ary terms that contaminateB̃ with E. For the case of an
azimuthal patch, the ranges of the submatrices ofW2 are all
two dimensional~or lower!. It follows that the same is true
of D̃1

21/2Ũ1
† W2 , so we can remove the unwanted bounda

term by ensuring thatW also includes a factor that projec
out of the range ofD̃1

21/2Ũ1
† W2 . In practice, we perform this

projection by constructing its singular value decompositi
which for a non-square matrix takes the formD̃1

21/2Ũ1
† W2

5UDV†. Here,D is a diagonal matrix with the same dime
sion asD̃1 , U is a unitary matrix of the same dimension, a
V is a column orthogonal rectangular matrix. There are
most two non-zero singular values~elements of the diagona
matrix D) per m, and the corresponding left singular vecto
~columns ofU) form an orthonormal basis for the range
D̃1

21/2Ũ1
† W2 . We can project out of this range by definingŨ

as the matrix obtained by removing the columns ofU where
the corresponding singular value is non-zero. Thus, choo
the window functions

W* 5Ũ†D̃1
21/2Ũ1

† , ~35!

we guarantee separation of the electric and magnetic po
ization for azimuthally-symmetric patches. Our separated
larization observables become

BW5W* B̃[Ũ†D̃1
21/2Ũ1

† B̃'Ũ†D̃1
1/2Ũ1

† B, ~36!

EW5W* Ẽ[Ũ†D̃1
21/2Ũ1

† Ẽ'Ũ†D̃1
1/2Ũ1

† E. ~37!

For azimuthal patches the separation is exact; the appr
mation sign arises only from our use ofW1'Ũ1D̃1Ũ1

† in
simplifying the matrix that premultipliesE and B in Eqs.
~36! and ~37!.

For observations over non-azimuthal patches, one can
ther apply the exact separation over the largest inscribed
muthal region or attempt to apply the method outlined ab
to the entire patch. In the latter case the structure ofW2 is
less clear, but we can still expect a significant number of
eigenvalues to be very small; the associated eigenvec
correspond to window functions that satisfyW'0'ZW on
the boundary. The number of independent window functio
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that achieve separation can be estimated as the numb
pixels of linear size;p/ l max contained in the patch~roughly
the number of modes that survive the diagonalization ofW1)
minus twice the number of pixels on the boundary~roughly
the number of constraints in settingW andZW to zero on the
boundary!. Such window functions will only give an ap
proximate separation of electric and magnetic polarizati
In practice, the accuracy of the separation, and the numbe
independent window functions constructed, will depend
the choice of threshold for retaining the singular values
D̃1

21/2Ũ1
† W2 .

If we are only interested in constructing variables th
depend on the magnetic polarization, the maximum mu
pole l max in the window functions can be chosen rather sm
~of the order of a few hundred!. The relation B̃5W1B
2 iW2E will only hold for squareW2 if l max is chosen to
include all the significant power in the electric polarizatio
so for smallerl max we cannot assume thatW2 is square.
However, for azimuthal patches, the range of each subma
of W2 is still guaranteed to be of dimension two or les
irrespective of its shape, and so the exact separation
proceed with W2 treated as square. For non-azimuth
patches it would be prudent to monitor the effect of varyi
the number of columns inW2 on the range of this matrix.

A. Noise

It is straightforward to project the errors on the Stoke
parameters to find the noise in the separated variablesEW
andBW . In this section we consider the simple case of ma
with idealized noise properties.

We assume that the noise correlation between pixel
negligible, and that the noise on the Stokes’ parametersDQ
and DU is un-correlated. The neglect of noise correlatio
between pixels amounts to assuming white noise in the t
stream of the measurement. In principle, correlations
tween Stokes’ parameters can be eliminated with a car
choice of polarimeter directions in the experiment@19,20#.
With these assumptions, we have

^DQ~V!DU~V8!&50, ~38!

and the noise correlation is given by

^DQ~V!DQ~V8!&5sQ
2 d~V2V8!,

^DU~V!DU~V8!&5sU
2 d~V2V8!. ~39!

It follows that the noiseDB̃ on the pseudo-multipolesB̃ has
correlations

^DB̃DB̃†&5
1

2ES
dS~sQ

2 1sU
2 !

1

2
@ 22Y* ~ 22Y* !†

1 2Y* ~ 2Y* !†#2
1

2ES
dS~sQ

2 2sU
2 !

3
1

2
@ 22Y* ~ 2Y* !†1 2Y* ~ 22Y* !†#, ~40!
5-7
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with a similar result for the noiseDẼ on Ẽ. Here, vectors of
spin-weights functions sY have componentssYlm . The po-
larimeter arrangements that give uncorrelated errors betw
Stokes’ parameters also ensure thatsU

2 5sQ
2 [sN

2 so that the
last integral in Eq.~40! is zero. Here we concentrate on th
simple case wheresN

2 is isotropic in which case

^DB̃DB̃†&5^DẼDẼ†&5sN
2 W1 . ~41!

The covariance of the noiseDBW on BW is therefore given
by

N[^DBWDBW
† &

5W* ^DB̃DB̃†&~W* !†

'sN
2 Ũ†D̃1

21/2Ũ1
† Ũ1D̃1Ũ1

† Ũ1D̃1
21/2Ũ5sN

2 I , ~42!

and hence the noise is diagonal~and isotropic!; similarly
^DEWDEW

† &5sN
2 I . What is more, the noise onEW and BW

are uncorrelated for isotropic noise since

^DẼDB̃†&5 isN
2 W2 , ~43!

and hence

^DEWDBW
† &5 isN

2 Ũ†D̃1
21/2Ũ1

† W2Ũ1D̃1
21/2Ũ50 ~44!

as Ũ† annihilatesD̃1
21/2Ũ1

† W2 . For isotropic noise our po
larization variables therefore have the same desirable di
nal properties as the scalar diagonalized harmonic co
cients used in the analysis of the cut-sky CMB temperat
@10,11#.

In the presence of a symmetric beam, white noise in
time stream of the experiment projects to white~though gen-
erally non-isotropic! noise on the beam-convolved polariz
tion field. In multipole space, the convolved fields have el
tric and magnetic multipoles that are related to t
unconvolvedElm and Blm by spin-weight 2 beam window
functions 2Wl @21,22#. For l max of a few hundred, appropri
ate for probing magnetic polarization, the beam wind
functions will be negligible for experiments with resolutio
much better than one degree. For lower resolution exp
ments, or higherl max, the effect of the beam window func
tion should be included in the theoretical~signal! covariance
of the variablesEW andBW ~see below!.

In general, non-uniform coverage of the sky will lead
variations insN

2 . In this case it is still possible to defin
harmonic variablesBW

diag5N21/2BW that have isotropic noise
~Here N21/25UNDN

21/2UN
† where N5UNDNUN

† , UN is uni-
tary andDN is diagonal.! For azimuthal patches with gener
~everywhere finite! noise patterns we can still construct th
magnetic-only variables for each value ofm but the noise
will now couple variables with differentm ~unlike the sig-
nal!. While presenting no fundamental obstacles, t
m-mode coupling does increase the computational overh
considerably.

Sky patches of general shape are equivalent to azimu
patches with regions of infinite noise, and the general cas
02350
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a non-azimuthally symmetric survey region with arbitra
noise can be treated by re-defining the pseudo-harmonicẼ,
B̃ and coupling matricesW1 , W2 with a factor of 1/sN

2

inside the integral. All the above results then follow with th
new definitions, though computing the matrices and mani
lating them may become computationally challenging. T
assumption of isotropic noise is therefore not fundamenta
our analysis, and the following results could be generaliz
for more realistic situations.

B. Real space window functions

The expected magnetic signal correlation matrix is giv
by

S[^BWBW
† &5Ũ†D̃1

1/2Ũ1
† CBBŨ1D̃1

1/2Ũ, ~45!

where the diagonal magnetic power spectrum matrix is gi
by @CBB# ( lm)( l 8m8)5dmm8d l l 8Cl

BB . Since the noise correla
tion is proportional to the identity matrix for isotropic nois
we can perform any rotationBW→BW

(R)[RBW , whereR is
unitary, and still have a set of variables with uncorrelat
errors. The rotated variables are derived from window fu
tions R* W. For a particular theoretical model we can rota
to the frame where the signal matrix is diagonal. The rota
BW

(R) will then be fully statistically independent. In Fig. 3 w
plot the window functions for theBW

(R) which give the largest

FIG. 3. The real space window functions for an azimutha
symmetric sky patch withu,10°. They are evaluated in the fram
where the signal is diagonal, so the leftmost window produces
largest signal for thatm. The signal to noise falls off as a function o
m as shown in Fig. 4. Form.0 the window functions correspon
to the real part ofBW

(R) ; the imaginary part is a rotated version of th
same window. The length of the lines shows the sampling weigh
that point, and the orientation of the lines shows which polarizat
orientation gives maximal contribution.
5-8
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ANALYSIS OF CMB POLARIZATION ON AN INCOMPLETE SKY PHYSICAL REVIEW D65 023505
contributions to the signal for a typical flatLCDM model
with a scale invariant tensor initial power spectrum and
reionization. The window functions are plotted as line se
ments of lengthAQW

2 1UW
2 at angle tan21(UW /QW)/2 to the

u direction where the real quantitiesQW andUW are defined
in terms of the real partRW(R) of the ~rotated! scalar win-
dow functionW(R) as

QW1 iU W[2 i Zp Zp RW(R). ~46!

This definition ensures that

RBW
(R)5E

S
dS~QWQ1UWU !. ~47!

For the imaginary part ofBW
(R) , QW and UW should be de-

fined as QW1 iU W[2 i Z Zp IW(R)* . For the case of azi-
muthal patches, as considered in Fig. 3 where the wind
are constructed for eachm, the imaginary part would produc
a plot that is rigidly rotated by2p/(2m) (mÞ0) about the
center. Plotting the window functions in this form is usef
since the length of the line segment gives the samp
weight assigned to that point, and the orientation gives
direction of the linear polarization that contributes at ea
point. We could repeat the exercise for theEW in which case
for the real part we would defineQW1 iU W[Zp Zp RW(R).

In Fig. 4 we show the signal to noise in the magne
variables for two azimuthal patches. As the patch size
creases the signal in the modes with largem also increases
reflecting the fact that for small patches the diagonalizat
of W1 removes a greater relative fraction of the modes
eachm asm increases. For small patches of the sky mos
the signal at eachm is compressed into a small number
modes, whereas for larger patches the signal is distribu
more uniformly. For cosmological models with reionizatio
the signal for large patches is distributed less uniformly, w
a small number of modes giving big contributions due to
greater large scale power.

IV. MEASURING THE MAGNETIC SIGNAL

We are now in a position to use the magnetic observa
BW to constrain the magnetic signal without having to wo
about contamination with the much larger electric signal. T
simplest thing to do would be to test the null hypothesis t
the magnetic signal is due entirely to noise~this hypothesis is
unlikely to be ruled out pre-Planck!. If the signal were not
consistent with noise it could indicate various things: t
presence of CMB magnetic polarization, the presence of
larized foregrounds that have not been removed success
systematic leakage into the magnetic mode in the anal
~e.g., due to unaccounted for pointing errors, or pixelizat
effects!, or Q2U leakage in the observation~e.g. due to
unaccounted for cross-polarization in the instrument opti!.

Magnetic polarization can originate from tensor mod
but also by weak lensing of the scalar electric polarizat
@23#. The lensing signal should be dominant on small sca
and the magnetic variables could certainly be used to obs
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this signal. Of more interest here is the larger scale contri
tion from tensor modes. In order to identify this compone
we shall have to model the lensing contribution, which b
comes increasingly important as one tries to observe sm
tensor contributions@7,8#. In the first three of the following
subsections we assume that the magnetic signal is gene
purely from the tensor modes, then in Sec. IV D we sh
how our results can be adapted to account for the lens
signal.

A. Is it just noise?

If the noise and signal are Gaussian theBW will be Gauss-
ian and the simplest thing to do is ax2 test by computing
x25BW

† N21BW ~for isotropic noise this is just x2

5BW
† BW /sN

2 ). Whilst the CMB magnetic polarization signa
is from tensor modes is expected to be Gaussian, the len
signal and any spurious or unexpected signal may not
One may therefore also wish to do a more sophisticated
of statistical tests at this point.

Assuming that the signal is as expected—anyB signal
present is Gaussian and would have a power spectrum
predicted for a near scale-invariant tensor initial pow
spectrum—one can account for the expected form of
power spectrum and thereby increase the chance of a d
tion. We assume that the main parameters of the universe
well determined by the time magnetic polarization comes

FIG. 4. The eigenvalues ofN21/2SN21/2 at a givenm with the
tensor amplitude chosen to give a detection at 99% confidence
probability 0.5~see Sec. IV!. The noise is assumed isotropic and t
model has reionization atz56.5. For the small sky patch most o
the signal is in the lowest few eigenmodes of eachm, but for larger
patches a greater number of eigenmodes are required to encom
all the signal~in the bottom plot there are lots of contributions o
top of each other along the bottom line!. For the large patch there
are a small number of high signal to noise modes due to the e
large scale reionization signal.
5-9
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ANTONY LEWIS, ANTHONY CHALLINOR, AND NEIL TUROK PHYSICAL REVIEW D 65 023505
be observed, so the shape of the magnetic polarization po
spectrum is known to reasonable approximation~the only
significant freedom arising from the shape of the primord
tensor power spectrum!. We compute the expected sign
correlationS for some particular tensor amplitude and s
that the real signal isrS. Assuming Gaussian signal an
noise the likelihood in this case is then given by

L~BWur !}

expF2
1

2
BW

† ~N1rS!21BWG
uN1rSu1/2

. ~48!

The likelihood distribution can be computed numerica
from the BW observed, and gives the posterior probabil
distribution on the value ofr after multiplying by the prior
f (r ).

The magnetic signal is expected to be weak, and the
tailed statistics for analyzing such a signal are given in A
pendix D. There we show that

n8[
BW

† N21SN21BW2tr~N21S!

A4BW
† N21SN21SN21BW22tr~N21SN21S!

~49!

gives a measure of the number of ‘‘sigmas’’ of th
detection—the number of standard deviations of the ma
mum likelihoodr̂ from pure noise (r 50) assuming low sig-
nal to noise. We use this as a test statistic in Monte Ca
simulations to compute detection probabilities at a given s
nificance. We have checked at isolated points that using
timal statistics gains very little except for very small s
patches~where there are only a small number of magne
modes, each of which must have fairly high signal to noise
order to get a detection!.

Using theBW variables is clearly not optimal as we hav
thrown away some well determined linear combinations oE
and B. However in the idealized situation considered he
they should provide a robust way for testing for magne
polarization. The number of modes thrown away is in a
case quite small—not more than two perm mode for azi-
muthal patches. We quantify this information loss further
Sec. V.

B. Detection by Planck?

Of the current funded experiments, only Planck is like
to detect magnetic polarization if the levels are as predic
by standard cosmological models. As a toy model we c
sider the 143 and 217 GHz polarized channels of the Pla
high frequency instrument. We approximate the noise as
tropic and ignore the variation of beam width~7.1 and 5.0
arcmin full width at half maximum respectively! between
these channels. Combining maps from these two chan
with inverse variance weighting, we findsN'6
31023 mK/K, whereQ andU are expressed as dimensio
less thermodynamic equivalent temperatures in units of
CMB temperature. We apply an azimuthally-symmetric g
lactic cut of 20° either side of the equator. The expec
magnetic polarization power spectrum peaks atl;100, and
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there is therefore no need to consider high resolutions so
can usel max5250 without significant loss of power. In Fig.
we show the probability of obtaining a detection with Plan
as a function of the true underlying scale-invariant ten
power spectrum amplitudeAT ~defined as in Ref.@24#! as-
suming a standard flat cold dark matter model with a cosm
logical constant (LCDM) model.

A tensor amplitude ofAT'4310210 would contribute
about 1/10 of the large scale temperatureCl detected by the
Cosmic Background Explorer~COBE!, and is likely to be
detected by Planck if our model is at all realistic. This co
responds to being able to detect the signal from inflation
models with energy scale at horizon crossingV1/4*2
31016GeV. Such models include the simplefn potentials,
with n>2.

C. Survey size

For a given detector sensitivity the magnitude of the s
nal that can be detected depends on the size of the sky p
that is observed. The signal to noise in each observable
creases in proportion to the observation time per unit a
The noise covariance is proportional tosN

2 which varies in
proportion to the observed area for a given survey durat
For large areas the number of observables varies appr
mately in proportion to the area, which would make the nu
ber of ‘‘sigmas’’ of a chi-squared detection scale with t
square root of the area. Combining these two effects,
expected detection is therefore proportional to one over
square root of the area, and is larger if a fixed survey tim
spent observing a smaller area. However for smaller ar
the signal to noise on each observable becomes larger,

FIG. 5. The probability of detecting magnetic polarization at
percent~thick lines! and 95 percent~thin lines! confidence as a
function of the tensor initial power spectrum amplitudeAT for the
model of Planck observations described in the text. The dotted
is for a model with reionization atz56.5, using the unprojected
variables and treating the electric contamination as part of the n
~see Sec. V!. The other curves are using the projected magne
variables for models with no reionization~solid! and reionization at
z56.5 ~dashed!. The vertical dashed line shows the tensor amp
tude that would contribute about 1/10 of the COBE signal.
5-10
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ANALYSIS OF CMB POLARIZATION ON AN INCOMPLETE SKY PHYSICAL REVIEW D65 023505
the number of variables decreases. With fewer variables
probability of obtaining no detection increases significan
This is just the fact that if you observe a small patch of s
you have a larger chance of being unlucky and havin
patch which has a small magnetic polarization signal eve
where. Also the existence of the boundary becomes incr
ingly important for small patches and a larger fraction of t
information is lost in order to obtain clean separation of
magnetic observables.

The question of ‘‘optimal’’ survey size is somewhat de
cate, as it depends on the probability distribution for t
detection significance that one thinks is optimal. In Fig. 6
plot the probability of detecting various tensor amplitudes
95 percent and 99 percent confidence for different sur
sizes. In Fig. 7 we show the minimum gravitational wa
~tensor! amplitude that might be detected at 99 percent c
fidence as a function of the radius of the survey size. I
clear that radii in the range 5° – 9° are optimal, though o
cannot be more precise without defining more specifica
the aims of the observation. A radius of about 7° would b
good compromise between being able to place good up
limits if there was no detection~which favors radii closer to
9°) and having a better chance of detecting small amplitu
~which favors smaller radii!.

The solid curves in Fig. 7 fully take account of the need
separate the magnetic signal from the~much larger! electric
signal. By way of comparison, the dashed curves show
minimum detectable amplitude obtainable if one could
perfect lossless separation, which is clearly impossible on

FIG. 6. The probability of being able to rule out the null hypot
esis at 95 percent~dashed lines! or 99 percent~solid lines! confi-
dence for scale invariant tensor amplitudes~bottom to top! of AT

5$1,2,4,8,16%310212, for a survey with detector sensitivitys
510mKAsec that runs for one year and maps a circular patch
sky of a given radius assuming uniform noise, no reionization,
no lensing. The probabilities were computed by Monte Carlo sim
lation.
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incomplete sky~see Sec. V!. With lossless separation, th
best upper bounds are obtained for smaller patches since
size of the boundary is no longer important. The dash
curves in Fig. 7 can be compared with those given in R
@25# where perfect separation was assumed, the effect
finite sky coverage were treated only approximately, an
less rigorous approach to hypothesis testing was emplo
Reference@26# gives an improved analysis along the lines
Ref. @25#, and also performs calculations properly taking a
count of the mixing of electric and magnetic polarizatio
through a~brute-force! Fisher analysis in pixel space.

D. Lensing

Unlike most of the foreground signals that might contam
nate the observation, the magnetic signal from the lensin
scalar electric polarization has the same frequency spec
as the primordial magnetic signal and so cannot be remo
easily by use of multi-frequency observations. In order
isolate the tensor contribution to the magnetic signal we
incorporate knowledge of the expected lensing power sp
trum @23# into the null-hypothesis covariance matrixN ~we
neglect the non-Gaussianity of the lensed polarization!. For
the multipolesl &250 of interest for the tensor signal th
lensing signal is approximately white, withClens

BB '4.4
31026mK2 if the COBE signal is entirely generated by sc
lar modes. For large patches of sky, where the matrixD̃1 is
nearly proportional to the identity matrix, the lensing sign

f
d
-

FIG. 7. The smallest gravitational wave amplitudeAT ~defined
as in Ref.@24#! that could be detected at 99 percent confidence w
probability ~bottom to top! of $0.5,0.8,0.95,0.99% by an experiment
with detector sensitivitys510 mKAsec that runs for one year an
maps a circular patch of sky of a given radius assuming unifo
noise, no lensing, with reionization atz56.5 ~right! and without
reionization~left!. The result scales with the square of the detec
sensitivity and inversely with the duration of the experiment. T
dotted lines show the equivalent result if one could perform per
lossless separation of the magnetic modes.
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contributes like an additional isotropic noise withsN, lens
2

'Clens
BB . We have checked this approximation by computi

the following results exactly in particular cases, with agre
ment to within a few percent for patch sizes with 10°&u
&80°.

The effect of the lensing is therefore simply to increa
the effective noise by a constant amount. For the Pla
satellite the effect is small, reducing theAT that could be
observed by about 1.5 percent. However for the smaller
veys with better sensitivity, considered in Figs. 6 and 7,
effect is much more important. For a one year survey
radiusu with sensitivitys510mKAsec the noise variance i
given by f (u)s0

2 wheref (u)5(12cosu)/2 is the fraction of
the sky which is observed ands0

2'431025mK2. This noise
gives the tensor amplitudesAT(u) plotted in Fig. 7. Incorpo-
rating the lensing effect the actual tensor amplitude o
could detect in an experiment with sensitivitys and duration
T is

AT~u!85AT~u!
4p f ~u!s2/T1sN, lens

2

f ~u!s0
2

, ~50!

whereAT(u) is the amplitude for a one year mission wi
s510 mKAsec and lensing ignored~i.e. the amplitude plot-
ted in Fig. 7!. This allows our previous results to be modifie
for inclusion of the lensing signal. We have plotted the mo
fied results for various survey sensitivities in Fig. 8. T
optimal survey size now depends on the sensitivity—as s
sitivity improves the lensing signal becomes more import
and one needs to survey larger scales in order to accur
measure the difference in variance expected with the te
signal. For large patch sizes the tensor amplitudeAT that can
be detected in the absence of lensing is proportiona
Af (u). Allowing for lensing, there is an optimal survey siz
at 4ps2f (u)/T5sN, lens

2 @if there is a solution withf (u),1#,
in other words when the variance of the instrument nois
equal to the lensing signal. There is a lower limit ofAT'4
310212 that can be measured even with perfect sensitiv
when the tensor contribution cannot be distinguished fr
random sampling variations in the lensing signal distributi
This corresponds to an inflation model with energy sc
V1/4'731015GeV, in broad agreement with Ref.@7# for a
three sigma detection. This situation could only be improv
if one could find ways to obtain information about the pa
ticular realization of the lensed signal.

We have assumed that component separation and so
subtraction can be performed exactly so that the obse
signal is only lensed CMB. Polarized thermal dust emiss
is expected to generate a significant magnetic signal@27# at
roughly the level shown by the line in Fig. 8 at 143 GH
Separation of this signal from the CMB signal should
possible with multi-frequency observations, and it sho
then not have a significant effect on our results.

V. LOSSLESS METHODS

We now compare the above analysis with truly lossl
methods. Lossless, likelihood analysis for CMB polarizat
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in pixel space has been considered recently in Ref.@26#. In
this section we consider lossless and nearly lossless met
in harmonic space.

A simple way to incorporate most of the magnetic sign
for constraining the tensor modes is to use the unprojec
variablesD̃1

21/2Ũ1
† B̃, whereD̃1 andŨ1 were defined in Sec

III. The null-hypothesis covariance matrixN can be com-
puted including the expected signal from the electric pol
ization, and the analysis can be performed as before. Th
marginally superior to using the projected variables if t
tensor amplitude is quite high, as shown in Fig. 5 for t
Planck mission. For smaller tensor amplitudes the entang
linear combinations ofE andB modes are dominated by th
electric component and performing the projection loos
very little. Using the projection gives one clean separati
and there is no need to know the electric polarization pow
spectrum. By identifying variables that depend only on t
electric and magnetic signals at the level of the map we a
do not need to assume Gaussianity, so we could for exam
perform Gaussianity tests on the two physically distinct p
larization types independently.

We now consider the full joint analysis of the electric a
magnetic polarization, with the pseudo-multipolesẼ and B̃
forming our fundamental data vector

S Ẽ

B̃
D 5S W1 iW2

2 iW2 W1
D S E

BD . ~51!

FIG. 8. The smallest gravitational wave amplitudeAT that could
be detected at 99 percent confidence with probability 0.95~solid
lines! and 0.5~dashed lines! by an experiment with detector sens
tivity ~bottom to top! s25$0,25,50,100,200,400%mK2sec that runs
for year and maps a circular patch of sky of a given radius assum
uniform noise, a white lensing power spectrum, and aLCDM cos-
mology that reionizes atz56.5. The horizontal dotted line show
the amplitude which contributes about 1/10 of the COBE sign
The long dashed line shows very roughly the dust foreground
143 GHz.
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Since we are no longer worrying aboutE-B separation so we
can equally well use the block-diagonal frame where

Ã[S Ẽ1 i B̃

Ẽ2 i B̃
D 5S 2W 0

0 22WD S E1 iB

E2 iBD[S 2W 0

0 22WDA.

~52!

Performing a singular value decomposition of the bloc
diagonal matrix diag(2W, 22W)5UDU† ~where the matrices
U andD should not be confused with those defined in S
III !, we can identify the well determined linear combinatio
as before:

A8[D̃21/2Ũ†Ã'D̃1/2Ũ†A. ~53!

This diagonalization is equivalent to defining harmonic c
efficientsA8 with respect to a complete set of spin two ha
monics which are orthonormal over the patch of sky, in
same way as for the spin zero cut-sky temperature ana
@10,11#. As before, this construction ensures that for isotro
noise the noise correlation is diagonal

^DÃDÃ †&52sN
2 diag~ 2W, 22W!⇒N

[^DA8DA8 †&52sN
2 I . ~54!

The signal correlation is given by

S5^A8A8 †&5D̃1/2Ũ†S CEE1CBB CEE2CBB

CEE2CBB CEE1CBBD ŨD̃1/2,

~55!

where theCEE and CBB are the diagonal electric and ma
netic power spectrum matrices respectively, and we have
sumed thatCEB50. If the noise and signal are Gaussian w
can proceed to do a likelihood analysis for the power spe
using

L~A8uCEE,CBB!}

expF2
1

2
A8 †~N1S!21A8G
uN1Su1/2

. ~56!

The coupling matrices62W can be computed quickly for a
azimuthally symmetric patch of sky, as described in App
dix C, and modes with differentm decouple. The problem is
therefore tractable. However it is not nearly so simple to fi
a maximum likelihood estimate of the magnetic amplitud
and in general there will be complicated correlations
tween the recovered power spectra. By using the lossy
jection in the previous sections we have essentially sho
that this likelihood function is ‘‘nearly’’ separable. Making
separable costs something in terms of lost information, bu
significantly simplifies the problem. Using the project
variables also reduces the size of the matrices, so perform
the matrix inversions is significantly faster.

If the B signal is determined to be negligible one wou
want to apply an efficient nearly-lossless method to estim
the electric power spectrumCl

EE ~or to do parameter estima
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tion!, so we now consider the case when one polarizat
type is absent. If theB signal can be neglected we have

S Ẽ

i B̃
D 'S W1

W2
DE5UDV†E, ~57!

where we have done a singular value decomposition as
fore so that we can find the well determined linear combi
tions of theElm :

xE[D̃21/2ŨS Ẽ

i B̃
D 'D̃1/2Ṽ†E. ~58!

The matrices one has to invert to do a likelihood analysis
now one half the size of those in the optimal method wh
both polarization types are present, and so the problem
numerically much faster. However isotropic noise no long
gives the simple diagonal noise covariance, though this
always be rectified by usingN21/2xE . In practice a nearly
optimal method would probably be more appropriate us
only the unprojected variablesD̃1

21/2Ũ1
† Ẽ, whereD̃1 andŨ1

were defined in Sec. III. These variables have diagonal n
properties like theEW for isotropic noise, and the computa
tional saving may be significant when analysing high reso
tion polarization maps. We have checked numerically t
including B̃ in the analysis gains very little even for lowl max
and small patches. For large area surveys at high resolu
the information loss will probably be negligible.

There are exactly equivalent relations for the well det
mined magnetic variables in the case whenE vanishes. This
case is of little practical interest, since theE signal would
have to be removed to within the magnitude of theB signal,
and this is impossible on an incomplete sky since the two
not unambiguously distinguishable without accurate bou
ary data. However, supposing thatE could be removed is
useful theoretically as we can then compute the best obt
able magnetic signal to compare with what we obtain us
our projected variables. The information lost due to the p
jection depends on the cosmology. Models with reionizat
have more power on large scales and a greater fraction o
power is lost due to removal of the boundary terms. For
toy model of the Planck satellite we find that the amplitu
that could be detected at given significance and probabilit
reduced by about 30 percent by the projection for a cosm
ogy with reionization atz56.5, but only by 2 percent for a
zero reionization model. In the reionization model one
losing a lot of the additional information in the low mult
poles that in the absence of the projection would have h
signal to noise. The net result is that the reionization mo
has an only slightly higher chance of giving a tensor det
tion despite having more large scale power. By using
unprojected variables and incorporating the expected ele
polarization contamination as an extra noise term one
approximately halve this loss. The lossless result is co
pared to the realistic projected result for general circular
patches in Fig. 7 for an observation with much higher sen
tivity. The cost we incur by using the non-optimal method
terms of slightly larger error bars on theB signal, or a less
5-13
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powerful test of detection at a given significance, is small
large survey areas though it does increase for small
patches. For these sensitive observations the electric sign
much larger than the magnetic signal and essentially noth
is lost by performing the projection rather than includi
electric contamination as a large extra noise.

To make a detection of the magnetic signal on suc
small sky patch with the planned long duration balloon o
servations the tensor-scalar ratio would need to be sig
cantly larger than one, which is too large to be allowed
the current temperature anisotropy observations@28#. Of
course, seeing if there is only a small magnetic signal is
important consistency check for current models with lo
tensor-scalar ratio to pass.

One simple way to reduce the information loss in o
method would be to use data objects that include not only
surface integralsI 62,W , but also those parts of the bounda
terms in Eqs.~7! and ~8! that do not depend onZP on the
boundary. Such objects would separate electric and magn
polarization exactly if the scalar window functions were co
structed to vanish on the boundary. The problem of prod
ing a non-redundant set of such windows could be tack
with a simple variant of the harmonic-based method p
sented in Sec. III. The additional boundary contributi
would cancel that part ofW2 that couples to the norma
derivative of the window function on the boundary, leaving
single non-zero singular value~for umu.0) to project out.
The net effect would be that for azimuthal patches we wo
gain one extra variable perm for umu.1, though the noise
properties of these variables would not be as simple as if
line integrals were not included, and the problem of perfor
ing line integrals with pixelized data is non-trivial. For reio
ization models~which have significant large scale power! the
reduction in information loss may be worth the effort r
quired to overcome these obstacles, though a full anal
with the non-separated variables would probably work bet

VI. CONCLUSION

We have considered the problem of producing statistic
independent measures of the electric and magnetic pola
tion from observations covering only a portion of the sk
Although the separation of the polarization field into elect
and magnetic modes is not unique in the presence of bo
aries, we have shown how to construct window functio
that are guaranteed to probe separately the electric
magnetic polarization exactly over azimuthally-symmet
patches of the sky. We presented a harmonic-based me
for efficient construction of the windows that automatica
removes redundancy due to the finite sky coverage. In a
tion, our window functions return separated electric a
magnetic variables that have very simple diagonal noise
relations for idealized noise on the polarization map. F
azimuthal patches separating the electric and magnetic p
ization comes at the cost of losing two pieces of informat
per m mode, or roughly twice the number of pixels of ar
(p/ l max)

2 on the boundary of the patch. For large patches
information loss is small unless there is large scale po
due to reionization, but for smaller patches it can be m
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severe due to the limited support of the highm spin-weight 2
harmonics in the patch. Although we have proved that
method gives exact separation for azimuthal patches,
harmonic-based construction should produce window fu
tions that give approximate separation for arbitrarily shap
patches with similar information loss to the azimuthal cas

We showed how the variables constructed from our w
dow functions could be used to constrain the amplitude
the magnetic signal without contamination from the mu
larger electric signal. For the first time, we made predictio
for the tensor amplitude that Planck should be able to de
taking proper account of excluding the galactic region.
other non-negligible foregrounds can be removed using
other frequency channels, Planck should be able to detec
magnetic signal predicted by some simple inflationary m
els. For less sensitive observations, our window functio
should nevertheless be useful to set upper limits on the m
netic signal, and may also aid the identification of systema
effects in the instrument or analysis pipeline.

If the magnetic signal is shown to be consistent with no
then we showed how one can use all the well determi
polarization pseudo-multipoles to analyze the electric po
ization power spectrum without loss of information. Th
analysis using these variables is no more complicated t
the analysis of temperature anisotropies using cut-sky
thogonalized scalar harmonic functions@10,11#.

We have only considered isotropic noise here, however
long as the noise is azimuthally symmetric the separation
m modes will still work, and the problem remains comput
tionally tractable though rather less simple. In practice, th
will be several other complications in real-life CMB pola
imetry observations that will impact on the map-making a
subsequent analysis stages. Further careful investigatio
the propagation of instrument effects such as beam asym
tries, straylight, cross-polar contamination, and pointing
stabilities through the map-making stage will be requir
before the program for analyzing magnetic polarization o
lined in this paper will be realizable.
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APPENDIX A: SPIN RAISING AND LOWERING
OPERATORS

In general a spin-weights quantity sh is defined over a
two-dimensional Riemannian manifold with respect to an
thonormal diad field$e1 ,e2%. The local freedom in the choice
of diad amounts to the transformations

e6[e16 ie2→eige6 ~A1!

2http://www.netlib.org/lapack/
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ANALYSIS OF CMB POLARIZATION ON AN INCOMPLETE SKY PHYSICAL REVIEW D65 023505
of the ~complex! null vectorse6 . A quantity is defined to be
of spin-weight s if under the transformation~A1! sh
→ sheisg. To every spin-weights object sh we can associate
a ~complex! symmetric trace-free, rank-usu tensor hAs

[ha1 . . . as
: for s>0,

hAs[22s
she

2

As, ~A2!

where the irreducible tensor producte
2

As[e
2

a1 . . . e
2

as. The
inverse relation is

sh5hAs
e

1

As . ~A3!

For s,0 we definehAusu[22usu
she

1

Ausu . The spin raising and

lowering operatorsZ andZp are defined by the null diad com
ponents of the covariant derivatives ofhAusu

:

Z 6usuh52~e1
c ¹chAusu

!e6

Ausu , ~A4!

Z6usuh52~e2
c ¹chAusu

!e6

Ausu . ~A5!

~The minus signs are conventional.!
In CMB polarimetry we are concerned with fields defin

over the sphere, in which case the transformation in Eq.~A1!
corresponds to aleft-handed rotation of the diad about th
outward normalr̂ . Choosing the orthonormal diad to b
aligned with the coordinate basis vectorsû and f̂ of a
spherical polar coordinate system, we havee6

a ¹ae6
b

5cotue6
b and e7

a ¹ae6
b 52cotue6

b . It follows that for this
choice of diad the spin raising and lowering operators red
to

Z sh52sinsu~]u1 icscu]f!~sin2su sh!, ~A6!

Zpsh52sin2su~]u2 icscu]f!~sinsu sh!. ~A7!

An elegant interpretation of the spin raising and loweri
operators on the sphere can be obtained by considering
weight s objects sh(u,f,c) defined on a diad at~position-
dependent! anglec to the coordinate directions, so that

sh~u,f,c!5 sh~u,f!eisc, ~A8!

where sh(u,f) is defined onû andf̂. In this case, the spin
raising and lowering operators can be related to the ang
momentum operators for a rigid body@16#. Working in a
representation where the orientation of the body is speci
in terms of Euler angles (f,u,2c),3 the angular momentum
operators on thebody-fixed axestake the form

3Our convention for Euler angles (a,b,g) follows Ref. @29#, i.e.,
successive right-handed rotations byg, b, anda about thez, y, and
z-axes respectively. The use ofc, which is minus the third Euler
angle, as a configuration variable for the rigid body is necessar
relate the angular momentum operators directly to the spin rai
and lowering operators with the~consistent! conventions we have
adopted here.
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Kz5 i ]c , ~A9!

K65e6 ic~6]u1 icscu]f1 icotu]c!, ~A10!

whereK6[Kx6 iK y . These operators satisfy the commut
tion relations

@Kz ,K6#57K6 , @K1 ,K2#522Kz , ~A11!

so thatK6 are lowering or raising operators with respect
the eigenvalues ofKz . Note that the signs in these comm
tation relations are different from those for angular mome
tum operators on a fixed frame since on the body-fixed a
we have@Kx ,Ky#52 iK z @30#. The action of the spin raising
and lowering operators can then be formulated in terms
the angular momentum operators as

K1 sh~u,f,c!52ei (s11)cZ sh~u,f!, ~A12!

K2 sh~u,f,c!51ei (s21)cZp sh~u,f!. ~A13!

Several useful results for the spherical raising and low
ing operators follow from the commutation relations~A11!.
@Similar relations on a general manifold can be found fro
Eqs.~A4! and~A5!.# For a spin-weights quantity defined on
the coordinate basis,

~ZpZ2ZZp! sh~u,f!52ssh~u,f!, ~A14!

@ZZp2s~s21!# sh~u,f!5~¹22s2csc2u

12iscotu cscu ]f!s

3h~u,f!, ~A15!

where we have usedK1K25K22Kz2Kz
2 to derive the last

identity. Applying these relations repeatedly to a spin-weig
0 quantity we find

ZZZp Zp 0h~u,f!5Zp ZpZZ 0h~u,f!5~¹212!¹2
0h~u,f!,

~A16!

and the useful relation

~ZpZs2ZsZp 0h~u,f!5s~s21!Zs21
0h~u,f!. ~A17!

Integral theorems

The integral of the spin-weight 0 quantityZ 21h over
some portionS of the two-dimensional manifold is deter
mined by the integral around the boundary]S:

E
S
dSZ 21h5 R

]S
1dl 21h, ~A18!

where 1dl is the spin-one element of length around t
boundary:

1dl[ idl ae1
a . ~A19!

to
g
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On the sphere in the spherical polar coordinate frame1dl
5 idu2sinu df. Equation~A18! is the complex representa
tion of Stokes’ theorem and the divergence theorem.
equivalent result holds for spin-weight one quantities
forming the complex conjugate of the above, with1dl̄
52 idl ae2

a .
The spin raising and lowering operators obey Leibn

rule, so there is a ‘‘Green’s identity’’

PZZp Q2QZpZP5Z~PZp Q!2Zp ~QZP!, ~A20!

whereP andQ have definite spin weight. ForPQ with spin-
weight zero integrating over a surface gives the integral th
rem

E
S
dS~PZZpQ2QZp ZP!5 R

]S
1dlPZp Q2 R

]S
1dl̄ QZP.

~A21!

A similar result is obtained using

PZZQ2QZZP5Z~PZQ2QZP! ~A22!

for PQ of spin weight22 which gives

E
S
dS~PZZQ2QZZP!5 R

]S
1dl ~PZQ2QZP!,

~A23!

with a similar result for a spin-weight 2 quantity.

APPENDIX B: SPIN WEIGHTED SPHERICAL
HARMONICS

The spin-weights spherical harmonicssYlm are defined in
terms of the usual spherical harmonicsYlm by

sYlm[A~ l 2usu!!
~ l 1usu!!

ZsYlm , ~B1!

where Z2usu[(21)sZpusu. They are non-zero forusu< l ,umu
< l . By making use of Eqs.~A12! and~A13!, and the prop-
erties of the K6 operators when acting on Wigne
D-matrices4 @29,31#, it is straightforward to show that@21#

D2ms
l ~f,u,2c!5~21!mA 4p

2l 11 sYlm~u,f!eisc.

~B2!

With the conventions adopted here, sYlm*
5(21)s1m

2sYl (2m) . Orthonormality of the spin weigh
harmonics over the full sphere,

4Our conventions for theD-matrices follow Refs.@29,31#. We
adopt the Condon-Shortley phase for the spherical harmon
which differs from that used by Goldberget al. @16# by a factor of
(21)m.
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4p

dSsYlm sYl 8m8
* 5d l l 8dmm8 , ~B3!

follows from the orthogonality of theD-matrices over the
SO(3) group manifold.

Applying K1K2 to Eq. ~B2!, and using Eqs.~A12! and
~A13!, one can show that the spin weight harmonics sati
the differential equation

ZZp sYlm5@s~s21!2 l ~ l 11!# sYlm . ~B4!

@An alternative proof of this result follows from Eq.~A17!.#
The spin weighted harmonics are separable and can be
ten as

sYlm~u,f!5 sl lm~cosu!eimf. ~B5!

The sl lm satisfy the self-adjoint equation

@~12x2! sl lm8 #82
m21s212msx

12x2 sl lm52 l ~ l 11! sl lm ,

~B6!

where a prime denotes differentiation with respect tox
5cosu.

The sl lm can be evaluated recursively form>usu starting
with

slmm~x!5~22!2mA ~2m11!!

4p~m1s!! ~m2s!!

3~12x!(m1s)/2~11x!(m2s)/2, ~B7!

and the recursion relation~derived from standard results fo
the WignerD-matrices; see e.g. Ref.@31#!

sl lm5S x1
sm

l ~ l 21! DCslm sl ( l 21)m2
Cslm

Cs( l 21)m
sl ( l 22)m ,

~B8!

where

Cslm[A l 2~4l 221!

~ l 22m2!~ l 22s2!
. ~B9!

The harmonics form<2usu can be obtained fromsl l (2m)
5(21)s1m

2sl lm . A straightforward way to evaluatesl lm
for umu,usu is to compute6nl l usu for 0<n,usu and then use
the symmetrysl lm5(21)m1s

ml ls . Further useful results for
the spin weight harmonics can be found in Refs.@4,22#, and
expressions for the spin-weight62 harmonics in terms of
the associated Legendre functions are given in Ref.@3#.

APPENDIX C: OVERLAP INTEGRALS

SettingP5 sYl 8m8
* andQ5 sYlm in Eq. ~A21!, and using

the differential equation~B4! to simplify the integrand on the
left-hand side, we have

s,
5-16
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@ l 8~ l 811!2 l ~ l 11!#E
S
dSsYl 8m8

* sYlm

5 R
]S

1dl sYl 8m8
* Zp sYlm2 R

]S
1dl̄ sYlmZ sYl 8m8

* .

~C1!

This expresses the overlap integral forlÞ l 8 in terms of a
line integral around the boundary ofS.

For an azimuthally symmetric surface the integrals
particularly straightforward as the spin-weight harmon
with different m are orthogonal over the patch. The overl
integral for the samem but different l can be determined
from Eq. ~C1! to be

@ l ~ l 11!2 l 8~ l 811!#E
a

b

dx sl l 8m sl lm

5~12x2!@ sl l 8m
8 sl lm2 sl lm8 sl l 8m#a

b . ~C2!

@This result also follows directly from Eq.~B6!.# The deriva-
tives can be removed while maintaining homogeneity in
spin weight by using

l ~12x2! sl lm8 52~sm1 l 2x! sl lm1
~2l 11!l

Cslm
sl ( l 21)m

~C3!

to write thel 8Þ l integral as

All 8
sm[2pE

a

b

dx sl l 8m sl lm

5
2p

~ l 1 l 811!~ l 2 l 8!

3F S x2
sm

ll 8
D ~ l 2 l 8! sl l 8m sl lm

1
2l 811

Csl8m
sl ( l 821)m sl lm2

2l 11

Cslm
sl ( l 21)m sl l 8mG

a

b

.

~C4!

Note thatAll 8
sm

5All 8
(2s)(2m) . The l 5 l 8Þumu integrals can be

evaluated recursively using

All
sm5A( l 21)(l 21)

sm 1
Cslm

Cs( l 11)m
A( l 11)(l 21)

sm 2
Cslm

Cs( l 21)m
Al ( l 22)

sm

1
2sm

l ~ l 221!
CslmAl ( l 21)

sm , ~C5!

which follows from Eq.~B8!. For umu.usu, the starting val-
uesAumuumu

sm can be obtained from
02350
e
s

e

Amm
sm 5A(m21)(m21)

s(m21) 1
2p@x slmm

2 #a
b

2m11

1
s

A~2m11!~m22s2!
Am(m21)

s(m21) , ~C6!

Amm
s(2m)5A(m21)(m21)

s(2m11) 1
2p@x slm(2m)

2 #a
b

2m11

2
s

A~2m11!~m22s2!
Am(m21)

s(2m11)

~m.usu!, ~C7!

which follow from the explicit form ofslmm8 given in Eq.
~B7!. For l 85 l 5m5usu the integrals have the analytic solu
tions

Amm
mm5F S x21

2 D 2m11G
a

b

, Amm
(2m)m5F S x11

2 D 2m11G
a

b

.

~C8!

For umu<usu, the starting valuesAusuusu
sm for the recursion in

Eq. ~C5! can be obtained from the symmetryAll 8
sm

5All 8
ms and

the recursion relations~C6! and ~C7!.
If one is also generating the spin-weight zero overlap

tegrals for analysing the temperature field an alternative
proach is to use Eq.~A23! to relate the integrals of the spin
weight two and zero harmonics. In general integrals
different spin weights can be related by

kl 8(s21)kl 8sE
S
dSsYlm* sYl 8m82kl (s21)kls

3E
S
dS s22Ylm* s22Yl 8m8

5 R
]S

1dl ~kl 8(s21) sYlm* s21Yl 8m81kls s22

3Yl 8m8 s21Ylm* !, ~C9!

wherekls[Al ( l 11)2s(s21), and we have used the resul

Z sYlm5kl (s11) s11Ylm ~C10!

Zp sYlm52kls s21Ylm ~C11!

which follow from Eq. ~B1!. For s50 and s52 one can
obtain the spin62 integrals in terms of the spin zero inte
grals. The spin zero integrals are computed using the ab
relations withs50, in agreement with the relations given
Ref. @32#.

For a small patch of sky a large number of the over
integrals are going to be very close to zero. This makes se
intuitively, and is easy to see more quantitatively. From
differential equation~B6! the character of the harmonic
changes from oscillatory to decaying at the point where
5-17
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m21s212msx

12x2
5 l ~ l 11!. ~C12!

For x nearer the poles than the critical value the harmon
become very small. For a sky patch extending from the no
pole to x, for large l we see that form2 larger thanm2

' l 2(12x2) the harmonics will be small within the patch
Hence the overlap integrals withm2.min(l2,l82)(12x2) will
be small, corresponding to one~or both! of the harmonics
being localized out of the sky patch.

APPENDIX D: STATISTICS OF WEAK SIGNAL
DETECTION

After obtaining a vector of observed dataBW two ques-
tions one might ask are:~1! What is the probability that the
signal is just noise?~2! Given the signal is not noise, wha
can we say about the amplituder? The likelihood function
~48! encapsulates all the information in the data concern
the amplituder, and gives the posterior probability distribu
tion of r after multiplying by the prior. Question~1! is really
asking for a comparison of two models, one in whichr 50
~or r ,e wheree is small!, and one in whichr .0. Given
there is a prior probabilityp that the signal is pure noise (r
50) and probability 12p that r .0, distributed with the
normalized prior probability distributionf (r ), the posterior
probability thatr 50 is given by

P~r 50uBW!5
pL~BWur 50!

pL~BWur 50!1~12p!E
01

`

drL ~BWur ! f ~r !

.

~D1!

The posterior probability tells us the probability that the s
nal is pure noise once we have a particular set of data. H
ever, it does not immediately tell us that we might expec
obtain from a given observation, just what we know once
observation has been performed. The posterior distribu
can depend strongly on the prior.

The posterior probability is a monotonic function of th
Bayes factor

t[

E
01

`

drL ~BWur ! f ~r !

L~BWur 50!
. ~D2!

In classical hypothesis testing the likelihood ra
L(BWur 8)/L(BWur 50) is the most powerful test statistic fo
distinguishing a model withr 5r 8 from one withr 50 ~for
details see Ref.@33#!. The largest fraction 12a of the values
of the likelihood ratio under the null-hypothesis (r 50) de-
termine a region, which, if the observed ratio falls in it, r
jects the null hypothesis at significancea. The distribution of
the likelihood ratio is straightforward to compute usin
Monte Carlo techniques. In general we do not have so
fixed alternative hypothesisr 5r 8; one possibility is to use
the statistict, formed by marginalizing over some prior, i
place of the likelihood ratio. Often the prior is fixed tod(r
02350
s
th

g

-
-

o
e
n

e

2r̂), wherer̂ is the maximum likelihood estimate ofr, so the
test reduces to a likelihood ratio test with the alternat
hypothesisr 5 r̂ .

By the time magnetic polarization comes to be observ
we should have some prior information about the tensor a
plitude from accurate measurement of the temperature po
spectrum. However at this point we do not have very use
information about the prior distribution, and to consider t
possible results of future experiments it is useful to assu
no information. The maximum entropy prior~the uniform
prior! is probably not appropriate in this case—do we rea
think that all values ofr ~below a certain bound! are equally
likely rather than, say, all values of lnr being equally likely?
The uniform prior gives radically different answers depen
ing on the choice of variable. The Jeffreys prior

f ~r !}K 2
]2

]r 2
ln L~r uBW!L 1/2

5
1

2
tr @~N1rS!21S~N1rS!21S#1/2, ~D3!

is reparametrization invariant@34#, and therefore does no
suffer from this problem. The Jeffreys prior goes like 1/
1r ) if N5S and in general is improper~does not have a
finite integral!, though this is not a problem for evaluatin
test statistics since the integral of the product with the lik
lihood function will be finite. It is also not a true prior in th
sense that it depends on what data is going to be collec
but this is really a good thing as it concentrates the pr
probability in the region where we need it in order to obta
a detection. Since the prior is not localized the poster
probability of the null-hypothesis will depend on where o
cuts off the prior. However if one only ever compares t
Bayes factorst the cutoff is not very important since th
likelihood function will be localized. For this reason pe
forming classical hypothesis tests usingt is rather more in-
dependent of the prior information than considering the v
ues of the posterior probability, though clearly it is the lat
which is rigorous and contains all the available informatio

Classical hypothesis tests are useful for assessing p
ability of getting a detection at a given significance, though
should be remembered that getting a detection at 99 per
confidence doesnot mean a the probability of 1 percent th
the signal is pure noise. However for sensible priors th
will be a close correspondence; classical and Bayesian t
niques agree that high values oft correspond to the null-
hypothesis being less likely. Using classical hypothesis te
to compute the probability of getting a detection at a giv
significance for a given truer is significantly simpler than
computing and interpreting the corresponding distribution
the posterior probability distributions.

For full sky surveys there are a large number
statistically-independent magnetic variables, which can
thought of as the eigenvectors ofrN21/2SN21/2. Those vari-
ables corresponding to large eigenvalues have high expe
signal to noise and are most useful for obtaining detectio
If BW has dimensionn there will ben independent variables
5-18
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If the eigenvalues ofrN21/2SN21/2 are distributed fairly uni-
formly, and we consider expected chi-squared detection
order one sigma, all the eigenvalues will be;1/An and we
have rS!N. Using a second order approximation we th
have

~N1rS!21'~ I2rN21S1r 2N21SN21S!N21, ~D4!

and

lnuN1rSu5 lnuNu1 lnuI1rN21Su

' lnuNu1trS rN21S2
1

2
r 2N21SN21SD .

~D5!

In this approximation the entire likelihood distribution
simple to compute since the matrix manipulations only ne
be performed once, and is of the Gaussian form

L~BWur !5L~BWur 50!er̂ 2/2s2
e2(r 2 r̂ )2/2s2

, ~D6!

where

1/s25BW
† N21SN21SN21BW2

1

2
tr~N21SN21S!,

~D7!

and the maximum likelihood estimate forr is

r̂'
1

2
s2@BW

† N21SN21BW2tr~N21S!#. ~D8!

The maximum likelihood estimate forr is only weakly bi-
ased for small signal to noise.

Consider fixing the signal hypothesis tor 5 r̂ , which gives
the largest likelihood ratio possible for any prior. The like
hood ratio is then a monotonic function of the test statist

n85 r̂ /s[
BW

† N21SN21BW2tr~N21S!

A4BW
† N21SN21SN21BW22tr~N21SN21S!

.

~D9!

The quantityr̂ /s gives the number of standard deviations t
maximum likelihood is from pure noise, which is a goo
intuitive measure of the number of ‘‘sigmas’’ at which th
magnetic signal has been detected. If any eigenvalues
come large enough then the smallr approximation will fail
and one needs to compute the full likelihood ratio to obt
optimal results. Then8 statistic is a function only of the
vector N21/2BW and the matrixN21/2SN21/2, so working in
the frame in which the matrix is diagonal the statistic
simple to compute. Note thats2 and r̂ can be negative and
correspond to a non-detection.

The second order approximation can also be used to s
up computing the full likelihood function for integratio
against a prior. In the diagonal frame it is straightforward
identify any modes with high signal to noise—if there a
02350
of

d

e-

n

ed

some then the likelihood for these modes can be compu
exactly. The likelihood for the remaining low signal to nois
modes can be computed quickly using the approximation
which the likelihood is Gaussian. Multiplying these togeth
allows the full likelihood function to be computed, and hen
the the probability distribution oft. While this is slower than
using then8 statistic it is a useful check, and may be esse
tial when there are very high signal to noise modes.

For good detections the prior is not very important as lo
as it is not small over the bulk of the likelihood. If the prio
is approximately constant over most of the likelihood in
gral, the second order approximation is valid, andr̂ /s@0,
then t;er̂ 2/2s2

g( r̂ ,s) where g( r̂ ,s) depends weakly onr̂
and s compared to the exponential. In this caset depends
almost entirely ~and monotonically! on the value ofn8

5 r̂ /s, which is whyn8 is a good statistic to use. We foun
that detection probabilities computed using full likelihoo
results with the Jeffreys prior tend to agree very closely w
those computed usingn8.

The advantage of usingn8 rather than computing the ful
likelihood distribution is that it is computationally signifi
cantly simpler and faster, which is useful, though by
means essential, for performing accurate Monte Carlo co
putations. There is no problem computing using the full lik
lihood distribution exactly from single samples of actual o
served data.

Busting the null-buster

In the limit that r !1 the likelihood function can be ap
proximated by the first two terms in its Taylor series inr. The
likelihood ratio for any given~small! r is then a monotonic
function of ] r ln L(BWur )ur 50, which is independent ofr and
therefore provides the uniformly most powerful test. F
Gaussian signal and noise it is proportional to 2r̂ /s2. After
dividing by the root of the variance in the null hypothes

^(2r̂ /s2)2&ur 5052tr(N21SN21S) we obtain the quantity

n[
BW

† N21SN21BW2tr~N21S!

A2tr~N21SN21S!
, ~D10!

which is the optimal5 quadratic ‘‘null-buster’’ statistic intro-
duced to the CMB literature in Ref.@35#. In the limit in
which all the eigenvalues ofrN21/2SN21/2 tend to zero this is
the optimal test statistic. In general it is not—a signal th
can be detected will violate this assumption. For a very la
number of approximately equal eigenvalues the value os

will approximate ^1/s2&21/25@ 1
2 tr(N21SN21S)#21/2, the

Fisher curvature for smallr. In this limit the null-buster re-
mains a good statistic andn8/n→1. However in generaln8
performs significantly better when the eigenvalues are

5It is the quadratic statistic which gives the maximalexpected
detection in units of theexpected standard deviationunder the null
hypothesis. None of these properties are required or even espe
desired~we are more interested in getting detections at highsignifi-
cancewith high probability!.
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tributed less evenly, or when there are not that many eig
values. As the signal to noise increasesn8 also performs
much less sub-optimally than the null-buster.

For the case of magnetic polarization observations then8
statistic outperforms the null-buster for a wide range of pa
sizes in realistic reionization models. The large scale m
netic signal coming from low redshift (z,10) reionization
gives a small number of modes with relatively high signal
noise~see Fig. 4!, and the conditions under which the nu
buster is a good statistic are therefore not satisfied.
qualitative reason that the null-buster performs poorly is t
the position of the maximum and the curvature of the like
hood function are correlated, so dividing the actual ma
mum by the expected curvature does not give you an a
rate measure of the number of ‘‘sigmas’’ from zero for
particular observation. This makes the null hypothesis dis
D

v

Re

,

ns

h

y,

02350
n-

h
g-

e
t

-
i-
u-

i-

bution unnecessarily broad at large values, and there
makes it harder to rule out the null hypothesis with go
significance. Then8 statistic has a much sharper distributio
than the null-buster~which has a distribution similar to chi
squared! in the alternative hypothesis, and the value ofn8
corresponds much more closely to the significance~mea-
sured in Gaussian-like ‘‘sigmas’’! of the result.

A few points can be made in the null-buster’s defen
First it is slightly easier to compute thann8. Secondly, since
we motivated then8 by assuming a Gaussian signal it
conceivable that the null-buster could perform better w
certain non-Gaussian signals. Lastly, the null-buster is q
dratic which makes it easy to calculate the mean and v
ance analytically. However it is clear that with Gaussian s
nals using the null-buster is in general significantly su
optimal.
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