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Dark synergy: Gravitational lensing and the CMB
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Power spectra and cross-correlation measurements from the weak gravitational lensing of the cosmic mi-
crowave background~CMB! and the cosmic shearing of faint galaxies images will help shed light on quantities
hidden from the CMB temperature anisotropies: the dark energy, the end of the dark ages, and the inflationary
gravitational wave amplitude. Even with modest surveys, both types of lensing power spectra break CMB
degeneracies and they can ultimately improve constraints on the dark energy equation of statew by over an
order of magnitude. In its cross correlation with the integrated Sachs-Wolfe effect, CMB lensing offers a
unique opportunity for a more direct detection of the dark energy and enables study of its clustering properties.
By obtaining source redshifts and cross-correlations with CMB lensing, cosmic shear surveys provide tomog-
raphic handles on the evolution of clustering and correspondingly better precision on the dark energy equation
of state and density. Both can indirectly provide detections of the reionization optical depth and modest
improvements in gravitational wave constraints which we compare to more direct constraints. Conversely,
polarizationB-mode contamination from CMB lensing, like any other residual foreground, darkens the pros-
pects for ultrahigh precision on gravitational waves through CMB polarization requiring large areas of sky for
statistical subtraction. To evaluate these effects we provide a fitting formula for the evolution and transfer
function of the Newtonian gravitational potential.

DOI: 10.1103/PhysRevD.65.023003 PACS number~s!: 98.70.Vc, 95.75.Pq, 98.80.Hw
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I. INTRODUCTION

With the launch of the Microwave Anisotropy Prob
~MAP! satellite and continuing progress in ground and b
loon based experiments, cosmologists hope to soon be
situation where cosmic microwave background~CMB!
anisotropies have firmly established the adiabatic cold d
matter paradigm for structure formation and the parame
that govern it at high redshift. Attention on the experimen
and theoretical fronts will increasingly turn to the potentia
deeper questions at the two opposite ends of time: the en
contents of the universe and their clustering properties
recent epochs and the origins of structure perhaps in the
flationary epoch. From the distance measures to high red
supernova@1# and indications of a near critical density un
verse from the CMB@2#, there is increasingly strong ev
dence for an unknown component of dark energy that ac
erates the expansion at low redshifts.

In this context, it is useful to consider potential cosm
logical probes in light of what the primary CMB temperatu
anisotropies are and are not expected to reveal. While s
parameters such as the physical baryon and non-relativ
matter density should be quite cleanly determined, oth
such as the dark energy properties, the epoch of reioniza
and the gravitational wave amplitude are entangled with e
other in parameter degeneracies. While the CMB polar
tion is one well-recognized means of breaking some of th
degeneracies, these issues are sufficiently important and
larization measurements sufficiently difficult that multip
independent approaches are desirable.

In this paper, we compare and contrast the ability of we
gravitational lensing in the shearing of faint galaxy imag
and distortions of the CMB temperature anisotropies in sh
ding light on these issues in the post-primary CMB epo
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Weak gravitational lensing shares with the primary anisot
pies a unique status in cosmology in that its observables
in principle predictableab initio given a cosmological
model. Measurements are limited mainly by instrumen
systematics rather than unknown astrophysics. As such l
ing observables are well suited to complement informat
from the CMB.

Recent works@3–5# have shown that it is possible to ma
structures on the largest scales at high redshift through
lensing of the CMB. We evaluate here the utility of su
measurements and their cross-correlation with the aniso
pies themselves as well as cosmic shear for cosmolog
parameter estimation. On the cosmic shear side, we ex
the work of @6# by considering correlations with CMB tem
perature anisotropies and lensing. We also utilize the
tended parameter space of@7# to study the background an
clustering properties of the dark energy. In this context, H
terer @8# has recently shown that the sub-arcminute regi
provides substantial information on the dark energy but w
require a better understanding of the power spectrum an
statistical properties in the deeply non-linear regime~e.g.
@9#!. Here we take the complementary tack of supplement
information in the translinear regime with source redsh
information @10#.

The outline of the paper is as follows: In Sec. II we d
scribe the cosmological parameter space, power spectra
cross correlations of the observables and the Fisher form
ism for parameter estimation forecasts. In Sec. III, we d
cuss the phenomenology of the lensing observables and
utility in breaking cosmological parameter degeneracies.
present parameter forecasts in Sec. IV and conclude in
V. In the Appendix, we give fitting formula for the transfe
function and evolution of the Newtonian curvature in t
presence of the dark energy.
©2001 The American Physical Society03-1
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II. FORMALISM

We begin in Sec. II A by defining the cosmological co
text paying special care to define quantities properly in
presence of dark energy. In Sec. II B we review the harmo
formalism for handling scalar, vector and tensor fields on
sky and consider the calculation of their power spectra
cross correlations in Sec. II C. Finally we generalize
Fisher formalism for multiple observables from overlappi
fields in Sec. II D.

A. Cosmological parameters

We work in the context of spatially flat cold dark matt
models for structure formation with initial curvature fluctu
tions. In units of the total~critical! density 3H2/8pG, with
c51, the fractional contribution of each component is d
notedV i(z), i 5c for the CDM,b for the baryons andL for
the dark energy. We also define the auxiliary quantityVm
5Vc1Vb , the total nonrelativistic matter. We assum
throughout that the neutrinos contribute negligible ma
density. The expansion rate at epochs where the radiatio
also negligible is given by

H25H0
2@Vm~0!~11z!31VL~0!rL~z!/rL~0!#, ~1!

where H05100h km s21 Mpc21 is the Hubble constant
The evolution of the dark energy density is governed by
equation of statew5pL /rL such that

rL8 523~11w!rL , ~2!

where8 denotes a derivative with respect to ln(11z)21. For
illustrative purposes, we takew5const such thatrL(z)
5rL(0)(11z)3(11w). Thus 4 parameters are associated w
background energy densitiesVbh2, Vmh2, VL and w all
evaluated at the present epoch. We will often use the con
mal lookback time in lieu of the redshift

D~z!5E
0

z dz̃

H~ z̃!
, ~3!

abusing notation in the arguments of functions where no c
fusion will arise. Overdots will represent derivatives wi
respect toD throughout. The final parameter associated w
the background cosmology is the Thomson optical depth
the reionization epocht.

Four parameters are associated with the perturbation
the background. An amplitude and a tilt define the init
fluctuations in the logarithmic power spectrum of t
Bardeen or comoving gauge curvaturez @11#,

^z~k,z!z~k8,z!&5~2p!3d~k2k8!
2p2

k3 Dz
2~k,z!, ~4!

as

Dz
2~k,zi !5dz

2S k

kfid
D n21

, ~5!
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where the fiducial scale is taken to bekfid50.01 Mpc21 and
the initial ~or inflationary! epochzi is taken to be sufficiently
early that all relevant scales are outside the horizon. Un
slow roll inflation ~e.g. @12#!,

Dz
2~k,zi !5

8

3e

V

mpl
4

, ~6!

wherempl is the Planck mass ande5 3
2 (11wi) is the devia-

tion from vacuum domination in the equation of state of t
inflaton, all evaluated when the relevant scale exited the
rizon.

The Bardeen curvature provides a convenient represe
tion since it remains constant outside the horizon in a
universe regardless of its energy contents. It is related to
power spectrum of Newtonian curvature fluctuations as

DF
2 ~k,z!5Fc

2~z!
Tw~k,z!

Tw~0,z!
Tm~k!Dz

2~k,zi ! ~7!

in the linear regime. The potential decay function in t
large-scale limitFc and transfer functionsTw and Tm are
given in the Appendix. The partitioning of the transfer fun
tion into two pieces reflects its relationship to the mat
density fluctuationsDm

2 in the comoving gauge

DF
2 ~k,z!5

9

4 S H0

k D 4

Vm
2 ~0!~11z!2Dm

2 ~k,z!, ~8!

where in linear theory

Dm
2 ~k,z!'dH

2 S k

H0
D 31nS Tw~k,z!

Tm~k!

11z

Fs~z!

Fs~0! D
2

, ~9!

under the approximation that the comoving dark energy d
sity fluctuation contributes negligibly to the Newtonian cu
vature. HereFs is the potential decay function in the sma
scale limit where dark energy clustering is negligible. No
that in the presence of dark energy withw.21, the transfer
function in the comoving gauge is no longer equivalent
that in the synchronous gauge on scales approaching 1/H(z)
during dark energy domination. The factorTw(k,z) given in
the Appendix accounts for dark energy clustering in the
moving gauge~cf. @14#!. Tm is the usual matter transfer func
tion defined in the absence of dark energy clustering an
here numerically evaluated tok'0.5h Mpc21 and extended
to smaller scales with the fitting functions of@13#. We use
scaling relations forDm

2 and the decay functionFs(D) to
extend the potential power spectrum into the nonlinear
gime @15#.

These relations also give the mapping between our n
malization scheme and the more traditional one

dH'
2

3 S kfid

H0
D (12n)/2 Fs~0!

Vm~0!
dz . ~10!

We allow for scale-invariant initial tensor or gravitation
wave fluctuations. In the notation of@16#, where H (62)
3-2
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DARK SYNERGY: GRAVITATIONAL LENSING AND THE CMB PHYSICAL REVIEW D 65 023003
5(h17ih3)/A6 represent the amplitudes of the two polariz
tions in spin modes, the power spectrum in each compon
is given by~e.g. @12#!

DH
2 ~k,zi !5dT

2S k

kfid
D nT

5
32

9

V

mpl
4

. ~11!

We takenT50 throughout.
Finally, we take one parameter for the equation of st

for the perturbations in the dark energy. Because the d
energy has negative pressure, pressure fluctuations cann
adiabatically related to density fluctuations through the ba
ground equation of state. Following@17#, we take

ceff
2 [

dp

dr
urest ~12!

to be the sound speed of the dark energy in its rest fra
where its energy flux vanishes. During dark energy domi
tion the rest frame and the comoving frame coincide by d
nition. They differ when the the bulk velocity of the dar
energy differs from that of the dominant component. T
dark energy can be considered smooth on scales smaller
the distance sound can travel. If the dark energy is compo
of a single slowly rolling scalar field@18#, ceff51 and the
sound horizon coincides with the particle horizon. Beca
the horizon at high redshift decreases, the clustering of
dark energy can leave an imprint on observable scales e
for a scalar field. Measurement of this imprint can theref
test the scalar field paradigm for dark energy~see Sec. IV D!.
Note that asw→21, the phenomenological consequence
ceff disappears due to the vanishing of the relativistic ene
flux (rL1pL)vL→0. Dark energy candidates necessar
become indistinguishable from a true cosmological cons
in this limit.

This family of models is therefore described by 9 para
eters. We take as our fiducial choices:Vbh250.02, Vmh2

50.148, VL50.65, w521 or 22/3, t50.05, dz

54.7931025, n51, dT50, ceff
2 51. It is conventional to

express the tensor amplitude in terms of the scalar ampli
normalized to their individual contributions to the CMB tem
perature quadrupole. Note that the normalization is dep
dent on cosmological parameters, especially the dark en
@19#, and we take the scaling appropriate to thew521 fi-
ducial model:

T

S
ufid5S dT

1.8531025D 2

5S V1/4

3.931016 GeV
D 4

. ~13!

With this relation,T/S constraints can be converted to tens
amplitude and inflationary energy scale constraints.
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B. Observables and power spectra

CMB and lensing observables are described by sca
vector and tensor fields on the sky. A general scalar field
the sky S(n̂), where n̂ is the directional vector, is decom
posed into multipole moments of the spherical harmonics

S~ n̂!5(
lm

SlmYl
m~ n̂!. ~14!

Similarly a vector field~not to be confused with vector per
turbations! V(n̂)5(V1 ,V2) is decomposed as

@V16 iV2#~ n̂!5(
lm

~Plm6 iSlm! 61Yl
m~ n̂!, ~15!

whereSlm is the curl-free part andPlm is the divergence-free
part. Here sYlm are the spin-spherical harmonics@20#. Fi-
nally a trace free tensor field can be represented with
Pauli matricessi :

T~ n̂!5T1s11T2s21T3s3 . ~16!

The symmetric part can be further decomposed as

@T36 iT1#~ n̂!5(
lm

~Slm6 iPlm! 62Yl
m~ n̂!, ~17!

For the tensor caseSlm is often called the ‘‘electric’’ or ‘‘E’’
andPlm the ‘‘magnetic’’ or ‘‘B’’ component of the field. The
remaining piece can be decomposed as

T2~ n̂!5(
lm

PlmYl
m~ n̂!, ~18!

and called the circular mode. As the notation implies,
harmonics of the gradient and electric components can
written in terms of those of a scalar potential field on the s
the curl, magnetic and circular modes can be written in ter
of the harmonics of a pseudo-scalar field.

Statistical isotropy guarantees that for any of two sets
harmonicsX5S, P

^Xlm* Xl 8m8
8 &5d l ,l 8dm,m8Cl

XX8 , ~19!

which defines the power spectra. Parity invariance requ
that cross-spectra between scalar and pseudo scalar
vanish.

C. Tracer fields

In the linear regime, all fields on the sky that are related
cosmological structures can be thought of as line-of-si
projections of the gravitational potentialF(x,D) with a suit-
able weight

X~ n̂!5E dD WX~D !F~Dn̂,D !, ~20!
3-3
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WAYNE HU PHYSICAL REVIEW D 65 023003
whereW can include differential operators on the potent
field. In the nonlinear regime, any tracer of the density flu
tuations may also be treated as such. Taking the harm
moments of Eq.~20! yields

Xlm54p i lE d3k

~2p!3F~k,0!I l
X~k!Yl

m~ k̂!,

I l
X~k!5E dD

F~k,D !

F~k,0!
WX~k,D ! j l~kD!. ~21!

The power spectrum of two fields then becomes

Cl
XX854pE dk

k
I l

X~k!I l
X8~k!DF

2 ~k,0!, ~22!

and can be reexpressed in terms of the initial spect
Dz

2(k,zi) through Eq.~7!. For the CMB, this technique is
known as the integral approach to anisotropies@22#.

In the Limber approximation limit@21#, k@ẆX/WX and
l @1,

I l
X~k!'Ap

2l

1

k

F~k,l /D !

F~k,0!
WX~k,l /k!, ~23!

and with a change of variablesD5 l /k the power spectrum
becomes

Cl
XX85

2p2

l 3 E dD DWX~D !WX8~D !DF
2 ~k,D !. ~24!

We will use these equations to calculate the power spe
and cross correlations of the various effects.

D. Fisher matrix

If all fields are Gaussian random, then the power a
cross spectra quantify all the information contained in
observables. We can then use Fisher matrix technique
combine, compare and contrast the statistical precision
which various surveys can determine the parameters un
lying the power spectra.

The Fisher matrix approximates the curvature of the li
lihood function around its maximum in a space spanned
the parameters such that the statistical errors on a given
rameter pa : s(pa)'(F21)aa . The usual formulas~e.g.
@23#! require a slight generalization to account for the pos
bility that different surveys may only partially overlap in sk
coverage. For thei th patch of sky, the elements of the Fish
matrix are given by

Fab
i 5(

l min

l max

~ l 11/2! f sky
i Tr@C21C,aC21C,b#. ~25!

Here ,a5]/]pa andC is the covariance matrix of the mu
tipole moments of the observables

CXX85Cl
XX81Nl

XX8 , ~26!
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whereNl
XX8 is the power spectrum of the noise in the me

surement.f sky
i is the fraction of sky in the patch and quan

fies the loss of independent modes due to finite sky cover
We takel min50.5f sky

21/2; the precise definition does not matt
due to the increase in sample variance on the scale of
survey. Although formallyl max→`, we generally takel max
53000. Above this scale non-Gaussianity in both the CM
and lensing fields begin to violate the assumptions behind
Fisher formalism.

Under the approximation that each patch is statistica
independent, the full Fisher matrix is the sum of those of
patches

Fab5 (
i 51

Npatch

Fab
i . ~27!

The parameters can consist of any set that suitably par
etrizes the signal and noise power spectra. For example,
might be the signal power spectra themselves in bandsl.
We use this parametrization when plotting the various
servable power spectra in Sec. III. They may alternately
the cosmological parameters described in Sec. II A. We t
this approach in Sec. IV.

III. PHENOMENOLOGY

Here we discuss the phenomenology of the various po
spectra and cross correlations with an emphasis on param
degeneracies and dark energy. We begin with the CMB te
perature field and proceed through CMB polarization, CM
lensing and cosmic shear. For each observable we give
statistical noise power spectra as functions of experime
specifications.

A. CMB temperature

1. Calculation

The CMB temperature fieldQ(n̂)5DT/T is a scalar on
the sky. We calculate the CMB temperature power spectr
before lensing via the Einstein-Boltzmann solver describ
in @10# based on the hierarchy code of@24# and modified for
dark energy. Although the solutions may be recast into
integral form of Eq.~22!, the hierarchy technique provide
better control over accuracy in the presence of degenera
at the price of computational speed@7#. Gravitational lensing
modifies the power spectrum@25,26#, and we postprocess i
following @32#. This power spectra is shown in Fig. 1~top
left!.

It will be useful to separate one contribution to the te
perature anisotropies for cross correlation studies. In
presence of dark energy, the decay of the Newtonian po
tial due to the inability of dark energy to cluster below i
sound horizon produces a differential gravitational reds
whose net effect is called the integrated Sachs-Wolfe~ISW!
effect. In a flat universe its presence is a direct signature
dark energy. Shown in Fig. 2 are the contributions as ca
lated under the formalism of Sec. II C with

WQ ISW~D !522
Ḟ

F
, ~28!
3-4
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DARK SYNERGY: GRAVITATIONAL LENSING AND THE CMB PHYSICAL REVIEW D 65 023003
FIG. 1. CMB power spectra in
the fiducial model withw521
~solid! versus a dark energy mode
with w522/3 ~dashed! and other
parameters chosen to preserve t
angular diameter distance and am
plitude degeneracies~see text!.
Boxes represent 1s errors on
band powers for the Planck ex
periment and an ideal experimen
out to l 53000 ~see Table I!.
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and the growth rates given in the Appendix.
Detector noise and telescope beam can be incorporate

a sky signal with a spectrum given by the inverse varia
weights of the channels

~Nl
QQ!215 (

i 51

Nchan F S DT

T D
i

s ie
l ( l 11)s i /16 ln 2G22

, ~29!

wheres is the full width at half maximum~FWHM! beam in
radians. The noise and beam for various experiments
given in Table I. In principle, foregrounds that are appro
mately Gaussian can also be included in the noise term.
will work in the idealization that they are absent but see@33#
for potential effects of foregrounds under the Fisher form
ism.

FIG. 2. ISW effect in thew521 fiducial model compared with
models withw522/3 and sound speedsceff51,1/3 with other pa-
rameters held fixed. The ISW effect is highly sensitive to the eq
tion of state and clustering properties of the dark energy but o
becomes a substantial fraction of the total temperature anisot
power spectrum at the lowest multipoles.
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2. Degeneracies

The Fisher matrix identifies degenerate directions in
rameter space through its eigenvectors. It has been inten
studied for primary CMB anisotropies@34,38# revealing two
underlying and related degeneracies. The first is the so-ca
angular diameter distance degeneracy. A change in par
eters that leaves the angular diameter distance to the
scattering surface at recombinationand the physics of acous
tic oscillations unchanged preserves the structure and l
tions of the acoustic peaks. In the present context, shift
lower l by an increase inw can be compensated by a d

-
ly
py

TABLE I. CMB experimental specifications. Channel frequen
is given in GHz, FWHM in arcmin and noise in 1026. TheD4000 is
a mockup of a secondary CMB survey used for lensing and
ideal experiment assumes perfect information out tol 53000.

Experiment Chan. FWHM DT/T DP/T

MAP 22 568 4.1 5.9
f sky50.65 30 418 5.7 8.0

40 288 8.2 11.6
60 218 11.0 15.6
90 138 18.3 25.9

Planck 30 338 1.6 2.3
f sky50.65 44 238 2.4 3.4

70 148 3.6 5.1
100 10.78 1.57 5.68
143 8.08 2.0 3.7
217 5.58 4.3 8.9
353 5.08 14.4 `

545 5.08 147 208
857 5.08 6670 `

D4000 140 1.08 3.7 `

f sky50.1
Ideal — 0 0 0
f sky51
3-5
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WAYNE HU PHYSICAL REVIEW D 65 023003
crease inVL as long as the physical baryon and matter d
sity are held fixed. The only way to break this degenera
through the temperature spectrum is to study the ISW c
tributions at the lowestl ’s.

The large-scale nature of the ISW effect is both a bless
and a curse. It offers the rare opportunity to study the pr
erties of the dark energy including its clustering~see Fig. 2!.
However precision in these studies is severely limited
sample variance. Even an all sky experiment has onl
handful of realizations of the large scale modes. Worse s
as we shall see next, there are a multitude of effects that
change the spectrum at the lowestl ’s.

The angular diameter distance can alternately be bro
with precision measures of a complementary combination
the parameters. The primary example of the former is ex
nal constraints on the Hubble constant. In the context of
cosmologies, the CMB measurement ofVmh2 combined
with h-constraints yields a measure ofVL512Vm .

Because of the ISW effect, the angular diameter dista
degeneracy is linked with a degeneracy in the amplitude
the peaks relative to the lowestl ’s. The effect of reionization
throught is to uniformly lower the amplitude of the peak
compared with the lowestl ’s since scattering destroy
anisotropies. It can therefore be compensated by a chan
the initial amplitudedz again except for the lowestl ’s. Fi-
nally the tensor contribution also appears only at the low
l ’s. To resolve this degeneracy, the effects of reionizati
initial amplitude, dark energy and tensors must be separa
Of these only reionization is likely to have direct extern
constraints, e.g. in the form of a detection of the Gun
Peterson effect.

In Fig. 1 we show an example that employs both t
angular diameter distance degeneracy and the peak am
tude degeneracy. The dashed line represents a model wit
parameters:Vbh25 same,Vmh25 same,VL50.54, w5
20.63, t50, dz54.5631025, T/S50.015. From the un-
lensed temperature power spectrum it is distinguished at
the 0.2s level by the Planck experiment which is essentia
ideal for these purposes.

B. CMB polarization

The Stokes parameter polarization fields for the linear
larization of the CMB form a tensor field on the skyT1

5U(n̂), T25V(n̂)50, andT35Q(n̂). We define the corre-
sponding multipole moments in Eq.~17! asElm andBlm for
E andB modes respectively. Their power spectra and cro
correlation with the temperature field are calculated in
same way as for the temperature anisotropies themse
The effective noise power of an experiment is given by

~Nl
EE!215 (

i 51

Nchan F S DP

T D
i

s ie
l ( l 11)s i /16 ln 2G22

5~Nl
BB!21. ~30!

We assumeNl
QE50. Values for various experiments a

given in Table I.
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As is well known, CMB polarization can break the pea
amplitude degeneracy and so also assist in breaking the
gular diameter distance degeneracy. Mainly, rescattering
ing reionization generates at the lowl bump in the polariza-
tion E-power and QE cross spectra ~see Fig. 1!.
Gravitational lensing and tensor fluctuations also gene
B-mode polarization which can help distinguish the init
amplitudes of the scalar and tensor fluctuations. The m
concern in this route to breaking parameter degeneracie
that the interesting signatures are at the lowestl ’s where the
polarization is at the level oftenthsof a mK and below. The
assumption that foreground contamination is negligible co
pared with the sample errors on the fields themselves is
likely to hold true @33#. Note that in the context of con
straints on the tensor amplitude the gravitational lens
B-modes act as a foreground. As we shall see in Sec. IV
they place a lower limit on the detection threshold for tens
even in the absence of true foregrounds.

C. Lensing

The observables of weak lensing of the CMB and fa
galaxies are all based on the projected potentialf i(n̂), a
scalar field on the sky. It follows the general prescription
a tracer field in Sec. II C with the lensing weight

Wf i~D !5
2

DE
D

D(zi )

dD8
~D82D !

D8
gi~D8!, ~31!

from which one can calculate the multipole moments off i
and its cross-correlation with other fields. Heregi(D) is the
source distribution for thei th set of lensed objects.

1. CMB lensing

For the CMB, it is the primary anisotropies themselv
that are lensed and the source distribution in Eq.~31! is the
Thomson visibility

gCMB~D !5 ṫe2t(D), ~32!

where here and here onlyt(D) refers to the optical depth ou
to a distanceD and not the reionization optical depth. It ma
be replaced by a delta function at the last scattering sur
z;103.

The associated observable is the deflection angle

d~ n̂!5¹fCMB~ n̂!, ~33!

which remaps the original temperature fieldQ̃ as Q(n̂)
5Q̃(n̂1d) and similarly for the polarization field. Its har
monic moments are thus curl free and obey

@d16 id2#~ n̂!56 i(
lm

dlm 61Yl
m~ n̂!,

dlm52 iAl ~ l 11!f lm . ~34!

These deflections alter the power spectrum of the temp
ture and polarization fields. On the scales of the acou
3-6
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peaks, the main effects are a smoothing of features in
power spectra@25# and the generation ofB-mode polariza-
tion @26#. These are potentially observable and can the
selves break parameter degeneracies@27,28#. One must be
careful in that features can also be smoothed andB-modes
generated artificially by sky cuts and uneven sampling@29–
31#.

The deflections also introduce non-Gaussianity into
CMB fields. A negative impact of the non-Gaussianity is th
it creates a covariance between the power spectra at diffe
l ’s and technically invalidates the expression for the Fis
matrix ~25!. The covariance is small and does not affect
bulk of parameter estimation@5#. However it can lead to
misleadingly optimistic estimates of parameter foreca
when strong degeneracies like those discussed above a
volved ~see Sec. IV!.

Fortunately, the non-Gaussianity also makes the deflec
field itself and its power spectrumCl

dd directly observable
with quadratic combinations of the temperature field. A qu
dratic estimator of the deflection field with the optimal noi
power spectrum

Nl
dd5F(

l 1l 2

~Cl 2
Q̃Q̃Fl 1l l 2

1Cl 1
Q̃Q̃Fl 2l l 1

!2

2~Cl 1
QQ1Nl 1

QQ!~Cl 2
QQ1Nl 2

QQ!
G21

3 l ~ l 11!~2l 11!, ~35!

was given in@5# and involves the divergence of the tempe
ture weighted temperature-gradient field. HereC̃l

QQ is the
unlensed CMB spectrum and

Fl 1l l 2
5A~2l 111!~2l 11!~2l 211!

4p S l 1 l l 2

0 0 0D
3

1

2
@ l ~ l 11!1 l 2~ l 211!2 l 1~ l 111!# ~36!

and is approximately Gaussian. The deflection power sp
trum for the fiducial model is shown in Fig. 3~top! along
with the degenerate model from Fig. 1 and the band po
errors calculated according to the noise spectrum of Eq.~35!.
Since the deflection strength depends on the absolute am
tude of the underlying potential, its power spectrum bre
the amplitude degeneracy of the CMB temperature fluct
tions. It also probes the dark energy dependent growth r
and distances.

Because the deflections trace the gravitational poten
they are correlated with temperature anisotropies themse
through the ISW effect@35–37#. The cross-power spectrum
is shown in Fig. 3~bottom!. It helps isolate the ISW contri
bution in the temperature anisotropies and provide a me
of constraining the clustering properties of the dark energy
we shall see in Sec. IV D.

2. Cosmic shear

For galaxy weak lensing the distance distribution of t
sources is directly related to the source galaxy redshift
tribution,
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gi~D !5ni~z!
dz

dD
, ~37!

where ni(z) is the normalized redshift distribution
*dzni(z)51. ni(z) is itself an observable that is produced
conjunction with the survey but for definiteness we take
redshift distribution corresponding to

gtot~D !}D exp@2~D/D* !4#, ~38!

with D* fixed by the median redshift taken to bez51. This
distribution roughly approximates a survey with a magnitu
limit of R,25. For cosmic shear, the associated observa
is the symmetric trace free shear tensor

2F¹ i¹ j2
1

2
gi j ¹

2Gf~ n̂!5@g1~ n̂!s31g2~ n̂!s1# i j ,

~39!

wheregi j is the metric on the sphere. Its harmonic mome
are magnetic-mode free and obey

FIG. 3. CMB lensing power spectra for the fiducialw521
model ~solid! and the degeneratew522/3 model~dashed! of Fig.
1. Boxes represent 1s errors on band powers assuming the Plan
and ideal experiments of Table I. Top: deflection power spec
Bottom: cross correlation of deflection and temperature fields.
3-7
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@g16 ig2#~ n̂!5(
lm

e lm 62Yl
m~ n̂!,

e lm52
1

2
A~ l 12!!

~ l 22!!
f lm . ~40!

Shot noise produces the noise power spectrum@21#

Nl
ee5^g int

2 &/n̄i ~41!

where ^g int
2 &1/2 is the rms intrinsic shear per galaxy due

intrinsic ellipticities and measurement errors. We assu

^g int
2 &1/250.4 throughout.n̄i is the number of galaxies pe

steradian in the measurement.
With redshift measurements of not just the distribution b

of individual source galaxies, the source sample can be
ken into redshift bands to yield separate but correlated po
spectra. The evolution of the spectra can be used to p
structures and their evolution tomographically. To test
efficacy of tomography, we divide the total intoNz53 red-
shift bins that contain a fixed fraction of the galaxies~1! the
lower half, ~2! the third quartile and~3! the upper quartile
and label the distributions and asg1 , g2 andg3 respectively
~See Fig. 4!. The shear power spectra and cross correlatio
bands then follow from the prescriptions above. This sche
was found in@10# to be a good trade off between shot noi
and signal. Table II lists the parameters of the fiducial s
veys used in the Fisher analysis.

Similar to the CMB lensing case, the cosmic shear is c
related with the CMB temperature through the ISW effect
shown in Fig. 5. Because the ISW effect is confined to lo
l ’s, this correlation only becomes measurable with lens
surveys that cover a significant fraction of the sky. Fina
the cosmic shear in the higher redshift bands and CMB

FIG. 4. Shear power spectraCl
e ie i for three redshift bands (i

51,z,1;i 52,1,z,1.5;i 53,z.1.5) for the fiducial model~solid!
and the degeneratew522/3 model of Fig. 1. Error boxes represe
1s errors on band powers appropriate to the survey paramete
Table II, Z25 and Z1000. Also plotted is the cosmic shear exper
enced by the CMB.
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flection angles are substantially correlated as shown in
6. The CMB can thus provide the high redshift anchor
tomography studies.

IV. PARAMETER FORECASTS

Here we study parameter forecasts using the Fisher ma
formalism of Sec. II D to combine information from the pr
mary CMB anisotropies and gravitational lensing. We gi
details of the implementation in Sec. IV A and discuss t
effect of lensing on the gravitational wave and reionizati
detectability in Sec. IV B and dark energy properties in Se
IV C and IV D.

A. Methodology

The methodology of Fisher-matrix parameter foreca
with the CMB and cosmic shear are well establish
@34,38,10#. Here we simply note the details of our impleme
tation. We approximate the parameter derivatives in
Fisher matrix ~25! with finite differences of step size

of

TABLE II. Lensing survey specifications. Area is in deg2,
source density in gal/arcmin2 and median redshiftz51 correspond-
ing to band divisionsz,1, 1,z,1.5 andz.1.5.

Experiment Area Nz n̄i

W25 25 1 56
Z25 25 3 ~28,14,14!
W1000 1000 1 56
Z1000 1000 3 ~28,14,14!
W65% 27000 1 56
Z65% 27000 3 ~28,14,14!

FIG. 5. Cross correlation of cosmic shear with the CMB te
perature in three redshift bands (e i ,i 51,3) for the fiducial model
~solid! and the degeneratew522/3 model of Fig. 1. Errors are
appropriate for Planck and lensing surveys with 1000 deg2 and all
of the 65% of sky covered by Planck.
3-8
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DVbh2560.15Vbh2, DVmh2560.05Vmh2, DVL5
60.05Vm , Dn560.005n, Ddz560.1dz , Dt560.1t,
Dw50.1w, D log10cs522, where ‘‘6 ’’ refers to the fact
that two-sided differences are taken for better accuracy.
rivatives with respect todT or T/S are simply proportional to
the power spectra themselves since nonlinearities never
velop in the tensor sector. For the fiducial model ofw5
21, derivatives with respect to the sound speed vanish id
tically and consequently these elements are dropped from
Fisher matrix. We truncate the Fisher sum in Eq.~25! at
l max53000; beyond this secondary anisotropies and non
earities in the projected potential make the associated C
and lensing observables non-Gaussian and invalidate
Fisher formalism.

As discussed in@38#, the angular diameter distance dege
eracy must be protected against numerical errors. We rep

FIG. 6. Cross correlation of CMB deflection angle with cosm
shear in three redshift bands (e i ,i 51,3) and errors appropriate fo
Planck and lensing surveys with 25 and 1000 deg2.
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finite differences inw with those inVL beyondl 5150 with
the proportionality fixed at this scale. We have tested that
results are insensitive to the exact choice of the matchin

For the CMB power spectra, we have the choice of us
the lensed or unlensed power spectra as inputs to the F
matrix. As discussed in Sec. III, using the unlensed spe
generally underestimates the information content since le
ing breaks parameter degeneracies whereas using the le
power spectra overestimates the information content du
the non-Gaussian correlation of power spectra errors. O
can show that using the lensed power spectra for an id
experiment out tol 53000 and Gaussian assumptions art
cially predicts a better breaking of the angular diameter d
tance degeneracy than complete~cosmic variance limited!
information on both the unlensed power spectrum and
deflection angles. The reason is that lensing effects al
;1000 still arise from mass structures atl;100. Conse-
quently the sample variance on lensing effects is much la
than the Gaussian assumption would imply. For this rea
and the fact that we directly measure the deflection spect
through quadratic statistics, we use the unlensed power s
tra in parameter forecasts given in Tables III–V. The exc
tion is in the discussion of the tensor amplitude andB-mode
polarization in Sec. IV B. Here the generation ofB-modes by
lensing introduces a foreground to the tensor measurem
and the unlensed spectra would give a falsely optimistic li
on the detectability of tensors.

B. Tensors and reionization

Gravitational lensing both provides and obscures inform
tion about the tensor or gravitational wave fluctuations.
the absence of lensing and with the complete remova
foregrounds through their frequency dependence,
B-mode of the CMB polarization maps provide a direct me
sure of the tensor contribution that is ultimately limited on
by its own cosmic variance. By generatingB-modes in the
polarization with a blackbody spectrum, lensing adds an
tra source of noise bias that must be subtracted statistic
ces.
,
r

6
5
1
3
0
7
7
7
8
6
2
1

TABLE III. Fisher parameter estimation errors for MAP and supplemented by various other sourT
refers to temperature spectra,D deflection angles,P polarization,H 10% Hubble constant measurementst
10% optical depth measurements@s(zi);0.5#, W weak lensing galaxy shear,Z weak lensing galaxy shea
with 3 redshift divisions. Experimental assumptions are given in Table I and II.

VL w t T/S ln dz n ln Vmh2 ln Vbh
2

T 0.604 1.93 0.1833 0.281 0.1882 0.0746 0.1412 0.095
TD 0.475 1.42 0.1684 0.263 0.1614 0.0711 0.1334 0.090
TD4000 0.195 0.53 0.0987 0.142 0.0549 0.0474 0.0719 0.062
TP 0.330 1.07 0.0267 0.139 0.0448 0.0360 0.0696 0.049
TPD4000 0.162 0.48 0.0193 0.084 0.0208 0.0185 0.0160 0.030
TH10 0.083 0.69 0.1714 0.262 0.1832 0.0721 0.1369 0.093
Tt10 0.565 1.83 0.0050 0.280 0.0834 0.0733 0.1401 0.094
TW25 0.295 0.87 0.1578 0.110 0.1122 0.0450 0.0745 0.057
TZ25 0.063 0.29 0.1297 0.094 0.0905 0.0392 0.0660 0.051
TW1000 0.083 0.19 0.0876 0.077 0.0658 0.0230 0.0435 0.032
TZ1000 0.010 0.08 0.0522 0.065 0.0426 0.0125 0.0288 0.022
TPD4000Z1000 0.010 0.04 0.0141 0.060 0.0120 0.0110 0.0102 0.021
3-9
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TABLE IV. Same as Table III but for Planck.

VL w t T/S ln dz n ln Vmh2 ln Vbh
2

T 0.581 1.88 0.1724 0.113 0.1715 0.0052 0.0157 0.00
TD 0.110 0.35 0.0262 0.056 0.0231 0.0051 0.0151 0.00
TP 0.098 0.32 0.0042 0.007 0.0058 0.0033 0.0094 0.00
TPD 0.065 0.20 0.0039 0.007 0.0054 0.0030 0.0079 0.00
TH10 0.070 0.23 0.1641 0.106 0.1635 0.0051 0.0157 0.00
Tt10 0.553 1.79 0.0050 0.086 0.0086 0.0051 0.0156 0.00
TW25 0.265 0.86 0.0387 0.057 0.0340 0.0051 0.0152 0.00
TZ25 0.062 0.20 0.0313 0.054 0.0259 0.0051 0.0152 0.00
TW1000 0.050 0.15 0.0298 0.053 0.0240 0.0050 0.0148 0.00
TZ1000 0.010 0.05 0.0258 0.053 0.0208 0.0046 0.0135 0.00
TPDZ1000 0.010 0.03 0.0036 0.007 0.0039 0.0026 0.0026 0.00
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Hence the threshold for tensor detectability is set by
sample variance of the lensing not the tensor signal. With
lensing~or foregrounds and systematics! it is always better to
go deep on a small patch than shallow on a wide patch.
a fixed observation time and sensitivity, the optimal size
approximately 3°33° @39# corresponding to where th
B-power peaks. With lensing, more samples of such regi
are required to beat down the variance on the lensing c
tamination if extremely small tensor signals are to be rec
ered.

To quantify these considerations, we use the Fisher
proach to examine the 1s threshold for detection of tensor
including the lensed polarization as a Gaussian random fi
For the detector noise limited, all-sky MAP and Planck m
sions lensing has essentially no effect on the detectabilit
tensors.

Lensing does change the optimal strategy for a dedica
polarization experiment that seeks to improve on the Pla
experiment as shown in Fig. 7. To reach belowT/S'0.01~or
inflationary energy scales,1016 GeV) and improve on
Planck’s potential, a survey area of greater than 10°310° is
required.

Note that these considerations assume perfect foregro
and systematic error removal~including E, B-mode separa-
tion in a finite survey! as well as a GaussianB-field from
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lensing. As such, they should be taken as a lower limit on
detectability of tensors. Conversely, they assume statis
subtraction only. Limits can be improved if direct subtracti
methods can be developed, e.g. by de-lensing the pola
tion with an estimator of the deflection angles. Unfortunat
as shown in Fig. 4, most of the CMB lensing comes fro
redshifts above those probed by sources atz,1.5 making
complete subtraction from cosmic shear maps imposs
with the next generation surveys. Direct subtraction fro
CMB deflection maps seems more promising but tends
suffer from inadequate signal-to-noise at small angu
scales.

Lensing also indirectly assists the detection of tensors
the absence of polarization. Since lensing is sensitive to
absolute amplitude of the potential fluctuations, measu
ments of the CMB deflection power spectrum or cosm
shear power spectra can break the amplitude degenerac
the CMB acoustic peaks and so improve the errors on b
tensors and the reionization optical depth.

In Fig. 8, we quantify this degeneracy breaking. Wh
polarization information still provides better constraints
tensors and reionization, deflection angle information c
improve errors ont by 2–20 ~MAP to Ideal CMB experi-
ment! andT/S by 2. Cosmic shear can help by a compara
but somewhat smaller amount with or without tomograp
12
11
04
04
11
11
11
11
11
11
04
TABLE V. Same as for Table III but for an ideal CMB experiment out tol 53000.

VL w t T/S ln dz n ln Vmh2 ln Vbh
2

T 0.451 1.45 0.1343 0.090 0.1335 0.0017 0.0020 0.00
TD 0.050 0.16 0.0077 0.041 0.0079 0.0016 0.0020 0.00
TP 0.049 0.16 0.0015 0.000 0.0018 0.0009 0.0008 0.00
TPD 0.018 0.06 0.0015 0.000 0.0017 0.0009 0.0008 0.00
TH10 0.069 0.22 0.1299 0.084 0.1292 0.0016 0.0020 0.00
Tt10 0.435 1.40 0.0050 0.065 0.0054 0.0016 0.0020 0.00
TW25 0.248 0.80 0.0248 0.045 0.0245 0.0016 0.0020 0.00
TZ25 0.062 0.20 0.0129 0.042 0.0130 0.0016 0.0020 0.00
TW1000 0.047 0.15 0.0059 0.041 0.0059 0.0016 0.0020 0.00
TZ1000 0.010 0.03 0.0043 0.041 0.0046 0.0016 0.0020 0.00
TPDZ1000 0.008 0.03 0.0012 0.000 0.0015 0.0009 0.0007 0.00
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DARK SYNERGY: GRAVITATIONAL LENSING AND THE CMB PHYSICAL REVIEW D 65 023003
information. The reionization epoch is also potentially d
rectly observable in the Gunn-Peterson effect and so
show the influence of a prior ofs(t)50.1t on the other
parameters in Tables III–V.

FIG. 8. Breaking of the tensor-reionization degeneracy. Top l
addition of CMB deflection angle information~‘‘D’’ ! to the MAP
~thick! and Planck~thin! temperature constraints. For MAP, we a
sume that the deflection angle information comes from a sepa
4000 deg2 secondary anisotropy survey. For Planck, we assume
they are internal. Top right: the addition of a 25 deg2 cosmic shear
survey with (Z25) and without (W25) tomographic redshift informa-
tion. Bottom left: same but for a 1000 deg2 cosmic shear survey
Bottom right: addition of polarization information.

FIG. 7. Improvement in the polarized MAP and Planck 1s de-
tection thresholds for tensors with a dedicated polarization sur
The statistical subtraction of the lensingB-mode contamination re
quires a large survey area and places and ultimate detection th
old of (3 –4)31015 GeV for the energy scale of inflation.
02300
e

C. Equation of state

As is well known and shown in Fig. 9, there is an angu
diameter distance degeneracy between the dark energy e
tion of statew and energy densityVL . There are many ways
to break the angular diameter distance degeneracy som
volving pure geometry and other employing the cluster
properties of the dark matter and dark energy. Conseque
strong consistency checks will be available for parame
constraints and underlying assumptions for dark energy
rameters.

Although both MAP and Planck show a strong dege
eracy, it is important to note that for the Planck experime
the direction orthogonal to the degeneracy line is highly c
strained. This corresponds to the better constraints onVmh2

which also enters into the angular diameter distance relat
A purely geometric way of breaking the degeneracy th

is to introduce constraints on the Hubble constant. In a
universe, a precise determination ofVmh2 combined with
constraints onh yield corresponding constraints onVL51
2Vm as shown in Fig. 9. For the Planck experiment, t
10% measurement of the Hubble constant currently claim
@40# is sufficient to yield an interesting constraint on th
equation of states(w)50.23 ~see Table IV!. Using the
baryon bumps in the galaxy power spectrum as a stand
ruler to measure the Hubble constant, this means of deg
eracy breaking can potentially be substantially improv
@38#.

As seen in Fig. 3, the CMB deflection power spectrum
another means of breaking the degeneracy. It differs by a
involving the effect of the dark energy on the clustering
the matter. Because of the nature of the quadratic estim
of the deflection angle, it is crucial here to resolve CM
temperature anisotropies through the damping tail tol
;3000@5#. This is reflected in the negligible improvement
s(w) for MAP alone to the order of magnitude improveme
for the ideal experiment.

Information on the deflection power spectra do not ha
to come from the same experiment as that for the temp
ture anisotropies themselves. To measure deflection an
one requires high resolution in the temperature map but
sentially no information on the large-scale anisotropy itse
Combining an all sky experiment such as MAP with an e
periment that is dedicated to measuring secondary arcmi
scale anisotropies can therefore be fruitful. We show in F
9 that a 4000 deg2 survey is sufficient to provide interestin
constraints on the equation of state.

Similarly cosmic shear power spectra also provide inf
mation on the equation of state. As shown by@8#, if the
whole power spectrum can be recovered tol 510000 and
theoretical predictions in the deeply non-linear regime i
proved, a single redshift band suffices to yield powerful co
straints on the equation of state in the Gaussian approxi
tion. Non-linearities produce non-Gaussianity in the cosm
shear that degrades the amount of information in the dee
nonlinear regime beyondl;3000 @41#. In Fig. 9 we show
that information in the translinear regime ofl ,3000 suffices
to determine the dark energy equation of state when bro
into multiple redshift bands and combined with CMB tem

t:
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FIG. 9. Improvement on the
MAP ~thick! and Planck ~thin!
temperature~T! determination of
the dark energy equation of stat
and density. Clockwise from the
top left: addition of CMB deflec-
tion angles (D); polarization (P);
10% Hubble constant measure
ments (H); 25 deg2 cosmic shear
survey with (Z solid! and without
(W dashed! tomography; same bu
for 1000 deg2; Hubble constant
(TH), plus deflections (D), plus a
1000 deg2 lensing survey~All !.
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perature information. Notice that a 25 deg2 survey with red-
shift information ~filled ellipses! is competitive with a
1000 deg2 survey without redshift information on~dashed
ellipses!.

With the multitude of avenues for constraints on the d
energy equation of state discussed above as well as t
from high redshift supernovae@1# and number counts@42#, it
is possible that the observations will be inconsistent with
simple underlying model of a constant equation of state
dark energy clustering appropriate for a single slowly-rolli
scalar field. Since geometric tests can potentially probe
time evolution of the equation of state, we conclude in
next section with a discussion of dark energy clustering.

D. Dark energy clustering

If the equation of state of the dark energyw.21, then
there is a new dimension to the dark energy defined by
clustering properties. In Sec. II A, we introduced the sou
speed of the dark energy for this purpose. Recall that
scalar field candidate for the dark energy hasceff51.

As shown in Figs. 2 and 10, the ISW effect in the CM
rapidly decreases with the sound speed but is difficult
isolate from other contributions to the anisotropies at lowl.
By breaking the amplitude degeneracy, the deflection po
and cosmic shear power spectra help isolate the ISW ef
Furthermore the deflection angles are themselves corre
with the temperature anisotropies leading to an additio
more direct handle on the dark energy clustering~see Fig. 10
bottom!. For Planck the constraints are equivalent to say
the dark energy is smooth at least across;10% of the cur-
rent horizon or 1.4 Gpc in the fiducial model. As Table
shows, there is room for substantial improvement especi
on the CMB deflection angle side for a next generation m
sion with higher angular resolution. With an ideal CMB e
periment to l 53000 and a cosmic shear survey wi
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FIG. 10. Dark energy clustering in a model withw522/3 and
cs51, 0.1 and other parameters the same as in the fiducial mo
Top: effect on the CMB. Bottom: cross correlation of deflecti
angles with the temperature anisotropies. Error boxes are for Pla
and the ideal experiment as in Fig. 1.
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DARK SYNERGY: GRAVITATIONAL LENSING AND THE CMB PHYSICAL REVIEW D 65 023003
1000 deg2, the dark energy smoothness can be constraine
be ;40% of the current horizon or 6 Gpc. If cosmic she
surveys can reach the sky coverage and control of syste
ics to measure the multipolesl !100 then additional infor-
mation and consistency checks will be available from th
cross-correlation with the CMB temperature maps~see Fig.
5!. Note however that all of these constraints greatly wea
as the equation of state approaches21.

V. DISCUSSION

Gravitational lensing as manifest in CMB deflection a
cosmic shear measurements complements CMB prim
anisotropies by providing information that breaks degene
cies involving the dark energy density and equation of st
reionization and gravitational waves, specifically the angu
diameter distance degeneracy and the amplitude dege
cies in the acoustic peaks. In this way, it is similar in utili
to the well-studied CMB polarization and offers sharp co
sistency checks on the difficult-to-measure dark energy
rameters. Conversely, CMB lensing obscures polarization
formation on the gravitational waves and necessitates la
sky coverage to beat down sample variance even with pe
detectors and no foregrounds.

CMB lensing offers information that is similar to cosm
shear but with important additional strengths and we
nesses. Its primary strengths are that it is intrinsically m
sensitive to structure on larger scales and higher reds
than even the next generation of wide-field galaxy surve
These strengths translate into the opportunity to study
clustering of the dark energy, primarily through cros
correlation with the ISW effect. Indeed any such correlat
is a direct indication of dark energy in a spatially flat un
verse. Its primary disadvantage is that the sources are
fined to a single epoch, the last scattering surface, so
tomographic studies of the evolution of the dark energy a
dark matter are impossible. Galaxy lensing with source r
shift information can therefore better constrain the equa
of state of the dark energy including potentially its evolutio

It is important to realize that Fisher parameter foreca
include statistical errors only making the blind combinati

TABLE VI. Fisher parameter estimation errors for dark ener
parameters in a fiducialw522/3 model. Notation follows Table
III. Parameters not shown are marginalized.

Planck Ideal
VL w log10ceff VL w log10ceff

T 0.4377 1.105 4.1221 0.3527 0.890 3.203
TD 0.0861 0.215 1.0938 0.0329 0.083 0.497
TP 0.1967 0.497 1.1856 0.1085 0.274 0.853
TPD 0.0431 0.099 0.7516 0.0088 0.021 0.382
TH10 0.0693 0.179 3.8768 0.0687 0.173 3.010
TW25 0.2377 0.599 1.4426 0.2201 0.556 1.164
TZ25 0.0623 0.158 1.3827 0.0618 0.156 1.097
TW1000 0.0479 0.114 1.3599 0.0447 0.113 1.079
TZ1000 0.0106 0.030 1.3497 0.0099 0.025 1.072
TPDZ1000 0.0098 0.023 0.7264 0.0058 0.014 0.379
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of information from disparate sources dangerous. In parti
lar, the information supplied by lensing relies in large part
the accurate absolute calibration of the power spectra. On
CMB lensing side, this involves first an accurate determi
tion of the CMB power spectrum itself as well as any dete
tor or foreground power spectrum contaminants. On the c
mic shear side, it requires exquisite control over the myr
systematics that enter into the measurement of shear f
galaxy images. Furthermore, Fisher forecasts are only pr
the degeneracy structure locally around a fiducial mod
When error ellipses are extended in parameter space du
degeneracies, Fisher forecasts can yield both overly optim
tic or pessimistic results. Our results provide the motivat
for future studies that do incorporate these systematic eff
involving the combination of cosmological information from
CMB anisotropy and gravitational lensing.
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FIG. 11. Potential transfer function as a function of redsh
~top! and dark energy sound speed~bottom!. Solid lines represent
numerical results; dashed lines represent the analytic fits of@13#
supplemented by dark energy clustering.
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APPENDIX: POTENTIAL EVOLUTION AND TRANSFER
FUNCTION

Above the sound horizon of the dark energy, defined

s~a!5E
z

zi dz8

H~z8!
ceff , ~A1!

where zi is some initial effectively infinite redshift, the
Bardeen curvature remains constant after radiation beco
negligible at some epochzmd. The Newtonian curvature con
sequently obeys

F~k,z!5Fc~z!z~k,zmd!, ~A2!

where the decay function in the clustering regime is@43#

Fc~z!5S 12
Ar

a E
0

ada

Ar
D , ~A3!

where a5(11z)21. Conversely, for scales that are mu
smaller than the sound horizon at the epoch of dark ene
domination the dark energy may be considered effectiv
smooth for all time and hence the Newtonian curvat
obeys

F~k,z!5Fs~k,z!z~k,zmd!, ~A4!

where

Fs91F5

2
2

3

2
wVL~z!GFs81

3

2
@12w#VL~z!Fs50

~A5!

and 8 denotes derivatives with respect to lna. To match so-
lutions Fc(zmd)5Fs(zmd) in the matter dominated epoch
the initial conditions are set to beFs(zmd)53/5, Fs8(zmd)
50.

The decay function in the intermediate regime can be
proximated with a smooth interpolation of these two so
tions. First we define the epoch of dark energy domination

rL~zL!

rm~zL!
5

1

p
, ~11zL!5S p

VL

Vm
D 21/3w

, ~A6!
ev

.

02300
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y
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where the solution assumes a constant equation of s
Next, we introduce the interpolation function

Tw~k,z!5
11q2

Fs /Fc1q2 , ~A7!

where

q[
k

2p
As~z!s~zL!. ~A8!

The full evolution of the potential from the matter dominat
epoch on can be described by

F~k,z!5Tw~k,z!Fs~z!z~k,zmd!. ~A9!

Since in the matter dominated regime, the potential is rela
to the matter density fluctuations by the Poisson equat
the potential transfer function asymptotically approach
a scaled version of the matter transfer functionTm(k)
at highk ~see Fig. 11!:

TF~k,z!5
F~k,z!

F~k,zi !

F~0,zi !

F~0,z!
.

5
Tw~k,z!

Tw~0,z!
Tm~k!, ~A10!

whereTm(k) is the matter transfer function assuming sca
independent growth~a smooth dark energy componen!.
Note that the true matter transfer function is still not t
same as the potential transfer function due to dark ene
contributions to the Poisson equation. Moreover, there is
one unique matter transfer function since in the presenc
dark energy clustering the growth of density perturbatio
differs between the commonly used synchronous and com
ing gauges. The Newtonian potential transfer function
most closely related to the comoving gauge matter tran
functions and is in fact the density-weighted sum of the co
ponents.
J.
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