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Dark synergy: Gravitational lensing and the CMB

Wayne Hu
Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, lllinois 60637
(Received 7 August 2001; published 21 December 2001

Power spectra and cross-correlation measurements from the weak gravitational lensing of the cosmic mi-
crowave backgrountCMB) and the cosmic shearing of faint galaxies images will help shed light on quantities
hidden from the CMB temperature anisotropies: the dark energy, the end of the dark ages, and the inflationary
gravitational wave amplitude. Even with modest surveys, both types of lensing power spectra break CMB
degeneracies and they can ultimately improve constraints on the dark energy equation wflstadeer an
order of magnitude. In its cross correlation with the integrated Sachs-Wolfe effect, CMB lensing offers a
unique opportunity for a more direct detection of the dark energy and enables study of its clustering properties.
By obtaining source redshifts and cross-correlations with CMB lensing, cosmic shear surveys provide tomog-
raphic handles on the evolution of clustering and correspondingly better precision on the dark energy equation
of state and density. Both can indirectly provide detections of the reionization optical depth and modest
improvements in gravitational wave constraints which we compare to more direct constraints. Conversely,
polarizationB-mode contamination from CMB lensing, like any other residual foreground, darkens the pros-
pects for ultrahigh precision on gravitational waves through CMB polarization requiring large areas of sky for
statistical subtraction. To evaluate these effects we provide a fitting formula for the evolution and transfer
function of the Newtonian gravitational potential.
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I. INTRODUCTION Weak gravitational lensing shares with the primary anisotro-
pies a unique status in cosmology in that its observables are
With the launch of the Microwave Anisotropy Probe in principle predictableab initio given a cosmological
(MAP) satellite and continuing progress in ground and bal-model. Measurements are limited mainly by instrumental
loon based experiments, cosmologists hope to soon be insgystematics rather than unknown astrophysics. As such lens-
situation where cosmic microwave backgroun@MB) ing observables are well suited to complement information
anisotropies have firmly established the adiabatic cold darkkom the CMB.
matter paradigm for structure formation and the parameters Recent work§3—5] have shown that it is possible to map
that govern it at high redshift. Attention on the experimentalstructures on the largest scales at high redshift through the
and theoretical fronts will increasingly turn to the potentially lensing of the CMB. We evaluate here the utility of such
deeper questions at the two opposite ends of time: the energgeasurements and their cross-correlation with the anisotro-
contents of the universe and their clustering properties gpies themselves as well as cosmic shear for cosmological
recent epochs and the origins of structure perhaps in the irparameter estimation. On the cosmic shear side, we extend
flationary epoch. From the distance measures to high redshithe work of[6] by considering correlations with CMB tem-
supernovd 1] and indications of a near critical density uni- perature anisotropies and lensing. We also utilize the ex-
verse from the CMB[2], there is increasingly strong evi- tended parameter space [0 to study the background and
dence for an unknown component of dark energy that acceklustering properties of the dark energy. In this context, Hu-
erates the expansion at low redshifts. terer[8] has recently shown that the sub-arcminute regime
In this context, it is useful to consider potential cosmo-provides substantial information on the dark energy but will
logical probes in light of what the primary CMB temperature require a better understanding of the power spectrum and its
anisotropies are and are not expected to reveal. While sonstatistical properties in the deeply non-linear regifeeg.
parameters such as the physical baryon and non-relativist{®]). Here we take the complementary tack of supplementing
matter density should be quite cleanly determined, othergaformation in the translinear regime with source redshift
such as the dark energy properties, the epoch of reionizatiomformation[10].
and the gravitational wave amplitude are entangled with each The outline of the paper is as follows: In Sec. Il we de-
other in parameter degeneracies. While the CMB polarizascribe the cosmological parameter space, power spectra and
tion is one well-recognized means of breaking some of theseross correlations of the observables and the Fisher formal-
degeneracies, these issues are sufficiently important and pism for parameter estimation forecasts. In Sec. Ill, we dis-
larization measurements sufficiently difficult that multiple cuss the phenomenology of the lensing observables and their
independent approaches are desirable. utility in breaking cosmological parameter degeneracies. We
In this paper, we compare and contrast the ability of wealkpresent parameter forecasts in Sec. IV and conclude in Sec.
gravitational lensing in the shearing of faint galaxy imagesV. In the Appendix, we give fitting formula for the transfer
and distortions of the CMB temperature anisotropies in shedfunction and evolution of the Newtonian curvature in the
ding light on these issues in the post-primary CMB epochpresence of the dark energy.
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[l. FORMALISM where the fiducial scale is taken to kbg=0.01 Mpc ! and
We begin in Sec. Il A by defining the cosmological con- the initial (or inflationary epochz; is tak_en to be suff|C|entIy
. . ' o : early that all relevant scales are outside the horizon. Under
text paying special care to define quantities properly in the X .
; Slow roll inflation (e.g.[12]),
presence of dark energy. In Sec. Il B we review the harmonic
formalism for handling scalar, vector and tensor fields on the
. : ; 8 V
sky and consider the calculation of their power spectra and A%K,z)=— — (6)
cross correlations in Sec. Il C. Finally we generalize the £ e mgl
Fisher formalism for multiple observables from overlapping
fields in Sec. II D. wherem,, is the Planck mass and-= 3(1+wj) is the devia-
tion from vacuum domination in the equation of state of the

A. Cosmological parameters inflaton, all evaluated when the relevant scale exited the ho-

. _ rizon.

We work in the context of spatially flat cold dark matter e gardeen curvature provides a convenient representa-
models for structure formation with initial curvature fluctua- tion since it remains constant outside the horizon in a flat
tions. In units of the tota(critical) density 3H?/87G, with hiverse regardless of its energy contents. It is related to the

c=1, the fractional contribution of each component is de-poyer spectrum of Newtonian curvature fluctuations as
noted(Q;(z), i=c for the CDM,b for the baryons and for

the dark energy. We also define the auxiliary quanfity Tuw(k,2)

=Q0.+Q,, the total nonrelativistic matter. We assume Aé(k,2)=<l>§(Z)T 02) Tm(K)AZ(K,Z) (7)
throughout that the neutrinos contribute negligible matter W

density. The expansion rate at epochs where the radiation
also negligible is given by

[§ the linear regime. The potential decay function in the

large-scale limitd, and transfer functiond,, and T,, are

H2=H2r O 14+7)3+0 1 given in the Appendix. The partitioning of the transfer func-
ol Am(0)(1+2) A(O)pa@pA(O)], (1) tion into two pieces reflects its relationship to the matter

where Ho=10ch kms ! Mpc! is the Hubble constant. density fluctuationg\y, in the comoving gauge

The evolution of the dark energy density is governed by its

. 4
equation of statev=p, /p, such that A?D(k,z)z Z(%) sz(O)(1+z)2A2m(k,z), @)

pA=—3(1+wW)p,, 2 .
where in linear theory
where’ denotes a derivative with respect to Ir(@) 1. For
illustrative purposes, we take/=const such thatp,(z)
=pA(0)(1+2)°*W)_ Thus 4 parameters are associated with
background energy densiti€3,h?, Qh?, Q, andw all
evaluated at the present epoch. We will often use the conforinder the approximation that the comoving dark energy den-

Tu(k) @4(2))2
1+z ® 0)/

3+n
Ai(k,zwéa(—) (Tw<k,z> 9

Ho

mal lookback time in lieu of the redshift sity fluctuation contributes negligibly to the Newtonian cur-
vature. Hered, is the potential decay function in the small
z dz scale limit where dark energy clustering is negligible. Note
D(z)= HG)' (3)  thatin the presence of dark energy witt> — 1, the transfer

function in the comoving gauge is no longer equivalent to

_ L . that in the synchronous gauge on scales approachkifz}/
abusing notation in the arguments of functions where no Conduring dark energy domination. The facfBi(k,2) given in
fusion will arise. Overdots will represent derivatives with y '

X . - the Appendix accounts for dark energy clustering in the co-
respect tdD throughout. The final parameter associated W'thmoving gaugéct. [14)). T,. is the usual matter transfer func-

the background cosmology is the Thomson optical depth irfion defined in the absence of dark energy clustering and is

the reionization epoch. here numerically evaluated to~0.5h Mpc ™! and extended

Four parameters are associated With. the perturbat.io.n.s tt% smaller scales with the fitting functions pf3]. We use
the background. An amplitude and a tilt define the |n|t|alScaling relations forAﬁq and the decay functio (D) to

fluctuations in the logarithmic power spectrum of theextend the potential power spectrum into the nonlinear re-
Bardeen or comoving gauge curvaturé¢11], gime[15] P P P

o2 These relations also give the mapping between our nor-
(g(k,z)g(k’,z)>=(27-r)35(k—k’)VA?(k,z), (4) malization scheme and the more traditional one

2 (kig) "2 D¢(0)
as 5H~§ H_o Qm(o)5§. (10)
n—1
A2(k.z:)= &2 L (5) We allow for scale-invariant initial tensor or gravitational
g( 7Z|) é’ k 1 . . (+2)
fid wave fluctuations. In the notation dfl6], where H'*=
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=(h, ¥ih,)/\/6 represent the amplitudes of the two polariza- B. Observables and power spectra
tions in spin modes, the power spectrum in each component c\B and lensing observables are described by scalar,
is given by(e.g.[12]) vector and tensor fields on the sky. A general scalar field on
the skyS(n), wheren is the directional vector, is decom-
) o[ K\ 32V posed into multipole moments of the spherical harmonics as
AZ(kz)=8% —| == —. (11)
Kfig 9 mj . .
m
SN =2 SnY"(n). (14

We takent=0 throughout.
Finally, we take one parameter for the equation of stateSimilarly a vector field(not to be confused with vector per-
for the perturbations in the dark energy. Because the da%rbations V(ﬁ)=(V1.V2) is decomposed as
energy has negative pressure, pressure fluctuations cannot be
adiabatically related to density fluctuations through the back- . .
ground equation of state. Followind7], we take [ViiV,](N)=2 (Pim*iSim) +1Y™(N), (15

Im

2 _ 9P

_ 9 12 whereS,, is the curl-free part an®,,, is the divergence-free
Cerf= 5p |rest ( )

part. HereyY|, are the spin-spherical harmonif20]. Fi-
nally a trace free tensor field can be represented with the

to be the sound speed of the dark energy in its rest framgauli matricesos :

where its energy flux vanishes. During dark energy domina- R

tion the rest frame and the comoving frame coincide by defi- T(N)=Ti01+Tr0,+T303. (16
nition. They differ when the the bulk velocity of the dark

energy differs from that of the dominant component. TheThe symmetric part can be further decomposed as
dark energy can be considered smooth on scales smaller than

the distance sound can travel. If the dark energy is composed . N ) o~

of a single slowly rolling scalar field18], ces=1 and the [T3i|T1](n)=% (SmEiPim) =2Y'(n),  (17)
sound horizon coincides with the particle horizon. Because

the horizon at high redshift depreases, the clustering of the ) the tensor cas8,, is often called the
dark energy can leave an imprint on observable scales ev
for a scalar field. Measurement of this imprint can therefor
test the scalar field paradigm for dark ene(gge Sec. IV .
Note that asv— — 1, the phenomenological consequence of

Ceif disappears due to the vanishing of the relativistic energy T,o(n)= E P,mY[“(ﬁ), (19
flux (pp+pa)va—0. Dark energy candidates necessarily Im

become indistinguishable from a true cosmological constant . o
in this limit. and called the circular mode. As the notation implies, the

This family of models is therefore described by 9 param-narmonics of the gradient and electric components can be
eters. We take as our fiducial choicé®;h?=0.02, Q, h? written in terms of those of a scalar potential field on the sky;
=0.148, 0,=065 w=-1 or —2/3, 7=0.05, & the curl, magnetic and circular modes can be written in terms

=4.79<10°5 n=1, 6;=0 Czﬁ: 1. It is conventional to of the harmonics of a pseudo-scalar field.
. 1 1 1 e - . . -
express the tensor amplitude in terms of the scalar amplitude Statistical isotropy guarantees that for any of two sets of

normalized to their individual contributions to the CMB tem- NarmonicsX=S, P
perature quadrupole. Note that the normalization is depen-

“electric” or ‘E”
&hd Pim the “magnetic” or “B” component of the field. The
&emaining piece can be decomposed as

dent on cosmological parameters, especially the dark energy (XEX 1y = 8117 e G (19
[19], and we take the scaling appropriate to the —1 fi-
ducial model: which defines the power spectra. Parity invariance requires
that cross-spectra between scalar and pseudo scalar types
T | ( 5 ) 2 vanish.
<lid=| T oco . —5
S 1.85<10°° C. Tracer fields
. In the linear regime, all fields on the sky that are related to
v cosmological structures can be thought of as line-of-sight
= 3.9x 10 Gev 13 projections of the gravitational potenti®l(x,D) with a suit-

able weight

With this relation,T/S constraints can be converted to tensor

amplitude and inflationary energy scale constraints. X(n)=J’ dD WY(D)®(Dn,D), (20
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whereW can include differential operators on the potentialwherelex’ is the power spectrum of the noise in the mea-

field. In the nonlinear regime, any tracer of the density ﬂuc'surement.fisky is the fraction of sky in the patch and quanti-

tuations may also be treated as such. Taking the harmoniges the loss of independent modes due to finite sky coverage.
moments of Eq(20) yields We takel i =0.5f 5'?; the precise definition does not matter
4k due to the increase in sample variance on the scale of the
X =4 ilf (K001 (k) Y™(K), survey. Although .formallyl max—%, We ggne_rally takd ax
m=T ) 2m)? (kOTYICk) =3000. Above this scale non-Gaussianity in both the CMB
and lensing fields begin to violate the assumptions behind the

X ®(k,D) . Fisher formalism.
li (k)ZJ deI)(k 0) W7 (k,D)j(kD). (21) Under the approximation that each patch is statistically
' independent, the full Fisher matrix is the sum of those of the
The power spectrum of two fields then becomes patches
Npatch
/ dk / F5= Fo. 2
crx =4WJ?||X(|<)|,X (k)AZ (k,0), (22) ap .21 ap @

) o The parameters can consist of any set that suitably param-
ar;d can be reexpressed in terms of the initial spectrungtrizes the signal and noise power spectra. For example, they
AZ(k,z) through Eq.(7). For the CMB, this technique is might be the signal power spectra themselves in bands of

known as the integral approach to anisotrog23]. We use this parametrization when plotting the various ob-
In the Limber approximation limif21], k=W*/W* and  servable power spectra in Sec. lll. They may alternately be
I>1, the cosmological parameters described in Sec. Il A. We take
this approach in Sec. IV.
X \/?1 ®(k,I/D)
17 (k)~ Tk WW (k,1/k), (23 Ill. PHENOMENOLOGY

) ) Here we discuss the phenomenology of the various power
and with a change of variablés=1/k the power spectrum spectra and cross correlations with an emphasis on parameter
becomes degeneracies and dark energy. We begin with the CMB tem-

o2 perature field and proceed through CMB polarization, CMB
C:Ixx':_z dD DWX(D)WX' (D)A2(k,D). (24) Iens_lng and cosmic shear. For each ob;ervable we give the
| statistical noise power spectra as functions of experimental
specifications.
We will use these equations to calculate the power spectra
and cross correlations of the various effects. A. CMB temperature

1. Calculation
D. Fisher matrix

The CMB temperature fiel(n)=AT/T is a scalar on

If all fields are Gaussian random, then the power anc{he sky. We calculate the CMB temperature power spectrum

cross spectra quantify all the |nfqrmat|on cqntamed. in th efore lensing via the Einstein-Boltzmann solver described
observables. We can then use Fisher matrix techniques 3 [10] based on the hierarchy code[@] and modified for
Combi”e- compare and contrast the statistical precision taark energy. Although the solutions may be recast into the
}N.h'Ch r:/arlous surveys can determine the parameters undel?itegral form of Eq.(22), the hierarchy technique provides
ying the power spectra. . _better control over accuracy in the presence of degeneracies,
. The F'Sh?r matrix approximates thg curvature of the III(e'at the price of computational spegd. Gravitational lensing
lihood function around its maximum in a space spanned b odifies the power spectruf25,26], and we postprocess it
the parameters such that the statistical errors on a given pﬁillowing [32]. This power speé:tra, is shown in Fig. (fop
rameterp,,: o(p,)~(F 1) ,.. The usual formulase.g. eft) ' '

[23]) require a slight generalization to account for the possi- It. will be useful to separate one contribution to the tem-
bility that different surveys may only partially overlap in sky perature anisotropies for cross correlation studies. In the
coverage. For theth patch of sky, the elements of the Fisher presence of dark energy, the decay of the Newtonian poten-

matrix are given by tial due to the inability of dark energy to cluster below its

| max sound horizon produces a differential gravitational redshift
|:iaﬂ: >+ 1/2)fisk T{c 'c ,c'c sl (25)  whose net effect is called the integrated Sachs-Wd8&V)
min Y ’ ' effect. In a flat universe its presence is a direct signature of

) ) ) dark energy. Shown in Fig. 2 are the contributions as calcu-
Here a=4d/dp, andC is the covariance matrix of the mul- |ated under the formalism of Sec. Il C with

tipole moments of the observables .
P
Cyr =CX +NXX | (26) WOisw(D)=— 25, (28
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10 T T T 10-1
1012
B
851&10 3 E Eqwls
% % FIG. 1. CMB power spectra in
S Sl the fiducial model withw=—1
itk . (solid) versus a dark energy model
E Ea:fk 1 with w= —2/3 (dashedl and other
,e . ) parameters chosen to preserve the
' ' ) angular diameter distance and am-
. plitude degeneraciegsee text
107 Boxes represent ¢ errors on
& & band powers for the Planck ex-
5 5 periment and an ideal experiment
T ol 1 out tol =3000(see Table)l
/,
4
10-13 Vi
.y
e C— luio 000
and the growth rates given in the Appendix. 2. Degeneracies

Detector noise and telescope beam can be incorporated as e Fisher matrix identifies degenerate directions in pa-

a sky signal with a spectrum given by the inverse variancgsmeter space through its eigenvectors. It has been intensely
weights of the channels studied for primary CMB anisotropid84,38 revealing two
underlying and related degeneracies. The first is the so-called
-2 angular diameter distance degeneracy. A change in param-
(29 eters that leaves the angular diameter distance to the last
scattering surface at recombinatiandthe physics of acous-
tic oscillations unchanged preserves the structure and loca-
whereo is the full width at half maximunfFWHM) beam in  tions of the acoustic peaks. In the present context, shifts to
radians. The noise and beam for various experiments afdewer | by an increase irw can be compensated by a de-
given in Table I. In principle, foregrounds that are approxi-
mately Gaussian can also be included in the noise term. We TABLE I. CMB experimental specifications. Channel frequency
will work in the idealization that they are absent but §&8) is given in GHz, FWHM in arcmin and noise in 16, TheD 40 is
for potential effects of foregrounds under the Fisher formal-a mockup of a secondary CMB survey used for lensing and the

Neh
o CzanHA_T) o€+ 1)o/161n2
- T

ism. ideal experiment assumes perfect information out=t&3000.
Experiment Chan. FWHM ATIT AP/T
100F Total E MAP 22 56 4.1 5.9
- ISW Effect : f = 0.65 30 41 5.7 8.0
40 28 8.2 11.6
& 60 21 11.0 15.6
N 90 13 18.3 25.9
2 ok ] Planck 30 33 16 23
S ] fy=0.65 44 23 2.4 3.4
70 14 3.6 51
100 10.7 1.57 5.68
143 8.0 2.0 3.7
217 5.8 4.3 8.9
10 100 353 5.0 14.4 %
545 5.0 147 208
FIG. 2. ISW effect in thev= —1 fiducial model compared with 857 5.0 6670 *®
models withw= —2/3 and sound speedsyz=1,1/3 with other pa-  Daooo 140 1.0 3.7 o
rameters held fixed. The ISW effect is highly sensitive to the equaf ,=0.1
tion of state and clustering properties of the dark energy but onlydeal — 0 0 0

becomes a substantial fraction of the total temperature anisotropf, =1
power spectrum at the lowest multipoles.

023003-5



WAYNE HU PHYSICAL REVIEW D 65 023003

crease i), as long as the physical baryon and matter den- As is well known, CMB polarization can break the peak
sity are held fixed. The only way to break this degeneracyamplitude degeneracy and so also assist in breaking the an-
through the temperature spectrum is to study the ISW congular diameter distance degeneracy. Mainly, rescattering dur-
tributions at the lowest's. ing reionization generates at the Idvoump in the polariza-
The large-scale nature of the ISW effect is both a blessingion E-power and ®E cross spectra(see Fig. 1
and a curse. It offers the rare opportunity to study the propGravitational lensing and tensor fluctuations also generate
erties of the dark energy including its clusterisge Fig. 2 B-mode polarization which can help distinguish the initial
However precision in these studies is severely limited byamplitudes of the scalar and tensor fluctuations. The main
sample variance. Even an all sky experiment has only &oncern in this route to breaking parameter degeneracies is
handful of realizations of the large scale modes. Worse stillthat the interesting signatures are at the lowisstvhere the
as we shall see next, there are a multitude of effects that cgmolarization is at the level denthsof a uK and below. The
change the spectrum at the lowé'st assumption that foreground contamination is negligible com-
The angular diameter distance can alternately be brokepared with the sample errors on the fields themselves is un-
with precision measures of a complementary combination ofikely to hold true [33]. Note that in the context of con-
the parameters. The primary example of the former is exterstraints on the tensor amplitude the gravitational lensing
nal constraints on the Hubble constant. In the context of flaB-modes act as a foreground. As we shall see in Sec. IV B,
cosmologies, the CMB measurement 9f.h? combined they place a lower limit on the detection threshold for tensors

with h-constraints yields a measure @Qfy =1—Q,. even in the absence of true foregrounds.
Because of the ISW effect, the angular diameter distance
degeneracy is linked with a degeneracy in the amplitude of C. Lensing

the peaks relative to the lowdss$. The effect of reionization . .
through 7 is to uniformly lower the amplitude of the peaks Thg observables of weak Iensm_g of the CM?’ ?nd faint
compared with the lowest’s since scattering destroys dalaxies are all based on the projected potentigh), a

anisotropies. It can therefore be compensated by a change ggalar field on the sky. It follows the general prescription of

the initial amplitudes, again except for the lowests. Fi- & tracer field in Sec. Il C with the lensing weight

nally the tensor contribution also appears only at the lowest 2 D(z) (D'-D)

I's. To resolve this degeneracy, the effects of reionization, W% (D)= _f ' dD’—/gi(D’), (31)
initial amplitude, dark energy and tensors must be separated. DJo D

Of these only reionization is likely to have direct external , )

constraints, e.g. in the form of a detection of the Gunn-rom which one can calculate the multipole moments#of

Peterson effect. and its cross-correlation with other fields. Her€D) is the
In Fig. 1 we show an example that employs both theSource distribution for théth set of lensed objects.

angular diameter distance degeneracy and the peak ampli- _

tude degeneracy. The dashed line represents a model with the 1. CMB lensing

parametersQ h?= same,Qh’= same,,=0.54, w= For the CMB, it is the primary anisotropies themselves

—0.63, 7=0, §,=4.56x 107°, T/S=0.015. From the un- that are lensed and the source distribution in B4) is the

lensed temperature power spectrum it is distinguished at onlyhomson visibility

the 0.2r level by the Planck experiment which is essentially )

ideal for these purposes. gemp(D) =7~ ™), (32)

where here and here onifD) refers to the optical depth out

to a distancéd and not the reionization optical depth. It may
The Stokes parameter polarization fields for the linear pobe replaced by a delta function at the last scattering surface

larization of the CMB form a tensor field on the sky  z~10°.

B. CMB polarization

= U(ﬁ), T2=V(ﬁ):O, andngQ(ﬁ). We define the corre- The associated observable is the deflection angle
sponding multipole moments in E¢L7) asE;,, andB,,, for . .
E andB modes respectively. Their power spectra and cross- d(n)=Vécump(n), (33

correlation with the temperature field are calculated in the ~ .
same way as for the temperature anisotropies themselveghich remaps the original temperature fiekl as ®(n)
The effective noise power of an experiment is given by =0 (n+d) and similarly for the polarization field. Its har-
monic moments are thus curl free and obey

i=1

- Nchan AP ‘ -2
(NFE) 1_ 2 (_) O,iel(l+l)a|/16ln2
T/ [dy+id2)(N) =12 dip 1Y),

=(NP®) L. 30 :
(N 30 NI 34
We assumeNEzo. Values for various experiments are These deflections alter the power spectrum of the tempera-
given in Table 1. ture and polarization fields. On the scales of the acoustic
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peaks, the main effects are a smoothing of features in the [ T ERLIEEEEEY
power spectrd25] and the generation d8-mode polariza-
tion [26]. These are potentially observable and can them-
selves break parameter degenera¢®s28. One must be
careful in that features can also be smoothed Badodes
generated artificially by sky cuts and uneven sampl2@-
31].
The deflections also introduce non-Gaussianity into the
CMB fields. A negative impact of the non-Gaussianity is that
it creates a covariance between the power spectra at different
I's and technically invalidates the expression for the Fisher - [ Planck
matrix (25). The covariance is small and does not affect the [ 1deal
bulk of parameter estimatiofb]. However it can lead to TS R C L
misleadingly optimistic estimates of parameter forecasts —
when strong degeneracies like those discussed above are in-
volved (see Sec. IV. 109
Fortunately, the non-Gaussianity also makes the deflection

1077 £ 7

I(+1)Cf9 2

field itself and its power spectrurﬁfjd directly observable B
with quadratic combinations of the temperature field. A qua- {
dratic estimator of the deflection field with the optimal noise X
power spectrum L1000 |

56 56 -1
(COOFiu,+CPOF )2

-]

P 2(c,("i®+ NFi®)(CfZ®+ Ng@

XI(1+1)(21+1), (39

was given in5] and involves the divergence o~f the tempera- FIG. 3. CMB lensing power spectra for the fiducial= — 1
ture weighted temperature-gradient field. HER® is the model(solid) and the degenerate= — 2/3 model(dashedl of Fig.

unlensed CMB spectrum and 1. Boxes representdl errors on band powers assuming the Planck
and ideal experiments of Table I. Top: deflection power spectra.
—_— \/(ZI +HD(21+1)(21,+ 1)( T B Bottom: cross correlation of deflection and temperature fields.
ity ™ Am lo 0 o0
1 D)= az 3
XE[I(I+1)+I2(I2+1)—I1(I1+1)] (36) gi( )—”i(z)d_D’ @

and is approximately Gaussian. The deflection power spec;heare n(z) is the normalized redshift distribution

trum for the fiducial model is shown in Fig. @op) along 14, (7)=1" n,(2) is itself an observable that is produced in

with the degenerate mo_del from I:'g: 1 and the band pOWe50njunction with the survey but for definiteness we take the
errors calculated _accordlng to the noise spectrum of &x). [,edshift distribution corresponding to

Since the deflection strength depends on the absolute ampli-

tude of the underlying potential, its power spectrum breaks

the amplitude degeneracy of the CMB temperature fluctua- Oio(D) D exd — (D/D, )*], (39
tions. It also probes the dark energy dependent growth rates

and distances.

Because the deflections trace the gravitational potentialVith D, fixed by the median redshift taken to be 1. This
they are correlated with temperature anisotropies themselvélistribution roughly approximates a survey with a magnitude
through the ISW effecf35—37. The cross-power spectrum limit of R<25. For cosmic shear, the associated observable
is shown in Fig. 3(bottom. It helps isolate the ISW contri- is the symmetric trace free shear tensor
bution in the temperature anisotropies and provide a means
of constraining the clustering properties of the dark energy as 1
we shall see in Sec. IV D. _[Vivj_ Egijvz S(R)=[ y1(N)ors+ Yz(ﬁ)Ul]ij ,

2. Cosmic shear (39

For galaxy weak lensing the distance distribution of the
sources is directly related to the source galaxy redshift diswhereg;; is the metric on the sphere. Its harmonic moments
tribution, are magnetic-mode free and obey
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103 " T 7 T TABLE Il. Lensing survey specifications. Area is in deg
E [ ] 25 deg? CMB 2~ source density in gal/arcnfirand median redshift=1 correspond-
[ I 1000 deg? /,' €383 =T ing to band divisiong<1, 1<z<1.5 andz>1.5.
I // P2 . J—
104} / - Feser - Experiment Area N, n;
o - Ws 25 1 56
S / . Zos 25 3 (28,14,14
§ 4 E1€1] Wig0o 1000 1 56
10° E_ // _E 21000 1000 3 (28,14,14
Wesoe 27000 1 56
/ Zesw 27000 3 (28,1414
bl vl
10° 10 100 1000

flection angles are substantially correlated as shown in Fig.
6. The CMB can thus provide the high redshift anchor for
tomography studies.

/

FIG. 4. Shear power spect@ for three redshift bandsi (
=1.z<1;i=2,1<z<1.5;i=3,z2>1.5) for the fiducial mode{solid)
and the degenerate= — 2/3 model of Fig. 1. Error boxes represent
1o errors on band powers appropriate to the survey parameters o
Table Il, Z,5 and Z,4qq. Also plotted is the cosmic shear experi-
enced by the CMB.

IV. PARAMETER FORECASTS

' Here we study parameter forecasts using the Fisher matrix
formalism of Sec. Il D to combine information from the pri-
mary CMB anisotropies and gravitational lensing. We give
details of the implementation in Sec. IV A and discuss the
effect of lensing on the gravitational wave and reionization

[71£i7](N)=2 amn=,Y[(N), lens eior
Im detectability in Sec. IV B and dark energy properties in Secs.

IV C and IV D.
1 /(1+2)!
€m=" 5 m@m- (40) A. Methodology
The methodology of Fisher-matrix parameter forecasts
Shot noise produces the noise power Spec@m with the CMB and cosmic shear are well established
[34,38,1Q. Here we simply note the details of our implemen-
e 2\ tation. We approximate the parameter derivatives in the
NFE= (¥ing/ i (4D Fisher matrix (25 with finite differences of step size

where (y2)Y? is the rms intrinsic shear per galaxy due to
intrinsic ellipticities and measurement errors. We assume

(y20)*2=0.4 throughoutn; is the number of galaxies per 10°
steradian in the measurement.

With redshift measurements of not just the distribution but
of individual source galaxies, the source sample can be bro-
ken into redshift bands to yield separate but correlated power
spectra. The evolution of the spectra can be used to probe &
structures and their evolution tomographically. To test the
efficacy of tomography, we divide the total ink,=3 red-
shift bins that contain a fixed fraction of the galaxié@s the
lower half, (2) the third quartile and3) the upper quartile
and label the distributions and gg, g, andgs respectively
(See Fig. 4. The shear power spectra and cross correlationin =~ 109
bands then follow from the prescriptions above. This scheme
was found in[10] to be a good trade off between shot noise
and signal. Table Il lists the parameters of the fiducial sur- 10-10
veys used in the Fisher analysis. 10 100

Similar to the CMB lensing case, the cosmic shear is cor- !
related with the CMB temperature through the ISW effect as |G, 5. Cross correlation of cosmic shear with the CMB tem-
shown in Fig. 5. Because the ISW effect is confined to low-perature in three redshift bands; (i=1,3) for the fiducial model
I’s, this correlation only becomes measurable with lensingsolid) and the degenerate= —2/3 model of Fig. 1. Errors are
surveys that cover a significant fraction of the sky. Finallyappropriate for Planck and lensing surveys with 1000%ckgd all
the cosmic shear in the higher redshift bands and CMB desf the 65% of sky covered by Planck.

[ W1g00Planck
[ Wese,Planck

10-10

10-°

o on

Q
=
X
=

1000
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finite differences inv with those inQ), beyondl =150 with
the proportionality fixed at this scale. We have tested that the
] results are insensitive to the exact choice of the matching.
[] WasPlanck For the CMB power spectra, we have the choice of using
I W io0oPlanck the lensed or unlensed power spectra as inputs to the Fisher
' -+ matrix. As discussed in Sec. lll, using the unlensed spectra
generally underestimates the information content since lens-
ing breaks parameter degeneracies whereas using the lensed
power spectra overestimates the information content due to
the non-Gaussian correlation of power spectra errors. One
can show that using the lensed power spectra for an ideal
experiment out td =3000 and Gaussian assumptions artifi-
cially predicts a better breaking of the angular diameter dis-
tance degeneracy than complétmsmic variance limited
information on both the unlensed power spectrum and the
deflection angles. The reason is that lensing effect$ at
~1000 still arise from mass structures lat 100. Conse-
quently the sample variance on lensing effects is much larger
than the Gaussian assumption would imply. For this reason
FIG. 6. Cross correlation of CMB deflection angle with cosmic and the fact that we directly measure the deflection spectrum
shear in three redshift bands; (i=1,3) and errors appropriate for through quadratic statistics, we use the unlensed power spec-
Planck and lensing surveys with 25 and 1000%deg tra in parameter forecasts given in Tables IlI-V. The excep-
5 2 P 2 _ tion is in the discussion of the tensor amplitude &@ichode
éﬂbh =*0.1500%,  AQp*=>0.09),0% A, = polarization in Sec. IV B. Here the generationBsfodes by
*0.04)y,, An==x0.00:, A9,=*0.15;, Ar=20lr, o snqintroduces a foreground to the tensor measurement
Aw=0.1w, A log;ics=—2, where “t” refers to the fact

; : and the unlensed spectra would give a falsely optimistic limit
that two-sided differences are taken for better accuracy. De P g yop

rivatives with respect t@; or T/S are simply proportional to on the detectability of tensors.
the power spectra themselves since nonlinearities never de-
velop in the tensor sector. For the fiducial modelvef
— 1, derivatives with respect to the sound speed vanish iden- Gravitational lensing both provides and obscures informa-
tically and consequently these elements are dropped from th@®n about the tensor or gravitational wave fluctuations. In
Fisher matrix. We truncate the Fisher sum in EB5) at the absence of lensing and with the complete removal of
I max=3000; beyond this secondary anisotropies and nonlinforegrounds through their frequency dependence, the
earities in the projected potential make the associated CMB-mode of the CMB polarization maps provide a direct mea-
and lensing observables non-Gaussian and invalidate thsure of the tensor contribution that is ultimately limited only
Fisher formalism. by its own cosmic variance. By generatiBgmodes in the

As discussed ih38], the angular diameter distance degen-polarization with a blackbody spectrum, lensing adds an ex-
eracy must be protected against numerical errors. We replad¢ea source of noise bias that must be subtracted statistically.

I(I+1)CEe 21

B. Tensors and reionization

TABLE IlIl. Fisher parameter estimation errors for MAP and supplemented by various other sdurces.
refers to temperature spectid,deflection angles? polarization,H 10% Hubble constant measurements,
10% optical depth measuremeipis(z;)~0.5], W weak lensing galaxy sheaZ, weak lensing galaxy shear
with 3 redshift divisions. Experimental assumptions are given in Table | and Il

(O w T T/S In & n InQ?  InQh?
T 0.604 1.93 0.1833 0.281 0.1882 0.0746 0.1412 0.0956
TD 0.475 1.42 0.1684 0.263 0.1614 0.0711 0.1334 0.0905
TD4g00 0.195 0.53 0.0987 0.142 0.0549 0.0474 0.0719 0.0621
TP 0.330 1.07 0.0267 0.139 0.0448 0.0360 0.0696 0.0493
TPDyg00 0.162 0.48 0.0193 0.084 0.0208 0.0185 0.0160 0.0300
THyg 0.083 0.69 0.1714 0.262 0.1832 0.0721 0.1369 0.0937
Trg 0.565 1.83 0.0050 0.280 0.0834 0.0733 0.1401 0.0947
TWo5 0.295 0.87 0.1578 0.110 0.1122 0.0450 0.0745 0.0577
TZ,g 0.063 0.29 0.1297 0.094 0.0905 0.0392 0.0660 0.0518
TW1000 0.083 0.19 0.0876 0.077 0.0658 0.0230 0.0435 0.0326
TZ1000 0.010 0.08 0.0522 0.065 0.0426 0.0125 0.0288 0.0222

TPDa0oZ1000 0.010 0.04 00141 0060 0.0120 0.0110  0.0102  0.0211
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TABLE IV. Same as Table IlI but for Planck.

O, w T T/S In & n In Q. h? In Qph?
T 0.581 1.88 0.1724 0.113 0.1715 0.0052 0.0157 0.0084
TD 0.110 0.35 0.0262 0.056 0.0231 0.0051 0.0151 0.0078
TP 0.098 0.32 0.0042 0.007 0.0058 0.0033 0.0094 0.0060
TPD 0.065 0.20 0.0039 0.007 0.0054 0.0030 0.0079 0.0056
THyg 0.070 0.23 0.1641 0.106 0.1635 0.0051 0.0157 0.0082
Trg 0.553 1.79 0.0050 0.086 0.0086 0.0051 0.0156 0.0082
TW,s5 0.265 0.86 0.0387 0.057 0.0340 0.0051 0.0152 0.0079
TZ5g 0.062 0.20 0.0313 0.054 0.0259 0.0051 0.0152 0.0078
TW 1000 0.050 0.15 0.0298 0.053 0.0240 0.0050 0.0148 0.0078
TZ1000 0.010 0.05 0.0258 0.053 0.0208 0.0046 0.0135 0.0076

TPDZ;p00 0.010 0.03 0.0036 0.007 0.0039 0.0026 0.0026 0.0045

Hence the threshold for tensor detectability is set by thdensing. As such, they should be taken as a lower limit on the
sample variance of the lensing not the tensor signal. Withoutletectability of tensors. Conversely, they assume statistical
lensing(or foregrounds and systematidsis always better to  subtraction only. Limits can be improved if direct subtraction
go deep on a small patch than shallow on a wide patch. Fanethods can be developed, e.g. by de-lensing the polariza-
a fixed observation time and sensitivity, the optimal size istion with an estimator of the deflection angles. Unfortunately
approximately 3%3° [39] corresponding to where the as shown in Fig. 4, most of the CMB lensing comes from
B-power peaks. With lensing, more samples of such regiongedshifts above those probed by sourceg<tl.5 making
are required to beat down the variance on the lensing coreomplete subtraction from cosmic shear maps impossible
tamination if extremely small tensor signals are to be recovwith the next generation surveys. Direct subtraction from
ered. CMB deflection maps seems more promising but tends to
To quantify these considerations, we use the Fisher apsuffer from inadequate signal-to-noise at small angular
proach to examine thedl threshold for detection of tensors scales.
including the lensed polarization as a Gaussian random field. Lensing also indirectly assists the detection of tensors in
For the detector noise limited, all-sky MAP and Planck mis-the absence of polarization. Since lensing is sensitive to the
sions lensing has essentially no effect on the detectability oAbsolute amplitude of the potential fluctuations, measure-
tensors. ments of the CMB deflection power spectrum or cosmic
Lensing does change the optimal strategy for a dedicateshear power spectra can break the amplitude degeneracy of
polarization experiment that seeks to improve on the Planckhe CMB acoustic peaks and so improve the errors on both
experiment as shown in Fig. 7. To reach beldi®~0.01(or  tensors and the reionization optical depth.

inflationary energy scales<10'® GeV) and improve on In Fig. 8, we quantify this degeneracy breaking. While
Planck’s potential, a survey area of greater thanXl00° is  polarization information still provides better constraints on
required. tensors and reionization, deflection angle information can

Note that these considerations assume perfect foregrounchprove errors onr by 2—20(MAP to Ideal CMB experi-
and systematic error removéhcluding E, B-mode separa- men) andT/S by 2. Cosmic shear can help by a comparable
tion in a finite survey as well as a GaussiaB-field from  but somewhat smaller amount with or without tomographic

TABLE V. Same as for Table Il but for an ideal CMB experiment out t63000.

O, w T T/S In &, n In Q. h? In Qph?
T 0.451 1.45 0.1343 0.090 0.1335 0.0017 0.0020 0.0012
TD 0.050 0.16 0.0077 0.041 0.0079 0.0016 0.0020 0.0011
TP 0.049 0.16 0.0015 0.000 0.0018 0.0009 0.0008 0.0004
TPD 0.018 0.06 0.0015 0.000 0.0017 0.0009 0.0008 0.0004
THyg 0.069 0.22 0.1299 0.084 0.1292 0.0016 0.0020 0.0011
Trg 0.435 1.40 0.0050 0.065 0.0054 0.0016 0.0020 0.0011
TW,s5 0.248 0.80 0.0248 0.045 0.0245 0.0016 0.0020 0.0011
TZ55 0.062 0.20 0.0129 0.042 0.0130 0.0016 0.0020 0.0011
TW 1900 0.047 0.15 0.0059 0.041 0.0059 0.0016 0.0020 0.0011
TZ1000 0.010 0.03 0.0043 0.041 0.0046 0.0016 0.0020 0.0011

TPDZ;p00 0.008 0.03 0.0012 0.000 0.0015 0.0009 0.0007 0.0004
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104 10 102 100 Jay C. Equation of state

107 f MAP | As is well known and shown in Fig. 9, there is an angular
diameter distance degeneracy between the dark energy equa-
tion of statew and energy densit{2 , . There are many ways

to break the angular diameter distance degeneracy some in-
volving pure geometry and other employing the clustering
properties of the dark matter and dark energy. Consequently
] strong consistency checks will be available for parameter
102 ] constraints and underlying assumptions for dark energy pa-

i rameters.

I Although both MAP and Planck show a strong degen-
104k ] eracy, it is important to note that for the Planck experiment
1: S—T ST the direction orthogonal to the degeneracy line is highly con-
survey dimension (degrees) strained. This corresponds to the better constraint® gh?
which also enters into the angular diameter distance relation.

FIG. 7. Improvement in the polarized MAP and Planck de- A purely geometric way of breaking the degeneracy then
tection thresholds for tensors with a dedicated polarization surveYs o introduce constraints on the Hubble constant. In a flat
Th_e statistical subtraction of the Ienng‘node_contamlnatlpn re- %niverse, a precise determination ﬁfmhz combined with
quires a large survey area and places and ultimate detection thresh- . . . .
old of (3—4)x 10" GeV for the energy scale of inflation. constraints orh yl_eld _correspondlng constraints @A: 1

—Q,, as shown in Fig. 9. For the Planck experiment, the

10% measurement of the Hubble constant currently claimed
information. The reionization epoch is also potentially di-[40] is sufficient to yield an interesting constraint on the
rectly observable in the Gunn-Peterson effect and so wequation of states(w)=0.23 (see Table IV. Using the
show the influence of a prior ofr(7)=0.17 on the other baryon bumps in the galaxy power spectrum as a standard
parameters in Tables IlI-V. ruler to measure the Hubble constant, this means of degen-
eracy breaking can potentially be substantially improved
[38].

As seen in Fig. 3, the CMB deflection power spectrum is
another means of breaking the degeneracy. It differs by also
involving the effect of the dark energy on the clustering of
the matter. Because of the nature of the quadratic estimator
of the deflection angle, it is crucial here to resolve CMB
temperature anisotropies through the damping taill to
~3000[5]. This is reflected in the negligible improvement in
o(w) for MAP alone to the order of magnitude improvement
for the ideal experiment.

Information on the deflection power spectra do not have
to come from the same experiment as that for the tempera-
ture anisotropies themselves. To measure deflection angles,
one requires high resolution in the temperature map but es-
sentially no information on the large-scale anisotropy itself.
Combining an all sky experiment such as MAP with an ex-
periment that is dedicated to measuring secondary arcminute
scale anisotropies can therefore be fruitful. We show in Fig.
9 that a 4000 degsurvey is sufficient to provide interesting
constraints on the equation of state.

. ) . . . . Similarly cosmic shear power spectra also provide infor-
0.1 02 03 01 02 03 mation on the equation of state. As shown [}, if the
T T whole power spectrum can be recovered| $910000 and

FIG. 8. Breaking of the tensor-reionization degeneracy. Top Ieft:theoretlcal predictions in the deeply non-linear regime im-

addition of CMB deflection angle informatiofiD” ) to the MAP prO\_/ed, a single reds_h|ft band suf_flces to yield _powerful con-
(thick) and Planck(thin) temperature constraints. For MAP, we as- Sraints on the equation of state in the Gaussian approxima-
sume that the deflection angle information comes from a separafé®n- Non-linearities produce non-Gaussianity in the cosmic
4000 ded secondary anisotropy survey. For Planck, we assume thathear that degrades the amount of information in the deeply
they are internal. Top right; the addition of a 25 8egsmic shear Nonlinear regime beyont~3000[41]. In Fig. 9 we show
survey with Z,s) and without {V,s) tomographic redshift informa-  that information in the translinear regimelef 3000 suffices
tion. Bottom left: same but for a 1000 degosmic shear survey. to determine the dark energy equation of state when broken
Bottom right: addition of polarization information. into multiple redshift bands and combined with CMB tem-

102

Planck

é V14 (GeV)

o(T/S)
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02
04
N FIG. 9. Improvement on the
06 MAP (thick) and Planck (thin)
temperature(T) determination of
08 the dark energy equation of state
and density. Clockwise from the
top left: addition of CMB deflec-
-1 L . o
T T tion angles D); polarization P);
=—=MAP 10% Hubble constant measure-
02 [ — Planck ments {); 25ded cosmic shear
survey with ¢ solid) and without
0.4 (W dashedtomography; same but
£ for 1000 ded; Hubble constant
0.6 TH (TH), plus deflections), plus a
10 1000 deg lensing surveyAll).
038
-1

perature information. Notice that a 25 degurvey with red-

shift information (filled ellipses is competitive with a

1000 ded survey without redshift information ordashed 109
ellipses. E

With the multitude of avenues for constraints on the dark

energy equation of state discussed above as well as those
from high redshift supernovdd] and number coun{st2], it e
is possible that the observations will be inconsistent with the
simple underlying model of a constant equation of state and
dark energy clustering appropriate for a single slowly-rolling
scalar field. Since geometric tests can potentially probe the
time evolution of the equation of state, we conclude in the
next section with a discussion of dark energy clustering. 101 | .

Q1(%10 E =

00

Cefi=1
oo Cef=0.1

I(+1)C

D. Dark energy clustering i Iw=|—|2/|3|,|£|2|,|\=0.6l5 L . o .
10 100 1000

If the equation of state of the dark energy>—1, then
there is a new dimension to the dark energy defined by its
clustering properties. In Sec. Il A, we introduced the sound
speed of the dark energy for this purpose. Recall that the
scalar field candidate for the dark energy lgs=1.

As shown in Figs. 2 and 10, the ISW effect in the CMB
rapidly decreases with the sound speed but is difficult to
isolate from other contributions to the anisotropies at low
By breaking the amplitude degeneracy, the deflection power
and cosmic shear power spectra help isolate the ISW effect.
Furthermore the deflection angles are themselves correlated
with the temperature anisotropies leading to an additional
more direct handle on the dark energy clustefisee Fig. 10 A0 ] o .
bottom. For Planck the constraints are equivalent to saying 10 100 1000
the dark energy is smooth at least acress0% of the cur- !
rent horizon or 1.4 Gpc in the fiducial model. As Table VI  Fic. 10. Dark energy clustering in a model with= — 2/3 and
shows, there is room for substantial improvement especiallg —1, 0.1 and other parameters the same as in the fiducial model.
on the CMB deflection angle side for a next generation misTop: effect on the CMB. Bottom: cross correlation of deflection
sion with higher angular resolution. With an ideal CMB ex- angles with the temperature anisotropies. Error boxes are for Planck
periment to |=3000 and a cosmic shear survey with and the ideal experiment as in Fig. 1.

T

+1)CP2m

10108
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TABLE VI. Fisher parameter estimation errors for dark energy
parameters in a fiduciab= —2/3 model. Notation follows Table
Ill. Parameters not shown are marginalized.

Planck Ideal

Qy w l0g1Ceii 24 w 1093 Cefr : ]
T 0.4377 1.105 4.1221 0.3527 0.890 3.2039 L numerical
D 0.0861 0.215 1.0938 0.0329 0.083 0.4973 | analytical
TP 0.1967 0.497 1.1856 0.1085 0.274 0.8531 '
TPD 0.0431 0.099 0.7516 0.0088 0.021 0.3828 s 3
TH1g 0.0693 0.179 3.8768 0.0687 0.173 3.0108 02 i ]
TWoy5 0.2377 0599 1.4426 0.2201 0.556 1.1640 [ w=1/2, Q,=0.65, ceff=1 1
TZys 0.0623 0.158 1.3827 0.0618 0.156 1.0978 TR oY .

| S
TWiop, 00479 0.114 1.3599 0.0447 0.113 1.0798 ' — '
TZioss  0.0106 0.030 1.3497 0.0099 0.025 1.0724

TPDZp0, 0.0098 0.023 0.7264 0.0058 0.014 0.3790 L

: < 06|
1000 deg, the dark energy smoothness can be constrained toi@

be ~40% of the current horizon or 6 Gpc. If cosmic shear
surveys can reach the sky coverage and control of systemat- 04
ics to measure the multipolds<100 then additional infor-
mation and consistency checks will be available from their o _
cross-correlation with the CMB temperature mdpse Fig. TE .
5). Note however that all of these constraints greatly weaken [ ]
as the equation of state approaches.

[ w=1/2, Q,=0.65
Lol " M TR
0.0001

0.001 I O(;l

V. DISCUSSION k (h Mpe™)

Gravitational lensing as manifest in CMB deflection and FIG. 11. Potential transfer function as a _fun_ction of redshift
cosmic shear measurements complements CMB primarQOp) and dark energy sound speébttom). Solid lines represent

anisotropies by providing information that breaks degeneralumerical results; dashed lines represent the analytic fifsL.3f

cies involving the dark energy density and equation of state>UPPlemented by dark energy clustering.
reionization and gravitational waves, specifically the angular ) ) .
diameter distance degeneracy and the amplitude degenei@f-information from disparate sources dangerous. In particu-
cies in the acoustic peaks. In this way, it is similar in utility 1ar, the information supplied by lensing relies in large part on
to the well-studied CMB polarization and offers sharp con-the accurate absolute calibration of the power spectra. On the
sistency checks on the difficult-to-measure dark energy paC.:MB lensing side, this involves fI.I'St an accurate determina-
rameters. Conversely, CMB lensing obscures polarization intion of the CMB power spectrum itself as well as any detec-
formation on the gravitational waves and necessitates largl®r or foreground power spectrum contaminants. On the cos-
sky coverage to beat down sample variance even with perfe@ic shear side, it requires exquisite control over the myriad
detectors and no foregrounds. systematics that enter into the measurement of shear from
CMB lensing offers information that is similar to cosmic 9alaxy images. Furthermore, Fisher forecasts are only probe
shear but with important additional strengths and weakihe degeneracy structure locally around a fiducial model.
nesses. Its primary strengths are that it is intrinsically moréVhen error ellipses are extended in parameter space due to
sensitive to structure on larger scales and higher redshiftdegeneracies, Fisher forecasts can yield both overly optimis-
than even the next generation of wide-field galaxy surveystic O peSS|m|s_t|c results._Our results provide the mo_twann
These strengths translate into the opportunity to study th{aor fut_ure studies that (_jo incorporate these_ systematic effects
clustering of the dark energy, primarily through Crc,Ss_mvolvmg the combination _of (;osmologlpal information from
correlation with the ISW effect. Indeed any such correlationCMB anisotropy and gravitational lensing.
is a direct indication of dark energy in a spatially flat uni-
verse. Its pr_imary disadvantage is that the sources are con- ACKNOWLEDGMENTS
fined to a single epoch, the last scattering surface, so that
tomographic studies of the evolution of the dark energy and | acknowledge useful conversations with R. Caldwell,
dark matter are impossible. Galaxy lensing with source redA.R. Cooray, D.J. Eisenstein, D. Huterer, J. Miralde-Escude,
shift information can therefore better constrain the equatioM. Zaldarriaga and the participants of the Aspen Wide-Field
of state of the dark energy including potentially its evolution. Survey workshop where this work was begun. This work was
It is important to realize that Fisher parameter forecastsupported by NASA NAG5-10840, DOE OJI and by the Al-
include statistical errors only making the blind combinationfred P. Sloan Foundation.
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APPENDIX: POTENTIAL EVOLUTION AND TRANSFER where the solution assumes a constant equation of state.
FUNCTION Next, we introduce the interpolation function
Above the sound horizon of the dark energy, defined as o
+ dz M 3 1 a7
s(a)=f —Ceff, (A1)
z H(zZ')
where

where z; is some initial effectively infinite redshift, the

Bardeen curvature remains constant after radiation becomes k

negligible at some epoch,q. The Newtonian curvature con- a= EVs(Z)S(ZA)- (A8)
sequently obeys

D (k,2)=DP(2) (K, Zmg), (A2)  The full evolution of the potential from the matter dominated
epoch on can be described by
where the decay function in the clustering regimé4ig|

@ (k,2)=Tw(k,2)Ps(2) {(K,Zmg)- (A9)

ada
P (2)= 1—£f <), Y . | i
alop Since in the matter dominated regime, the potential is related
. to the matter density fluctuations by the Poisson equation,
wherea=(1+2)"". Conversely, for scales that are muchthe potential transfer function asymptotically approaches

smaller than the sound horizon at the epoch of dark energy scaled version of the matter transfer functidg(k)
domination the dark energy may be considered effectivelyt highk (see Fig. 11

smooth for all time and hence the Newtonian curvature

obeys g 2(k2) ®(02)
D (k,2)= oK, 2) (K, Zmo), (Ad) oKD= T2y 02
where Tw(k,2)
= T.(02) Tm(K), (A10)

3
B+ S[1-W]Q, () D=0

5 3 0
5~ W (2)

DL+
(A5)  whereT,,(K) is the matter transfer function assuming scale-
o i independent growth(a smooth dark energy compongnt

and’ denotes derivatives with respect toalnTo match so-  Note that the true matter transfer function is still not the
lutions @ ¢(zmng) = Pg(Zmd in the matter dominated epoch, same as the potential transfer function due to dark energy
the initial conditions are set to b®y(zmd) =3/5, ®¢(Zmd)  contributions to the Poisson equation. Moreover, there is no
=0. one unique matter transfer function since in the presence of
The decay function in the intermediate regime can be apdark energy clustering the growth of density perturbations
proximated with a smooth interpolation of these two SO|U-differS between the Commomy used Synchronous and comov-
tions. First we define the epoch of dark energy domination aﬁ]g gauges. The Newtonian potentia| transfer function is

1 Q.| 1w most closely related to the comoving gauge matter transfer
pa(Z) _ 2, (1+zy)= ( W_A) . (Ae) functions and is in fact the density-weighted sum of the com-
pm(Zp) Qn ponents.
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