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Microlensing by natural wormholes: Theory and simulations
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We provide an in depth study of the theoretical peculiarities that arise in effective negative mass lensing,
both for the case of a point mass lens and source, and for extended source situations. We describe novel
observational signatures arising in the case of a source lensed by a negative mass. We show that a negative
mass lens produces total or partial eclipse of the source in the umbra region and also show that the usual
Shapiro time delay is replaced with an equivalent time gain. We describe these features both theoretically, as
well as through numerical simulations. We provide negative mass microlensing simulations for various inten-
sity profiles and discuss the differences between them. The light curves for microlensing events are presented
and contrasted with those due to lensing produced by normal matter. The presence or absence of these features
in the observed microlensing events can shed light on the existence of natural wormholes in the Universe.
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I. INTRODUCTION

Wormhole solutions to the Einstein field equations ha
been extensively studied in the last decade~see Refs.@1,2#
and references cited therein, as well as the book by Vis
@3#!. Wormholes basically representbridgesbetween other-
wise separated regions of the space-time~see Fig. 1! and
need a special kind of matter in order to exist. This mat
known as exotic, violates the energy conditions~EC!, par-
ticularly the null ~or averaged null! one @3–5#.

To specify what we are referring to when talking abo
the energy conditions, we shall provide their pointwise for
Apart from the null~NEC!, we have the weak~WEC!, the
strong ~SEC!, and the dominant~DEC! energy conditions.
For a Friedmann-Robertson-Walker space-time and a dia
nal stress-energy tensorTmn5(r,2p,2p,2p) with r the
energy density andp the pressure of the fluid, they read

NEC⇔~r1p>0!,

WEC⇔~r>0! and ~r1p>0!,

SEC⇔~r13p>0! and ~r1p>0!,

DEC⇔~r>0! and ~r6p>0!. ~1!

The EC are, then, linear relationships between the ene
density and the pressure of the matter generating the sp
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time curvature. We can immediately see why the poss
violations of the EC are so polemic. If NEC is violated, th
WEC is also violated. Negative energy densities—and
negative masses—are thus physically admitted.

It is important to keep in mind that the EC of classic
general relativity are only conjectures. They are widely us
to prove theorems concerning singularities and black h
thermodynamics, such as the area increase theorem, th
pological censorship theorem, and the singularity theorem
stellar collapse@3#. However, the EC lack a rigorous proo
from fundamental principles. Moreover, several situations
which they are violated are known, perhaps the most quo
being the Casimir effect, see Refs.@2,6#. Typically, observed
violations are produced by small quantum systems, resul
of the order of\. It is currently far from clear whether ther
could be macroscopic quantities of such an exotic, e
WEC-violating, matter. If it does exist, macroscopic negat
masses could be part of the ontology of the Universe.

In fact, the possible existence of negative gravitatio

FIG. 1. Left: embedding diagram for a wormhole. Two mouth
joined by a tunnel, can connect regions otherwise very much s
rated~here the normal space should fold as a sheet of paper whe
the wormhole would be a tunnel from one side of the sheet to
other!. Right: embedding diagram for a black hole. The singular
here is represented as a pinch off of the wormhole tunnel.
©2001 The American Physical Society01-1
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masses is being investigated, at least, since the end o
nineteenth century@7#. From a Newtonian point of view, we
can differentiate four possible situations@8#: ~i! all masses
are positive,~ii ! inertial mass is positive and gravitation
mass is negative,~iii ! inertial mass is negative and the grav
tational mass is positive, and~iv! all masses are negative
Most of the nineteenth century literature on negative mas
is devoted to case~ii !. From a relativistic point of view,
however, the situation is quite different; the equivalen
principle requires that gravitational and inertial masses c
not be considered distinct any longer. Test particles m
along geodesic lines in accordance with the initial con
tions, independently of the fact that their energy density
positive or negative. Negative energy densities or nega
masses, then, are repulsive not only for ordinary matter
for exotic matter as well. This might conceivably pose
stability problem for large amounts of exotic material, requ
ing large values of tension in order to keep the equilibriu
configuration@1#. In Ref. @3#, Visser discusses some cond
tions to be satisfied for a dynamic wormhole in order to
stable against explosion. In more complicated astrophys
systems, stability could be achieved through electromagn
forces.

Since wormholes have to violate the null energy condit
in order to exist, the hypothesis underlying the positive m
theorem no longer applies, and there is nothing in princi
that can prevent the occurrence of a negative total m
Indeed, this is just a way of saying that we need to ha
some negative mass near the throat to keep the wormh
open@4#. Examples of wormhole solutions, both with pos
tive and negative mass, quickly came out after the pionee
work by Morris and Thorne@1# ~see@3# for a review!. Visser,
for instance, suggested a particular class of solutions, lac
spherical symmetry configurations in which there is a fl
space wormhole framed by struts of an exotic material v
ant of the cosmic strings solution@9#. These kinds of worm-
holes and many others, including the simplest one known
an absurdly benign wormhole@1#, would have negative mas
density. Typically, near the throat the following relationsh
holds:

mass at throat52
radius3c2

G
. ~2!

Then, for a radius equal to 1 m the mass of the mouth will b
equal to21 Jupiter mass. The total mass seen at infinity,
imprint of the wormhole on the whole space-time, will d
pend on the details of the model, such as the neighbo
matter, and can be positive, negative or zero according to
specific case. Whether or not mass separation is possib
not clear yet.

Some speculations have been made about how infla
can be responsible to enlarge a microscopic wormhol
believed to exist in the Planck foam—out to microscop
dimensions@10#. This mechanism could result in a popul
tion of natural wormholes.

Recently, Mann@11# has demonstrated that, under certa
circumstances, regions of negative energy density can
dergo gravitational collapse into a black hole. The result
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exterior black hole space-times necessarily have nega
mass and non-trivial topology. Mann modeled the negat
masses with a stress energy tensor for a cloud of freely
ing dust, given byTmn52uruumun , where the energy den
sity r,0 andun is the associated four velocity. He require
that the metric exterior to the dust cloud must~a! have a
negative Arnowitt-Deser-Misner-~ADM- ! type mass param
eter and~b! have~in its maximal extension! all of its singu-
larities cloaked by event horizons. A complete understand
of negative mass black holes yet remains to be attained
well as of the precise astrophysical limits on the negat
mass that these objects could give.

Clearly, no better way than devising observational te
for deciding on negative mass existence is available.
instance, if natural wormholes with negative masses actu
exist in the universe~e.g. if the original topology after the
big-bang was multiply connected!, then there could be som
observable electromagnetic signatures that might lead
their identification. The approach of the present work poi
in this direction; we do not know whether there exists
astrophysical population of objects with negative mass, buif
they indeed exist, then we will be providing the specific o
servational signatures that we can expect.

A specific comment is now in order. Since the prima
motivation for our theoretical work is observational, it
appropriate to set the experimental context more explici
In this paper, as in the work by Crameret al. @13#, we take
wormholes as a useful and appealing theoretical scenario
the appearance of negative masses, but it applies,mutatis
mutandis, to any possible object possessing a negative m
Discovery of such objects will not prove the existence
wormholes for sure, although it will certainly enhance t
possibilities for wormholes to exist. Equivalently, if after e
tensive searches, we disprove the existence of nega
masses, wormholes with positive total mass can still be p
of the Universe, and they would need to be unveiled
alternative techniques.

The idea that wormholes can act as gravitational len
and induce a microlensing signature on a background so
was first suggested by Kim and Cho@12#. Unfortunately,
their geometry was that of a perfect alignment of a sour
both wormhole’s mouths and an observer, which is, on
common sense ground, quite unlikely. They also conside
both mouths to be of positive mass. Crameret al. @13# car-
ried out more detailed analysis of negative mass wormho
and considered the effect they can produce on backgro
point sources, at non-cosmological distances. The gene
zation to a cosmological scenario was carried out by Tor
et al. @14#, although lensing of point sources was still use
As far as we are aware, the first and only bound on
possible existence of negative masses, imposed using a
physical databases, was given by Torreset al. @14#. These
authors showed that the effective gravitational repulsion
light rays creates two bursts, which are individually asy
metric under time reversal, although mirror images of ea
other. Recently, Anchordoquiet al. @15# searched in existen
gamma-ray bursts databases for signatures of wormhole
crolensing. Although they detected some interesting can
dates, no conclusive results could be obtained. Peculi
1-2
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MICROLENSING BY NATURAL WORMHOLES: THEORY . . . PHYSICAL REVIEW D65 023001
asymmetric gamma-ray bursts@16#, although highly uncom-
mon, could probably be explained by more conventional
potheses, such as precessing fireballs~see, for instance, Ref
@17#!.

The case of macrolensing was recently analyzed by u
well, showing that if large concentrations of localized neg
tive masses do exist, we should be able to see distinc
effects upon a deep background@18#. All in all, the possible
existence of wormholes or of any kind of negative masse
the Universe cannot yet be discarded. In order to confirm
to deny the existence of such masses, we need to deve
strong theoretical framework and to provide a clear t
through observations.

In this work we revisit the microlensing by natural worm
holes of stellar and sub-stellar masses. We provide an
depth study of the theoretical peculiarities that arise in ne
tive mass microlensing, both for a point mass lens a
source, and for extended source situations. For the first t
we present negative mass microlensing simulations, show
the resulting shapes of the images, the intensity profiles,
time gain function, the radial and tangential magnificatio
and other features. In this regard, this work extends
deepens previous papers in several ways, and gives a
plete description from where to analyze, from a compu
tional and quantitative point of view, observational pred
tions, as the ones presented for chromaticity in Ref.@19#.
Although we will deal with a Schwarzschild lens, our trea
ment in the weak field approximation will be useful to stu
lensing by any compact object which, seen from a large
tance, appears basically as a point lens.

The article is divided as follows. In Sec. II we introduc
the basic theoretical framework of gravitational lensing p
duced by a generic negative mass, assumed—as
explained—to be a wormhole. Note that we never consi
light going through the wormhole mouths, but being d
flected in the neighborhood. We introduce the effective
fractive index, magnification results, the time gain functio
and other features, in several subsections of Sec. II. Sec
III presents microlensing simulations, showing the form a
position of the produced images. In Sec. IV, we treat
extended source case, also using a numerical code and ta
into account different source profiles. We finally give som
concluding remarks.

II. LENSING BY A POINT OF NEGATIVE MASS

In this paper we consider lensing only by a point negat
mass lens, and thus we can use all the assumptions co
rent with the treatment of the Schwarzschild lens:

Geometrical optics approximation—the scale over which
the gravitational field changes is much larger than the wa
length of the light being deflected.

Small-angle approximation—the total deflection angle is
small. The typical bending angles involved in gravitation
lensing of cosmological interest are less than,18; therefore
we describe the lens optics in the paraxial approximation

Geometrically-thin lens approximation—the maximum
deviation of the ray is small compared to the length scale
which the gravitational field changes. Although the scatter
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takes place continuously over the trajectory of the phot
appreciable bending occurs only within a distance of the
der of the impact parameter.

We begin the discussion of gravitational lensing by defi
ing two planes, the source and the lens plane. These pla
described by Cartesian coordinate systems (j1 ,j2) and
(h1 ,h2), respectively, pass through the source and deflec
mass and are perpendicular to the optical axis~the straight
line extended from the source plane through the deflec
mass to the observer!. Since the components of the imag
position and the source positions are much smaller in co
parison to the distances to lens and source planes, we
write the coordinates in terms of the observed angles. Th
fore, the image coordinates can be written as (u1 ,u2) and
those of the source as (b1 ,b2).

A. Effective refractive index of the gravitational field
of a negative mass and the deflection angle

The ‘‘Newtonian’’ potential of a negative point mass len
is given by

F~j,z!5
GuM u

~b21z2!1/2
, ~3!

whereb is the impact parameter of the unperturbed light r
andz is the distance along the unperturbed light ray from
point of closest approach. We have used the term Newton
in quotation marks since it is, in principle, different from th
usual one. Here the potential is positive defined and
proaching zero at infinity@3#. In view of the assumptions
stated above, we can describe light propagation close to
lens in a locally Minkowskian space-time perturbed by t
positive gravitational potential of the lens to first pos
Newtonian order. In this weak field limit, we describe th
metric of the negative mass body in orthonormal coordina
x05ct, x5(xi) by

ds2'S 11
2F

c2 D c2dt22S 12
2F

c2 D dl2, ~4!

wheredl5uxu denotes Euclidean arc length. The effect of t
space-time curvature on the propagation of light can be
pressed in terms of an effective index of refractionneff @20#,
which is given by

neff512
2

c2
F. ~5!

Thus, the effective speed of light in the field of a negati
mass is

veff5c/neff'c1
2

c
F. ~6!

Because of the increase in the effective speed of light in
gravitational field of a negative mass, light rays would arri
faster than those following a similar path in vacuum. Th
leads to a very interesting effect when compared with
1-3
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SAFONOVA, TORRES, AND ROMERO PHYSICAL REVIEW D65 023001
propagation of a light signal in the gravitational field of
positive mass. In that case, light rays are delayed relativ
propagation in vacuum—the well knownShapiro time delay.
In the case of a negative mass lensing, this effect is repla
by a new one, which we shall calltime gain. We will de-
scribe this effect in more detail in the following subsection

Defining the deflection angle as the difference of the i
tial and final ray direction

aªêin2êout, ~7!

whereêªdx/dl is the unit tangent vector of a rayx( l ), we
obtain the deflection angle as the integral along the light p
of the gradient of the gravitational potential

a5
2

c2E “'Fdl, ~8!

where“'F denotes the projection of“F onto the plane
orthogonal to the directionê of the ray. We find

“'F~b,z!52
GuM ub

~b21z2!3/2
. ~9!

Equation~7! then yields the deflection angle

a52
4GuM ub

c2b2
. ~10!

It is interesting to point out that in the case of the negat
mass lensing, the term ‘‘deflection’’ has its rightfu
meaning—the light is deflected away from the mass, un
in the positive mass lensing, where it is bent towards
mass.

B. Lensing geometry and lens equation

In Fig. 2 we present the lensing geometry for a point-li
negative mass. From this figure and the definition of
deflection angle@Eq. ~6!#, we can obtain the relation betwee
the positions of the source and the image. We only nee
relate the radial distance of the source and the image f
the center, since due to circular symmetry, the azimu
anglew is not affected by lensing. This gives

~b2u!Ds52aD ls ~11!

or

b5u2
D ls

Ds
a. ~12!

With the deflection angle@Eq. ~9!#, we can write the lens
equation as

b5u1
4GuM u

c2j

Dls

Ds
5u1

4GuM u

c2

Dls

DsDl

1

u
. ~13!
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C. Einstein radius and the formation of images

A natural angular scale in this problem is given by t
quantity

uE
25

4GuM u

c2

D ls

DsD l
, ~14!

which is called the Einstein angle. In the case of a posit
point mass lens, this corresponds to the angle at which
Einstein ring is formed, happening when source, lens
observer are perfectly aligned. As we will see later in th
section, this does not happen if the mass of the lens is n
tive. There are other differences as well. A typical angu
separation of images is of order 2uE for a positive mass lens
Sources which are closer than aboutuE to the optical axis are
significantly magnified, whereas sources which are loca
well outside the Einstein ring are magnified very little. A
this is different with a negative mass lens, but nonethele
the Einstein angle remains a useful scale for the descrip
of the various regimes in the present case and, therefore
shall use the same nomenclature for its definition.

The Einstein angle corresponds to the Einstein radius
the linear scale~in the lens plane!:

RE5uED l5A4GM

c2

D lsD l

Ds
. ~15!

In terms of the Einstein angle the lens equation takes
form

FIG. 2. Lensing geometry of a negative mass.O is the observer,
S is the source,W is the negative mass lens,I 1 is one of the images.
b is the angle between the source and the lens—position of
source,u is the angle between the source and the image—posi
of the image, anda is the deflection angle.b is the impact param-
eter andDl , Ds and Dls are angular diameter distances. Oth
quantities are auxiliary.
1-4
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MICROLENSING BY NATURAL WORMHOLES: THEORY . . . PHYSICAL REVIEW D65 023001
b5u1
uE

2

u
, ~16!

which can be solved to obtain two solutions for the ima
positionu:

u1,25
1

2
~b6Ab224uE

2!. ~17!

Unlike in the lensing due to positive masses, we find t
there are three distinct regimes here and, thus, can cla
the lensing phenomenon as follows:

~I! b,2uE—There is no real solution for the lens equ
tion. It means that there are no images when the sourc
inside twice the Einstein angle.

~II ! b.2uE—There are two solutions, corresponding
two images both on the same side of the lens and betw
the source and the lens. One is always inside the Eins
angle, the other is always outside it.

~III ! b52 uE—This is a degenerate case,u1,25uE; two
images merge at the Einstein angular radius, forming
radial arc ~see Sec. II E!.

We also obtain two important scales: one is the Einst
angle (uE)—the angular radius of the radial critical curv
the other is twice the Einstein angle (2uE)—the angular ra-
dius of the caustic. Thus, we have two images, one is alw
inside theuE, one is always outside; as a source approac
the caustic (2uE) from the positive side, two images comin
closer and closer together, and nearer the critical cu
thereby brightening. When the source crosses the caustic
two images merge on the critical curve (uE) and disappear.

D. Time gain and time-offset function

Following @21#, we define a scalar potential,c(u), which
is the appropriately scaled projected Newtonian potentia
the lens,

c~u!5
D ls

D lDs

2

c2E F~D lu,z!dz. ~18!

For a negative point mass lens it is

c~u!5
D ls

D lDs

4GuM u

c2
lnuuu. ~19!

The derivative ofc with respect tou is the deflection angle

“uc5Dl“bc5
2

c2

Dls

Ds
E “'Fdz5a. ~20!

Thus, the deflection angle is the gradient ofc—the deflec-
tion potential

a~u!5“uc. ~21!

From this fact and the lens equation~11! we obtain

~u2b!1“uc~u!50. ~22!
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This equation can be written as a gradient,

“uF1

2
~u2b!21c~u!G50. ~23!

If we compare this equation with that for the Fermat’s pr
ciple @21#

“u t~u!50, ~24!

we see that we can define the time-offset function~opposite
to time-delay function in the case of positive mass lens! as

t~u!5
~11zl!

c

D lDs

D ls
F1

2
~u2b!21c~u!G5tgeom1 t̃ pot,

~25!

where tgeom is the geometrical time delay due to the ext
path length of the deflected light ray relative to the unp
turbed one. It remains the same as in the positive cas
increase of light-travel-time relative to an unbent ray. T
coefficient in front of the square brackets ensures that
quantity corresponds to the time offset as measured by
observer. The second termt̃ pot is the time gain a ray experi
ences as it traverses the deflection potentialc(u), with an
extra factor (11zl) for the cosmological ‘‘redshifting.’’
Thus, cosmological geometrical time delay is

tgeom5
~11zl!

c

D lDs

D ls

1

2
~u2b!2, ~26!

and cosmological potential time gain is

t̃ pot5
~11zl!

c

D lDs

D ls
c~u!. ~27!

In Fig. 3 we show the time delay and time gain function
The top panel shows tgeom for a slightly offset source. The
curve is a parabola centered on the position of the sourcb.
The central panel displays t˜

pot for a point negative mass lens
This curve is centered on the lens. The bottom panel sh
the total time-offset. Images are located at the station
points of ttotal. Here we see two extrema—maximum an
minimum—on the same side~right! from the optical axis
~marked by dots!.

We can find the time difference between the two imag
u1 andu2, that is, if a source has intrinsic variability, it wil
appear in the two images at an interval

Dt125
r s

c
~11zl!~n1/22n21/22 ln n!, ~28!

where byn we denoted the ratio of absolute values of ma
nifications of images,

m1

m2
5FAu2241u

Au2242u
G 2

, ~29!

and u is the scaled angular position of the sourceu5b/uE
and r s is the Schwarzschild radius of the lens.
1-5
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E. Magnifications

Light deflection not only changes the direction but a
the cross section of a bundle of rays. For an infinitesima
small source, the ratio between the solid angles gives the
amplification due to lensing

umu5
dv i

dvs
. ~30!

For an infinitesimal source at angular positionb and image
at angular positionu, the relation between the two soli
angles is determined by the area distortion, given in turn
the determinant of the Jacobian matrixA of the lens map-
ping u °b

A[
]b

]u
. ~31!

For a point mass lens magnification is given by

m215Ubu db

duU. ~32!

The image is thus magnified or demagnified by a factor
umu. If a source is mapped into several images, the to
amplification is given by the sum of the individual imag
magnifications. From the lens equation~15!, we find

b

u
5

u21uE
2

u2
;

db

du
5

u22uE
2

u2
. ~33!

Thus,

FIG. 3. Geometric time delay, gravitational time gain and to
time offset produced by a point negative mass lens for a source
is slightly off the optical axis.
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m1,2
215U12

uE
4

u1,2
4 U , ~34!

and usingu from Eq. ~28!, we find the total magnification
~Fig. 4, bottom panel, continuous curve! as

m tot5um1u1um2u5
u222

uAu224
. ~35!

The tangential and radial critical curves follow from the si
gularities in

m tan5UbuU
21

5
u2

u21uE
2

~36!

and

m rad5Udb

duU
21

5
u2

u22uE
2

. ~37!

m rad diverges whenu5uE—angular radius of the radial criti
cal curve.m tan always remains finite, which means that the
are no tangential critical curves—no tangential arcs can
formed by the negative point mass lens. In Fig. 4 we sh
the magnification curves~radial, tangential and total! for
both positive~upper panel! and negative mass lenses~bottom
panel!. The difference can be seen as follows—in the up
panel there is no singularity in the radial curve~no radial arcs
are formed by the positive mass lens!, whereas in the bottom
panel we see that the curve for the radial magnification
periences a singularity.

III. MICROLENSING

When the angular separation between the imagesDu

Du5Ab224uE
2 ~38!

is of the order of milliarcsecs, we cannot resolve the t
images with existing telescopes and we can only observe
lensing effect through their combined light intensity. Th
effect is calledmicrolensing. Both the lens and the source a
moving with respect to each other~as well as the observer!.
Thus, images change their position and brightness. Of
ticular interest are sudden changes in luminosity, which
cur when a compact source crosses a critical curve. For
positive mass lensing the situation is quite simple~Fig. 5!
~for a review on the positive mass microlensing and its
plications, see@27#!.

For a negative mass lens the situation is different.
define a dimensionless minimum impact parameterB0, ex-
pressed in terms of the Einstein radius, as the shortest
tance between the path line of the source and the lens.
three different values ofB0 we have three different lensin
configurations shown in Figs. 6, 7, and 8. Note the la
difference in the shapes of the images for these three

l
at
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FIG. 4. The magnifications, tangentialm tan ~dotted lines!, radialm rad ~dash-dotted lines!, and totalm ~continuous curves!, are plotted as
functions of the image positionu for two cases. In the upper panel for the positive mass, in the bottom panel for the negative ma
singularities ofm tan andm rad give the positions of the tangential and radial critical curves, respectively. In the upper panel the singul
in the tangential critical curve, in the bottom panel, instead, in the radial critical curve. HereuM u51 M ( , Ds50.05 Mpc andD l

50.01 Mpc. Angles are in arcseconds.
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gimes. In Fig. 9 we show the case of a minimum imp
parameter equal to zero,B050, that is, the path of the sourc
passes through the lens.

It can be assumed without the loss of generality that
observer and the lens are motionless and the source mov

FIG. 5. Schematic representation of the geometry of the pos
mass lensing due to the motion of the source, lens and the obs
~in this case we can consider only the motion of the source in
plane perpendicular to the optical axis!. The lens is indicated with a
dot at the center of the Einstein ring, which is marked with a das
line. The positions of the source center are shown with a serie
small open circles. The locations and the shapes of the two im
are shown with a series of dark ellipses. At any instant, the
images, the source and the lens are all on a single line, as show
the figure for one particular instant.
02300
t

e
s in

the plane perpendicular to the line of sight~therefore, chang-
ing its position in the source plane!. We adopt the treatmen
given in @22# for the velocityV, and consider effective trans
verse velocity of the source relative to the critical curve~see
Appendix A!. We define the time scale of the microlensin
event as the time it takes the source to move across
Einstein radius, projected onto the source plane,j05uEDs,

tv5
j0

V
. ~39!

e
ver
e

d
of
es
o
in

FIG. 6. True motion of the source and apparent motion of
images forB0.2. The inner dashed circle is the Einstein ring, t
outer dashed circle is twice the Einstein ring. The rest is as in
5.
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Angle b changes with time according to

b~ t !5AS Vt

Ds
D 2

1b0
2. ~40!

Here the momentt50 corresponds to the smallest angu
distanceb0 between the lens and the source. Normaliz
Eq. ~39! to uE ,

u~ t !5AS Vt

uEDs
D 2

1S b0

uE
D 2

, ~41!

where dimensionless impact parameteru is defined in Eq.
~28!. Including the time scaletv and defining

FIG. 7. True motion of the source and apparent motion of
images forB052. The inner dashed circle is the Einstein ring, t
outer dashed circle is twice the Einstein ring. The rest is as in
5.

FIG. 8. True motion of the source and apparent motion of
images forB0,2. The inner dashed circle is the Einstein ring, t
outer dashed circle is twice the Einstein ring. The rest is as
Fig. 5.
02300
r
g

B05
b0

uE
, ~42!

we obtain

u~ t !5AB0
21S t

tv
D 2

. ~43!

Finally, the total amplification as a function of time is give
by

A~ t !5
u~ t !222

u~ t !Au~ t !224
. ~44!

Comparing this analysis with that of Crameret al. @13#, we
must note that they wrote the equation for the time dep
dent dimensionless impact parameter as@cf. our Eq.~43!#

B~ t !5B0A11S t

T0
D 2

,

and defined the time scale for the microlensing event as
time it takes to cross the minimum impact parameter@cf. our
Eq. ~39!#

T05
b0

V
,

whereb0 is the minimum impact parameter and other va
ables carry the same meanings as in our paper. While the
no mistake in using such definitions, there is a definite d
advantage in doing so. Using Eq.~10! of @13# for B(t) we
cannot build the light curve for the case of the minimu
impact parameterB050. In this case their Eq.~8! diverges,
although there is nothing wrong with this value ofB0 ~see
our Figs. 9 and 10!. In the same way, their definition of
time scale does not give much information on the lig

e

g.

e

n

FIG. 9. True motion of the source and apparent motion of
images forB050. The inner dashed circle is the Einstein ring, t
outer dashed circle is twice the Einstein ring. Images here
shown with the shaded ellipses. The rest is as in Fig. 5.
1-8



e

ce
ct
en
y
i-

iz
-
ng
gi

t

an
ex
t
e
n
n
d

n

rce

of

led

le:

rce
ifi-
ver,
tion

ifi-
any

n

on
.
e-

n

is

in
rv
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curves. With our definition@Eq. ~39!# we can see in Fig. 10
that in the extreme case ofB050 the separation between th
half-events is exactly 2uE; it is always less than that with
any other value ofB0.

In Fig. 10 we show the light curves for the point sour
for four source trajectories with different minimum impa
parametersB0. As can be seen from the light curves, wh
the distance from the point mass to the source trajector
larger than 2uE, the light curve is identical to that of a pos
tive mass lens light curve. However, when the distance
less than 2uE ~or in other terms,B0<2.0), the light curve
shows significant differences. Such events are character
by theasymmetricallight curves, which occur when a com
pact source crosses a critical curve. A very interesti
eclipse-like, phenomenon occurs here; a zero intensity re
~disappearance of images! with an angular radiusu0

u05A4uE
22b0

2, ~45!

or in terms of normalized unituE,

D5A42B0
2. ~46!

In Sec. IV we shall see how these features get affected by
presence of an extended source.

IV. EXTENDED SOURCE

In the previous sections we considered magnifications
light curves for point sources. However, sources are
tended, and although their size may be small compared to
relevant length scales of a lensing event, this extension d
nitely has an impact on the light curves, as will be demo
strated below. From variability arguments, the optical a
x-ray continuum emitting regions of quasars are assume

FIG. 10. Light curves for the negative mass lensing of a po
source. From the center of the graph towards the corners the cu
correspond toB052.5, 2.0, 1.5, 0.0. The time scale here isj0

divided by the effective transverse velocity of the source.
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be much less than 1 pc@23#, whereas the broad-line emissio
probably has a radius as small as 0.1 pc@24#. The high en-
ergy gamma-spheres have a typical radius of 1015 cm @25#.
Hence, one has to consider a fairly broad range of sou
sizes.

We define here the dimensionless source radius,R̃, as

R̃5
r

uE
5

R

j0
, ~47!

wherer andR is the angular and the linear physical size
the source, respectively, andj0 is the the length unit in the
source plane@see Eq.~38!#.

A. Comments on numerical method and simulations

It is convenient to write the lens equation in the sca
scalar form

y5x1
1

x
, ~48!

where we normalized the coordinates to the Einstein ang1

x5
u

uE
; y5

b

uE
. ~49!

The lens equation can be solved analytically for any sou
position. The amplification factor, and thus the total ampl
cation, can be readily calculated for point sources. Howe
as we are interested in extended sources, this amplifica
has to be integrated over the source@Eq. ~50!#, and further-
more, as we want to build the light curves, the total ampl
cation for an extended source has to be calculated for m
source positions. The amplificationA of an extended source
with surface brightness profileI (y) is given by

A5

E d2yI~y!A0~y!

E d2yI~y!

, ~50!

whereA0(y) is the amplification of a point source at positio
y. We have used the numerical method first described in@26#.
We cover the lens plane with a uniform grid. Each pixel
this grid is mapped, using Eq.~48!, into the source plane
The step width (500035000) is chosen according to the d
sired accuracy~i.e. the observable brightness!. For a given
source position (y01,y02) we calculate the squared deviatio
function ~SDF!

S25~y102y1~x1 ,x2!!21~y202y2~x1 ,x2!!2. ~51!

The solutions of the lens equation~Eq. 49! are given by the
zeroes of the SDF. Besides, Eq.~51! describes circles with

1Note, that for the case in whichx andy are expressed in length
units, we obtain a different normalization in each plane, which
not always convenient.
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FIG. 11. Four sets of lens-source configurations~upper panels! and corresponding amplification as a function of the source’s ce

position ~bottom panels! are shown for four different values of the dimensionless source radiusR̃ ~0.01, 0.5, 1.0, 2.0, in normalized units
uE). Each of the four upper panels display the time dependent position of the source’s center, the shapes of images~shaded ellipses! and
critical curves~dashed circles!. The series of open small circles show the path of the source center. The lens is marked by the centr
Minimum impact parameterB050. By replacingj with juEDsV

215jtv we get the corresponding time dependent light curve.
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radii S around (y10,y20) in the source plane. Thus, the line
S5const are just the image shapes of a source with radiuS,
which we plot using standard plotting software. Therefo
image points where SDF has valueS2 correspond to those
points of the circular source which are at a distanceS from
the center. The surface brightness is preserved along the
and if I (R0)5I 0 for the source, then the same intensity
given to those pixels where SDF5R0

2. In this way an inten-
sity profile is created in the image plane and integrating o
it we can obtain the total intensity of an image. Thus,
obtain the approximate value of the total magnification
estimating the total intensity of all the images and dividing
by that of the unlensed source, according to the correspo
ing brightness profile of the source~see Appendix B!. For a
source with the constant surface brightness the luminosit
the images is proportional to the area enclosed by the
S5const. The total magnification is obtained by estimat
the total area of all images and dividing it by that of t
unlensed source. For calculations of light curves we use
circular source which is displaced along a straight line in
source plane with steps equal to 0.01 of the Einstein ang
radius.

B. Results

In Figs. 11 and 12 we show four projected source a
image positions, critical curves or caustics in the lens
source plane and representative light curves for different n
malized source sizes. The sources are taken to be circ
disks with constant surface brightness. In order to get ab
lute source radii and real light curves we need the value
uE, the normalized angular unit, the distance to the sou
as well as the velocityV of the source relative to the critica
02300
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curves in the source plane~see Appendix A!. We have used
M5M ( , H05100 km s21 Mpc21 and a standard cosmo
logical model with zero cosmological constant. Here and
all subsequent simulations the redshift of the source iszs

50.5 and the redshift of the lens iszl50.1.
We display two cases for two different impact paramete

It must be noted that the minimum impact parameterB0 now
defines the shortest distance between the line of path of
center of the source and the lens. For each one ofB0, the

dimensionless radius of the sourceR̃ increases from 0.01 to
2.0 in normalized units ofuE. The shape of produced image
changes notably with the increase of the source size, as
be seen in the bottom right panel of Figs. 11 and 12. At
same time the smaller the source the greater the magni
tion, since when the source radius is greater than the Eins
radius of the lens, the exterior parts, which are amplifi
compete with the interior ones, which are demagnified.

It can be noted that, despite the noise in some of
simulated light curves, the sharp peaks which occur when
source is crossing the critical line are well defined even
the smallest source. Note that all infinities are replaced n
by finite amplifications, and that the curves are softened;
these effects are generated by the finite size of the sou
Indeed, while the impressive drop to zero in the light curve
maintained, the divergence to infinity, that happens fo
point source, is very much reduced. Note, that in cases
large size of the source the magnification is very small. If
would like to see a bigger enhancement than that, we sho
consider sources of smaller sizes, approaching the p
source situation~cf. Fig. 11, upper left plot!.

It is also interesting to note that for the impact parame
B052.0 the light curve of a small extended source, thou
1-10
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FIG. 12. Same as in Fig. 11, but for minimum impact parameterB052.0.
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approaching the point source pattern~Fig. 10!, still differs
considerably from it~Fig. 12, upper left plot!.

In Figs. 13 and 14 we show the images of an exten
source with a Gaussian brightness distribution for two eff
tive dimensionless source radii~Appendix B!, R̃S, of 3.0 and
1.0 @Figs. 13~a!–13~e! and Figs. 14~a!–14~e!, respectively#,
together with the corresponding light curves@Fig. 13~f! and
Fig. 14~f!, respectively#. Here the source path passes throu
the lens (B050), which lies exactly in the center of eac
frame. In Fig. 13 the source’s extent in the lens plane
greater than the Einstein radius of the lens. There we no
that there is an eclipse-like phenomenon, occurring most
tably when most of the source is near or exactly behind
lens. This is consistent with the light curve@Fig. 13~f!#,
where there is a de-magnification. For the source with rad
smaller than the double Einstein radius of the lens~Fig. 14!,
the low intensity region is replaced by the zero intens
region; the source completely disappears from the view@Fig.
14~c!#.

In Fig. 15 we display the images of the source with t
exponential brightness profile~see Appendix B! and the cor-
responding light curve@Fig. 15~f!#. The effective radius of
the source is 1.5. The impact parameter isB052.0; the lens-
ing regime corresponds to the one schematically depicte
Fig. 7. We see how shapes of the images change, beco
elongated and forming the radial arc@Figs. 15~c! and 15~d!#.

In order to compare a constant surface brightness so
with more realistic distributions, we simulate images co
figurations and calculate light curves for two different a
sumed profiles with radial symmetry~see Appendix B!.

In Fig. 16 we compare light curves for three differe
radially symmetric source profiles, uniform, Gaussian a
exponential, for two dimensionless source radiiR̃5R̃S

gauss

5R̃S
expon50.1 and R̃5R̃S

gauss5R̃S
expon51.0. As a reference

curve we show the light curve of the point source. All curv
are made for the impact parameterB050. We can see the
larger noise in the uniform source curve, since the sou
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with uniform brightness has extremely sharp edge, wher
Gaussian and exponential sources are extremely smo
Though we considered the sources with the same effec
radius, we can see from the plot that for a small source s
the maximum magnification is reached by the source w
exponential profile~upper panel!, which is explained by the
fact that this profile has a more narrow central peak than
Gaussian.

For the larger source, this behavior smoothens, though
still can see large differences in the light curves~bottom
panel!, where the uniform source experiences darkeni
while sources with other profiles only undergo demagn
cation.

V. CONCLUDING REMARKS

In this paper we have explored the consequences, reg
ing gravitational microlensing, of the existence of matter v
lating the energy conditions. We have also quantitativ
analyzed, using numerical simulations, the influence of a
nite size of the source on the gravitational lensing negat
mass event. We have thus enhanced and completed pre
works, where the focus was put on the point source li
curves and no discussion was given concerning the shap
images, actual simulations of microlensing events, time g
function, and other features presented here. Figures 4,
and 11–16 comprise our new results: a useful compari
arena where the possible existence of wormholes or
other kind of negative mass compact objects can be te
observationally.

The next step would be to test these predictions us
archival, current, and forthcoming observational microle
ing experiments. The only search done up to now includ
the BATSE database of gamma-ray bursts, but there is s
much unexplored territory in the gravitational microlensi
archives. We suggest to adapt the alert systems of these
periments in order to include the possible effects of nega
1-11
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masses as well. This, perhaps, would not imply a burd
some work, but there could be a whole new world of disco
eries.
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FIG. 13. Image configurations@~a!–~e!# and a corresponding

light curve~f! for a Gaussian source with effective radiusR̃S53.0,
in units of the Einstein angle. The source is moving from the low
left corner~a! to the right upper corner~e!, passing through the len
(B050). The lens is in the center of each frame. Size of each fra
is 535, in the normalized units. Wedges to each frame provide
brightness scale for the images. Note the eclipse-like phenome
consistent with the incomplete demagnification shown in the li
curve ~f!.
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APPENDIX A: VELOCITIES AND TIME SCALES

Let the source have a transverse velocityvs measured in
the source plane, the lens a transverse velocityvl measured in
the lens plane, and the observer a transverse velocityvobs
measured in the observer plane. The effective transverse
locity of the source relative to the critical curves with tim
measured by the observer is

V5
1

11zs
vs2

1

11zl

Ds

D l
vl1

1

11zl

D ls

D l
vobs, ~A1!

r

e
e
n,
t

FIG. 14. Image configurations~a!–~e! and a corresponding ligh

curve ~f! for a Gaussian source with effective radiusR̃S51.0, in
units of the Einstein angle. The source is moving from the lower
corner ~a! to the right upper corner~e!, passing through the len
(B050). The lens is in the center of each frame. The size of e
frame is 333, in the normalized units. Wedges to each frame p
vide the brightness scale for the images. Note the complete di
pearence of the source when it is inside the double Einstein ra
of the lens~c!, corresponding to the drop of magnification to zero
the light curve~f!.
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where this effective velocity is such that for a stationa
observer and lens, the position of the source will change
time according todj5VDt.

We basically have two time scales of interest here. T
first one is the typical rise time to a peak in the amplificatio
We can estimate that it corresponds to a displacemen
Dy;R̃ of the source across a critical line; the correspond
time scalet1 is

t15tvR̃, ~A2!

where tv is given by Eq.~39!, or in terms of the physica
source sizeR5j0R̃,

FIG. 15. Image configurations@~a!–~e!# and a corresponding
light curve~f! for a source with the exponential brightness distrib

tion and effective radiusR̃S51.0, in units of the Einstein angle. Th
source is moving from the upper left corner~a! to the upper right
corner ~e! with the impact parameterB052.0. The lens is in the
center of each frame. Size of each frame is 2.532.5, in the normal-
ized units. Wedges to each frame provide the brightness scal
the images.
02300
in

e
.
of
g

t15
R

V
, ~A3!

where effective transverse velocity of the sourceV is given
by Eq. ~A1!. The second time scale of interest is the tim
between two peakst2. For a point source we can estimate
as

t25tvD, ~A4!

whereD is given in Eq.~46!. For a source with radiusR̃ and
impact parameterB050.0 it can be shown to be

t25tv~D1R̃!. ~A5!

-

for

FIG. 16. Light curves for the point mass source~dashed line!,
source with constant surface brightness~solid!, source with Gauss-
ian brightness distribution~dash-dotted! and exponential brightnes
distribution ~dotted! for two different effective dimensionles
source radii, 0.1~upper panel! and 1.0~bottom panel!.
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SAFONOVA, TORRES, AND ROMERO PHYSICAL REVIEW D65 023001
In Table I we list for different values of source radii the tim
scalest1 and t2, and the time delay between two imag
Dt12 for the point source. We estimate the value ofV to be
V55000 km s21.

APPENDIX B: EXTENDED SOURCES BRIGHTNESS
PROFILES

1. Source of uniform brightness

For a circular source of radiusR and uniform brightness
Eq. ~49! transforms into

A5

E d2yI~y!A0~y!

pR2
. ~B1!

2. Source with Gaussian brightness distribution

For a Gaussian source we have

I ~r !5I 0e2r 2/r 0
2
, ~B2!

where we normalized the profile such that the maxim
value ofI equals unity. We define the radius containing 90
of all the luminosity as the effective radius of the source,RS.
To find the relation betweenRS and r 0, we write the total
luminosity as

L~`!5E
0

`

e2r 2/r 0
2
2pr dr 5pr 0

2 , ~B3!

TABLE I. Time scales for several source radii.R̃ is the dimen-
sionless source radius, in units of Einstein angle,uM u51.0M ( ,
redshift of the lens iszl50.1, redshift of the source iszs50.5, j0

55.4231011 km is the normalized length unit in the source plan
The time scales correspond to apparent source velocity@see Eq.
~A1!# V55000 km s21.

R̃ R ~pc! Dt12
a ~sec! t1 ~yr! t2

b ~yr!

0.0 point source 2.031024 6.78
0.01 1.0731024 0.03 6.81
0.1 1.0731023 0.34 7.11
1.0 1.0731022 3.38 10.16
2.0 0.331021 6.75 13.6

au54.0 @definition in Eq.~29!#.
bB050.0.
s
,

ev

02300
L~R!5E
0

R

e2r 2/r 0
2
2pr dr 5pr 0

2@12e2R2/r 0
2
#,

~B4!

then

L~RS!

L~`!
50.95@12e2RS

2/r 0
2
#. ~B5!

Thus, the effective radius relates to the parameterr 0 as

RS

r 0
5Aln 10. ~B6!

3. Source with exponential brightness distribution

We have

I ~r !5I 0e2r /r 0. ~B7!

In the same manner as above,RS is defined as radius con
taining 90% of total luminosity. In the same way as abo
total luminosity

L~`!5E
0

`

e2r /r 02pr dr 52pr 0
2 , ~B8!

then

L~R!5E
0

R

e2r /r 02pr dr 52p@r 0
22~R r01r 0

2!e2R/r 0#,

~B9!

and

L~RS!

L~`!
50.9, ~B10!

where we find that effective radius relates to the parameter 0
as

e2RS/r 0S 11
RS

r 0
D50.1. ~B11!

The solution to this equation givesRS/r 0' 3.89. This pro-
file is also normalized such that the maximum value oI
equals unity.
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