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The random superposition of many weak sources will produce a stochastic background of gravitational
waves that may dominate the response of the L{B#ser Interferometer Space Antenmgavitational wave
observatory. Unless something can be done to distinguish between a stochastic background and detector noise,
the two will combine to form an effective noise floor for the detector. Two methods have been proposed to
solve this problem. The first is to cross-correlate the output of two independent interferometers. The second is
an ingenious scheme for monitoring the instrument noise by operating LISA as a Sagnac interferometer. Here
we derive the optimal orbital alignment for cross-correlating a pair of LISA detectors, and provide the first
analytic derivation of the Sagnac sensitivity curve.
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[. INTRODUCTION 2, andL is the proper distance between the masses in the
absence of gravitational waves. Together these masses can
It is hoped that the Laser Interferometer Space Antenn&rm one arm of a gravitational wave interferometer. Now
(LISA) [1] will be in operation by 2011. To meet this dead- suppose that a plane gravitational wave, described in the
line, basic design decisions need to be made in the next fetvansverse-traceless gauge by the tehgort,x), propagates

years. One decision concerns the gravitational wave backp, the () direction with frequency. A photon leaving mass 1

ground. Depending on one’s point of view, the gravitational(jocated atx,) at timet, will travel a proper distance
wave background is either a blessing or a curse. Those hop-

ing to use LISA to observe black hole coalescence see the _ Ny A

stochastic background as a potential source of noise, while 1a(ty) = LN, t1,%0): DD, 1)), @

those ho_pmg to use LISAto study_ bmary populatl_ons see .th?o reach mass 2. Here

stochastic background as a promising source of information.

But for the gravitational wave background to be of any use, . 1 A

a way has to be found to distinguish it from instrument noise. D(Q,f)==(renT(r-Q,f) 2
One would have to have great faith in the theoretical noise 2

model to claim that excess noise in the LISA detector was

due to a stochastic background of gravitational waves. HowlS the detector tensor for the arm and

ever, with two independent Michelson interferometexs],

or a combined Michelson-Sagnac interferométeb], there T(r-Q f)=sin{ f

are ways to separate the signal from the noise. We will re- ' 2f,

view both of these approaches and derive several new results

relating to each method. Our main result is a derivation ofis the transfer function. The characteristic frequency scale of

the optimal orbital alignment to use when cross-correlatinghe detector is given by, =c/(2wL).

two LISA detectors. With perfectly stable lasers it is possible to build a one-
The outline of the paper is as follows. In Sec. Il we derivearm gravitational wave detector. The phase of light making a

the response of Michelson and Sagnac interferometers to raund trip down the arm can be compared to the phase of

plane, monochromatic gravitational wave. In Sec. Il the dedight stored in the laser cavity. The phase shift measures the

tector responses are used to derive sensitivity curves for thehange in proper distance along the arm. However, laser

interferometers responding to a stochastic background gfhase noise prevents us from building a viable one-arm in-

gravitational waves. Section IV discusses the crossterferometer. The simplest way to eliminate laser phase noise

correlation of two detectors. Section V is devoted to optimiz-is to compare signals that have traveled approximately the

ing the cross-correlation of two LISA detectors. In Sec. VI,same distance. This is the approach taken in the LISA Pre-

the results of Secs. II-V are applied to the problem of dePhase A Repolftl], where it is proposed that three masses be

tecting a stochastic background of gravitational waves fronplaced at the vertices of an equilateral triangle, and the phase

white dwarf binaries and inflation. shift in the round-trip laser signal along two of the arms be

used to monitor changes in the proper distance between the

masses. In other words, the plan is to build a space-based

Michelson interferometer. Referring to the diagram in Fig. 1,
The proper distance between two freely moving massese see that there are three ways of forming a Michelson

fluctuates when a gravitational wave passes between thenmterferometer from the LISA triangle. The res(df for the

Suppose that is a unit vector pointing from mass 1 to mass variation in the length of a single arm can be used to derive

(1—r-§2) ei(f/zf*)(l—r.ﬁ) 3)

II. DETECTOR RESPONSE
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b N 1
Dy(Q,f)= g (@2 @) To(f) + (b b) Zy(f) + (c@ ) Te(1))
8
and
. S f N
T, (f)=e ()1 +aO)gj, (1+a-Q)
2f,
¢ a i(F1f,)(5+a- Q) f A
_a—i(flf)(5+a ; _a.
e smt{ ot (1-a-Q)
. . f N
/]B(f)zefl(f/f*)[3+(afc)-ﬂ] sin (l+bQ)
2f,
| f 5
—smc{ (1—on)”
FIG. 1. Laser signals used to track the LISA constellation. 2f,
the response of the Michelson interferometers. For example, () (5= )i f A
the interferometer with vertex;, experiences a phase varia- Te(f)=e " sin 2f, (1+c-Q)
tion of .
1 —e‘(f/f*)(lc-ﬂ)sin% T (1—c-ﬁ) .09
Sy(t)= Z(|12(t_2|-)+|21(t_|—)_|13(t_2|-)_|31(t_L)) *

Even more useful than the basic Sagnac signal is the sym-
— Dm(ﬁ,f):h(f,t,xl), (4) metrized Sagnac signal formed by averaging the output from
the three vertices:
where

1
R 1 . R S(t):§[Sl(t)+52(t)+53(t)]
Din( Q1) =5 (a®a)T(a- 0,1~ (co ) T —c- 0, 1)

) =D, F):h(f,t,x,) (10)
and where
. 11 [f(1-u-Q) f - i 1 X X
Kt e TP b BT A D 1,1)=s[(asa)Ta-0,1) +(beb) T(b- 0. 1)
+sinc(f(1;&) +(c0) Tyc 0, )] (11)
i and
o .
XeX[{_lzf* (1+UQ))} (6) '];(U-ﬁ,f)= l+2C0%f— e,i(f/zf*)(3+u.ﬁ)

There are many other ways to combine the laser signals in
the LISA triangle. A particularly useful combination comes sinc{ f (1+u-ﬁ))
from comparing the phase of signals that are sent clockwise 2f,
and counter-clockwise around the triangle. An interferometer
of this type was built by Sagndé] to study rotating frame —Sih({L(l—u'fl)”. (12)
effects. The Sagnac signal extracted at vertex 1 is given by 2f,

X

1 The magnitude of the detector tensdbg,, Dg and Dgg
S1() = g [ha(t=3L) +lgt=2L) +lap(t=L) —l1o(t=3L)  decay asf ! for f>f,. At low frequencies,f<f, , the
Michelson interferometer has a flat resporBg~ f°, while

—log(t—2L)—1Ig(t—L)] the Sagnac response decaysDas-f and the symmetrized
Sagnac response decayslag~ f. The insensitivity of the
= Ds(ﬁ,f);h(f,tyxl)’ 7) symmetrized Sagnac interferometer to low frequency gravi-
tational waves makes it the perfect tool for monitoring in-
where struments noise in the Michelson sigindl.
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ll. SENSITIVITY CURVES 3 507/ f)\2
Rn(F)=om = | —
The detector responses derived in the preceding section o) 10 5040(f*)
can be used to find the sensitivity of the interferometers to a ) .
stochastic background of gravitational waves. A stochastic Rt _ 2 f)° 839 f
background can be expanded in terms of plane waves: ()= 15\ f, 15120 f,
hij(t,x)zfm dff R (9, f x,t) S TR L D L
e s 3024\ f, ] ~ 72576\ f,

(18

:A:E+>< f_wde dQha(f,0)e?™ (=296l (Q). The comparison between the Michelson and symmetrized
' (13) Sagnac interferometers is particularly striking.
The noise spectral density in the interferometer output
Herefdﬁ denotes an integral over the celestial sphere ang(_)mblnes aII_ the noise contrlbutlons_ along the thlcal path
with appropriate noise transfer functions. The noise spectral

ha(—f)=hj(f) are the Fourier amplitudes of the wave. The gensity in each signal is derived in the Appendix, where it is
sum is over the two polarizations of the gravitational wavefound that

with basis tensorg;; ande;; . Each component of the de-

composition is a plane wave with frequenicgropagating in SP(f)=4Sy(f)+8(1+cog(f/f,))S.(f)
the Q) direction. We assume that the background can be ]
treated as a stationary, Gaussian random process character- Sh(f)=6Sy(f)+8[sir(3f/2f,)
ized by the expectation values +2sirR(F/2f,)]S.(F)
e A\ A 1 ’ 52(()’6,) 2
(hR(F,Q)ha (F7,Q7)) =5 8(f = 1) ———— San Sn(f) Sﬁs(f):§[1+2005{f/f*)]2[55(f)
(ha(f,Q))=0, (14) +4sirf(f/2f,)S,(f)]. (19)

where S, (f) is the one-sided power spectral density. TheThese estimates include contributions from shot noise in the
noise in the detector is treated as a Gaussian random procedgotodetectorsSy(f), and acceleration noise from the drag-
with zero mean and one-sided spectral denSityf). The free systemS,(f). Using the noise budget quoted in the
total output of the interferometeg(t), is a combination of ~LISA pre-Phase A report, we take these to equal

signal and noiseS(t) =s(t) +n(t). The results from Sec. Il, _ 421

in conjunction with Eqs(13) and (14), yield (S(t))=0 and Si(1)=4.84x10"" Hz

(SH (1) =(s*() +2(s(H)n(t)) +(n*(1)) Sa(f)=2.31x 10"

=(s?(t))+(n?(t))

mHz|*

The spectral densitieS,(f) and S,(f) are related to the
strain spectral densities in the interferomethg(f) and

=f0 df%(f)R(f)+j0 dfs,(f). E )

(19

ha(f)=VSy(f) and hy(H)=VS(HR(F). (2D

The integrated signal-to-noise ratio is defined:

The interferometer response function is defined by

dﬁ Ax (O ArQ 2
R(H)=| 41— ; FA* (Q,HFAQ,T), (16) (SAD)
SNR=-——, (22)
(n*(1))
where
while the contribution to the SNR from a frequency band of
FA(ﬁ,f):D(ﬁ’f):eA(ﬁ) (17) width Af, centered at is given by
~ 2
is the antenna pattern arﬂ(Q,f} is any of the detector SNR(f)= Sn(HR(T) _ Ds(f) _ (23)
tensors derived in Sec. Il. The integral in E46) can be Sh(f) ho(f)

done analytically in the high and low frequency limits. The
response of the Michelson, Sagnac and symmetrized Sagn&ensitivity curves for space-based interferometers usually
interferometers in the low frequency limit is given by display some multiple of the effective strain noise

022004-3



NEIL J. CORNISH PHYSICAL REVIEW D 65 022004

the output of two fully independent interferometers. The ad-
vantage of a two detector system is that while the gravita-
tional wave signal is correlated in each detector, the noise is
not. Thus, the signal-to-noise ratio in the cross-correlated
detector output will grow as the square root of the observa-
tion time (for Gaussian noige Similar reasoning led to the
building of two rather than one ground-based LIGIGaser
Interferometer Gravitational Wave Observatogetectors.
The disadvantage of a two detector observatory is that it
costs more to build, launch and operate. However, economy
of scale suggests that the costs would not double, and having
Michelson a total of six spacecraft greatly improves the redundancy of
the mission. As many as three spacecraft could fail and still
leave a working interferometer. In contrast, the current LISA
design cannot afford to lose any spacecraft.

In this section we derive the sensitivity of an arbitrarily

FIG. 2. Sensitivity curves for LISA operating as a Michelson, oriented pair of interferometers to a stochastic gravitational
Sagnac and symmetrized Sagnac interferometer. The frequency vgave background. We begin by considering the simple equal

measured in Hz and the strain spectral densigy(f), has units of ~ time correlationS;(t) S,(t), of the detector outputs. The ex-

log(hesr)

-2 -1 0
log(f)

Hz Y2, pectation value of this correlator,
- S.(f) (S1()Sp(1)) = (s1(1)s2(1)) +{s2(t) N2 (1)) + (N1 (1) So(1))
e D= N ey 24 +(ny(ng(1))

To have a signal-to-noise of one, a source of gravitational =(s1(t)sy(1)), (25

waves must have a strain spectral denbigff) that exceeds involves the signal in each interferometer but not the noise.

hei(f). The convention in the LISA community is to set a ysing the results of the previous sections we find
signal-to-noise threshold of fién terms of spectral powgr

so standard sensitivity curves displalheq(f). However, (S,(0Sy(1)) = fxde‘u(f)Rlz(f) (26)
we prefer to plohg«(f) directly. Sensitivity curves for LISA 0

are shown in Fig. 2. The sensitivity curves all scalé iasthe
high frequency limit. In the low frequency limit the Michel-
son and Sagnac curves scalefas, while the symmetrized 40 A
Sagnac sensitivity curve scales &s*. The basic Sagnac Ry )= f_F'i“*(f),f)FQ(ﬁ,f)eZﬂ'ifQ'(Xl*Xz)_
configuration is only slightly less sensitive than the standard A Am

Michelson configuration. However, below the LISA transfer 27

frequency off, =9.54 mHz, the symmetrized Sagnac Inter_IC-|erex1 andx, are the position vectors of the corner space-

ferometer is considerably less sensitive to a stochasti : . o X
craft in each interferometer. For coincident and coaligned

background than the Michelson configuration. Unless the .
amplitude of the stochastic background exceeds current pr letectors;R(f) approaches 2/ 55i in the low frequency

- 2 | f ; h f imit, where B is the _angle bet.ween the inter_ferometer arms.
dictions| ,8]'by several orders of magnitude, the output the overlap reduction functiony(f), describes how the

no signal. Thus, the symmetrized Sagnac signal can be usg&qss-correlation s affec_ted by the geometry of the detector
to monitor instrument noise in the more sensitive MichelsorP2! The overlap reduction fUﬂCtIC.)I"I.I.S obtained by normal-
interferometer4,5]. 1zing R14(f) by its low frequency limit:

where

IV. CROSS-CORRELATING TWO DETECTORS y(f)= R f). (28)

5
2 sirfB
While monitoring the detector noise with the Sagnac sig-
nal is a great idea in theory, it may run into problems inSeveral factors go into determining(f) for space-based
practice. For one, the noise in the symmetrized Sagnac intesystems. They include the relative orientation and location of
ferometer involves a slightly different combination of accel-the detectors and the length of the interferometer arms. The
eration and position noise than is found in the symmetrizediext section is devoted to calculating the overlap reduction
Michelson interferometer®], making it an imperfect moni- function for pairs of space-based interferometers, and identi-
toring tool. Of even greater concern is the lack of redun-fying which configurations give the largeg{f), and hence
dancy in the Sagnac signal. If just one of LISA's six photo-the greatest sensitivity.
detectors fails, the Sagnac signal is lost. For these reasons we In analogy with our treatment of a single interferometer,
favor an alternative strategy that works by cross-correlatingve can define the integrated signal-to-noise ratio:
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[(s1(D)s2(1))]
2= 29
©(ndO)(n3(1)M 29
and the signal-to-noise ratio at frequerfcy
f f
SR 5(F)— Sh(f)[ R )] (30

VSn(H)Sna(f)

PHYSICAL REVIEW D 65 022004

SNR(f)=V2TATSNRy»o(F)[ 1+ SNRy(f)+ SNRy(f)

+SNRy(f)SNRy(f)+SNRE, ()] Y2 (39)
The above approximation requires
Af [dInSNR(f)| !
f dinf ) ' (40

In the limit that the noise dominates the signal we have

We can improve upon these signal-to-noise ratios by op-

timally filtering the cross-correlated signals. Suppose the de-

tector outputs are integrated over an observation fime
t+T/2 t+T/2
- [ e |
t—=T/2 t—T/2

where Q(t' —t") is a filter function. The filter function is
chosen to maximize the integrated signal-to-noise ratio

/I)
(31

dt"S,(t") Sy(t") Q(t' —

(C)?
NRe=—r—"—":. 2
SNR=15h (o 2
The signal has expectation value
T . o ~
<C>=gS'nzﬁJ%deq(f)v(f)Q(f), (33
and variance
T(* ~
(-(cr=g | Bwmmman @9
where
M(f)=Sq1(F)Sna(f)[ 1+ SNRy(f) + SNRy(f)
+SNRy(f)SNRy(f)+ SNRE, »()]. (35)

In the limit that the signal-to-noise ratios are large, the vari-

ance is dominated by the variance in the gravitational wave

signal (cosmic variance

M(F)=SH(HIRu(F)Ro(F) +RIAD)]. (36)
In general, the signal-to-noise ratio SNRill be a maxi-
mum for the optimal filtef3]

Sn(F) y*(f)

M) (37

Q(f)=
With this filter we have the optimal signal-to-noise ratio

[ ¥(DI*S()
M(f)

SNF%— 55 S ,Bf df—————

(39)

The contribution to SNR from a frequency band of width
Af, centered af, is given by

SNR:(f)~ V2TATSNRy (1), (41)

while in the limit that the signal dominates the noise we have

SNR.(f)~TAT.

It is tempting to use Eq(41) to define an effective strain
noise for the cross-correlated system. The difficulty with this
approach is that at high frequencigéf) oscillates rapidly
and invalidates the approximatiéf0) used to derivé41). A
better approximation results from taking the sliding average

(42

trafz | Ry(f)?
SNR=2T8,(D |9 s s
[ IR |
~2TAFSY(f) W) “

Here the overbar denotes an average over the frequency in-
terval (f—Af/2,f+Af/2). Using Eq.(43) we can define the
effective sensitivity of the cross-correlated detectors:

1 [ [RuADI?
(2TAF) Y4 Sha(F)Sna(f)

Unlike the corresponding expressit¥) for a single detec-
tor, the effective noise in a pair of cross-correlated detectors
depends on the observation timend the frequency resolu-
tion Af. It is natural to choose a fixed frequency resolution
inInf, so thatAf=¢&f.

Figure 3 compares the effective strain sensitivity of a pair
of optimally cross-correlated LISA detectors to the sensitiv-
ity of a lone LISA detector. The cross-correlated pair is
~100 times more sensitive than a single detector across the
frequency range +20 mHz. The sensitivity curve for the
cross-correlated interferometers scale$ @%* for f<f, and

5 for f>f, . This leads to a sharper “V”-shaped sensitiv-
ity curve compared to a single interferometer where the scal-
ing goes ad ~2 for f<f, andf for f>f,

—1/4

heg(F)= (44)

V. OPTIMIZING THE CROSS-CORRELATION OF TWO
LISA DETECTORS

The LISA proposa[1] calls for three identical spacecraft
to fly in an Earth trailing constellation at a mean distance
from the Sun of 1 AU. The spacecraft will maintain an al-
most constant separation &f=5x10° m, in a triangular
configuration whose plane is inclined &3 radians to the
ecliptic. This is accomplished by placing each of the space-
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_15] craft. To leading order ie the coordinates of each spacecraft
LISA are given hy

x=acoq «)+ a€ sina cosa sin8— (1+ sirfa)cosp]

y=asin(«)+a€ sina cosa cosB— (1+ cosa)sinB]

< e z=\3aecoq a— ), 45
g LISA Pair Vsaecoda—p) 49
191 wherea=R is the semi-major axisg= wt+ « is the phase
of the guiding center an@=2n#/3+ \ is the relative phase
20 of each spacecraft in the constellation=0,1,2). If the
guiding center orbit does not lie in the plane of the ecliptic,
1] we can obtain the location of the spacecraft from @&) by
5 = 3 2 3 0 performing a rotation by an angle about the axis
log(f) (cosé,sing0). The five constants, «, N\, ¢ and & fully

FIG. 3. The sensitivity of a single LISA interferometer com- Sp?l%lfg Srl(;lsp(‘:gor;s;gitlg?'t o LISA interferometer i
pared to the sensitivity of the optimally cross-correlated pair o Ss-cor ! W ! S Wi

f . . .
LISA interferometers described in Sec. V. The cross-correlation isdepend on the relative orbits of the two constellations. Un-
for one year, with a frequency resolution &f = f/10. less the two interferometers share the same valuasodnd

¢, the distance between the corner spacecraft in each inter-

. . . o ferometer,d;,=|x; —X,|, will vary with time. The variation
craft on a slightly inclined and eccentric orbit with a care-; dy, translates into a variation of the overlap reduction

fully chosen set of initial conditions. The easiest way to de—’é

rive the orbital parameters is to start with all three spacecra unction, which poses a problem if we want to map the
) o : . ravitational wave backgrourid0]. Consequently, we shall
on a circular orbit with radiuR=1 AU (the so-called guid- grourfd0] 9 y

) . . . . setAa=A.=A&=0 and only consider constellations with
ing center orbit—see Fig)4then introduce a small eccentric- different values ofc andx. WhenA\=0 we find the dis-

ity and inclination to each orbit. There is a unique configu- L
. : tance between corner spacecraft is given b
ration that keeps the distance between all three spacecraﬁ P g y

constant to leading order in the eccentriaitysimilar solu-

tions exist forN spacecrajt The orbits are inclined by dio= V2asin

=~3e, and the constellation appears to rotate about the

guiding center on a circle with an inclination of/3 and  while this distance does vary with time, it is an order

radius Re. The relative rotation of the constellation has theeffect. The situation is improved whehk=0 as the varia-

same period as the guiding center orbit. The three spacecrafbn in d,, drops to ordee?:

are evenly spaced about the circle a distahee2.3Re N

apart(to leading order in the eccentricjtyThe eccentricity is .

crp:ose(:n to equgéz 0.00965 so thalL=L—'3>{109 m. Ina co>r/n- d12=2\/§aesm(7 +0(e?). (47)

promise between orbital perturbations and communications There are two factors that go into determining the overlap

costs, the plan is to fly the constellation in an orbit that trails;eqyction functiony(f). The first is the relative orientation

the Earth by 20°. o _ _ of the arms in each interferometer, and the second is the
Itis natural to use an ecliptic coordinate system with thegistance between the corner spacecraft. At low frequencies,

Sun at the origin to describe the location of the LISA spacethe relative orientation of the two interferometers is the

dominant effect, while at high frequencies the distance be-

Ak
7)(1—e005a+...). (46)

Earth tween the interferometers becomes important. Working in the
T - - LISA zero frequency limit, the orbit-averaged overlap reduction
e function is given by
7 15 41 7
K Sun | ’)/(0):a_3—2C0$K_aCOSZAK_3—ZCOSA7\
:\ 5 15 41
% / + — + —=
. 16 COFAN COSA k 35 COFAN coFA Kk
Tl s +Esm2A)\sm2AK+gsm2A)\ sinAk. (49

FIG. 4. The cartwheeling orbit of the LISA constellation. The The magnitude ofy(0) is maximized fOI’AK:-O gnd AN
dotted line is the guiding center orbit and the solid line is the rela-=0,7/2 and, as can be seen from the plot in Fig. 5. Con-
tive orbit of the three spacecraft about the guiding center. figurations withAx=0 are co-planar, and have the two in-
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0.835 1

0.831

0.825

0 1 2 3 4 5 6
o

FIG. 7. Fluctuations in the zero-frequency overlap reduction
o o function y(0) over the course of one orbit. The detector pair has
Ak=40° andAX=20°.
FIG. 5. The low frequency limit of orbit-averaged overlap re-
duction function,y(0), as afunction of Ax and AX. As the frequency increases the overlap reduction func-
tion decays due to the transfer functionsin the de-
terferometers phased kyA about the small circle in Fig. 4. tector response tensor, and from the overall factor of
The AN=0 case is impractical as it places the two interfer-ex 2 7if (). (x, — x,)] in Eq. (27):
ometers on top of one another, but configurations with
~0 are a possibility. Th& X = 7/2 configuration is shown in 169/ f\2 425/ f\4
Fig. 6. TheA\ = 7 case corresponds to the hexagonal cross- ¥(floo=1~— @( ) + m( f—> -
correlation studied by Cornish and Lars8]. *
The distancesl;5(Ax,AN) between the corner spacecraft 9 4
- : 23/( f 3211/ f
in each interferometer are Y(Domp=—1+ _(_) - _(_) -
i 42\ f, 27216\ f,

fi

d15(0,0=0,
400 (o, 383117 893/
Y(Nox=1" 564\ 7, T3888l 7,

dy5(0,m/2) =2 2ae= \EL (50)

As expected, the magnitude of the overlap reduction function
decays more rapidly for configurations with larger values of

d12(0,77)=4ae:£|__ (49) d;,. On these grounds, thAK=(_), AN=0 conf_igyration

J3 would appear to be the best option. However, it is also the

configuration most likely to suffer from correlated noise in
the two interferometers. Taking all these factors into account,
we believe that the\ k=0, AN==/2 configuration repre-
sents the optimal cross-correlation pattern.

Other factors may play a role in deciding how to deploy a
pair of LISA detectors. For example, if the priority is to
determine the location of bright black hole binaries for com-
parisons with x-ray observations, then it is advantageous to
place the detectors far apart. When the detectors are placed
far apart, the phase of the waves arriving at the two detectors
gives directional information that compliments the usual am-
plitude and phase modulatioril,12. Fixing a particular
value forA k, we can optimize the cross-correlation by maxi-
mizing | y(0)| according to Eq.48). The full solution is
complicated, but a good approximation is to det=A /2.

For example, a second LISA constellation could be flown in

an orbit that leads the Earth by 20°. The angle between the

leading and following detectors is theévx=40°. As shown
FIG. 6. TheAx=0, AN=7/2 cross-correlation pattern. in Fig. 7, the zero-frequency overlap reduction function for
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1 °'
(40,20)
-0.1]
0.5
-0.2
Y o Q03
-0.4
-0.5
-0.5
4l (080 -0.61
-0.04 ~0.02 0 0.02 0.04
-3 —fz -1 0 f
FIG. 8. The overlap reduction functiop(f) for the Ax=40°, 0.4
AN=20° andAx=0, AN=90° cross-correlations. 02]
this configuration fluctuates by 1.5% about a mean value o]
of y(0)=0.833.
The main disadvantage to having the interferometers -0.21
separated by k=40° is that the overlap reduction function Q(®
decays rapidly above 1 mHz. The contrast between the 40¢ 4]
option and the optimal cross-correlation is apparent in Fig. 8. _ 1
The sensitivity of a pair of LISA detectors withk#0 and
AN =0 was studied by Ungarelli and VeccHib3]. Our con- 0.8
clusions differ from theirs as they neglected to include the
transfer functionsZ in the calculation of the overlap reduc- 760 3 500 5500
tion function. Moreover, the orbital parameters they used are t

not optimal.

log(S)

—40

VI. DETECTING GRAVITATIONAL WAVE
BACKGROUNDS

We are now in a position to apply the results of the pre-
ceding sections. As an illustration we will consider two types
of gravitational wave backgrounds: a cosmological gravita-
tional wave backgroundCGB) with a scale-invariant spec-

FIG. 10. The optimal filter for detecting the white dwarf back-
ground with a pair of LISA detectors. The upper panel is in the
frequency domaiiiHertz) and the lower panel is in the time domain
(seconds

trum; and an astrophysical background produced by galactic
and extra-galactic white dwarf binaries. Plots of the one-
sided power spectral densities for these sources are shown in
Fig. 9, along with the projected noise in each interferometer.
The CGB power spectrum is for a scale invariant inflationary

Noise model with an energy density per logarithmic frequency in-
terval of Qg,(f)=10""% This quantity is related to the
1 wp power spectral density by
3HG Qgu(f)
fy=— 22, 51
CGB Sn(f) 12 3 (5
where Hy=65 kms ! Mpc™! is the Hubble constant. The
white dwarf power spectrum is taken from the work of
Bender and Hil§14], and the noise power spectrum is esti-
—4 -2 -

mated from the noise budget in the LISA Pre-Phase A report

[1].

Using these power spectra we can calculate the optimal

-3
log(f)

! filters for detecting each background with the optimally
cross-correlated LISA interferometers. The white dwarf filter

FIG. 9. One-sided power spectral densitigg(f), for the CGB  is shown in Fig. 10 and the CGB filter is shown in Fig. 11.

and the confusion limited white dwarf background. The anticipatedWe see from these plots that the bulk of the cross correlation

noise spectral densit,(f), for LISA is also shown.

occurs for signals that are lagged by less than the light travel
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0] existing limits[16] on the gravitational wave energy density
in scale-invariant inflationary models by a factor-ei5, but
-0.0002 other more exotic models may produce a detectable signal.
—0.0004 1 ACKNOWLEDGMENTS
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f APPENDIX: NOISE SPECTRAL DENSITY
04] The various interferometer signals are built from phase
measurements taken at each spacecraft. The phase measure-
0.2 ments record the phase difference between the incoming and
local laser signals. Taking a simplified model of the LISA
0 system with one laser on board each spacecraft, there will be
o2 six such readouts. We label the phase measurement made at
Qo timet by ®;;(t), where the first index refers to the spacecraft
041 that sends the signal, and the second index refers to the
spacecraft that receives the signal. The time-varying part of
-0.61 phase has contributions from laser phase nQi§g, gravi-
tational wave strainj(t), shot noisen®(t), and acceleration
08 noisen?(t):
2600 —1600 0 1000 2000 Di; (1) = Ci(t—Lij) = Cj(1) + s (1) +njj (1)

t

—x TN () =3 (t—L.:
FIG. 11. The optimal filter for detecting the CGB with a pair of Xij [n”(t) nj,(t L”)]. (A1)
LISA detectors. The upper panel is in frequency dontgiartz) and

the lower panel is in the time domaiseconds I:|ereLij =L is the distance between spaceciadndj, and

Xi; is one of the three unit vectors defined in Fig. 1, e.g.,

time in the interferometer, 2~30 s. In the frequency do- X12= ~Xz1=a The gravitational wave strain is given by

main, the bulk of the cross-correlation occurs across the floor

region (1 and 20 mHy of the LISA sensitivity curve. The ) )_h(fvt_'-ii Xi): (X ® %) T (x5 - Q,F) (A2)
white dwarf filter favors slightly higher frequencies than the A 2L '

CGB filter due to the peak in the white dwarf spectrum at 2

mHz. The shot noiseﬂfj(t) is from the photodetector in spacecraft

Using the filters shown in Figs. 10 and 11, the LISA pairj measuring the laser signal from spacecrafthile the ac-
could detect the sources described in Fig. 9 with an inteeeleration noise(t) is due to the accelerometers in space-
grated signal-to-noise ratio of SNF0.07 for the CGB and craftj that are mounted on the optical assembly that points
SNR=86.2 for the white dwarf binaries. These numbers ardoward spacecraft
calculated from Eq(32) usingT=1 year. The basic Michelson signal extracted from vertex 1 has

To detect a stochastic background with 95% confidencehe form
requires a signal-to-noise ratio of SNR [15]. By rescaling
the Bender-Hils estimatgl4] for the white dwarf power Si(t)=®15(t—L1o) +Py(t) = P15t —L13) — Pay(t)
spectrum, and taking into account the changes this makes in
the shape of the optimal filter, we find that the LISA pair =5;(t)+Cy(t—2L1p) —Cy(t—2L1g) +niy(t—L1p)
could still detect the white dwarf background even if the s S S
spectral density were 1200 times lower than the level shown +N21(1) ~ N1t Lag) —Nzy(t)

in Fig. 9. Alternatively, the white dwarf background shown —2a-n(t— L) — 2¢- niyt— Ly +a-[n3y(t)
in Fig. 9 can be detected with greater than 95% confidence 12 ! 13 13 2
after jug 5 h of observations. The prospects are not so prom- +n5,(t—2L1)]+c [n§(t) +ngy(t—2L13)].  (A3)

ising for the cosmological background, as the CGB would
have to have an energy density 28 times larger than the levdlhe gravitational wave contributiors,(t), is given by Eq.
shown in Fig. 9 to be detectable after one year. This exceedd). The laser phase noise from the corner spacecraft are
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automatically canceled, but the phase noise from the verteXhis result differs slightly from the noise calculation given in
laser will dominate the response unléss=Lq5to high pre-  Ref.[3]. The factor of four difference at low frequencies can
cision. So long a4 ;,~L;3~L, the remaining phase noise be traced to our dividing by (2)? rather thanL? in the
can be eliminated by differencing the Michelson signal withconversion from position to strain noise spectral density in
a copy from time 2 earlier[17]. For simplicity we will set  the earlier calculation.

L,=Lq3=L in Eq. (A3) to estimate the noise spectral den- The Sagnac signal extracted at vertex 1 is given by

sity S,(f) =(n(f)n*(f)):
Sa(F) =S f) +S5(f) + Sio(f) + Sy(f)4cos(f/f,)
X[S5(F)+ S3u(F)]+4STHF) +4Sis(f).  (Ad)

Assuming that each detector has the same noise spectral den-
sity we have Laser phase noise cancels exactly in the Sagnac signal for
B any arm lengthd ;; . Specializing in the case where all the
Sn()=4S(f) +8[1+cos(f/1,)]Su(F).  (A5) 4y lengths are approximately equal and each optical assem-
bly has the same noise spectrum, the remaining noise sources
combine to give a noise spectral density of

Si(1)=P15(t—Loz— L) T Pt —L1p) +DPyy(t)

— @ (t—Log—L1g) = Ppa(t—Lgg) —Day(l).
(A10)

The cod(f/f,) term comes from combining the acceleration
noise in spacecraft 1 at timesandt—2L. The LISA Pre-
Phase A reporfl] quotes the shot noise in terms of the
power spectral density of optical-path length fluctuations Sa(f)=6Ss(f)+8[sir’(3f/2f )+ 2sirf(f/2f )]Sa(f).
over a path of length.=5x10° m: (A11)

Sho=1.21x 10" m* Hz ™%, (A6)  The symmetrized Sagnac signal is given by

This can be converted to strain spectral density by dividing
by the path length squared:Sy(f)=Sq,/L>=4.84 D)= S Do)+ Dot —Lr) B oa(t— Loee Las)— D ar(t
X 10”42 Hz™ !, Each inertial sensor is expected to contribute ) 3[ 21+ PaAt= Lo+ Paglt=Lagm L) = Pan(t)

an acceleration noise with spectral density Byt —Lys) — Dot — Lyg— L 1) + P polt)
Tt T L) T At T k23T R 23!

Sace=9%x10730m2s 4 Hz L, A7
accl (A7) TP 3(t—Log) + Pyt —Log—Lig) = Pyo(t)
To convert this into phase noise we need to divide by pgth — D gy(t—Lyp) — Pog(t—Lyp—Ly9) + Do)
length squared, and by the angular frequency of the gravita-
tional wave to the fourth power: + @ yy(t—Lqg) +DPgy(t—Lqg—Lqp) —DPorg(t)
40 MHZ 4 . — D (t—Loy) —Pyy(t—Lyg— L) ], (A12)
S,(f)=2.31X10 < Hz = (A8)
from which it follows that the noise spectral density equals
Thus,
mHz\ 4 2 2 i
S,(f)=1.85x10"% 1+ co2 Sn(f)=§[1+2cos{f/f*)] [Ss(f)+4sirt(f/2f,)S,(f)].
f 9.55 mH
(A13)
+1.94x10 4
Hgl ¢ The overall factor of[1+ 2 cos(/f,)]* cancels the corre-
mHz i i i i
_ _ 39 _ 41 sponding factor that appears in the signal spectral density
3.7x10 ( f +1.94< 1077 (A9) S, (f) for the symmetrized Sagnac interferometer.
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