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Detecting a stochastic gravitational wave background
with the Laser Interferometer Space Antenna

Neil J. Cornish
Department of Physics, Montana State University, Bozeman, Montana 59717
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The random superposition of many weak sources will produce a stochastic background of gravitational
waves that may dominate the response of the LISA~Laser Interferometer Space Antenna! gravitational wave
observatory. Unless something can be done to distinguish between a stochastic background and detector noise,
the two will combine to form an effective noise floor for the detector. Two methods have been proposed to
solve this problem. The first is to cross-correlate the output of two independent interferometers. The second is
an ingenious scheme for monitoring the instrument noise by operating LISA as a Sagnac interferometer. Here
we derive the optimal orbital alignment for cross-correlating a pair of LISA detectors, and provide the first
analytic derivation of the Sagnac sensitivity curve.
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I. INTRODUCTION

It is hoped that the Laser Interferometer Space Ante
~LISA! @1# will be in operation by 2011. To meet this dea
line, basic design decisions need to be made in the next
years. One decision concerns the gravitational wave ba
ground. Depending on one’s point of view, the gravitation
wave background is either a blessing or a curse. Those
ing to use LISA to observe black hole coalescence see
stochastic background as a potential source of noise, w
those hoping to use LISA to study binary populations see
stochastic background as a promising source of informat
But for the gravitational wave background to be of any u
a way has to be found to distinguish it from instrument noi

One would have to have great faith in the theoretical no
model to claim that excess noise in the LISA detector w
due to a stochastic background of gravitational waves. H
ever, with two independent Michelson interferometers@2,3#,
or a combined Michelson-Sagnac interferometer@4,5#, there
are ways to separate the signal from the noise. We will
view both of these approaches and derive several new re
relating to each method. Our main result is a derivation
the optimal orbital alignment to use when cross-correlat
two LISA detectors.

The outline of the paper is as follows. In Sec. II we deri
the response of Michelson and Sagnac interferometers
plane, monochromatic gravitational wave. In Sec. III the d
tector responses are used to derive sensitivity curves for
interferometers responding to a stochastic background
gravitational waves. Section IV discusses the cro
correlation of two detectors. Section V is devoted to optim
ing the cross-correlation of two LISA detectors. In Sec. V
the results of Secs. II–V are applied to the problem of
tecting a stochastic background of gravitational waves fr
white dwarf binaries and inflation.

II. DETECTOR RESPONSE

The proper distance between two freely moving mas
fluctuates when a gravitational wave passes between th
Suppose thatr is a unit vector pointing from mass 1 to ma
0556-2821/2001/65~2!/022004~11!/$20.00 65 0220
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2, andL is the proper distance between the masses in
absence of gravitational waves. Together these masses
form one arm of a gravitational wave interferometer. No
suppose that a plane gravitational wave, described in
transverse-traceless gauge by the tensorh( f ,t,x), propagates

in theV̂ direction with frequencyf. A photon leaving mass 1
~located atx1) at time t1 will travel a proper distance

l 12~ t1!5L„11h~ f ,t1 ,x1!:D~V̂, f !…, ~1!

to reach mass 2. Here

D~V̂, f !5
1

2
~r ^ r !T~r•V̂, f ! ~2!

is the detector tensor for the arm and

T ~r•V̂, f !5sincF f

2 f *
~12r•V̂!Gei ( f /2f

*
)(12r•V̂) ~3!

is the transfer function. The characteristic frequency scale
the detector is given byf * 5c/(2pL).

With perfectly stable lasers it is possible to build a on
arm gravitational wave detector. The phase of light makin
round trip down the arm can be compared to the phase
light stored in the laser cavity. The phase shift measures
change in proper distance along the arm. However, la
phase noise prevents us from building a viable one-arm
terferometer. The simplest way to eliminate laser phase n
is to compare signals that have traveled approximately
same distance. This is the approach taken in the LISA P
Phase A Report@1#, where it is proposed that three masses
placed at the vertices of an equilateral triangle, and the ph
shift in the round-trip laser signal along two of the arms
used to monitor changes in the proper distance between
masses. In other words, the plan is to build a space-ba
Michelson interferometer. Referring to the diagram in Fig.
we see that there are three ways of forming a Michels
interferometer from the LISA triangle. The result~1! for the
variation in the length of a single arm can be used to der
©2001 The American Physical Society04-1
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the response of the Michelson interferometers. For exam
the interferometer with vertexx1 experiences a phase vari
tion of

s1~ t !5
1

2L
„l 12~ t22L !1 l 21~ t2L !2 l 13~ t22L !2 l 31~ t2L !…

5Dm~V̂, f !:h~ f ,t,x1!, ~4!

where

Dm~V̂, f !5
1

2
„~a^ a!Tm~a•V̂, f !2~c^ c!Tm~2c•V̂, f !…

~5!

and

Tm~u•V̂, f !5
1

2
FsincS f ~12u•V̂!

2 f *
D expS 2 i

f

2 f *
~31u•V̂! D

1sincS f ~11u•V̂!

2 f *
D

3expS 2 i
f

2 f *
~11u•V̂! D G . ~6!

There are many other ways to combine the laser signa
the LISA triangle. A particularly useful combination come
from comparing the phase of signals that are sent clockw
and counter-clockwise around the triangle. An interferome
of this type was built by Sagnac@6# to study rotating frame
effects. The Sagnac signal extracted at vertex 1 is given

s1~ t !5
1

3L
@ l 13~ t23L !1 l 32~ t22L !1 l 21~ t2L !2 l 12~ t23L !

2 l 23~ t22L !2 l 31~ t2L !#

5Ds~V̂, f !:h~ f ,t,x1!, ~7!

where

FIG. 1. Laser signals used to track the LISA constellation.
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Ds~V̂, f !5
1

6
„~a^ a!Ta~ f !1~b^ b!Tb~ f !1~c^ c!Tc~ f !…

~8!

and

Ta~ f !5e2 i ( f / f
*

)(11a•V̂)sincS f

2 f *
~11a•V̂! D

2e2 i ( f / f
*

)(51a•V̂)sincS f

2 f *
~12a•V̂! D

Tb~ f !5e2 i ( f / f
*

)[31(a2c)•V̂]FsincS f

2 f *
~11b•V̂! D

2sincS f

2 f *
~12b•V̂! D G

Tc~ f !5e2 i ( f / f
*

)(52c•V̂)sincS f

2 f *
~11c•V̂! D

2e2 i ( f / f
*

)(12c•V̂)sincS f

2 f *
~12c•V̂! D . ~9!

Even more useful than the basic Sagnac signal is the s
metrized Sagnac signal formed by averaging the output fr
the three vertices:

s~ t !5
1

3
@s1~ t !1s2~ t !1s3~ t !#

5Dss~V̂, f !:h~ f ,t,x1! ~10!

where

Dss~V̂, f !5
1

6
@~a^ a!Ts~a•V̂, f !1~b^ b!Ts~b•V̂, f !

1~c^ c! Ts~c•V̂, f !# ~11!

and

Ts~u•V̂, f !5S 112cos
f

f *
De2 i ( f /2f

*
)(31u•V̂)

3FsincS f

2 f *
~11u•V̂! D

2sincS f

2 f *
~12u•V̂! D G . ~12!

The magnitude of the detector tensorsDm, Ds and Dss
decay asf 21 for f @ f * . At low frequencies,f ! f * , the
Michelson interferometer has a flat response,Dm; f 0, while
the Sagnac response decays asDs; f and the symmetrized
Sagnac response decays asDss; f 2. The insensitivity of the
symmetrized Sagnac interferometer to low frequency gra
tational waves makes it the perfect tool for monitoring i
struments noise in the Michelson signal@4#.
4-2
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III. SENSITIVITY CURVES

The detector responses derived in the preceding sec
can be used to find the sensitivity of the interferometers t
stochastic background of gravitational waves. A stocha
background can be expanded in terms of plane waves:

hi j ~ t,x!5E
2`

`

d fE dV̂h̃i j ~V̂, f ,x,t !

5 (
A51,3

E
2`

`

d fE dV̂h̃A~ f ,V̂!e2p i f (t2V̂•x)ei j
A~V̂ !.

~13!

Here *dV̂ denotes an integral over the celestial sphere

h̃A(2 f )5h̃A* ( f ) are the Fourier amplitudes of the wave. T
sum is over the two polarizations of the gravitational wa
with basis tensorsei j

1 and ei j
3 . Each component of the de

composition is a plane wave with frequencyf propagating in

the V̂ direction. We assume that the background can
treated as a stationary, Gaussian random process char
ized by the expectation values

^h̃A* ~ f ,V̂!h̃A8~ f 8,V̂8!&5
1

2
d~ f 2 f 8!

d2~V̂,V̂8!

4p
dAA8Sh~ f !

^h̃A~ f ,V̂!&50, ~14!

where Sh( f ) is the one-sided power spectral density. T
noise in the detector is treated as a Gaussian random pro
with zero mean and one-sided spectral densitySn( f ). The
total output of the interferometer,S(t), is a combination of
signal and noise:S(t)5s(t)1n(t). The results from Sec. II
in conjunction with Eqs.~13! and ~14!, yield ^S(t)&50 and

^S2~ t !&5^s2~ t !&12^s~ t !n~ t !&1^n2~ t !&

5^s2~ t !&1^n2~ t !&

5E
0

`

d f Sh~ f !R~ f !1E
0

`

d f Sn~ f !.

~15!

The interferometer response function is defined by

R~ f !5E dV̂

4p (
A

FA* ~V̂, f !FA~V̂, f !, ~16!

where

FA~V̂, f !5D~V̂, f !:eA~V̂ ! ~17!

is the antenna pattern andD(V̂, f ) is any of the detector
tensors derived in Sec. II. The integral in Eq.~16! can be
done analytically in the high and low frequency limits. Th
response of the Michelson, Sagnac and symmetrized Sa
interferometers in the low frequency limit is given by
02200
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Rm~ f !5
3

10
2

507

5040S f

f *
D 2

1 . . .

Rs~ f !5
2

15S f

f *
D 2

2
839

15120S f

f *
D 4

1 . . .

Rss~ f !5
1

3024S f

f *
D 4

2
19

72576S f

f *
D 6

1 . . . .

~18!

The comparison between the Michelson and symmetri
Sagnac interferometers is particularly striking.

The noise spectral density in the interferometer out
combines all the noise contributions along the optical p
with appropriate noise transfer functions. The noise spec
density in each signal is derived in the Appendix, where i
found that

Sn
m~ f !54Ss~ f !18„11cos2~ f / f * !…Sa~ f !

Sn
s~ f !56Ss~ f !18@sin2~3 f /2f * !

12sin2~ f /2f * !#Sa~ f !

Sn
ss~ f !5

2

3
@112cos~ f / f * !#2@Ss~ f !

14sin2~ f /2f * !Sa~ f !#. ~19!

These estimates include contributions from shot noise in
photodetectors,Ss( f ), and acceleration noise from the dra
free systemSa( f ). Using the noise budget quoted in th
LISA pre-Phase A report, we take these to equal

Ss~ f !54.84310242 Hz21

Sa~ f !52.31310240S mHz

f D 4

Hz21. ~20!

The spectral densitiesSh( f ) and Sn( f ) are related to the

strain spectral densities in the interferometer,h̃s( f ) and

h̃n( f ):

h̃n~ f !5ASn~ f ! and h̃s~ f !5ASh~ f !R~ f !. ~21!

The integrated signal-to-noise ratio is defined:

SNR5
^s2~ t !&

^n2~ t !&
, ~22!

while the contribution to the SNR from a frequency band
width D f , centered atf is given by

SNR~ f !5
Sh~ f !R~ f !

Sn~ f !
5S h̃s~ f !

h̃n~ f !
D 2

. ~23!

Sensitivity curves for space-based interferometers usu
display some multiple of the effective strain noise
4-3
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NEIL J. CORNISH PHYSICAL REVIEW D 65 022004
h̃eff~ f !5ASn~ f !

R~ f !
. ~24!

To have a signal-to-noise of one, a source of gravitatio

waves must have a strain spectral densityh̃s( f ) that exceeds

h̃eff( f ). The convention in the LISA community is to set
signal-to-noise threshold of five~in terms of spectral power!,

so standard sensitivity curves displayA5h̃eff( f ). However,

we prefer to ploth̃eff( f ) directly. Sensitivity curves for LISA
are shown in Fig. 2. The sensitivity curves all scale asf in the
high frequency limit. In the low frequency limit the Miche
son and Sagnac curves scale asf 22, while the symmetrized
Sagnac sensitivity curve scales asf 23. The basic Sagnac
configuration is only slightly less sensitive than the stand
Michelson configuration. However, below the LISA transf
frequency off * 59.54 mHz, the symmetrized Sagnac inte
ferometer is considerably less sensitive to a stocha
background than the Michelson configuration. Unless
amplitude of the stochastic background exceeds current
dictions @7,8# by several orders of magnitude, the output
the symmetrized Sagnac interferometer will be all noise
no signal. Thus, the symmetrized Sagnac signal can be
to monitor instrument noise in the more sensitive Michels
interferometer@4,5#.

IV. CROSS-CORRELATING TWO DETECTORS

While monitoring the detector noise with the Sagnac s
nal is a great idea in theory, it may run into problems
practice. For one, the noise in the symmetrized Sagnac in
ferometer involves a slightly different combination of acc
eration and position noise than is found in the symmetri
Michelson interferometers@9#, making it an imperfect moni-
toring tool. Of even greater concern is the lack of redu
dancy in the Sagnac signal. If just one of LISA’s six phot
detectors fails, the Sagnac signal is lost. For these reason
favor an alternative strategy that works by cross-correla

FIG. 2. Sensitivity curves for LISA operating as a Michelso
Sagnac and symmetrized Sagnac interferometer. The frequen

measured in Hz and the strain spectral density,h̃eff( f ), has units of
Hz21/2.
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the output of two fully independent interferometers. The a
vantage of a two detector system is that while the grav
tional wave signal is correlated in each detector, the nois
not. Thus, the signal-to-noise ratio in the cross-correla
detector output will grow as the square root of the obser
tion time ~for Gaussian noise!. Similar reasoning led to the
building of two rather than one ground-based LIGO~Laser
Interferometer Gravitational Wave Observatory! detectors.
The disadvantage of a two detector observatory is tha
costs more to build, launch and operate. However, econo
of scale suggests that the costs would not double, and ha
a total of six spacecraft greatly improves the redundancy
the mission. As many as three spacecraft could fail and
leave a working interferometer. In contrast, the current LI
design cannot afford to lose any spacecraft.

In this section we derive the sensitivity of an arbitrari
oriented pair of interferometers to a stochastic gravitatio
wave background. We begin by considering the simple eq
time correlation,S1(t)S2(t), of the detector outputs. The ex
pectation value of this correlator,

^S1~ t !S2~ t !&5^s1~ t !s2~ t !&1^s1~ t !n2~ t !&1^n1~ t !s2~ t !&

1^n1~ t !n2~ t !&

5^s1~ t !s2~ t !&, ~25!

involves the signal in each interferometer but not the no
Using the results of the previous sections we find

^S1~ t !S2~ t !&5E
0

`

d f Sh~ f !R12~ f ! ~26!

where

R12~ f !5(
A

E dV̂

4p
F1

A* ~V̂, f !F2
A~V̂, f !e2p i f V̂•(x12x2).

~27!

Herex1 andx2 are the position vectors of the corner spac
craft in each interferometer. For coincident and coalign
detectors,R12( f ) approaches 2/5sin2b in the low frequency
limit, whereb is the angle between the interferometer arm
The overlap reduction function,g( f ), describes how the
cross-correlation is affected by the geometry of the dete
pair. The overlap reduction function is obtained by norm
izing R12( f ) by its low frequency limit:

g~ f !5
5

2 sin2b
R12~ f !. ~28!

Several factors go into determiningg( f ) for space-based
systems. They include the relative orientation and location
the detectors and the length of the interferometer arms.
next section is devoted to calculating the overlap reduct
function for pairs of space-based interferometers, and ide
fying which configurations give the largestg( f ), and hence
the greatest sensitivity.

In analogy with our treatment of a single interferomet
we can define the integrated signal-to-noise ratio:

is
4-4
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SNR1325
u^s1~ t !s2~ t !&u

^n1
2~ t !&1/2^n2

2~ t !&1/2
~29!

and the signal-to-noise ratio at frequencyf:

SNR132~ f !5
Sh~ f !uR12~ f !u

ASn1~ f !Sn2~ f !
. ~30!

We can improve upon these signal-to-noise ratios by
timally filtering the cross-correlated signals. Suppose the
tector outputs are integrated over an observation timeT:

C~ t !5E
t2T/2

t1T/2

dt8E
t2T/2

t1T/2

dt9S1~ t8!S2~ t9!Q~ t82t9!,

~31!

where Q(t82t9) is a filter function. The filter function is
chosen to maximize the integrated signal-to-noise ratio

SNRC
2 5

^C&2

^C2&2^C&2
. ~32!

The signal has expectation value

^C&5
T

5
sin2bE

2`

`

d f Sh~ f !g~ f !Q̃~ f !, ~33!

and variance

^C2&2^C&25
T

4E2`

`

uQ̃~ f !u2M ~ f !d f , ~34!

where

M ~ f !5Sn1~ f !Sn2~ f !@11SNR1~ f !1SNR2~ f !

1SNR1~ f !SNR2~ f !1SNR132
2 ~ f !#. ~35!

In the limit that the signal-to-noise ratios are large, the va
ance is dominated by the variance in the gravitational w
signal ~cosmic variance!:

M ~ f !.Sh
2~ f !@R1~ f !R2~ f !1R 12

2 ~ f !#. ~36!

In general, the signal-to-noise ratio SNRC will be a maxi-
mum for the optimal filter@3#

Q̃~ f !5
Sh~ f !g* ~ f !

M ~ f !
. ~37!

With this filter we have the optimal signal-to-noise ratio

SNRC
2 5

8T

25
sin4bE

0

`

d f
ug~ f !u2Sh

2~ f !

M ~ f !
. ~38!

The contribution to SNRC from a frequency band of width
D f , centered atf, is given by
02200
-
e-

i-
e

SNRC~ f !.A2TD f SNR132~ f !@11SNR1~ f !1SNR2~ f !

1SNR1~ f !SNR2~ f !1SNR132
2 ~ f !#21/2. ~39!

The above approximation requires

D f

f
!S ] ln SNRi~ f !

] ln f D 21

. ~40!

In the limit that the noise dominates the signal we have

SNRC~ f !'A2TD f SNR132~ f !, ~41!

while in the limit that the signal dominates the noise we ha

SNRC~ f !'ATD f . ~42!

It is tempting to use Eq.~41! to define an effective strain
noise for the cross-correlated system. The difficulty with t
approach is that at high frequenciesg( f ) oscillates rapidly
and invalidates the approximation~40! used to derive~41!. A
better approximation results from taking the sliding avera

SNRC
2 ~ f !.2TSh

2~ f !E
f 2D f /2

f 1D f /2

d f8
uR12~ f 8!u2

Sn1~ f 8!Sn2~ f 8!
,

.2TD f Sh
2~ f !S uR12~ f !u2

Sn1~ f !Sn2~ f ! D . ~43!

Here the overbar denotes an average over the frequenc
terval (f 2D f /2,f 1D f /2). Using Eq.~43! we can define the
effective sensitivity of the cross-correlated detectors:

h̃eff~ f !5
1

~2TD f !1/4S uR12~ f !u2

Sn1~ f !Sn2~ f ! D 21/4

. ~44!

Unlike the corresponding expression~24! for a single detec-
tor, the effective noise in a pair of cross-correlated detec
depends on the observation timeT and the frequency resolu
tion D f . It is natural to choose a fixed frequency resoluti
in ln f, so thatD f 5« f .

Figure 3 compares the effective strain sensitivity of a p
of optimally cross-correlated LISA detectors to the sensit
ity of a lone LISA detector. The cross-correlated pair
;100 times more sensitive than a single detector across
frequency range 1→20 mHz. The sensitivity curve for the
cross-correlated interferometers scales asf 29/4 for f ! f * and
f 5/4 for f @ f * . This leads to a sharper ‘‘V’’-shaped sensitiv
ity curve compared to a single interferometer where the s
ing goes asf 22 for f ! f * and f for f @ f * .

V. OPTIMIZING THE CROSS-CORRELATION OF TWO
LISA DETECTORS

The LISA proposal@1# calls for three identical spacecra
to fly in an Earth trailing constellation at a mean distan
from the Sun of 1 AU. The spacecraft will maintain an a
most constant separation ofL553109 m, in a triangular
configuration whose plane is inclined atp/3 radians to the
ecliptic. This is accomplished by placing each of the spa
4-5
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NEIL J. CORNISH PHYSICAL REVIEW D 65 022004
craft on a slightly inclined and eccentric orbit with a car
fully chosen set of initial conditions. The easiest way to d
rive the orbital parameters is to start with all three spacec
on a circular orbit with radiusR51 AU ~the so-called guid-
ing center orbit–see Fig. 4!, then introduce a small eccentric
ity and inclination to each orbit. There is a unique config
ration that keeps the distance between all three space
constant to leading order in the eccentricitye ~similar solu-
tions exist forN spacecraft!. The orbits are inclined byi
.A3e, and the constellation appears to rotate about
guiding center on a circle with an inclination ofp/3 and
radius 2Re. The relative rotation of the constellation has t
same period as the guiding center orbit. The three space
are evenly spaced about the circle a distanceL.2A3Re
apart~to leading order in the eccentricity!. The eccentricity is
chosen to equale50.00965 so thatL553109 m. In a com-
promise between orbital perturbations and communicati
costs, the plan is to fly the constellation in an orbit that tra
the Earth by 20°.

It is natural to use an ecliptic coordinate system with
Sun at the origin to describe the location of the LISA spa

FIG. 3. The sensitivity of a single LISA interferometer com
pared to the sensitivity of the optimally cross-correlated pair
LISA interferometers described in Sec. V. The cross-correlatio
for one year, with a frequency resolution ofD f 5 f /10.

FIG. 4. The cartwheeling orbit of the LISA constellation. Th
dotted line is the guiding center orbit and the solid line is the re
tive orbit of the three spacecraft about the guiding center.
02200
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craft. To leading order ine the coordinates of each spacecra
are given by

x5acos~a!1ae@sina cosa sinb2~11sin2a!cosb#

y5asin~a!1ae@sina cosa cosb2~11cos2a!sinb#

z5A3aecos~a2b!, ~45!

wherea.R is the semi-major axis,a5vt1k is the phase
of the guiding center andb52np/31l is the relative phase
of each spacecraft in the constellation (n50,1,2). If the
guiding center orbit does not lie in the plane of the eclipt
we can obtain the location of the spacecraft from Eq.~45! by
performing a rotation by an anglei about the axis
(cosj,sinj,0). The five constantsa, k, l, i and j fully
specify a LISA constellation.

The cross-correlation of two LISA interferometers w
depend on the relative orbits of the two constellations. U
less the two interferometers share the same values ofa, i and
j, the distance between the corner spacecraft in each in
ferometer,d125ux12x2u, will vary with time. The variation
in d12 translates into a variation of the overlap reducti
function, which poses a problem if we want to map t
gravitational wave background@10#. Consequently, we shal
set Da5Di5Dj50 and only consider constellations wit
different values ofk and l. WhenDl50 we find the dis-
tance between corner spacecraft is given by

d125A2a sinS Dk

2 D ~12ecosa1 . . . !. ~46!

While this distance does vary with time, it is an ordere
effect. The situation is improved whenDk50 as the varia-
tion in d12 drops to ordere2:

d1252A2aesinS Dl

2 D1O~e2!. ~47!

There are two factors that go into determining the over
reduction functiong( f ). The first is the relative orientation
of the arms in each interferometer, and the second is
distance between the corner spacecraft. At low frequenc
the relative orientation of the two interferometers is t
dominant effect, while at high frequencies the distance
tween the interferometers becomes important. Working in
zero frequency limit, the orbit-averaged overlap reduct
function is given by

g~0!5
7

64
2

15

32
cosDk2

41

64
cos2Dk2

7

32
cosDl

1
15

16
cos2Dl cosDk1

41

32
cos2Dl cos2Dk

1
5

16
sin 2Dl sin 2Dk1

3

8
sin 2Dl sinDk. ~48!

The magnitude ofg(0) is maximized forDk50 and Dl
50,p/2 andp, as can be seen from the plot in Fig. 5. Co
figurations withDk50 are co-planar, and have the two in

f
is

-
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terferometers phased byDl about the small circle in Fig. 4
The Dl50 case is impractical as it places the two interf
ometers on top of one another, but configurations withDl
'0 are a possibility. TheDl5p/2 configuration is shown in
Fig. 6. TheDl5p case corresponds to the hexagonal cro
correlation studied by Cornish and Larson@3#.

The distancesd12(Dk,Dl) between the corner spacecra
in each interferometer are

d12~0,0!50,

d12~0,p/2!52A2ae5A2

3
L

d12~0,p!54ae5
2

A3
L. ~49!

FIG. 5. The low frequency limit of orbit-averaged overlap r
duction function,g(0), as afunction of Dk andDl.

FIG. 6. TheDk50, Dl5p/2 cross-correlation pattern.
02200
-

-

As the frequency increases the overlap reduction fu
tion decays due to the transfer functionsT in the de-
tector response tensor, and from the overall factor

exp@2pifV̂•(x12x2)# in Eq. ~27!:

g~ f !0,0512
169

504S f

f *
D 2

1
425

9072S f

f *
D 4

2 . . .

g~ f !0,p/25211
23

42S f

f *
D 2

2
3211

27216S f

f *
D 4

2 . . .

g~ f !0,p512
383

504S f

f *
D 2

1
893

3888S f

f *
D 4

2 . . . .

~50!

As expected, the magnitude of the overlap reduction funct
decays more rapidly for configurations with larger values
d12. On these grounds, theDk50, Dl'0 configuration
would appear to be the best option. However, it is also
configuration most likely to suffer from correlated noise
the two interferometers. Taking all these factors into accou
we believe that theDk50, Dl5p/2 configuration repre-
sents the optimal cross-correlation pattern.

Other factors may play a role in deciding how to deploy
pair of LISA detectors. For example, if the priority is t
determine the location of bright black hole binaries for co
parisons with x-ray observations, then it is advantageou
place the detectors far apart. When the detectors are pl
far apart, the phase of the waves arriving at the two detec
gives directional information that compliments the usual a
plitude and phase modulation@11,12#. Fixing a particular
value forDk, we can optimize the cross-correlation by max
mizing ug(0)u according to Eq.~48!. The full solution is
complicated, but a good approximation is to setDl5Dk/2.
For example, a second LISA constellation could be flown
an orbit that leads the Earth by 20°. The angle between
leading and following detectors is thenDk540°. As shown
in Fig. 7, the zero-frequency overlap reduction function

FIG. 7. Fluctuations in the zero-frequency overlap reduct
function g(0) over the course of one orbit. The detector pair h
Dk540° andDl520°.
4-7



e

er
n
4
. 8

th
-
a

re
e
ita
-

ctic
e-
n in

ter.
ry

in-

of
ti-
ort

mal
lly
ter
1.
tion
vel

te

k-
he
in
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this configuration fluctuates by;1.5% about a mean valu
of g(0)50.833.

The main disadvantage to having the interferomet
separated byDk540° is that the overlap reduction functio
decays rapidly above 1 mHz. The contrast between the
option and the optimal cross-correlation is apparent in Fig
The sensitivity of a pair of LISA detectors withDkÞ0 and
Dl50 was studied by Ungarelli and Vecchio@13#. Our con-
clusions differ from theirs as they neglected to include
transfer functionsT in the calculation of the overlap reduc
tion function. Moreover, the orbital parameters they used
not optimal.

VI. DETECTING GRAVITATIONAL WAVE
BACKGROUNDS

We are now in a position to apply the results of the p
ceding sections. As an illustration we will consider two typ
of gravitational wave backgrounds: a cosmological grav
tional wave background~CGB! with a scale-invariant spec

FIG. 9. One-sided power spectral densities,Sh( f ), for the CGB
and the confusion limited white dwarf background. The anticipa
noise spectral density,Sn( f ), for LISA is also shown.

FIG. 8. The overlap reduction functiong( f ) for the Dk540°,
Dl520° andDk50, Dl590° cross-correlations.
02200
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trum; and an astrophysical background produced by gala
and extra-galactic white dwarf binaries. Plots of the on
sided power spectral densities for these sources are show
Fig. 9, along with the projected noise in each interferome
The CGB power spectrum is for a scale invariant inflationa
model with an energy density per logarithmic frequency
terval of Vgw( f )510214. This quantity is related to the
power spectral density by

Sh~ f !5
3H0

2

4p2

Vgw~ f !

f 3
, ~51!

where H0.65 km s21 Mpc21 is the Hubble constant. The
white dwarf power spectrum is taken from the work
Bender and Hils@14#, and the noise power spectrum is es
mated from the noise budget in the LISA Pre-Phase A rep
@1#.

Using these power spectra we can calculate the opti
filters for detecting each background with the optima
cross-correlated LISA interferometers. The white dwarf fil
is shown in Fig. 10 and the CGB filter is shown in Fig. 1
We see from these plots that the bulk of the cross correla
occurs for signals that are lagged by less than the light tra

d

FIG. 10. The optimal filter for detecting the white dwarf bac
ground with a pair of LISA detectors. The upper panel is in t
frequency domain~Hertz! and the lower panel is in the time doma
~seconds!.
4-8
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DETECTING A STOCHASTIC GRAVITATIONAL WAVE . . . PHYSICAL REVIEW D 65 022004
time in the interferometer, 2L;30 s. In the frequency do
main, the bulk of the cross-correlation occurs across the fl
region ~1 and 20 mHz! of the LISA sensitivity curve. The
white dwarf filter favors slightly higher frequencies than t
CGB filter due to the peak in the white dwarf spectrum a
mHz.

Using the filters shown in Figs. 10 and 11, the LISA p
could detect the sources described in Fig. 9 with an in
grated signal-to-noise ratio of SNR50.07 for the CGB and
SNR586.2 for the white dwarf binaries. These numbers
calculated from Eq.~32! usingT51 year.

To detect a stochastic background with 95% confide
requires a signal-to-noise ratio of SNR52 @15#. By rescaling
the Bender-Hils estimate@14# for the white dwarf power
spectrum, and taking into account the changes this make
the shape of the optimal filter, we find that the LISA pa
could still detect the white dwarf background even if t
spectral density were 1200 times lower than the level sho
in Fig. 9. Alternatively, the white dwarf background show
in Fig. 9 can be detected with greater than 95% confide
after just 5 h of observations. The prospects are not so pro
ising for the cosmological background, as the CGB wo
have to have an energy density 28 times larger than the l
shown in Fig. 9 to be detectable after one year. This exce

FIG. 11. The optimal filter for detecting the CGB with a pair
LISA detectors. The upper panel is in frequency domain~Hertz! and
the lower panel is in the time domain~seconds!.
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existing limits@16# on the gravitational wave energy densi
in scale-invariant inflationary models by a factor of;15, but
other more exotic models may produce a detectable sign
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APPENDIX: NOISE SPECTRAL DENSITY

The various interferometer signals are built from pha
measurements taken at each spacecraft. The phase mea
ments record the phase difference between the incoming
local laser signals. Taking a simplified model of the LIS
system with one laser on board each spacecraft, there wi
six such readouts. We label the phase measurement ma
time t by F i j (t), where the first index refers to the spacecr
that sends the signal, and the second index refers to
spacecraft that receives the signal. The time-varying par
phase has contributions from laser phase noiseC(t), gravi-
tational wave strainc(t), shot noisens(t), and acceleration
noisena(t):

F i j ~ t !5Ci~ t2Li j !2Cj~ t !1c i j ~ t !1ni j
s ~ t !

2 x̂i j •@ni j
a ~ t !2nj i

a ~ t2Li j !#. ~A1!

HereLi j 5L ji is the distance between spacecrafti and j, and

x̂i j is one of the three unit vectors defined in Fig. 1, e.

x̂1252 x̂215a. The gravitational wave strain is given by

c i j ~ t !5
h~ f ,t2Li j ,xi !:~ x̂i j ^ x̂i j !T ~ x̂i j •V̂, f !

2Li j
. ~A2!

The shot noiseni j
s (t) is from the photodetector in spacecra

j measuring the laser signal from spacecrafti, while the ac-
celeration noiseni j

a (t) is due to the accelerometers in spac
craft j that are mounted on the optical assembly that po
toward spacecrafti.

The basic Michelson signal extracted from vertex 1 h
the form

S1~ t !5F12~ t2L12!1F21~ t !2F13~ t2L13!2F31~ t !

5s1~ t !1C1~ t22L12!2C1~ t22L13!1n12
s ~ t2L12!

1n21
s ~ t !2n13

s ~ t2L13!2n31
s ~ t !

22a•n12
a ~ t2L12!22c•n13

a ~ t2L13!1a•@n21
a ~ t !

1n21
a ~ t22L12!#1c•@n31

a ~ t !1n31
a ~ t22L13!#. ~A3!

The gravitational wave contribution,s1(t), is given by Eq.
~4!. The laser phase noise from the corner spacecraft
4-9
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NEIL J. CORNISH PHYSICAL REVIEW D 65 022004
automatically canceled, but the phase noise from the ve
laser will dominate the response unlessL125L13 to high pre-
cision. So long asL12'L13'L, the remaining phase nois
can be eliminated by differencing the Michelson signal w
a copy from time 2L earlier @17#. For simplicity we will set
L125L135L in Eq. ~A3! to estimate the noise spectral de
sity Sn( f )5^n( f )n* ( f )&:

Sn~ f !5S12
s ~ f !1S21

s ~ f !1S13
s ~ f !1S31

s ~ f !4cos2~ f / f * !

3@S21
a ~ f !1S31

a ~ f !#14S12
a ~ f !14S13

a ~ f !. ~A4!

Assuming that each detector has the same noise spectral
sity we have

Sn~ f !54Ss~ f !18@11cos2~ f / f * !#Sa~ f !. ~A5!

The cos2(f/f* ) term comes from combining the accelerati
noise in spacecraft 1 at timest and t22L. The LISA Pre-
Phase A report@1# quotes the shot noise in terms of th
power spectral density of optical-path length fluctuatio
over a path of lengthL553109 m:

Sshot51.21310222 m2 Hz21. ~A6!

This can be converted to strain spectral density by divid
by the path length squared:Ss( f )5Sshot/L

254.84
310242 Hz21. Each inertial sensor is expected to contribu
an acceleration noise with spectral density

Saccl59310230 m2 s24 Hz21. ~A7!

To convert this into phase noise we need to divide by p
length squared, and by the angular frequency of the grav
tional wave to the fourth power:

Sa~ f !52.31310240S mHz

f D 4

Hz21. ~A8!

Thus,

Sn~ f !51.85310239S mHz

f D 4F11cos2S f

9.55 mHzD G
11.94310241

.3.7310239S mHz

f D 4

11.94310241. ~A9!
D
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This result differs slightly from the noise calculation given
Ref. @3#. The factor of four difference at low frequencies ca
be traced to our dividing by (2L)2 rather thanL2 in the
conversion from position to strain noise spectral density
the earlier calculation.

The Sagnac signal extracted at vertex 1 is given by

S1~ t !5F13~ t2L232L12!1F32~ t2L12!1F21~ t !

2F12~ t2L232L13!2F23~ t2L13!2F31~ t !.

~A10!

Laser phase noise cancels exactly in the Sagnac signa
any arm lengthsLi j . Specializing in the case where all th
arm lengths are approximately equal and each optical ass
bly has the same noise spectrum, the remaining noise sou
combine to give a noise spectral density of

Sn~ f !56Ss~ f !18@sin2~3 f /2f * !12sin2~ f /2f * !#Sa~ f !.
~A11!

The symmetrized Sagnac signal is given by

S~ t !5
1

3
@F21~ t !1F32~ t2L12!1F13~ t2L232L12!2F31~ t !

2F23~ t2L13!2F12~ t2L232L13!1F23~ t !

1F13~ t2L23!1F21~ t2L232L13!2F12~ t !

2F31~ t2L12!2F23~ t2L122L13!1F13~ t !

1F21~ t2L13!1F32~ t2L132L12!2F23~ t !

2F12~ t2L23!2F31~ t2L232L12!#, ~A12!

from which it follows that the noise spectral density equa

Sn~ f !5
2

3
@112cos~ f / f * !#2@Ss~ f !14sin2~ f /2f * !Sa~ f !#.

~A13!

The overall factor of@112 cos(f/f* )#2 cancels the corre-
sponding factor that appears in the signal spectral den
Sh( f ) for the symmetrized Sagnac interferometer.
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