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Freezing of QCD coupling affects the short distance static potential
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A striking contradiction between the lattice short-range static potentigk Q) and standard perturbative
potential is investigated in the framework of the background perturbation theory. With the use of the back-
ground couplingag(r) which contains the only background parameter, the nmags fixed by the fine-
structure fit in bottomonium, the lattice data are nicely explained without the introduction of an exotic short-
range linear potential with a large “string tensioo™ ~1 Ge\~. A significant difference betweeInB(r) and
standard perturbative strong couplinag,(r) is found in the range 0.05 fner=<0.15 fm, while at larger
distancesr>0.3 fm, ag(r) fast approaches the freezing valag(). Some problems concerning the
strong-coupling properties at short and long distances are discussed and solutions are suggested.
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I. INTRODUCTION proaches its freezing value already at rather small distances
r>0.4 fm. Here it is worthwhile to remember that in most
The property of the freezing of the strong coupling con-calculations in coordinate space the “average” values
stantay(r) at long distances is widely used in QCD phe- usually taken in the range 0.35¥<0.45 while in momen-
nomenology{1-6]. On a fundamental level this phenomenontum space larger critical values were u$ed,= a\(q=0)].
has been studied in two different theoretical approachefor example, in Ref[3] «,=0.60 and for the Richardson
[7-9]. In the case of the static potential, the freezing of thepotential a,=27/By~0.7 (n;=3) [2,13, i.e., the differ-
coupling a(r) suggests thatx,(r) is approaching a con- ence betweenw,~0.6—0.7 in momentum space and
stant ap=a(r —=) at relatively long distances while at ~0.40=0.05 in coordinate space is essential. However, this
smallr it manifests the property of asymptotic freedom. Bothdifférence was not confirmed by the analysis of the QCD
characteristic features of the static potential were widely®@UPling in background fieldsL4] where the vector coupling
used in hadron spectroscopy. However, it was realized th&tonstantsag(q) and ag(r) were found to have the same
the asymptotic freedom behavior does not practically affecBSymptotic value:
hadron spectra, being important mostly for a wave function

at the origin. On the contrary, the choice ®f(r) as a con- ag(q=0)=ag(r—»)=ay. (h)

stant at all distances, i.ex,(r)=a, appears to be a reason-
able approximation and gives rise to a good description off his equality takes place also for the phenomenological cou-
meson spectra both for heavy quarkohial0,11 and for  pling taken as a sum of Gaussians in Hé&f.

heavy-light mesong12]. Also in lattice QCD this choice In lattice measurements of the static potential at long dis-
gives a good fit to the lattice static potential at distancedances, the freezing phenomenon is also seen, however exist-
above 0.2 fm. ing lattice data have not clarified our knowledge abayt

Therefore, the question arises why this simple approxima#s shown in Refs[15,16 the lattice static potential at
tion, av(r)%;’ works so well even in the case of bottomo- = 20-2 fm can be parametrized with good accuracy by the

nium where the sizes of low-lying levels are not large, theCornell potential with rather smait (in lattice notations «
characteristic radiuR,,<0.5 fm. To answer this question =€). In the quenched approximationy=0), the fitted lat-

one needs to clarify another problem, namely to find out theice values ofe~0.20-0.24 (=0.27-0.32) turned out to
precise freezing value of the vector constant in momentunibe small so that in some cases there appears to be a discon-
and coordinate spaces, and to define the distanaglsere tinuity of the vector coupling constant at the matching point,
the difference betweea(r) anday, is becoming inessential 'mar~0.2 fm[5]. But if dynamical fermions are introduced,

and therefore the approximatidh\/(r):a (;7’: ag in the in lattice QCD_the fitted value Otfl’(nf:2,3) was found to
general casegives a good description of hadron spectra ancbecome largerg=0.30 (€=0.40) [17] still being less than
other physical characteristics. in phenomenological models.

This problem will be discussed in the present paper in the another problem concerns the behavioraf(r) at short
framework of background perturbation thedPT) and it distances. The most interesting and unexpected results were
will be shown that the background couplings(r) ap- obtained in lattice measurements of the static potential at

short distances, 0.05 f@r<0.15 fm[18], where a large

difference between the lattice and the two-lo@me-loop
*Email address: badalian@heron.itep.ru perturbative potential was observed, yielding a discrepancy
TEmail address: kuzmenko@heron.itep.ru of about 100% at the point=0.15 fm. In Ref.[18], this
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large difference was parametrized by a short distance linear as(q)
term o*r with the slopes* ~1 Ge\~. Vg(q)=—Cgdr——. (6)
This effect will be explained in our paper. To this end the q

strong- coupling constant in background fietds(r) willbe 1, £4 (6) and below we consider the influence of back-
calculated and the influence of the background mmassvill 450 vacuum fields only on Coulomb-type interaction. In
be shown to become essential al_ready at rathv_er short digre presence of background fields the QCD coupling is modi-
tances. We have found that there is no need to introduce #bd so that it depends on the combinatiapf € m2) instead
additional exotic linear potentiab*r as in Ref.[18]. The of g2 as it is in standard perturbative thedi§]. %’he mass
resulting stafic potentialg(r) appears to have an effectively mg is a background mass which is characteristic for a pro-

“n?a}r term mf_tgtpod agreemtent W'th.le:tt'(ée dadtfa.tr:n oulr cal; ess considered. In the two-loop approximation the running
culations no fitting parameters are introduced: the value o ackground coupling is

the background massg=1.0 GeV is taken from fine-

structure analysis in bottomoniufd1] while the QCD con- B, Int
stantAss(n;=0) is considered as a well established number aP(q)= a(Bl)(q)[ 1- —; —B} , (7)
and taken from Ref{19]. By te
where the one-loop expression is given by
Il. THE STRONG-COUPLING CONSTANT ag(q)
IN BACKGROUND FIELD THEORY A
MWiq)= — (8)
ag’(q) Bols’
The perturbative static potential is used to define a cou-
pling constantay(q) in V-scheme: with
2 2
ay(q) qQ°+mg
Ve(Q)=—47Cp——, 2 tg=In ———. (9)
q Ay

whereqzzqz. Recently the renormalized, (q) was calcu- The conditionmg> Ay, is assumed to be satisfied under the
lated in the two-loop approximatiof20,21. In coordinate logarithm (9) to guarantee the absence of the Landau pole;
space the static potential can be defined as the Fourier tranis condition is always valid for the numbers, and mg

form of Vp(q), used in our calculationgsee the numbers in E5)].
In Eq. (7),
Vo= [ L va@exsian @ 2 38
ry= exp(iqgr),

AT e PR Bo=11-3n;, f1=102- ;. (10
which gives rise to the simple relation between the couplingsirst we discuss the most important properties of the back-
constants: ground couplingag(q).

2 (o . The background massg is not an arbitrary parameter. It
ay(r)= _f dqsmqr ay(q) (4) can be calculated in the framework of BPT or in lattice QCD.
mJo q As was shown in Refl22], the background massg in the

. . o o _ case of the static potential is defined by the difference of
if the following definition for the coupling in coordinate two-gluon and one-gluon hybrid excitations and can be ex-

spaceay(r) is used: tracted from the corresponding level differences of hybrids
5 ccg,bbg. In Ref. [22], this massmg was evaluated to be
ay(r) 1.0-1.2 GeV. For other processes, such ase”
Ve(r)=-Ce¢ r (5) —hadrons, in general the background magsmay be dif-

ferent[8]. The appearence of the masg in Eq. (9) is simi-

However, the Fourier transform of the perturbative couplinglar to the case of QED whewe has the mass of a&" e pair
ay(q), Eq. (4), does not exist in a strict sense because otinder logarithm.
Landau pole singularity. To escape IR divergency the expan- Itis of interest to notice that the analytical form @§(q)
sion of a(q) in the perturbative series at largé is usually ~ (7) coincides with that obtained in a picture when a gluon is
made[20,21], but the resulting expansion is valid only at Supposed to have an effective masginside the gluon loop.
short distances. Therefore, in Ref[23] a,(q) was taken as a function of

Here we suggest to obtain the static potential in coordi-(q2+4m§), i.e., the double effective gluon massig plays a
nate space with the use of the coupling in BPT, where theole of the background massg (see the discussion in Ref.
vector coupling constanig(q) in momentum space is de- [4]).

fined at all momenta and has no singularity &gr>0 [7]. In our calculations here the value ofg will be fixed at
Then the potential in momentum space can be written as img=1.0 GeV, taken from the fit to fine-structure splittings
Eq. (2), in bottomonium[11].
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At large momenta,q2>mé, the background coupling
goes over into the standard perturbative expressigfy).
Therefore, the QCD constantsys in PQCD andA g in

BPT must coincide; in any case it is true for the number of
flavorsn¢=5. As can be directly calculated with the use of

the matching procedure, they are also equalnfcr 4.

The QCD constant\,,, entering the couplingy,(q) in
Eq. (2), can be expressed througtzs(n;) in the modified
minimal subtraction ¥1S) renormalization schen{@4]:

() _ » () &
Ay A ex;{ 28, ) (11
with
31 10
a1=?—3nf. (12

At present the values af 7 ;) are well established for the
number of flavorsn;=5: A(s) 208+ MeV [25] and

also forn;=0 due to an analy5|s in the lattice finite size

technique[19]:

60248)

MS_ rO !

AL

13

where r, denotes the Sommer scale. With the user gf
=2.5 GeV !, taken in most lattice calculatiof$7,18, one
obtains

APL=241+19 MeV. (14)
Then from Eq.(11) the QCD constant in the V-scheme is
A{)=385+30 MeV. (15)

In the three-loop approximation the background coupling

ag)(q):agn(q)[ B tB+ %L intg -ty
ﬁO OB
B\{Bo”
-1+ (16)
b

contains the term including thB\Z’ coefficient, which de-

pends on a renormalization scheme and was calculated {7

Refs.[20,2]] (the coefficientsBy,8; do not depend on the
renormalization schemgethis coefficient

BY=BYS—a,8,+(a,—a) o. (17)
Herea, is defined by Eq(12) and
—= 2857 5033 325
QAS:T—EWFQH?, (18)
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g 4343 42 Tt 22 3 100 2 3 1798
3=9| g T4~ T 3 (@) | gt oM g1
>0 3 >S 164(3 19
gé()—gnfg— 62(3) |. (19

In Eq. (19), £(3)=1.202057 denotes the Riemagnfunc-
tion. In the quenched approximation,

a,(n;=0)=456,7488, By(n;=0)=4224,1817,

(20

ie., the,8\2’ coefficient turns out to be about three times larger
than B¥°(n;=0)=2%. As a result, the third-order correc-
tion in a§(q) is much larger tham$"(q) and «{2(q).

It is easy to find the first-order correction to the perturba-
tive coupling ay(q) which comes from the expansion of
ag(Qq) in powers ofmé/qz. In the two-loop approximation,

2

algn(large q)=aP(@)— a{P(q) -, (@)
2lIn—
with
y 4
as/z)(Q)=a(l)(q)( B__) a{,l)(q)=@,
0
2
y=In q—z (22)
\

This approximation appears to be valid onlycat2 GeV
(with an accuracys 10%).

The behavior ofag(qg) in the IR region. The freezing
value ofa{{’(q) can be easily obtained from Eq3)—(9), in
particular for two-loop coupling,

41 Bl In tO
@)= 4@ (g2=0)= —1{1- == 23
with
2
m
(1)— . = 2_0)=In —2

In what follows, the notation) = a{”(q?=0), as in poten-
tial models[3], is also used. The parameterg and Ay,
present intg, are considered to be fixed: the valuenaf is
taken from fine-structure analysis ofP2and 1P states in
bottomonium while the valud {")(n;=0) is taken from lat-
tice data and given by Eq@15),

mg=1.0 GeV, A{d(n;=0)=385 MeV. (25
We suppose here that for =3 the constanta {*) and A{Y
are approximately equal,
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Ay(ng=3)=Ay(n;=0)=385+30 MeV. (26

Then the following critical values can be obtained from Eqgs.
(7) and(15):

al)=0598; aff)=0.428; af}=0.805 (”fzo)(’n
2

0.536; aP=0.972 (n;=3).
(29

(1) —

cr

(2) =

o cr

0.731;, «

As one can see from Eq&7) and(28), the third-order cou-
pling turns out to be about 90%(=0) and 80% f;=3)

larger thana!?(n;) because of largg8y coefficient (20).

PHYSICAL REVIEW D 65 016004
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FIG. 1. The behavior of the background couplin§’(q) for
A{P)=385 MeV (dashed ling and for A{>’=410 MeV (dash-

Such a value ofa(cf)(nf) appears to be too large and not dott_ed_line compared to the phenomenological coupliag,(q)
compatible with the effective Coulomb constant of the static(S°lid line) taken from Ref{3].
potential, a.4<0.5, needed to describe heavy quarkonia

[1,3] and heavy-light meson speci{rB2]. Such a large value
of the Coulomb constant is also not observed in lattice cal
culations of the static potential at large distangEs,16.

Presumably this means that since the perturbative serie
an asymptotic one, it should be truncated after the secon
loop term.

Recently an “analytical” perturbation theory was elabo-
rated in[9]. It was shown there that the modification of sin-
gularities of perturbative coupling by power terms allows us
to work accurately in the two-loop approximation. The third-
order contribution becomes numerically inessential and, e.g
for e"e” annihilation is about 0.5%.

Therefore, in what follows the third-order term will be
omitted anda posterioriour phenomenological analysis with

two-loop approximation is sufficient to describe the lattice
data at small distances.

The background couplingr?(q) in the two-loop ap-
proximation turns out to be rather close to the phenomen
logical @,(q) which is successfully used in hadron spectros-
copy. For comparisongp,(q) will be taken from the well-
known paper of Godfrey and Isg{i8]:

ag=0.25exp—qg?) +0.15 exp— 0.197)

+0.20 exg— 0.0015?) (29)

with g in GeV anda.=0.60.

In Fig. 1, this phenomenological coupling is compared to
the background coupling{?)(q) for n;=3. Here, as in Eq.
(26), it is supposed that\,(n;=3)=A(n;=0) and for
Ay(ns=3) two values are taken:

(8 Ay(ng=3)=385 MeV,
(30)
(b) Ay(n;=3)=410 MeV.
These values oA{® do not contradict those which are com-
monly used in theMS renormalization scheme, and give rise
to ag(Mz)=0.118+0.001. The connection betwee/n%)
andAS/”f) is given by Eq.(11).
In Fig. 1, the couplingsrg(q) (solid line), agz)(q) in the
two-loop approximation withA,,=385 MeV (dashed ling

S._

and «{?)(q) with Ay=410 MeV (dash-dotted lineandmg

=1.0 GeV are shown. At the momentung=m,

1.3 GeV (EC is the running mass of the quark, the
atching of the couplings was done with the following result

(sir the QCD constantA(n;=4)=0.325 MeV in the case

(@ and Ay(n;=4)=351 MeV in the casdb). As is seen
from Fig. 1, the background coupling?)(q) in the casgb)
[and to some extent in casa)| appears to be very close to
the phenomenological couplingg(q); the difference be-
tween them is less than 5% at smgks1.3 GeV and less
than 2% in the range 18q<4 GeV. So one can expect
that with the use of the background coupling, an equally
good description of low-energy experimental data can be ob-

etained as in Ref[3] with the use of the phenomenological

coupling. From here our estimate of the freezing value is
about 0.53-0.60, and it is interesting to look at the expan-
sion of the background couplingg(q) near the freezing

0pointqzo:

2

) q

app

(small q)=alP— ol (3D)

2!

2 B
mgIn —
\%

where a2, oY are the fixed numbers defined Iny; and
Ay [see Eqs(23) and(24)]. This approximation appears to
be valid only in a very narrow range of small momenta
g, 0=g=<0.4 GeV, where the difference betweaféf)(q)
and agﬁ,r (small q) is less than 5%; but it already reaches
22% atg=1.0 GeV.

Heavy-quark initiated jets can be successfully described
at small momenta if the following assumption is made about
an effective coupling constamate;(q) in the infrared region

[6]:

2 GeVv

Jy(fit)y=(2 Gev)? . dg

%“T(q)zo.lst 0.01(exp)

+0.02th). (32

As was shown in Refl6], this number does not depend on
the form of ae4(q) assumed in the fit. Our calculations of the
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integral(32) with the background coupling)(q) from Eq.
(7) with n;=3, A, =410 MeV, andmg=1.0 GeV give 0.

2 GevVd
Jo(ag)=(2 Gev)—lf ?qa(;)(q):o.lu, (33 0.
0

i.e., this number is 26% smaller thag(fit) in Eq. (32). The 0.
same integral calculated with the phenomenological constant
agi(q) (29 is also 22% smaller thad,(fit) (the central
value):

(=]

r,fm
0.2 0.4 0.6 0.8 1 1.2 1.4

Jo(ag))=0.14 (34) FIG. 2. The one-loopa’(r) (solid line) and the two-loop

and very close to our numbés3). One should notice here @ (r) (dashed ling background couplings in the quenched ap-
that the large numbe(32) in Ref. [6] could be connected proximation; in bo}?) caseA§,°>_=385 MeV, mg=1.0 GeV; two-
with the large fitted value 0f"S(M;)=0.125-0.003(exp) |00P asymptoticsa;’=0.428, is shown.
=0.004(th), used in their paper, while now the average
a?>(M;)=0.118+0.001 is acceptef5,26].

In conclusion we give our predictions about the freezing
values in momentum space:

From Fig. 2 one can see that two-loop background cou-
pling in coordinate space is approaching the freezing value at
relatively short distances;=0.4 fm, and the values of

a"(r)(n=1,2) at the Sommer scalg~0.5 fm are the fol-

a¥=0598, «?=0.428 (n;=0, A{"=385 Mev), lowing:
aM=0731, «@=0536 (n;=3, A{P=385 MeV), a(rg=05 fm=0,574; aP(ry=0.5 fm)=0.404.
cr cr \%
(35 (39
a(C}):ojgg, a(cf):O.582 (n;=3, A§,°)=410 MeV). It is of interest to notice that the two-loop coup_ling at the

distancer practically coincides with the number=0.39
widely used in the Cornell potenti@l], while the one-loop
coupling is too large. The fact that two-loop background cou-
pling is almost constant already @t 0.4 fm can be consid-

From the explicit expressions ofy’(q) itis evidtzar_]t that  ered as an important argument in favor of the chaigér)
the couplinge”(q) is well defined at all moment? ifthe  —_ ¢onst in low-energy spectroscopy. In Fig. 32(r) is

conditionmg> Ay, is satisfied. Therefore, the Fourier trans- gnown for two different values of the background masg:
form can be used to define the static potential in coordinate- 1 g GeV(solid line andmg=1.1 GeV(dashed ling As

lIl. THE BACKGROUND COUPLING  ag(R)
IN COORDINATE SPACE

space over all distances: seen from Fig. 3, the difference between them is becoming
~ essential already at~0.3 fm, being about 10% over all
Va(f)=—C aB(r):_C 4 ap(q) j, dg distancesr>0.3 fm; their freezing values are!?(mg
g(r)= F Fam 5 € 3 B B ) _ — .
q (27) =1.0 GeV)=0.428,a{?(mg=1.1 GeV)=0.382 (in both

(36)  casesA\{)=385 MeV).
The freezing value in coordinate space turns out to be just

From here a relation similar to E¢4) follows: the same as in momentum space, i.e., figF3 and n

~ med singr 2 wd sinx / 2 ()
= — = — _— Up r
ag(r) 7)o q q ag(q) 7)o X X ag(X/r),
(37) 0.
where now the background couplings(x) depends on the 0.
variable
0.
X2+ mar?
tB(X)Zm W (38) 0.
£
This integral(37) cannot be taken analytically even in the 0.2 0.4 0.6 0.8 1 1.2 1.4 '

one-loop approximation and was calculated numerically in
n-loop approximationsr{=1,2) with the use of the param- ‘

P app . " ) -~ () P for two values of the background masg: mg=1.0 GeV (solid
Eters(25). The behavior of background coupllmj3 (r) and line) and mz=1.1 GeV (dashed ling in both casesA(”
a(r) is shown in Fig. 2 in the rangeor<1.4 fm. =385 MeV.

FIG. 3. The background couplinE(BZ)(r) in coordinate space
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af®) (x) TABLE |I. The background coupling a{(r) (A{P
=385 MeV,mg=1.0 GeV) compared to perturbative coupling
a?(r) with AL)=686 MeV.

rim P @ rdm o afPe) @l

0.002 0.0964 0.0924 0.024 0.1757 0.1667
0.004 0.11095 0.10505 0.030 0.1880 0.1807
0.006 0.1216 0.1209 0.0355 0.1988 0.1943
 n 0.008 0.1303 0.1221 0.041 0.2085 0.2079
0.02 0.04 0.06 0.08 0.1 0.12 0.012 0.1446 0.1352 0.049 0.2204 0.2264

FIG. 4. The background couplinga(z)(r) with A 0.016 0.1564 0.1465 0.057 0.2311 0.2455
. . B \Y
=385 MeV, mg=1.0 GeV(solid line) compared to the perturba- 0.020 0.1666 0.1569 0.063 02384 0.2605

tive av 2)(r) with Ar=686 MeV (dashed lingat short distances.

~ 1
=0 (Ay=385 MeV) they are given by the numbers from aP(r)= —
Eq. (35). This property is true also for the phenomenological B YR ARS

potential used in Ref.3]:

yr=1In (43

and we have the following prescription for the value of the
ac(q=0)= ag(r—=)=0.60, (40 QCD constant\g(ny) [24,13:

since in coordinate space the coupliag(r) corresponding Aé”‘)=A‘V”')exp7E- (44)
to ag(q) in Eq. (29) is
In EQ. (44), vg is the Euler constanty=0.5772157), and
ag(r)=0.25D(2r)+0.15P(1.581 ) +0.20b(15,811), in the quenched approximatioh{? is given by the number
(41 (14), therefore, fom;=0,

where®(z) is the error function. Thus for three flavors the A(R°)=684i 53 MeV. (45)
phenomenological valuer;~0.6 was found to be a bit
larger than our numbex?)=0.54[see Eq/(35) for n;=3]. In our calculations below we take the number

With ag(r) calculated above we can compare the back-
ground potentialVg(r) (37) to the lattice static potential
from Ref.[18]. Here we are mostly interested in the short- 0) i
range potential, in particular in the influence of background"’h'Ch corresponds ta,’=385 MeV according to the re-

massmg on its behavior. The properties af(r) at smallr lation (44). : . . )
) ; ) ; The numerical comparison of the “exact” background
will be considered in the next section.

coupling a?(r) (Ay=385 MeV, n;=0) and the corre-
sponding perturbativer(?(r) with A®) from Eq. (46) is
presented in Table | for the distances in the range

Recently very precise lattice measurements of the static
potential at short distances were presefifed). Having these 0.002 fmsr=<0.15 fm. (47)
data one has a unique opportunity to compare theoretical One can see that the difference between these two cou-
predictions about the background coupling and the potentigblings,
Vg(r) with precise lattice data in the quenched approxima-
tion. We remind the reader that our calculationsadf(r) AaP () =2@()-aP(r) (n=12), (48)
(n=1,2) were done without any arbitrary parametﬁr{?) _
=385 MeV (n;=0) was fixed from lattice datfEq. (14)]  has several prominent features. _
and mg=1.0 GeV from the fine-structure splitting ofPL F|rst at very short distances<0.04 fm, the correction

~ (2)

and 2P states in bottomonium. In Fig. 4qf3“)(r) is com- (r) is positive i.e.,
pared to the perturbative running coupling?)(r) at r
<0.12 fm, a{?(r) is given by the expressiom Ag<1)

AL)=686 MeV, (46)

IV. @g(R) AT SHORT DISTANCES

aP(r)>aP(r) (r<0.04 fm), (49)

and relatively small. It is about 6% at=0.02 fm and still

~ ~ In ins~ = (2
@) =a®(r)] 1- :31 nyr (42) remains~4% at much smaller 02002 fm io thatvg”(r)
YR approaches the perturbative running couplirg(r) rather

slowly. In the one-loop approximation this correction was
with calculated analytically in Ref14]:
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3 AV, Ggev
=——————, [In(Ayr)[>1. (50 1.5
680 —IN(Ayr)]

It is positive and less than 5% only at very short distances,
r<0.007 fm. The important feature afa$’(r) is that it 0 s
does not depend on the background m@sgsin the limit r
—0.

Secondly, the values a&?)(r) and a{?(r) coincide at
the pointr=0.041 fm, i.e.,

Aag)(r)

r,fm
0.05 0.1 0.15 0.2

2)(p = =
Aag’(r=0.041 fm=0. (5D FIG. 5. The difference\V{" between the background and per-

turbative potentials in the one-loop approximati@olid line). The
tangent with the slope?(")=1.20 Ge\ is shown by the dashed
0.04 fm<r=<0.15 fm (52) line. The parameters are the same as in Fig. 4

At bigger distances, in particular, in the range

this correction isegative and fast growing.g., it is 13% at  Numerically calculated V§-?(r) are shown in Figs. 5 and 6
r=0.07 fm, already 36% at=0.10 fm, and reaches 100% correspondingly. We observe the linear rise of potentials il-
atr=0.14 fm although all these points lie rather far from lustrated by the tangentédashed lines Tangent slopes

the Landau poler ,,c=0.29 fm. o(r) are defined as
The explanation of why the perturbative coupling is es-
sentially larger than the background coupling at rather small . aAV(B”)(r)
r was given in Ref[14]. It was shown there that in coordi- os™M(r)= — (57)
nate space the QCD constahg can be defined as a constant
[given by Eq.(45)] only at very short distances while in the '
transition regiorn(52) the role of the QCD “constant” plays a We see from the figures that
function Ag(r) dependent on the distance: O_E(l):l.zo Ge\?, 0.05 fm<r<0.12 fm, (59
~ o (- mgr)* 2
Ar—Ag(N=Ayexpg ye+ X, ——— o5 @=0.87 Ge?, 0.03 fm<r<0.09 fm.
=1 klk
(59)
~ 1 2.2 ~
=Agrexp —mgr+ 2Ms |- (53 This large difference means that the perturbatigr) fails

to describe lattice data in this region. Nevertheless, we try
here to compare our resulté8) and (59) with the lattice
ones from Ref[18]. After perturbative potential subtraction
from the lattice static quenched potential, lattice data in the
region 0.03 fm<r<0.15 fm were parametrized by the lin-
ear potential with the slope

Then with the use of the functiong(r) the perturbative
coupling a{?)(r) reproducesx{?)(r) in the range(52) with
an accuracy better than 5%. Actually, this approximati®)
can be used only at distances

2.2
mgr
mBr—%<7E or r=0.15 fm. (54) ok =(1.20:0.36 Ge\?, 0.03 fm<r<0.15 fm.
(60)
In what follows, the regior(54) is called as thdransition @
region By direct calculations of the integréB7) it can be Ve rGeV
shown that at longer distancés(r) is approaching the vec-
tor constantA, [14]: 1
Ag—Ay at r=0.15 fm. (55) 0.5
V. STATIC INTERQUARK POTENTIAL 0
Knowing the differenced a((r)=2a(r)—a{’(r) one

. . £
can calculate the corresponding differenc®¥{"(r) be- 0.05 0.1 0.15 0.2 "

tween the background and perturbative static potentials: FIG. 6. The difference\ V2 between the background and per-

A turbative potentials in the two-loop approximati@olid line). The
AVO) (1) = — ‘_1 ag”(r) (n=1,2) (56)  tangent with the slope’(?=0.87 Ge\ is shown by the dashed
B 3 r e line. The parameters are the same as in Fig. 4

016004-7
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-1 while the nonperturbative potential becomes the linear one
2t with the same slope. As a result, the sum of these poten-
sl tials may be close to a linear one with the standard slope
over all distances. This linear behavior of nonperturbative
4r potential at short distances is important for the fine-structure
o 5fF £ . fit in charmonium[10]. Note also that the linear potential
S e b4 tioop+iinear - ] V(NP)(r) is consistent with the “short string” potential gen-
' loop ——-= & erated either by the topologically defined pointlike mono-
-7 2 loop : 1 S : . e . .
B=60 = 3 poles or infinitely thin P vortices within the Abelian Higgs
8 gzg'i : ; model[31]. The distinguishing feature of the last potential is
-9 B=68 - ! that it does not change its slope at all distances. We leave the
ol detailed numerical analysis of this effect to a subsequent pa-
0.05 0.1 0.15 O'2r/9¢25 0.3 0.35 04 045 per.
FIG. 7. The static potential (r)=V&)(r) + ot + C with the pa- VI. CONCLUSIONS
rameters of V& (r) from Fig. 4, 0=0.2 GeV and C=
—253 MeV(solid line, imposed on lattice pointsomparatively to In our paper, the strong couplinBB(r) in coordinate

the lattice static potential from Refl18]; Sommer scaler,  space, deduced in BPT, is investigated and the corresponding
=25 GeV'. The one-loop and two-loop perturbative potentials perturbative potential is compared to the short-range lattice

from Ref[18] (see Sec. Yare Sthn by a thln solid line be-low the static potentia' from Re"[l8] The fo”owing prominent fea-
lattice points and a dash-dotted line, respectively; one-lodimear tures onzB(r) are observed.

7laf” potential (r;=1.20 GeV) isshown by a dashed line. (i) The background coupling attains the asymptotics

* *(1,2) \prispoi _of standard perturbative coupling,(r) only at very
One can see thatjy corresponds targ within one stan short distances,r<0.04 fm, where the QCD constant

dard error. We conclude that this large linear slope of poten;\R:AVeXpyE, and Ay, the QCD constant in the

tial is well explained usingrg(r) instead ofa(r). In Fig. 7, “V-scheme,” is considered to be a well established number
we compare the lattice static potential from Refg] at the i the quenched approximation.

distances 0.051/ro<0.45 with the potential (i) At largerr, a function Ag(r) plays the role of the

QCD constant, which at short distancesgr <vyg, is ap-

4 aP(r . !
V(r)=— 3 ag (1) +or+C, (61)  Pproximately given by
~ mar?
wherec=0.2 GeV andC=—253 MeV (shown by a solid AR(r)%ARexp< —mgr + il (62)

line). This potential includes the background perturbative po-
tential V?)(r) and the linear confining potentiatr. The _ _ _
constan(C corresponds to the quark self-energy. We observévheremg=1.0 GeV is the background mass fixed by fit to
that this potential describes all lattice data remarkably well.fine-structure splittings of B and 2P levels in bottomo-
In Fig. 7, one-loopand two-loop perturbative potentials Nium. In fact the condition

calculated in Ref[18], are also shown. The difference be-
tween them and lattice points is large and explained above.
The one-loop perturbativer linear potentialwith the slope

o is also shown. It describes lattice points up rttrg

=0.35, but fails to describe the rest of the data because qfefines the narrow transition region: 0.05 $m<0.15 fm,

the Landau pole ofr,(r). On the contraryV(r) [Eq. (61)]  where A x(r) decreases almost twice, from the valtig at
not only describes all the lattice data presented in Fig. 7 ip~0.05 fm to the number close tby, atr=0.15 fm.

the region 0.05:r/ry<0.3, but also all the lattice data avail- jjj) The static potentiaVg(r) in BPT, defined through

able up tor =3r, with a reasonable accuracy. ag(r) in the usual way, Eq(36), is in good agreement with

What is the physics of the linear part &f(r)? In the th hed latti tati tential d at short dis-
framework of BPT[27] it was shown that the linear confin- taﬁcg:[i%(]: ed latlice stafic potential measured at short dis

ing potential starts from the quark distances close to the glu-"— . .= . .
onic correlation lengthTy. From the lattice data,T (iv) The specific behavior o&g(r) in the transition re-

~0.2 fm[28] andT,=0.12-0.15 fm[29]. At smaller dis- gion produces a linear rise of the differens®(r)=Vg(r)

J . e : .
tances one needs to take into account an interference of pelr-VP(r) with the slopeo* ~1 Ge\* in accordance with the

turbative and nonperturbative effe¢80]. As was shown in |attice data. Moreover, we have obtained a very good agree-
Ref. [30], the interference potential ats T, behaves like a MMt with the lattice data using the sifg(r)+or with o
linear one with the slope about, while the nonperturbative =0.2 GeV. -

potential is proportional te? and small in this regiofi27]. (v) At distances =0.2 fm, the functionAg(r) turns out

At distancesr =T, the interference interaction vanishes, to be almost constanfyg(r)~ A, over all distances, so that

1,
mBr—ZmBr <7ye (63

016004-8
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atr>0.3 fm the couplingag(r) fast approaches the freez- can be checked in different processes in low-energy QCD.
ing valueag(e). This fact helps us to understand why the Our estimate fory is 0.53-0.60.

use ofay(r) =const in the static potential of the quark model
[3] appears to be a good approximation in hadron spectros-
copy. The authors are grateful to Yu. A. Simonov for many fruit-

(vi) The freezing value of the background coupling coin-ful discussions. This work has been supported by RFFI Grant
cides in momentum and coordinate space, and this statemeNb. 00-02-17836.
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