
PHYSICAL REVIEW D, VOLUME 65, 016004
Freezing of QCD coupling affects the short distance static potential

A. M. Badalian* and D. S. Kuzmenko†

Institute of Theoretical and Experimental Physics, 117218, B. Cheremushkinskaya 25, Moscow, Russia
~Received 5 June 2001; published 11 December 2001!

A striking contradiction between the lattice short-range static potential (nf50) and standard perturbative
potential is investigated in the framework of the background perturbation theory. With the use of the back-

ground couplingãB(r ) which contains the only background parameter, the massmB , fixed by the fine-
structure fit in bottomonium, the lattice data are nicely explained without the introduction of an exotic short-

range linear potential with a large ‘‘string tension’’s* ;1 GeV2. A significant difference betweenãB(r ) and
standard perturbative strong couplingaV(r ) is found in the range 0.05 fm&r &0.15 fm, while at larger

distances,r .0.3 fm, ãB(r ) fast approaches the freezing valueãB(`). Some problems concerning the
strong-coupling properties at short and long distances are discussed and solutions are suggested.

DOI: 10.1103/PhysRevD.65.016004 PACS number~s!: 11.15.Bt, 12.38.Lg
n

e-
on
he
th

-

t
th
el
th
ec
io

-
o

ce

a

o-
h
n
th
tu

l

n

th

ces
st

his
D

e

ou-

is-
xist-

the

con-
nt,
,

were
l at

ncy
I. INTRODUCTION

The property of the freezing of the strong coupling co

stant ãV(r ) at long distances is widely used in QCD ph
nomenology@1–6#. On a fundamental level this phenomen
has been studied in two different theoretical approac
@7–9#. In the case of the static potential, the freezing of

coupling ãV(r ) suggests thatãV(r ) is approaching a con

stant a fr[ãV(r→`) at relatively long distances while a
smallr it manifests the property of asymptotic freedom. Bo
characteristic features of the static potential were wid
used in hadron spectroscopy. However, it was realized
the asymptotic freedom behavior does not practically aff
hadron spectra, being important mostly for a wave funct

at the origin. On the contrary, the choice ofãV(r ) as a con-

stant at all distances, i.e.,ãV(r )>ā, appears to be a reason
able approximation and gives rise to a good description
meson spectra both for heavy quarkonia@1,10,11# and for
heavy-light mesons@12#. Also in lattice QCD this choice
gives a good fit to the lattice static potential at distan
above 0.2 fm.

Therefore, the question arises why this simple approxim

tion, ãV(r )'ā, works so well even in the case of bottom
nium where the sizes of low-lying levels are not large, t
characteristic radiusRch&0.5 fm. To answer this questio
one needs to clarify another problem, namely to find out
precise freezing value of the vector constant in momen
and coordinate spaces, and to define the distancesr where
the difference betweenãV(r ) anda fr is becoming inessentia
and therefore the approximationãV(r )5ā (āÞa fr in the
general case! gives a good description of hadron spectra a
other physical characteristics.

This problem will be discussed in the present paper in
framework of background perturbation theory~BPT! and it
will be shown that the background couplingãB(r ) ap-
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proaches its freezing value already at rather small distan
r .0.4 fm. Here it is worthwhile to remember that in mo
calculations in coordinate space the ‘‘average’’ valueā is
usually taken in the range 0.35&ā&0.45 while in momen-
tum space larger critical values were used@acr[aV(q50)#.
For example, in Ref.@3# acr50.60 and for the Richardson
potential acr52p/b0'0.7 (nf53) @2,13#, i.e., the differ-
ence betweenacr'0.620.7 in momentum space andā
'0.4060.05 in coordinate space is essential. However, t
difference was not confirmed by the analysis of the QC
coupling in background fields@14# where the vector coupling
constantsaB(q) and ãB(r ) were found to have the sam
asymptotic value:

aB~q50!5ãB~r→`!5a fr . ~1!

This equality takes place also for the phenomenological c
pling taken as a sum of Gaussians in Ref.@3#.

In lattice measurements of the static potential at long d
tances, the freezing phenomenon is also seen, however e
ing lattice data have not clarified our knowledge abouta fr .
As shown in Refs.@15,16# the lattice static potential atr
>0.2 fm can be parametrized with good accuracy by
Cornell potential with rather smallā ~in lattice notation4

3 ā
5e). In the quenched approximation (nf50), the fitted lat-
tice values ofā'0.2020.24 (e50.2720.32) turned out to
be small so that in some cases there appears to be a dis
tinuity of the vector coupling constant at the matching poi
r mat'0.2 fm @5#. But if dynamical fermions are introduced
in lattice QCD the fitted value ofā (nf52,3) was found to
become larger,ā>0.30 (e>0.40) @17# still being less than
in phenomenological models.

Another problem concerns the behavior ofãV(r ) at short
distances. The most interesting and unexpected results
obtained in lattice measurements of the static potentia
short distances, 0.05 fm<r<0.15 fm @18#, where a large
difference between the lattice and the two-loop~one-loop!
perturbative potential was observed, yielding a discrepa
of about 100% at the pointr 50.15 fm. In Ref.@18#, this
©2001 The American Physical Society04-1
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A. M. BADALIAN AND D. S. KUZMENKO PHYSICAL REVIEW D 65 016004
large difference was parametrized by a short distance lin
term s* r with the slopes* '1 GeV2.

This effect will be explained in our paper. To this end t
strong- coupling constant in background fieldsãB(r ) will be
calculated and the influence of the background massmB will
be shown to become essential already at rather short
tances. We have found that there is no need to introduc
additional exotic linear potentials* r as in Ref.@18#. The
resulting static potentialVB(r ) appears to have an effective
linear term in good agreement with lattice data. In our c
culations no fitting parameters are introduced: the value
the background massmB51.0 GeV is taken from fine-
structure analysis in bottomonium@11# while the QCD con-
stantLMS(nf50) is considered as a well established num
and taken from Ref.@19#.

II. THE STRONG-COUPLING CONSTANT aB„q…
IN BACKGROUND FIELD THEORY

The perturbative static potential is used to define a c
pling constantaV(q) in V-scheme:

VP~q!524pCF

aV~q!

q2
, ~2!

whereq2[q2. Recently the renormalizedaV(q) was calcu-
lated in the two-loop approximation@20,21#. In coordinate
space the static potential can be defined as the Fourier tr
form of VP(q),

VP~r !5E dq

~2p!3
VP~q!exp~ iqr !, ~3!

which gives rise to the simple relation between the coupl
constants:

ãV~r !5
2

pE0

`

dq
sinqr

q
aV~q!, ~4!

if the following definition for the coupling in coordinat
spaceãV(r ) is used:

VP~r !52CF

ãV~r !

r
. ~5!

However, the Fourier transform of the perturbative coupl
aV(q), Eq. ~4!, does not exist in a strict sense because
Landau pole singularity. To escape IR divergency the exp
sion ofaV(q) in the perturbative series at largeq2 is usually
made @20,21#, but the resulting expansion is valid only
short distances.

Here we suggest to obtain the static potential in coo
nate space with the use of the coupling in BPT, where
vector coupling constantaB(q) in momentum space is de
fined at all momenta and has no singularity forq2.0 @7#.
Then the potential in momentum space can be written a
Eq. ~2!,
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VB~q!52CF4p
aB~q!

q2
. ~6!

In Eq. ~6! and below we consider the influence of bac
ground vacuum fields only on Coulomb-type interaction.
the presence of background fields the QCD coupling is mo
fied so that it depends on the combination (q21mB

2) instead
of q2 as it is in standard perturbative theory@8#. The mass
mB is a background mass which is characteristic for a p
cess considered. In the two-loop approximation the runn
background coupling is

aB
(2)~q!5aB

(1)~q!H 12
b1

b0
2

ln tB

tB
J , ~7!

where the one-loop expression is given by

aB
(1)~q!5

4p

b0tB
, ~8!

with

tB5 ln
q21mB

2

LV
2

. ~9!

The conditionmB.LV is assumed to be satisfied under t
logarithm ~9! to guarantee the absence of the Landau po
this condition is always valid for the numbersLV and mB
used in our calculations@see the numbers in Eq.~25!#.

In Eq. ~7!,

b05112
2

3
nf , b151022

38

3
nf . ~10!

First we discuss the most important properties of the ba
ground couplingaB(q).

The background massmB is not an arbitrary parameter. I
can be calculated in the framework of BPT or in lattice QC
As was shown in Ref.@22#, the background massmB in the
case of the static potential is defined by the difference
two-gluon and one-gluon hybrid excitations and can be
tracted from the corresponding level differences of hybr
cc̄g,bb̄g. In Ref. @22#, this massmB was evaluated to be
1.0–1.2 GeV. For other processes, such ase1e2

→hadrons, in general the background massmB may be dif-
ferent@8#. The appearence of the massmB in Eq. ~9! is simi-
lar to the case of QED wherea has the mass of ane1e2 pair
under logarithm.

It is of interest to notice that the analytical form ofaB(q)
~7! coincides with that obtained in a picture when a gluon
supposed to have an effective massmg inside the gluon loop.
Therefore, in Ref.@23# as(q) was taken as a function o
(q214mg

2), i.e., the double effective gluon mass 2mg plays a
role of the background massmB ~see the discussion in Re
@4#!.

In our calculations here the value ofmB will be fixed at
mB51.0 GeV, taken from the fit to fine-structure splitting
in bottomonium@11#.
4-2
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At large momenta,q2@mB
2 , the background coupling

goes over into the standard perturbative expressionaV(q).
Therefore, the QCD constantsLMS in PQCD andLMS

B in
BPT must coincide; in any case it is true for the number
flavorsnf55. As can be directly calculated with the use
the matching procedure, they are also equal fornf54.

The QCD constantLV , entering the couplingaV(q) in
Eq. ~2!, can be expressed throughLMS(nf) in the modified
minimal subtraction (MS) renormalization scheme@24#:

LV
(nf )5L

MS

(nf ) expS a1

2b0
D , ~11!

with

a15
31

3
2

10

9
nf . ~12!

At present the values ofL
MS

(nf ) are well established for the

number of flavorsnf55: LMS
(5)

5208623
25 MeV @25# and

also for nf50 due to an analysis in the lattice finite siz
technique@19#:

LMS
~0!

5
602~48!

r 0
, ~13!

where r 0 denotes the Sommer scale. With the use ofr 0
52.5 GeV21, taken in most lattice calculations@17,18#, one
obtains

LMS
~0!

5241619 MeV. ~14!

Then from Eq.~11! the QCD constant in the V-scheme is

LV
(0)5385630 MeV. ~15!

In the three-loop approximation the background coupling

aB
(3)~q!5aB

(1)~q!H 12
b1

b0
2

ln tB

tB
1

b1
2

b0
4tB

2 F ~ ln tB!22 ln tB

211
b2

Vb0

b1
2 G J ~16!

contains the term including theb2
V coefficient, which de-

pends on a renormalization scheme and was calculate
Refs. @20,21# ~the coefficientsb0 ,b1 do not depend on the
renormalization scheme!; this coefficient

b2
V5b2

MS2a1b11~a22a1
2!b0 . ~17!

Herea1 is defined by Eq.~12! and

b2
MS5

2857

2
2

5033

18
nf1

325

54
nf

2 , ~18!
01600
f
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a259S 4343

162
14p22

p4

4
1

22

3
z~3! D1

100

81
nf

22
3

2
nf S 1798

81

1
56

3
z~3! D2

2

3
nf S 55

3
216z~3! D . ~19!

In Eq. ~19!, z(3)51.202057 denotes the Riemannz func-
tion. In the quenched approximation,

a2~nf50!5456,7488, b2
V~nf50!54224,1817,

~20!

i.e., theb2
V coefficient turns out to be about three times larg

than b2
MS(nf50)5 2857

2 . As a result, the third-order correc
tion in aB

(3)(q) is much larger thanaB
(1)(q) andaB

(2)(q).
It is easy to find the first-order correction to the perturb

tive coupling aV(q) which comes from the expansion o
aB(q) in powers ofmB

2/q2. In the two-loop approximation,

aappr
(2) ~ large q!5aV

(2)~q!2aV
(1)~q!

mB
2

q2 ln
q2

LV
2

, ~21!

with

aV
(2)~q!5aV

(1)~q!S 12
b1

b0
2

ln y

y D , aV
(1)~q!5

4p

b0y
,

y5 ln
q2

LV
2

. ~22!

This approximation appears to be valid only atq.2 GeV
~with an accuracy& 10%!.

The behavior ofaB(q) in the IR region. The freezing
value ofaB

(n)(q) can be easily obtained from Eqs.~7!–~9!, in
particular for two-loop coupling,

acr
(2)5aB

(2)~q250!5
4p

b0t0
H 12

b1

b0
2

ln t0

t0
J ~23!

with

acr
(1)5

4p

b0t0
; t05tB~q250!5 ln

mB
2

LV
2

. ~24!

In what follows, the notationacr
(n)5aB

(n)(q250), as in poten-
tial models@3#, is also used. The parametersmB and LV ,
present intB , are considered to be fixed: the value ofmB is
taken from fine-structure analysis of 2P and 1P states in
bottomonium while the valueLV

(0)(nf50) is taken from lat-
tice data and given by Eq.~15!,

mB51.0 GeV, LV
(0)~nf50!5385 MeV. ~25!

We suppose here that fornf53 the constantsLV
(3) andLV

(0)

are approximately equal,
4-3
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LV~nf53!.LV~nf50!5385630 MeV. ~26!

Then the following critical values can be obtained from E
~7! and ~15!:

acr
(1)50.598; acr

(2)50.428; acr
(3)50.805 ~nf50!,

~27!

acr
(1)50.731; acr

(2)50.536; acr
(3)50.972 ~nf53!.

~28!

As one can see from Eqs.~27! and~28!, the third-order cou-
pling turns out to be about 90% (nf50) and 80% (nf53)
larger thanacr

(2)(nf) because of largeb2
V coefficient ~20!.

Such a value ofacr
(3)(nf) appears to be too large and n

compatible with the effective Coulomb constant of the sta
potential, aeff&0.5, needed to describe heavy quarko
@1,3# and heavy-light meson spectra@12#. Such a large value
of the Coulomb constant is also not observed in lattice c
culations of the static potential at large distances@15,16#.

Presumably this means that since the perturbative seri
an asymptotic one, it should be truncated after the seco
loop term.

Recently an ‘‘analytical’’ perturbation theory was elab
rated in@9#. It was shown there that the modification of si
gularities of perturbative coupling by power terms allows
to work accurately in the two-loop approximation. The thir
order contribution becomes numerically inessential and, e
for e1e2 annihilation is about 0.5%.

Therefore, in what follows the third-order term will b
omitted anda posterioriour phenomenological analysis wit
the use of background coupling will demonstrate that
two-loop approximation is sufficient to describe the latti
data at small distances.

The background couplingaB
(2)(q) in the two-loop ap-

proximation turns out to be rather close to the phenome
logical aph(q) which is successfully used in hadron spectro
copy. For comparison,aph(q) will be taken from the well-
known paper of Godfrey and Isgur@3#:

aGI50.25 exp~2q2!10.15 exp~20.1q2!

10.20 exp~20.001q2! ~29!

with q in GeV andacr50.60.
In Fig. 1, this phenomenological coupling is compared

the background couplingaB
(2)(q) for nf53. Here, as in Eq.

~26!, it is supposed thatLV(nf53)>LV(nf50) and for
LV(nf53) two values are taken:

~a! LV~nf53!5385 MeV,
~30!

~b! LV~nf53!5410 MeV.

These values ofLV
(3) do not contradict those which are com

monly used in theMS renormalization scheme, and give ri
to as(MZ)50.11860.001. The connection betweenL

MS

(nf )

andLV
(nf ) is given by Eq.~11!.

In Fig. 1, the couplingsaGI(q) ~solid line!, aB
(2)(q) in the

two-loop approximation withLV5385 MeV ~dashed line!,
01600
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(2)(q) with LV5410 MeV ~dash-dotted line! andmB

51.0 GeV are shown. At the momentumq5m̄c

51.3 GeV (m̄c is the running mass of thec quark!, the
matching of the couplings was done with the following res
for the QCD constant:LV(nf54)50.325 MeV in the case
~a! and LV(nf54)5351 MeV in the case~b!. As is seen
from Fig. 1, the background couplingaB

(2)(q) in the case~b!
@and to some extent in case~a!# appears to be very close t
the phenomenological couplingaGI(q); the difference be-
tween them is less than 5% at smallq&1.3 GeV and less
than 2% in the range 1.3<q<4 GeV. So one can expec
that with the use of the background coupling, an equa
good description of low-energy experimental data can be
tained as in Ref.@3# with the use of the phenomenologic
coupling. From here our estimate of the freezing value
about 0.5320.60, and it is interesting to look at the expa
sion of the background couplingaB(q) near the freezing
point q50:

aappr
(2) ~small q!5acr

(2)2acr
(1) q2

mB
2 ln

mB
2

LV
2

, ~31!

whereacr
(2) ,acr

(1) are the fixed numbers defined bymB and
LV @see Eqs.~23! and ~24!#. This approximation appears t
be valid only in a very narrow range of small momen
q, 0<q<0.4 GeV, where the difference betweenaB

(2)(q)
and aappr

(2) ~small q) is less than 5%; but it already reach
22% atq51.0 GeV.

Heavy-quark initiated jets can be successfully describ
at small momenta if the following assumption is made ab
an effective coupling constantaeff(q) in the infrared region
@6#:

J2~fit!5~2 GeV!21E
0

2 GeV

dq
aeff~q!

p
50.1860.01~exp!

60.02~ th!. ~32!

As was shown in Ref.@6#, this number does not depend o
the form ofaeff(q) assumed in the fit. Our calculations of th

FIG. 1. The behavior of the background couplingaB
(2)(q) for

LV
(3)5385 MeV ~dashed line! and for LV

(3)5410 MeV ~dash-
dotted line! compared to the phenomenological couplingaGI(q)
~solid line! taken from Ref.@3#.
4-4
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integral~32! with the background couplingaB
(2)(q) from Eq.

~7! with nf53, LV5410 MeV, andmB51.0 GeV give

J2~aB!5~2 GeV!21E
0

2 GeVdq

p
aB

(2)~q!50.134, ~33!

i.e., this number is 26% smaller thanJ2~fit! in Eq. ~32!. The
same integral calculated with the phenomenological cons
aGI(q) ~29! is also 22% smaller thanJ2~fit! ~the central
value!:

J2~aGI!50.14 ~34!

and very close to our number~33!. One should notice here
that the large number~32! in Ref. @6# could be connected
with the large fitted value ofas

MS(MZ)50.12560.003(exp)
50.004(th), used in their paper, while now the avera
as

MS(MZ)50.11860.001 is accepted@25,26#.
In conclusion we give our predictions about the freez

values in momentum space:

acr
(1)50.598, acr

(2)50.428 ~nf50, LV
(0)5385 MeV!,

acr
(1)50.731, acr

(2)50.536 ~nf53, LV
(3)5385 MeV!,

~35!

acr
(1)50.783, acr

(2)50.582 ~nf53, LV
(0)5410 MeV!.

III. THE BACKGROUND COUPLING ãB„R…

IN COORDINATE SPACE

From the explicit expressions ofaB
(n)(q) it is evident that

the couplingaB
(n)(q) is well defined at all momentaq2 if the

conditionmB.LV is satisfied. Therefore, the Fourier tran
form can be used to define the static potential in coordin
space over all distances:

VB~r ![2CF

ãB~r !

r
52CF4pE aB~q!

q2
eiqr

dq

~2p!3
.

~36!

From here a relation similar to Eq.~4! follows:

ãB~r !5
2

pE0

`

dq
sinqr

q
aB~q!5

2

pE0

`

dx
sinx

x
aB~x/r !,

~37!

where now the background couplingaB(x) depends on the
variable

tB~x!5 ln
x21mB

2r 2

LV
2r 2

. ~38!

This integral~37! cannot be taken analytically even in th
one-loop approximation and was calculated numerically
n-loop approximations (n51,2) with the use of the param
eters~25!. The behavior of background couplingãB

(2)(r ) and

ãB
(1)(r ) is shown in Fig. 2 in the range 0<r<1.4 fm.
01600
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From Fig. 2 one can see that two-loop background c
pling in coordinate space is approaching the freezing valu
relatively short distances,r *0.4 fm, and the values o
ãB

(n)(r )(n51,2) at the Sommer scaler 0'0.5 fm are the fol-
lowing:

ãB
(1)~r 050.5 fm!50,574; ãB

(2)~r 050.5 fm!50.404.
~39!

It is of interest to notice that the two-loop coupling at th
distancer 0 practically coincides with the numberā50.39
widely used in the Cornell potential@1#, while the one-loop
coupling is too large. The fact that two-loop background co
pling is almost constant already atr *0.4 fm can be consid-
ered as an important argument in favor of the choiceãB(r )
5const in low-energy spectroscopy. In Fig. 3,ãB

(2)(r ) is
shown for two different values of the background mass:mB
51.0 GeV~solid line! andmB51.1 GeV~dashed line!. As
seen from Fig. 3, the difference between them is becom
essential already atr'0.3 fm, being about 10% over a
distances r .0.3 fm; their freezing values area fr

(2)(mB

51.0 GeV)50.428,a fr
(2)(mB51.1 GeV)50.382 ~in both

casesLV
(0)5385 MeV).

The freezing value in coordinate space turns out to be
the same as in momentum space, i.e., fornf53 and nf

FIG. 2. The one-loopãB
(1)(r ) ~solid line! and the two-loop

ãB
(2)(r ) ~dashed line! background couplings in the quenched a

proximation; in both casesLV
(0)5385 MeV, mB51.0 GeV; two-

loop asymptotics,acr
(2)50.428, is shown.

FIG. 3. The background couplingãB
(2)(r ) in coordinate space

for two values of the background massmB : mB51.0 GeV ~solid
line! and mB51.1 GeV ~dashed line!; in both casesLV

(0)

5385 MeV.
4-5
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50 (LV5385 MeV) they are given by the numbers fro
Eq. ~35!. This property is true also for the phenomenologic
potential used in Ref.@3#:

aGI~q50!5aGI~r→`!50.60, ~40!

since in coordinate space the couplingaGI(r ) corresponding
to aGI(q) in Eq. ~29! is

aGI~r !50.25F~2r !10.15F~1.581r !10.20F~15,811r !,
~41!

whereF(z) is the error function. Thus for three flavors th
phenomenological valuea fr'0.6 was found to be a bi
larger than our numberacr

(2)50.54 @see Eq.~35! for nf53#.

With ãB(r ) calculated above we can compare the ba
ground potentialVB(r ) ~37! to the lattice static potentia
from Ref. @18#. Here we are mostly interested in the sho
range potential, in particular in the influence of backgrou
massmB on its behavior. The properties ofãB(r ) at smallr
will be considered in the next section.

IV. ãB„R… AT SHORT DISTANCES

Recently very precise lattice measurements of the st
potential at short distances were presented@18#. Having these
data one has a unique opportunity to compare theore
predictions about the background coupling and the poten
VB(r ) with precise lattice data in the quenched approxim
tion. We remind the reader that our calculations ofãB

(n)(r )
(n51,2) were done without any arbitrary parameter:LV

(0)

5385 MeV (nf50) was fixed from lattice data@Eq. ~14!#
and mB51.0 GeV from the fine-structure splitting of 1P

and 2P states in bottomonium. In Fig. 4,ãB
(n)(r ) is com-

pared to the perturbative running couplingãV
(2)(r ) at r

<0.12 fm, ãV
(2)(r ) is given by the expression (rLR!1)

ãV
(2)~r !5ãV

(1)~r !H 12
b1

b0
2

ln yR

yR
J ~42!

with

FIG. 4. The background couplingãB
(2)(r ) with LV

(0)

5385 MeV, mB51.0 GeV~solid line! compared to the perturba

tive ãV
(2)(r ) with LR5686 MeV ~dashed line! at short distances.
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ãV
(1)~r !5

4p

b0yR
, yR5 ln

1

LR
2r 2

, ~43!

and we have the following prescription for the value of t
QCD constantLR(nf) @24,13#:

LR
(nf )5LV

(nf )expgE . ~44!

In Eq. ~44!, gE is the Euler constant (gE50.5772157), and
in the quenched approximationLV

(0) is given by the number
~14!, therefore, fornf50,

LR
(0)5684653 MeV. ~45!

In our calculations below we take the number

LR
(0)5686 MeV, ~46!

which corresponds toLV
(0)5385 MeV according to the re

lation ~44!.
The numerical comparison of the ‘‘exact’’ backgroun

coupling ãB
(2)(r ) (LV5385 MeV, nf50) and the corre-

sponding perturbativeãV
(2)(r ) with LR

(0) from Eq. ~46! is
presented in Table I for the distances in the range

0.002 fm<r<0.15 fm. ~47!

One can see that the difference between these two
plings,

DaB
(2)~r !5ãB

(2)~r !2ãV
(2)~r ! ~n51,2!, ~48!

has several prominent features.
First, at very short distances,r ,0.04 fm, the correction

DaB
(2)(r ) is positive, i.e.,

ãB
(2)~r !.ãV

(2)~r ! ~r ,0.04 fm!, ~49!

and relatively small. It is about 6% atr 50.02 fm and still
remains;4% at much smallerr 50.002 fm so thatãB

(2)(r )

approaches the perturbative running couplingãV
(2)(r ) rather

slowly. In the one-loop approximation this correction w
calculated analytically in Ref.@14#:

TABLE I. The background coupling ãB
(2)(r ) (LV

(0)

5385 MeV, mB51.0 GeV) compared to perturbative couplin

ãV
(2)(r ) with LR

(0)5686 MeV.

r ~fm! ãB
(2)(r ) ãV

(2)(r ) r ~fm! ãB
(2)(r ) ãV

(2)(r )

0.002 0.0964 0.0924 0.024 0.1757 0.1667
0.004 0.11095 0.10505 0.030 0.1880 0.180
0.006 0.1216 0.1209 0.0355 0.1988 0.1943
0.008 0.1303 0.1221 0.041 0.2085 0.2079
0.012 0.1446 0.1352 0.049 0.2204 0.2264
0.016 0.1564 0.1465 0.057 0.2311 0.2455
0.020 0.1666 0.1569 0.063 0.2384 0.2605
4-6
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DaB
(1)~r !5

p3

6b0@2 ln~LVr !#3
, u ln~LVr !u@1. ~50!

It is positive and less than 5% only at very short distanc
r ,0.007 fm. The important feature ofDaB

(1)(r ) is that it
does not depend on the background massmB in the limit r
→0.

Secondly, the values ofãB
(2)(r ) and ãV

(2)(r ) coincide at
the pointr 50.041 fm, i.e.,

DaB
(2)~r 50.041 fm!50. ~51!

At bigger distances, in particular, in the range

0.04 fm,r &0.15 fm ~52!

this correction isnegative and fast growing,e.g., it is 13% at
r 50.07 fm, already 36% atr 50.10 fm, and reaches 100%
at r 50.14 fm although all these points lie rather far fro
the Landau pole,r pole50.29 fm.

The explanation of why the perturbative coupling is e
sentially larger than the background coupling at rather sm
r was given in Ref.@14#. It was shown there that in coord
nate space the QCD constantLR can be defined as a consta
@given by Eq.~45!# only at very short distances while in th
transition region~52! the role of the QCD ‘‘constant’’ plays a
function L̃R(r ) dependent on the distance:

LR→L̃R~r !>LV expS gE1 (
k51

`
~2mBr !k

k!k D
>LR expS 2mBr 1

1

4
mB

2r 2D . ~53!

Then with the use of the functionL̃R(r ) the perturbative
coupling ãV

(2)(r ) reproducesãB
(2)(r ) in the range~52! with

an accuracy better than 5%. Actually, this approximation~53!
can be used only at distances

mBr 2
mB

2r 2

4
,gE or r &0.15 fm. ~54!

In what follows, the region~54! is called as thetransition
region. By direct calculations of the integral~37! it can be
shown that at longer distancesL̃R(r ) is approaching the vec
tor constantLV @14#:

L̃R→LV at r *0.15 fm. ~55!

V. STATIC INTERQUARK POTENTIAL

Knowing the differencesDaB
(n)(r )[ãB

(n)(r )2ãV
(n)(r ) one

can calculate the corresponding differencesDVB
(n)(r ) be-

tween the background and perturbative static potentials:

DVB
(n)~r !52

4

3

DaB
(n)~r !

r
~n51,2!. ~56!
01600
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-
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Numerically calculatedDVB
(1,2)(r ) are shown in Figs. 5 and 6

correspondingly. We observe the linear rise of potentials
lustrated by the tangents~dashed lines!. Tangent slopes
sB

(n)(r ) are defined as

sB*
(n)~r !5

]DVB
(n)~r !

]r
. ~57!

We see from the figures that

sB*
(1)51.20 GeV2, 0.05 fm,r ,0.12 fm, ~58!

sB*
(2)50.87 GeV2, 0.03 fm,r ,0.09 fm.

~59!

This large difference means that the perturbativeãV(r ) fails
to describe lattice data in this region. Nevertheless, we
here to compare our results~58! and ~59! with the lattice
ones from Ref.@18#. After perturbative potential subtractio
from the lattice static quenched potential, lattice data in
region 0.03 fm,r ,0.15 fm were parametrized by the lin
ear potential with the slope

s lat* 5~1.2060.36! GeV2, 0.03 fm,r ,0.15 fm.
~60!

FIG. 5. The differenceDVB
(1) between the background and pe

turbative potentials in the one-loop approximation~solid line!. The
tangent with the slopesB*

(1)51.20 GeV2 is shown by the dashed
line. The parameters are the same as in Fig. 4

FIG. 6. The differenceDVB
(2) between the background and pe

turbative potentials in the two-loop approximation~solid line!. The
tangent with the slopesB*

(2)50.87 GeV2 is shown by the dashed
line. The parameters are the same as in Fig. 4
4-7
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One can see thats lat* corresponds tosB*
(1,2) within one stan-

dard error. We conclude that this large linear slope of pot
tial is well explained usingaB(r ) instead ofãV(r ). In Fig. 7,
we compare the lattice static potential from Ref.@18# at the
distances 0.05,r /r 0,0.45 with the potential

V~r !52
4

3

aB
(2)~r !

r
1sr 1C, ~61!

wheres50.2 GeV2 andC52253 MeV ~shown by a solid
line!. This potential includes the background perturbative
tential VB

(2)(r ) and the linear confining potentialsr . The
constantC corresponds to the quark self-energy. We obse
that this potential describes all lattice data remarkably w

In Fig. 7, one-loopand two-loop perturbative potentials,
calculated in Ref.@18#, are also shown. The difference b
tween them and lattice points is large and explained abo
The one-loop perturbative1 linear potentialwith the slope
s lat* is also shown. It describes lattice points up tor /r 0

50.35, but fails to describe the rest of the data becaus
the Landau pole ofãV(r ). On the contrary,V(r ) @Eq. ~61!#
not only describes all the lattice data presented in Fig. 7
the region 0.05,r /r 0,0.3, but also all the lattice data avai
able up tor 53r 0 with a reasonable accuracy.

What is the physics of the linear part ofV(r )? In the
framework of BPT@27# it was shown that the linear confin
ing potential starts from the quark distances close to the
onic correlation lengthTg . From the lattice data,Tg
'0.2 fm @28# andTg50.1220.15 fm @29#. At smaller dis-
tances one needs to take into account an interference of
turbative and nonperturbative effects@30#. As was shown in
Ref. @30#, the interference potential atr &Tg behaves like a
linear one with the slope abouts, while the nonperturbative
potential is proportional tor 2 and small in this region@27#.
At distancesr *Tg , the interference interaction vanishe

FIG. 7. The static potentialV(r )5VB
(2)(r )1sr 1C with the pa-

rameters of VB
(2)(r ) from Fig. 4, s50.2 GeV2 and C5

2253 MeV~solid line, imposed on lattice points! comparatively to
the lattice static potential from Ref.@18#; Sommer scaler 0

52.5 GeV21. The one-loop and two-loop perturbative potentia
from Ref.@18# ~see Sec. V! are shown by a thin solid line below th
lattice points and a dash-dotted line, respectively; one-loop1 linear
s lat* r potential (s lat* 51.20 GeV) isshown by a dashed line.
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while the nonperturbative potential becomes the linear
with the same slopes. As a result, the sum of these pote
tials may be close to a linear one with the standard slops
over all distances. This linear behavior of nonperturbat
potential at short distances is important for the fine-struct
fit in charmonium@10#. Note also that the linear potentia
V(NP)(r ) is consistent with the ‘‘short string’’ potential gen
erated either by the topologically defined pointlike mon
poles or infinitely thin P vortices within the Abelian Higg
model@31#. The distinguishing feature of the last potential
that it does not change its slope at all distances. We leave
detailed numerical analysis of this effect to a subsequent
per.

VI. CONCLUSIONS

In our paper, the strong couplingãB(r ) in coordinate
space, deduced in BPT, is investigated and the correspon
perturbative potential is compared to the short-range lat
static potential from Ref.@18#. The following prominent fea-
tures ofãB(r ) are observed.

~i! The background coupling attains the asymptot
of standard perturbative couplingãV(r ) only at very
short distances,r ,0.04 fm, where the QCD constan
LR5LV expgE , and LV , the QCD constant in the
‘‘V-scheme,’’ is considered to be a well established numb
in the quenched approximation.

~ii ! At larger r, a function L̃R(r ) plays the role of the
QCD constant, which at short distances,mBr ,gE , is ap-
proximately given by

L̃R~r !'LR expS 2mBr 1
mB

2r 2

4 D , ~62!

wheremB51.0 GeV is the background mass fixed by fit
fine-structure splittings of 1P and 2P levels in bottomo-
nium. In fact the condition

mBr 2
1

4
mB

2r 2<gE ~63!

defines the narrow transition region: 0.05 fm<r<0.15 fm,
whereL̃R(r ) decreases almost twice, from the valueLR at
r'0.05 fm to the number close toLV at r 50.15 fm.

~iii ! The static potentialVB(r ) in BPT, defined through
ãB(r ) in the usual way, Eq.~36!, is in good agreement with
the quenched lattice static potential measured at short
tances@18#.

~iv! The specific behavior ofãB(r ) in the transition re-
gion produces a linear rise of the differenceDV(r )5VB(r )
2VP(r ) with the slopes* ;1 GeV2 in accordance with the
lattice data. Moreover, we have obtained a very good ag
ment with the lattice data using the sumVB(r )1sr with s
50.2 GeV2.

~v! At distancesr *0.2 fm, the functionL̃R(r ) turns out
to be almost constant;L̃R(r )'LV over all distances, so tha
4-8
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at r .0.3 fm the couplingãB(r ) fast approaches the freez
ing value ãB(`). This fact helps us to understand why th
use ofãV(r )5const in the static potential of the quark mod
@3# appears to be a good approximation in hadron spect
copy.

~vi! The freezing value of the background coupling co
cides in momentum and coordinate space, and this state
D

e
6

.

s

01600
l
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-
ent

can be checked in different processes in low-energy QC
Our estimate fora fr is 0.53–0.60.
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