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Radio detection of high energy particles: Coherence versus multiple scales
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Radio Cherenkov emission underlies the detection of high energy particles via a signal growing like the
particle energy squared. Cosmic-ray-induced electromagnetic showers are a primary application. While many
studies have treated the phenomenon approximately, none have attempted to incorporate all the physical scales
involved in problems with time- or spatially evolving charges. We find it is possible to decompose the
calculated fields into the product of a form factor, characterizing a moving charge distribution, multiplying a
general integral which depends on the charge evolution. In circumstances of interest for cosmic ray physics, the
resulting expressions can be evaluated explicitly in terms of a few parameters obtainable from shower codes.
The classic issues of Fraunhofer and Fresnel zones play a crucial role in the coherence.
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[. INTRODUCTION experimenf17] with high energy photon beams reports mea-
surement of coherent Cherenkov radiation.

Coherent radio Cherenkov emission is a remarkably effec- Despite a long history, the previous literature apparently
tive method for detecting high energy particles. The historyd0€s not contain a careful treatment of evolving charge dis-
of the effect goes back to Jelly, who first asked whethet_t”bUt'Of_‘S- _such as those of electromagnetic showers in air or
cosmic ray air showers might produce a radio sigfil ice, which incorporates all important features_of the problem.
Askaryan[2] subsequently predicted a net charge imbalanc he problem is intricate because of a multitude of scales.

in air showers, and coherent radio power scaling like the hen an electromagnetic shower evolves, it produces a pan-

. . .. cake of charge with a finite thickness and a finite width,
energy of the shower squared. Substantial radio erT“Ss'o(ﬁrobed at a finite wavelength of radiation, and for a finite

from atmospheric electromagnetic gascade;; was obsgrv tance over which the shower is big. All this occurs at a
more than 30 years ag8,1]. Progress in ultrahigh energy air finite distance from the detector. Results on evolving and

showe_rs has sparked renewed interest, and new observatiofi$ie_sized charge distributions are few. Tarfit8] grappled

of radio pulses have been reported recefdly The current it the problem of a charged particle on a track of limited

pilot project RICE[5,6] uses radio Cherenkov emission to |ength in the early days of the theory. Askaryi@] antici-

detect 100 TeV and higher energy neutrinos in Antarctic icepated a coherence cutoff in air showers at high frequencies of

The radio Cherenkov signal is the most efficient knowngrder the inverse pancake size, imposed somewhat by hand.

mechanisn{5,20,6,7,8 for detecting neutrinos of 100 TeV Allan [1] gave physical arguments and order of magnitude

and above in solid media, yielding detection volumes of or-estimates based on one of Feynman'’s electrodynamic formu-

der 1 kn? per radio detector for PeV neutrinos on ice targetslas. Kahn and Lerchigl9] attempted to resolve the coherence

At PeV energies and above, the neutrino interaction crosssue using superpositions of infinite tracks. McKay and Ral-

sections offer fascinating new tests of standard model physston[33] and Alvarez-Muiez and Zas(AZ) [21] considered

ics [9] and new physic$10]. Tomography of the Earth is the influence of the Landau-Pomeranchuk-Migd#tM) ef-

also possible with PeV-scale neutringkl]. Radio Cheren- fect at ultrahigh energies. Zas, Halsen, and Stafz#¥S)

kov signals have also been used to search recently for nel22] and AZ reported results from summing asymptotic far

pinging on the Moor{12]. There is a growing community Complexity. _

interested in these and other applications, leading to a recent W& present an approach that incorporates all the scales

international meeting on the topid3]. and a}llows a general_an'alys'ls. Main rgsults include ?n ex-
Cherenkov radiation is also an intrinsically interesting angdP'eésstion for the electric field in a factorized form. The “fac-

beautiful physical phenomenon. Coherence is a basic featuF rization” occurs when distance scales can be separated: the

of electrodynamics, and the coherent enhancement of Cheg_ aracteristic size of the moving charge distribution must be

enkov radiation in the microwave region has been observe ubstantially smaller than a particular sc(:}ale, the “longitudi-
) . al spread” over which the char velopEhi ndition
in the laboratory{14,15. The Argonne wake-field accelera- spread” ove ch the charge developBhis conditio

. . is well satisfied for all cosmic ray applications we have ex-
tion project[15] has successfully generated extremely large; mined. Aform factor characterizes the moving charge dis-

microwave field strengths by manipulating coherent radiay;ihytion, which multiplies a charge-evolution integral. Not
tion from an intense electron beam. Effoft6] to observe )| the scales decouple: subtleties coming under the classic
radio Cherenkov emission and charge excess build-up igescription ofFraunhofer and Fresnel zones need careful
electron shower cascades were recently made. A very recefieatment. Finally, the generic situation can be summarized

*Present address: Department of Physics and Astronomy, Vander-'The scale over which the charge develops is not the track length.
bilt University, Nashville, TN 37235. See Sec. Il for our definition.
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by analytic formulas. This is indispensable given the largemay misrepresent the physics if the artificial treatment of the

parameter space. For example, the numerous and varied nerdpoints play a major role. Conversely, experimental situa-

merical plots obtained from immense Monte Carlo simula-tions with conditions close to those assumed by the Tamm

tions can be summarized by a few parameters. Once the p&rmula can be constructed: Takahashial. [14] report on

rameters are determined, predictions can be made for arthe sudden appearance of a charge in a cavity with metallic

number of circumstances. boundary conditions, leading to a strong mixing of Cheren-
kov and boundary-condition effects.

Il. CONSEQUENCES OF COHERENCE A. Fraunhofer versus Fresnel

Before beginning analysis we review a few basics. The oyr study uncovers another, deeper problem with certain
well-known Frapk-Tamr_r(1937) formula uses an exact solu- asymptotic assumptions of the Tamm-type approach. In a
tion to Maxwell's equations for a uniformly moving charge tynical application of Cherenkov radiation in high energy
on an infinitely long track. The solution is kinematic and Canphysics, we might have a track of length-1 m, observed
be obtained by the trick of boosting the charge to a speed; 3 distanceR~1 m, and in the optical regime witR/\
faster than light in the mediufmExtension to a track of finite ~L/\>1CP. The application to radio detection in ice might
length has pitfalls. Tamm’s 1939 finite-track formUla8] 56 R~(100—1000) mA~(0.1=1) m,L~10 m, with
assumes a uniform chargdraveling at a uniform velocity L/\~10-100 withR/\ even greater. Cosmic ray air show-

along thez axis for —L/2<z<L/2. Tamm gives the energy g develop and are observed over tens of kilometers. In all

lossdP per angular frequencgtw per solid angled(): cases, all lengths are large in units of the wavelength. Given
5 5 ) L large enough for the acceleration contributions to be small,
d°p ne sir? X the Tamm formula, Eq(1), might appear ideal at first sight.

o dQ ~ 423 (@L)7sim 0

oY)

x? Indeed for wL—o, the sirf X/X? distribution approaches

2mrc/(nwl) 6(cosh—cosé,). Integrating over angles we re-

where X=nwL/(2c)(cosé,—cosh) and cod,=c/(nv); nis  cover the well-tested Frank-Tamm result for an infinitely
the index of refractior. This formula has been cited in the long track,
high energy physics literature, and used to interpret experi-
ments observing Cherenkov radiation in the millimeter
wavelength ranggl4]. dodL

Tamm'’s finite-track formula includes two competing and Yet the Tamm formula is quite inapplicable to such prob-
distinct physical processes: the Cherenkov radiation of a unil-emS This is evident from tﬂe formurljg’s rediction tha?t the
formly moving charge, and bremsstrahlung or acceleration ' P

radiation from charges modeled as starting and stopping inr_adlated energy will be concentrated in coordinate space at

stantly at the track’s endpoints. The interference of the sudg:a BCH lé?c;? gitlsjg]t?glnvsv?thegu?hteo g:gfcuiosn'a';gawagy r?afa d
den start and stop contributions with the straight line contri- pny ' 9y y sp

bution leads to strong oscillations in the angular distribution.ratehi;];rm:}?srr?g.:;zrr th_lefhlieslni%tg ?afrsagygrr:dle;lra?udrirsotlrjirl;ﬂlt?gn
Compared to a typical high energy process the acceleratiow 9 J Y- 9

at the endpoints is fake, that is, the Tamm model is unreli-extendlng over anglea 6~L/R, whereR s the distance to

able. This is because a charge created by pair production }Qe rec.e|vet'r. Thg Tammtfgrmulzzl, or ?}?y S\§)t/;nﬁptotlg far field
accompained by an opposite charge, which coherentl p?rgxmgblont,h_ 0€s nci teptin Ton € dis h Ct‘:‘n ca?-
shields the pair from radiating until the oppositely charged ot describ€ this simple truth. frué enough, tnementa

o : " wave numbers of photons have directions that may be
partners gradually separate. This “Perkins effect” has beerg -~ o .
observed[23] and is closely related to the coherence phepeaked aby~ 6, but this is not the same thing as thewer

nomena in QCD of color transpareni&4]. At the end of the density dRPd() seen on a sphere surrounding the system go-

Cherenkov processes, charges also do not stop instantly, blgg.hke'é(cosa—cosac). There is no paradox: if one f|xe§
instead slow gradually to subluminal speeds, where Chere rbitrarily large, and then moves to an asymptotically distant

kov radiation ceases by decrease of the frequency intervaP.Cat'onR_)oo’ the photons trayelmg at the Cherenkov anglle
will appear to come from a point source whose angular size

While the slowing has stochastic elements, it is better ap: diffraction limited. The T f la is derived by taki
proximated by a uniform deceleration than by a catastrophibs |_re}ct|on Imited. The Tamm formula IS derive yta_ N9
limit R—oc; once taken, the case of finitgR is unavail-

disappearance of charge. Of course, the evolution of a co%he

mic ray shower over many radiation lengths and invoIvingabl_IE_" his breakd f i .
billions of particles is an even smoother macroscopic pro- 1© S€€ this breakdown from a different perspective, one

cess. Thus the Tamm formula and related approximationgan use simple dimensional analysis _and geometrical reason-
ing. The energy flux per frequency intervab is propor-

tional to the frequency domain Poynting vectd; x B*

2The reader who attempts this exercise may discover a factor OTV|E9)|2' Conservation of energy implies that the Poynting
“2" resolved by imposing the causal boundary conditions not ex-flux integrated over the area from which it escapes is con-

d?p e’
=w?sm2 0.

plicit in Coulomb’s Law. stant. Cherenkov radiation for the “long uniformly moving
We diverge from current practice and use the special symbwl  track” has cylindrical symmetry, so one integrates over a
represent the speed of light, otherwise known as “1.” cylinder of lengthAz and circumference 2p to obtain
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- (z,p)

27AzpE2=const,

E,~1/p. 2

(The same result is obtained by expanding the asymptotic
Frank-Tamm Bessel function solutions, of cour$éow turn

to dimensional analysis: In particle physics units, the time-
domain electric fieldE(X,t) has dimensions of mass squared.
The Fourier transform, frequency-domain electric fiég
has dimensions of mass. Since there are no other scales fi
an infinite track, we then find that fields go lik&o/p in the
cylindrical regime. Squaring this, the radiation intensity goes
like w, which is a well-known result used in particle detec-

A 4

FIG. 1. Cartoon of electromagnetic coherence zone associated
tors. o _ o with an evolving shower. The shower develops over a longitudinal
This is nothing like the typical radiation from accelerated gpread dimensiom, as represented by the smooth curve. During
charges which has fields falling likeRn three-dimensional  most of this development the pancake of charge has a constant size
space. And this peculiarity applies out to arbitrarily larged, put an evolving charge normalization, represented by the gray
distancep, provided the track is long enough. Butfis  scale. The coherence zone,., depends on the angle, frequency,
taken so large that the radiation appears to emerge from @nd location of the observation point. The situation illustrated has
point source, thé& , field must fall likeLw/p~Lw/R. (The  Az,,>a, a case in which full coherence of the chalggp to a
factor of L comes from the linear power per unit length de- frequency cutoff determined by the pancake gig®btained. In the
pendence. Momentarily we will examine this in more detail. reverse limitAz;,,<a, only the portion of the charge inside the
The breakdown of Tamm'’s formula is thus due to an in-region of Az, contributes constructively.
terchange of limits. Tamm’s formula is obtained by making i o )
the Fraunhofer approximationwhich fails under a broad to @ saddle-point approximation. Sindeon~ R, the co-
range of finite track lengths. ThEresnel zonedescribes a herence zone grows to infinite size @s~co: but this limit
complementary far-field region where the Fraunhofer apcannot be taken carelessly.
proximation must be modified. The basic physics of the

Fresnel zone for Cherenkov radiation is elementary but re- C. Coherence of evolving charge distributions
quIres some care. We now return to the emission from an electromagnetic
shower or other time-evolving charge distribution. To a rea-
B. The coherence zone sonable approximation, the number of particles in a highly

relativistic shower scales like the primary energy divided by
suitable low energy threshold. The charge imbalance near
e shower maximum is of order 2@®f the total number
speedc,, will arrive simultaneously from the track #R/dt of partigles. These num.bers have b(_aen c.onfirn"!ed over .and
—c 'Ir'nhis is the Cherenkov conditiodR/ 7t =v coSO=C over, with each generation of numerical simulation contrib-
meo T ) J007 ™ uting further detail. The origin of the emitted Cherenkov
for velocity v quented a_t anglé® relative to the dlrectm_nR. power going like the shower-energy squared is basic electro-
Note thatR(t) is the radius from the charge to the point, not gynamics: the electric field will scale like the charge, and the
the vector position. _ radiated power scales like the electric field squared.
Because of the geometry of the track and observation Tpe evolving shower has a finite length scaleover
point, uniform motion produces acceleration B{t). If  \yhich it is near its maximum, and radiating copiously. This
dR/ gt were constant, the fields arriving would all be in phaselength scale, known as the “longitudinal spread” in cosmic
for the whole track length. However, the acceleration relative(ay physics[25], is akin to the length scale of Tamm’s
to the observation point produces an extra radial change Qfpproach but represents a smooth onset and decline of maxi-
order AR=1/2(s°R/4t*)(At)?. Coherence of modes of mum power. We define our procedure for finding the longi-
wavelength\ is then maintained only over a finite region of ydinal spread in Sec. Ill. The shower longitudinal spread
AR<N\. Since ¢°R/3t>=v?sir’ /R, we solve to find the s determined by the material, and is conceptually distinct
condition At.o,< RN/ (v sin6). Equivalently, there is a fi- from the shower’s total depth to reach the maxim@mhich
nite spatialcoherence regiom\z.,, for any givenR, given  goes like the logarithm of the enengyr the charged pancake

Consider(Fig. 1) a charge moving on a straight line. Let
R(t) be the instantaneous distance from the charge to th
observation point. Information propagating in the medium a

the wave numbek=27/\, namely, size (which is fairly constant once the shower is developed.
: A cartoon of these ideas is given in Fig. 1.
Azgon<JRI(KiI* 6), ©) There are then two characteristic limits. Suppose the lon-

gitudinal spread of the shower is “short” compared to the
over which the “sonic boom” of radiation is built coherently. coherence lengtre<Az.,,. Then coherence is maintained
When we refer to this passage later, we will call it the quali-over the whole range where the current is appreciable. The
tative “acceleration argument.” It will be deeply connected amplitude is proportional to the total lengitover which the
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current was “on,” times IR. This is then theR— oo limit, or E. Evading the Fraunhofer approximation
Fraunhofer approximation, and looks like normal radiation.
From dimensional analysignd here we recall the discussion
earlien, E,~aw/R.

However, in the limita=Az.,,, the coherence length is
not as big as the longitudinal spread, and coherence onl
exists over the smaller of the two. Adding amplitudes only
over the regionAz.,, and weighted by R, the E, field

The Fraunhofer approximation is the textbook expansion
for the phase exp{X—x'|)~exp(k|X—ikx-X'), dropping
terms of orderk|X’|?/R. All existing simulations make this
approximation for the phase, and for good reasons: the sub-
gequent integrations become much simpler. The integrand in
Eqg. (5) oscillates wildly. A Monte Carlo simulation has to

goes likewAz.y,/R=Jw/R. This behavior is rather differ- N9 tne surviving phgses frot:n :nyria;i cfancerl1lationks, dude LO
ent from the previous case: indeed Cherenkov radiation ifhe phases generated over the length of each track, and then

fundamentally a Fresnel-zone effect, as seen by th&R 1/ summed over thousands to millions of tracks moving in three
dependence of the fields. ' dimensions. For a 1 TeV shower the code of ZHS runs in

Both the Fresnel and Fraunhofer limits are far-field ap-2bout 20 min on a workstation. Increasing the energy by a
proximations in the sense th&R>1 is assumed. The factor of 100, the calculational time scales up faster than
subtlety lies in the dimensionless ratio linear, and computer time becomes prohibitive. For this rea-
son various strategies to rescale the output have been used in
arriving at the published values of electric fields. Even for
TeV energies, standard Monte Carlo routines sucBeEs\T
challenge a workstation’s capacity. For cosmic rays of the
highest energies the entire approach of direct numerical
which controls how the limiR—« is taken. Confusion on evaluation is unfeasible.
this point is easy; one ha&/\ ~10* in the same regime, and Unfortunately the Fraunhofer approximation also neglects
yetRis not large enough for a “larg@” Fraunhofer approxi-  terms in the phases, nametyx’|%/R, that may be of order
mation to apply, exactly because the term “lafges unde-  unity given our previous discussion of length and frequency
fined until the limit parameter; is specified. In the RICE scales. We must avoid this step. Progress is possible due to
experiment one typically hasa~(1-2) m, o the translational features of the macroscopic current
~(100-1000) MHz, andR~10* m, so <1 holds. Exten- J*(t',X’). A rather general model is
sion to closer observation points, or to energies where the N
LPM effect can give a much larger makes»>1 possible. J(t',x")=vn(z")f(z' —vt’,p"). (6)
Partly due to the obscurity of the coherence criteria, the
Fraunhofer approximation has received much attention in the
previous literaturd22,21], except for those estimates using An even more general situation will be discussed shortly.
fields with “cylindrical” symmetry [26,20,27,28 The charge packet travels with the speedchosen here to

be along thez axis of the coordinate system. The function
f(z' —vt’,p') represents a normalized charge density of the
D. General setup traveling packet, witho’ the transverse cylindrical coordi-
nate relative to the velocity axis. We normalife by
with similar notation for other fields. The Maxwell equations Jdz' d%p’ f(.Z’,pf)=1. In Ice the paqket 1S abounz’
. . . - S = N =10cm thick in the longitudinal direction, andp’
for a dielectric medium ar& -D,=4mp, CVXB,=47J,  _10cm in radius in the vicinity of the shower maximum.
—iwD,, V-B,=0, cVXE,=iwB,, where D,(X) (For the transverse dimension, we use the Moliere radius,
=e(w)E,(X). There is a wave equation for the vector po- defined as the radius within which 90% of the energy of the
tential A“(x), given byc(V2+k?)A¥(x)=—4mJ*(x), with  particles is found25].) These size scales are limited because
k=w+/e/c. Then we have of relativistic propagation. The time evolution of these scales
k| | is negligible near the shower maximum, and indeed the Mo-

T , explik|X—X']) , S E o liere radius is usually approximated by a material constant

CAw(X):f d*x WJ dt’ expliot)I(t".X").  for the whole shower. Similarly, in air showers the scale of
(5) charge separation is small compared to the scale of shower
longitudinal spread.
The shower’s net charge evolution appears in the factor
The 4-potentialA*= (A% A) has been defined in a general- N(z'). With our normalization,n(z') represents the total
ized Lorentz gaug@:ﬁﬁ& €dA%3t=0 appropriate to the charge crossing a plane zt. The symboln,,, will denote

. P the maximum value of(z'); later we will see that the elec-
- M=
medium. The 4-current=(p/e,J). Since the components tric field scales linearly withn,,,,. The longitudinal spread

of J are related by=vp, we haveA=A%es/c. We calcu- s a property of(z') near the shower maximum. The model
late A, and then uses\?u=6-Ac/(ev2). For radiation prob- neglects chargéurreny left behind, and moving at less than
lems the denominator factor |%/~X'| is replaced by R. light speed in the medium, which does not emit Cherenkov
This is standard, with corrections of ordef/R? or similar  radiation. We do not have a sharp cutoff at the beginning or
effects in the “near field” regime, which is not our subject. end of the tracks, and the functioifz’) will vary smoothly.

ka?
17=(a/Azcoh)2=?sin2 0 (4)

Let Ew(x) be the time-Fourier transform of the field,
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F. Factorization for the Fresnel zone

Now while we cannot expand around=0 (the Fraun-
hofer approximatiof) the conditions of the problem do per-
mit an expansion arounal =0 (the shower axis namely for
R(z')=[(z—2")?+p?]", that

|)—(’_X>/|=[(Z_Z/)Z+(ﬁ_ﬁ1)2]l/2

P

R/

For typical values in this problem, the second term-is0
times smaller than the first, and the third4s10* smaller
than the second. For the exponent in Es), the third term

does not contribute ikAp'?/R<1, that isw<250 GHz.
Collecting terms, we have

w ! t/ ++ >/
;(Z vt')+q-p

> >y
PP o

=R(Z)-

CRA,=17J dz’n(z’)exr{i(%z’JrkR

xffdt’dzp’exp[—i

Xf(z'—vt',p").

()

We have shifted th¢’ integral which produces the transla-
tional phase in the' integral. This gives the factorization

A,~F(@)AF (), ®)
where
@)= [ dxe X100 ©)
veRAF=71FF, (10
and
|FF<n,a>:j dz’ exi{ d(2)],
11)

¢(z")=ik[Z' cosb.+R(Z',p)]+Inn(z").

Here =(w/v,q,), g, =kp/R, andXx'=(z',p"). Provided
F(w)<1 in either frequency regionkAp'?/R>1 or

kAz'?/R>1, the decoupling of the integrals is excellent.

PHYSICAL REVIEW B5 016003

FIG. 2. Comparison of numerically integratgabints and ana-
lytic fit (solid curve to the Fresnel-Fraunhofer integrdi™( 7, 6),
Eqg. (11). The parameters ar@=1.5 m,R=1000 m; frequency
=1,2,5,10 GHz(from top to bottom. Both Fresnel and Fraun-
hofer regimes are successfully reproduced. The angle is measured
in degrees| F in meters.

go like 1R from his use of Feynman'’s formujaAs a con-
sequence of separating out the form factor, the integrations
have become effectively one dimensional.

IIl. NUMERICAL WORK

At this stage we have a formula for the vector potential
which is a product of a form factor and an objéEt (7, 0)
containing the information about the shower history. We will
denotel FF( 7, 6) the Fresnel-Fraunhofeiintegral because it
interpolates between these regimes. In the Fraunhofer ap-
proximation it is easily shown that the factorization is an
exact kinematic feature of translational symmetry as exem-
plified in Eq. (6). If one makes a one-dimensional approxi-
mation, the Fraunhofer integral then evaluates the Fourier
transform of the currert28,29.

The factorization in the Fresnel zone is more demanding,
yet should be an excellent approximation. When calculating
IFF(#,6), we cannotas mentioned earlipconsistently ex-
pand in powers of'/R becausep~1 will be needed.

It makes sense at this point to make a numerical compari-
son with previous work. Summarizing the results of an ex-
tensive Monte Carlo calculation in the Fraunhofer approxi-
mation, ZHS gave a numerical fit to the electric field

MHz

60— 0C)2
A6
(12)

with =500 MHz. This is the result of a global fit to many

RIES ()] v

HereAp’' andAz’ refer to the regions over which the charge angles, energies, and frequencies w/2w<vq. In this con-

exists near the maximunt(q) is the form factor of the

vention o is positive. The normalized form factor is

charge distribution, which happens to be defined, just as iff zus(v) =111+ 0.4(v/vy)?], as discussed below. In making
the rest of physics, in terms of the Fourier transform of thethe calculation, results for the field were also rescaled due to

snapshot of the distribution. From our definitioR60)=1.
It is worth noting that the dependence on orientatioj of

computer limitations. As a result, the field reported is strictly
linear in the primary energ¥,. We will comment on this

is observable. For example, in a giant air shower, where thehortly.
mechanism of charge separation might cause an azimuthal We calculated our own result proportional t&§F (7

asymmetry about the shower axis labeled by a dipolthen
F(g) depends offr (G- p). The orientation of the dipole rela-

=0,0) over a range of many frequencies and angeg. 2).
Before doing the integral we scale out the electromagnetic

tive to the observation point thus has a strong effect on thand dimensional factors which are obvious. In our conven-

emission.(Other numerically large effects will also be im-
portant: for example Allafl] incorrectly assumes the fields

tion —w<w<oe. The results of our numerical integration
are quite well fit by
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REZO] e —
W=?a 27N SING

1
X exr{ - E(ka)z(cose— cosé.)?|.

(13
Putting in numerical values, this gives
RIE?=%( g FIG. 3. Magnitude of the rescaled electric file- |£], Eq.(19).
| o ( )l —2 09X 10—73 Nmax ¥ Our result(solid curve is compared to the Fraunhofer approxima-
F(w) ' m 1000 GHz tion (dashed curve The parameters ara=1.5 m, R=50 m, v
5 =1 GHz; the angle is measured in degrees. The Fraunhofer ap-
wexd — 1[cosf—cosb. v proximation is narrower in angular extent and larger in magnitude.
2\ A(cos#) MHz |’ Due to conservation of energy the field sharpens its angular distri-
14 bution and approaches the asymptotically far field from below as
(14) R—o. Up to scaling normalization factors, the same plot would
where apply to any with the same, for examplea=3 m, R=200 m.
energy physics important for the charge imbalantée par-
A(c0S6)=0 0483 m GHz ticular Greissen formula we consult¢80] for the longitu-
( e Jea v’ dinal spread in radiation lengthsX, gives a/X

~+3/2In(Ey/E) for particles in the shower with energy

(We have indicated tha is in units of m andv in GHz)  greater tharE and a primary with energ§,. In that case
Note the linear dependence aw, argued earlier to come One estimatea=1.8 m atE,=1 TeV with E=611 MeV,
from dimensional analysis applied to the limjt-0. A cur-  Xo=0.39 min ice, which is acceptably close to the previous
sory inspection shows that this result and the Monte Carl@stimates.
simulation have the same general features. At higher energies there is every reason to believe that

To continue the numerical comparison we need numberEreissen’s stretchedin E energy dependence will apply. In
for the longitudinal spread parametarand the number of that casea=2.1 m, 2.3 m for 100 TeV, 1 PeV showers,
charges at shower maximumy,... There are several ways to respectively. Note that the produef,,,a is relevant for the
estimate this. Running the ZHS code many times and fittindield normalization. In this case we also neet,,
the output of a 1 TeV shower with a cutoff of 611 KeV gives ~(Ey/E)/\In(Ey/E)—0.33 from the same Greissen approxi-
a=1.5m,n,»=345. Using these and allowing for the factor mation.  Rather  amazingly, the productn,,a
of two in conventions gives agreement to a few percent in~(E,/E)+/3/2 In(E,/E)/\/In(Ey/E)—0.33~ E, /E at high ener-
normalization with ZHS. However, the other way to do thegies. This confirms the phenomenon observed by ZHS: the
calculation is to evaluate the produt,,,, many times. This normalization of the electric fieldFraunhofer approxima-
method is preferred because fluctuationsaiand np,, are  tion, 6= 6,) scales precisely linearly in the primary energy. It
correlated. Doing this givean,,—=(570=50) m at 1 TeV, is rather pleasing that the result can be understood from first
which would predict a normalization factor of (1.2 principles[31]. Later we will see that the paramet@enters
+0.1)x 10" in Eqg. (12). This (plus the angular dependence in a much more complicated way in the Fresnel zone, creat-
studied below indicates that the factorized result is quite ing an extra, weak energy dependence.
consistent with the Monte Carlo simulation. Regarding the angular dependence, our wétig. 3) in-

In Fig. 2 we show numerically integrated values16f dicates a general dependence on &os0s6, rather thand
Eg. (11). These factors appear directly in the fit just cited, — .. When fitting numerical output the two functional
and serve to check the formulas. The form factor has beeforms are rather different, unless one has a very narrow dis-
divided out. For the range of parameters relevant to the prolribution. Linearizing for small cog8—cosé, with a=1.5m
lem, agreement is very good, and relative error is much lesfor the comparison, we would predict the scale in the angular
than 1%. dependence =2.1°(vq/v) while ZHS have the same ex-

For experimental purposes one would like independenpression with 2.4°. We find that is proportional to 1d. If
confirmation of the parameters from another source. Net pat grows slowly with energy, as Greissen’s formula indicates,
ticle evolution is well described by Greissen’s classic soluthen the angular width decreases, which is not seen in ZHS.
tion, which was simplified further by Rossi to a Gaussian,Another possible explanation for the small discrepancy is the
N(z) = npaexd —Z2/(2a%))/\2ra. While Greissen'sa refers  improper radiation from tracks terminating abruptly at the
to the whole shower, it should also be a reasonable descrignds used in the Monte Carlo. We have identified these ef-
tion for the longitudinal spread of the charge imbalancefects as responsible for the small oscillations seen in the
which tends to be a fixed fraction of the total number ofMonte Carlo output, an effect apparently too small to mea-
particles after a few radiation length§here is one caution sure.
that the Greissen formula does not explicitly include low- When numerical output to the frequency dependence is
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fit, there is a slight coupling between the model for the formThe method turns out to give the exact result in the limit of
factor and the parametarone will extract for the longitudi- flat charge evolution, that is, the Frank-Tamm formula,
nal spread. We made our own fit to the ZHS code’s fre-where numerical evaluation is highly unstable. With the
guency dependence, including the region up to 1 GHz, usingaddle-point approximation, we can extract analytic formulas
a Gaussian form factor because of its better analytic propewhich are as good as the numerical integration.
ties. (The ZHS fit, which contains poles in both the upper We now describe the saddle-point features. By transla-
and lower half-plane, violates causalit@pecifically, we find  tional symmetry the shower maximum can be located’at
=0. Referring to the formula of Eq11) cited earlier, the

F(v)=exg —v?%(2v2)], »,=0.93GHz. saddle point of the phase is given by solving
Using the correspondingvalue we would predict the Fraun- cosf.—(z—z.)IR — (i1 (d/dzInn -0
hofer Monte CarloA 6~2.3°(500 MHzb), quite close to S0~ (2-2,)IR(z,) ~(iTk)(dldz)Inn(z,)

ZHS.

In real life, shower to shower fluctuations are highly im- for the pointz, dominating the integral. The maximum elec-
portant. We studied the statistical featdresthe parameters tric field is already known to occur at poins,R near the
Nmax. @ by fitting individual showers many times and looking Cherenkov cone. For such observation pointsR cos6,
at the average and rms fit values. The resultEatl TeV  and the saddle-point equation has an easy solution, at
werea=1.5+0.2 m, n,,,=345+60. Multiplying these and = 0. Thus the dominant integration region is near the shower
adding fluctuations in quadratures givesn,,,=520(1 maximum, as physically expected.
+0.22) m. The combinatiomn,,,,, Which is the primary As the point of observation moves off the Cherenkov
variable in determining the normalization of the electriccone, the saddle point moves away into the compéx
field, was found to be (57050) m. The fluctuation cn,,, Plane. To find the complex saddle point, we approximate
is less than half the value that the uncorrelated fluctuations dh n(z')~—2'%(2a% in the vicinity of the shower maximum;
the separate terms would give. The relative fluctuation is saithat is, we fitthe top of the shower locallwith a Gaussian.
to decrease with increasing eneff@l], but there are uncer- To reiterate: the saddle-point approximation does not need to
tainties. For example, threshold rescaling is used in Montéeplace the entire shower by a Gaussian, but replaces the
Carlo simulations, leading to a loss of information about thevicinity of the region where phases are contributing coher-
true fluctuations. Very preliminary results of running the ently by a Gaussian. The saddle-point condition gives a quar-
standard Monte Carlo GEANT show variations in averagetic equation which can be solved. Unfortunately the solution
shower parameters such @s,,, at the 30% level compared is impossibly complicated, thwarting a direct approach. We
to the average of ZHE34]. These comparisons indicate that circumvented this by studying the saddle-point location nu-
the electrodynamics is probably determined better than thgerically. We found the quartic solution is accurately linear-
rest of the problem. Indeed, the deviations from Gaussiafzed in a special variable: expand about @oslose to
behavior in showers is an effect contributing to the fields acosf,. We then find z,~R(0)sir? §(cosf—cosf,)[1
the few percent level. At the level of 10-15%, many other+iR(0)/(ke? sir? 6)]~*. With this formula the reader inclined
small effects contribute. Unless one uses details about thean repeat all the calculations. We also show the saddle point
uncertainties and errors in fits, and especially about théo highlight the appearance of the raRg0)/(ka? sir? 6) in-
shower-to-shower fluctuations in all relevant quantities, it isdicated by the qualitative “acceleration” argument, E)
pointless to fine tune the comparison further. We concludef Sec. Il B. Finally, we replac®(0)=R= \Z?+ p?.
from the numerical work that the factorized expression is at The rest of the calculation is standard mathematical phys-
least as reliable as the Monte Carlo simulation, and has thies [32], so we just quote the results. Calculating fields from
attractive feature that the parameters can be adjusted directipe potential and keeping only the leading terms irk R}

<1 we find
IV. THE SADDLE-POINT APPROXIMATION
While the Rossi-Greissen Gaussian approximation to the szl—w F(G)1FF(%,0)| (cos6—cosb,)éx
shower is common, there are additional features that favor Rc
such an approach to the emitted radiation. The coherence is C0S6. COSH— COSH
dominated by regions where the phases add constructively, —(1—i n— < - c)sin 0€,|, (15
greatly enhancing the peak region. In such circumstances sio 1-iy

analysis is helpful, especially when the largest contribution

to I7F is dominated by saddle points. These are points where R iw

the phase is stationargig(z,)/dz, =0. B,=— WF(Q)I FF(n,0)
Here we describe the saddle-point method to evaluate v ¢

IFF(%,6). This is a classic, controlled approximation when

TR, : _ €0S# cosh— cosh,
the charge distribution has a single maximum &R 1. X

1+'nsin20 =iy )smaed,, (16

“We thank Soeb Razzaque for help with this. where
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1FF(7,0)
—-1/2

) C0Ssf cosé— cosh
— ikR s _ A Cc
e a\/ZW[l In(l SIUSinZH =iy )

Xexp{—%(ka) (17)

1-ipy

) (cosa—cosec)z}

with » defined in Eq.(4).
Inspection reveals that these formulas have the depen- FiG. 4. Magnitude of the rescaled electric fieldlV
dence orw, R, and a distance scagequoted earlier on physi- - — (1000h,,,)R |E,, |/F(w) as a function of frequency, evaluated
cal grounds. The formulas cited earlier as summarizing th@¢ g— g +1°. wis measured in 10’ V/IMHz. The dashed curve is
numerical work are, in fact, the saddle-point approximationshe Fraunhofer approximation. Note the high frequency cutoff,
evaluated aty=0, which fit closer than any empirical for- which is not a form factor effect, but an artificial result of the limit
mula. R— o imposed by the approximation. The solid curve is our result.
The parameters a@=1.5 m,R=100 m.
A. Remarks

regardless of the physical valueslgh,R. We note that the
experiments of Takahasfil4] observe an extremely limited
region of sirf #—0. Perhaps this contributes to the observed

The dependence of the fields on symbosummarizes a
good deal of complexity. For example, the limjt-0 yields

the Fraunhofer limit, with spherical wave fronts aif], agreement with Tamm's formula in a regime whef&/R is
~aw/R, and the limitp— o gives the cylindrically symmet- o+ ciose to zero.

I’iC EwN Y (,l)/R fleldS Th|S f|e|d can be SubStantially diﬁ:erent The p0|arization Varies CO”Siderab'y. From Symmetry the

from the Fraunhofer approximation. In fact one must takepolarization is in the plane of the charge and the observation
this limit to get the Frank-Tamm formula. A notable applica- hoint. Moreover, forg= 6, the electric field is transverse to

tion is emission from ultrahigh energy air shqwers. In Su.ChIfi for any 7. Yet naive transversality is not true in general at
showers the LPM effect plays a definite role in suppressmgany finite »

the soft _emissions fro_m the hardest ch_arges. There is no cor- Between the various limits the dependence on every scale
respondlng suppression of the evolutpn of thg Iow—energ){n the problem, namely the frequeney the distanceR, the
regions of showers where most particles exist, howeverength scale, and the angle), is neither that of the Fraun-
[33,21). The major effect that we find is that the Showershofer limit nor that of the infinite track Frank-Tamm limit,

geocr?emiz \Ilcagrgkil:llne\z/\rlrilﬁtlcsaalIy:;haﬁnl]sa,rthifp%:\\r? e?r?:t:mb:? but instead a smooth interpolation between the cylindrical
9  Say, ap y : and spherical wave regimes.

tecloflilgs tﬁg%‘?;ﬁ;f&iﬁ O‘T'rfgeef'?;ac?Ii(_;,-riiqm:)nrtgor:tmnuuli:ﬁ- In the finite # limit, one may also include a further effect,
- ' 0 . : p namely that asv—0 one has a “near-zone” Coulomb-like
cally: a 16°eV air shower does not approach the Fraunhofer

e " response at smaR. (Indeed, thew—0 limit measures the
limit nearer than 300 km. The conditions of RICE are more : :
amenable to the limit, and &®~1 km. w~1 GHz the net charge.This effect, important below about 10 MHz, also

: . .has a slight effect on the time structure of pulses.
Eﬁl;?ggz;gzsoegdizt%aes near the Cherenkov cone in the We pause to comment on the generality of the result.
' . What if we had not made the physical, but specific ansatz
a(’6)'? The entire analysis can be repeated for an arbitrary
charge distribution(t’,z’,p"). The Fraunhofer expansion of
the transverse variable, and the Fourier integral of tthe

tion is strongly affected by “diffraction.” Independent of the
form factor effect, the Fraunhofer approximation imposes a
upper limit to the frequency of ordew<(1/a)(cosé

—cosé,). The true behavior is substantially different: from

7
Eqg. (17) we see that the field exists in a region 6
5
w<(1/a)[(cosf— cosb,)’— (a’/R?)sin* 6] /2, w
3
For largew and in the angular region where the signal exists, 2
the behavior is much flatter. This is illustrated in Figs. 4 and 1:
5. This effect is invisible at the exact valéde= 6., where the 0:

o

2 4 6 8 10

fake Fraunhofer frequency cutoff and most of the true func- » GHz

tional dependence in the exponent bf both drop out. As a
result of the difference in frequency dependence, the time F|G. 5. Magnitude of the rescaled electric fielaV
structure of the electric fleld. may be subs;antlally dlﬁergnt:(looohmax)R |E, |/F(w) as a function of frequency, evaluated
from the Fraunhofer approximation. We will return to this gt g= 6.+0.3°. W is measured in 10’ V/MHz. The dashed curve
poin_t in S§C- V. . _ is the Fraunhofer approximation; the solid curve is our result. As

Fields in the forward and backward directions, ?$in  R—x the Fraunhofer approximation begins to apply. The param-
—0, are the fields ofp— 0, the Fraunhofer approximation, eters area=1.5 m,R=1000 m.
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variable are general. Provided tlgé extent is finite, and 75
there exists a dominart' region, then the integrals always

factor into a product of a form factor and a one-dimensional 50
integral forA"F (7). In fact nothing changeghe reader can 25
repeat the calculatiorexcept that when an arbitrary current xm 0

is set up, the existence of a single saddle point cannot be

assumed. Corrections to the local Gaussian approximation 25
are straightforward. The slight skewness of real showars -50

other arbitrary charge distributionsan also be developed as -75

a saddle-point power series. Again, there are elements of 0 10 20 30 40 50
bremmstrahlung in real showers, having a stochastic nature, z,m

which the current model has not attempted to reproduce. De-

tailed Monte Carlo simulationf34] of our group have in- FIG. 6. Contour plot for the magnitude of the electric field. The

cluded the bend-by-bend amplitudes of tracks undergoinﬁ]arameter.s ara=5 m, v= 100 MHz, distances are in meters..Note
collisions. This goes well beyond the approximation of athe eyolutlon of the fleld_fr_om the Fresnel to Fraunhofer regime as
single straight line track, suddenly beginning and ending, offe distance from the origin increases.

the previous literaturg22,21. The effect of all the small i . , , o
kinks is negligible except in the very high frequency region'Ve have defined a kinematic factgr= —i exp(kR)sin ¢ in
w>100 GHz, while the endpoint accelerations give oscilla-such a way that the rescaled fieltlis normalized at6
tions in the angular dependence down by orders of magni= 6,

tude. As a final side remark: we explicitly studied contribu- .

tions of finite tracks, just to see what would happen, in the E0=0,)=(1—in) Y,. (20)
development towards the conditions of the Tamm formula. It

is straightforward to develop these pieces if one needs them It is convenient to plot the magnitude of the rescaled field,

for, say, the Takahashi-type experimefitd] in the Fresnel EQ.(19). Figure 3 shows the magnitude as a function of the
zone. angle differenced— 6, in various limits. The Fraunhofer ap-

proximation is shown by a dashed curve, and our result by
the solid curve. One observes that the Fraunhofer limit is
B. The general case approached from below. This is physically clear: The Fresnel
We now turn to fields valid for any,. The most interest- zone fields have a wider angular spread, and conservation of
ing application is the case where the observation point is nognergy forces them to be smaller in magnitude compared to
at infinity, or the showers are too long for a fixed lagfor ~ the sharper, diffraction-limited Fraunhofer fields. As the
the Fraunhofer approximation to apply. The form factor,fields evolve to infinity, they coalesce into narrower and
which was extracted from the Fraunhofer calculations, is unitaller beams.
versal and need not be changed. The validity of the saddle- The frequency dependence BfE,|/F(w) is shown on
point approximation does not depend explicitly on the valueFigs. 4 and 5. Exactly at the Cherenkov angle the difference
of n. The procedure of linearization to locate the saddle poinbetween the Fraunhofer approximation and our results are
happens to be good to (cés cos6.,)~1, so that the approxi- minor for the typical parameters of RICE. However, away
mation is rather good in the entire regi®ia>1, kR>1. from the Cherenkov angle there is a substantial difference
For practical applications it is useful to have a formula for between the two throughout the region where the magnitude
the fields with quantities measured in physically motivatedof the field is large. This effect can be masked by the form
units. For this purpose we rewrite E@.5) as follows: factor, so we have plotteRE,, /F(w) to show it. This effect
may have important repercussions for the time structure of
(18) pulses, which are also discussed in Sec. IV A.

Figures 6—9 are contour plots of the electric field. We did
not bother to remove the small regi@R~1, where our
result does not apply. The Fraunhofer approximation has a
Srivial /R dependence on the distance to the observation
point (cf. Figs. 7 and 8 The exact result is certainly differ-
ent, with Figs. 6, 8, and 9, in particular, illustrating the ef-
fects of constructive interference in the region of cylindrical

C0s#—Cosb; _ . Cosf, cosf—cosb,) _ symmetry. A complementary view examines contour plots of
B WER+(1_' TsiPe 1-ig ) 0 constant phase. This is shown in Figs. 8 and 9. The differ-
ence between the two componeri§ ,E’ is too small to
1—id1-3i cosf cosd—cosd, show on Figs. 8 and 9. The lines of constant phase can be
g Tsit6 1-in used to illustrate the time evolution of waves of a given
) frequency: that is, the Fourier transform ob(w
Xexp{ B E(ka ) (0039—?039& } (19 - w,)E, exp(—iwt) has wave fronts at each moment in time
2 1-iy given by the lines of constant phase. The constant phase lines

a Npay V

m 1000GHz (D%

RE,~2.52x10"7

MHZ}'

Here n,. IS the excess of electrons over positrons at th
shower maximumR is measured in meters,is measured in
GHz. The rescaled field is

>

—1/2
X
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z,m

. e FIG. 9. Contour plot of the constant phase of either component
FIG. 7. Contour plot for the magnitude of the electric field in the of the electric field(see the text for detailsThe parameters am

Fraunhofer approximation. The parameters are5 m, »=100 =5 m, v=100 MHz; distances are in meters. The phases illustrate

MHz; distances are in meters. The magnitude of the field lacks the L . . L
. . nontrivial propagation with destructive interference, here shown on
richness of structure of Fig. 6.

a larger scale than Fig. 8. In the Fraunhofer approximation wave

of the Fraunhofer approximation are, of course, sphe(afal fronts become spherical.

Fig. 9. The constant phase lines of the true behavior inter- . ) ) o
polate between cylindrical and spherical symmetry. As a contypical antenna or circuit function for a driven LRC circuit is
sequence of the Fresnel-zone behavior, the eikonals of the

expanding radiation field do not emerge radially, but actually A,=ZI(— w?+ wi—il“w),

curve due to interference effects. This is a sobering impact of
very basic physics, which has a measurable effect in th
signal propagation speed discussed later under the topic Q
causal features.

hereZ depends on where the amplifier is connected in the
rcuit and can be treated as a constant. Note that
—Zl(w—w,)(w—w_) where w. are in the lower half-
plane. The dielectric functior(w) can then be taken as
V. CAUSAL FEATURES slowly varying in the region where the antenna and form
factor allow a response, and also has its analytic structure in
the lower half-plane if this detail needs to be included. We
will also ignore the form factor for this discussion, which
earlier was cited as a formula analytic in the complex plane.
While nothing in our analysis depends on these idealizations,
dhis approach to the analytic structure serves to make our
point.
As a first illustration, consider the electric field fit given

With our convention that the electric fieldE(t,X)
=1/(2m) .. dw exp(—iwt)E,(X), causality require€, to
be analytic in the upper half-plane af Singularities in the
lower half-plane determine the details®B(t,X) and the pre-
cise causal structure.

To discuss this we consider detection of signals via a
antenna-system response functig),. By standard argu-

ments the detected voltage is a convolution in time, an . : : .

tEerefore f;\) prod?ct i ?pilidce, r?f the anten?a functic;n ang%ySSl(;'f/lalzm%?irSt?Zﬁjl it‘I(;slf)()oTelswi%) (bac)) t+h 't(;])g) uvggr;ra;?]/gTower
the perturbing electric field. The antenna function has the R ) X
same causal analytic properties as the electric field. A pmt(jaiﬁgi;r/)tliint?éggfcﬂr;g fr?;sczlrl%|anSlgliygﬂg:%;@%tn??hlge;ﬂ-

bitions of the original semiempirical fit. Nevertheless,

40 \ Cauchy’s theorem applies to the subsequent numerical inte-
grations that have been malds, giving noncausal branches
20 to numerically evaluated Fourier transforms, as well as un-
physical short-time structure.
x,m 0 > Let us compare the analytic structure of the electric field
in the saddle-point approximation. This approximation does
20 not attempt to describe the regian—0, which requires
40 treatment of the near zone. However, for causality we do not
s needE, near the origin but at largko|. The saddle-point
-40 -200 0 20 40 approximation is good here so the results should be reliable.
zm Let us investigate this in more detail. In the expo-

FIG. 8. Contour plot of the constant phase of either componenf'€Nt 1N thze expressionzfor ‘the electric field we have
of the electric field(see the text for detalsThe parameters a  _ (1/2) (k&) “(cos6—cos6) (1+i7)/(1+ 7). Since 7 goes

=5 m, »=100 MHz; distances are in meters. Each contour reprelikeé @ there is a phase linear i at large|w|. There is also a
sents the time evolution of an expanding wave front for the fre-branch cut and pole from the prefactor which occursyat
guency used. The phases illustrate nontrivial propagation with de=—1. All singularities are in the lower half-plane and consis-
structive interference, as well as evolution from cylindrical to tent with causality. The causal structure B{t,X) then
spherical symmetry. hinges on closing the contour at infinity. For this the details
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of the antenna function, which generally has isolated singua determines the angular spread ée<osf, over which
larities, as well as the singular behaviorof near the origin - most of the power in the wave is contained, and enters in this
do not matter. fashion.

We close the contour at infinity avoiding the branch cuts, The Fraunhofer limit, in which all signals originate at a
which may be oriented along the negative imaginary axis osingle point of origin, is incapable of capturing such an ef-
as consistent. Convergence then requires fect. It is interesting to trace the origin of the discrepancy.

The singularities of interest are located by the zeroes of 1
im R%_iwmw\/;R —ip=1-iw\esir? AR When the limitR—o is taken in
s — i the first step of the Fraunhofer approximation, all the non-
trivial analytic structure moves away to— —io and is lost.

1, ., 5 17 This procedure does not commute with closing the contour at
5 @ €a’(cosf—coste) g 72 <0. |w|—o. The correct procedure, of course, is to first close the
contour, and then take the limit of lardg
Using the definition ofp, this implies In practice, of course, not all of the signal arrives at the
271—1 earliest possible moment. The time scale over which the sig-
t— \/;E 1— (cosg _cos&c) 0 nal is detected depends on competition between dispersion,
c 2sirt 9 the antenna and form factor details, and something like twice

the “advanced” time interval. This time interval At s

f Thtlﬁ reshult has a naturatl mterpretgtlon._lvvfhlle t?he rad|at|0|t1: Ry/e/(2¢) (cos6—cosd,)? sir 6. Since the Aty effect
rom the shower appears to come primarily Irom theé geomely .5 a5 proportional to the distané® it does not become

e '°|°a“°” gf ”:je. max'm‘f.mﬂg 0c, the Sr;o""ﬁr actually aqiigible in any limit, exhibiting another subtle facet of the
evelops ana ra lates earlier. Onsequenty the strict Causgfeakdown of the Fraunhofer approximation.

limit must correspond to an apparent propagation spee
slightly faster than the naive speedasf/e deduced from the
location of the observation point & The earliest signal
actually arrives at an apparent spegg,, of
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