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Radio detection of high energy particles: Coherence versus multiple scales

Roman V. Buniy* and John P. Ralston
Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045
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Radio Cherenkov emission underlies the detection of high energy particles via a signal growing like the
particle energy squared. Cosmic-ray-induced electromagnetic showers are a primary application. While many
studies have treated the phenomenon approximately, none have attempted to incorporate all the physical scales
involved in problems with time- or spatially evolving charges. We find it is possible to decompose the
calculated fields into the product of a form factor, characterizing a moving charge distribution, multiplying a
general integral which depends on the charge evolution. In circumstances of interest for cosmic ray physics, the
resulting expressions can be evaluated explicitly in terms of a few parameters obtainable from shower codes.
The classic issues of Fraunhofer and Fresnel zones play a crucial role in the coherence.
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I. INTRODUCTION

Coherent radio Cherenkov emission is a remarkably ef
tive method for detecting high energy particles. The hist
of the effect goes back to Jelly, who first asked whet
cosmic ray air showers might produce a radio signal@1#.
Askaryan@2# subsequently predicted a net charge imbala
in air showers, and coherent radio power scaling like
energy of the shower squared. Substantial radio emis
from atmospheric electromagnetic cascades was obse
more than 30 years ago@3,1#. Progress in ultrahigh energy a
showers has sparked renewed interest, and new observa
of radio pulses have been reported recently@4#. The current
pilot project RICE@5,6# uses radio Cherenkov emission
detect 100 TeV and higher energy neutrinos in Antarctic i
The radio Cherenkov signal is the most efficient kno
mechanism@5,20,6,7,8# for detecting neutrinos of 100 TeV
and above in solid media, yielding detection volumes of
der 1 km3 per radio detector for PeV neutrinos on ice targe
At PeV energies and above, the neutrino interaction cr
sections offer fascinating new tests of standard model ph
ics @9# and new physics@10#. Tomography of the Earth is
also possible with PeV-scale neutrinos@11#. Radio Cheren-
kov signals have also been used to search recently for
trinos and cosmic rays with energies upwards of 1020eV im-
pinging on the Moon@12#. There is a growing community
interested in these and other applications, leading to a re
international meeting on the topic@13#.

Cherenkov radiation is also an intrinsically interesting a
beautiful physical phenomenon. Coherence is a basic fea
of electrodynamics, and the coherent enhancement of C
enkov radiation in the microwave region has been obser
in the laboratory@14,15#. The Argonne wake-field accelera
tion project@15# has successfully generated extremely la
microwave field strengths by manipulating coherent rad
tion from an intense electron beam. Efforts@16# to observe
radio Cherenkov emission and charge excess build-up
electron shower cascades were recently made. A very re

*Present address: Department of Physics and Astronomy, Van
bilt University, Nashville, TN 37235.
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experiment@17# with high energy photon beams reports me
surement of coherent Cherenkov radiation.

Despite a long history, the previous literature apparen
does not contain a careful treatment of evolving charge
tributions, such as those of electromagnetic showers in a
ice, which incorporates all important features of the proble
The problem is intricate because of a multitude of sca
When an electromagnetic shower evolves, it produces a p
cake of charge with a finite thickness and a finite wid
probed at a finite wavelength of radiation, and for a fin
distance over which the shower is big. All this occurs a
finite distance from the detector. Results on evolving a
finite-sized charge distributions are few. Tamm@18# grappled
with the problem of a charged particle on a track of limit
length in the early days of the theory. Askaryan@2# antici-
pated a coherence cutoff in air showers at high frequencie
order the inverse pancake size, imposed somewhat by h
Allan @1# gave physical arguments and order of magnitu
estimates based on one of Feynman’s electrodynamic for
las. Kahn and Lerche@19# attempted to resolve the coheren
issue using superpositions of infinite tracks. McKay and R
ston @33# and Alvarez-Mun˜iz and Zas~AZ! @21# considered
the influence of the Landau-Pomeranchuk-Migdal~LPM! ef-
fect at ultrahigh energies. Zas, Halsen, and Stanev~ZHS!
@22# and AZ reported results from summing asymptotic
fields track-by-track in Monte Carlo calculations of gre
complexity.

We present an approach that incorporates all the sc
and allows a general analysis. Main results include an
pression for the electric field in a factorized form. The ‘‘fa
torization’’ occurs when distance scales can be separated
characteristic size of the moving charge distribution must
substantially smaller than a particular scale, the ‘‘longitu
nal spread’’ over which the charge develops.1 This condition
is well satisfied for all cosmic ray applications we have e
amined. Aform factorcharacterizes the moving charge di
tribution, which multiplies a charge-evolution integral. N
all the scales decouple: subtleties coming under the cla
description ofFraunhofer and Fresnel zones need carefu
treatment. Finally, the generic situation can be summari

er-1The scale over which the charge develops is not the track len
See Sec. III for our definition.
©2001 The American Physical Society03-1
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by analytic formulas. This is indispensable given the la
parameter space. For example, the numerous and varied
merical plots obtained from immense Monte Carlo simu
tions can be summarized by a few parameters. Once the
rameters are determined, predictions can be made for
number of circumstances.

II. CONSEQUENCES OF COHERENCE

Before beginning analysis we review a few basics. T
well-known Frank-Tamm~1937! formula uses an exact solu
tion to Maxwell’s equations for a uniformly moving charg
on an infinitely long track. The solution is kinematic and c
be obtained by the trick of boosting the charge to a sp
faster than light in the medium.2 Extension to a track of finite
length has pitfalls. Tamm’s 1939 finite-track formula@18#
assumes a uniform chargee traveling at a uniform velocityv
along thez axis for 2L/2,z,L/2. Tamm gives the energ
lossdP per angular frequencydv per solid angledV:

d2P

dv dV
5

ne2

4p2c3 ~vL !2 sin2 u
sin2 X

X2 , ~1!

whereX5nvL/(2c)(cosuc2cosu) and cosuc5c/(nv); n is
the index of refraction.3 This formula has been cited in th
high energy physics literature, and used to interpret exp
ments observing Cherenkov radiation in the millime
wavelength range@14#.

Tamm’s finite-track formula includes two competing a
distinct physical processes: the Cherenkov radiation of a
formly moving charge, and bremsstrahlung or accelera
radiation from charges modeled as starting and stopping
stantly at the track’s endpoints. The interference of the s
den start and stop contributions with the straight line con
bution leads to strong oscillations in the angular distributi
Compared to a typical high energy process the accelera
at the endpoints is fake, that is, the Tamm model is unr
able. This is because a charge created by pair productio
accompained by an opposite charge, which cohere
shields the pair from radiating until the oppositely charg
partners gradually separate. This ‘‘Perkins effect’’ has be
observed@23# and is closely related to the coherence ph
nomena in QCD of color transparency@24#. At the end of the
Cherenkov processes, charges also do not stop instantly
instead slow gradually to subluminal speeds, where Che
kov radiation ceases by decrease of the frequency inte
While the slowing has stochastic elements, it is better
proximated by a uniform deceleration than by a catastrop
disappearance of charge. Of course, the evolution of a
mic ray shower over many radiation lengths and involvi
billions of particles is an even smoother macroscopic p
cess. Thus the Tamm formula and related approximati

2The reader who attempts this exercise may discover a facto
‘‘2’’ resolved by imposing the causal boundary conditions not e
plicit in Coulomb’s Law.

3We diverge from current practice and use the special symbolc to
represent the speed of light, otherwise known as ‘‘1.’’
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may misrepresent the physics if the artificial treatment of
endpoints play a major role. Conversely, experimental sit
tions with conditions close to those assumed by the Ta
formula can be constructed: Takahashiet al. @14# report on
the sudden appearance of a charge in a cavity with met
boundary conditions, leading to a strong mixing of Chere
kov and boundary-condition effects.

A. Fraunhofer versus Fresnel

Our study uncovers another, deeper problem with cer
asymptotic assumptions of the Tamm-type approach. I
typical application of Cherenkov radiation in high ener
physics, we might have a track of lengthL;1 m, observed
at a distanceR;1 m, and in the optical regime withR/l
;L/l.106. The application to radio detection in ice migh
have R;(100– 1000) m,l;(0.1– 1) m, L;10 m, with
L/l;10– 100 withR/l even greater. Cosmic ray air show
ers develop and are observed over tens of kilometers. In
cases, all lengths are large in units of the wavelength. Gi
L large enough for the acceleration contributions to be sm
the Tamm formula, Eq.~1!, might appear ideal at first sigh
Indeed for vL→`, the sin2 X/X2 distribution approaches
2pc/(nvL)d(cosu2cosuc). Integrating over angles we re
cover the well-tested Frank-Tamm result for an infinite
long track,

d2P

dv dL
5v

e2

c2 sin2 uc .

Yet the Tamm formula is quite inapplicable to such pro
lems. This is evident from the formula’s prediction that t
radiated energy will be concentrated in coordinate spac
u5uc , up to a small width due to diffraction. For many o
the physical situations cited, the energy is actually spr
rather uniformly over the length of a cylinder surroundin
the charge’s trajectory. This is a broad angular distribut
extending over anglesDu;L/R, whereR is the distance to
the receiver. The Tamm formula, or any asymptotic far fie
approximation, does not depend on the distanceR, and can-
not describe this simple truth. True enough, themomenta
~wave numbers! of photons have directions that may b
peaked atuk;uc , but this is not the same thing as thepower
density dP/dV seen on a sphere surrounding the system
ing like d(cosu2cosuc). There is no paradox: if one fixesL
arbitrarily large, and then moves to an asymptotically dist
locationR→`, the photons traveling at the Cherenkov ang
will appear to come from a point source whose angular s
is diffraction limited. The Tamm formula is derived by takin
the limit R→`; once taken, the case of finiteL/R is unavail-
able.

To see this breakdown from a different perspective, o
can use simple dimensional analysis and geometrical rea
ing. The energy flux per frequency intervaldv is propor-
tional to the frequency domain Poynting vector:EW v3BW v*
;uEvu2. Conservation of energy implies that the Poynti
flux integrated over the area from which it escapes is c
stant. Cherenkov radiation for the ‘‘long uniformly movin
track’’ has cylindrical symmetry, so one integrates over
cylinder of lengthDz and circumference 2pr to obtain

of
-
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RADIO DETECTION OF HIGH ENERGY PARTICLES: . . . PHYSICAL REVIEW D65 016003
2pDzrEv
2 5const,

Ev;1/Ar. ~2!

~The same result is obtained by expanding the asympt
Frank-Tamm Bessel function solutions, of course.! Now turn
to dimensional analysis: In particle physics units, the tim
domain electric fieldE(xW ,t) has dimensions of mass square
The Fourier transform, frequency-domain electric fieldEv

has dimensions of mass. Since there are no other scale
an infinite track, we then find that fields go likeAv/r in the
cylindrical regime. Squaring this, the radiation intensity go
like v, which is a well-known result used in particle dete
tors.

This is nothing like the typical radiation from accelerat
charges which has fields falling like 1/R in three-dimensiona
space. And this peculiarity applies out to arbitrarily lar
distancer, provided the track is long enough. But ifr is
taken so large that the radiation appears to emerge fro
point source, theEv field must fall likeLv/r;Lv/R. ~The
factor of L comes from the linear power per unit length d
pendence. Momentarily we will examine this in more deta!

The breakdown of Tamm’s formula is thus due to an
terchange of limits. Tamm’s formula is obtained by maki
the Fraunhofer approximation, which fails under a broad
range of finite track lengths. TheFresnel zonedescribes a
complementary far-field region where the Fraunhofer
proximation must be modified. The basic physics of t
Fresnel zone for Cherenkov radiation is elementary but
quires some care.

B. The coherence zone

Consider~Fig. 1! a charge moving on a straight line. Le
R(t) be the instantaneous distance from the charge to
observation point. Information propagating in the medium
speedcm will arrive simultaneously from the track if]R/]t
5cm . This is the Cherenkov condition:]R/]t5v cosu5cm

for velocity vW oriented at angleu relative to the directionR̂.
Note thatR(t) is the radius from the charge to the point, n
the vector position.

Because of the geometry of the track and observa
point, uniform motion produces acceleration ofR(t). If
]R/]t were constant, the fields arriving would all be in pha
for the whole track length. However, the acceleration relat
to the observation point produces an extra radial chang
order DR51/2(]2R/]t2)(Dt)2. Coherence of modes o
wavelengthl is then maintained only over a finite region
DR,l. Since ]2R/]t25v2 sin2 u/R, we solve to find the
condition Dtcoh,ARl/(v sinu). Equivalently, there is a fi-
nite spatialcoherence regionDzcoh for any givenR, given
the wave numberk52p/l, namely,

Dzcoh,AR/~k sin2 u!, ~3!

over which the ‘‘sonic boom’’ of radiation is built coherentl
When we refer to this passage later, we will call it the qua
tative ‘‘acceleration argument.’’ It will be deeply connecte
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to a saddle-point approximation. SinceDzcoh;AR, the co-
herence zone grows to infinite size asR→`: but this limit
cannot be taken carelessly.

C. Coherence of evolving charge distributions

We now return to the emission from an electromagne
shower or other time-evolving charge distribution. To a re
sonable approximation, the number of particles in a hig
relativistic shower scales like the primary energy divided
a suitable low energy threshold. The charge imbalance n
the shower maximum is of order 20%e of the total number
of particles. These numbers have been confirmed over
over, with each generation of numerical simulation contr
uting further detail. The origin of the emitted Cherenko
power going like the shower-energy squared is basic elec
dynamics: the electric field will scale like the charge, and
radiated power scales like the electric field squared.

The evolving shower has a finite length scalea over
which it is near its maximum, and radiating copiously. Th
length scale, known as the ‘‘longitudinal spread’’ in cosm
ray physics@25#, is akin to the length scaleL of Tamm’s
approach but represents a smooth onset and decline of m
mum power. We define our procedure for finding the lon
tudinal spread in Sec. III. The shower longitudinal spreaa
is determined by the material, and is conceptually disti
from the shower’s total depth to reach the maximum~which
goes like the logarithm of the energy! or the charged pancak
size~which is fairly constant once the shower is develope!
A cartoon of these ideas is given in Fig. 1.

There are then two characteristic limits. Suppose the l
gitudinal spread of the shower is ‘‘short’’ compared to t
coherence length,a!Dzcoh . Then coherence is maintaine
over the whole range where the current is appreciable.
amplitude is proportional to the total lengtha over which the

FIG. 1. Cartoon of electromagnetic coherence zone associ
with an evolving shower. The shower develops over a longitudi
spread dimensiona, as represented by the smooth curve. Duri
most of this development the pancake of charge has a constan
d, but an evolving charge normalization, represented by the g
scale. The coherence zoneDzcoh depends on the angle, frequenc
and location of the observation point. The situation illustrated
Dzcoh.a, a case in which full coherence of the charge~up to a
frequency cutoff determined by the pancake size! is obtained. In the
reverse limitDzcoh,a, only the portion of the charge inside th
region ofDzcoh contributes constructively.
3-3
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ROMAN V. BUNIY AND JOHN P. RALSTON PHYSICAL REVIEW D65 016003
current was ‘‘on,’’ times 1/R. This is then theR→` limit, or
Fraunhofer approximation, and looks like normal radiatio
From dimensional analysis~and here we recall the discussio
earlier!, Ev;av/R.

However, in the limita>Dzcoh , the coherence length i
not as big as the longitudinal spread, and coherence
exists over the smaller of the two. Adding amplitudes on
over the regionDzcoh and weighted by 1/R, the Ev field
goes likevDzcoh /R5Av/R. This behavior is rather differ-
ent from the previous case: indeed Cherenkov radiatio
fundamentally a Fresnel-zone effect, as seen by the 1AR
dependence of the fields.

Both the Fresnel and Fraunhofer limits are far-field a
proximations in the sense thatkR@1 is assumed. The
subtlety lies in the dimensionless ratio

h5~a/Dzcoh!
25

ka2

R
sin2 u ~4!

which controls how the limitR→` is taken. Confusion on
this point is easy; one hasR/l;104 in the same regime, an
yetR is not large enough for a ‘‘largeR’’ Fraunhofer approxi-
mation to apply, exactly because the term ‘‘largeR’’ is unde-
fined until the limit parameterh is specified. In the RICE
experiment one typically has a;(1 – 2) m, v
;(100– 1000) MHz, andR;103 m, soh,1 holds. Exten-
sion to closer observation points, or to energies where
LPM effect can give a much largera, makesh@1 possible.
Partly due to the obscurity of the coherence criteria,
Fraunhofer approximation has received much attention in
previous literature@22,21#, except for those estimates usin
fields with ‘‘cylindrical’’ symmetry @26,20,27,28#.

D. General setup

Let EW v(x) be the time-Fourier transform of theE field,
with similar notation for other fields. The Maxwell equation
for a dielectric medium are¹W •DW v54pr, c¹W 3BW v54pJWv

2 ivDW v , ¹W •BW v50, c¹W 3EW v5 ivBW v , where DW v(x)
5e(v)EW v(x). There is a wave equation for the vector p
tentialAv

m(x), given byc(¹21k2)Av
m(x)524pJv

m(x), with
k5vAe/c. Then we have

cAW v~xW !5E d3x8
exp~ ikuxW2xW8u!

uxW2xW8u E dt8 exp~ ivt8!JW~ t8,xW8!.

~5!

The 4-potentialAm5(A0,AW ) has been defined in a genera
ized Lorentz gaugec¹W •AW 1e]A0/]t50 appropriate to the
medium. The 4-currentJm5(r/e,JW ). Since the component
of JW are related byJW5vW r, we haveAW 5A0evW /c. We calcu-
late AW v and then useAv

0 5vW •AW c/(ev2). For radiation prob-
lems the denominator factor 1/uxW2xW8u is replaced by 1/R.
This is standard, with corrections of ordera2/R2 or similar
effects in the ‘‘near field’’ regime, which is not our subjec
01600
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E. Evading the Fraunhofer approximation

The Fraunhofer approximation is the textbook expans
for the phase exp(ikuxW2xW8u)'exp(ikuxWu2ikx̂•xW8), dropping
terms of orderkuxW8u2/R. All existing simulations make this
approximation for the phase, and for good reasons: the s
sequent integrations become much simpler. The integran
Eq. ~5! oscillates wildly. A Monte Carlo simulation has t
find the surviving phases from myriad cancellations, due
the phases generated over the length of each track, and
summed over thousands to millions of tracks moving in th
dimensions. For a 1 TeV shower the code of ZHS runs
about 20 min on a workstation. Increasing the energy b
factor of 100, the calculational time scales up faster th
linear, and computer time becomes prohibitive. For this r
son various strategies to rescale the output have been us
arriving at the published values of electric fields. Even
TeV energies, standard Monte Carlo routines such asGEANT

challenge a workstation’s capacity. For cosmic rays of
highest energies the entire approach of direct numer
evaluation is unfeasible.

Unfortunately the Fraunhofer approximation also negle
terms in the phases, namelykuxW8u2/R, that may be of order
unity given our previous discussion of length and frequen
scales. We must avoid this step. Progress is possible du
the translational features of the macroscopic curr
Jm(t8,xW8). A rather general model is

JW~ t8,xW8!5vW n~z8! f ~z82vt8,rW 8!. ~6!

An even more general situation will be discussed shor
The charge packet travels with the speedvW , chosen here to
be along thez axis of the coordinate system. The functio
f (z82vt8,rW 8) represents a normalized charge density of
traveling packet, withrW 8 the transverse cylindrical coordi
nate relative to the velocity axis. We normalizef by
*dz8 d2r8 f (z8,rW 8)51. In ice the packet is aboutDz8
510 cm thick in the longitudinal direction, andDr8
510 cm in radius in the vicinity of the shower maximum
~For the transverse dimension, we use the Moliere rad
defined as the radius within which 90% of the energy of
particles is found@25#.! These size scales are limited becau
of relativistic propagation. The time evolution of these sca
is negligible near the shower maximum, and indeed the M
liere radius is usually approximated by a material const
for the whole shower. Similarly, in air showers the scale
charge separation is small compared to the scale of sho
longitudinal spread.

The shower’s net charge evolution appears in the fac
n(z8). With our normalization,n(z8) represents the tota
charge crossing a plane atz8. The symbolnmax will denote
the maximum value ofn(z8); later we will see that the elec
tric field scales linearly withnmax. The longitudinal spreada
is a property ofn(z8) near the shower maximum. The mod
neglects charge~current! left behind, and moving at less tha
light speed in the medium, which does not emit Cherenk
radiation. We do not have a sharp cutoff at the beginning
end of the tracks, and the functionn(z8) will vary smoothly.
3-4
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F. Factorization for the Fresnel zone

Now while we cannot expand aroundxW850 ~the Fraun-
hofer approximation!, the conditions of the problem do pe
mit an expansion aroundrW 850 ~the shower axis!, namely for
R(z8)5@(z2z8)21r2#1/2, that

uxW2xW8u5@~z2z8!21~rW 2rW 8!2#1/2

5R~z8!2
rW •rW 8

R
1OS r82

R D .

For typical values in this problem, the second term is;10
times smaller than the first, and the third is;103 smaller
than the second. For the exponent in Eq.~5!, the third term
does not contribute ifkDr82/R!1, that isv!250 GHz.

Collecting terms, we have

cRAW v5vW E dz8n~z8!expF i S v

v
z81kRD G

3E E dt8d2r8 expH 2 i Fvv ~z82vt8!1qW •rW 8G J
3 f ~z82vt8,rW 8!. ~7!

We have shifted thet8 integral which produces the transla
tional phase in thez8 integral. This gives the factorization

AW v'F~qW !AW v
FF~h!, ~8!

where

F~qW !5E d3x8e2 iqW •xW8 f ~xW8!, ~9!

vcRAW v
FF5vW I FF, ~10!

and

I FF~h,u!5E dz8 exp@f~z8!#,

~11!
f~z8!5 ik@z8 cosuc1R~z8,r!#1 ln n~z8!.

Here qW 5(v/v,qW'), qW'5krW /R, and xW85(z8,rW 8). Provided
F(v)!1 in either frequency regionkDr82/R@1 or
kDz82/R@1, the decoupling of the integrals is excellen
HereDr8 andDz8 refer to the regions over which the charg
exists near the maximum.F(qW ) is the form factor of the
charge distribution, which happens to be defined, just a
the rest of physics, in terms of the Fourier transform of
snapshot of the distribution. From our definitionsF(0)51.

It is worth noting that the dependence on orientation oqW
is observable. For example, in a giant air shower, where
mechanism of charge separation might cause an azimu
asymmetry about the shower axis labeled by a dipolepW , then
F(qW ) depends onF(qW •pW ). The orientation of the dipole rela
tive to the observation point thus has a strong effect on
emission.~Other numerically large effects will also be im
portant: for example Allan@1# incorrectly assumes the field
01600
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go like 1/R from his use of Feynman’s formula.! As a con-
sequence of separating out the form factor, the integrati
have become effectively one dimensional.

III. NUMERICAL WORK

At this stage we have a formula for the vector potent
which is a product of a form factor and an objectI FF(h,u)
containing the information about the shower history. We w
denoteI FF(h,u) the Fresnel-Fraunhoferintegral because it
interpolates between these regimes. In the Fraunhofer
proximation it is easily shown that the factorization is
exact kinematic feature of translational symmetry as exe
plified in Eq. ~6!. If one makes a one-dimensional approx
mation, the Fraunhofer integral then evaluates the Fou
transform of the current@28,29#.

The factorization in the Fresnel zone is more demandi
yet should be an excellent approximation. When calculat
I FF(h,u), we cannot~as mentioned earlier! consistently ex-
pand in powers ofz8/R becauseh;1 will be needed.

It makes sense at this point to make a numerical comp
son with previous work. Summarizing the results of an e
tensive Monte Carlo calculation in the Fraunhofer appro
mation, ZHS gave a numerical fit to the electric field

RuEW v
ZHS~u!u

FZHS~n!
51.131027

n

n0

E0

TeV
expF2S u2uc

Du D 2GF V

MHzG ,
~12!

with n05500 MHz. This is the result of a global fit to man
angles, energies, and frequenciesn5v/2p,n0 . In this con-
vention v is positive. The normalized form factor i
FZHS(n)51/@110.4(n/n0)2#, as discussed below. In makin
the calculation, results for the field were also rescaled du
computer limitations. As a result, the field reported is stric
linear in the primary energyE0 . We will comment on this
shortly.

We calculated our own result proportional toI FF (h
50,u) over a range of many frequencies and angles~Fig. 2!.
Before doing the integral we scale out the electromagn
and dimensional factors which are obvious. In our conv
tion 2`,v,`. The results of our numerical integratio
are quite well fit by

FIG. 2. Comparison of numerically integrated~points! and ana-
lytic fit ~solid curve! to the Fresnel-Fraunhofer integralI FF(h,u),
Eq. ~11!. The parameters area51.5 m, R51000 m; frequencyn
51,2,5,10 GHz~from top to bottom!. Both Fresnel and Fraun
hofer regimes are successfully reproduced. The angle is meas
in degrees,I FF in meters.
3-5
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RuEW v
h50~u!u

F~v!
5

e

c2 aA2pnmaxv sinu

3expF2
1

2
~ka!2~cosu2cosuc!

2G .
~13!

Putting in numerical values, this gives

RuEW v
h50~u!u

F~v!
52.0931027

a

m

nmax

1000

n

GHz

3expF2
1

2 S cosu2cosuc

D~cosu! D 2GF V

MHzG ,
~14!

where

D~cosu!50.048
2

Ae

m

a

GHz

n
.

~We have indicated thata is in units of m andn in GHz.!
Note the linear dependence onan, argued earlier to come
from dimensional analysis applied to the limith→0. A cur-
sory inspection shows that this result and the Monte Ca
simulation have the same general features.

To continue the numerical comparison we need numb
for the longitudinal spread parametera and the number of
charges at shower maximumnmax. There are several ways t
estimate this. Running the ZHS code many times and fitt
the output of a 1 TeV shower with a cutoff of 611 KeV give
a51.5 m,nmax5345. Using these and allowing for the fact
of two in conventions gives agreement to a few percen
normalization with ZHS. However, the other way to do t
calculation is to evaluate the productanmax many times. This
method is preferred because fluctuations ina and nmax are
correlated. Doing this givesanmax5(570650) m at 1 TeV,
which would predict a normalization factor of (1.
60.1)31027 in Eq. ~12!. This ~plus the angular dependenc
studied below! indicates that the factorized result is qui
consistent with the Monte Carlo simulation.

In Fig. 2 we show numerically integrated values ofI FF

Eq. ~11!. These factors appear directly in the fit just cite
and serve to check the formulas. The form factor has b
divided out. For the range of parameters relevant to the p
lem, agreement is very good, and relative error is much
than 1%.

For experimental purposes one would like independ
confirmation of the parameters from another source. Net
ticle evolution is well described by Greissen’s classic so
tion, which was simplified further by Rossi to a Gaussia
n(z)5nmaxexp@2z2/(2a2)#/A2pa. While Greissen’sa refers
to the whole shower, it should also be a reasonable des
tion for the longitudinal spread of the charge imbalan
which tends to be a fixed fraction of the total number
particles after a few radiation lengths.~There is one caution
that the Greissen formula does not explicitly include lo
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energy physics important for the charge imbalance.! The par-
ticular Greissen formula we consulted@30# for the longitu-
dinal spread in radiation lengthsX0 gives a/X0

;A3/2 ln(E0 /E) for particles in the shower with energ
greater thanE and a primary with energyE0 . In that case
one estimatesa51.8 m atE051 TeV with E5611 MeV,
X050.39 m in ice, which is acceptably close to the previo
estimates.

At higher energies there is every reason to believe t
Greissen’s stretchedAln E energy dependence will apply. I
that casea52.1 m, 2.3 m for 100 TeV, 1 PeV shower
respectively. Note that the productnmaxa is relevant for the
field normalization. In this case we also neednmax

;(E0 /E)/Aln(E0 /E)20.33 from the same Greissen approx
mation. Rather amazingly, the product nmaxa
;(E0 /E)A3/2 ln(E0 /E)/Aln(E0 /E)20.33;E0 /E at high ener-
gies. This confirms the phenomenon observed by ZHS:
normalization of the electric field~Fraunhofer approxima-
tion, u5uc! scales precisely linearly in the primary energy.
is rather pleasing that the result can be understood from
principles@31#. Later we will see that the parametera enters
in a much more complicated way in the Fresnel zone, cre
ing an extra, weak energy dependence.

Regarding the angular dependence, our work~Fig. 3! in-
dicates a general dependence on cosu2cosuc rather thanu
2uc . When fitting numerical output the two functiona
forms are rather different, unless one has a very narrow
tribution. Linearizing for small cosu2cosuc with a51.5 m
for the comparison, we would predict the scale in the angu
dependenceDu52.1°(n0 /n) while ZHS have the same ex
pression with 2.4°. We find thatDu is proportional to 1/a. If
a grows slowly with energy, as Greissen’s formula indicat
then the angular width decreases, which is not seen in Z
Another possible explanation for the small discrepancy is
improper radiation from tracks terminating abruptly at t
ends used in the Monte Carlo. We have identified these
fects as responsible for the small oscillations seen in
Monte Carlo output, an effect apparently too small to me
sure.

When numerical output to the frequency dependence

FIG. 3. Magnitude of the rescaled electric fieldE5uEWu, Eq.~19!.
Our result~solid curve! is compared to the Fraunhofer approxim
tion ~dashed curve!. The parameters area51.5 m, R550 m, n
51 GHz; the angle is measured in degrees. The Fraunhofer
proximation is narrower in angular extent and larger in magnitu
Due to conservation of energy the field sharpens its angular di
bution and approaches the asymptotically far field from below
R→`. Up to scaling normalization factors, the same plot wou
apply to any with the sameh, for examplea53 m, R5200 m.
3-6
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fit, there is a slight coupling between the model for the fo
factor and the parametera one will extract for the longitudi-
nal spread. We made our own fit to the ZHS code’s f
quency dependence, including the region up to 1 GHz, us
a Gaussian form factor because of its better analytic pro
ties. ~The ZHS fit, which contains poles in both the upp
and lower half-plane, violates causality.! Specifically, we find

F~n!5exp@2n2/~2n
*
2 !#, n* 50.93 GHz.

Using the correspondinga value we would predict the Fraun
hofer Monte CarloDu;2.3°(500 MHz/n!, quite close to
ZHS.

In real life, shower to shower fluctuations are highly im
portant. We studied the statistical features4 of the parameters
nmax, a by fitting individual showers many times and lookin
at the average and rms fit values. The results atE51 TeV
werea51.560.2 m,nmax5345660. Multiplying these and
adding fluctuations in quadratures givesanmax5520(1
60.22) m. The combinationanmax, which is the primary
variable in determining the normalization of the elect
field, was found to be (570650) m. The fluctuation ofanmax
is less than half the value that the uncorrelated fluctuation
the separate terms would give. The relative fluctuation is s
to decrease with increasing energy@31#, but there are uncer
tainties. For example, threshold rescaling is used in Mo
Carlo simulations, leading to a loss of information about
true fluctuations. Very preliminary results of running th
standard Monte Carlo GEANT show variations in avera
shower parameters such asanmax at the 30% level compare
to the average of ZHS@34#. These comparisons indicate th
the electrodynamics is probably determined better than
rest of the problem. Indeed, the deviations from Gauss
behavior in showers is an effect contributing to the fields
the few percent level. At the level of 10–15 %, many oth
small effects contribute. Unless one uses details about
uncertainties and errors in fits, and especially about
shower-to-shower fluctuations in all relevant quantities, i
pointless to fine tune the comparison further. We conclu
from the numerical work that the factorized expression is
least as reliable as the Monte Carlo simulation, and has
attractive feature that the parameters can be adjusted dire

IV. THE SADDLE-POINT APPROXIMATION

While the Rossi-Greissen Gaussian approximation to
shower is common, there are additional features that fa
such an approach to the emitted radiation. The coherenc
dominated by regions where the phases add constructi
greatly enhancing the peak region. In such circumstan
analysis is helpful, especially when the largest contribut
to I FF is dominated by saddle points. These are points wh
the phase is stationary,df(z* )/dz* 50.

Here we describe the saddle-point method to evalu
I FF(h,u). This is a classic, controlled approximation wh
the charge distribution has a single maximum andkR@1.

4We thank Soeb Razzaque for help with this.
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The method turns out to give the exact result in the limit
flat charge evolution, that is, the Frank-Tamm formu
where numerical evaluation is highly unstable. With t
saddle-point approximation, we can extract analytic formu
which are as good as the numerical integration.

We now describe the saddle-point features. By trans
tional symmetry the shower maximum can be located atz8
50. Referring to the formula of Eq.~11! cited earlier, the
saddle point of the phase is given by solving

cosuc2~z2z* !/R~z* !2~ i /k!~d/dz* !ln n~z* !50

for the pointz* dominating the integral. The maximum ele
tric field is already known to occur at points~z,R! near the
Cherenkov cone. For such observation pointsz5R cosuc ,
and the saddle-point equation has an easy solution az*
50. Thus the dominant integration region is near the sho
maximum, as physically expected.

As the point of observation moves off the Cherenk
cone, the saddle point moves away into the complexz8
plane. To find the complex saddle point, we approxim
ln n(z8)'2z82/(2a2) in the vicinity of the shower maximum
that is, we fitthe top of the shower locallywith a Gaussian.
To reiterate: the saddle-point approximation does not nee
replace the entire shower by a Gaussian, but replaces
vicinity of the region where phases are contributing coh
ently by a Gaussian. The saddle-point condition gives a q
tic equation which can be solved. Unfortunately the solut
is impossibly complicated, thwarting a direct approach. W
circumvented this by studying the saddle-point location n
merically. We found the quartic solution is accurately line
ized in a special variable: expand about cosu close to
cosuc . We then find z* 'R(0)sin2 u(cosu2cosuc)@1
1iR(0)/(ka2 sin2 u)#21. With this formula the reader inclined
can repeat all the calculations. We also show the saddle p
to highlight the appearance of the ratioR(0)/(ka2 sin2 u) in-
dicated by the qualitative ‘‘acceleration’’ argument, Eq.~3!
of Sec. II B. Finally, we replaceR(0)5R5Az21r2.

The rest of the calculation is standard mathematical ph
ics @32#, so we just quote the results. Calculating fields fro
the potential and keeping only the leading terms in 1/(kR)
!1 we find

EW v5
iv

Rc2 F~qW !I FF~h,u!F ~cosu2cosuc!eWR

2S 12 ih
cosuc

sin2 u

cosu2cosuc

12 ih D sinueW uG , ~15!

BW v52
iv

vcRcosuc
F~qW !I FF~h,u!

3S 11 ih
cosu

sin2 u

cosu2cosuc

12 ih D sinueWf , ~16!

where
3-7
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I FF~h,u!

5eikRaA2pF12 ihS 123ih
cosu

sin2 u

cosu2cosuc

12 ih D G21/2

3expF2
1

2
~ka!2

~cosu2cosuc!
2

12 ih G ~17!

with h defined in Eq.~4!.
Inspection reveals that these formulas have the dep

dence onv, R, and a distance scalea quoted earlier on physi
cal grounds. The formulas cited earlier as summarizing
numerical work are, in fact, the saddle-point approximatio
evaluated ath50, which fit closer than any empirical for
mula.

A. Remarks

The dependence of the fields on symbolh summarizes a
good deal of complexity. For example, the limith→0 yields
the Fraunhofer limit, with spherical wave fronts andEv

;av/R, and the limith→` gives the cylindrically symmet-
ric Ev;Av/R fields. This field can be substantially differe
from the Fraunhofer approximation. In fact one must ta
this limit to get the Frank-Tamm formula. A notable applic
tion is emission from ultrahigh energy air showers. In su
showers the LPM effect plays a definite role in suppress
the soft emissions from the hardest charges. There is no
responding suppression of the evolution of the low-ene
regions of showers where most particles exist, howe
@33,21#. The major effect that we find is that the showe
become long kinematically: that is, the parametera gets big
if one is working with, say, a primary of 1020eV. The emit-
ted fields approach those of the Frank-Tamm formula aa
→`, via the formula cited. The effect is important nume
cally: a 1020eV air shower does not approach the Fraunho
limit nearer than 300 km. The conditions of RICE are mo
amenable to the limit, and atR;1 km, v;1 GHz the
Fraunhofer-based estimates near the Cherenkov cone in
literature are good to 20%.

The frequency dependence in the Fraunhofer approxi
tion is strongly affected by ‘‘diffraction.’’ Independent of th
form factor effect, the Fraunhofer approximation imposes
upper limit to the frequency of orderv,(1/a)(cosu
2cosuc). The true behavior is substantially different: fro
Eq. ~17! we see that the field exists in a region

v,~1/a!@~cosu2cosuc!
22~a2/R2!sin4 u#21/2.

For largev and in the angular region where the signal exis
the behavior is much flatter. This is illustrated in Figs. 4 a
5. This effect is invisible at the exact valueu5uc , where the
fake Fraunhofer frequency cutoff and most of the true fu
tional dependence in the exponent ofI FF both drop out. As a
result of the difference in frequency dependence, the t
structure of the electric field may be substantially differe
from the Fraunhofer approximation. We will return to th
point in Sec. V.

Fields in the forward and backward directions, sin2 u
→0, are the fields ofh→0, the Fraunhofer approximation
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regardless of the physical values ofk,a,R. We note that the
experiments of Takahashi@14# observe an extremely limited
region of sin2 u→0. Perhaps this contributes to the observ
agreement with Tamm’s formula in a regime wherea2k/R is
not close to zero.

The polarization varies considerably. From symmetry
polarization is in the plane of the charge and the observa
point. Moreover, foru5uc the electric field is transverse t
RW for anyh. Yet naive transversality is not true in general
any finiteh.

Between the various limits the dependence on every s
in the problem, namely the frequencyv, the distanceR, the
length scalea, and the angleu, is neither that of the Fraun
hofer limit nor that of the infinite track Frank-Tamm limit
but instead a smooth interpolation between the cylindri
and spherical wave regimes.

In the finiteh limit, one may also include a further effec
namely that asv→0 one has a ‘‘near-zone’’ Coulomb-like
response at smallR. ~Indeed, thev→0 limit measures the
net charge.! This effect, important below about 10 MHz, als
has a slight effect on the time structure of pulses.

We pause to comment on the generality of the res
What if we had not made the physical, but specific ans
~6!? The entire analysis can be repeated for an arbitr
charge distributionj (t8,z8,rW 8). The Fraunhofer expansion o
the transverse variable, and the Fourier integral of thet8

FIG. 4. Magnitude of the rescaled electric fieldW

5(1000/nmax)R uEW v u/F(v) as a function of frequencyn, evaluated
at u5uc11°. W is measured in 1027 V/MHz. The dashed curve is
the Fraunhofer approximation. Note the high frequency cut
which is not a form factor effect, but an artificial result of the lim
R→` imposed by the approximation. The solid curve is our res
The parameters area51.5 m,R5100 m.

FIG. 5. Magnitude of the rescaled electric fieldW

5(1000/nmax)R uEW v u/F(v) as a function of frequencyn, evaluated
at u5uc10.3°. W is measured in 1027 V/MHz. The dashed curve
is the Fraunhofer approximation; the solid curve is our result.
R→` the Fraunhofer approximation begins to apply. The para
eters area51.5 m,R51000 m.
3-8
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RADIO DETECTION OF HIGH ENERGY PARTICLES: . . . PHYSICAL REVIEW D65 016003
variable are general. Provided therW 8 extent is finite, and
there exists a dominantz8 region, then the integrals alway
factor into a product of a form factor and a one-dimensio
integral forAv

FF(h). In fact nothing changes~the reader can
repeat the calculation! except that when an arbitrary curre
is set up, the existence of a single saddle point canno
assumed. Corrections to the local Gaussian approxima
are straightforward. The slight skewness of real showers~or
other arbitrary charge distributions! can also be developed a
a saddle-point power series. Again, there are element
bremmstrahlung in real showers, having a stochastic na
which the current model has not attempted to reproduce.
tailed Monte Carlo simulations@34# of our group have in-
cluded the bend-by-bend amplitudes of tracks undergo
collisions. This goes well beyond the approximation of
single straight line track, suddenly beginning and ending
the previous literature@22,21#. The effect of all the small
kinks is negligible except in the very high frequency regi
v@100 GHz, while the endpoint accelerations give oscil
tions in the angular dependence down by orders of ma
tude. As a final side remark: we explicitly studied contrib
tions of finite tracks, just to see what would happen, in
development towards the conditions of the Tamm formula
is straightforward to develop these pieces if one needs t
for, say, the Takahashi-type experiments@14# in the Fresnel
zone.

B. The general case

We now turn to fields valid for anyh. The most interest-
ing application is the case where the observation point is
at infinity, or the showers are too long for a fixed largeR, for
the Fraunhofer approximation to apply. The form fact
which was extracted from the Fraunhofer calculations, is u
versal and need not be changed. The validity of the sad
point approximation does not depend explicitly on the va
of h. The procedure of linearization to locate the saddle po
happens to be good to (cosu2cosuc);1, so that the approxi-
mation is rather good in the entire regionR/a@1, kR@1.

For practical applications it is useful to have a formula
the fields with quantities measured in physically motiva
units. For this purpose we rewrite Eq.~15! as follows:

REW v'2.5231027
a

m

nmax

1000

n

GHz
F~qW !cEWF V

MHzG . ~18!

Here nmax is the excess of electrons over positrons at
shower maximum,R is measured in meters,n is measured in
GHz. The rescaled field is

EW5F2
cosu2cosuc

sinu
eW R1S 12 ih

cosuc

sin2 u

cosu2cosuc

12 ih DeW uG
3F12 ihS 123ih

cosu

sin2 u

cosu2cosuc

12 ih D G21/2

3expF2
1

2
~ka!2

~cosu2cosuc!
2

12 ih G . ~19!
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We have defined a kinematic factorc52 i exp(ikR)sinu in
such a way that the rescaled fieldEW is normalized atu
5uc ,

EW~u5uc!5~12 ih!21/2eW u . ~20!

It is convenient to plot the magnitude of the rescaled fie
Eq. ~19!. Figure 3 shows the magnitude as a function of t
angle differenceu2uc in various limits. The Fraunhofer ap
proximation is shown by a dashed curve, and our result
the solid curve. One observes that the Fraunhofer limi
approached from below. This is physically clear: The Fres
zone fields have a wider angular spread, and conservatio
energy forces them to be smaller in magnitude compare
the sharper, diffraction-limited Fraunhofer fields. As t
fields evolve to infinity, they coalesce into narrower a
taller beams.

The frequency dependence ofRuEW vu/F(v) is shown on
Figs. 4 and 5. Exactly at the Cherenkov angle the differe
between the Fraunhofer approximation and our results
minor for the typical parameters of RICE. However, aw
from the Cherenkov angle there is a substantial differe
between the two throughout the region where the magnit
of the field is large. This effect can be masked by the fo
factor, so we have plottedREv /F(v) to show it. This effect
may have important repercussions for the time structure
pulses, which are also discussed in Sec. IV A.

Figures 6–9 are contour plots of the electric field. We d
not bother to remove the small regiona/R;1, where our
result does not apply. The Fraunhofer approximation ha
trivial 1/R dependence on the distance to the observa
point ~cf. Figs. 7 and 9!. The exact result is certainly differ
ent, with Figs. 6, 8, and 9, in particular, illustrating the e
fects of constructive interference in the region of cylindric
symmetry. A complementary view examines contour plots
constant phase. This is shown in Figs. 8 and 9. The dif
ence between the two componentsEv

R ,Ev
u is too small to

show on Figs. 8 and 9. The lines of constant phase can
used to illustrate the time evolution of waves of a giv
frequency: that is, the Fourier transform ofd(v
2v* )Ev exp(2ivt) has wave fronts at each moment in tim
given by the lines of constant phase. The constant phase

FIG. 6. Contour plot for the magnitude of the electric field. T
parameters area55 m, n5100 MHz, distances are in meters. No
the evolution of the field from the Fresnel to Fraunhofer regime
the distance from the origin increases.
3-9
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ROMAN V. BUNIY AND JOHN P. RALSTON PHYSICAL REVIEW D65 016003
of the Fraunhofer approximation are, of course, spherical~cf.
Fig. 9!. The constant phase lines of the true behavior in
polate between cylindrical and spherical symmetry. As a c
sequence of the Fresnel-zone behavior, the eikonals of
expanding radiation field do not emerge radially, but actua
curve due to interference effects. This is a sobering impac
very basic physics, which has a measurable effect in
signal propagation speed discussed later under the top
causal features.

V. CAUSAL FEATURES

With our convention that the electric fieldE(t,xW )
51/(2p)*2`

` dv exp(2ivt)Ev(xW), causality requiresEv to
be analytic in the upper half-plane ofv. Singularities in the
lower half-plane determine the details ofE(t,xW ) and the pre-
cise causal structure.

To discuss this we consider detection of signals via
antenna-system response functionAv . By standard argu-
ments the detected voltage is a convolution in time, a
therefore a product inv space, of the antenna function an
the perturbing electric field. The antenna function has
same causal analytic properties as the electric field. A pr

FIG. 8. Contour plot of the constant phase of either compon
of the electric field~see the text for details!. The parameters area
55 m, n5100 MHz; distances are in meters. Each contour rep
sents the time evolution of an expanding wave front for the f
quency used. The phases illustrate nontrivial propagation with
structive interference, as well as evolution from cylindrical
spherical symmetry.

FIG. 7. Contour plot for the magnitude of the electric field in t
Fraunhofer approximation. The parameters area55 m, n5100
MHz; distances are in meters. The magnitude of the field lacks
richness of structure of Fig. 6.
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typical antenna or circuit function for a driven LRC circuit

Av5Z/~2v21vA
2 2 iGv!,

whereZ depends on where the amplifier is connected in
circuit and can be treated as a constant. Note thatAv5
2Z/(v2v1)(v2v2) where v6 are in the lower half-
plane. The dielectric functione~v! can then be taken a
slowly varying in the region where the antenna and fo
factor allow a response, and also has its analytic structur
the lower half-plane if this detail needs to be included. W
will also ignore the form factor for this discussion, whic
earlier was cited as a formula analytic in the complex pla
While nothing in our analysis depends on these idealizatio
this approach to the analytic structure serves to make
point.

As a first illustration, consider the electric field fit give
by ZHS, proportional to 1/(v2 iv0)(v1 iv0) with v0/2p
5500 MHz. This field has poles in both the upper and low
half-plane, violating causality. One may argue that the lite
analytic behavior in the complex plane goes beyond the
bitions of the original semiempirical fit. Nevertheles
Cauchy’s theorem applies to the subsequent numerical i
grations that have been made@5#, giving noncausal branche
to numerically evaluated Fourier transforms, as well as
physical short-time structure.

Let us compare the analytic structure of the electric fi
in the saddle-point approximation. This approximation do
not attempt to describe the regionv→0, which requires
treatment of the near zone. However, for causality we do
needEv near the origin but at largeuvu. The saddle-point
approximation is good here so the results should be relia

Let us investigate this in more detail. In the exp
nent in the expression for the electric field we ha
2(1/2)(ka)2(cosu2cosuc)

2(11ih)/(11h2). Since h goes
like v there is a phase linear inv at largeuvu. There is also a
branch cut and pole from the prefactor which occurs ath5
2 i . All singularities are in the lower half-plane and cons
tent with causality. The causal structure ofE(t,xW ) then
hinges on closing the contour at infinity. For this the deta

nt

-
-
e-

FIG. 9. Contour plot of the constant phase of either compon
of the electric field~see the text for details!. The parameters area
55 m, n5100 MHz; distances are in meters. The phases illustr
nontrivial propagation with destructive interference, here shown
a larger scale than Fig. 8. In the Fraunhofer approximation w
fronts become spherical.

e
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of the antenna function, which generally has isolated sin
larities, as well as the singular behavior ofEv near the origin
do not matter.

We close the contour at infinity avoiding the branch cu
which may be oriented along the negative imaginary axis
as consistent. Convergence then requires

lim
v→2 i`

ReF2 ivt1 ivAeR

2
1

2
v2ea2~cosu2cosuc!

2
ih

11h2G,0.

Using the definition ofh, this implies

t2Ae
R

c F12
~cosu2cosuc!

2

2 sin2 u G21

.0.

This result has a natural interpretation. While the radiat
from the shower appears to come primarily from the geom
ric location of the maximum,u;uc , the shower actually
develops and radiates earlier. Consequently the strict ca
limit must correspond to an apparent propagation sp
slightly faster than the naive speed ofc/Ae deduced from the
location of the observation point atR. The earliest signa
actually arrives at an apparent speedvapp of

vapp5
c

Ae
F12

~cosu2cosuc!
2

2 sin2 u G21

.

This formula is entirely geometrical, consistent with t
simple picture that distance differences in the problem
causing the effect, but it also incorporates subtle feature
coherence. For example, the distance scalea cancels out. Yet
ay

or
e

95

D

,

01600
-

,
r

n
t-

sal
d

e
of

a determines the angular spread cosu2cosuc over which
most of the power in the wave is contained, and enters in
fashion.

The Fraunhofer limit, in which all signals originate at
single point of origin, is incapable of capturing such an
fect. It is interesting to trace the origin of the discrepan
The singularities of interest are located by the zeroes o
2 ih512 ivAe sin2 u/R. When the limitR→` is taken in
the first step of the Fraunhofer approximation, all the no
trivial analytic structure moves away tov→2 i` and is lost.
This procedure does not commute with closing the contou
uvu→`. The correct procedure, of course, is to first close
contour, and then take the limit of largeR.

In practice, of course, not all of the signal arrives at t
earliest possible moment. The time scale over which the
nal is detected depends on competition between dispers
the antenna and form factor details, and something like tw
the ‘‘advanced’’ time interval. This time interval isDtcaus

5RAe/(2c)(cosu2cosuc)
2/ sin2 u. Since theDtcaus effect

scales proportional to the distanceR, it does not become
negligible in any limit, exhibiting another subtle facet of th
breakdown of the Fraunhofer approximation.
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