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Spectral representation and QCD sum rules for the nucleon at finite temperature
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We examine the problem of constructing spectral representations for two-point correlation functions needed
to write down the QCD sum rules in a medium. We suggest constructing them from the Feynman diagrams for
the correlation functions. As an example we use this procedure to write the QCD sum rules for the nucleon
current at finite temperature.
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[. INTRODUCTION tive chiral Lagrangian involving nucleon and pion fields de-
scribes the interaction well in this case, allowing the calcu-
It was realized quite early in their formulation that the lation of shifts in the pole position and the residu@. The
QCD sum rules in a mediuffi,2] have several new aspects operator side of the sum rules is also simpler at fifitean,
not shared by the corresponding vacuum sum r[8sOn  say, in the nuclear medium: T@(T?) only the Lorentz sca-
the operator side, there appear in general new operators lar operators entering the vacuum sum rules can contribute,
the short distance expansion of the correlation functions, duthe contributions of the new, nonscalar operators being at
to the presence of the four-velocity vector of the mediumleast ofO(T?). Further, the thermal averages of the operators
[4,5]. Even for the old operators, the evaluation of their ma-can all be reduced to their vacuum expectation values, so that
trix elements in a medium may need further untested asho further assumptions are required to evaluate them, other
sumptions. As an example, the four-quark matrix element ithan those needed in the vacuum case. What is more, these
a nuclear medium is evaluated by ground state saturatioum rules have already been worked f#i9] and it would
different from the vacuum saturation used for the vacuune interesting to see if the above-mentioned remainder terms
matrix element6]. Again on the spectral side of the sum bring in any new contribution.
rules, unlike the vacuum case, a communicating single par- For increased sensitivity, we work with the so-called sub-
ticle (with medium dependent mass and coupliapne does tracted sum rules, i.e., the finilesum rules from which the
not saturate the spectral function in the low energy region; irforresponding vacuum sum rules have been subtracted out,
a medium relevant two-particle states are equally importanglisplaying only the contributions @(T?). The spectral rep-
(Throughout this work we shall be interested only in termsresentations for the sum rules are worked out for physical
linear in the distribution function. For higher order terms, masses and couplings. Only in the evaluation of the resulting
contributions from multiparticle states need be inclugled.  integrals do we take the chiral limit. For completeness we
The present work concerns the spectral side of the QChave derived in an Appendix the Wilson coefficients for the
sum rules. We take a closer look at the contributions of théoroduct of nucleon currents using a simple coordinate space
two-particle intermediate state. If we draw all the one-loopmethod.
Feynman diagrams for the correlation function, we see that, In Sec. Il we describe the construction of the spectral
in addition to the diagrams with thésingle particle pole  representation for the correlation function. In Sec. Il we
alone and thgtwo-particle branch points alone, there are evaluate these contributions in the chiral limit. Section IV
other (one-particle reduciblediagrams, which appear as the displays the sum rules and their evaluation. Section V con-
products of the pole and the branch points. They have retains our concluding remarks. Appendixes A and B, respec-
mainders after extracting contributions that modify the poletively, give the absorptive part of the one-loop diagrams at
parameters. It is these remainders that are not always irfinite T and the Wilson coefficients in the short distance ex-
cluded in the saturation scheme, even though they are gefansion of two nucleon currents, along with the thermal av-
erally of the same order as those it retains. erages of the relevant operators.
We illustrate our point by discussing the nucleon QCD
sum rules at finite temperatuiie This choice is dictated by || cONSTRUCTION OF SPECTRAL REPRESENTATION
the simplicity of the nucleon current correlation function at
finite T and the availability of results for comparison. For ~ Consider the two-point correlation function
T<pu, the pion mass, and zero nucleon chemical potential,

pions dominate the heat bath. The leading term in the effec- M(p)=i f dix ePx Tr[pToy(x);(O)] 2.1)
*Email address: mallik@tnp.saha.ernet.in of the nucleon currenty(x)p i, composed of three quark
"Email address: sourav@veccal.ernet.in fields, having the quantum numbers of the nucleon, the indi-
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LAVAVAVAY, VUUV (VAVAVAV VUUV FIG. 1. Nucleon pole and self-energy inser-

tion.
(a) (b)

ces D,i referring to spin and isospii10,11. Here p , dE'?2ImII;(E'?)

=e PH/Tre PH is the thermal density matrix with the IL(E ):f gz_gz -+ 1712 (2.6
HamiltonianH of QCD. For the spectral representation we

do not need to spell out the quark structurengk). the integrals receiving contributions from poles and branch

A formal spectral representation for the two-point func- cuts.
tion in E=p, at fixed p may be obtained immediately ~ The spectral function is generally calculated on the basis
[12'13 Eva|uating the trace over a Comp|ete set of eigen.of Eq (23), with the risk of 0m|tt|ng some contributions.
states of four-momentum and then again inserting the samidere we suggest a more definitive approach, in which we
states between the two currents to extractxitependence, identify the set of relevant Feynman diagrams and calculate

one arrives at the spectral function directly from them. In their work on the
propagation of a nucleon through a heat bath, Leutwyler and
I1(E,p)=i Im,4(E,p) Smilga[7] considered the set of one-loop Feynman diagrams

for the correlation function, correcting the tree amplitude,
P [ dE’ coth BE'/2)Im I114(E’,p) shown in Figs. 1-4. From these diagrams they calculated the

=y E—E , amplitude in the vicinity of the nucleon pole to obtain the

shifts in the nucleon mass and the residue(r?). The
(2.2 same set of diagrams also suffice to saturate the spectral
) o _ functions to the same order ihin the low energy region.
where the resulting double sum over states within the INtefThe diagram with the low mass isobA(1238) in the in-
gral may be converted back to the(dcg to get termediate state is shown in R8] to contribute toO(T%)
1 only.] Once the spectral representations of these diagrams are
Im Hll(E'p):Ef d*x éP*Tr{p[ 7(x), 7(0)]}. (2.3 ~ constructed, one can, of course, immediately read off the
position and residue of the nucleon pole.
. ) . o It is simple to find the spectral representations given by
Here the index 11 in Inbl reminds us that we are working in these diagrams, except for a complication with diagrams of
the real time formulathn of the finite temperature field Fig. 1(b) and Figs. 2a) and Zb). The latter diagrams have
theory, where all two-point functions assume the form of ae structure of th@roductof a (simple or doublgpole and
2®2 matrix. Thus the expressio(2.1) is actually the pranch cuts, due th and«N intermediate states. We have to
11-component of the corresponding matrix. However, no inyyrite these contributions assamof the pole and the branch
formation is lost by considering the 11-component only, asyts, In the rest of this section we perform this separation.

for p(=E*~p?) spacelike, where one writes the QCD sum | et ys begin with the diagrams of Fig. 1. Omitting thil

%%d;N coupling constant§to be reinstated in the next sec-

note that the imaginary part of the 11-component may befion) their sum is

written as tanhBE/2) times a function, the latter coinciding
with the imaginary part calculated in the imaginary time for- 1 1
mulation[14]. It is thus convenient to define

2(E) (27

_’yOE_m_')/()E_m yOE—m_

IMII(E,p)="'coth BE/IMII(E.p). (24  \yhere the ellipsis indicates the inclusion of the series of one-

) I, . particle reducible self-energy diagrams. The self-energy ma-
We shall write the sum rules fgr=0 and in the rest frame trix itself may be decomposed as

of the heat bath. Then we can decompose the two-point func-
tion as S(E)=A(E?)+ y,EAL(E?). (2.9

I1(E,p=0)=1I1,(E?) + yoEIl,(E?), (2.5  Given the absorptive parts, to which we turn in the next
section, the scalar function&;(E?) have spectral represen-
where the scalar functions have, in the notation of ), tations like those foll; in Eq. (2.6). The second term in

the spectral representations expression2.7) is a product of a double pole and cuts con-
JUUV VUUV VUU\ VUV FIG. 2. Vertex correction fromrN intermedi-
ate state.

(@) (b)

016002-2



SPECTRAL REPRESENTATION AND QCD SUM RULE. . . PHYSICAL REVIEW D 65 016002

T Y e o

where A(E) is the vertex with awN intermediate state.
Again we decomposa (E) as

FIG. 3. #N intermediate state.

tained in2. To write it as a sum of the pole and the cut A(E)= 2 2
E)=B.(E°)+ voEBy(E
contributions, we write (E) as (B)=B1(E)+ 7oEB,(EY)

E(E) :A3(E2) + ( ,yoE_ m)Az(EZ), = B3(E2) + (YOE_ m) BZ(EZ):

A3(E2):A1(E2)+mA2(E2), (29) BB(EZ):Bl(E2)+mBZ(E2)) (217)

. and expand the scalar functi@(E?) aroundE2=m? to get
and expand the scalar functions arout=m? to the re- P &(E) ¢

quired order to get A(E)=d+S(E), (2.18
S(E)=a+(E*~m?)b+(yE-m)c+R(E), (210  whered=Bs(m?) and the remainde is

where, for short, S(E) = (v0E ~M){Ba(E?) +(yoE +m)B4(E?)}

a=Az(m?), b=Aj(m?), c=A,(m?), (2.1) (219

where
the prime denoting differentiation with respect E. The

spectral representation for the remain&emay be obtained — dE’?ImBy(E'?)
from those ofA;(E?) by equating the two expressiof.9) Bs(E ):f (E'2—m?)(E'?—E?%)" (2.20
and(2.10 for . We get

o _ The expressiof2.16) now separates into the pole and the cut
R(E)=(E?—m?)?A3(E?) + (yo,E—m)(E?—m?)A,(E?), contributions:
(2.12

—By(E®)— (yoE+m)B3(E?). (2.2)

where YoE—m

12 12
AL(E2)= dE""Im Ag(E™) 21 Clearly, to find the nucleon pole position and the residue the
3(E) iy =Ty =y (2.13 - 2 2y
(E'*=m)(E'"—E") terms withA;(E?) andB;(E?) in Egs.(2.15, (2.21) are not
necessary. But to write the QCD sum rules, which require the

~ dE'2ImA,(E'?) correlation function for alllarge, spacelikevalues ofE2,
Aq(E )_f (E'>—m?)(E'?—E?)" the entire spectral representation is needed.
(2.19
I1l. EVALUATION OF SPECTRAL REPRESENTATION
The integrals here and below run over the two branch cuts,
the short cut &E?<(m—u)? and the unitarity cutE? Having separated explicitly the contributions of the
=(m+ u)? (see Fig. 5 of Appendix A N-pole and therN cut arising from diagrams of Figs. 1 and

Inserting Eq.(2.10 in Eq. (2.7) and summing the series 2, we proceed to calculate the spectral functions of all the
after isolating the contribution fronR, we get the desired diagrams. We need to know the interaction vertices present

spectral representation for the diagrams of Fig. 1 as in the diagrams. TherN interaction Lagrangian is given, to
leading order in chiral perturbation theory, by the familiar
1+2mb+c E2 2 A E2 - term
')/0E_(m+a) ( m ) 3( ) (70 m) .
N re :—A_ a M HR
X{2mAg(E?) + A,(E?)}. (2.15 LN ZFﬂlM,ﬂ o2,

Next consider the diagrams of Fig. 2, each of which is awhere gy=1.26, the axial-vector coupling constant of the
product of a simple pole and cut contributions. They are ofnucleon, and= =93 MeV, the pion decay constant.
the form The coupling ofp(x) with the nucleon is defined as

" 2N
N ’

i
l

1
!

3
vy

1 i
v 7
AVAVAVAV e VAVAVAVA AVAVAVAV, VAVAVAV FIG. 4. Constant vertex correction.

(a) (b}
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(0] 7:()|Nj(p))= 8 u(p)e™"PX. (3. @5

Cy - - m
Im Bl,Z(Ez): mn1(|w1|)|wl|w1( 1- E
Its couplings with a nucleon and any number of pions intro-
duce no new constants. They may all be reduced to the coyt can now be seen that bothand the Borel transforms of
pling with the nucleon alone by using PCAg@artial conser- B,(E?) and§3(E2) are ofO(T%). [The leading pieces from
vation of axial-vector curreitand current algebr@7]. We each of the two cuts are @(T2), but they mutually cancel

conveniently represent these qouplings by writingx) in each othel. Thus the diagrams of Fig. 2 contribute neither to
terms of the relevant physical fields: the pole nor to the cut tO(T?)

T N L _ The usual qontribution _of therN intgrmediate state is
7(X)=Nh(X) + SE T dys(X) — 8_F2_¢. d(X). given by the diagram of Fig. 3, for wfycf{p,k)zc3y5(p
” (32 —k+m)ys, c3=—(3/4)(\/F,)?. For p=0, the leading
' piece is given byf=cs(m—yE). Then the Borel trans-
formed amplitude is

We now begin with the evaluation of the self-energy in-
tegraIE(p). It is of the form of Eq.(A1) of Appendix A with \2 T2 g mPIM?2
f(p.k) given by f(p,k)=cikys(p—Kk+mkys, c1= N CmiyE). (3.6
—(3/4)(ga/F,)2. Note that any term- y-k in f will be zero 16F2 M2
after integration over the angle &f Then for|5=6 and in
the chiral limit, it simplifies t0f=201k§Eyo. Referring to
Egs.(2.8), (A9) we get

Finally, the diagrams of Fig. 4 give a constant vertex correc-
tion to the nucleon pole,

)\2 T2
¢, - — E?>-m? — — ————(m+ y,E). 3.
IMA=0,  ImAy=;—=ny([wi)wif’,  wy1=—5g 162 E2-m2 " V8 30
on both the branch cuts<OE2< m?2 andE2>m? in the chiral We are now in a position to write the complete spectral
limit. The constant thb is given by representation for the two-point function @(T?). Collect-
ing results from this and earlier sections, the modified
dE? Im A,(E2) 9/2x T2 nucleon pole term is given by
2mb=2m2fﬁz———2. (3.3)
(E*—m?) 16 F2 (\T)2
B (m+ yoE), (3.8
The other two constant andc are each ofd(T3).
The integrals in the remaind& may be evaluated in the i
same way. Considek;(E?) given by Eq.(2.13. Anticipat-
ing the QCD sum rules, we actually need the Borel transform T gi+ 1712
of the spectral representation at large spacelike valu&s of A=A 1= 32 E2)° 3.9
. . F7T
It is given by
- while the Borel transform of the spectral representation due
— 2m? [ dE?e E'M Im A,(E?) to 7N branch cuts is
2MmA3(M?)|gorel=172 77 ,
M (E“—m?) T
)\2 ) 5 -|-2 e~ m M
—{M(gi—1)+(ga+1)yoE}=—= ——— (3.10
BT 5s e T
© 16M?2 F2’ '

w

The pole term immediately gives the results of R&f: the
. . 2 .
whereM is the Borel mass. The Borel transformed integralse:]f_?tq'v‘teh”uc'e%” mass does ”I‘E)tasg)'ﬁ%ﬂt), while the
for (Ez—mz)Ag(EZ)_andA?(E?) are each oD(T_3). Zolna:nto g% :ﬁstlh(laJ et);anéxe:ut Xon(tqribu'.cion (\a/voeurlrgshg\r/(()ept?(re-en
The vertexA(E) is again given by EqlAL) with absent had the remaind@mot been taken into account. The
fa(p,K)=Cokys(p—Kk+m)ys, other remainder terr§ does not contribute t®(T?).

fo(p,K)=cCoys(Pp—Kk+m)Kys, IV. SUM RULES

) The other element needed in writing down the QCD sum
Co=—(3/4)ga(NF )%, rules is the short distance expansion of the product of
o nucleon currents. The quark content of the nucleon current,
for diagrams(a) and (b) of Fig. 2, respectively. Wittp=0  most suitable for the nucleon sum rules, is given for the
and the chiral limit, the twd’s coincide and we have for the proton(i.e.,i=1, to be omitted henceforttby [11]
sum f(p,k) =2c,ko(E—myp). Comparing with Eq.(2.17)
we get 7p(X)=€*TuT(x)Cy,uP) [ ¥57,d°(¥)]p, (4.0
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whereC is the charge conjugation matrix. Heagh,c are the  The value ofA may be obtained from the vacuum sum rules.

color indices and is a Dirac index. Instead of using the numerical estimfi€], we may use one
As already stated, we shall find the finifesum rules, of the sum rules directly, which reads

from which the vacuum parts are subtracted out, thereby

eliminating the contribution of the unit operator. Since the 5 1(M2\2 m2/Mm2

leading thermal contribution of the gluon operators is of A T T mlonr (OJuufO)Ke : (4.5

O(T% and we are working t®(T?), the contributing opera-

tors are onlyuu, U, t2uG*"2, andul'yuul,u up to di-  Then Eq.(4.3 becomes independent of the Borel mass

mension six. Of these the dimension five operator has zerand one immediately gets

coefficient in the operator product expansion of the nucleon

currentd 10]. Also, the thermal expectation value of the four-

quark operator turns out to beindependen{8]. Thus it is

only the operatonu that brings in anyl dependence on the

operator side of the sum rules. We derive all these resulteeproducing the result of Reff7].

systematically in Appendix B. It should be noticed that the predictidd.6) is not as
Usually, in writing sum rules in a medium, one takes theclean as it appears. Equati¢d.3) hasM dependence, al-

parameters of the pole term as unknown, to be determined ough mild, within its allowed range of variation. The use of

the sum rules. Here these axé andm', the shifted pole the vacuum sum rule fax? compensates this variation with

position. Then the sum rules are obtained by equating thés own to yield the above results.

Borel transforms of the spectral representation and the op-

erator product expansion. The “subtracted” sum rules read V. CONCLUDING REMARKS

1
_ _ 2
a=0, b= §§wA+1L (4.6)

1 A°m ) T2 M2 In this work we propose a method of constructing spectral
W+ 16M2(9A_ 1)E2'e representations for correlation functions in a medium. It is
7 based on its Feynman diagrams which, to first order in the

()\T)ZmTe—(mT)lez

z 2 distribution function, consist of all one-loop diagrams. This
= ﬂ) (Ouu[O)K o=z construction differs from the usual saturation scheme of tak-
T ing only the single particldwith medium dependent mass
—_— 1 2 T2 - and coupling and two-particle intermediate states by certain
(AT)2e=(M)M vzt 16_M2(g’2*+ 1)Eze‘m M7=, “remainder” terms contributed by the one-particle reducible
diagrams.

(4.2 We then use this spectral representation to write down the
where the bar over the nucleon term denotes subtraction €D sum rules for nucleons at finite temperature. They are
its vacuum value. The factdt, given by shown to reproduce the temperature dependence of the
nucleon mass and its coupling to the nucleon current, ob-
tained earlief 7], justifying simultaneously the spectral con-
struction and the sum rules.

These sum rules were obtained earlier by Koil&,
deviates from unity due to incorporation of the continuumWhose calculation of the spectral function was based essen-

contribution on the spectral side: the imaginary part of theially on Eq.(2.3). But he took into account the coupling of
leading operator contribution is assumed to saturate the spe&-to N, which then interacts also witizN, as well as torN

2

K=1—(—7+1

—W2/m?2
e ’
M

tral function from a threshol&V onwards[10]. directly. In effect he included all the “remainder” terms aris-
Let us evaluate the sum rules for and\T. Write ing from the Feynman diagrams. As a result his sum rules
remain unaltered by our method of construction of the spec-
. T2 T T2 tral representation. But there are other sum rules, like the

m=m 1+aF7)’ A=A 1+bF7)’ ones for the vector mesof&5,16, which do have nonzero

m m contributions from the “remainder” terms, not taken into

wherea andb satisfy account so faf17]. _

It will be observed that the Feynman diagram approach to
m? a 1 constructing the spectral function automatically yields also
b—aWJr O 3—2(9/Zr 1) the medium dependence of the mass and coupling of the

single particle communicating with the current. It would thus
1 22 22 appear that the only use of the sum rules in the medium is to
+ 16m F(E) (OJuu|0)Ke , rederive these results. However, the situation may not be so
and one may well be able to extract new information on the
(4.3  matrix elements of operators. For example, consider the
) nucleon sum rules in a nuclear medium. In this case there
b—am—: _ i(ngr 1) (4.4) arises the nucleon matrix element of the four-quark operator,
M? 32'9A ' ' mentioned already in the Introduction. Usually one relates it

016002-5



S. MALLIK AND SOURAV SARKAR PHYSICAL REVIEW D 65 016002

to the o term by the approximation of ground state satura- A,(p)=(1—ny)D,(p)—n,D3 (p), (A5)
tion. The sum rules, on the other hand, may give the value of
this matrix element without such an approximation. where
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parts, we get the imaginary part as
APPENDIX A

: . . d*k 1
Here we derive a general formula for the discontinuity of |mF,,(p)= f ——— ———[{(1+n)(1—ny)—nn,}
one-loop Feynman graphs encountered in this work. Each of (27)° 4wy,
these graphs consists of a nucleon and a pion propagator but I f S(E— a1 — (=
with different vertices. Thus they are of the form {f(0) S(E=w1=wz) +1(=wy)

X 5(E+ w1+ wz)}+{n1(1_ n2)

) d*k
Fn(p)=|fWf(p,k)Al(k)Az(p—k) (A1) —(1+n)nHf(— 0q) 8(E+ 01— wy)
+f S(E—wq,+ . A6
where A, are the 11-components of the corresponding (01) S(E= w1t wo)}] (A6)
propagator matricefl8]; A;(k) is for the pion, Here
i B —
Al(k):m"‘ZWI’]l(ko)ﬁ(kz—Mz), (A2) w1= VK> +u?,  @=V(p—k)*+m?,

n;=n;(wq), andn,=n,(w,). For brevity, the argument df
andA,(p) is for the nucleon, after extracting the spinor fac- shows only the value of the integrated variakje
tor (p+m), Observe the “wrong” signs in the factors involving the
distribution functions, because of which the produgh,
— _ 2_ 2 does not cancel out. It is, however, possible to extract a fac-
Aa(p) p—m’+ie 2mha(Po) o(P"—M"). (A3) tor of tanhBE/2) from each of the terms, by virtue of the
) .. . . . associated delta functions, which “corrects” the signs, lead-
Heren, andn, are the bosonic and fermionic distribution ing to their cancellation. Using a notation similar to E2.4)
functions:  ny(ko)=(e#*l—1)"%, ny(pg)=(efPol+1)"1. e get
The vertices and the spinor part of the nucleon propagator

are all contained irf(p,k). d3k
Since we work at zero chemical potential andTat ., M F(p):j @3 Zoo- (LN —ny){f(wy) S(E
the nucleon distribution function, is negligible compared rre
to n, for the pion. However, we wish to retain both and —w1—wy) —f(—w) (E+ w1+ wy)t+(ng+ny)

n, to show the cancellation of their product in the final ex-

pression for the imaginary part. X{f(~ 1) J(E+ w1~ w) ~ f(wy)

We find the imaginary part df 11(p) by simply integrat- X S(E— wy+ wy)}]. (A7)
ing out the time component &f, . For this purpose, we write
the finite T propagators as The positions of the branch cuts, where the imaginary parts
are nonvanishing, are determined by the arguments ofthe
Ay(k)=(1+n1)Dy(k)+n;D7 (K), (A4)  functions.

[e

I ) o) ) FIG. 5. The cut structure in thE plane.
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We next consider the limip=0, in which we write the S(X)=S(X) + Sy(x) + - - -,
sum rules. The simplified cut structure in this limit is shown .
in Fig. 5. It is seen that the first and the third terms in Eq.WhereSy(x) is the free propagator for massless quarks,
(A7) give rise to cuts foE>0, and the second and the fourth
terms forE<<0. The cuts in these two regions are related by SO(X)aa’ _ i (X)an' a
symmetry undelE— — E. Restricting consideration to cuts AA! 272 (x2—ie)?
for E>0 and settingr,=0 we get

and S,(x) is the first nonleading piece at short distance,

d’k 1 hich i tional to th field
Im F(E)|E>OIJWW{(1+n1)f(W1) wnich Is proportional to € gauge fieiqa,

[ . (Y*)YP) anr

XS(E~ 01— wy) +nif(—wq) Sz(X)iir:(FaB)AA’Gz%’ , Tf=— 1672 (xX’—ie)

X S(E+ wq— wy)}. (A8)

These two terms suffice for our purpose. Note tBgix) is
To evaluate the integral we have, fer-0, diagonal in color.

With 7p(x) given by Eq.(4.1), we have

1 1 —
Ty S ET 017 02) = H(EF 01)*~ wi}= 5 d(wrF o)

7o () =[U3(X) y"C~ U0 TI[d(X) v57, ] €2
where w;=(E?~m?+ 1?)/2E. Note that w, is positive We are interested in the two-point correlation function
(negative on the unitary(shor} cut, but the value ofv; as o

given by the delta functions is always positive. We thus get T 7p5(X) 7p(0) = €2°%2 ®'¢"(Cy#) o5

L (o er— (e X(7'C Y e (757,)0c(5W)er
IMF(B)le~0=g 2z 9(|@1)) 02— p*f(w1), (A9) A (¥5Yu)oc( V5o

X W{RH(x,0) (B2)
where g=1+n; for E>m+u and g=n; for 0<E<m where
— . In writing the sum rules, we subtract the vacuum con-
tribution (corresponding to the term “1” ing). Then _ b — A — b= !
Im F(E) has the same expression on both the cuts. Wﬁ(x,O)=Tu(x)iu(x)Bd(x)CCu(O)Z,u(O)B,d(O)g,(Bs)

APPENDIX B is the operator product to be expanded into local operators

Here we derive systematically the known results of operaWith (singulay c-number coefficients as,—0. Its Wick ex-

tor product expansion of nucleon currefisd], using the Pansion consists of three types of term,

coordinate space methofil9-23. We also collect the af _fal a4 pp fa

vacuum and the thermal matrix elements of the contributing W{{A}}_ EA%”L }A}}Jr gA}}'

operatord8,15|. . . )
The method consists in treating the gauge field as CIaSS{cTorrespondmg, respectively, to one, two, and three contrac

cal and Wick expanding the operator product. The basic elHons of the quark fields.

i i } i -
ement is then the contraction of two, sayquark fields The smgle, contractlc?n termﬁ} may be obtained b_y con
tracting twod'’s or two u’s. In the latter case, there arise four

— e’ terms, all of which are equal, as may be verified by inter-
u(x)qu(0)y,=—iS(x) changing the color indices and the Dirac indices in the terms
and noting thatCy, and v,C~1 are symmetric matrices.
where the propagatd(x) satisfies Thus
— 1Y, 1AL(0]S() = 8'(x), (BD) 1300 = —1S(0 &%, u(x)2u(x)3u(0)4,u(0)p,

in the presence of the gauge fielﬁg(x)ngz(x))\“/Z, the

T aa’ b cT b g7 c’
A"s being the Gell-Mann matrices for SU(3)In the Fock- AISOX) aar U(X)BA(X)cU(0)g,d(O)c: -

Schwinger gauge, defined A ,(x) =0, the gauge poten- (B4)
tial can be expanded in a series in the field strei@gth and o ) _ o
their covariant derivatives, Similarly, terms with two and three contractions give rise to

11800 =—25(x)33,5(x)5%, d(0)%,d(X)&

1
A, (xX)= zx“Gw(x)Jr cee
—45(x)3% ()%, u(0)2u(x)s  (BS)

The crucial step in this method is to solve E®&1) in a
series at short distan¢e1], and
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’ ’ ’ 1ati 1 1 ve—1; 7
Hal(x) = — 2iS(x)22, S(x)°2’ 5(x) ., B6 In association with the matricggy* andy”C ™~ in the first
e () an SV ger SX)ce (B6) term of [1]3}, the last two terms above are equal and we get

Since we do not need pure gluon operators, we do not workS contribution to the operator product as

with Eq. (B6). The quark fields in Eqs.B4) and (B5) may

now be expanded as T UD(X);D’(ONII, st term
v =—4(y5Y")oc(vs7Y")cror
u(x)=u(0)+x*D ,u(0)+ 5 D,D,u(0)+---, = B
(B?) X tr(C’)’MSO’)/VC SO) dcrdc+X)\dC/D>\dC
to get the series of local operators. Our task is now to project N xkx‘fa D.D.d )
out the Lorentz scalar operatom!, Os=uoc*'G,,u, and 2 C/EAEeRC

ul’yuul’,u. We consider the vacuum matrix element for this
purpose. ~tr(Cy,S0y,C T T)dc G, 4dc

Let us begin withl}i}(x). As we look for operators of
dimension no higher than six, we replagéx), u(x), and
d(x) by the first terms in their expansions:

. (B13

Note that the color indices in the operators are now summed.
To project out the operatatd from Eq. (B13), we use

Hak(x) = —iSe(x)%%, ud ulud, ul) Secr
i ccr UaUg Upr Ug ¢’ (0/dd|0). (814

<0|dc'dc|0>: 4

—4iSy(x)%, Ul dS Ul d, (B8)
to get
whereui=u4(0), etc. While projecting out the scalar part of
the four-quark operator, one simultaneously uses the approxi- — 2 —
mation of vacuum saturation to relate it to the two-quark (OT70(X) 770'(0)|0>||,1snermﬂu=m<0|dd|0>5oof-

operator. For the first term we havil€12) [3] (B15)
(OuduBUE, UB)|0) = (— 67287 5 0 S We project out the other operat@r; by
o) 2 — 1 [
+ 8082 5,0 S ar) - M (0/daD,D,dg|0)= =5} en¥yun— §(qu)BA] (0]05|0),
(B16)
(B9)

from which we also get

which gives rise to traces ovey matrices and sums over 1

abo P ; H —
€°"s. Itis simple to evaluate the traces after removingthe (daG,,,dg)= 4_8(0';“;)BA<0|05|O>- (B17)
matrix. We get

It turns out that the two terms in EGB13) contributing to

(0170 70 (0O} 16t erm=—5 (Ol 0)2- 22 O5 mutuially cancel each other,
' 3772 (X2)2 B
(BlO) <0|T 77D(X) 77D’(0)|0>II, 1stterm 05:0- (B19)
A similar treatment for the second term results in a trace oveye have yet to find the contribution of the second term of
an odd number ofy matrices, giving Eq. (B5). On using Eq.(B12), it can be seen to consist of
_ terms containing thé&B’ element of a matrix with an odd
(0T 75(x) 70 (0)|O)1, 2nd term=0. (B1D)  number of y matrices times operators likeug: Ug,

ug:D,D,ug, andug,G,zug. Also, Egs.(B14), (B16), and
(B17) show that their projection on to the scalar operators
produces &B’ element of an even number gfmatrices, so
we finally get a trace over an odd numberjomatrices. We
thus get{10]

(0T 7p() 7p/(0)[O)1, 2nd term ww, 0,=0-  (B19)

Next consider the twice contracted piektéz}}. The product
of the two S(x)’s may be expanded up to dimension two in
the gauge fields to get

et ’ bb’ ’
Gabcé'a be S(X)ZirS(X)BBrzzﬁcc SOAA’SO BB’

aB ~c'c
_SOAA'FBB/Ga,B

Sy T, GO Thus, as far as the operatousi, Os, and the four-quark
BB'! AA’Pag- operator are concerned, we have for the vacuum correlation
(B12) function
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- — We record first the well-known contribution ofu to the
o
'J d*x €7(0[ Tp (%) 770-(0)]0) thermal nucleon correlation function,
1\2 — pDD w1 \2 T2 _
:(ﬂ) p®In(—p?)(0|dd|0) Spp: — —<O|dd|0>2 : H(p)ﬂ(ﬁ) (1—E)(0|uu|0)pzln(—p2).
(520) (B23)

Since the operators concerned are Lorentz scalars, one m&gr the four-quark operators in E@8), we have
think of getting the result for the thermal correlation function

by simply replacing the vacuum expectation values in the a’ b’

above equation by their ensemble averages. However, this < E (0|[Q5 [Q5'”/?\UBUTA'UT 1110)

would not be true for the four-quark operator, for, in writing

Eqg. (B9) we have already used the isospand spin struc- | ul0)?

ture of the vacuum matrix element, which differs from that =——0 [~ 2{37AAI YBBr

for the ensemble average. A new calculation is thus neces- N
sary for the latter.

0 0 a’ cbb’ _ 1At IRk
To first order in the pion distribution function, the thermal T s an (Y ys)eer} 0% 670 — (A, B ,b7)]

average of an operatd@ is given by[15] (B24)
d3k nl(wl) and
Tr(pO)=(0|0|0 + —_—
(p0)=(0[0|0) Z 2y 201
. i i b Tb tc’
X(Wl(k)|(9|’ﬁl(k)> (821) i=l,2,3<0|[Q5,[Q5,UBd U d ]]|0>
On using the soft pion methods, the pion matrix element may (O|uu|0>2
be reduced to the vacuum expectation value of a double [—2{3y BB/VCC,
commutator, N?
_ (A0 0 6bb’ 5(:0’
4%k ny(wy) (¥ ¥s)ee (¥ ¥s)cert
Tr(pO)=(0|0|0)— e "
(olo1e; (2m)% 2w, +4(¥Y°ys)ec (Yys)ce 6°¢ 6], (B25)

i [ When these evaluations are inserted in the two-point func-
><i=E (Ol[Qs.[Qs, O1110) (822 tion, it turns out that the two operators bring contributions
_ _ _ equal in magnitude but opposite in sign. As a result, there is
where Qg is the axial-vector chargeQs=[d3xAy(X). An  no thermal contribution t®(T2) from the four-quark opera-
elementary way to evaluate these commutators is to W@ite tors,
in terms of quark fields, express the commutators in terms of

anticommutators of quark fields, and replace the latter by 4-quark T2 )
their canonical values. They may then be vacuum saturated Im(p) - —z|1+0-— (0|uu|0>2 . (B26)
as before. 3 Fa

[1] A.l. Bochkarev and M.E. Shaposhnikov, Nucl. Phy268 [9] An attempt to derive these sum rules was made by C.A.

220(1986. Dominguez and M. Loewe, Z. Phys. &8, 273(1993. These
[2] E.G. Drukarev and E.M. Levin, JETP Le#8, 338(1988. authors failed to include the “remainder” terms in the spectral
[3] M.A. Shifman, A.l. Vainshtein, and V.l. Zakharov, Nucl. Phys. function. Hence, contrary to their claim, they do not reproduce
B147, 385(1979; for a collection of original papers and com- the results of Ref(7].

ments, se&/acuum Structure and QCD Sum Ruyledited by  [10] B.L. loffe, Nucl. Phys.B188 317 (198J).
M.A. Shifman(North-Holland, Amsterdam, 1992see also S. [11] B.L. loffe, Z. Phys. C18, 67 (1983.
Narison, QCD Spectral Sum RuleéNorld Scientific, Sin- [12] L.D. Landau, Sov. Phys. JETP, 182 (1958, reproduced in

gapore, 198p Collected Works of L.D. Landadited by D. Ter Haa(Per-
[4] E.V. Shuryak, Rev. Mod. Phy$5, 1 (1993. gamon, Oxford, 1966 see also A.L. Fetter and J.D. Walecka,
[5] S. Mallik, Phys. Lett. B416, 373(1998. Quantum Theory of Many-Particle Syster(idcGraw-Hill,
[6] X. Jin, T.D. Cohen, R.J. Furnstahl, and D.K. Griegel, Phys. New York, 1971.

Rev. C47, 2882(1992. [13] S. Sarkar, B. Patra, V.J. Menon, and S. Mallik,
[7] H. Leutwyler and A.V. Smilga, Nucl. Phy&342 302(1990. hep-th/0010062.
[8] Y. Koike, Phys. Rev. D48, 2313(1993. [14] H.A. Weldon, Phys. Rev. [28, 2007(1983.

016002-9



S. MALLIK AND SOURAV SARKAR

[15] T. Hatsuda, Y. Koike, and S.H. Lee, Nucl. Phya394, 221
(1993.

[16] S. Mallik and K. Mukherjee, Phys. Rev. B8, 096011(1998;
61, 116007(2000.

[17] S. Mallik and S. Sarkatin preparation

[18] R.L. Kobes, G.W. Semenoff, and N. Weiss, Z. PhyR3:371
(1985.

PHYSICAL REVIEW D 65 016002

[19] H. Fritzsch and H. Leutwyler, Phys. Rev. I, 1624(1974).

[20] A.V. Smilga, Sov. J. Nucl. Phys5, 271 (1982.

[21] W. Hubschmid and S. Mallik, Nucl. Phy8207, 29 (1982.

[22] For an earlier summary of the coordinate method, see V.A.
Novikov, M.A. Shifman, A.T. Vainshtein, and V. Zakharov,
Fortschr. Phys32, 600 (1984).

016002-10



