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Spectral representation and QCD sum rules for the nucleon at finite temperature
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We examine the problem of constructing spectral representations for two-point correlation functions needed
to write down the QCD sum rules in a medium. We suggest constructing them from the Feynman diagrams for
the correlation functions. As an example we use this procedure to write the QCD sum rules for the nucleon
current at finite temperature.
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I. INTRODUCTION

It was realized quite early in their formulation that th
QCD sum rules in a medium@1,2# have several new aspec
not shared by the corresponding vacuum sum rules@3#. On
the operator side, there appear in general new operato
the short distance expansion of the correlation functions,
to the presence of the four-velocity vector of the mediu
@4,5#. Even for the old operators, the evaluation of their m
trix elements in a medium may need further untested
sumptions. As an example, the four-quark matrix elemen
a nuclear medium is evaluated by ground state satura
different from the vacuum saturation used for the vacu
matrix element@6#. Again on the spectral side of the su
rules, unlike the vacuum case, a communicating single
ticle ~with medium dependent mass and coupling! alone does
not saturate the spectral function in the low energy region
a medium relevant two-particle states are equally import
~Throughout this work we shall be interested only in ter
linear in the distribution function. For higher order term
contributions from multiparticle states need be included.!

The present work concerns the spectral side of the Q
sum rules. We take a closer look at the contributions of
two-particle intermediate state. If we draw all the one-lo
Feynman diagrams for the correlation function, we see t
in addition to the diagrams with the~single particle! pole
alone and the~two-particle! branch points alone, there ar
other ~one-particle reducible! diagrams, which appear as th
products of the pole and the branch points. They have
mainders after extracting contributions that modify the p
parameters. It is these remainders that are not always
cluded in the saturation scheme, even though they are
erally of the same order as those it retains.

We illustrate our point by discussing the nucleon QC
sum rules at finite temperatureT. This choice is dictated by
the simplicity of the nucleon current correlation function
finite T and the availability of results for comparison. F
T<m, the pion mass, and zero nucleon chemical poten
pions dominate the heat bath. The leading term in the ef
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tive chiral Lagrangian involving nucleon and pion fields d
scribes the interaction well in this case, allowing the calc
lation of shifts in the pole position and the residue@7#. The
operator side of the sum rules is also simpler at finiteT than,
say, in the nuclear medium: ToO(T2) only the Lorentz sca-
lar operators entering the vacuum sum rules can contrib
the contributions of the new, nonscalar operators being
least ofO(T3). Further, the thermal averages of the operat
can all be reduced to their vacuum expectation values, so
no further assumptions are required to evaluate them, o
than those needed in the vacuum case. What is more, t
sum rules have already been worked out@8,9# and it would
be interesting to see if the above-mentioned remainder te
bring in any new contribution.

For increased sensitivity, we work with the so-called su
tracted sum rules, i.e., the finiteT sum rules from which the
corresponding vacuum sum rules have been subtracted
displaying only the contributions ofO(T2). The spectral rep-
resentations for the sum rules are worked out for phys
masses and couplings. Only in the evaluation of the resul
integrals do we take the chiral limit. For completeness
have derived in an Appendix the Wilson coefficients for t
product of nucleon currents using a simple coordinate sp
method.

In Sec. II we describe the construction of the spect
representation for the correlation function. In Sec. III w
evaluate these contributions in the chiral limit. Section
displays the sum rules and their evaluation. Section V c
tains our concluding remarks. Appendixes A and B, resp
tively, give the absorptive part of the one-loop diagrams
finite T and the Wilson coefficients in the short distance e
pansion of two nucleon currents, along with the thermal
erages of the relevant operators.

II. CONSTRUCTION OF SPECTRAL REPRESENTATION

Consider the two-point correlation function

P~p!5 i E d4x eipx Tr@rTh~x!h̄~0!# ~2.1!

of the nucleon currenth(x)D,i , composed of three quar
fields, having the quantum numbers of the nucleon, the in
©2001 The American Physical Society02-1
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FIG. 1. Nucleon pole and self-energy inse
tion.
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ces D,i referring to spin and isospin@10,11#. Here r
5e2bH/Tr e2bH is the thermal density matrix with th
HamiltonianH of QCD. For the spectral representation w
do not need to spell out the quark structure ofh(x).

A formal spectral representation for the two-point fun
tion in E[p0 at fixed pW may be obtained immediatel
@12,13#. Evaluating the trace over a complete set of eig
states of four-momentum and then again inserting the s
states between the two currents to extract thex dependence
one arrives at

P~E,pW !5 i Im P11~E,pW !

1
P

pE2`

` dE8 coth~bE8/2!Im P11~E8,pW !

E82E
,

~2.2!

where the resulting double sum over states within the in
gral may be converted back to the Tr~ace! to get

Im P11~E,pW !5
1

2E d4x eipx Tr$r@h~x!,h̄~0!#%. ~2.3!

Here the index 11 in ImP reminds us that we are working i
the real time formulation of the finite temperature fie
theory, where all two-point functions assume the form o
2^ 2 matrix. Thus the expression~2.1! is actually the
11-component of the corresponding matrix. However, no
formation is lost by considering the 11-component only,
for p2(5E22pW 2) spacelike, where one writes the QCD su
rules, there are no other independent components. We
note that the imaginary part of the 11-component may
written as tanh(bE/2) times a function, the latter coincidin
with the imaginary part calculated in the imaginary time fo
mulation @14#. It is thus convenient to define

Im P~E,pW !5p21 coth~bE/2!Im P11~E,pW !. ~2.4!

We shall write the sum rules forpW 50W and in the rest frame
of the heat bath. Then we can decompose the two-point fu
tion as

P~E,pW 50W !5P1~E2!1g0EP2~E2!, ~2.5!

where the scalar functions have, in the notation of Eq.~2.4!,
the spectral representations
01600
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P i~E2!5E dE82 Im P i~E82!

E822E2 , i 51,2, ~2.6!

the integrals receiving contributions from poles and bran
cuts.

The spectral function is generally calculated on the ba
of Eq. ~2.3!, with the risk of omitting some contributions
Here we suggest a more definitive approach, in which
identify the set of relevant Feynman diagrams and calcu
the spectral function directly from them. In their work on th
propagation of a nucleon through a heat bath, Leutwyler
Smilga@7# considered the set of one-loop Feynman diagra
for the correlation function, correcting the tree amplitud
shown in Figs. 1–4. From these diagrams they calculated
amplitude in the vicinity of the nucleon pole to obtain th
shifts in the nucleon mass and the residue toO(T2). The
same set of diagrams also suffice to saturate the spe
functions to the same order inT in the low energy region.
@The diagram with the low mass isobarD(1238) in the in-
termediate state is shown in Ref.@8# to contribute toO(T4)
only.# Once the spectral representations of these diagrams
constructed, one can, of course, immediately read off
position and residue of the nucleon pole.

It is simple to find the spectral representations given
these diagrams, except for a complication with diagrams
Fig. 1~b! and Figs. 2~a! and 2~b!. The latter diagrams have
the structure of theproductof a ~simple or double! pole and
branch cuts, due toN andpN intermediate states. We have
write these contributions as asumof the pole and the branch
cuts. In the rest of this section we perform this separatio

Let us begin with the diagrams of Fig. 1. Omitting thehN̄

and h̄N coupling constants~to be reinstated in the next sec
tion!, their sum is

2
1

g0E2m
2

1

g0E2m
S~E!

1

g0E2m
2•••, ~2.7!

where the ellipsis indicates the inclusion of the series of o
particle reducible self-energy diagrams. The self-energy m
trix itself may be decomposed as

S~E!5A1~E2!1g0EA2~E2!. ~2.8!

Given the absorptive parts, to which we turn in the ne
section, the scalar functionsAi(E

2) have spectral represen
tations like those forP i in Eq. ~2.6!. The second term in
expression~2.7! is a product of a double pole and cuts co
FIG. 2. Vertex correction frompN intermedi-
ate state.
2-2
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SPECTRAL REPRESENTATION AND QCD SUM RULES . . . PHYSICAL REVIEW D 65 016002
tained in S. To write it as a sum of the pole and the c
contributions, we writeS(E) as

S~E!5A3~E2!1~g0E2m!A2~E2!,

A3~E2!5A1~E2!1mA2~E2!, ~2.9!

and expand the scalar functions aroundE25m2 to the re-
quired order to get

S~E!5a1~E22m2!b1~g0E2m!c1R~E!, ~2.10!

where, for short,

a5A3~m2!, b5A38~m2!, c5A2~m2!, ~2.11!

the prime denoting differentiation with respect toE2. The
spectral representation for the remainderR may be obtained
from those ofAi(E

2) by equating the two expressions~2.9!
and ~2.10! for S. We get

R~E!5~E22m2!2Ā3~E2!1~g0E2m!~E22m2!Ā2~E2!,
~2.12!

where

Ā3~E2!5E dE82 Im A3~E82!

~E822m2!2~E822E2!
, ~2.13!

Ā2~E2!5E dE82 Im A2~E82!

~E822m2!~E822E2!
.

~2.14!

The integrals here and below run over the two branch c
the short cut 0<E2<(m2m)2 and the unitarity cutE2

>(m1m)2 ~see Fig. 5 of Appendix A!.
Inserting Eq.~2.10! in Eq. ~2.7! and summing the serie

after isolating the contribution fromR, we get the desired
spectral representation for the diagrams of Fig. 1 as

2
112mb1c

g0E2~m1a!
2~E22m2!Ā3~E2!2~g0E1m!

3$2mĀ3~E2!1Ā2~E2!%. ~2.15!

Next consider the diagrams of Fig. 2, each of which i
product of a simple pole and cut contributions. They are
the form

FIG. 3. pN intermediate state.
01600
s,

f

2
1

g0E2m
L~E!, ~2.16!

where L(E) is the vertex with apN intermediate state
Again we decomposeL(E) as

L~E!5B1~E2!1g0EB2~E2!

5B3~E2!1~g0E2m!B2~E2!,

B3~E2!5B1~E2!1mB2~E2!, ~2.17!

and expand the scalar functionB3(E2) aroundE25m2 to get

L~E!5d1S~E!, ~2.18!

whered5B3(m2) and the remainderS is

S~E!5~g0E2m!$B2~E2!1~g0E1m!B̄3~E2!%
~2.19!

where

B̄3~E2!5E dE82 Im B3~E82!

~E822m2!~E822E2!
. ~2.20!

The expression~2.16! now separates into the pole and the
contributions:

2
d

g0E2m
2B2~E2!2~g0E1m!B̄3~E2!. ~2.21!

Clearly, to find the nucleon pole position and the residue
terms withAi(E

2) andBi(E
2) in Eqs.~2.15!, ~2.21! are not

necessary. But to write the QCD sum rules, which require
correlation function for all~large, spacelike! values ofE2,
the entire spectral representation is needed.

III. EVALUATION OF SPECTRAL REPRESENTATION

Having separated explicitly the contributions of t
N-pole and thepN cut arising from diagrams of Figs. 1 an
2, we proceed to calculate the spectral functions of all
diagrams. We need to know the interaction vertices pre
in the diagrams. ThepN interaction Lagrangian is given, t
leading order in chiral perturbation theory, by the famil
term

LpN5
gA

2Fp
c̄gmtac]mfa,

where gA51.26, the axial-vector coupling constant of t
nucleon, andFp593 MeV, the pion decay constant.

The coupling ofh(x) with the nucleon is defined as
FIG. 4. Constant vertex correction.
2-3
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S. MALLIK AND SOURAV SARKAR PHYSICAL REVIEW D 65 016002
^0uh i~x!uNj~p!&5d i j lu~p!e2 ipx. ~3.1!

Its couplings with a nucleon and any number of pions int
duce no new constants. They may all be reduced to the
pling with the nucleon alone by using PCAC~partial conser-
vation of axial-vector current! and current algebra@7#. We
conveniently represent these couplings by writingh(x) in
terms of the relevant physical fields:

h~x!5lc~x!1
il

2Fp
tW•fW g5c~x!2

l

8Fp
2 fW •fW c~x!.

~3.2!

We now begin with the evaluation of the self-energy
tegralS(p). It is of the form of Eq.~A1! of Appendix A with
f (p,k) given by f (p,k)5c1k”g5(p”2k”1m)k”g5 , c15

2(3/4)(gA /Fp)2. Note that any term;gW •kW in f will be zero
after integration over the angle ofkW . Then for pW 50W and in
the chiral limit, it simplifies tof 52c1k0

2Eg0. Referring to
Eqs.~2.8!, ~A9! we get

Im A150, ImA25
c1

4p2E
n1~ uv̄1u!uv̄1u3, v̄15

E22m2

2E

on both the branch cuts 0,E2,m2 andE2.m2 in the chiral
limit. The constant 2mb is given by

2mb52m2E dE2 Im A2~E2!

~E22m2!2 52
gA

2

16

T2

Fp
2 . ~3.3!

The other two constantsa andc are each ofO(T3).
The integrals in the remainderR may be evaluated in the

same way. ConsiderĀ3(E2) given by Eq.~2.13!. Anticipat-
ing the QCD sum rules, we actually need the Borel transfo
of the spectral representation at large spacelike values ofE2.
It is given by

2mĀ3~M2!uBorel5
2m2

M2 E dE2 e2E2/M2
Im A2~E2!

~E22m2!2 ,

52
gA

2

16M2 e2m2/M2 T2

Fp
2 , ~3.4!

whereM is the Borel mass. The Borel transformed integr
for (E22m2)Ā3(E2) and Ā2(E2) are each ofO(T3).

The vertexL(E) is again given by Eq.~A1! with

f a~p,k!5c2k”g5~p”2k”1m!g5 ,

f b~p,k!5c2g5~p”2k”1m!k”g5 ,

c252~3/4!gA~l/Fp!2,

for diagrams~a! and ~b! of Fig. 2, respectively. WithpW 50W
and the chiral limit, the twof ’s coincide and we have for th
sum f (p,k)52c2k0(E2mg0). Comparing with Eq.~2.17!
we get
01600
-
u-

s

Im B1,2~E2!5
c2

4p2 n1~ uv̄1u!uv̄1uv̄1S 1,2
m

E2D . ~3.5!

It can now be seen that bothd and the Borel transforms o
B2(E2) andB̄3(E2) are ofO(T4). @The leading pieces from
each of the two cuts are ofO(T3), but they mutually cance
each other.# Thus the diagrams of Fig. 2 contribute neither
the pole nor to the cut toO(T2).

The usual contribution of thepN intermediate state is
given by the diagram of Fig. 3, for whichf (p,k)5c3g5(p”

2k”1m)g5 , c352(3/4)(l/Fp)2. For pW 50W , the leading
piece is given byf 5c3(m2g0E). Then the Borel trans-
formed amplitude is

l2

16

T2

Fp
2

e2m2/M2

M2
~2m1g0E!. ~3.6!

Finally, the diagrams of Fig. 4 give a constant vertex corr
tion to the nucleon pole,

l2

16

T2

Fp
2

1

E22m2 ~m1g0E!. ~3.7!

We are now in a position to write the complete spect
representation for the two-point function toO(T2). Collect-
ing results from this and earlier sections, the modifi
nucleon pole term is given by

2
~lT!2

E22m2 ~m1g0E!, ~3.8!

with

lT5lS 12
gA

211

32

T2

Fp
2 D , ~3.9!

while the Borel transform of the spectral representation d
to pN branch cuts is

l2

16
$m~gA

221!1~gA
211!g0E%

T2

Fp
2

e2m2/M2

M2
. ~3.10!

The pole term immediately gives the results of Ref.@7#: the
effective nucleon mass does not shift toO(T2), while the
shift in the residue is given by Eq.~3.9!. The terms propor-
tional to gA

2 in the branch cut contribution would have bee
absent had the remainderR not been taken into account. Th
other remainder termS does not contribute toO(T2).

IV. SUM RULES

The other element needed in writing down the QCD s
rules is the short distance expansion of the product
nucleon currents. The quark content of the nucleon curr
most suitable for the nucleon sum rules, is given for t
proton ~i.e., i 51, to be omitted henceforth! by @11#

hD~x!5eabc@uaT~x!Cgmub~x!#@g5gmdc~x!#D , ~4.1!
2-4
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SPECTRAL REPRESENTATION AND QCD SUM RULES . . . PHYSICAL REVIEW D 65 016002
whereC is the charge conjugation matrix. Herea,b,c are the
color indices andD is a Dirac index.

As already stated, we shall find the finiteT sum rules,
from which the vacuum parts are subtracted out, ther
eliminating the contribution of the unit operator. Since t
leading thermal contribution of the gluon operators is
O(T4) and we are working toO(T2), the contributing opera-
tors are onlyūu, ūsmntauGmna, and ūG1uūG2u up to di-
mension six. Of these the dimension five operator has z
coefficient in the operator product expansion of the nucle
currents@10#. Also, the thermal expectation value of the fou
quark operator turns out to beT independent@8#. Thus it is
only the operatorūu that brings in anyT dependence on th
operator side of the sum rules. We derive all these res
systematically in Appendix B.

Usually, in writing sum rules in a medium, one takes t
parameters of the pole term as unknown, to be determine
the sum rules. Here these arelT and mT, the shifted pole
position. Then the sum rules are obtained by equating
Borel transforms of the spectral representation and the
erator product expansion. The ‘‘subtracted’’ sum rules re

~lT!2mTe2(mT)2/M2 1

M21
l2m

16M2 ~gA
221!

T2

Fp
2 e2m2/M2

5S M

2p D 2

^0uūuu0&K
T2

8Fp
2 ,

~lT!2e2(mT)2/M2 1

M21
l2

16M2 ~gA
211!

T2

Fp
2 e2m2/M2

50,

~4.2!

where the bar over the nucleon term denotes subtractio
its vacuum value. The factorK, given by

K512S W2

M2 11De2W2/M2
,

deviates from unity due to incorporation of the continuu
contribution on the spectral side: the imaginary part of
leading operator contribution is assumed to saturate the s
tral function from a thresholdW onwards@10#.

Let us evaluate the sum rules formT andlT. Write

mT5mS 11a
T2

Fp
2 D , lT5lS 11b

T2

Fp
2 D ,

wherea andb satisfy

b2a
m2

M2 1
a

2
52

1

32
~gA

221!

1
1

16m

1

l2 S M2

2p D 2

^0uūuu0&Kem2/M2
,

~4.3!

b2a
m2

M252
1

32
~gA

211!. ~4.4!
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The value ofl may be obtained from the vacuum sum rule
Instead of using the numerical estimate@10#, we may use one
of the sum rules directly, which reads

l252
1

m S M2

2p D 2

^0uūuu0&Kem2/M2
. ~4.5!

Then Eq.~4.3! becomes independent of the Borel massM
and one immediately gets

a50, b52
1

32
~gA

211!, ~4.6!

reproducing the result of Ref.@7#.
It should be noticed that the prediction~4.6! is not as

clean as it appears. Equation~4.3! has M dependence, al-
though mild, within its allowed range of variation. The use
the vacuum sum rule forl2 compensates this variation wit
its own to yield the above results.

V. CONCLUDING REMARKS

In this work we propose a method of constructing spec
representations for correlation functions in a medium. It
based on its Feynman diagrams which, to first order in
distribution function, consist of all one-loop diagrams. Th
construction differs from the usual saturation scheme of t
ing only the single particle~with medium dependent mas
and coupling! and two-particle intermediate states by certa
‘‘remainder’’ terms contributed by the one-particle reducib
diagrams.

We then use this spectral representation to write down
QCD sum rules for nucleons at finite temperature. They
shown to reproduce the temperature dependence of
nucleon mass and its coupling to the nucleon current,
tained earlier@7#, justifying simultaneously the spectral con
struction and the sum rules.

These sum rules were obtained earlier by Koike@8#,
whose calculation of the spectral function was based es
tially on Eq. ~2.3!. But he took into account the coupling o
h to N, which then interacts also withpN, as well as topN
directly. In effect he included all the ‘‘remainder’’ terms aris
ing from the Feynman diagrams. As a result his sum ru
remain unaltered by our method of construction of the sp
tral representation. But there are other sum rules, like
ones for the vector mesons@15,16#, which do have nonzero
contributions from the ‘‘remainder’’ terms, not taken int
account so far@17#.

It will be observed that the Feynman diagram approach
constructing the spectral function automatically yields a
the medium dependence of the mass and coupling of
single particle communicating with the current. It would th
appear that the only use of the sum rules in the medium i
rederive these results. However, the situation may not be
and one may well be able to extract new information on
matrix elements of operators. For example, consider
nucleon sum rules in a nuclear medium. In this case th
arises the nucleon matrix element of the four-quark opera
mentioned already in the Introduction. Usually one relate
2-5
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S. MALLIK AND SOURAV SARKAR PHYSICAL REVIEW D 65 016002
to the s term by the approximation of ground state satu
tion. The sum rules, on the other hand, may give the valu
this matrix element without such an approximation.
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APPENDIX A

Here we derive a general formula for the discontinuity
one-loop Feynman graphs encountered in this work. Eac
these graphs consists of a nucleon and a pion propagato
with different vertices. Thus they are of the form

F11~p!5 i E d4k

~2p!4 f ~p,k!D1~k!D2~p2k! ~A1!

where D1,2 are the 11-components of the correspond
propagator matrices@18#; D1(k) is for the pion,

D1~k!5
i

k22m21 i e
12pn1~k0!d~k22m2!, ~A2!

andD2(p) is for the nucleon, after extracting the spinor fa
tor (p”1m),

D2~p!5
i

p22m21 i e
22pn2~p0!d~p22m2!. ~A3!

Here n1 and n2 are the bosonic and fermionic distributio
functions: n1(k0)5(ebuk0u21)21, n2(p0)5(ebup0u11)21.
The vertices and the spinor part of the nucleon propag
are all contained inf (p,k).

Since we work at zero chemical potential and atT,m,
the nucleon distribution functionn2 is negligible compared
to n1 for the pion. However, we wish to retain bothn1 and
n2 to show the cancellation of their product in the final e
pression for the imaginary part.

We find the imaginary part ofF11(p) by simply integrat-
ing out the time component ofkm . For this purpose, we write
the finiteT propagators as

D1~k!5~11n1!D1~k!1n1D1* ~k!, ~A4!
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or

D2~p!5~12n2!D2~p!2n2D2* ~p!, ~A5!

where

D1~k!5
i

k22m21 i e
, D2~p!5

i

p22m21 i e
.

The k0 integration over the integrandsf (p,k)D1(k)D2(p
2k) and f (p,k)D1(k)D2* (p2k) is easily done by the resi
due theorem, getting simple poles inp0 on the real axis
defined by the appropriate6 i e. Discarding the principal
parts, we get the imaginary part as

Im F11~p!5E d3k

~2p!3

1

4v1v2
@$~11n1!~12n2!2n1n2%

3$ f ~v1!d~E2v12v2!1 f ~2v1!

3d~E1v11v2!%1$n1~12n2!

2~11n1!n2%$ f ~2v1!d~E1v12v2!

1 f ~v1!d~E2v11v2!%#. ~A6!

Here

v15AkW21m2, v25A~pW 2kW !21m2,

n1[n1(v1), andn2[n2(v2). For brevity, the argument off
shows only the value of the integrated variablek0.

Observe the ‘‘wrong’’ signs in the factors involving th
distribution functions, because of which the productn1n2
does not cancel out. It is, however, possible to extract a
tor of tanh(bE/2) from each of the terms, by virtue of th
associated delta functions, which ‘‘corrects’’ the signs, lea
ing to their cancellation. Using a notation similar to Eq.~2.4!
we get

Im F~p!5E d3k

~2p!3

1

4v1v2
@~11n12n2!$ f ~v1!d~E

2v12v2!2 f ~2v1!d~E1v11v2!%1~n11n2!

3$ f ~2v1!d~E1v12v2!2 f ~v1!

3d~E2v11v2!%#. ~A7!

The positions of the branch cuts, where the imaginary p
are nonvanishing, are determined by the arguments of thd
functions.
FIG. 5. The cut structure in theE plane.
2-6
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We next consider the limitpW 50W , in which we write the
sum rules. The simplified cut structure in this limit is show
in Fig. 5. It is seen that the first and the third terms in E
~A7! give rise to cuts forE.0, and the second and the four
terms forE,0. The cuts in these two regions are related
symmetry underE→2E. Restricting consideration to cut
for E.0 and settingn250 we get

Im F~E!uE.05E d3k

~2p!3

1

4v1v2
$~11n1! f ~v1!

3d~E2v12v2!1n1f ~2v1!

3d~E1v12v2!%. ~A8!

To evaluate the integral we have, forE.0,

1

2v2
d~E7v12v2!5d$~E7v1!22v2

2%5
1

2E
d~v17v̄1!

where v̄15(E22m21m2)/2E. Note that v̄1 is positive
~negative! on the unitary~short! cut, but the value ofv1 as
given by the delta functions is always positive. We thus g

Im F~E!uE.05
1

8p2E
g~ uv̄1u!Av̄1

22m2f ~v̄1!, ~A9!

where g511n1 for E.m1m and g5n1 for 0,E,m
2m. In writing the sum rules, we subtract the vacuum co
tribution ~corresponding to the term ‘‘1’’ ing). Then
Im F(E) has the same expression on both the cuts.

APPENDIX B

Here we derive systematically the known results of ope
tor product expansion of nucleon currents@10#, using the
coordinate space method@19–22#. We also collect the
vacuum and the thermal matrix elements of the contribut
operators@8,15#.

The method consists in treating the gauge field as cla
cal and Wick expanding the operator product. The basic
ement is then the contraction of two, say,u-quark fields

where the propagatorS(x) satisfies

2 igm@]m2 iAm~x!#S~x!5d4~x!, ~B1!

in the presence of the gauge fieldsAm(x)5gAm
n (x)ln/2, the

ln’s being the Gell-Mann matrices for SU(3)c . In the Fock-
Schwinger gauge, defined byxmAm(x)50, the gauge poten
tial can be expanded in a series in the field strengthGmn and
their covariant derivatives,

Am~x!5
1

2
xaGam~x!1•••.

The crucial step in this method is to solve Eq.~B1! in a
series at short distance@21#,
01600
.
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S~x!5S0~x!1S2~x!1•••,

whereS0(x) is the free propagator for massless quarks,

S0~x!AA8
aa8 52

1

2p2
•

~x” !AA8

~x22 i e!2
daa8,

and S2(x) is the first nonleading piece at short distanc
which is proportional to the gauge field,

S2~x!AA8
aa8 5~Gab!AA8Gab

aa8 , Gab52
i

16p2
•

~gax”gb!AA8

~x22 i e!
.

These two terms suffice for our purpose. Note thatS0(x) is
diagonal in color.

With hD(x) given by Eq.~4.1!, we have

h̄D8~x!5@ ūa~x!gnC21ū~x!bT#@ d̄c~x!g5gn#D8e
abc.

We are interested in the two-point correlation function

T hD~x!h̄D8~0!5eabcea8b8c8~Cgm!AB

3~gnC21!A8B8~g5gm!DC~g5gn!C8D8

3W$A%
$a% ~x,0! ~B2!

where

W$A%
$a% ~x,0![Tu~x!A

au~x!B
bd~x!C

c ū~0!A8
a8 ū~0!B8

b8 d̄~0!C8
c8

~B3!

is the operator product to be expanded into local opera
with ~singular! c-number coefficients asxm→0. Its Wick ex-
pansion consists of three types of term,

W$A%
$a% 5I $A%

$a% 1II $A%
$a% 1III $A%

$a% ,

corresponding, respectively, to one, two, and three cont
tions of the quark fields.

The single contraction termsI $A%
$a% may be obtained by con

tracting twod’s or two u’s. In the latter case, there arise fou
terms, all of which are equal, as may be verified by int
changing the color indices and the Dirac indices in the ter
and noting thatCgm and gnC21 are symmetric matrices
Thus

I $A%
$a% ~x!52 iS~x!CC8

cc8 u~x!A
au~x!B

bū~0!A8
a8 ū~0!B8

b8

24iS~x!AA8
aa8 u~x!B

bd~x!C
c ū~0!B8

b8 d̄~0!C8
c8 .

~B4!

Similarly, terms with two and three contractions give rise

II $A%
$a% ~x!522S~x!AA8

aa8 S~x!BB8
bb8 d̄~0!C8

c8 d~x!C
c

24S~x!AA8
aa8 S~x!CC8

cc8 ū~0!B8
b8u~x!B

b ~B5!

and
2-7
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III $A%
$a% ~x!522iS~x!AA8

aa8 S~x!BB8
bb8 S~x!CC8

cc8 . ~B6!

Since we do not need pure gluon operators, we do not w
with Eq. ~B6!. The quark fields in Eqs.~B4! and ~B5! may
now be expanded as

u~x!5u~0!1xmDmu~0!1
xmxn

2
DmDnu~0!1•••,

~B7!

to get the series of local operators. Our task is now to pro
out the Lorentz scalar operatorsūu, O5[ūsmnGmnu, and
ūG1uūG2u. We consider the vacuum matrix element for th
purpose.

Let us begin withI $A%
$a% (x). As we look for operators of

dimension no higher than six, we replaceS(x), u(x), and
d(x) by the first terms in their expansions:

I $A%
$a% ~x!52 iS0~x!CC8

cc8 uA
a uB

b ūA8
a8 ūB8

b8

24iS0~x!AA8
aa8 uB

b dC
c ūB8

b8 d̄C8
c8 ~B8!

whereuA
a[uA

a(0), etc. While projecting out the scalar part o
the four-quark operator, one simultaneously uses the appr
mation of vacuum saturation to relate it to the two-qua
operator. For the first term we have (N512) @3#

^0uuA
auB

būA8
a8 ūB8

b8 u0&5~2daa8dbb8dAA8dBB8

1dab8dba8dAB8dBA8!•
^0uūuu0&2

N2
,

~B9!

which gives rise to traces overg matrices and sums ove
eabc’s. It is simple to evaluate the traces after removing theC
matrix. We get

^0uThD~x!h̄D8~0!u0& I , 1st term5
i

3p2
^0uūuu0&2

•

x”DD8

~x2!2
.

~B10!

A similar treatment for the second term results in a trace o
an odd number ofg matrices, giving

^0uT hD~x!h̄D8~0!u0& I , 2nd term50. ~B11!

Next consider the twice contracted pieceII $A%
$a% . The product

of the twoS(x)’s may be expanded up to dimension two
the gauge fields to get

eabcea8b8c8S~x!AA8
aa8 S~x!BB8

bb8 52dcc8S0 AA8S0 BB8

2S0 AA8GBB8
ab Gab

c8c

2S0 BB8GAA8
ab Gab

c8c.

~B12!
01600
rk

ct
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In association with the matricesCgm andgnC21 in the first
term of II $A%

$a% , the last two terms above are equal and we
its contribution to the operator product as

T hD~x!h̄D8~0!u II , 1st term

524~g5gm!DC~g5gn!C8D8

3F tr~CgmS0gnC21S0
T!S d̄C8dC1xld̄C8DldC

1
xlxs

2
d̄C8DlDsdCD

2tr~CgmS0gnC21Gab T!d̄C8GabdCG . ~B13!

Note that the color indices in the operators are now summ
To project out the operatord̄d from Eq. ~B13!, we use

^0ud̄C8dCu0&5
dCC8

4
^0ud̄du0&, ~B14!

to get

^0uThD~x!h̄D8~0!u0& II , 1st term, ūu5
2

p4x6
^0ud̄du0&dDD8 .

~B15!

We project out the other operatorO5 by

^0ud̄ADmDndBu0&5
1

32H dBAgmn2
i

3
~smn!BAJ ^0uO5u0&,

~B16!

from which we also get

^d̄AGmndB&5
1

48
~smn!BA^0uO5u0&. ~B17!

It turns out that the two terms in Eq.~B13! contributing to
O5 mutually cancel each other,

^0uT hD~x!h̄D8~0!u0& II , 1st term, O5
50. ~B18!

We have yet to find the contribution of the second term
Eq. ~B5!. On using Eq.~B12!, it can be seen to consist o
terms containing theBB8 element of a matrix with an odd
number of g matrices times operators likeūB8uB ,
ūB8DlDsuB , and ūB8GabuB . Also, Eqs.~B14!, ~B16!, and
~B17! show that their projection on to the scalar operat
produces aBB8 element of an even number ofg matrices, so
we finally get a trace over an odd number ofg matrices. We
thus get@10#

^0uThD~x!h̄D8~0!u0& II , 2nd term, ūu, O5
50. ~B19!

Thus, as far as the operatorsūu, O5, and the four-quark
operator are concerned, we have for the vacuum correla
function
2-8
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i E d4x eipx^0uThD~x!h̄D8~0!u0&

5S 1

2p D 2

p2 ln~2p2!^0ud̄du0&dDD82
2

3
^0ud̄du0&2

p” DD8

p2
.

~B20!

Since the operators concerned are Lorentz scalars, one
think of getting the result for the thermal correlation functi
by simply replacing the vacuum expectation values in
above equation by their ensemble averages. However,
would not be true for the four-quark operator, for, in writin
Eq. ~B9! we have already used the isospin~and spin! struc-
ture of the vacuum matrix element, which differs from th
for the ensemble average. A new calculation is thus ne
sary for the latter.

To first order in the pion distribution function, the therm
average of an operatorO is given by@15#

Tr~rO!5^0uOu0&1 (
i 51,2,3

E d3k n1~v1!

~2p!3 2v1

3^p i~k!uOup i~k!&. ~B21!

On using the soft pion methods, the pion matrix element m
be reduced to the vacuum expectation value of a dou
commutator,

Tr~rO!5^0uOu0&2
1

Fp
2 E d3k n1~v1!

~2p!3 2v1

3 (
i 51,2,3

^0u†Q5
i ,@Q5

i ,O#‡u0& ~B22!

where Q5
i is the axial-vector charge,Q5

i 5*d3xA0
i (x). An

elementary way to evaluate these commutators is to writeQ5
i

in terms of quark fields, express the commutators in term
anticommutators of quark fields, and replace the latter
their canonical values. They may then be vacuum satur
as before.
s.
-

ys
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We record first the well-known contribution ofūu to the
thermal nucleon correlation function,

P~p!→
ūu S 1

2p D 2S 12
T2

8Fp
2 D ^0uūuu0&p2 ln~2p2!.

~B23!

For the four-quark operators in Eq.~B8!, we have

(
i 51,2,3

^0u†Q5
i ,@Q5

i ,uA
auB

bu†
A8
a8 u†

B8
b8 #‡u0&

5
^0uūuu0&2

N2
•@22$3gAA8

0 gBB8
0

1~g0g5!AA8~g0g5!BB8%d
aa8dbb82~A8,a8↔B8,b8!#

~B24!

and

(
i 51,2,3

^0u†Q5
i ,@Q5

i ,uB
bdC

c u†
B8
b8 d†

C8
c8 #‡u0&

5
^0uūuu0&2

N2
•@22$3gBB8

0 gCC8
0

2~g0g5!BB8~g0g5!CC8%d
bb8dcc8

14~g0g5!BC8~g0g5!CB8d
bc8dcb8#. ~B25!

When these evaluations are inserted in the two-point fu
tion, it turns out that the two operators bring contributio
equal in magnitude but opposite in sign. As a result, ther
no thermal contribution toO(T2) from the four-quark opera-
tors,

P~p! →
4-quark

2
2

3 S 110•
T2

Fp
2 D ^0uūuu0&2

p”

p2
. ~B26!
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