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4D constructions of supersymmetric extra dimensions and gaugino mediation
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We present 4D gauge theories which at low energies coincide with higher dimensional supersymmetric
(SUSY) gauge theories on a transverse lattice. We show that in the simplest case of pure 5D SUSY Yang-Mills
theory there is an enhancement of SUSY in the continuum limit without fine tuning. This result no longer holds
in the presence of matter fields, in which case fine tuning is necessary to ensure higher dimensional Lorentz
invariance and supersymmetry. We use this construction to generate 4D models which mimic gaugino media-
tion of SUSY breaking. The way supersymmetry breaking is mediated in these models to the MSSM is by
assuming that the physical gauginos are a mixture of a number of gauge eigenstate gauginos: one of these
couples to the SUSY breaking sector, while another couples to the MSSM matter fields. The lattice can be as
coarse as just two gauge groups while still obtaining the characteristic gaugino-mediated soft breaking terms.
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[. INTRODUCTION might think that a fine tuning in the fermion sector is needed
in order to construct a Lorentz invariant higher dimensional
Models with extra dimensions provide several interestingheory which includes fermions. In addition, 5D SUSY
mechanisms for supersymmet@USY) breaking. These would then require at least 8 supercharges, which corre-
mechanisms seem to make essential use of the presencespfonds to\/=2 supersymmetry in 4D. We will demonstrate
extra dimensions, which are not obviously realizable in athat 4D A’'=1 supersymmetry plus gauge invarian@eéth
simple four-dimensional setup. Recently, Arkani-Hamed, Coproperly chosen matter contgng enough to ensure the ex-
hen, and Georgil] and also Hill, Pokorski, and Wan@] istence of the additional supersymmetries in the continuum
argued that it might be possible to translate many highetimit. This phenomenon of enhanced supersymmetry genera-
dimensional effects into a purely 4D construction by using dion is related to the behavior of these models at low energies
set of 4D theories which in the IR reproduce the dynamics ofn & purely 4D context, in whict=1 SUSY is enhanced to
the extra dimensional theotyThese theories are also useful N'=2 on the moduli space, without the fine tuning of param-
tools to regulate the higher dimensional theories, and evefters. However, in the presence of additional hypermultiplets
give a UV completion of thenil—3] (see alsd4]). the required superpotential does have to be tuned in the 4D
The aim of this paper is to give a fully 4D implementation theories. The analogous effect that we obtain here is that
of a higher dimensional mechanism for supersymmetrymaintaining 5D Lorentz invariance will require the tuning of
breaking (gaugino mediatiop using a 4DAN=1 SUSY @& superpotential coupling in the 4D lattice models. We
model which at low energies is equivalent to a latticizedPresent the explicit construction of these models which will
version of these higher dimensional models. In order to do s@ive in the continuum limit the 5DV=1 theory, show how
we first show how to construct the higher dimensional superto achieve the required gauge symmetry breaking dynami-
symmetric theories from a 4D “mooselattice) approach. cally, and how to add flavors. We carefully check that the
Because the minimal spinor representation of the 5D Lorentfass spectrum for gauge fields, scalars, and fermions indeed

group is twice as large as that of the 4D Lorentz group, ondnatches the tower of Kaluza-Klei(KK) modes for a 5D
N=1 supersymmetric gauge theory, and that 5D Lorentz in-
variance and supersymmetry are indeed recovered in the con-

*Electronic address: csaki@lanl.gov tinuum limit. This is not a trivial fact, because in the usual
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A similar proposal can be found ifi5], where the AdS— In order to translate gaugino mediation of supersymmetry

conformal field theory(CFT) correspondence is used to construct abreaking into a 4D language we show how the corresponding
purely 4D model of anomaly mediation, and[8] where a higher S'/Z, orbifolds are constructed. Armed with this knowledge,
dimensional stabilization of the gauge hierarchy is “deconstructed.’'we present a simple 4D version of gaugino mediation, where
See alsd7]. the lattice can be as coarse as two gauge groups and still give
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the characteristic gaugino-mediated spectrum. One of theskhe low-energy behavior of this theory was analyzed in Ref.
gauge groups contains the standard model matter field§8]. Here we briefly summarize the relevant results from that
while another couples to the supersymmetry breaking sectoanalysis. The flat directiongnoduli spacg of the theory are
The physical gaugino is a linear combination of the gauginogiescribed by the independent gauge invariant operf@irs

for the various group factors and thus obtains a mass directhyhich are given by B;=detQ,, i=1,..., N; and T;

from the supersymmetry breaking sector, while the scalac(Q,.--Q,)', i=1,..., M —1. An expectation value of the
mass terms for the minimal supersymmetric standard modgjperatorB; will break SU(M); X SU(M);,; to an SU(M)
(MSSM) matter fields will be suppressed by an additionalg hgroup, leaving a theory with the same structure as the
loop factor, just like in ordinary gaugino mediation. An im'_original theory, but with one feweBU(M) factor in the

portant difference between the 4D and 5D approach is that i g ;
the 4D approach Planck-suppressed contact terms must guge group. Once all thg;'s have expectation values the

subleading, becaugeontrary to the 5D casdghey have no gauge group is broken to a sing&J(M). During this se-

further exponential suppression. The reason for this is th quentlal break!ng 3" thf f't?]lds from the f"t{tf 18.‘,5 will h
the notion of locality from gravity’s point of view is lost, if ecome massive dueé 1o the supersymmelric Higgs mecha-

(as we will imaging 4D gravity is minimally included into hism (some §Calars will be eaten by the heavy gauge bgsons
the theory. Thus from this point of view the spirit of these except the fields corresponding to the trac&of which are

models more closely resembles that of gauge mediatior{,he.n described by.the c?mposnﬁ TOdu“ fiélg Hdowever,
where the Planck-suppressed operators should also be ne i'-V'nE a;}n expectation value th the ast 3per£@r oes not o
gible. However, the resulting mass spectrum agrees with thal €@K the gauge group any further, and so one expects that

of gaugino mediation, and differs from the generic gaugeN€ field Qy remains massless, and forms an adjoint and
mediated spectrum. scalar of the unbrokeBU(M) gauge group. The invariants

The paper is organized as follows: in Sec. Il we give theCOrresponding to the remaining adjoint are given by the op-

construction of the supersymmetric lattice models and checRatorsT; above. Without further modification of the model,
that the perturbative mass spectrum agrees with that of th@t @ generic point in moduli space the theory will havie
N=1 5D theory. In Sec. Ill we show how to include flavors — 1 unbrokenU(1) gauge groups and no charged fields un-
into the construction, and present the orbifold models. Usin£er thoseU(1)’s. Thebehavior of the gauge couplings can

these results we present the 4D models for gaugino medi&® described by a Seiberg-Witten curve which has been ex-
tion in Sec. IV, and conclude in Sec. V. actly determined by considering various limits of the theory

[8]. This theory is itself an orbifold of aw=2 theory, and
[l. THE CONSTRUCTION OF SUPERSYMMETRIC the dynamics of these two theories are closely related via the
EXTRA DIMENSIONS orbifold correspondencgl0]. Similar constructions can be
) found using D3-branes distributed on a circle in type 1B
In Refs.[1-3], it has been argued that the low eNergy giring theory[11].
behavior of a purely 4D theory can be effectively described \ye will demonstrate that the field theory described above
by the low-lying KK modes of a 5D theory compactified on jg oqyivalent to a latticized version of a 5= 1 supersym-
a circle or anS'/Z, orbifold. Here we will first present the metric gauge theory. This 5IV=1 supersymmetric gauge
supersymmetric versions of these theories, so that later V\%eory has twice thé number of supercharges as\thel
can use these to construct the 4D analogs of a higher dimeggeqry in 4D, This is an interesting phenomenon in its own
sional mechanism for mediating supersymmetry breaking. yiant “as supersymmetries are dynamically generated at low
The theo_ry we will consider is an asympt%t|cally free energy. Although we do not study the case here, a similar
four-dimensional V=1 supersymmetricSU(M)™ gauge  phenomenon is expected to occur in one dimension lower,
theory with chiral multipletsQ; in bifundamental represen- i.e., generation of a 4D SUSY gauge theory from a 3D theory

tations as follows: with fewer supersymmetry charges.
SUM), SUM), SUM); -+ SUM)y
0, O a] 1 1 A. Dynamical generation of the symmetry breaking
0, 1 O O 1 The massless matter content of tR&(M) gauge theory

corresponding to the theof®.1) at low energies is that of an

_ N=2 4D theory, namely, in addition to the masslggs 1

On O 1 1 O vector multiplet there is also a chiral multiplet in the adjoint
(2.1) representation. But in addition the singl&sremain mass-

less. In order to remove these massless fi¢ldsl at the

same time provide the necessary diagonal vacuum expecta-

tion values(VEV's) of the Q;’s] Arkani-Hamed, Cohen, and

Georgi proposed the addition of a matching set of gauge

singlet chiral superfield§; and the superpotential

2We will use the following conventions for our indiceg;j,k
=1,...N denote the gauge grouplattice index”) and until Sec.
111 B, we will impose a cyclic boundary condition, i.g, j, k will be
defined modN; «,B8=1,...M are gauge indices in the fundamental 1
or antlfundame.ntall representation 8iU(M); and. a,b=1,.M? Wdyn:WE S(B;—vM), (2.2
—1 are gauge indices in the adjoint representatios 0fM). M i
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where . is a mass scale. The question that we want to anbe generated by some other physics at higher energies, either
swer first is whether this superpotential can be achieved dythrough nonperturbative effects or from integrating out
namically, perhaps also within a renormalizable theorylln  heavy particles.
a dynamical model for the nonsupersymmetric case has been We begin with anSU(M)2N gauge theory with the peri-
worked out. Here we show that for the caseSdf(2) gauge  odic structure of(2.1). We further assume that the gauge
groups one can achieve this as well through supersymmetrigoupling of every even group in the chain 8JU(N)’s is
nonperturbative dynamics within a renormalizable theorymych larger than the neighboring odd ongs=g.>d;_1
which is understood from the works of Seiberg and others:gl i.e., A,=Ay>A, .=A,. Therefore, concerning the
[12;. ForhtheStl#](N) v%rs;pn of this fmodel th;ahretwnlhs_tnl be thdynamics of anysU(M),; , the weaker gauge groups can be
a branch on the modull space of vacua that achieves garded as a weakly gauged global symmetry, leaving an
dynamical breaking of the gauge symmetry to the diagon : . .

. . U(M),; gauge theory wittM flavors in this sector of the
one. However, in order to ensure that we are on the righ ; . . . .

heory. With this particular matter content it was shown in

branch(and that the other moduli are massivenonrenor- . . ! .
malizable tree-level superpotential will have to be added, agz] that the theory confines in the IR with chiral symmetry

least for the example based on the simplest possible matt rreaking,~wit.h the confined degrees of freedom given by
content. This non-renormalizable superpotential should thei;, Bi, B; (i=1..N),

SUM)pi | SUM)pi—y SUM)y.1 U(l)g U(l)g
9, g o 1 1 0
Q O 1 g -1 0
M;=0;0; O 5 0 0
B=QY 1 1 M 0
B=0Y 1 1 -M 0 2.3

Analyzing the 't Hooft anomaly matching conditions one dynamics. The Q;’s in (2.1) should then be identified with
concludes that some of the global symmetries of the theornhe composite meson fieldt;, and the baryons need to be
have to be broken, which is the effect of a classical constrainifted from the spectrum by a superpotential term, which is
on the composite fields being modified by quantum dynamgenerically nonrenormalizable except for the chse 2 (see
ics. It was shown |rﬁ12] that the form of the quantum modi- be|0v\b_ Thus for the gener@ U(M)N case we do not com-

fied constraint is given by pletely succeed in generating the model from a renormaliz-
~ oM able dynamics as in the nonsupersymmetric case. For this
detM;—Bi5i=A5". (24 choice of matter content an extra layer of perturbative or

. . nonperturbative dynamics might be needed to get the non-
Thus there is a branch on the moduli space where the gIOb?lL.normaIizabIe superpotentials as well. Once this superpo-

SUM)5i—1XSU(M)5i 4 is broken to a diagondBU(M),  opia (2.5 is added, the guantum modified constraint will
which is when detM; has an expectation value. Turning on ensure that the remainirﬁ}N:lSU(M)Ziﬂ gauge groups are

the baryons3; and B, does not break the global symmetry broken down to the diagon&U(M). In fact, as mentioned
group. Hence, in order to lift the branch of moduli space withgpaye after confinement the meson matvit will just play
detM;=0 _(and also t(_) get rid of unwanted massless siNhe role of the bifundamentai; of (2.1) while detM; gives
glets one is forced to introduce two singletts andL; and  the invariantsB;, and so the full dynamically generated su-

add a tree level superpotential, perpotential in the remainingU(M)N theory is just
1 ~
Wiee= —m—2 (LiBi +Li5), (2.5 1 -~ 1 ~
® MM_zZ (LiBi+LiBi)+Wzi S(Bi—BB—AM),
2
where the scalg would have to be regarded as a cutoff scale (2.6)

of the theory(perhaps originating from some other strong

where S, are nonpropagating Lagrange multiplier chiral su-

3For several other theories with a quantum modified constraint seBerfields. Integrating out the fields;, 5;, andL; we are
[13]. For a connection between the existence of constraints amongXactly left with the superpotential of E(.2), except that
the gauge polynomial invariants derivable from a superpotential anthe symmetry breaking scale is now given byA,, and
the 't Hooft matching conditions sdé4]. because the field®;=M; themselves are composites one

015003-3



CSAKI, ERLICH, GROJEAN, AND KRIBS PHYSICAL REVIEW D65 015003

gets different powers of scales since the dimensions of thesmalysis is to show that one indeed recovers a higher dimen-
fields have not been rescaled yet. sional supersymmetric theory in the limit bf—o, and that

The case o5U(2) is special in that the tree level super- the number of supercharges is appropriately doubled. In or-
potential (2.6) is renormalizable. Hence, in that case theder to be able to analyze the massive spectrum of the model
theory described above can in fact be dynamically generatedand not just the extreme infrared like[i@]) we assume that
One might worry that because the representatiorSdf2) the scalev is larger than the dynamical scale of t8&(M)
are pseudoreal the global symmetry in the above analysis igauge group\ <w. This would indeed follow in the dynami-
enlarged fromSU(2)XSU(2) to SU(4) and the analysis cally generated examples considered above, because there
above would have to be modified. It is true that the globalv=A,>u>A. In this case the gauge groups are broken
symmetry group is enlarged, but the analysis remains unbefore they could become strongly interacting, and a conven-

changed if we identify det1— BB with the Pfaffian of the tional perturbative analysis is possible. Then the singlet field
combined meson field1’. To be more precise, we have the Corresponding td; can be identified at the lowest order in

following confining theory: the fluctuations withyN~1trQ;, and therefore the mass term
for the fields §; and tQ; from Eq. (2.2 is given by
SUQ2) | SU4) U(1)g v(v/m)M " ?>0.
Q O O 0 1. Gauge boson masses
M= | 1 | H 0 2.7) The analysis of the gauge boson mass matrix follows ex-

actly that of the nonsupersymmetric models analyzed in
Note that the composite meson field(j; = Q;Q; contains [1-3], which we repeat only for completeness. The mass
both the mesons and baryons in the previous language. Afatrix is obtained by expanding the kinetic term
shown in[12,15], instanton corrections will force a quantum Ei(DMQi)TD“Qi of the scalar components of the bifunda-
mechanical expectation value to the composite meson fielghentalsQ; , which gives a contribution to the Lagrangian of
M’ the form[1-3],

PIM' = M[; My M = A3, (2.8
LOQ%2Y, (AR — AR )2, (2.10
which will break the globaSU(4) to itsSp(4) subgroup. In :
our case, below the scale, where the first set 08U(2)’s .
confines, the global symmetry is raised to a gauge symmetr here we have used the normahzaﬁdnTa_Tb: 5" f(_)r the
in which case the effect of confinement is to break thedSnerators of th(SU_(M) gauge groupiithls_ normalization :
gaugedSU(2)x SU(2)C SU(4) to a singleSU(2). In the will ensure a canonlc_ally normalized k|n§t|c term for gaugi-
process three scalars are eaten and three refofihe six nos, seeTLa_lter _and ghls ;hlelj gauge coupling _Of th8U(M)
“mesons” M;;). Of the three massless scalars that remaind'OUPS- THIS gives the following mass term:
two are given a mass by the tree level superpote(Ri&) as 1 A2 A2 Abs (2.11)
described above, and the Pfaffian becomes massive by the 2 DT jab '
quantum modified constraint. The tree level superpotentiayhere the mass matrix is a direct product of the identity in
and the fact that only a subgroup of the global symmetries ighe gauge index space times a more involved matrix in the
gauged explicitly breaks th&U(4) “global” symmetry  |attice index space

down toSU(2) X SU(2). Alternatively, the constraint can be

incorporated in the theory as before by adding a superpoten- ijabzzgzv%abﬂ” with  Q
tial,

. 2 -1 -1

S(PIM' =A%), (2.9 1 2 1

whereSis the Lagrange multiplier which enforces the con- =| . . (212
straint. Fluctuations of the Pfaffian then obtain a mass by the 1 2 -1
Lagrange multiplier. Hence, we have demonstrated that the
supersymmetric version of tHeU(2)N theory which is dual -1 -1 2

to the higher dimensional latticizeBU(2) theory can be . _ .
generated dynamically, while for larger gauge groups ond '€ mass eigenvalues will then be given by those oftthe

. . . .. . 2_ . .
has to add a nonrenormalizable superpotential if one assumB8&trix with a multiplicity given byM<—1, the dimension of
the minimal matter content as we did here. the gauge index space. The diagonalizatiof)dllows by

writing Q as 2-C—C", whereC is the matrix of cyclic
B. Matching of the perturbative mass spectra permutations

Now that we understand how the model {@.1) could
arise from supersymmetric gauge dynamics, we analyze the*This normalization differs from the one used[ih2]. The results
various mass spectra of the model assuming that the symmer [1,2] can be obtained by replacin@g—g everywhere in our
try breaking VEV’s have been generated. The aim of thispaper.
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(a) (b)
XS=2a X5=(2:—I)a/3
’ i
i =
X =a ——
5 , O\ / \
b X_=ays2
? | N
\ ! /(v
X0 S .y Ry
N N+
1'/ X, =(2N-1}as2
N PR
vl s X =(i-1)a av-1
5 2N +I-1i
x5:(4N+I—2i)a/_7
Ap(x,,, z5) = et 2rks/Na A(z,) A} (2, x5) = cos <—2;]’§:25) A(z,)
A — 1 i2wk(j— i 2rk(j—1/2
(Ar(za) 145(20) ) = g et 207D (AL () 145 (2)) = 3 gy cos (Z4G512)

FIG. 1. Mode decomposition for thi@) periodic and(b) orbifold “moose” diagrams. The mass eigenvector expansion is the discrete/
latticized analogue of the continuous Fourier expansion. The orbSaleM)N moose diagram is constructed from tB&(M)2N periodic
diagram by removing two diametrically opposite links and identifying the sites with their reflection about the reflecting axis.

1 277'k_2‘/2 kr
Na <9 N

C= ' , (2.13
1 from which the lattice spacing is found to be=1/(v2gv).

. . _ 2. Scalar masses
whose eigenvectors are given by ¢f,o?,...,0} 1), and

eigenvalues byo, , wherew, = e 27N, k=0,...,(N—1), are The scalar fields in the bifundamental chiral multiplets of
the Nth roots of unity. From this the mass eigenvalues aré2-1) receive masses from thi-term contributions to the
[1-3] action. In particular, the Lagrangian contains a contribution
LD —33,DD? for eachSU(M); factor in the gauge group,
Ko with
my=2v2gv sinW, Osk=N-1 (2.19
Df'=g(QF /T4, Q1" = QI T5,Q1) =g r(QIT*Q
corresponding to the normalized eigenvectors: _QiflTaQiT—l)! (2.16
_ﬁ :iE w{(‘lA?" O<Kk=N-1. (2.15  WwhereT? are the generators SU(M) in the fundamental
*OUNI= i representatiorthus — T = — T2! are the generators in the

antifundamentaland it is understood that we impose cyclic

This mode decomposition is just the discrete analogue of thBoundary conditions, i.eQo=Qy . When theQ's develop a
usual continuous Fourier expansiésee F|g 1a):| Each VEYV, the fluctuations around this VEV get a mass. Decom-
mass level isM2—1 degenerate, forming an adjoint repre- Posing Q{*=v 5“#+ ¢, we obtain the following mass
sentation of the unbroken diagorU(M) gauge grougon  term:

top of this gauge degeneracy, there is also an accidental lat-

tice degeneracy sincen,=my_,). For small enougtk the

spectrum approximates the Kaluza-Klein tower of states cor- £2 — g2, [(T2)(T2h) +(T2p) (T2pN) +2(T2¢hy)
responding to the compactification of the 5D theory on a ha

circle. In order to find the lattice spacing of the correspond- X (TapT) + (T2 (T2 )+ (T2¢h) (T3 _1)

ing 5D theory on a circle with circumferendés, we identify

as in[1-3] the low-lying mass spectra by H(T2) (T2 ) + (T2 )], (2.17
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where we have definedT@¢)=1tr(T?¢). Using the Fierz superpotential  (2.2). Indeed Fg=p~M-2(detQ,
identity for the fundamental representation ®6(M) (see —oM)Du(w/wM2rg; , such that the tralce ab at each site
1

for example[16]), acquires a large mass(v/u)" 2, and decouples from the
1 low-energy effective action. Thus we are left with only
g TosT35= | BusBpy= 37 Bapdys|, (2.18  2(M?-1) real massless scalars.

. 3. Fermion masses
we obtain

Finally, we consider the fermion fields. Our aim is to
1 o show that indeed the bifundamental fermions combine with
(Ta¢)(Ta'/’):tr(¢¢)_Mtr(d’)tr(‘/’):(d’xw' the gaugino to give a supersymmetric spectrum which
(2.19  matches that of the gauge bosons and scalars. The 4l2Ka

potential contains
Thus the mass term becomes

TaZividp.
£5-g%73 [(dx )+ 2 x @)+ (1% 6 ~(4 2 dea (229

X 1) = (d X bl 1) = (] X i) = (X 1], where V; is the vector superfield associated to the gauge

(220 groupSU(M); and®; is the link chiral superfield that trans-
forms as (0,0) under SUM);XSU(M);,;. When ex-
panded in components, this gives the gaugino-scalar-fermion
interaction

which we can rewrite as,
¢*a/ﬁ/
LD =3 (dPr BYM, i (;_a,ﬁ, (2.21)
J £2iv2gY, QT ainY) ~ (GAD T Qi — (. ) T2Q]
and the mass matrix is again a direct product of two matrices '
in the gauge and lattice index spaces +Q-Ta(ﬁ?§" D] (2.26
1 141+ ! .

A r ’ B ! !
2 2.2 aa' BB aa' B
Mijaa,ﬁﬁ/—g v Q”

)_ (2.22 where\ is the gauginog is the two-component Weyl fer-
mion in the bifundamental, whil® is the scalar component
The lattice matrix is the same as the one appearind in thin the bifundamental. Note that again these terms only give
. ) PP 9 Fhass to the traceless parts of the bifundamental fermions as a
gauge boson mass matrix while now the gauge matrices are It of th | f th e .
nondiagonal and are given by result of the tracelessness of the generaidtsor equiva-
lently because the gauginos transform in the adjoint repre-
sentation of the gauge group. Putting in the expectation val-
Ao ppr = Ban' Oppr — M SapOurp’ (223  uesof 'theQ’s will give us the fermion mass terms, which are
then given by

Baa'ﬁﬁ’ Aaa’ﬁﬁ’

1

Baa8p= Oapr Opar ~ g Oadarp- (2.29 ﬁDi‘/QQUEi N (9= Gi-1) = Ni(Gi = di-1) ],
The second terms in Eqé2.23 and (2.24) are due to the (2.27)
projection out of the trace in the Fierz transformati¢24.9), ]
as a consequence of the tracelessness of the generatorsWdfere we have deflneﬁiaﬁ:?\?Tiﬁ [note that our normal-
SU(M). ization of the Casimir oSU(M) in the fundamental repre-

We already know the eigenvalues 6f from Eq. (2.14  Sentation, i.e., #T°=4", ensures thah ,,; are M?—1
and it is easy to check that the gauge matrix has only twdVeyl fermions with a canonically normalized kinetic term
eigenvalues: 0, with a degenerall?+ 1, and 2, with a de- This leads to a complex mass matrix for the fermions that is
generacyM2—1. The mass spectrum corresponds to theonce again a direct product of a lattice and a gauge structure
product of these different eigenvalues as followig:m=0
with  degeneracy M2+ (N—1)(M?+1), (i) m, 1
=2v2gv sinkm/N), for 1<sk<N-1, with degeneracym? 2 (Mgl Giap) Mijaa g
—1. However, this counting of the massless modes has not
taken into account the Higgs mechanism or superpotentialyith

First, (N—1)(M?—1) modes are eaten in the super-Higgs o’
mechanism associated to the breakingNef1SU(M) gauge Miinar ppr =i\f2ngM,BB,<64’*> (2.29
groups, and these would-be Goldstone modes give the longi- ij

tudinal components of the massive gauge bosons. Secomnghere the gauge matri2 has been defined in E¢R.24) and
2N scalars get a mass through theerms associated to the the lattice matrixO is given by

)\ja’,B’
qja’ﬁ’

+Hc., (2.29
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1 -1 ticized four dimensions, just as has been suggestdd]in
. . Then by 4D supersymmetry one also obtains a similar con-
0= R _ (2.30 clusion for the scalars, from which it follows that the full 5D
R | supersymmetry must be present.
-1 1 In order to show this we have to show that the action at

leading order is given by terms that are the discretized ver-

It is then easy to derive the fermionic spectrum. The squardions of the SDA=1 SUSY Yang-Mills theory. However,
of the gauge matriB'B=BB' has one zero eigenvalue and that theory has only adjoint fermions living at lattice sites, as

M?—1 degenerate eigenvalues equal to 1. On the other hanepp_osed to our bi_fundamental fermion_s. So it _is aqtriori
0'0=001=0, showing that the fermionic mass levels obvious that one indeed gets the required action. In order to

: how this we first identify the scalar component of the bifun-
for th t d th : .
agree with those computed before for the vectors an égmental fields with the link variabldJ;,; via Q,

scalars. Concerning the zero modes, as a result of the trace* U h heU , . .

lessness of the generators)(M); the trace ofy; does not f_U i+l ‘g’,ferz the i'i|+1 S dare ‘k‘g&a% mag'ﬁel\s/l trans-

acquire a mass from the Kter potential. Instead it combines [0rMing as bifundamentals under tHAU(M); X SU(M); .1
(as is appropriate for link variablesNow we define fermi-

with the fermionic component of the singl& to form a . _ .
Dirac spinor that gets a masgv/u)™ 2 from the superpo- ons transforming as adjoints only under single gauge groups

tential (2.2). The fermionic spectrum is thus) 2(M2—1) fjth;ls_ I|V|ng:at _tB?: Sltesvsft:]hfhl_att_lge '?f_thet_SD Iin%uhgp_
massless Wey! spinoréij) (M2— 1) Dirac spinors with mass 4€fining #i=q;U; ., . With this identification of the fer-
m, = 2v2gu sinka/N), 0<k<N-—1, showing the supersym- mion fields living on the sites we can write the interaction
metric nature of the low-energy spectrum. Indeed, the masd2't of the action in2.26 as

less 5DN=1 vector multiplet includes a gauge bosth

components on-shella Dirac fermion(4 components and V2, Ni(aiQI —Ql_1qi 1) +H.c=iv2gu X, \i(¢;
a real scalal component Upon Kaluza-Klein reduction, ! !
we get a 4DN=2 massless vector multiplet: a gauge boson _ Uinl,i i_1Ui_1;) +H.c. (2.31)

(2 components two Weyl fermions(2X2 componentsand
a complex scalaf2 components and massive vector mul- |5 5p the Dirac fermion is irreducible, so one expektand

tiplets: massive gauge bosaB components fermion (4 o form a Dirac fermion, and the above term to correspond
components and real scalafl component This decompo- g the discretized version of the kinetic term of the 5D action

sition agrees exactly with the spectrum we have foundg|ong the fifth dimension. This is indeed the case, since one
Moreover each mass level transforms in the adjoint of thgan define the 5D Dirac spinor by

unbroken diagonabU(M) gauge group.

in
C. 5D Lorentz invariance and supersymmetry \PD:( Z) '

theory indeed matches that of the higher dimensional supe@nd then the discretized version ioF ,Ds Wy s indeed re-
symmetric theory. As we have mentioned above, the questioproduced by Eq(2.31), where the lattice spacing is identi-
related to the question of whether the full 50=1 super- \Weyl representation ate

symmetry is present or not. The reason is that the global 1 J.

lated to the enhanced SUSY at low energies, becomes a -1/’ -1 ’ — o)
spacetime symmetry of the 5D theory. The Lorentz symme-
supersymmetry requires an enhanced Lorentz symmetrthese models, and in turn that the full 5D supersymmetry
This manifests itself in a doubling in the number of super-must be present in the continuum limit. Thus we have shown
sentation of the 5D Lorentz group. If supersymmetry is in-same speed of light along the 5th dimension as for the other
deed enhanced, then the theory must automatically be 5Bur. By 4D N=1 SUSY the scalar kinetic terms also have
light should not differ in the fifth direction The converse is [1-3] that the same applies to the gauge bosons. In fact, as
also true: if one can show that 5D Lorentz invariance isexplained before, since the 5D theory must have at least
plies that there must be another set of four superchargasne obtains the 5v=1 theory and then Lorentz invariance
present in the theory. We will pursue this latter route. We will

fermionic fields, and show that 5D Lorentz invariance is au- SNote that, in order to satisfy the 5D Clifford-Dirac algebra, the
tomatically obtained; that is, the speed of light along the fifthDirac matrix in the fifth direction picks up a factorcompared to

Up to now we have shown that the mass spectrum of the
of the existence of the full 5D Lorentz invariance is tightly fied with a=1/(v2gv), and the relevant gamma matrices in
“hopping” symmetry of the 4D theory, which is closely re- 5_.<1
try generators are part of the full SUSY algebra. Hence, 5D This shows that 5D Lorentz invariance is automatic in
symmetry generators, which then form an irreducible reprethat the kinetic terms of the fermions automatically have the
Lorentz invariant for consistendyneaning that the speed of the right continuum limit, and it has already been shown in
maintained, then the existence of the four supercharges ineight supercharges, there are only two possibilities: either
calculate the kinetic term along the fifth dimension for the
direction automatically matches the speed along the nonlathe usualy® defined in 4D.
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is automatically implied, or the theory is not Lorentz invari- The superpotential needed for this model toNfe 2 super-
ant. The reason for this is that the 4D construction alreadgymmetric is given by

guarantees the presence of four supercharges. Thus in a Lor-
entz invariant theory the other four must also be present. - ~
Wiayor=v29 2, tr(PiQiP. 1)+ Mo PP (3.2
D. Comments on nonperturbative matching ! !

> [tj ns\llhneonwnvgﬁ Z?E?b%?ir\]/ceeg_rfzgg g?etiitr?%ogrggfrie:rhis is the most general renormalizable superpotential that
' P . - Imp ' gne can add to the theory, but, as explained above the coef-
cause the gauge group is broken before it could becom

strongly interacting. Another important check would be toﬁ?}'.em in the ::ubtl_clterm ha:: to equal tTe ga;JgethCOlprgng .
match the nonperturbative effects for the case whem\. IS Superpotential generates a mass term 1or the fermionic

In this case nonperturbative effects will be important, and°mMPonents of the flavor fields that looks like
can be described by an auxiliary Seiberg-Witten curve. These

curves have in fact been analyzed for the 4D lattice theory in 1 » g
[8], and for the 5DA/=1 theories on a circle ifil17]. The ﬁj_E(Pia|Pia)5aa’ =
degrees of both curves match, as do the number of modulj;i, i
appearing in the theory. This suggests that there is at least a
chance that these two curves could become equivalent in the
continuum limit. It would be very interesting to actually find

a detailed mapping of the two curves, which is, however, . T

beyond the scope of this paper. = . Vagu | 3.4

+Hec. (3.3

-

(pjot’

ja'

mo \/zgl)

IIl. ADDING FLAVORS AND ORBIFOLDING vagu Mo

A. Adding flavors The matrixE can be easily diagonalized by noting that it is

Adding extra flavors to the theory is straightforward. Written in the formmg+v2guC whereC is the cyclic per-
However, there is one important difference compared to th&utation matrix whose eigenvalues are bt roots of unity
case without flavors. Until now one did not need to tune any2i=€""*'". Thus the fermionic mass spectrum is given by
parameter of the theory to recover the higher dimensionaM degenerate Dirac spinors wilimass®, mg=2g%v?+mj
supersymmetric model. This is not surprising, because a 4B 2v2gvmg cos 2m(k/N), for k=0..N—1.

N=1 SUSY theory with only a vector and chiral multiplet ~ Each mass level transforms as a fundamental of the un-
(and no superpotential for the chiral multipletiready has brokenSU(M) gauge group. For an even number of lattice
N=2 supersymmetry. However, this is no longer true in thesites, the lowest mass levelrig+v2gv, and thus only if we
presence of hypermultiplets. In this case ffe1 Lagrang- tune this parameter to zero will we obtain a massless flavor
ian needs to contain a superpotential coupling of the fornin the bulk. Clearly, by supersymmetry or direct calculation

\Qg52¢, whereg has to be equal to the gauge coupling,the mass spectrum of the complex scalars will match that of

®. & form the hypermultinlet. and is the chiral superfield the fermions, and we do not repeat the calculation here.
in’the adioint T)rlwﬂs we eri éct that a similar tunipn has to This bulk mass term can also be recovered by considering

adjoint. P ng the interaction terms and how they would arise from the
occur in this case as well. A fundamental flavor in the 5D

theorv will have to be included as a flavor into every gau eIatticized version of a higher dimensional Lagrangian. For
y . o y gaug example, the Yukawa coupling and mass term from the su-
group. Thus the matter content will be modified to

perpotential will have to reproduce the kinetic and mass
terms of the higher dimensional Lagrangian. Again writing

SUM), SU(_M)Z SUM); - SUM)y Qi=vU;;,1, these terms can be written as

0, O O 1 1
1 M ... 1 . ~
Q_2 . D D _ . 53_‘/7902 pi(Ui,i+1pi+1_pi)_(mo""/?gU)Ei PiP;
o) 0 1 1 O +H.c., (3.5
Py U 1 1 ﬂhich is simply the lattice discretization of Ee kinetic term
P, 0 1 1 1 PpDsPp and of a bulk mass termniy+v2gv) P Py, for the
P, 1 O 1 1 5D Dirac spinorsPDz(g:). We can see now that from this
P 1 5 1 1 point of view the fine-tuned value of the coupling in the
E ] ] ) ) superpotential was necessary in order to recover the correctly
normalized kinetic term in the 5D theory with the lattice

Py 1 1 1 O spacingazll(ﬁgv). _ o
_ _ Other multiplets can be introduced similarly, except that
Py 1 1 1 O (3.1) the superpotential will in general be nonrenormalizable.
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B. Orbifolding multipletsP andM chiral multipletsP in the antifundamen-

Until now we have exclusively considered a periodic lat-tal and fundamental representation @&U(M), and
tice with link fields connecting all of the gauge groups. InSU(M)y, respectively. These fields would correspond to
this model the full 4DN'=2 supersymmetry is unbroken, fields stuck to the orbifold fixed point§the branes” in the
including in the zero mode sector. One interesting modificahigher dimensional language, and are also reminiscent of the
tion is to explicitly break(at least some ¢fthe supersymme- Horava-Witten compactification of 11D supergravity on an
try via the latticized analog of an orbifold. The constructioninterval, in which cas&g gauge multiplets are forced to live
is remarkably simple: identify the fields related by “reflec- on the end points of the interval to cancel anomalies. The
tion” about theZ, symmetry of the moose circle by cutting difference here is that after breaking of the gauge symmetries
the moose in half and removing the link supermultiplets bethese fields can get a mass term from the superpotential
tween adjacent sites6 corresponding to the orbifold fixed
points[as in Fig. 1b)]. 1 ~
We begin with a cycle 4I5U(M)2N theory as described szl P H1 QjP;. (3.9
above, and orbifold the moose circlthe extra dimension -7
by a Z, reflection symmetry. After removing two diametri-
cally opposite links, this gives aBU(M)N theory corre- In this superpotential, gauge indices on the superfields are
sponding to a 5D theory on an interval, similar to the “ali- contracted so as to make a gauge singlet under the full
phatic” models considered by Cheng, Hill, Pokorski, andSU(M)N, andf is a mass scale. Once the scalar components
Wang[2,3]. The opening of the moose diagram also explic-of the link multipletsQ; andQy_; acquire VEV'’s, theP’s
itly breaks the “hopping” symmetry of the lattice at the end get a mass given by (v/7)N"2. Thus they will have no
points of the interval. In particular, this would cause the endVEV's for their scalar components. The orbifold theory is
point gauge groups to be anomalous, so we Btdhiral summarized in the table below:

M N—-1

kS

SUM), SUM), - SUM)y ., SUM)y
P,.P,,..P,| O 1 1 )
Q. O g 1 1
Q> 1 O 1 1
On-1 1 1 o 0
P, ,Py,....Py 1 1 1 O (3.7

The resulting gauge boson, fermion, and scalar mass matrFhe mass spectrum [&,3]
ces can be easily calculated. The mass term for the gauge

i km
boson is{2,3] m§=892v25in2m, O<k<N-1. (3.10

1
a
£33 A M'lab (3.8 The zero mode remains, as well as half the massive modes,
. corresponding to the symmetric modes about the orbifold
with action. We can see that these are in fact the symmetric modes
5 oo A by diagonalizing the mass matr{8.9). The resulting eigen-
Mijap= 29V Sapldij , vectors corresponding to the modes of the 5D gauge boson
are[2,3],

-1 2 -1 | 2 (21 1)k7r
. . . 2§koN A], k=0,...N—1.

(3.11

-1 1 Note also that the wave functions of the periodic theory with
(3.9 2N sites are given by Eq2.15, APPoUe=32N ol 1A,
wherew, is €2™?N_ The modes specified byandN Kk are
degenerate and correspond to right- and left-moving modes.
5We thank Nima Arkani-Hamed for discussions on this point. ~ The orbifold has then picked out modes with definite parity

015003-9



CSAKI, ERLICH, GROJEAN, AND KRIBS PHYSICAL REVIEW D65 015003

under theZ, orbifold symmetry, in this case even parity. The In fact, the eigenvalues can be readily determined by first

mode decomposition is again the discrete analogue of thdiagonalizing the mass matrix with diagonal components

continuous orbifold expansidrsee Fig. 1b)]. missing, and then adding back the term proportional to the
The lattice spacing of the corresponding 5D theory on aridentity matrix. The result is,

S, /Z, orbifold of lengthNa can be obtained in the same way

. . . _ . k
as before, by identifying the low-lying mass spectra m§=892v23in2<%), 1<k<N-1. (3.19

71-k—Zl/_ km 3.1

Na Therefore the massive eigenvalues pair up to give a Dirac

mass term while a Weyl fermion remains massless. As we
We obtaina=1/(v2gv), the same spacing as the periodic will see in Sec. IV the eigenvectors 60! are odd about the
lattice. Z, symmetry, which specifies the orbifold action on the link

We also compute the fermion masses in order to checkield fermions in the 5D language.

that the spectrum corresponds to that of the orbifolded The same arguments can be applied to the scalars from
theory. Following the discussion of Sec. Il B 3, the complexthe link multiplets. From thd terms in the Lagrangian we
fermion mass matrix in two-component Weyl notation is  find that the 2l —1)M? real scalars ifQ; consist of one set

of would-be Goldstone bosons that are eaten by tRe (

1 M\ —1)(M?-1) massive vector fields, R(—1) singlets that
£2 5 NaDM;, a; +H.c, G133 e given mass by the tree level superpoter§jgl, and a
set of N—1)(M2—1) massive scalars with masses identical
withi, j=1,..N, 1, 7=1,...N and to the gauge bosons. So, we obtain a massless vector and
massless Weyl fermion, corresponding to an unbroken 4D
=Y, N=1 vector supermultiplet, plus a massive tower of states
M;;=iv2gv (gi—) (3.14 that fall precisely inta\/’=2 vector supermultiplets. We see
again that the diagrammatic picture of a linear set of gauge

& groups connected by link fields physically and intuitively
cpecomes a latticization of the line segment obtained from an
S,/Z, orbifold. In this particular construction only 4B/

=1 supersymmetry is preserved in the zero mode sector.

(we have not written the gauge structure which is identical t

the cyclic caspand the lattice substructuré), is given by
the (N—1) XN matrix

1 -1 IV. GAUGINO MEDIATION IN 4D

. ) ) One application of our construction of supersymmetric
6= . . (3.19 extra dimensions is to explore ways to communicate super-
’ symmetry breaking to the supersymmetrized standard model.
1 -1 The central problem is to generate a supersymmetry-
breaking spectrum with no highly fine-tuned mass hierar-
Although not identical to the gauge bosémas$” matrix,  chies, while simultaneously avoiding current bounds from
the (masg® matrix for the fermion is closely related experiment. Generally this requires that the supersymmetry-
breaking sector is well separated from the MSSM. For ex-
ample, flavor nondiagonal contributions to squark and slep-
. (316 ton mass matrices are severely constrained from
06 experimental bounds on flavor changing neutral current pro-
where 0'0 and 661, respectively arNxN and (N—1) cesses. One way to a\_/oid these constraints is to generate soft
supersymmetry breaking scalar masses dominantly through
gauge interactions. This happens in ordinary four-
o 1 dimensional gauge mediation where both gaugino and scalar
masses are generated through one- and two-loop diagrams
-1 - with “messenger” fieldd 18]. An alternative proposal, called
1" “gaugino-mediation” [19-21, physically separates the
supersymmetry-breaking sector across an extra dimension on
S,/Z, similarly to the “anomaly-mediated” models ¢22].
Direct couplings between the supersymmetry breaking fields
i A i , and the chiral matter fields are exponentially suppressed by
The eigenvalues of) are given in Eq.(3.10. It can be o small wave-function overlap of one on the other. In this
immediately checked th& O! does not have a zero mode model (contrary to anomaly mediatidrthe gauge supermul-

t
MTM=2g2v2( 00

X (N—1) matrix, are equal to

6'6=0, 66'=

(3.17

by evaluating its determinant tiplets of the MSSM are placed in the 5D bulk, coupling
L directly with the supersymmetry-breaking fields that are as-
detOO'=N. (3.18 sumed to be localized at one orbifold fixed point. The MSSM
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chiral matter lives on the other orbifold fixed point. Oncetion when the size of the extra dimension is of order or
supersymmetry is broken, a large supersymmetry-breakingmaller than the inverse GUT scale. In fact, lowering the
mass is endowed to the gauginos while a loop-suppresseslUSY mediation scale in our case is analogous to increasing

(flavor-diagonal contribution is generated for the scalar the size of the extra dimension in continuum gaugino media-
masses at the compactification scale. Large supersymmetnjon.

breaking scalar masses are induced by ordinary 4D
renormalization-groupRG) evolution to the weak scale,
generating a spectrum that is similar to a “no-scale” super- A. Gaugino masses

gravity model. : .
Here we will use the construction of the supersymmetric Ve start with the setup it8.7), where theSU(M); gauge

extra dimensions presented in the previous sections tgroups are allidentified with the gauge groups of the MSSM.
“translate” the mechanism of gaugino mediation into a 'NiS generates a tower df—1 states in massiv&/=2 vec-
purely 4D model, that will result in a perturbative SUSY- tor supermultiplet representations, which for snkaN are
breaking soft mass spectrum identical to that of gaugino meindistinguishable from the KK tower generated in gaugino
diation. However, since gravity in this construction is not mediation. On thé=0 end point of the lattice, we place the
made higher dimensional, one has to ensure that the flavosector of fields needed to break supersymmetry dynamically.
changing Planck-suppressed contact terms are subdominaRather than specifying this in detail, we follow Ref49],
This can be done by requiring that the scale of mediation of20] and simply assume that the result of dynamical super-
SUSY breaking A is smaller than the Planck scald, symmetry breaking is that the auxiliary component of a
<Mp,, just like in gauge mediation models. This will imply gauge singlet chiral superfield located on itke0 lattice site
that the gravitino is the lightest supersymmetric particleacquires a VEV{S)=Fg#?. The chiral matter multiplets of
(LSP), which avoids the possibility of a cosmologically trou- the MSSM are placed on the=N—1 lattice site. The result-
bling stau LSP that can occur in continuum gaugino mediaing matter content is given by

SU(5)y SU(5); -+ SU(S)y-2 SUBS)y-1
P,,...Ps| O 1 1 1
0, m] g 1 1
On-1 1 1 ] ]
Py,....Ps 1 1 1 ]
5.5 1 1 1 ]
10,5 1 1 1 H
H, 1 1 1 ]
H, 1 1 1 ] (4.7

We have written the interactions $ilU(5) language for com- plicity that there is a chiral multipled with a SUSY-breaking
pactness, although we could also have simply latticized th&EV, but of course in a more complete model the SUSY
SM gauge group. The action on the 0 point is assumed to breaking has to be specified. For example, one could imagine
have the superpotential terms that the operatof4.2) is generated by a gauge mediation

from the SUSY-breaking sector to the gaugino, and in this

, S ; case there would be an additional loop faatét(1672) ap-
g:j d°0 - WW*+H.c., (4.2 pearing in the gaugino mass. For more on this possibility see

Sec. IVE. OnceS acquires a supersymmetry-breaking VEV,
whereW,, is the field strength chiral superfield f&U(5),, a gaugino mass is generated for the gaugino fields of the
and A is the SUSY mediation scale. We will assume that theS Y(3)o gauge group
scale A arises from supersymmetry breaking and is larger

than the inverse lattice spacing. We have assumed for sim- 1Fsg
LD = —N\tH.c. 4.3
2 A
’One or two orders of magnitude of RG evolution is sufficient
[19]. Below the scalea '=v2gv, the full (2N—1)x(2N—1)
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gaugino mass term becomes

'gv(K A Ay—il )
i DYURED Yo g
v 05N N—-1191 qdn-1

2ep 0 Mo
0 O o' :
x| Ayv—1 | +H.c.
. 0 Al
o :
qnN-1 (4.9

whereer=—iaFg/(2A), and6 is given in Eq.(3.15. For
|eg|<1, the mass matrix can be approximately diagonalized
using perturbation theory. The perturbation for the square of

the mass matrix has the following form:

2|lex|> O - |€f O

0 0
SMTM)=2g%?

€ 0

0

(4.9

Since the first-order perturbation for the zero mass eigen-
2, one is forced to look at

value gives a result of ordeeg

PHYSICAL REVIEW D65 015003

The first-order perturbation for the zero mode gives a shift in
the (mass$? of 8|eg|2g%v?/N, while the second-order pertur-
bation gives

j T
4 N-1 SinZJW

- lerlg? S,
= sir

—. (4.11
jm
2N
Using the relation

ja
N-1 Sinz]—

= 20N-1),
=1 .
Slnzm

we obtain for the full perturbation in the mass of the zero
mode,

|€F|

m0=21/2gv W (4.12)

One can also calculate the mass splittings of the higher mass
fermionic modes; however, due to the degeneracy of the
mass eigenvalues one has to use degenerate perturbation
theory. The result we obtain for the splittings is

kr €
m2=8g2v?| sins— +2— cod——|sin-—

the second-order perturbations as those will also involve

terms of ordereg|2. For this, we need the eigenvectors of

the unperturbedmas$?® matrix

222(%’7)
gv ééf

The NxN6'6 block has the following eigenvectors:

(4.6

N—-1
~ 2 2m+ 1)k
Ay = cos¥)\m,

k — 25k0N e 2N kZO,N_l

(4.7

with eigenvalues

k
m2=8g22sirf——, k=0,..N—1. 4.8
2N
The (N—1)x (N—1)6 6! block has eigenvectors
~_ 2"t _ mkar K= 9
N = N.Z, smTqm, =1,..N-1, (4.9
with eigenvalues
2 2 2 2 KT
m;=8g%v smzm, k=1,.N—1. (4.10

k=1,.N—1. (4.13
All of the gaugino masses are shifted relative to the gauge
boson masses—supersymmetry is broken.

The zero-mode gaugino mass can be written in a some-
what more suggestive form

Tm

Z|l -

The gaugino mass appears to vanish in the l&tdimit. In

fact, a similar phenomenon is also present in continuum
gaugino mediation, where the corresponding gaugino mass
was given bymy,=Fg/M2L. ThereM represented both the
scale suppressing the higher dimensional SUSY-breaking op-
erator as well as the scale where the 5D theory was becom-
ing strongly coupled. These scales were taken to be equal for
simplicity [19]. We can relate this result to the gaugino mass
found in our construction by first identifying one power of
1/M as the scale IV suppressing the gaugino mass operator.
The other factor of M should be identified with the inverse
lattice spacing. The reason is that even though the full latti-
cized theory is never strongly couplédhich was one of the
main motivations for this constructipnbelow the scale of
the lattice spacing the unbroken diagonal subgroup is as
strongly coupled as the continuum theory for the same num-
berN of massive “KK” modes. This suggests the identifica-
tion of the 5D strong-coupling scalghe otherM) with the
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N calculation in a way that is completely analogous to the con-
tinuum gaugino mediation result given in Rgt9]. In par-
ticular, we will calculate the scalar mass contribution from a
one-loop diagram with a gaugino running in the loop, and
e fi two insertions of the nonrenormalizable supersymmetry-
‘ f; ’ breaking operator Eq4.2). (Hence, the gaugino mass matrix
hasnot been shifted by the supersymmetry-breaking contri-
FIG. 2. One-loop contri_buti(_)n to the MSSM matter sca!ar butions since we have not yet integrated them )olut.the
masses. Thp’s on the gaugino line represent the SUSY breakinginteraction eigenstate basis, the MSSM matter multiplets in-
mass insertiorF/A. teract only with theSU(5)y_; gaugino. However, once the
gaugino mass matrix is diagonalized, chiral multiplets inter-
act with the entire tower of Majorana gaugino mass eigen-
states, .
1 Fg 1 Fg The gaugino wave functions correspond to the eigenvec-
—_—— e — —, (4.19  tors (4.7 and (4.9 of the unperturbed (28— 1)x(2N—1)
matrix (4.6). Hence, the Rl—2 massive gauginos that are
In 5D it is easy to see tha\ cannot be arbitrarily large Paired with equal but opposite in sign masses can be split
before the gauge couplings blow up, so no consistent “largeiNto o sets ofN—1 gauginos with cosine and sine wave-
N” limit can be taken. In our latticized theory we see the fUNction expansions. In the largedimit the set of gaugino
same effect for diagonal subgroup, except that in this confields A, with sine expansions do not directly couple to ei-
struction the strong coupling physics is resolved at the scalther the supersymmetry-breaking fields or the MSSM matter
of the lattice spacing—meaning it is really an artifact of con-fields, and so they will not be needed in the calculations
sidering just the diagonal subgroup. Above the lattice spacbelow.
ing the full asymptotically free product gauge theory is re- The scalar mass loop calculation involves a gaugino

inverse lattice spacing. Then, continuum gaugino media-
tion [19,2Q predicts a gaugino mass identical to E4.14),

solved, leading to a fully perturbative theory. propagator extending between two different lattice sites. In
the mass eigenstate basis the full gaugino propagator is a
B. Scalar masses at one loop sum over theN gauginos. We find it convenient to incorpo-

) o rate the “end-point” lattice site couplings
The leading contributions to the MSSM matter scalar

masses arise through loop diagrams of gauginos interacting - 2 (2k+1)jr

with the supersymmetry-breaking operators onithé® lat- N Ivo= 550N 05N (4.16
tice site, shown in Fig. 2. The contributions are flavor diag-

onal, since they only involve some mixed combination of

gauginos running in the loop. Here we will carry out the into the sum over the gaugino propagators. The result is

N—-1

)= 3 1 2k+1D)jm (21+1)jn 1 41
P(q; ’)_quzo 53,5055 cos——y WE a— , (4.1
a*+| 5 sin?(j w/2N)
|
which represents the summed gaugino propagator with Eu- N-1 1
clidean momentung extending between thigh to | th lattice P(q;0N—1)=a’%q 5 —— .
sites. Note that we have not written the mass term since it j=0 (aQ)“+4 Sir(j m/2N)
will drop out of the scalar mass calculation below. We only (4.19
need the propagator extending from the'O to I=N—1  Given this relatively simple expression for the gaugino
lattice site. With suitable rearrangements, this is propagator extending between the end points of the lattice,
N—1 J. i we can now carry out the scalar mass calculation.
P(GON—1)= 2 D 1 (=1)cos(jm/2N) The one-loop diagram for scalar masses can be written in
(@ON=D)=J82 555 1512 ' t f the ab d gaugi
=0 ) o erms of the above summed gaugino propagator as
q?+| =| sir?(jm/2N)
a g2 FS 2 . 1
4.1 m2= —= — :
(4.18 me=1c—| % Jd qtr PRq P.P(q;N

We note that in the larght limit, this reproduces the con-

tinuum gaugino propagator found in Réfl9]. The finite —1,0PrP(q;0,0P P(q'O'N—l)} (4.20
sum can be done, and we find R EEELIE ' '
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The propagator for the zeroth to zeroth lattice site can be obtained fror Hg),

K
N-1 2(ag)’coS=—
4 2N q
P(6;0,0= 2 1+ > ———————— | =5=[1+3]. (4.2
q k=1 i k’7T Nq
(aq)2+4smzm

Notice that, unlikeP(q;0,N—1), there are no delicate cancellations between the zero mode and the massive tower states. The
scalar mass calculation therefore reduces to performing the integral

N—-1 1

2
a4f dall agrrasmmam? 2] 422

B g2 FS 2J~C>C d 277_2 1+2
~ 1672N 2 o PV G T I (aq) 2+ 4 sif(naany)2 - >

2

=l

__ 9 |Fs
167°N | A

A
(4.23

One approximation is to neglect the sum over the massivevas argued that direct couplings between MSSM matter sca-
tower of gauginos fof(q;0,0), i.e.,[1+X]—1. This gives lar masses and supersymmetry-breaking fields are forbidden
a reasonable estimate to within a factor of 4 or so; howevey 5D locality. However, the wave functions of the fields
we will retain the full sum in our calculations below. Notice localized to the orbifold fixed points are not truly delta func-
that the integral is logarithmically IR divergent but UV finite, tions, but instead have some width extending into the fifth
and so we start the momentum integration at the scale of théirection. The overlap of fields located on one fixed point
lightest massive gaugino. The IR divergence is handled byith the other is therefore anticipated to be exponentially
the usual 4D logarithmic evolution of the zero-mode gauginosuppressed by roughly Mt. What is the analog in our con-
mass for energy scales<2a ! sin(m/2N). struction? Naively 4D effective theory suggests we should be
The momentum integrdincluding the sumevaluates to able to write dangerous operators such as
¢/N? with a numerical coefficient that asymptotes to 1 to "
very good accuracy for largd (jc—1|<0.1 forN>4). The f d498 SL_TLA (4.27)
gauge couplingy for the SU(5)N_1 group on theN—1 lat- AZ T ‘
tice site must also be converted to the gauge coupling of the

unbroken diagonal subgroupu(5) i, Via Q/Q
lag f d*e szLﬁLj (4.29
g
Osm=—"1=- (4.24 _
\/N whereL; can be any matter superfield of the MSSM. We

. ) . assume that the same scélesuppressing the gaugino mass
If we ignore other factors of 2 and quadratic Casimirs, Wegperator, Eq(4.2), also enters these operators. However, the

obtain coefficients are undetermined and could be order liroa
92 |1 Fy? gauge mediation modetould be loop suppressed. However,
2= 16?2 . XS (4.25  these operators would only be generated if the MSSM fields

coupled directly to the SUSY-breaking sector. Our assump-
) tion is that it is only thei=0 gauge group that couples to
— 2 (ﬂ) _ (4.26 SUSY breaking; thus these operators which directly couple
the MSSM to the SUSY-breaking sector are absent, due to
this version of “locality on the lattice.” There are, however,

This result agrees exactly with continuum gaugino media+|oca|” operators that contribute to flavor nondiagonal scalar
tion. Hence, our 4D latticized supersymmetric theory genermasses. These have the form

ates a gaugino and scalar mass spectrum that is identical to
the 5D continuum gaugino mediation result. s's
f d*0 w1 QuQz Qu-aliLy. (429
C. Other nongravitational contributions to scalar masses

Here we consider whether the induced scalar masses afdter the link fields acquire VEV’s, this gives rise to an
really flavor diagonal. In continuum gaugino mediation, it operator of the form
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Nt ,sls o T
AN-T d ﬁpLi L. (4.30
Clearly once supersymmetry is broken this gives rise to a . _
flavor-nondiagonal scalar mass fi fi
N1 Fq 2 FIG. 3. Two-loop gauge-mediated contribution to the MSSM
=T | ¢f¢L,_ (4.31 matter scalar massésnly one example diagram showiThe inter-
A A b nal loop of dotted lines corresponds to the messenger scalars.

If we write e,=v/A, then this contribution becomes finds the ratio of off-diagonal to diagonal scalarass? s to

be mj/m7<10"* for at least some choices ofj. This

2
65”1 FXS bF P (4.32 means that we must require
I J
Fs|? —4 2
For e€,<1, this contribution is power suppressed by the num- M_PI <10 mg|?, (4.36

ber of lattice sitedN. We have already found that the rela-

tionship between the latticized theory and the continuum gy, that

N~ML, and so we see that the latticized theory has an ana-

log of the exponential suppression expected in continuum NA <10 ?Mp,. (4.37)

gaugino mediation. For this to be the case, it is crucial that

the scale suppressing this higher dimensional interactian  This is a separate requirement that must be imposed on our

larger than the induced link VEXbr inverse lattice spacing latticized theory(that does not appear in continuum gaugino
In addition, the link field scalars also acquire mediation. Interestingly, this also implies that the gravitino

supersymmetry-breaking masses. This arises because we darthe lightest supersymmetric particle since

write the operator

Fs

<10 °m,. 4.3
Mo o (4.38

A STS : M3/=
d GFQlQl. (4.33
E. Gauge-mediated contributions to scalar masses

for the first link field, which leads to the mass term,
Up to now we have assumed that the only source of su-

2 persymmetry breaking in the model is the operator in Eqg.
#1 ¢1.- (4.349  (4.2). If that is indeed the case, then the relevant contribu-

tions to the soft breaking mass terms are the ones listed in
Since the link field already has #arge VEV, this the previous sections. However, in more realistic models the
supersymmetry-breaking mass simply shifts the scalar masyPeraor (4.2 appears through gauge mediation from the
by |Fs/A|2 which is of order the gaugino mass. The otherMessenger f|el.ds, and thzereforgz the gaugino mass itself has a
link fields do not have a direct coupling to the SUSY-I00P suppression factay”/(16m7). The expression for the
breaking sector, and so acquire loop-suppressed SUSWAUgIno mass is given by
breaking contributions for their scalar components. 2 2

9° Fs GOsu Fs

Mgaugind~ 162N A~ 1672 A (4.39

Fs
A

D. Planck-suppressed contributions to scalar masses

We argued that the operators in Ed@4.27), (4.28 are  which is the ordinary 4D gauge mediation result. In this case,
absent due to the assumed “locality on the lattice.” Howeverhowever, the MSSM scalars will also pick up a soft breaking
in our construction gravity is assumed to be ordinary 4D(mas$? term from gauge mediation, which is no longer loop
Einstein gravity, and thus we have every reason to expecuppressed compared to the gaugino rfi&gsexample of a
ordinary 4D Planck-suppressed operators will violate “local-two-loop diagram of this sort is given in Fig. 3. These dia-
ity on the lattice.” In particular, the usual Planck-suppressedgrams have been explicitly evaluated for an extra dimension
operators resulting from replacing the dynamical scale on SY/Z, with gauge fields in the bulk by Mirabelli and

with Mp, in Eq. (4.27) are present here Peskin[23]. There they assumed the messenger sector and
‘ the MSSM matter fields were separated on the two orbifold
f d405 SLTL- 4.35 fixed points separated by a distaricen the fifth dimension.
MTPI e ' They found that the gauge-mediated contribution to the sca-

lar mass is suppressed by an additional factor oML/f?
where agairL; can be any matter superfield of the MSSM. whereM is the cutoff scale. In the latticized case we there-
These give rise to flavor off-diagonal contributions to scalar
masses of ordejFs/Mp|?. The limits on the size of these
contributions are strongly model dependent, but roughly one 8we thank Yuri Shirman for reminding us of these operators.
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fore expect that the scalar mass will be suppressed by an Two gauge groups

additional factor of'll,(\.Na)z compared to the gaugino. In the gominant contribution to the scalar masses comes
order to estimate this diagram, we use the intuitive derlvatlor}rom the one-loop diagram given by E@.26. In this case

given in[23] in which the extra loop of messengers is shrunki,o integration over momentum can be done exactly
to a point. It was shown if23] that the effect of the mes-

senger loop can be represented as a two derivative effective " 72 (aq)?
operator that results in an extra factorggfin the loop. Thus f d(aq) > 5| 1+ E
we can estimate the size of the scalar masses to be of’order val2 (ag)[(aq)“+2] (ag)“+2
2 =S+8IN2_ 4785 4.4
gz 2 FS 2 1 - =1 8N2 . . ( . 2
ﬁ12~< 2) e 2 f d(aq)
167°) | A| (aA)“ )2 sinmren) o ,
We see that this integral evaluatesatN“ with ¢~3, and
27%(aq) therefore the scalar masses are slightly larger than what
xl‘[ﬁ;f((aq)2+4 sirf(na/2N))?" (4.40 would be expected for a large number of lattice sites. They

are, however, still well suppressed compared with the size of
the gaugino mass, and so the usual gaugino mediation spec-
We have numerically verified that the integral is well ap-trum results even for this two-lattice-site example.
proximated byc/N* with c~4 at largeN, and so the expres- One concern is that the link field might communicate
sion we find for the scalar masses is given by SUSY breaking to the MSSM matter scalars, since it is
charged under all gauge groups in this two-site example. We
have already shown in Eq4.34 that the first link field
> 1 5 acquires a SUSY-breaking mass of order the gaugino
M= (ANa)2 Moaugino (44D (mass? However, there are no superpotential couplings be-
tween the link field and the matter scalars, so at most this
field gives a(flavor diagonal two-loop suppressed contribu-
We can see that ifa~1, then by decreasinly the scalar tion to the MSSM matter scalars through loops of the gauge
spectrum interpolates between gaugino mediationNier5  and gaugino field. This is suppressed by one more loop than
and ordinary gauge mediation foN=1. If, however, the contribution found above, and so can be neglected.
1/(Aa)<1, then a gaugino-mediated spectrum is obtained Some fine tuning o0&~ *< A is needed in this case, how-
even forN=2 [25]. ever, to suppress the two-loop gauge-mediated contribution
(4.41). In addition, operators liké4.29 could also lead to
additional scalar mass contributions
F. Realistic models

We can now use these results to construct realistic models f d*g STSQ LiL =2
of mediating supersymmetry breaking to the MSSM. If a A RIEIEITA
messenger sector does live on the SUSY-breaking site, we

recover a variation of the gauge-mediated spectrum. The impyt they are suppressed by the same fagtdr~1/(Aa) and
portant difference between ordinary gauge mediation and ouo can be similarly suppressed. In addition, we expect addi-
latticized version is that there is an additionalli{a)* sup-  tional loop suppression of the coefficient of this operator
pression of the scalafmas$® s relative to the gaugino when the mediation of supersymmetry breaking occurs
(mas$’. Raising ANa therefore has a similar effect on the through messengers. The hierarchy of scales that remains is
sparticle mass spectrum as raising the number of messenggri~; <A <10 2Mp, so that the contribution from the
fields in ordinary gauge mediation, in which the scalarpjanck-suppressed operators is small. This means new phys-
(mas$® are suppressed by a factom{/s relative to the ics is appearing at scales below the usual gauge coupling
gaugino(mass’. unification scale.

For largerANa=5, or for anyN if SUSY breaking is
communicated exclusively by the operator E42), the soft
mass spectrum is identical to gaugino mediation. One inter-
esting possibility is to consider how smallcan be and yet Finally, we discuss the issue of unification of the gauge
also obtain a viable soft mass spectrum. IfAld) <1, then  couplings in this scenario. There are two limiting cases that
one obtains the gaugino mediation spectrum everNfer2.  we will consider, namely two gauge groups, and alterna-
For the remainder of this section, we wish to consider thidively, largeN.
case with just two gauge groups. For a larger number of lattice sitésone does not need to

separate the scale of SUSY breaking and the lattice spacing
anymore. One can tak& ~v~10GeV, since the gauge-
Note that the factor 1Xa)? was erroneously omitted it4.40 mediated contributions to the scalar masses can now be sup-
and(4.41) in the first version of this paper. This was corrected afterpressed by the W2 factor in (4.41), assuming that the op-
the appearance of ReR5]. erators in(4.29 also come with loop suppression factors. For

Fg? .
N PP (4.43

G. Gauge coupling unification
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N gauge groups, one will havé KK modes appearing, with subgroup will feel one KK mode of gauge and gaugino
the first massive mode roughly at the scal®l. For largeN,  fields, but since these fields have masses of arfierwe can
this scale is well below, and thus one expects a phase ofapproximately treat this scenario as going from the 4D
rapid power-law running of the gauge couplings to start aMSSM lattice site directly to the diagonal subgroup with just
around this scale. If we assume that, in addition to the gaugée 4D MSSM matter content. That i8y(v) —Nea,(v). The
bosons the Higgs fields also live at every lattice ¢itat is,  Peta function coefficient above the scales

the Higgs boson is in the bulk in the continuum lijnithen o

one can use the results §24] to show that despite the ba=b,+n,=(%,2,-6)+(2,4,6). (4.45
power-law nature of the running the gauge couplings still

unify, but at a scale belowgyr, betweenMgyr/N and  With the rations/n,=3/2, we can choose the hypercharge of
Mgut, Which for moderately large SN<50 is still a rela-  the link field connectingJ(1)xU(1) such that the above
tively high scale close t¥ 1. Thus the unification of cou-  shift in the beta function coefficients satisfies the conditions
plings can still be maintained for the case of a large numbefor one-loop unification given by Ref24]

of gauge groups as well, but it will happen at a scale below

MguT, and with nonperturbative values for the couplings B, Bz n—n;

due to the period of power-law running. Once one gets above 5_23: 5_23: , Bij= bi—b; (4.46

the scalev, the running switches back to a logarithmic run-

ning, since at this scale the gauge groups are not broken ience, unification of gauge couplings can be maintained for
the diagonal subgroup anymore. the N=2 case, although at a slightly lower scale than in the
For just two gauge groups we have seen thatA  ,syal 4D MSSM. However, in order to have a fully unified

<Mp, and so the gauge couplings are not unified at theheory one would also have to embed these link fields into
energy scale where the lattice opens up. To see what happefte GUT group.

in this case, we take the unbroken gauge group on each lat-
tice site to be jusSU(3)xXSU(2)xU(1) and assume the
three gauge couplings @fachlattice site are the same for a
given gauge group. Above the scalethe full 4D theory is We have presented 4D constructions for supersymmetric
the SMXSM, in which the MSSM matter is charged under models with extra dimensions. We have found that in the
one of them, while the link fields are charged under both. Wesimplest model(5D N=1 SUSY YM) the necessary en-
take three link fields, one transforming as a bifundamentahancement of 4DV=1 supersymmetry automatically takes
underSU(3) x SU(3), onetransforming as a bifundamental Place without any fine tuning, and thus 5D Lorentz invari-
under SU(2)x SU(2) and one field charged undét(1)  @nce is also recovered. For a theory with more complicated
X U(1). These fields acquire scalar component VEV’s thatmatter content this result_ no longer holds, and a fine tuning
break the SNKSM group structure down to just the SM. in the interaction terms is necessary. We have used_ these
The ordinary MSSM gauge couplingsy, for a models to translate the priori five-dimensional mechanism

_ _ of gaugino mediation of supersymmetry breaking into a
p“[nlégla)fg;{ tﬁg(ezrzdsp%(lﬁ'z ]Iaatltri?:eri;?;ig ttﬁrt)hue gﬁaa:u%i /5 ou simple 4D model. In these 4D versions of gaugino mediation

evaluated near the scale The gauge couplings therefore supersymmetry breaking_ is_transr_nitted to the MSSM be-
appear to undergo a discontinuous jump at this scale, if wsause the physical gaugino is a mixture of gauge eigenstate

follow the gauge couplings of the diagonal subgroup up to Sauginos, one of which couples to the supersymmetry break-

and then the gauge couplings of the MSSM lattice site foin9 sector, while another to the SM matter fields. We find

energies bevond. We can evolve the individual gaude cou- that a lattice as coarse as two gauge groups is sufficient to
lin % ab)g e .the scale by the usual renorr?1al'gat'on— ensure the appearance of the soft breaking mass spectrum
plings g, abov @ Dy the usu 1zallon- characteristic of gaugino mediation so long as the inverse

%;cl’gsp(grrlgctideu;'og;lcog;ie\ﬂ’sﬂg}ui}gl:c:h'g%g?;fmi_l'mfattice spacing is much smaller than the SUSY mediation
. y can ; scale. With more than about five gauge groups one also ob-
tions. At one loop the running of the gauge couplings from; s she gaugino-mediated spectrum even if the SUSY me-
Ay down tou is given by the usual formula diation scale is of order the inverse lattice spacing.

V. CONCLUSIONS
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