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Solutions of the atmospheric, solar, and LSND neutrino anomalies
from TeV scale quark-lepton unification

T. L. Yoon and R. Foot
School of Physics, Research Centre for High Energy Physics, The University of Melbourne, Victoria 3010, Australia

~Received 11 May 2001; published 29 November 2001!

There is a uniqueSU(4)^ SU(2)L ^ SU(2)R gauge model which allows quarks and leptons to be unified at
the TeV scale. It is already known that the neutrino masses arise radiatively in the model and are naturally light.
We study the atmospheric, solar, and LSND neutrino anomalies within the framework of this model.
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I. INTRODUCTION

The similarity of the quarks and leptons may be due
some type of symmetry between them. Various theories h
been proposed including the Pati-Salam theory@1# where the
leptons take the fourth color within anSU(4)^ SU(2)L

^ SU(2)R gauge model.1 While definitely a good idea, ther
are some slightly unpleasant aspects of the Pati-Sa
model. In particular, one of the main drawbacks of the P
Salam theory is that almost all of its unique predictions
new physics cannot be tested because the experimental
straints on the symmetry breaking scale imply that it is ou
reach of current and proposed experiments. The proble
twofold. First there are stringent constraints coming fro
rare meson decays. These imply a lower limit on the sy
metry breaking scale of about 20 TeV@3# for the symmetry
breaking scale which means that the heavy gauge boson
too heavy to be found at even the CERN Large Hadron C
lider ~LHC!. The Pati-Salam model at the relatively lo
scale of 20 TeV also has great problems in explaining
light neutrino masses. The see-saw mechanism adopte
such models cannot suppress the neutrino mass sufficie
unless the symmetry breaking scale is very high. The
quired light neutrino masses suggest that the symm
breaking scale is at least about 50 PeV@4# (1 PeV
[1000 TeV). All is not lost however. There appears to b
unique alternativeSU(4)^ SU(2)L ^ SU(2)R gauge model
~which we call the alternative 4-2-2 model! which preserves
the elegance and simplicity of the original Pati-Salam the
while allowing for a low symmetry breaking scale of abou
TeV @5#. This not only allows the unique predictions of th
theory to be tested in collider experiments, but the the
also avoids the dreaded gauge hierarchy problem by no
troducing any hierarchy to begin with. The theory also h
characteristic predictions for rareB,K decays, baryon num
ber violation as well as nonzero neutrino masses, all
which are naturally within current bounds, despite the l
symmetry breaking scale of a TeV. Thus in one act of pr
tidigitation all of the problems afflicting the original Pat
Salam model are cured.

1Other possibilities include models with a discrete quark-lep
symmetry which features a spontaneously brokenSU(3) color
group for leptons@2#.
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Over the past few years, significant evidence for neutr
masses has emerged from the neutrino physics anoma
the atmospheric@6#, solar @7# and Liquid Scintillation Neu-
trino Detector~LSND! @8# neutrino experiments. It is there
fore an interesting question as to whether the alterna
4-2-2 model can accommodate these experiments. It ha
ready been shown@9# that the masses for the neutrinos in th
model typically span the necessary range to possibly acc
for these experiments. In fact viewed simply as a gau
model for neutrino masses, the theory is quite interest
because it provides a nice explanation for the small mas
of the neutrinos without any need for~untestable! hypotheses
about high energy scales~which arise in most popular theo
ries of neutrino masses!. We will show that the theory in its
minimal form can accommodate the atmospheric and LS
neutrino anomalies but not all three~including solar! simul-
taneously. Thus, the theory is a candidate for the phy
responsible for the neutrino physics anomalies. Howe
since it cannot explain all three of the neutrino anomalies
obviously follows that if all three anomalies are confirmed
forthcoming experiments, then this would require phys
beyond this model for an explanation. One elegant poss
ity is the mirror symmetrized extension which can provide
simple explanation of the neutrino physics anomalies, as
will show.

The outline of this paper is as follows: In Sec. II w
briefly comment on the experimental situation and the va
ous oscillation solutions to the solar, atmospheric neutr
anomalies and the LSND measurements. In Sec. III we
vise the essentials of the alternative 4-2-2 model. In parti
lar we will derive the mass matrices of the fermions af
spontaneous symmetry breaking~SSB!. We will also define a
basis for the fermions in which their weak eigenstates
related to their respective mass eigenstates via Cabib
Kobayashi-Maskawa-~CKM!-type unitary matrices. In Sec
IV we explain the mechanisms that give rise to the masse
the neutrinos. This includes the tree level mixing that gen

ates right-handed neutrino Majorana masses2 ñRM̄R( ñR)c

n

2Throughout this paper the tilde on the fermion fields is to sign
that they are flavor eigenstates as opposed to mass eigen
~without a tilde! in this model. See Sec. III for more detail. Not
that the tilde has nothing to do with supersymmetry other tha
mere notation coincidence.
©2001 The American Physical Society02-1
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T. L. YOON AND R. FOOT PHYSICAL REVIEW D65 015002
and two radiative mechanisms, via gauge and scalar inte
tions, that give rise to Dirac masses of the ordinary neu
nos. In Sec. V we consider the special case of decou
generations and examine the possibility to obtain near m
mal ñL→( ñR)c oscillations within the model~which turns
out to be negative!. In Sec. VI, we mirror symmetrize the
alternative 4-2-2 model to obtain a TeV scale soluti
scheme for all three of the neutrino anomalies. In Sec.
we will identify how the minimal alternative 4-2-2 mode
could provide simultaneous solutions to~near maximal oscil-
lations! atmospheric neutrino anomaly and the LSND me
surements in the case where gauge interactions dominat
radiative neutrino mass generation. We conclude in S
VIII.

II. OSCILLATION SOLUTIONS TO THE ATMOSPHERIC
AND SOLAR NEUTRINO ANOMALIES AND LSND

MEASUREMENTS

The experimental situation regarding the oscillation so
tions of the atmospheric and solar neutrino problems
made much progress over the last few years. In this pape
mainly focus on the simplest possible solutions which
volve maximal~or near maximal! two-flavor oscillations.

A. Atmospheric neutrino anomaly

In the case of atmospheric neutrino anomaly there is c
pelling evidence that about half of the up-goingnm flux dis-
appears@6#. The simplest oscillation solutions which can e
plain the data are maximalnm→nt or maximal nm
→nsterile oscillations @10#. Despite impressive efforts b
Super-Kamiokande@11# the experimental data cannot y
distinguish between these two possibilities@12#. Unfortu-
nately, this situation probably cannot be clarified until lon
baseline experiments provide or fail to providet events ap-
proximately in the year 2007. At present the parameter ra
that is consistent with the atmospheric neutrino anomal
roughly sin22u*0.85 and

1023&dmatm
2 /eV2&1022. ~1!

B. Solar neutrino anomaly

In the case of solar neutrino anomaly@7# there is very
strong evidence that about half of thene flux from the sun
has gone missing when compared to theoretical models.
simplest explanation of this is in terms of maximalne oscil-
lations, with the main suspects being maximalne→na (na is
some linear combination ofnm or nt) @13–16# or maximal
ne→nsterile oscillations@15–17#.3 This maximum oscillation
solution to the solar neutrino problem can explain the 5
flux reduction for a large parameter range:

3Note that maximal~or near maximal! ne→nsterile oscillations
~and/or maximalnm→nsterile oscillations! are consistent with stan
dard big-bang nucleosynthesis~BBN! for a large range of param
eters@18#.
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3310210 eV2&dm2&1023 eV2. ~2!

The upper bound arises from the lack ofn̄e disappearance in
the CHOOZ and Palo Verde experiments@19#, while the
lower bound comes from a lack of any distortion in the me
sured Super-Kamiokande recoil energy spectrum@20,21#,
which should make its appearance fordm2&3310210 eV2

~traditional ‘‘just so’’ region!. Note that the maximum oscil
lation solution was the only oscillation solution to predict t
approximate energy independent spectrum obtained
Super-Kamiokande@small mixing angle~SMA! Mikheyev-
Smirnov-Wolfenstein~MSW!, large mixing angle~LMA !
MSW and ‘‘just so’’ all predicted some distortion that shou
have been seen#. The Super-Kamiokande Collaboration h
also searched for a day-night effect. However no evide
for any difference in the day and night time event rates w
found with a 3s upper limit of @20#

An2d,0.055 ~3!

whereAn2d[(N2D)/(N1D) ~N 5 night time events and
D 5 day time events!. This limit allows a slice of paramete
space to be excluded~using the numerical results of Re
@17#!:

231027 eV2&udmsolar
2 u&1025 eV2~sterile!,

431027 eV2&udmsolar
2 u&231025 eV2~active!.

~4!

Thus for both the active and sterile maximal oscillation s
lutions the alloweddm2 range breaks up into a highdm2

region and a lowdm2 region:

2y31025&dm2/eV2&1023 ~highdm2 region!,

3310210&dm2/eV2&4y31027 ~ low dm2 region!,

~5!

where y50.5 for the sterile case andy51 for the active
case. These oscillation solutions will be tested in the n
future by SNO, Borexino and KamLAND experiments.
fact the SNO experiment has recently announced their
results@22# which is a measurement of the charged curr
event rate. This result, when combined with the elastic s
tering rate obtained at Super-Kamiokande disfavors thene
→nsterile oscillation solution at about the 3 sigma level@22#.
However both measurements are dominated by system
which suggests that this result is not yet convincing but
nevertheless an interesting hint. Things should become m
clearer when SNO measures the neutral current event
which should allowne→na to be distinguished fromne
→nsterile at more than 7 sigma. Meanwhile, Borexino@23#
can test the lowdm2 region by searching for a day-nigh
effect and also seasonal effects@16# while KamLAND @24#
can test the highdm2 region by searching forne disappear-
ance. Finally part of the highdm2 region, 1024&dm2/eV2

&1023 impacts on the atmospheric electron-like events a
is currently disfavored@25#.
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SOLUTIONS OF THE ATMOSPHERIC, SOLAR, AND . . . PHYSICAL REVIEW D65 015002
C. LSND data

There is strong and interesting evidence forn̄m→ n̄e os-
cillations coming from the LSND experiment@8# which sug-
gests the parameter region

0.2&dmLSND
2 /eV2&3 ~6!

with a rather small mixing angle sin22u;33102221023.
This result will be checked by BooNE@26# soon. If the
LSND signal is verified then one must invoke addition
~sterile! neutrino~s! to simultaneously explain all the sola
atmospheric and LSND data due to the largedmLSND

2 ;eV2

gap. Even if LSND is not verified, effectively sterile neutrin
may still be responsible for the solar and/or atmospheric n
trino anomalies. The origin of the atmospheric and solar n
trino anomalies is something that only careful experimen
studies can establish.

III. THE MODEL

In this paper we shall study the physics of the neutr
masses in the alternative 4-2-2 model@5,9#. Before doing so
it is instructive to revise the essentials of this model~with
some refinement!. The gauge symmetry of the alternativ
4-2-2 model is

SU~4! ^ SU~2!L ^ SU~2!R . ~7!

Under this gauge symmetry the fermions of each genera
transform in the anomaly free representations:

QL;~4,2,1!, QR;~4,1,2!, f L;~1,2,2!. ~8!

The minimal choice of scalar multiplets which can bo
break the gauge symmetry correctly and give all of
charged fermions mass is

xL;~4,2,1!, xR;~4,1,2!, f;~1,2,2!. ~9!

Observe that the required scalar multiplets have the s
gauge representation as those of the fermions which g
some degree of elegance to the scalar sector~although there
are three generations of fermions and only one generatio
scalars!. These scalars couple to the fermions as follows:

L5l1 Tr@QL̄~ f L!ct2xR#1l2 Tr@QR̄f L
Tt2xL#

1l3 Tr@QL̄ft2QR#1l4 Tr@QL̄fct2QR#1H.c.,

~10!

where the generation index has been suppressed anfc

5t2f* t2. Under theSU(3)c^ U(1)T subgroup ofSU(4),
the 4 representation has the branching rule 453(1/3)
11(21). We will assume that theT521,I 3R51/2 (I 3L
51/2) components ofxR(xL) gain nonzero vacuum expec
tation values~VEVs! as well as theI 3L52I 3R521/2 and
I 3L52I 3R51/2 components of thef. We denote these
VEVs by wR,L ,u1,2 respectively. In other words,
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^xR~T521,I 3R51/2!&5wR ,

^xL~T521,I 3L51/2!&5wL ,

^f~ I 3L52I 3R521/2!&5u1 ,

^f~ I 3L52I 3R51/2!&5u2 . ~11!

We will assume that the VEVs satisfywR.u1,2,wL so that
the symmetry is broken as follows:

SU~4! ^ SU~2!L ^ SU~2!R

↓^xR&

SU~3!c^ SU~2!L ^ U~1!Y

↓^f&,^xL&

SU~3!c^ U~1!Q ~12!

where Y5T12I 3R is the linear combination ofT and I 3R
which annihilateŝ xR& ~i.e., Y^xR&50) andQ5I 3L1Y/2 is
the generator of the unbroken electromagnetic gauge sym
try. Observe that in the limit wherewR@wL ,u1 ,u2, the
model reduces to the standard model. The VEVwR breaks
the gauge symmetry to the standard model subgroup.

To facilitate easy reference, we will usea56 1
2 , b5

6 1
2 to index theSU(2)L and SU(2)R component respec

tively, whereasg[$g8,4% is used to index theSU(4) com-
ponents, whereg8[(y,g,b) is the usual color index for
SU(3)c , andg54 the forth color. With this index schem
the fermion multiplets are written as~with the generation
index suppressed!

QL
a,g5S Ũ Ẽ0

D Ẽ2D
L

, QR
b,g5S Ũ ñ

D̃ l D
R

,

f L
a,b5S ~ẼR

2!c ñL

~ẼR
0 !c l L

D . ~13!

The rationale to label some of the fermion fields in the m
tiplets with a tilde will be addressed shortly in the next pa
graph. In the above matrices the first row ofQL and f L(QR)
is theI 3L(I 3R)5a(b)51/2 component while the second ro
is the I 3L(I 3R)5a(b)521/2 component. The two column
of QL ,QR are theg5g8 and g54 components ofSU(4),
and the columns off L are theI 3R5b561/2 components.
Each field in the multiplets Eq.~13! represents 331 column
vector of three generations.

As in the case of the standard model, the flavor state
the fermion fields are, in general, not aligned with the cor
sponding mass eigenstates. This shall necessitate the i
duction of some theoretically arbitrary CKM-type unita
matrices into the theory. Without loss of generality we c
choose a basis such thatDL ~the left-handed down-type
quarks! in QL , l R ~the right-handed charged leptons field!
in QR and l L ~left-handed charged lepton fields! in f L are
2-3
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T. L. YOON AND R. FOOT PHYSICAL REVIEW D65 015002
~almost4! mass eigenstate fields that couple with their resp
tive diagonal mass matrix. The rest of the fieldsc̃ ~fields
with a tilde! are flavor states.

It is instructive to list and label the scalar fields ind
explicitly as follows:

xL
a,g5S xL

g8,1/2 xL
4,1/2

xL
g8,21/2 xL

4,21/2D ,

xR
b,g5S xR

g8,1/2 xR
4,1/2

xR
g8,21/2 xR

4,21/2D ,

fa,b5S f1/2,1/2 f1/2,21/2

f21/2,1/2 f21/2,21/2D . ~14!

The electric charges of the components ofxL,R , f can be
read off from Eq.~13! because the scalars and fermions ha
the same gauge representation.

The mass matrices~after spontaneous symmetry breakin!
of the fermions are derived from the Yukawa Lagrangian
Eq. ~10! as follows:

L~after SSB!5L E1L l1L u1L d1H.c., ~15!

where

2 iL E5ẼL
2M̃EẼR

22ẼL
0M̃EẼR

0 ,

2 iL l5~ẼR
0 !cM l ñR1 l̄ LM l l R ,

2 iL u5ŨLM̃uŨR1Ẽ L
0M̃uñR ,

2 iL d52DLM̃dD̃R2ẼL
2M̃dl R , ~16!

and

M̃E5wRl1 , M̃u5~l3u22l4u1!, M̃d5~l4u22l3u1!,

~17!

are 333 generally nondiagonal mass matrices for the exo
E leptons, up-type quarksU and down-type quarksD, re-
spectively,

Ml5wLl25S me 0 0

0 mm 0

0 0 mt

D ~18!

is the diagonal mass matrix for the charged leptons. T
mass matricesM̃E , M̃u , M̃d can be diagonalized in th

4Strictly, l L ,l R are approximately but not exactly mass eigensta

because of the mass mixing betweenl R andẼL
2 @see the forthcom-

ing Eq. ~16!#. This means that the true charged lepton mass eig
state fields have the forml L

true5 l L1O(MdMl /ME
2)EL ,l R

true5 l R

1O(Md /ME)ER .
01500
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usual way~biunitary diagonalization! to obtain the diagona
mass matrices, e.g.,ME5U†M̃EV etc. so that the flavor
statesc̃ are related to their mass eigenstatesc via unitary
matrices:

ER5V†ẼR , EL5U†ẼL ,

UR5YR
†ŨR , UL5YL

†ŨL ,

DR5K8D̃R , ~19!

and D̃L5DL , l̃ L5 l L , l̃ R5 l R with our choice of basis. Note
that approximately the same unitary matrixU(V) relates
both EL

0 , EL
2 (ER

0 , ER
2) to their weak eigenstate

ẼL
0 , ẼL

2 (ẼR
0 , ẼR

2) because the mass matrices are a
proximatelySU(2)L @SU(2)R# invariant.

The gauge fields in the 15 representation ofSU(4) has

the branching rule 1558(0)13(2 4
3 )13̄( 4

3 )11(0) under
SU(3)L ^ U(1)T . We identify the color octet 8~0! as the glu-

ons of the usualSU(3)c color group, 3(2 4
3 ),3̄( 4

3 ) color
triplet lepto-quark gauge bosonsW8,W8* that couple theg
5g8 components tog54 component inxL,R , QL,R . Note
that there is also a neutral gauge bosonBm8 corresponding to
the singlet 1~0!. The matrixYL

†[KL is the usual CKM matrix
~as in the standard model!, whereasYR

†K8†[KR is the ana-
logue of the CKM matrix for the right-handed charge
quarks inSU(2)R sector. The matrixK8 is the analogue of
the CKM-type matrix in theSU(4) sector pertaining to
lepto-quark interactions mediated byW8,W8* . It was shown
in Refs.@5,9# that the main experimental constraints on th
4-2-2 model come from rareB and K decays such asK0

→m6e7,B0→m6t7 etc. depending on the form ofK8. Re-
markably, the symmetry breaking scale could be as low a
TeV without being in conflict with any experimental me
surements. Indeed we will assume that the symmetry bre
ing scale is in the interesting low range:

0.5~1.0! TeV &MWR
~MW8!&10 TeV,

45 GeV&ME&10 TeV, ~20!

which is well motivated because it avoids the gauge hie
chy problem and it also allows the model to be testable
existing and future colliders~such as LHC!. ~Note that the
lower limit on the mass of theE lepton arises from CERN
e1e2 collider LEP measurements of theZ0 width.!

Apart from laboratory experimental bounds, there are a
astrophysical ones onMWR

. In particular Refs.@27–29# have
argued that based on ‘‘energy-loss’’ argument, Supern

s

n-
2-4
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SOLUTIONS OF THE ATMOSPHERIC, SOLAR, AND . . . PHYSICAL REVIEW D65 015002
1987A excludes a range of values forMWR
and theWL-WR

mixing parameter,5 z ~for mnR
&10 MeV):

z,1025,

~0.320.5!&
MWR

TeV
&22240 in the limitz→0, ~21!

which seems to marginally rule out the range ofMWR
as

assumed in Eq.~20!. However, while there will undoubtedly
be effects for supernova coming from the additional gau
bosons in our model, we should nonetheless keep in m
that the modeling of core collapse of supernova is gener
plagued by theoretical, observational as well numerical
certainties. For example, Berezinsky@30# has recently em-
phasized that the reasonably successful description of
1987A is somewhat surprising given that it was assumed
the presupernova protostar was a non-rotating red supe
ant, while it appears that it was actually a rotating blue su
giant. Also, Turner@31# pointed out that there exists unce
tainty in the theoretical model for the hot core of a co
collapsed supernova, which itself depends critically upon
equation of state at supernuclear densities~which is a state-
of-art problem in nuclear physics!. The criterion of neutrino
luminosity from SN 1987A,Qa&1053 erg s21, a key ingre-
dient in obtaining the SN 1987A bound of Eq.~21!, accord-
ing to Ref.@31# is also subject to question. Raffelt and Seck
@27# pointed out that SN 1987A bound on the right-hand
and other light exotic particle interactions could be uncert
by up to as much as 2 orders of magnitude, which co
alleviate the apparent ‘‘conflict’’ of the range assumed by E
~20! and the SN1987A bound of Eq.~21!. While keeping in
mind the possible astrophysical implications of a low sy
metry breaking scaleMWR

;1 TeV, we now continue with
our exploration of the possible phenomenology of the al
native 4-2-2 model.

The SU(2)L,R charged gauge bosonsWL,R
6 couple to the

fermions via the interaction Lagrangian density

iL gauge5
gL

A2
@ULW” L

1KLDL1 ñLW” L
1l L1EL

0W” L
1EL

2

1~ER
2!cW” L

1~ER
0 !c1H.c.#1

gR

A2
[URW” R

1KRDR

1 ñRW” R
1l R1~ER

0 !cV†W” R
1l L1~ER

2!cV†W” R
1ñL

1H.c.]. ~22!

The charged gauge interactions are of our interest bec
they will give rise to radiative Dirac mass terms to the ne
trinos in this model as we will now discuss.

5In our case here,z.m2/MWR

2 &4310252131024, where m2

5gLgRu1u2, see forthcoming Eq.~33!.
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IV. NEUTRINO MASS

With the model as defined in Sec. III, the ordinary neut
nosñL are massless at tree level because theñL states do not
couple to any VEV@see Eq.~15!#.6 However, the neutrino
masses are nonzero in the model because there are 1
~and higher order! Feynman diagrams which contribute
their masses. In other words the masses of the neutrinos
radiatively in the model. In particular, as we will see later
Dirac massmD and añL2(EL)c mass mixing termmnE will
be generated as mass corrections at 1-loop level, meanw
the ñR states gain Majorana masses at tree level by mix
with E leptons. We will elaborate these mechanisms in m
detail in the following subsections. In this paper we will b
working exclusively in the ’t Hooft–Feynman gauge.

A. Tree level Majorana mass matrix M R

At tree level, mixing betweenñR with EL,R
0 generates

right-handed neutrino Majorana massMR . In the mass
eigenstate basis~for the EL,R

0 ! defined in Eq.~19!, the tree-
level Lagrangian density of Eq.~15! becomes

2 iL5
1

2~ ñL
¯ ~ ñR!c EL

0̄ ~ER
0 !c!MS ~ ñL!c

ñR

~EL
0!c

~ER
0 !

D
2~DL̄ EL

2! S Md 0

0 U†MdK8
D S DR

l R
D 1EL

2̄MEER
2

1 l̄ LM l l R1UL̄MuUR1H.c., ~23!

where

M5S 0 0 0 0

0 0 YRMuYL
†U MlV

0 ~YRMuYL
†U !† 0 2ME

0 ~MlV!† 2ME 0

D
~12312 matrix!. ~24!

Md , Mu are the 333 diagonal mass matrices for th
down-type quarks and up-type quarks, respectively, whe

6To generate tree-level neutrino mass we need to either admi

gauge invariant bare mass termmbaref̄ L( f L)c into the Lagrangian
density in Eq.~10! or add a new Higgs bosonD;(4,2,3) into the
Lagrangian density via the couplinglDD†QRf L1H.c. By develop-
ing a VEV, D can generate a Dirac mass termñLmDñR . We argue
that since the scale ofmbare is completely independent of the wea
scale, the assumption thatmbare!Mweak is surely an interesting
possibility. In view of this plausible assumption we have s
mbare50. Meanwhile, adding an additional scalar multiplet such
D spoils both the simplicity and elegance of the model.
2-5
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T. L. YOON AND R. FOOT PHYSICAL REVIEW D65 015002
ME is the 333 diagonal mass matrix forE leptons after

biunitary-diagonalizingM̃E5wLl1:

M̃E5UMEV†[US ME1 0 0

0 ME2 0

0 0 ME3

D V†. ~25!

The matricesU,V describe the relation between the we
and mass eigenstates of theE leptons and can be determine
from l1 @see Eq.~19!#.

One can block diagonalize the 939 matrix in the lower
right sector ofM by a similarity transformation@32# using
the approximately orthogonal matrix

Ur5S I3 rp

2rp
T I6

D ~939 matrix!

where

rp5~YRMuYL
†U MlV! S 0 2ME

21

2ME
21 0

D
~336 matrix!. ~26!

Block diagonalization castsM into the form

M→S 0 0 0 0

0 MR 0 0

0 0

0 0
2ME8

D , ~27!

where each ‘‘0’’ is a 333 matrix of zeros, and

MR.~MlVME
21U†YLMuYR

† !

1~MlVME
21U†YLMuYR

† !† ~333 matrix!,

ME8.S 0 ME

ME 0 D ~636 matrix!. ~28!

In the limit ME@Ml ,Mu , the statesñR are decoupled from
the E leptons. In the special case of decoupled generat
~e.g.,YL5YR5U5V5I ), M reduces to

M5S 0 0 0 0

0 0 mqu
ml

0 mqu
0 2MEi

0 ml 2MEi
0

D , ~29!

where i, qu , and l index the generations. In this case, E
~28! reproduces the result

MR5
2mqu

ml

MEi

~30!
01500
ns

.

as obtained in Ref.@9#.

B. Radiative correction to M due to gauge interactions

At the 1-loop level the gauge interactions from th
charged SU(2)L gauge bosonsWL

6 and SU(2)R gauge

bosonsWR
6 give rise toñL (̄ ñL)c Majorana massmM , ñL ñ̄R

Dirac massmD and ñL (̄EL
0)c mass mixing termmnE . The

Dirac massmD arises from the gauge interactions7

gL

A2
ñLW̄mL

1 l L1
gR

A2
ñRW̄mR

1 l R1H.c. ~31!

which leads to the Feynman diagram in Fig. 1.
Note that since these interactions do not mediate cr

generational mixing among the neutrinos, the Dirac m
matrix mD is strictly diagonal. As calculated in Ref.@9#, for
each generation,

mD5ml

gRgL

8p2

m2

MWR

2
lnS MWR

2

MWL

2 D [mlkg , ~32!

where m2[gLgRu1u2 is the WL2WR mixing mass. Note,
that the lower limit ofm2 is simply zero sincem2 vanishes in
either limits ofu1→0 or u2→0 and the theory remains phe
nomenologically consistent in this limit. It was also shown
the Ref.@9# that

m2

MWR

2
&

1

2A3

MWL

2

MWR

2

mb

mt
, ~33!

which is not a strict upper limit, but rather an approxima
condition to avoid fine-tuning.8 In view of this rough upper
limit, it is convenient to writemD in terms of a paramete
0,h,1 defined such that

mD5mlkg5mlhS ~34!

where

7The ~unphysical! Goldstone boson contributions will be evalu
ated together with the~physical! scalar contributions in Sec. IV C.

8As shown in Ref. @9#, the limit of Eq. ~33! comes from
u1u2/(u1

21u2
2)&mb /mt . To avoid the equalitymb5mt we will

need the scale ofu1 ,u2 to be separated by a hierarchy, else we w
need to fine-tune the Yukawa coupling constantsl3,4.

FIG. 1. Dirac mass generated by gauge interactions leadin

the mass termñL ñ̄R .
2-6
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S5S~MWR
!5

gRgL

8p2 lnS MWR

2

MWL

2 D 1

2A3

MWL

2

MWR

2

mb

mt

;1027S TeV

MWR
D 2

. ~35!

If we take the reasonable range of 0.5 TeV,MWR

&10 TeV, thenS typically spans a range of

1026,S&1029. ~36!

Thus, the gauge loop contribution tomD is proportional to
ml and is naturally light because of its radiative origin.

The mass mixing termmnE arises at 1-loop level via the
gauge interactions

gL

A2
EL

0̄WmL
1 EL

21
gR

A2
~ER

2̄!cV†WmR
1 ñL1H.c. ~37!

leading to the Feynman diagram in Fig. 2.
Note that in contrast tomD , the involvement of the matrix

V in the interactions Eq.~37! may mediate cross generation
mixing. In the special case of decoupled generations,mnE
has been calculated earlier by Ref.@9# as

mnE5ME

gRgL

8p2 S m2

MWR

2 D F lnS MWR

2

MWL

2 D
1

ME
2 lnS MWL

2

ME
2 D

ME
22MWL

2 2

ME
2 lnS MWR

2

ME
2 D

ME
22MWR

2
G ;hMES.

~38!

In addition to mD and mnE , this model also generates
nD L( ñL)c Majorana mass termmM at 1-loop level by charged
gauge interactions. In the case of decoupled generations

mM5mlmqd
ME

gRgL

8p2 S m2

MWR

2 D F lnS MWR

2

ME
2 D

MWR

2 2ME
2

2

lnS MWL

2

ME
2 D

MWL

2 2ME
2
G

;h
mlmqd

ME
S ~39!

is generically tiny compared tomD andmnE .

FIG. 2. ñL (̄ẼL
0)c neutrino mixing term generated by gauge inte

actions leading to the mass termmnE .
01500
C. Radiative correction to M due to scalar interactions

In the previous subsection we have shown that at 1-lo
level the gauge interactions give rise to Dirac massmD ,
mass mixing correctionmnE and alsomM . Nevertheless, in
this model this is not the only way mass corrections co
arise. Other than the gauge mechanism discussed in the
vious subsection, the Higgs sector also contains interact
that could generate Dirac mass for the neutrinos as a ra
tive mass correction. The relevant interactions involve
negatively charged color singlet scalarxL,R

4,21/2:

2 iL x4,21/252 iLx
L
4,21/22 iLx

R
4,21/2

5
xR

4,21/2

wR
EL

2̄MEV†~ ñL!c2
xL

4,21/2

wL
ñRM̄ lV~ER

2!c

2
xR

4,21/2

wR
EL

0MEV†~ l L!c2
xL

4,21/2

wL
l RMl ñL1H.c.

~40!

The first two terms of Eq.~40! will give rise to a Dirac mass
correctionmD with E2 as propagator~see Fig. 3!, whereas
the last two terms will give rise to a mass mixing termmnE
with charged leptons as propagator. Therefore in compar
to mD the massmnE can be safely ignored. The mixing be
tweenxL2xR is effected solely by the mixing term of th
form

V35MxL
†ft2xR1M 8xL

†fct2xR1H.c.

⇒V3^f&

5m3^f&
2 xL

4,2 1/2~xR
4,21/2! * 1H.c.,

m3^f&
2 [2~Mu11M 8u2! ~41!

in the Higgs potential.
The charged gauge bosonsWL,R

6 acquire mass by eating
two colorless, charged would-be Goldstone bosons~let us
call them GR

6 and GL
6) which are linear combinations o

xL,R
4,21/2, f1/2,1/2 andf21/2,21/2, leaving behind two physica

charged Higgs~which we will call H1,2
6 ). The fieldsxL,R

4,21/2

FIG. 3. ñL ñ̄R Dirac mass generated by scalar interactions. T
cross in the scalar propagator is the perturbative mass mixing
that can be shown to vanish in either limit ofu1,2→0.
2-7
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appearing in Fig. 3 are linear combination of these would
Goldstone bosons and physical Higgs bosons. We shall w
out the linear combinations ofGL,R

6 and H1,2
6 in xL,R

4,21/2 so
that the Dirac mass arising from thesex interactions can be
calculated.

The Goldstone bosons associated with each spontaneo
broken symmetry are given by

G5FTTala , ~42!

whereF are the Higgs scalars of the theory,Ta the genera-
tors of the broken symmetries andla the vacua. Utilizing
Eq. ~42!, the would-be Goldstone bosonsGL

6 andGR
6 can be

identified by takingTa as the chargedSU(2)L,R generators,
t6 . The two states which are orthogonal toGR

6 andGL
6 will

be related to the physical Higgs bosonH1,2
6 with masses de-

noted byMH1 ,H2
. We will first work in the limitu1→0 since

we expectu1!u2 ~or u2!u1, which is analogous tou1
!u2 in the following analysis!. In this limit it is possible to
show that~see Appendix! the weak eigenstates are related
GL,R

6 ,H1,2
6 via the unitary matrixUg as

S xR
4,21/2

xL
4,21/2

~f1/2,1/2!*

f2 1/2 ,21/2

D 5UgS GR
2

GL
2

H1
2

H2
2

D , ~43!

where the matrixUg is ~in the limit u1→0)

Ug51
wR

Ng
0

u2
2/wR

N1

0

0
wL

NL
0

2u2
2/wL

N2

2u2

Ng
0

u2

N1
0

0
u2

NL
0

u2

N2

2
[S U11U12U13U14

U21U22U23U24

U31U32U33U34

U41U42U43U44

D , ~44!

with normalization constants

Ng
25wR

21u2
2 , NL

25wL
21u2

2 ,

N1
25u2

2F11S u2

wR
D 2G , N2

25u2
2F11S u2

wL
D 2G . ~45!
01500
e
rk

sly

Referring to Eqs.~43!, ~44!, we observe that

xR
4,21/25

wR

AwR
21u2

2
GR

21
u2

AwR
21u2

2
H1

2 ,

xL
4,21/25

wL

AwL
21u2

2
GL

22
u2

AwL
21u2

2
H2

2 . ~46!

Thus it is clear that thex-loop correction vanishes in th
limit u1→0. Self-consistency implies that

lim
u1→0
u2Þ0

V3^f&5 lim
u2→0
u1Þ0

V3^f&50, ~47!

which we also prove in the Appendix. In short, thex-loop
contribution to the neutrino Dirac mass vanishes in the lim
u1→0 ~or analogouslyu2→0). Recall that the gauge contr
bution to Dirac mass also vanishes in this limit. The expec
hierarchyu1!u2 ~or u2!u1) thus ensures a small gaugeand
scalar contribution to the neutrino Dirac mass.

We now investigate the case of smallu15” 0 ~with u1
!u2). In this case we can treat theu1 term as a perturbation
that induces small mass mixing termV3^f& that will couple
xR

4,21/2 to xL
4,21/2 , thus leading to neutrino Dirac masse

This argument also holds true if we interchangeu1↔u2.
Indexing the would-be Goldstone bosons and physical Hi
fields as

Sa
T5~GR

2 ,GL
2 ,H1

2 ,H2
2! , a51,2,3,4, ~48!

we can write the linear combination ofGL,R
2 and H1,2

2 in
xL,R

4,21/2 compactly as

xR
4,21/25 (

a851,3

U1a8Sa8 , xL
4,21/25 (

b52,4
U2bSb . ~49!

The explicit expression ofU1a8 ,U2b can be read off directly
from Ug in Eq. ~44!. The mass correction in Fig. 3 is now
summation of all the contributions from the approxima
mass eigenstates diagrams. Now we could evaluate the F
man diagram in Fig. 3 by treating the cross insertion a
perturbation that gives rise to a vertex factorm3^f&

2 5

2(Mu11M 8u2). In the special case of decoupled gene
tions, the mass correction is calculated to be~for first gen-
eration!

mD5kxme , ~50!

with

kx5
ME

2

16p2wLwR

A, ~51!

where
2-8
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A5 (
a8,b

Aa8bU1a8U2b ,

Aa8b5S Mu11M 8u2

MSa8

2 2ME
2 D F MSa8

2 lnS MSb

2

MSa8

2 D
MSb

2 2MSa8

2
2

ME
2 lnS MSb

2

ME
2 D

MSb

2 2ME
2
G . ~52!
ng

th

om

re

ra
re
o

h
e

r

the

of
This quantityA can be greatly simplified in the limitwR
2

@u2
2@wL

2 ,u1
2 . In this limit GR

2 and H2
2 will dominate the

loop:

A'S Mu11M 8u2

MWR

2 2ME
2 D F MH2

2 lnS MH2

2

MWR

2 D
MH2

2 2MWR

2
2

ME
2 lnS MWR

2

ME
2 D

MWR

2 2ME
2
G ,

~53!

where we have set the mass ofGR
6 to the mass ofMWR

since
we are working in the ‘t Hooft–Feynman gauge. Putti
in reasonable limits for the parameters (MWR

*0.5

TeV, 50 GeV,ME&10 TeV, 1 GeV,wL,200 GeV), we
find

u1u2ME
4

wLwRMWR

4
&kx&

u1u2

wLwR
. ~54!

Thus we can now constrain the relative contribution of
gauge andx-loop diagrams. We find that

ME
4

MWR

4

wR

wL
&

kx

kg
&

wR

wL
. ~55!

Using ME /MWR
*1022 and 10&wR /wL&104, we have

1027&
kx

kg
&104. ~56!

Thus there is a range of parameters where gauge loop d
nates (kg@kx) and range of parameters wherex-loop domi-
nates (kg!kx). There is also a troublesome intermediate
gion with kg'kx which we will for the most part ignore.

V. ñL-ñR MIXING IN DECOUPLED GENERATIONS

Having derived the various contributions to the neut
lepton mass matrixM , we now examine the scenario whe
we assume that the mixing between generations is appr
mately negligible. Referring to the tree level mass matrixM
of Eq. ~24!, ñR gains a Majorana mass from its mixing wit
theE leptons whileñL is massless at tree level. Including th
1-loop mass corrections, the mass matrixM is
01500
e

i-

-

l

xi-

M5S mM mD mnE 0

mD
† 0 YRMuYL

†U MlV

mnE
† ~YRMuYL

†U !† 0 2ME

0 ~MlV!† 2ME 0

D .

~57!

The neutrinos~both left-handed and right-handed ones! will
approximately decouple from theE leptons since the latte
are much heavier~recall thatME*45 GeV fromZ0 width!.
The effective Lagrangian density for the mass matrix of
neutrinos after decoupling from theE leptons is

Le f f5
1

2
~ ñL~̄ ñR!̄c!M nS ~ ñL!c

ñR
D 1H. c., ~58!

where the matrixM n is as given by

M n.S mM mD8

~mD8 !† MR
D , ~59!

with

mD8 5mD1mnEME
21V†Ml . ~60!

MR is given earlier in Eq.~28!. In the seesaw limit where the
eigenvalues ofMR are much larger than the eigenvalues
mD8 , Eq. ~58! becomes

L seesaw.
1

2
ñLm̄L~ ñL!c1

1

2
~ ñR!̄cMRñR1H.c., ~61!

where

mL.mM2mD8 MR
21~mD8 !†

5mM2VLS m11 0 0

0 m22 0

0 0 m33

D
3VR

†UR* S M1 0 0

0 M2 0

0 0 M3

D 21

3UR
†VR* S m11 0 0

0 m22 0

0 0 m33

D VL
T , ~62!
2-9
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with mii andMi ( i 51,2,3) as the eigenmasses of the m
matricesmD and MR respectively. In Eq.~62! we have as-
sumed that the matricesMR andmD8 are diagonalized with

MR5URS M1 0 0

0 M2 0

0 0 M3

D UR
T ,

mD8 5VLS m11 0 0

0 m22 0

0 0 m33

D VR
† . ~63!

GenericallymM is always tiny in comparison to the othe
contributions tomL in all generations and shall be droppe
hereafter.

In the case of decoupled generations the mixing an
betweenñL with ñR can be determined from the matrixM n :

tan 2un52
2mD8

MR
. ~64!

The eigenmasses ofM n are

1

2
~MR6AMR

214mD8
2!5

MR

2 S 16
1

cos 2un
D ~65!

and the mass squared difference is simply

dmn
25

MR
2

cos 2un
5S 2mlmqu

ME
D 2

1

cos 2un
. ~66!

Under the assumption of decoupled generations, the o
way to solve atmospheric neutrino anomaly is viañmL

→( ñmR)c oscillations. However, since experimentally w
know thatdmatm

2 &1022 eV2, sin22uatm*0.8, this implies

ME5
2mqu

ml

Admatm
2 cos 2uatm

*70 TeV ~67!

even with the lowest possible fermion massesmqu
5mu ,ml

5me . Thus it is not possible to solve atmospheric neutr
anomaly with decoupled generations while keeping the s
metry breaking scale in the interesting range& few TeV. The
above result applies to both cases wheremD8 is dominated by
the gauge loop or by thex loop.

VI. MIRROR SYMMETRIZATION OF THE ALTERNATIVE
4-2-2 MODEL

As concluded in the last section, decoupled generati
cannot accommodate the atmospheric neutrino anom
within our assumption of a low 4-2-2 symmetry breaki
scale& few TeV. Nevertheless, we can still have near ma
mal active-sterile oscillations at the TeV scale if we mirr
symmetrize the alternative 4-2-2 model in the spirit of t
exact parity model~EPM! @34#. These models allows parit
to be an unbroken symmetry of nature which it turns o
01500
s

le
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o
-

s
ly

-
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offers a framework to understand the dark matter, neutr
anomalies and various other puzzles.~For a review of the
evidence see@35#.! It is well known that in mirror matter
models maximal mixing occurs naturally because of the
broken parity symmetry. In the ‘‘mirror symmetric alterna
tive 4-2-2 model,’’ñL will oscillate maximally to its parity
partner (ñR8 )c. Mirror symmetrization can thus provide
mechanism to obtain maximal mixing whereas the natura
tiny masses~hence mass squared difference! of the neutrinos
are radiatively generated and naturally small in this T
scale model.

In the mirror symmetric alternative 4-2-2 model, the sym
metry group is extended toSU(4)^ SU(2)L ^ SU(2)R

^ SU(4)8^ SU(2)L8 ^ SU(2)R8 . Each family has a mirror

partner, which we denote with a prime. ConsideringñL and
ñR , ñR8 , and ñL8 will be included in the particle content en
abling parity to be an unbroken symmetry. Under the pa
transformation,ñL↔g0ñR8 ,ñR↔g0ñL8 ~as well asx→2x, of
course!. The seesaw Langrangian density of Eq.~61! be-
comes

L8seesaw5
1

2
( ñL ~ ñR8 !c ~ ñR)c ñL8)M n8S ~ ñL!c

ñR8

ñR

~ ñL8 !c

D 1H.c.,

~68!

where

M n85S 0 m8 mD8 0

m8 0 0 mD8

~mD8 !† 0 MR 0

0 ~mD8 !† 0 MR

D . ~69!

m8 is a parity invariant mass mixing term that mixes t
ordinary neutrinos with the mirror neutrinos. In the minim
mirror matter 4-2-2 model, i.e., with only the Higgs field
f,xL ,xR andf8,xL8 ,xR8 , there is no mirror-ordinary mixing
Yukawa coupling to generatem8. This is quite unlike the
case of the EPM model where ordinary-mirror Yukawa co
pling ( ñL8)cfñL exists becauseñR and its parity partnerñL8
are gauge singlets. One could consider the mirror-ordin
mass mixing term as a dimension-five unrenormalizable b
mass terml0 f̄ R8f8 f Lf/Mh so that the mirror symmetric al
ternative 4-2-2 model becomes effectively a remnant res
ing from the breakdown of some unknown physics at a mu
higher scaleMh .

Alternatively, the required mirror-ordinary mass mixin
term can be generated if an additional Higgs sca
rab,a8b8;(2,2)(28,28) exists. The gauge invariant Yukaw
coupling

Lr5l5 f̄ Lrt2f R81l6 f̄ Lrct2f R81H.c. ~70!
2-10
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will generate a mirror-ordinary mass mixing term asr de-
velops a VEV. Becauser can couple toff8 in Higgs po-
tential it can easily gain a VEV in the right orientation.

To see this more transparently, let us take a look at
part of Higgs potential containing only the scalar fieldr,

V~r!5M r
2r†r1mrf8†f†r1mr8~rc!†ff81O~r3,r4!

1H.c. ~71!

As f,f8 develop VEVs at

^f&5^f8&5S 0 u2

u1 0 D ,

the trilinear term will induce a linear term inr. Because of
this, minimizingV(r) with respect tor†

]V

]r† 5M r
2r1mr^f&^f8&1mr8^f8c&^fc&50 ~72!

will induce the VEVs

^r&52
mr^f&^f8&1mr8^f8c&^fc&

M r
2

~73!

to the components ofrab,a8b8. The VEV for the componen

^r& (12,2818)5^rc& (12,2818)52
~mr1mr8!u1u2

M r
2

~74!

will generate the desired ordinary-mirror mass mixing te
in Lr :

Lr5 ñLm̄8ñR81H.c., ~75!

where

m852l5^r& (12,2818)2l6^r
c& (12,2818)

5
u1u2~mr1mr8!

M r
2 ~l51l6!. ~76!

In any case the mirror-ordinary mass mixing termm8 is still
a free parameter of the theory. In the seesaw limitñL ,(ñR8)c

decouple fromñL8 ,(ñR)c in Eq. ~68! and the Lagrangian den
sity of light neutrinos is given by

Ln95
1

2
„ñL
¯~ ñR8 !c

…M 9S ~ ñL!c

ñR8
D 1H.c., ~77!

where

M 95S 2mD8 MR
21~mD8 !† m8

m8 2mD8 MR
21~mD8 !†D . ~78!

The mass matrixM 9 in Eq. ~78! describes maximalñL

→( ñR8 )c oscillations with eigenmasses
01500
e

m652mD8 MR
21~mD8 !†6m8. ~79!

In the limit of small intergenerational mixing the mas
squared difference is simply

dm7
2 5

4m8mD8
2

MR
5

2m8mlMEi
S2h2

mqu

. ~80!

dm6
2 can be identified asdmatm

2 ~second generation! and
dmsolar

2 ~first generation! with maximal oscillation solutions,
thereby explaining the atmospheric and solar neutr
anomalies. If small intergenerational mixing~parametrized
by u and f) between the first and second generations
included, the LSND experimentdmLSND

2 can be identified
with

dmLSND
2 [udmne1 ,nm1

2 u[umne1

2 2mnm1

2 u ~81!

and

~sin 2u1sin 2f!2;33102221023. ~82!

Thus the mirror symmetrized extension of the alternat
4-2-2 model can explain all the three neutrino anoma
without any physics beyond the TeV scale. The alternat
4-2-2 model provides the neutrino masses while mirror sy
metrizing it provides the maximal mixing between each
dinary and mirror neutrino flavor.

VII. MIXING BETWEEN GENERATIONS: NEUTRINO
MASS DOMINATED BY GAUGE INTERACTIONS

In the previous two sections we have examined the c
where the mixing between generations was small. Under
assumption the minimal alternative 4-2-2 model could n
accommodate the large mixing required to explain the atm
spheric or solar neutrino problems. However we have a
shown that the mirror symmetrized extension could expl
all three neutrino anomalies. We now return to the minim
alternative 4-2-2 model and examine the alternative c
where mixing between generations is large. From the disc
sion in the previous sections, recall that there are two dif
ent ways in which neutrino masses are generated in
model, namely via the gauge interactions and via the~scalar!
x interactions. In either case, we see that the Dirac ma
are proportional to the charged lepton massesml @see Eqs.
~32!, ~50!#. The proportional constantskx andkg are poorly
constrained however. Our ignorance of their relative stren
does not permit us to tell which mechanism is the domin
ing one. Though it remains a possibility that both contrib
tions may be equally contributive, we shall not treat th
general scenario to avoid complications. We will focus o
attention only to the limiting case where the gauge inter
tions are assumed to dominate over the scalar interacti
i.e., kg@kx .

A. Two generations maximal mixing and ‘‘lop-sided’’ M R

In this subsection, we shall analyze the limiting ca
where the radiative contribution to the neutrino mass fr
2-11
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gauge interactions dominates the contribution due to the
lar interactions, i.e.,kg@kx . Our strategy is to look for a
mechanism in the 2-3 sector that provides a near maxi
ñmL→ ñtL oscillation solution to atmospheric neutrin
anomaly. We then generalize it to the case of three gen
tions.

Recall that the effective mass matrix for the light neut
nos is given bymL @see Eq.~62!#. Knowledge ofmL allows
us to work out the mixing angles anddm2, and to make
contact with the neutrino experiments. In general, to cal
late mL we require knowledge of the Yukawa coupling m
trices l1 , . . . ,l4. Our purpose here is to identify simpl
forms of l1 , . . . ,l4 which enable the model to accomm
date the neutrino data. Let us first look at the special cas
just the 2-3 sector. As discussed in Ref.@33#, we can obtain
maximalñmL→ ñtL oscillations ifmD8 is approximately diag-
onal andMR being ‘‘lop sided,’’ meaning that the off diago
nal elements are much larger than the diagonal elemen
the 2-3 mass matrix.

The ~tree level! two generations mass matrixMR in the
2-3 sector, which we parametrize by

MR25S r 22 r 23

r 23 r 33
D ~83!

can be easily worked out from Eq.~28!. Note that the form
of MR2 is intimately related to the Yukawa couplingsl1 as
well as the right-handed CKM-type matrixYR . On the other
hand, quite independently, the radiative correction to the n
trino massmD8 can be read off directly from Eq.~60!. Cross
generational mixing of the Dirac masses is possible due
the dependence of the matrixV. However, in the limiting
case of diagonalV, the matrixmnE , and thusmD8 , also be-
comes diagonal. In this case we can approximatemD8 by
mD .9 The Dirac masses ofmD8 ;mD , namelym22,m33, are
simply given by Eq.~34!, with ml5mm ,mt respectively.

Let us parametrize the unitary matrices@as introduced in
Eq. ~19!# as

U5S cosuu 2sinuu

sinuu cosuu
D , V5S cosuv 2sinuv

sinuv cosuv
D ,

YR5S cosuy 2sinuy

sinuy cosuy
D . ~84!

The simplest way that we have found to obtain lop-sidedMR
in our scheme~modulo certain ‘‘permutations’’ which we
will discuss later! is to note that whenl1 is approximately
diagonal~i.e., uu,v small!,10 then

9In the case where the radiative correction is dominated by
gauge interactionsmnE will contribute tomD8 @see Eq.~60!#. In the
special case of decoupled generations,mD8 5mD1mnEml /MEi

. Ref-
erence@9# established the estimation ofmD;mnEml /MEi

. Assum-
ing no accidental cancellation, we could approximatemD8 ;mD .

10For simplicity we have set the CKM matrixYL5I .
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lim
uu,v→0

MR2

5S 2 cosuymmmc

ME2

sinuymmmc

ME2

2
mtmt

ME3

sinuymmmc

ME2

2
mtmt

ME3

2 cosuymtmt

ME3

D .

~85!

If we let MR2 be diagonalized by the unitary matrix

UR25S cosuR 2sinuR

sinuR cosuR
D , ~86!

we find that the mixing angleuR behaves like

lim
uu,v→0

tan 2uR52
mtmt /ME3

S mtmm

ME2

2
mtmt

ME3
D cosuy

. ~87!

This mean that, assuming no accidental cancellation, we
obtain utan 2uRu@1 in the limit

uu,v→0, uy→
p

2
, ~88!

with a pair of approximately degenerate eigenmasses

M2,3.7S mmmc

ME2

2
mtmt

ME3
D[7mnR

. ~89!

SincemD8 is kept diagonal due to the vanishinguv , therefore
maximal mixing in the left-handed neutrinos~2-3 sector! is
realized. This can be seen from the effective mass matrixmL
of Eq. ~62!:

mL→S 0 1

1 0D m22m33

mnR

. ~90!

The effective mass matrix Eq.~90! indicates that, in the pres
ence of small intergenerational mixing, the left-handed act
neutrinosñmL ,ñtL are approximate maximal mixture of a
most degenerate mass eigenstates. We denote these e
masses as

m2 ,m35
6h2S2

S mc

mtME2

2
mt

mmME3
D . ~91!

In the case where the limits of Eq.~88! are only approxi-
mate, the diagonal entries inMR2 ~and hencemL) shall in
effect be replaced by some tiny valuese instead. It is natural
to conceive thate could split the eigenmass degeneracy to
order of 1023 eV2&udmatm

2 u[um3
22m2

2u&1022 eV2. How-
ever, if this splitting is to be natural, the size ofdm3,2

2 [m3
2

2m2
2 must be smaller thanm2

2 ,m3
2 themselves, i.e.,

e

2-12
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m3
2 ,m2

2@1022 eV2. ~92!

Estimatingm2,3
2 @using the range ofS from Eq. ~36!#,

m2,3
2 'ME3

2 S mm

mt
D 2

S4h4&1027S ME3

TeV
D 2

eV2. ~93!

Thus we see that although near maximalñmL→ ñtL oscilla-
tions are achieved via the ansatz of Eq.~88! thedm2 is not in
natural compatibility withdmatm

2 in this particular situation.
This means that maximal oscillation solution to atmosphe
neutrino anomaly is not accommodated in this case. H
ever we will show later that a permutation on the up-ty
quark masses inmi could be performed to obtain compatibi
ity with the consistency requirement of Eq.~92!. It is more
convenient to discuss how the permutation~and its rationale!
of the up-type quark masses could obtain a compatible ra
of dm2 between this scheme and the experimental values
including the first generation neutrino into the picture. W
shall do so in the following subsection.

Before we proceed to the three generations case,
worth to comment on the form taken byYR

† under the ansatz
of Eq. ~88!. SincemD is approximately diagonal under th
ansatz, near maximalñmL→ ñtL oscillations should originate
from MR2 of the right-handed neutrino sector, which is
turn related to the form ofYR

† and the mass matrixl1. In the
limit of this ansatz,YR

† is off-diagonal in the 2-3 sector~as-
suming that the first generation is approximately decoup
from the 2-3 sector!,

YR
†;S 1 0 0

0 0 1

0 1 0
D . ~94!

If we assume a left-right similarity so that

KR;KL;I , ~95!

then this means thatK8[YR
†KR

† also has the form

K8;S 1 0 0

0 0 1

0 1 0
D 5Y†. ~96!

Recall that, as discussed in detail by Refs.@5,9#, the SU(4)
gauge interactions involving the colored gauge bosonsWm8

L5
gs

A2
DR̄Wm8 gmK8l R1H. c. ~97!

could mediate lepto-quark transitions. In Refs.@5,9# it was
shown thatK8 must be non-diagonal to avoid contribution
from K0→m6e7 decays. In that case the primary constra
on theSU(4) symmetry breaking scaleMW8 is from rareB0
decays,B0→m6e7,t6e7 and t6m7, depending on the
forms ofK8, resulting in the low symmetry breaking scale
; TeV. Specifically, in order for the TeV symmetry brea
01500
c
-

ge
y

is

d

t

ing scale to occur,K8 have to be in certain forms that wil
suppress the rare decaysKL→m6e7. In fact Ref.@9# pointed
out that there are only 4 possible~approximate! forms forK8
that are consistent with the TeV SSB scale:

K185S 0 0 1

cosa sina 0

2sina cosa 0
D ,

K285S cosb sinb 0

0 0 1

2sinb cosb 0
D ,

K385S cosg 0 sing

2sing 0 cosg

0 1 0
D ,

K485S 0 cosd sind

0 2sind cosd

1 0 0
D . ~98!

Note that Eq.~96! is a special case of these forms, name

K28~b50!5K38~g50!. ~99!

Equation~95! suggests that nondiagonalK8 ~required for low
symmetry breaking! and nondiagonalYR

† ~required to obtain

maximalñmL→ ñtL oscillations! may have a common origin
For example, if we make the ansatz thatl3 ,l4 takes the
approximate form

l3;S 3 0 0

0 0 3

0 3 0
D , l4;S 3 0 0

0 0 3

0 3 0
D , ~100!

with the other 2 Yukawas$l1 ,l2% approximately diagonal,
then this will simultaneously lead to Eq.~94! and~96!, hence
the low symmetry breaking scale (; few TeV! and near
maximal ñmL→ ñtL oscillations.

B. Permutation of up-type quark masses and three
generation mixing

In this subsection we will include the first generation ne
trino into the picture under the assumption that the interg
erational mixing between the first and the 2-3 sector is sm
In such a scenariomL will take the approximate form

mL'S 2
m11

2

M1

0 0

0 0
m22m33

mnR

0
m22m33

mnR

0

D ~101!
2-13
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which leads to a pair of almost degenerate eigenma
m2 ,m3 in the 2-3 sector that is separated from eigenmas

m152
m11

2

M1
52

meME1
h2S2

2mu
eV ~102!

with a distinct gap. The near maximal oscillation solution f
atmospheric neutrino anomaly corresponds to a near de
erate pair of eigen massesm2 ,m3. It is obvious that to in-
clude the first generation neutrino to solve the solar neut
anomaly~which involves a much smallerdm2&1023 eV2

required by all oscillation solutions! the first generation neu
trino mass will have to be very nearly degenerate with
other two neutrino masses, which is quite unnatural. Thus
conclude that the gauge loop mechanism seems to exp
the LSND data more readily than the solar neutrino anom
The gapdm1,3

2 'dm1,2
2 can then be identified with the LSND

measurement,11 0.2 eV2&dmLSND
2 &3 eV2.

In the case of two generations discussed in the prev
subsection, the form of the matrixK8[K28(b50)5K38(g
50) in Eq.~96! leads to the scale ofm2,3

2 that are incompat-
ible to Eq.~92!. However, this result corresponds to only o
specific form ofK8 in Eq. ~98!. In general, the other forms o
K8 in Eq. ~98! could also lead to maximal neutrino oscilla
tions that are consistent with TeV scale SSB, assuming
YR

†5K8 holds. Essentially there are only 4 special forms
K8 that are of our interest. The case ofK8[K28(b50)
5K38(g50) has been shown to be incompatible with E
~92!. We will investigate the other three forms ofK8 in turns,
namely (a) K48(d50)5K28(b5p/2), (b) K18(a50)
5K38(g5p/2), and (c) K48(a5 p/2)5K48(d5p/2).

To find out how these three different forms ofK8 can also
lead to maximal mixing in the 2-3 sector, we will use th
constraint that the lop-sided form ofMR , and thus maximal
ñmL→ ñtL oscillations, is preserved whenYR

† takes on differ-
ent form other than that of Eq.~94! as we replaceYR

†

→YR8
†. @YR8

† are the other forms ofK8 as catalogued in Eq
~98!.#

Referring toMR in Eq. ~28!, since we know that, with the
ansatz of Eq.~88! and the choice of basis, the matric
Ml ,V,U†,ME ,YL are diagonal, it then follows that the form
of MR goes like

MR;U†MuYR
†;S 3 0 0

0 0 3

0 3 0
D . ~103!

11Note that the solar neutrino problem can be solved in the cur
scenario if we mirror symmetrize the model as we did in Sec. VI
that maximalne→ne8 oscillations result. In particular if we want to
explore the possibility that the atmospheric neutrino anomaly
solved via near maximalnm→nt oscillations then this is actually
compatiblewith mirror symmetry, since we just need to be in th
parameter region where the oscillation length fornm→nm8 oscilla-
tions is much greater than the diameter of the earth for atmosph
neutrino energies.
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WhenYR
† is replaced byYR8

† via some transformationT,

YR
†→YR8

†5TYR
† , ~104!

the lop-sided form ofMR should be preserved,

U†MuYR
†→U8†MuTYR

†;S 3 0 0

0 0 3

0 3 0
D . ~105!

Since

YR
†5S 1 0 0

0 0 1

0 1 0
D

@see Eq.~94!#, this means thatU8† ought to conform to the
condition that

U8†MuT5S 3 0 0

0 3 0

0 0 3
D . ~106!

The matrixT relates the ‘‘original’’ form ofYR
† @as in Eq.

~94!# to YR8
† via Eq. ~104!. Once we knowT then we could

work out U8† from Eq. ~106!. With YR
†→YR8

† and U†(5I )
→U8†, the net effect is that the diagonal up-type quark m
matrix Mu is replaced by

Mu→U8†MuT, ~107!

thus changing the up-type quark masses dependence o
eigenmassesmi .

(a) YR8
†[K48(d50)5K28(b5p/2). Let us look at the

form of

YR8
†[K48~d50!5K28~b5p/2!5S 0 1 0

0 0 1

1 0 0
D .

The correspondingT matrix is

T5S 0 0 1

0 1 0

1 0 0
D .

The matrixU8†, by Eq. ~106!, is

U8†5S 0 0 1

0 1 0

1 0 0
D ,

⇒Mu

5diag$mu ,mc ,mt%→U8†MuT

5diag$mt ,mc ,mu%. ~108!
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As a result, the up-type quark masses as appear inm2,3 and
m1 in Eqs. ~91! and ~102! will be permuted by Eq.~108!
which lead to the eigenmasses for the light neutrinos

m2 ,m3'7h2S2ME2S mt

mc
D , m152

h2S2ME1

2 S me

mt
D .

~109!

We see that the upper limit of the scale ofm2,3
2 are of the

order

m2,3
2 /eV2&200h4, ~110!

which permits a large range of parameter inh so thatm2,3
2

@dmatm
2 for self-consistency. The mass gap

um2
22m1

2u'm2
25S4h4ME2

2 S mt

mc
D 2

~111!

also permits a large range of parameter space inh to accom-
modatedmLSND

2 . This scheme is easily realized by imposin
the ansatz that the Yukawas are of the forms

l25S 3 0 0

0 3 0

0 0 3
D , l15S 0 0 3

0 3 0

3 0 0
D ,

l3,45S 0 3 0

0 0 3

3 0 0
D . ~112!

(b) YR8
†[K18(a50)5K38(g5p/2). Next, we look at

the form

YR8
†[K18~a50!5K38~g5p/2!5S 0 0 1

1 0 0

0 1 0
D .

In this case,U8† andT assume the forms

U†5S 0 1 0

1 0 0

0 0 1
D , T5S 0 1 0

1 0 0

0 0 1
D . ~113!

This results in permutation of up-type quark mass
$mu ,mc ,mt%→$mc ,mu ,mt%. The mass square difference

um2
22m1

2u'm2
25S4h4ME3

2 S mm

mt
D 2

&1027S ME3

TeV
D 2

eV2

~114!

is not compatible with the experimental values ofdmLSND
2 .

In addition, the scale ofm2,3
2 is also too tiny to accommodat

dmatm
2 :

m2,3
2 ,431025 eV2. ~115!

In passing, we note that the Yukawas of the forms
01500
s

l25S 3 0 0

0 3 0

0 0 3
D , l15S 0 3 0

3 0 0

0 0 3
D ,

l3,45S 0 0 3

3 0 0

0 3 0
D ~116!

will lead to the above unsatisfactory scheme.
(c) YR8

†[K18(a5p/2)5K48(d5p/2). Finally, we in-
vestigate the case

YR8
†[K18~a5p/2!5K48~d5p/2!5S 0 0 1

0 1 0

1 0 0
D .

In this case,U8† andT assume the forms

U8†5S 0 0 1

1 0 0

0 1 0
D , T5S 0 1 0

0 0 1

1 0 0
D . ~117!

The up-quark mass permutation is$mu ,mc ,mt%
→$mt ,mu ,mc%. The upper bound of the scale ofm2,3

2 is

m2,3
2 /eV2&0.7h4, ~118!

which means that it is possible to accommodatedmatm
2 . The

mass squared difference for LSND is

dmLSND
2 [um2

22m1
2u'm2

25S4h4ME3

2 S mm

mc
D 2

&1022S ME3

TeV
D 2

eV2. ~119!

In this case we see that its parameter space can still acc
modate the LSND and atmospheric neutrino anomalies@al-
though the regime of parameter space is more restricted c
pared to the case (a)#. This scheme can be implemented
the Yukawas take the forms

l25S 3 0 0

0 3 0

0 0 3
D , l15S 0 0 3

0 3 0

3 0 0
D ,

l3,45S 0 3 0

0 0 3

3 0 0
D . ~120!

In short, we see that out of the 4 different forms ofK8 in
Eq. ~98!, the schemes~a! and~c! stand out to be most prom
ising to provide viable solutions to both LSND and~near
maximal oscillations! atmospheric neutrino anomaly wit
mass scale& few TeV. Note the schemes we have discuss
in this section cannot accommodate solar neutrino anom
2-15
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~while keeping both LSND and atmospheric neutrino so
tions! because the right-handed neutrinos are decoupled f
the left-handed ones at TeV scale.

In the parameter range where scalar interactions domi
over the gauge interactions things are less constrained
there are more possibilities. It is possible to implement
lop-sidedMR scheme in the scalar sector case in much
same way as in the previous section. Other possibili
wheremD is off diagonal are also possible in the scalar ca
which can also lead to schemes compatible with data. H
ever these schemes seem less elegant because of the
degree of arbitrariness in scalar interactions.

VIII. CONCLUSION

The similarity of the quarks and leptons suggests t
quarks and leptons might be connected by some spont
ously broken symmetry. However such a situation will le
to a gauge hierarchy problem unless the symmetry brea
scale is less than a few TeV. There are only two known w
that quark-lepton unification can occur at the TeV sca
First, quarks and leptons can be connected by a spont
ously broken discrete symmetry@2#. While this an interesting
possibility, it is difficult to naturally explain the lightness o
the neutrinos in these schemes. The second possibility
modification of the Pati-Salam model@1# called the alterna-
tive 4-2-2 model@5,9#. It turns out that the neutrinos in th
alternative 4-2-2 model are naturally light because they
massless at the tree level and their masses are radiat
generated. The model also predicts novelBo physics.

The possibility that the model can provide the interactio
to generate the right neutrino mass and mixing patte
which might explain the atmospheric, solar and/or LSN
neutrino anomalies has been studied in detail in this pa
We have shown that the model cannot accommodate sim
taneously all three of the anomalies unless it is extende
some way. However the minimal model can quite natura
accommodate the atmospheric and LSND anomalies.
have also pointed out that the solar neutrino problem co
be most naturally explained if the model was extended w
a mirror sector.
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APPENDIX

In this appendix we will obtain the precise form of th
would-be Goldstone bosonsGL,R

6 and physical Higgs fields
H1,2

6 in terms of the charged weak eigenstate fieldsxL,R
4,21/2,

f1/2,1/2, andf21/2,21/2 @i.e., the matrixUg in the Eq.~43!#. In
addition we will also obtain the interesting result that

lim
u1→0
u2Þ0

V3^f&5 lim
u2→0
u1Þ0

V3^f&50. ~A1!
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The Goldstone bosons associated with each spontaneo
broken symmetry are given by

G5FTTala , ~A2!

whereF are the Higgs scalar of the theory,Ta the generators
of the broken symmetries andla the vacua.GL

6 is the
would-be Goldstone bosons that are eaten byWL

6 as their
longitudinal polarization. The associated~charged! genera-
tors of the brokenSU(2)L aretL

6 . Generally,

GL
65@xL

TtL
6^xL&1xL

cTtL
6^xL

c&1xR
TtL

6^xR&1xR
cTtL

6^xR
c &

1fTtL
6^f&1~fc!TtL

6^fc&#
1

NL
. ~A3!

For definiteness let we focus on the negatively charg
fields, and let us work in the limitu1→0:

GL
25

1

Au2
21wL

2 @wLxL
4,21/21u2f21/2,21/2#. ~A4!

Likewise,GR
6 are associated with the SSB of charged sec

in SU(2)R :

GR
65@xL

TtR
6^xL&1xL

cTtR
6^xL

c&1xR
TtR

6^xR&1xR
cTtR

6^xR
c &

1fTtR
6^f&1~fc!TtR

6^fc&#
1

NR
, ~A5!

from which we obtain

GR
252

1

Au2
21wR

2 @wRxR
4,21/22u2~f1/2,1/2!* #. ~A6!

The states orthogonal toGL,R
6 will be the physical HiggsH1,2

6

which in general is not uniquely fixed because there ar
directions orthogonal toGL,R

6 .
A particularly important term in the Higgs potential is th

term responsible for mixingxL
4,21/2 with xR

4,21/2 which ef-
fects the generation of Dirac masses of neutrinos in thx
loop,

V35MxL
†ft2xR1M 8xL

†fct2xR1H.c. ~A7!

We will show that there exists an approximate global sy
metry U(1)X of this Higgs potential in the limitu1→0, u2
50 ~or u2→0,u15” 0) that will allow us to identify the
physical Higgs states~in that limit!. The global symmetry
U(1)X can be defined by the generator

X5Y81I 3R2I 3L , ~A8!

where

Y8^xR&52
1

2
, Y8^xL&5

1

2
, Y8^f&51. ~A9!

Furthermore for the global symmetry to be useful we requ
it to be unbroken by the vacuum, that is,
2-16
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X^xL&5X^xR&5X^f&50 ~A10!

which is indeed the case given our choice ofX ~and the limit
u1→0).

Referring toV3 in Eq. ~A7!, notice that theM 8 term is not
a symmetry underU(1)X . However, in the limitu1→0 then
M 8 must also be zero for self-consistency. The reason is
a nonzeroM 8 in V3 will induce a linear term in the~21!
component off ~i.e., the place whereu1 would sit! when
xL,R develop VEVs. Because the potential is linear inu1 ~for
small u1) a non-zero VEV foru1 must arise which is obvi-
ously not self-consistent with our assumption thatu150.
This shows thatU(1)X becomes an unbroken symmetry b
cause theU(1)X asymmetricM 8 term vanishes in the limit
u1→0. ~We can also draw a similar conclusion in the lim
u2→0, u15” 0.! Furthermore it allows us to uniquel
specify the physical Higgs fieldsH1 ,H2 since now we have
two requirements. First they must be orthogonal toGL,R and
second they must be composed of components with the s
U(1)X charge.~Note thatH1 hasX2charge -1,H2 hasX
2charge11.! These considerations lead to the identificati
of the charged physical Higgs fields:
.

-

01500
at

me

H1
25

1

u2A11~u2 /wR!2 F u2
2

wR
xR

4,21/21u2~f1/2,1/2!* G ,

H2
252

1

u2A11~u2 /wL!2 F u2
2

wL
xL

4,21/22u2f21/2,21/2G .
~A11!

Writing Eq. ~A4!, ~A6!, ~A11! in matrix form, we obtain Eq.
~43!. Note that the matrixUg is unitary,Ug

215Ug
T because

the rows~and columns! are all orthogonal. The existence o
the approximate global symmetryX in the limit u1→0,u2
50 ~or u2→0,u15” 0) means that the mass mixing term

V3^f&}u1u2 . ~A12!

The effect of this is that we can treat the mass mixing ter
V3^f&52(Mu11M 8u2)xL

4,21/2(xR
4,21/2)* as a small pertur-

bation whenu1 (u2) is switched on from zero.
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