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Charge and matter radial distributions of heavy-light mesons calculated on a lattice
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For a heavy-light meson with a static heavy quark, we can explore the light quark distribution. The charge
and matter radial distributions of these heavy-light mesons are measured on a 163324 lattice atb55.7 and a
hopping parameter corresponding to a light quark mass about that of the strange quark. Both distributions can
be well fitted up to 4 lattice spacings (r'0.7 fm) with the exponential formwi

2(r ), where wi(r )
5A exp(2r/ri). For the charge~c! and matter~m! distributionsr c'0.32(2) fm andr m'0.24(2) fm. We also
discuss the normalization of the total charge and matter integrated over all space, finding 1.30~5! and 0.4~1!,
respectively.

DOI: 10.1103/PhysRevD.65.014512 PACS number~s!: 14.40.Nd, 11.15.Ha, 12.38.Gc, 13.20.He
de
th
r

ol
ob
u
b

cu
s.
o
e

d
in
-

th
ng
ef
te
th

a
th

a
en

ic
del

n
r

u-
,
re-

. In

ery
s
gies
in

ter-
on
uld
e-
he

by
to
n
s in

y
ms

ch
ses
I. INTRODUCTION

Lattice QCD has had considerable success in the un
standing of the energies of few-quark systems. However,
spatial distributions of the quarks in these systems have
ceived much less attention. The reasons for this are twof
First, unlike energies, these distributions are not directly
servable, but arise only in integrated forms such as s
rules, form factors, transition rates etc. Secondly, as will
seen later, their measurement on a lattice is more diffi
and less accurate than that of the corresponding energie
spite of this, it is of interest to extract lattice estimates
various spatial distributions and this is the aim of the pres
study.

There have been earlier lattice measurements of ra
distributions. However, they differ from the present work
several ways. For example, in Ref.@1# the authors are inter
ested in the coupling betweenB mesons and thep, which
involves a pseudovector coupling of thep to a single quark.
In contrast, here it is the charge and matter distributions
are studied and these involve vector and scalar coupli
Scalar coupling to single quarks was also studied in R
@2,3#. However, there only the scalar sum rule was evalua
since that was primary a study of the dependence of
meson mass on the quark masses.

A knowledge of spatial distributions can be utilized in
variety of ways. For example, the charge distribution of
light quark (q̄) in a heavy-light meson (Qq̄) can be used to
check possible potential models, where the distributions
calculated from wave functions generated by some differ
tial equation containing an interquark potentialV. In such
models@4# there are several uncertainties—the form ofV, the
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form of the differential equation, how to include relativist
effects—some of which are tuned to ensure that the mo

reproduces the correct (Qq̄) energies. The latter can be i
several partial wavesS1/2,P1/2,P3/2, etc., and can be eithe
the observed energies of, for example, theB meson or the
results of a lattice calculation. However, if spatial distrib
tions are also knowna priori from, say, a lattice calculation
then the uncertainties in such potential models will be

duced. Another way that the (Qq̄) charge distribution could
be of use is in the understanding of multiquark systems
few-nucleon systems~e.g. 3He,4He) it is found that the
nucleon-nucleon correlations are, at short distances, v
similar to that in thetwo-nucleon system—with difference
arising at large distances due to the different binding ener
@5#. This important observation can then be exploited
models of multinucleon systems, by assuming that the in
nucleon correlations are dominated by their two-nucle
counterparts. In the corresponding multiquark case it wo
be of interest if a similar simplification were to arise. Ther
fore, as a first step in that direction, a knowledge of t
two-quark radial correlation in the basic (Qq̄) case is
needed—to be compared later with those in, say, the (Q2q)
or (Q2q̄2) system. This probing of the (Qq̄) or (Q2q̄2)
structure could be carried to a more fundamental level
measuring the form of the underlying color fields that lead
the interquark potentialV and the radial correlations. Such a
extension would be analogous to the study of these field
the (QQ̄) and (Q2Q̄2) systems—see Refs.@6#.

It should be added that the heavy-light system (Qq̄) is the
quark model equivalent to the hydrogen atom (Pe2). There-
fore, from a general point of view, it is of interest in an
discussions comparing the properties of two-body syste
constructed from two particles one of which is very mu
heavier than the other. Also, the interactions in the two ca
have common features—the Coulomb potential}e2/r of the
hydrogen atom versus the one-gluon exchange}a/r in the
heavy-light meson.
©2001 The American Physical Society12-1
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In Sec. II the maximal variance reduction method, cruc
for extracting reliable results, is briefly discussed. In Sec.
the formalism is introduced for evaluating the two- a
three-point correlation functionsC(2) andC(3). In Sec. IV
variational methods for analyzing the lattice data are
plained. In Sec. V the results are given and in Sec. VI so
conclusions are made.

II. MAXIMUM VARIANCE REDUCTION METHOD

It has been demonstrated that light-quark propagators
be constructed in an efficient way using the so-called ma
mum variance reduction~MVR! method. Since this has bee
explained in detail elsewhere, for example in Ref.@7#, the
emphasis here will be mainly on the differences that a
when estimating on a lattice the correlation functio
C(2),C(3) needed for measuring spatial charge and ma
densities. In the MVR method the inverse of a positive de
nite matrix A is expressed in the form of a Monte Car
integration

Aji
215

1

ZE Dff i* f jexpS 2
1

2
f* Af D , ~1!

where the scalar fieldsf are pseudofermions located on la
tice sitesi , j . For a given gauge configuration on this lattic
N independent samples of thef fields can be constructed b
Monte Carlo techniques, resulting in a stochastic estimat
Aji

21 as an average of theseN samples i.e.Aji
215^f i* f j&.

The N samples of thef fields can be calculated separate
and stored for use in any problem involving light quarks w
the same gauge configurations.

In QCD the matrix of interest is the Wilson-Dirac matr
Q512kM , which is not positive definite for those values
the hopping parameterk that are of interest. Therefore, w
must deal withA5Q†Q, which is positive definite. SinceM
contains only nearest neighbor interactions,A—with at most
next-to-nearest neighbor interactions—is still sufficiently
cal for effective updating schemes to be implemented. In
case the light-quark propagator from sitei to site j is ex-
pressed as

Gq5Gji 5Qji
215^~Qikfk!* f j&5^c i* f j&. ~2!

This is the key element in the following formalism. Th
Wilson-Dirac matrix also leads to an alternative form for t
above light-quark propagator from sitei to near sitej:

Gq85Gji8 5g5^~Qjkfk!f i* &g55g5^c jf i* &g5 . ~3!

Later, it will be essential to use at some lattice sites opera
that arepurely local. This then restricts us to using at suc
sites only thef fields that are located on single lattice site
In contrast thec i fields—defined asQikfk—are not purely
local, since they containf fields on next-to-nearest neighbo
sites.

In the above, the term ‘‘maximal variance reductio
comes from the technique applied to reduce the statis
noise in Eq.~2!. The lattice is divided into two boxes (
,t,T/2 and T/2,t,T) whose boundary is kept fixed
01451
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Variance of the pseudofermionic fields is then reduced
numerically solving the equation of motion inside each bo
This allows the variance of propagators from one box to
other to be greatly reduced. However, in the case of a th
point correlation two propagators are needed and this is
treated by choosing one of the points to be on the bound
of the boxes while the other two are inside their own box
Furthermore, the field at the boundary must be local to av
the two propagators interfering with each other. This me
that only thef fields can be used on the boundary and th
they couple to the charge or matter operator. For the point
the boxes, the temporal distance from the boundary sho
be approximately equal to give the propagators a similar
gree of statistical variance.

III. THE CORRELATION FUNCTIONS C„2… AND C„3…

In this section an expression is given for evaluating
two-point correlationC(2)—needed for extracting the bas
Qq̄ energies (ma) and eigenfunctions (v i

a). As will be dis-
cussed in more detail in Sec. IV B,C(2) is expressed in the
form of a matrixCi j (2)—with rank 3 found to be sufficient
The ma andv i

a are then extracted from fitting theCi j (2,T)
by the form

(
a51

M

v i
aexp~2maT!v j

a . ~4!

In practice, three eigenvalues (M53) can be determined
along with their corresponding eigenvectors. These eigen
ues are identified with the masses of theQq̄ S-wave ground
and radial excited states—up to a common additive cons
due to the self-energy of theQ. This constant self-energy
depends on the lattice formalism and hence only energy
ferences can be compared to possible experimental data
as the spectrum ofBs mesons that are basicallyb̄s.

The techniques used to determineC(2) are then extended
to the corresponding matrix for the three-point correlati
functionCi j (3). Aswill be discussed more fully in Sec. V C
the desired radial correlationsxab(r ) are extracted by fitting
Ci j (3,r ) with the form

(
a51

M

(
b51

M

v i
aexp@2mat1#xab~r !exp@2mb~T2t1!#v j

b ,

~5!

where thema andv i
a have the values determined fromC(2).

Details of the derivation of the following formulas fo
C(2) andC(3) are given in the Appendix.

A. Two-point correlation functions C„2…

Given the above light-quark propagators, the two-po
correlation functionsC(2) needed for extracting the energie
of a heavy-light meson can be expressed in the four w
shown in Fig. 1. These are all the same up to statist
errors, but their combination improves the overall measu
ment. In Figs. 1~a! and~b!, the heavy~static! quark propaga-
tor from site (x,t) to site (x8,t1T) is simply
2-2
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CHARGE AND MATTER RADIAL DISTRIBUTIONS OF . . . PHYSICAL REVIEW D 65 014512
GQ~x,t;x8,t1T!5
1

2
~11g4!UQ~x,t,T!dx,x8 , ~6!

whereUQ(x,t,T)5) i 50
T21U4(x,t1 i ) is the gauge link prod-

uct in the time direction. As shown in the Appendix th
leads to the expression

C~2,T!52K ReFUQS (
e53,4

ce* ~x,t1T!fe~x,t !

1 (
d51,2

fd* ~x,t1T!cd~x,t ! D G L , ~7!

whered ande are Dirac spin indices.

B. Three-point correlation functions C„3…

The construction of the three-point correlation functio
C(3) follows that ofC(2) and they are depicted in Fig. 2
Since a probe is now inserted at a distancer from the heavy
quark (Q), two light-quark propagators enter—one fromQ
to the probe and a second from the probe back toQ. The
purpose of the probe is to measure the charge or matter
tribution at a definite pointr . Therefore, only those light
quark propagators that involve the local basic fieldf at r can
be used, since thec field contains contributions fromf
fields at next-to-nearest neighbor sites and so isnonlocal.
Later, when fuzzing is introduced similar restrictions w
enter. In this work two probes are studied:~i! Q(r )5g4
which measures the charge distribution~actually the light

FIG. 1. The four contributions to the two-point correlation fun
tion C(2).

FIG. 2. The two contributions to the three-point correlati
function C(3).
01451
is-

quark charge normalized to 1! and~ii ! Q(r )51 which mea-
sures the matter distribution of the light quark.

As shown in the Appendix, the same techniques int
duced to evaluateC(2) can be extended toC(3) giving the
overall three-point correlation function as

C~3,2t2 ,t1 ,r !5CQ~3!7CQ̄~3!

52^XR
qYR

Q2XI
qYI

Q&, ~8!

where theXq andYQ can be expressed in terms offf and
cUc, respectively. In Eq.~8! the appropriate sign enters fo
Q(r )5g4, since theq and q̄ have opposite charges.

IV. ANALYSIS

The correlations of interest are essentially obtained fr
the ratio ^C(3,T)&/^C(2,T)& by projecting out the ground
state expectation value. However, the latter is only achie
in the limit T→`. In practice, on a given lattice at the max
mum possible values ofT, the signal to noise ratio become
large and effects from excited states are present. In orde
reduce this contamination, a set of wave functions is c
structed by fuzzing the original local wave function. The
wave functions generate a better hadron operator where
Qq̄ meson is created and destroyed. Then, together with
original local form, they serve as a variational basis for a
lyzing the data.

A. The effect of fuzzing

Fuzzing enters in two ways.
Firstly, the basic links containing the gauge field have t

fuzzings. In the standard notation of, for example Ref.@8#,
Fuzz1 has 2 iterations and Fuzz 2 6 iterations. In both ca
the factor multiplying the basic link isf p52.5 i.e.,@A fuzzed
link# 5 f p• @Straight link# 1 @Sum of 4 spatial U bends#.

The pseudofermion fieldf at a given lattice siter is
considered to have three forms:

~1! The basic form that is simply a function of the sing
lattice siter .

~2! The field atr is an average of the fields on the neig
boring six lattice sites~i! i.e.

f1~r !5(
i

U~Fuzz1,r ,r i !f~r i !.

~3! The field atr is an average of the fields on the s
lattice sites~j! that aretwo lattice spacings fromr i.e.

f2~r !5(
j

U~Fuzz 2,r ,r j !f~r j !.

Therefore, only the basic field is local (L)—with fN51
and fN52 being increasingly non-local. This means that
the calculation of the above three-point correlation functio
only the basicf field should be used atr—the position of
the probe insertion. There are now two reasons for this:~1!
The field on the boundary att50 must be local.~2! The
operator insertion must be local. This restriction does
2-3
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occur elsewhere, so that thec fields, which connect directly
to the heavy quark, can be the fuzzed forms constructed f
QikfN . This means that the two- and three-point correlat
functions have the same size (333) as the overall correla
tion matrix,LL,LF1 ,LF2 ,F1F1 ,F1F2, andF2F2.

B. The variational method

There are many ways of analyzing the above correlati
in order to extract the quantities of interest i.e. energies
wave functions. Here a variational method described in R
@9# is applied.

First, the two-point correlation dataC(2) are analyzed to
give the energies (ma) and eigenvectors (v) for theQq̄ sys-
tem. These are then used in analyzing the three-point co
lation dataC(3) to give the charge and matter densities.

Consider the correlation functionC(2,T) as an n3n
matrix—upto 333 in this case with the element
LL,LF1 , . . . ,F2F2. Each elementCi j (2,T) is then fitted
with the form

Ci j ~2,T!'C̃i j ~2,T!5 (
a51

M

v i
aexp~2maT!v j

a , ~9!

wherem1 is the ground state energy of the heavy-light m
son. The statistically independent matrix elements ofC(2)
are then fitted by varying thev i , j

a and ma to minimize the

difference betweenC(2) andC̃(2).
We illustrate the procedure for the 232 case, where the

C(2) can be expressed as the product of three 232 matri-
ces:

C~2!5cTS exp~2m1T! 0

0 exp~2m2T!
D c,

where c5S vL
1 vF1

1

vL
2 vF1

2 D ~10!

and cT is the transpose ofc. In Ref. @9# the rows ofc are
called thev vectorsv i

a . Once thec matrix is known, any 2
32 correlation matrixC can be evaluated for the groun
~excited! state wave function corresponding to the extrac
eigenvaluem1 (m2) by reversing the above procedure
give

C̄5~cT!21Cc21 i.e. C̄ab5ui
aCi j ~T!uj

b , ~11!

where theui
a are components of theu vectors in Ref.@9#.

Theseu vectors are the columns of thec21 matrix and sat-
isfy the condition

v i
aui

b5dab . ~12!

For the 232 case

u15@vF1
2 ,2vL

2#/det~c!, u25@2vF1
1 , vL

1#/det~c!.
~13!
01451
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In the case whereC is the above two-point correlation func
tion C(2) and C̃ in Eq. ~9! is a perfect fit toC, then the
operation in Eq.~11! would result inC̄ being diagonal with
the diagonal elements simply being exp(2maT). Of course,
in practice, the fit is never perfect and the off-diagonal e
ments ofC̄ are a measure of this goodness of fit. This will
demonstrated later. However, as pointed out in Ref.@9#, for
other correlation functions there is no reason forC̄ to be
diagonal.

V. RESULTS

The results are presented in two distinct parts. First,
two-point correlation function is analyzed to give the grou
and excited state energies and eigenvectors i.e.,m1 ,m2 in
Eq. ~10! andu1,u2 in Eq. ~11!. Secondly, these eigenvecto
are used to extract the charge and matter radial distribut
from the three-point correlation functions.

The actual pure gauge configurations~20 in number! and
the pseudofermion fieldsf ~24 per gauge configuration!
were taken from the tabulation generated for the work
Ref. @11#. These are for a 163324 lattice withb55.7 with
the Sheikholeslami-Wohlert improved clover action wi
cSW51.57—corresponding to a lattice spacing ofa
'0.17 fm—and a hopping parameterk50.14077. The latter
corresponds roughly to the strange quark mass. This ca
seen from Ref.@13# where the same parameters in the ligh
light system (qq̄) predict a vector meson to pseudosca
meson mass ratio corresponding to strange quarks. More
tails can be found in Ref.@7#.

In general, when we make fits to our lattice data with t
MIGRAD option of MINUIT , we minimizex2 to achieve a rea-
sonable value ofx2/ndo f . The errors quoted on paramete
are from thex2 increase when varying that parameter w
all other parameters refitted. The systematic error on the
ted parameters comes mainly from the data set chosen~es-
pecially Tmin) and we present results for different values
Tmin to explore this.

In this study, we do not extrapolate the light quark mass
the physical case ofu andd quarks, but retain it at around th
strange quark mass. We also use an infinite heavy qu
mass. Thus our study pertains toQ̄s mesons whereQ is a
very heavy~so static! quark. For this case the remainin
systematic errors come from the lack of sea-quark effe
and the finite lattice spacing used. Although we use
tadpole-improved fermion formalism which should redu
lattice artifacts, it will be necessary to repeat our calculatio
at smaller lattice spacing in order to extrapolate to the c
tinuum limit and so quantify this source of error. We a
using the quenched approximation in this study, and eva
tions with sea quark effects included will be needed to
plore the effects of this approximation on our results.

A. Analysis of the two-point correlation function C„2…

Essentially the energies (E), in lattice units, are extracted
from theC(2,T) in Eq. ~7! using
2-4
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E@C~2,T!#52 lnF ^C~2,T!&

^C~2,T21!&G as T→`. ~14!

In Fig. 3~a! the basicC(2,T) are plotted for the three diag
onal matrix elements where the fields are~i! purely local (L),
~ii ! all Fuzz1,~iii ! all Fuzz 2, in the notation of Sec. IV A
They are all seen to be well determined with the errors be
significant only for Fuzz 2 withT.10. In Fig. 3~b! the re-
sultsE@Cii (2,T)# from Eq.~14! are plotted for the three set
of diagonal matrix elements withi 5L,F1,F2. There it is
seen that onlyE@CF1F1(2,T)# shows a clean plateau tha
extends fromT55 to 9 with a value about 0.88~1!.

To combine these results by a variational calculation
ing Eq. ~9! two numbers are fixed:

~i! M—the number of energies being included. Here, t
is taken to be the same as the number of paths for e
energy and results in the correlation matrices being squa

~ii ! Tmin—the minimum value ofT used in the fit.

FIG. 3. ~a! The basicLL, F1F1, andF2F2 elements ofC(2).
~b! The values ofE(T) for LL, F1F1, andF2F2 separately.~c!
The combinations ofL,F1,F2 for cases 3~solid! and 4~dashed! to

give E@C̄aa#. Also shown is the ratioR5^C̄12(2,T)&/^C̄11(2,T)&
defined in Eq.~15!.
01451
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Here we consider four possibilities to check the dep
dence of the final results on this fitting procedure:

Case 1. In Eq.~9!, the C̃i j (T) are defined in terms of 3
paths~i.e. i , j 51,2,3) and 3 exponentials~i.e. M53) with
Tmin53. This includes the local and both Fuzz1 and Fuz
paths.

Case 2. The same as case 1 but with 2 paths and 2 e
nentials. This includes only the local and Fuzz1 paths.

Cases 3,4 are the same as cases 1,2 but withTmin54.
Minimizing the difference betweenC(2,T) andC̃(2,T) in

Eq. ~9! gives the parameters in Table I. These are surp
ingly good fits, when it is realized that the errors onC(2,T)
are, in most cases, much less than 1%. However, only ca
givesx2/ndo f(2),1 and so this is the one that will be use
in most of this study.

In Fig. 3~c! the results forE@C̄aa# from Eq. ~14! are
plotted for the two sets of diagonal matrix elementsC̄11(2,T)
and C̄22(2,T) for cases 3 and 4. As expected,E@C̄11(2,T)#

'0.86(2) and E@C̄22(2,T)#'1.24(5)—energies that are
consistent with the values ofm1 and m2 in Table I. As a
check on the off-diagonal matrix elementC̄12(2,T), we
evaluate

R@C̄12~2,T!#5
^C̄12~2,T!&

^C̄11~2,T!&
. ~15!

This is seen to be at the 1% level. The conclusion to
drawn from Fig. 3~c! is that C̄ is, indeed, approximately
diagonal withC̄ab(2,T)'exp(2maT)dab . These results will
serve as a comparison when analyzingC(3,T,r ) later.

From Table I, the main result of this subsection—and
one used in most of this study–is case 3 for the 333 fit
usingC(2) data withT>4. Case 4 is for the 232 fit with
T>4. This is also used in some later analyses, but is con
ered to be inferior to case 3. Cases 1 and 2 are given to s
that the inclusion of theT53 data significantly worsens th
fit.

B. Analysis of the three-point correlation function for
sum rules

The charge and matter radial distributionsF(r ,Q) of the
light quark in theQq̄ system are extracted using

F@C~Q,T,r !#5
^C~3,Q,T,r !&

^C~2,T!&
, ~16!

where Q5g4 or 1. However, before showing these rad
distributions, it is of interest to first study the correspondi
sum rules

Fsum@C~Q,T!#5

(
r

^C~3,Q,T,r !&

^C~2,T!&

5
^Csum~3,Q,T!&

^C~2,T!&
, ~17!
2-5
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TABLE I. Values of the parametersama andv i
a , wherea'0.17 fm is the lattice spacing. Cases 1–4

the two point correlations@C(2)#.

ama Case 1 Case 2 Case 3 Case 4
v i

aui
a 333 Tmin53 232 Tmin53 333Tmin54 232 Tmin54

am1 0.8849~10! 0.9005~14! 0.8721~19! 0.8833~27!

am2 1.2953~63! 1.355~10! 1.263~13! 1.307~20!

am3 1.99~10! 1.94~30!

vL
1 0.5164~30! 0.5574~41! 0.4847~56! 0.5149~82!

vF1
1 1.5892~48! 1.6761~52! 1.519~10! 1.589~13!

vF2
1 0.8651~22! 0.8402~38!

vL
2 0.8123~61! 20.8226(74) 0.816~16! 20.834(19)

vF1
2 0.435~22! 20.065(29) 0.644~49! 20.373(57)

vF2
2 20.393(18) 20.251(33)

vL
3 20.258(63) 20.28(22)

vF1
3 1.93~32! 2.2~1.4!

vF2
3 21.40(24) 21.13(81)

ndata(2) 60 30 54 27
nparam(2) 12 6 12 6
ndo f(2) 48 24 42 21
x2/ndo f(2) 3.1 7.5 0.65 1.15

uL
1 0.0421 20.0480 20.0608 20.3294

uF1
1 0.3546 0.6126 0.3258 0.7361

uF2
1 0.4793 0.6364

uL
2 1.1135 21.2482 1.1575 21.4024

uF1
2 20.1432 0.4151 20.1025 0.4545

uF2
2 20.4016 20.4825
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where( r represents the sum over all spatial lattice sites
time t50—the time when the probe acts. The summat
can be easily carried out exactly on the lattice. For the cha
distribution this sum rule should,in the continuum limit, sim-
ply yield the charge of the light quark, which we have chos
to normalize to unity. For the matter distribution the situati
is less clear—see Refs.@2,3#.

In Fig. 4~a! we showFsum@Cii (g4 ,T)# for the three cases
i 5L,F1,F2. There it is seen that, at largeT, the sum rule for
i 5L becomes 1.05(5) and so is consistent with unity. Ho
ever, the results fori 5F1,F2 appear to be somewhat great
than unity forT.5 converging to 1.25(5) and 1.4(1). When
these results are combined using theu vectors in Table I,
then—as seen in Fig. 4~b!—the ground state sum
Fsum@C̄11(g4 ,T)# for both cases 3 and 4 are dominated
the Fsum@CF1F1(g4 ,T)#. Consequently, they are again di
tinctly greater than unity with both cases 3 and 4 tending
about 1.30(5). This seems unavoidable since, as seen fr
Table I, theu vector componentsuF1

1 anduF2
1 are an order of

magnitude larger thanuL
1 . In Fig. 4~b! the sum rule for the

first excited stateFsum@C̄22(g4 ,T)# is also shown. This ap
pears to be approaching unity at aboutT'7 –8. However,
the signal is swamped by the error bars at largerT.

The correlationsCi j
sum(3) are not so well diagonalized a

the Ci j (2) were forced to be earlier. A measure of this
plotted in Fig. 4~b! as
01451
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Rsum@C̄12~Q,T!#5
^C̄12

sum~3,Q,T!&

^C̄11
sum~3,Q,T!&

. ~18!

This is seen to be at the 10% level—an order of magnitu
larger than the correspondingR@C̄12(2,T)# in Eq. ~15!.
Therefore, it is seen that theg4 sum rule calculated in the
above way has two undesirable features:

~1! The ground state sum ruleFsum@C̄11(g4 ,T)# is not
consistent with unity for largeT, being more like 1.30(5).
Only in the continuum limit should the sum be unity. T
some extent this must be expected, since in the present
continuum situation the lattice vector current is not co
served. In principle this can be corrected in various wa
Unfortunately, at the present value ofb55.7, perturbative
expressions would exhibit poor convergence and so be u
liable. Nonperturbative corrections are discussed in the
cent review in Ref.@10#. There an improved vector operato
is introduced and calculations performed in the quenc
approximation atb56.2 and 6.0. However, they find tha
whereas theb56.2 results are satisfactory, those atb5 6.0
are not—suggesting thatO(a2) discretization errors are no
small at the larger lattice spacing. The situation would
even worse at the value ofb55.7 used here. Even so, it i
illustrative to see the results at the higherb ’s, since they may
indicate what could possibly be expected at lowerb ’s. In
2-6
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Ref. @10#, when the expectation value of the renormaliz
vector current is expressed as

^JR&5FV^g4~x!&, ~19!

where^g4(x)& is the quantity evaluated in Eq.~17!, the au-
thors find thatFV'0.8. Similar reductions are found in Re
@1# for the axial vector operator. Of course, the above ar
ment could be reversed to say that the present charge
rule measurement of 1.30~5! gives a nonperturbative est
mate ofFV as 0.77~3!. Later, when individual radial contri
butions are extracted as in Eq.~16!, this continuum effect
could be incorporated approximately by the renormalizat

F@C̄aa~g4 ,T,r !#→ F@C̄aa~g4 ,T,r !#

Fsum@C̄aa~g4 ,T!#
. ~20!

~2! The off-diagonal terms, as illustrated b
Rsum@C̄12(g4 ,T)# in Eq. ~18!, are not zero. However, zero i
only necessary in the continuum limit, when neglecting p
creation. Also, as will be shown in the next subsectio
where radial distributions are extracted, we find that ab
half of the contributions to the sum rule lie insider'2. At
such small values ofr, lattice artifacts may well play a role
to give a non-zero value forRsum.

So far the basic wave functionsui
a have been determined

from Eq. ~9!, via the v i
a i.e. by considering only the two

point correlationsC(2). In anattempt to overcome the tw
above problems withFsum@C̄(g4 ,T)#, the analysis of the
data is now carried out by fitting not onlyC(2) but also
some features ofC(3).

FIG. 4. The g4 sum rule: ~a! contributionsLL, F1F1 and
F2F2 separately;~b! the combinations ofL,F1,F2 for cases 3

~solid! and 4~dashed! to giveFsum@C̄aa(g4 ,T)# defined in Eq.~17!
andRsum in Eq. ~18!.
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In analogy to Eq.~9! the sum rule data are fitted with th
expression

Ci j
sum~3,g4 ,T!'C̃i j

sum~3,g4 ,T!

5 (
a51

M

(
b51

M

v i
aexp@2mat1#xab

3exp@2mb~T2t1!#v j
b , ~21!

where thev i
a are from Table I—the earlier result of minimiz

ing the Ci j (2)—but thexab are treated as free paramete
However, a restriction must be made on the values ofT used
in Eq. ~21!. From Table I it is seen thatTmin must be at least
4 to ensure thatx2(2)/ndo f(2) is comparable to unity. There
fore, in Csum(3) each of the two propagators should be
least 4 Euclidean time steps, i.e., in Eq.~21! we should have
t1>4 and (T2t1)>4. This means that only theC(3,T) data
with Tmin(3)>8 should be included in any fitting procedur
However, in the following a series ofTmin(3) values, rang-
ing from 4 to 9, are used to see how the final results dep
on Tmin(3). Therefore, in case 3, i.e. 333 with Tmin(3)
54 ~8!, this involves fitting 42~18! pieces of data with 6
parameters and in case 4, i.e. 232 with Tmin(3)54 ~8!, this
involves fitting 21~9! pieces of data with 3 parameters.
Table II, the results forx2/ndo f are shown separately for th
fits to C(2) andCsum(3). There for case 3 it is seen that—a
with x2(2)/ndo f(2)—the x2(3)/ndo f(3) are also'1 pro-
videdTmin(3)>6. This result can be compared directly wi
Fig. 4~b!, since it is simply an alternative analysis und
similar constraints. It is seen that the values ofx11

51.35(5) and x22'1 are indeed consistent with th
asymptotic values ofFsum in Fig. 4~b!. On the other hand
x12 cannot be compared directly withRsum@C̄12(g4 ,T)# in
Eq. ~18!. All that can be said there is that both analyses res
in nonzero and negative values forx12.

In an attempt to overcome this last point, in cases 38 and
48, all three off diagonal termsxab are fixed at zero. For a
given Tmin(3), this decreasesx11 but at the expense of in
creasing x2(3)/ndo f(3). The outcome is that for
x2(3)/ndo f(3),1 with x1250 andTmin(3)58 we getx11

51.29~3!—a number consistent with 1.30~5! from Fig. 4~b!.
However,x22 changes violently, even though the plot corr
sponding to Fig. 4~b! is very similar—with, in particular,
Fsum@C̄22(g4 ,T)# again approaching unity and not zero
would be expected from the value forx22 in Table II. To
check this last unexpected result, the analysis program
run using themodelresultsC̃i j

sum(3,g4 ,T) instead of the lat-
tice dataCi j

sum(3,g4 ,T). The plot corresponding to Fig. 4~b!

now has for the excited stateFsum@C̄22(g4 ,T)#'0.005 for
all values ofT — consistent with Table II. This difference fo
x22 demonstrates the need to try to improvex2(3)/ndo f(3) at
smaller values ofTmin(3). It appears that the results for th
excited states are very dependent on thev vectors, since they
involve delicate cancellations. Of course, the main concer
the consistency betweenx11 and Fsum@C̄11(g4 ,T)# and this
emerges intact.
2-7
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TABLE II. Values of xab for cases 3 and 38. In case 3 the 12 parameters describingC(2) are fixed and
only the 6xab are varied to fitC(3). In case 38 only the 3xaa are varied. The superscript* implies that the
number is fixed at this value. The entries denoted by a dash cannot be accurately determined.

Case 3 Case 38

x2(2)/ndo f(2) 0.65* 0.65*
Tmin(3) 4 6 8 4 6 8
x2(3)/ndo f(3) 1.20 0.72 0.26 4.2 2.4 0.68

x11 1.26~2! 1.33~2! 1.41~5! 1.12~1! 1.19~1! 1.29~3!

x12 20.32(3) 20.44(7) 20.5(2) 0* 0* 0*
x13 0.03~9! 0.0~3! 0~1! 0* 0* 0*
x22 0.65~7! 0.9~2! 0.9~9! 0.00~4! 20.3(1) 21.2(4)
x23 0.2~2! 0~1! 0~8! 0* 0* 0*
x33 0.2~9! 4~8! – 20.3(8) 1~7! –

Case 4 Case 48

x2(2)/ndo f(2) 1.15* 1.15*
Tmin(3) 4 6 8 4 6 8
x2(3)/ndo f(3) 1.23 0.78 0.21 3.4 2.0 0.58

x11 1.24~2! 1.29~3! 1.36~7! 1.10~1! 1.17~2! 1.26~3!

x12 20.36(5) 20.45(11) 20.5(3) 0* 0* 0*
x22 0.65~13! 0.8~4! 1~2! 20.19(5) 20.6(2) 21.6(6)
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In the above, the data forCi j (2,T) and Ci j
sum(3,g4 ,T)

were fitted separately. Therefore, now a combined fit is m
using Eqs.~9! and ~21! i.e. for case 3 (38) with Tmin54,
Tmin(3)58, this involves fitting 54118 pieces of data for
C(2)1C(3) with 1216 ~3! parameters. However, this has
completely negligible effect e.g. in case 3,Tmin54,
Tmin(3)58 the values ofx2(2)/ndo f(2),x2(3)/ndo f(3) and
x2(213)/ndo f(213) change from 0.647, 0.718, 0.673
0.652, 0.699, 0.669 andx11 from 1.3274~249! to
1.3274~255!. The conclusion is that for the sum rules there
no benefit in fine tuning the results by simultaneously fitti
C(2) andC(3).

The main result from this subsection is the value of
ground state sum rulex1151.29 ~3! in Table II for case 38
with Tmin(3)58. This particular value is preferred, since
involves the best fit~case 3! from Table I and also constrain
the off-diagonal elementsxab to be zero—as expected in th
continuum limit.

C. Analysis of the three-point correlation function
for the charge radial distributions

In Figs. 5~a! and 5~b! are shown, forr /a50, . . . ,5, the
ratios

F@C̄11~g4 ,T,r !#5
^C̄11~3,Q5g4,T,r !&

^C̄11~2,T!&
, ~22!

based on Eq.~16! using thev vectors of case 3. These a
exhibit, to a certain extent, a plateau asT becomes large
However, forr /a.5 the error bars become very large b
01451
e

e

yond T58. No attempt will be made at this stage to extra
the asymptotic values giving the radial distributions.

The second procedure for analyzing the radial distribut
three-point correlation functionsC(3,u,T,r ) is similar to the

FIG. 5. The ratiô C(3,r )&/^C(2)& for case 3.~a! r 5 0,1,2 and
~b! r 5 4,5,6 in lattice unitsa'0.17 fm.
2-8
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TABLE III. The ground and first excited state charge densitiesx11, x22 for different values ofTmin(3). In
case 3 only the sixxab(r ) are varied—thev vectors being those determined earlier from fittingC(2) and
shown in Table I. In case 38 only the threexaa(r ) are varied. The numbers in square brackets are
x2(3)/ndo f(3). Theentries denoted by a dash have unreasonably largex2(3)/ndo f(3). Theinterquark dis-
tancer is in lattice units ofa'0.17 fm.

x11, Case 3 r 50 r 51 r 52 r 53 r 54 r 55

Tmin(3)56 0.0627~2! 0.0214~1! 0.00906~8! 0.00328~6! 0.00112~6! 0.00031~6!

@0.37# @2.54# @2.37# @0.20# @0.40# @0.82#
Tmin(3)57 0.0629~3! 0.0209~2! 0.00882~10! 0.00326~9! 0.00120~9! 0.00021~8!

@0.27# @1.67# @1.49# @0.25# @0.34# @0.59#
Tmin(3)58 0.0633~5! 0.0204~2! 0.0084~2! 0.0033~1! 0.0012~1! 0.00017~11!

@0.16# @1.38# @0.36# @0.33# @0.49# @0.68#
Tmin(3)59 0.0631~7! 0.0200~4! 0.0081~2! 0.0033~2! 0.0010~2! 20.0002(2)

@0.24# @1.48# @0.05# @0.48# @0.53# @0.39#

x11, Case 38 r 50 r 51 r 52 r 53 r 54 r 55

Tmin(3)57 – – 0.00856~5! 0.00287~4! 0.00100~5! 0.00018~5!

– – @2.09# @1.87# @0.94# @0.58#
Tmin(3)58 – – 0.0084~1! 0.0029~1! 0.0010~1! 0.00012~7!

– – @0.38# @1.08# @0.67# @0.81#
Tmin(3)59 – – 0.0082~1! 0.0029~1! 0.0009~1! 0.0000~1!

– – @0.07# @0.80# @0.37# @0.33#

x22, Case 3 r 50 r 51 r 52 r 53 r 54 r 55

Tmin(3)56 0.192~3! 0.011~1! 0.0019~7! 0.0009~5! 0.0004~6! 0.0003~6!

Tmin(3)58 0.19~1! 0.010~4! 0.001~3! 0.001~2! 0.000~3! 0.001~2!

x22, Case 38 r 50 r 51 r 52 r 53 r 54 r 55
Tmin(3)57 – – 20.001(1) 20.0033(4) 20.0020(6) 0.000~1!
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one followed above but using the expression

Ci j ~3,g4 ,T,r !'C̃i j ~3,g4 ,T,r !

5 (
a51

M

(
b51

M

v i
aexp@2mat1#xab~r !

3exp@2mb~T2t1!#v j
b , ~23!

analogous to Eq.~21! for the sum rule but with all ther
dependence being put into thexab(r ). Two types of fit are
made:

Thev vectors, obtained by minimizing theC(2), areused
in Eq. ~23! and for each valuer the xab(r ) are varied to
ensure a good fit toCi j (3,g4 ,T,r ) by the model form
C̃i j (3,g4 ,T,r ).

A simultaneous fit ofCi j (2,T) andCi j (3,g4 ,T,r ) is made
using C̃i j (2,T) and C̃i j (3,g4 ,T,r ) of Eqs.~9! and ~23!.

To achieve ax2(213)/ndo f(213)'1 is now more dif-
ficult than with the earlierC(2),Csum(3) fit, since the
Ci j (3,g4 ,T,r ) have error bars that are smaller than the c
responding sum rule correlations. For example, the most
portant correlationsi 5 j 5F1 have the valuesC(2,T54)
50.0752(3) andC(3,T58,r /a52)50.0000528(9) com-
pared withCsum(3,T58)50.029(1) i.e. the errors onC(2)
are '0.5%, those onCsum(3) are '5%, but those on
C(3,r ) are only 2%. This is seen in Table III, where
01451
-
-

particular for r /a51 the values ofx2(3)/ndo f(3) are all
greater than unity. In this table it is also seen that the ra
distribution of the ground state charge density,x11(r ), is well
determined and is consistent with the plateaus in Figs. 5~a!
and ~b!. When thex11(r ) are plotted on a semilogarithmi
scale as in Fig. 6, the distribution forr /a<4 is approxi-
mately a straight line suggesting thatwc(r )5Acexp(2r/rc),
wherewc

2(r )5x11(r ). The functionwc(r ) is then interpreted
as a radial wave function. However, the other diagonal m
trix element,x22(r ), is much less well determined—as
seen in the lower half of Table III. In fact, for some values
r, it appears to be slightly negative. But the actual values
very small and could well be consistent with zero. Only f
case 3 atr /a50 is there a definite signal withx22(0)
'0.19. This suggests thatx22(r ) is very sharply peaked
compared withx11(r ). However, it must be remembered th
in case 3 the off-diagonal termsxab(r ) are not forced to be
zero and so the interpretation ofx22(r ) is not clear. In case
38 where the off-diagonal termsxab(r ) are forced to be zero
no signal can be extracted atr 50. There is certainly no sign
of a node that would be expected of an excitedS wave.

Figure 6 also suggests that forr /a>4 the functionw(r )
drops off faster than the above simple exponential. Such
effect is expected at sufficiently larger when the linear rising
confining potential becomes important. Then asr→` the
wave function should have an exp@2(r/r1)

3/2# asymptotic
2-9
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form. Unfortunately, forr /a.5 the errors on the data be
come too large, so that the above observation rests c
pletely on ther /a55 data, which themselves are rather po
Even so, there the errors are still sufficiently small to supp
this. It is planned to extend the present calculation to off-a

FIG. 6. The radial distribution of the ground state charge~C!
and matter~M! densitiesx11(r ). ~a! Cases 3~solid! and 38 ~dashed!
with Tmin(3)58; ~b! case 3 forTmin(3)58 ~solid! and 6~dashed!.
The interquark distance~r! is in lattice unitsa'0.17 fm.
01451
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points. Ther /a55 results can then be checked by perfor
ing simulations atx/a53,y/a54. The resulting data should
be more accurate since each (x,y) pair arises in 24 different
ways—not just 6 as for the on-axis points withrÞ0.

The actual parameters definingwc(r ) can be extracted in
a variety of ways depending onTmin(3) and the range ofr
values used in the fit. But as seen in Table IV they appea
be quite stable for cases 3 and 38 separately. For case 3Ac
'0.23(1) andr c /a'2.1(1) and for case 38 Ac'0.26(1)
and r c /a'1.9(1). Given these numbers, estimates of t
sum rule areI c5*0

`drwc
2(r )5pAc

2r c
3 . These are shown in

the last column of Table IV and are all 1.6~1! for case 3 and
1.5~1! for case 38. The corresponding numbers for the su
rule obtained directly from the lattice and shown in Table
are 1.35~5! and 1.25~5!, respectively. This difference be
tween the two methods is not surprising, since the integr
in I c5*0

`drwc
2(r ) is maximum atr /a'2 and half of the

sum I c lies inside this value ofr. Therefore, lattice artifacts
present at small values ofr, may play a role. These are ex
pected to affectI c more than the direct results of Table II—
point that can be checked by estimatingx11 away from axes
e.g. not only at (61,0,0),(0,61,0),(0,0,61) but also at
(61,61,0) etc.

In addition to fitting thex11'wc
2(r ) with simply the two

parameter functionwc(r )5Acexp(2r/rc), attempts were
made with the three parameter functionwc(r )
5Acexp@2(r/rc)

p). As seen in Table IV, this results in value
of p that are somewhat greater than unity—as expected f
Fig. 6 where ther /a55 point appears to drop below th
earlier simple exponential. This also has the effect of
creasing the value ofI c5*0

`drwc
2(r ) from the simple expo-

nential value ofpAc
2r c

3 . However, since about 90% ofI c

comes fromr values less than 5, this in practice can ha
only a minor effect.
h

TABLE IV. The parametrization of the wave function aswc(r )5Acexp@2(r/rc)

p# for various values of
Tmin(3) and ranges ofr. Also given isI 5pAc

2r c
3 . Here only fits withx2/do f'1 are reported. The cases wit

p51* havep fixed. BothAc and r c are expressed in terms of lattice unitsa'0.17 fm.

Case 3 r range Ac r c p I

Tmin(3)57 2–4 0.254~7! 2.01~5! 1* 1.52~14!

1–4 0.199~5! 2.87~14! 1.23~5! 1.52
Tmin(3)58 1–4 0.225~3! 2.20~4! 1* 1.71~10!

2–4 0.238~10! 2.10~8! 1* 1.65~23!

1–4 0.208~11! 2.59~25! 1.13~9! 1.56
Tmin(3)59 1–4 0.224~4! 2.18~6! 1* 1.64~15!

1–4 0.202~15! 2.66~37! 1.16~14! 1.47
1–5 0.196~12! 2.81~31! 1.22~12! 1.41

Case 38

Tmin(3)57 2–4 0.275~4! 1.84~2! 1* 1.47~6!

1–4 0.249~5! 2.12~8! 1.08~3! 1.43
Tmin(3)58 1–4 0.257~2! 1.94~2! 1* 1.50~5!

2–4 0.261~6! 1.91~4! 1* 1.49~12!

1–4 0.250~9! 2.04~13! 1.03~4! 1.47
Tmin(3)59 1–4 0.251~2! 1.96~3! 1* 1.49~7!

2–4 0.260~10! 1.90~7! 1* 1.46~20!

1–4 0.237~12! 2.19~21! 1.08~7! 1.41
2-10



CHARGE AND MATTER RADIAL DISTRIBUTIONS OF . . . PHYSICAL REVIEW D 65 014512
TABLE V. Values ofxab in cases 3 and 38 for the matterdistribution. Notation as in Table II.

Case 3 Case 38

x2(2)/ndo f(2) 0.65* 0.65*
Tmin(3) 4 6 8 4 6 8
x2(3)/ndo f(3) 0.40 0.45 0.35 0.72 0.43 0.29

x11 0.56~3! 0.49~6! 0.38~15! 0.48~2! 0.45~3! 0.35~7!

x12 20.22(7) 20.1(2) 20.1(5) 0* 0* 0*
x13 20.2(2) 0.0~8! 21(5) 0* 0* 0*
x22 0.4~2! 0.4~5! 1~2! 20.11(9) 0.0~3! 0~1!

x23 0.3~4! 0~3! – 0* 0* 0*
x33 2~2! – – 2~2! – –
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Assuming the simple exponential form, an estimate of
mean-square charge radius is^r 2&53r c

2 in lattice units ofa
'0.17 fm. For cases 3 and 38 this gives 0.38~3! and 0.32~1!
fm2, respectively.

The main results from this subsection are the ground s
radial correlationsx11(r ) and their parametrization fo
Tmin(3)58 in Tables III and IV. If the off-diagonal element
xab(r ) are constrained to be zero, then only correlations
r 52,3,4,5 can be extracted with a reasonablex2/ndo f . How-
ever, these correlations are consistent with those of cas
where the off-diagonal elements are not constrained. T
suggests that the values atr 50 and 1 for case 3 are, in fac
similar to those for case 38.

D. Analysis of the three-point correlation function
for the matter radial distributions

The previous two subsections have dealt with the cha
radial distribution, where the operatorQ in Eq. ~22! is g4 for
probing theq̄ charge. In this subsectionQ51, which probes
the q̄ matter.

In Table V the values of thexab in cases 3 and 38 are
given. Here it is seen thatx11 the matter sum rule for the
ground state is more erratic than its charge counterpar
Table II—a point clearly seen in the corresponding plot
Fig. 7. A reasonable estimate forx11 is 0.4~1!. This value is
consistent with the corresponding estimates in Refs.@3# and
@7# for 123324 lattices. These were made by employing d

FIG. 7. Matter sum rule with cases 3~solid! and 4 ~dashed!
L,F1,F2 combinations.
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from different hopping parameters (k) and using the identity

x115
d~am1!

dk21
, ~24!

where am1 is the ground state energy andk the hopping
parameter—see Ref.@2#. When them1’s correspond to the
cases where the light meson is of about one and two stra
quark masses, Refs.@3# and @7# give 0.34~8! and 0.31~6!,
respectively—consistent with the present value of 0.4~1!.

These larger values are also consistent with the follow
simple estimate—again using the above identity in Eq.~24!.
If the Qq̄-meson mass (am1) is taken to be simply the sum
of the quark massesamQ1amq andk215812amq , then

x115
d~amQ1amq!

d~812amq!
50.5. ~25!

Another reason for expectingx11,1 also follows from a
potential approach using the Dirac equation. If theq̄ is
treated as a particle in a potential generated by theQ, then its
wave function will be of the form (f ,g), wheref ~g! are the
large ~small! components of the Dirac wave function. Th
charge of theq̄ will then be simplyI C5*dr @ f 2(r )1g2(r )#,
which by the normalization will be unity. However, when th
charge operator (g4) is replaced by the matter operato
~unity!, the corresponding integral is nowI M5*dr @ f 2(r )
2g2(r )#. In the nonrelativistic limitI C5I M . But as relativ-
istic effects enter i.e.g2 increases from zero, thenI M be-
comes less thanI C i.e. less than unity. An indication of this i
seen in the lattice results in Table 10.3 in Ref.@3#, wherex11

decreases from 0.21~8! to 0.11~5! as theq̄ mass decrease
from about two to one strange quark masses. This a
shows—as expected—that the interquark potential is m
than one-gluon exchange (2a/r ), since the latter results in
g/ f 5(12g)/a, whereg5A12a2—a ratio that is indepen-
dent of the light quark mass—see, for example,@12#. For a
50.3 this givesg/ f 50.15—a number that is much smalle
than the'0.75 suggested by the charge and matter sum r
measured above on the lattice.

In Table VI the matter densities are given in analogy w
the charge densities of Table III. Comparison of these t
2-11
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TABLE VI. The matter densities with notation as in Table III.

x11, Case 3 r 50 r 51 r 52 r 53 r 54 r 55

Tmin(3)56 0.0758~3! 0.0199~1! 0.0062~1! 0.00145~8! 0.00040~8! 0.00004~7!

@0.20# @1.07# @0.83 # @0.83# @0.23# @0.60#
Tmin(3)58 0.0758~7! 0.0192~3! 0.0054~3! 0.0009~3! 0.0004~2! 0.0005~2!

@0.25# @0.04# @0.19# @0.94# @0.19# @0.06#
x11, Case 38 r 50 r 51 r 52 r 53 r 54 r 55

Tmin(3)56 – – – 0.00113~4! 0.00034~4! 0.00003~5!

– – – @1.82# @0.24# @0.57#
Tmin(3)58 – 0.0196~2! 0.0046~2! 0.0010~1! 0.00043~9! 0.0003~1!

– @1.24# @0.80# @0.77# @0.16# @0.16#
tio
n

h

t
t
o

n

ts
r

e

di
o
e
t

is on
stri-
ith

e a
to
the

the
ss

e

is
er-
As

r-
nd

ith
tables shows that the ground state matter distribu
x(matter)5xm

11 decays faster than the corresponding grou
state charge distributionx(charge)5xc

11. At r 50 the two are
comparable but, byr /a54, x(matter) is only 25% of
x(charge). This is also seen in Fig. 6. Now ther /a55 data
are even more uncertain than the earlier charge data. T
are, therefore, not quoted.

Table VII shows the parametersAm andr m whenwm(r ) is
parametrized aswm(r )5Amexp(2r/rm). There it is seen tha
Ac , for the charge distribution, andAm are comparable, bu
that r m/a'1.55(5) compared with the charge range
r c /a'2.0. This difference betweenr c andr m means that the
interpretation thatwc(r ) and wm(r ) are bothq̄ wave func-
tions is not so direct, since in the most naive models o
would expectwc(r )5wm(r ).

The main points from this subsection are that:~1! From
Table V, the matter sum rulex11 for the ground state is
0.4~1!; ~2! from Tables VI and VII the most realistic resul
are for case 38 with Tmin(3)58. These show that the matte
distribution wave function @wm(r )# has a significantly
shorter range@0.24~2! fm# than the corresponding charg
@0.32~2! fm#.

VI. CONCLUSION

In this paper a first study has been made of the ra
structure of a heavy-light meson—the quark equivalent
the hydrogen atom. This can be considered as a partial
tension of Ref.@7# in which only the energies of heavy-ligh
01451
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mesons were measured on a lattice. Here the emphasis
the charge and matter radial distributions. So far these di
butions have been extracted only for the ground state, w
the extension to other partial waves—as in Ref.@7#—only
now beginning to be studied. A further extension would b
study of the form of the underlying color fields that lead
these radial correlations. This would be analogous to

studies in Refs.@6# for the (QQ̄) and (Q2Q̄2) systems.
The main result is in Fig. 6, where it is seen that both

charge and matter radial distributions fall off more or le
exponentially asAi

2exp@22r/ri#. The amplitudesAi are about
the same withAc'0.26(1) andAm'0.29(1), whereas the
charge ranger c /a'1.9(1) is considerably longer than th
matter ranger m /a'1.4(1). This difference is reflected in
the spatial sum rule, which is about 1.30~5! for the charge
and 0.4~1! for the matter. The fact that the charge sum rule
not unity, as would be expected from vector current cons
vation, can be attributed to the finite spacing of the lattice.
shown in Refs.@1# and@10# this can easily lead to 10–20 %
reductions.

It should be added that there are other definitions ofQq̄
wave functions. Here the relative wave function@w(r )# is
assumed to be real withw2(r ) giving the charge density —
the quantity actually measured from̂C(3,T)&/^C(2,T)&.
Another form can be extracted directly from a two-point co
relation function in which the operators at the sink a
source are of spatial sizesr 1 and r 2, respectively. The
ground state correlation can then be fitted w
TABLE VII. The parametrization of the matter distribution wave function aswm(r )5Amexp@2r/rm#.
Notation as in Table IV.

Case 3 r range Am r m I m

Tmin(3)56 2–4 0.33~2! 1.40~5! 0.92~14!

Tmin(3)58 0–4 0.275~1! 1.46~2! 0.75~3!

1–4 0.271~8! 1.49~5! 0.77~9!

2–4 0.37~8! 1.24~16! 0.81~46!

Case 38 r range Am r m I m

Tmin(3)56 1–4 0.293~2! 1.39~1! 0.72~2!

Tmin(3)58 1–4 0.287~5! 1.39~3! 0.69~5!
2-12
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wBS(r 1)wBS(r 2)exp(2m1T) to give wBS(r ), which can be
identified with the Bethe-Salpeter wavefunction—see R
@7#.

The above charge and matter radial densities are rel
by a simple Fourier transform to the momentum space ve
and scalar form factors@Fv,s(q

2)# of the B meson. Unfortu-
nately, the present densities are not accurate enough o
sufficiently large range ofr to perform this transform. How-
ever, a simple model of these form factors is that they
dominated by the pole due to the lightest meson of masm
i.e. they have a form}(q21m2)21. On the lattice with our
parameters and quark mass, it is found that the lightest ve
and scalar meson masses areamv50.815(5) andams
51.39(5), respectively—see Refs.@9,13#. The Fourier trans-
form of these pole terms is then a Yukawa form}exp
(2mr)/r, which—in principle—can now be compared d
rectly with the charge and matter radial densities measu
here. However, it is only the asymptotic form that should
used in this comparison since that will be controlled by
lightest particle mass. But from Fig. 6 it is seen that t
present data extend only up tor /a55 ~4! for the charge
~matter! density, corresponding tomr50.4 ~0.6!, respec-
tively, which is not large. Furthermore, the charge density
already well described by a simple exponential up tor /a
54 and so a comparably good fit over this range by
Yukawa form is ruled out. As a compromise, since the cha
density data are somewhat better than those for the m
density, the charge densities atr /a53 and 4 are used to
extract estimates ofmv and the matter densities atr /a52
and 3 for an estimate ofms . Case 3 leads toamv50.7(1)
and ams51.4(4)—thecorresponding numbers for case 38
being 0.8~1! and 1.1~1!. Even though these estimates a
qualitatively consistent with the lattice results of Re
@13,9#, it should be added that they are dependent on
range ofr values used.

This paper should be considered only as the first ste
measuring densities. Many extensions and refinements
possible:

In the Qq̄ system, the measurement of th
P1/2,P3/2,D3/2,D5/2, etc., densities corresponding to the e
ergies extracted in Ref.@7#. For a given orbital angular mo
mentum, do these correlations show the degeneracy
dicted in Ref.@14#?

Off-axis radial correlations. These would check not on
rotational invariance but also the radial correlation forr /a
55, which could then be measured at, for example,x/a
53,y/a54 etc. This point is of particular interest, since
Fig. 6 there is a hint that the correlation is lower than th
obtained from a simple extrapolation. Such a lowering
expected, when the linear confining potential begins to pla
role.

The measurement of correlations in the baryonic a
(Q2q̄2) system. Are these similar to those in the (Qq̄)
case—as is the case when comparing correlations in f
nucleon systems?

The replacement of quenched by unquenched gauge
figurations. This is not expected to have a significant eff
on the charge sum rule and correlations. However, as
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cussed in Refs.@2,3#, for the matter probe disconnected co
tributions arise that are dependent on quenched versus
quenched configurations. The difference between the
could highlight the effect of the quark condensate.

The use of largerb values and lattices to check the co
tinuum limit of the present results.

The use of several light quark masses to enable an atte
at extrapolating to the realistic nonstrange light qua
masses.

Other one body operators. In this work only the char
(g4) and matter (1) probes have been studied. Howe
others are of interest—see, for example, Ref.@1# where the
pseudovector operator (gmg5) is needed for theB* Bp cou-
pling.
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APPENDIX: THE CORRELATION FUNCTIONS C„2…
AND C„3…

This appendix gives details of the derivations of Eqs.~7!
and ~8! for the two- and three-point correlation function
C(2) andC(3).

1. Two-point correlation functions C„2…

Given the light-quark propagators in Eqs.~2! and~3!, the
two-point correlation functionsC(2) can be expressed in th
four ways shown in Fig. 1. These are the same up to sta
tical errors, but their combination improves the overall me
surement.

Case a: The Qq̄ meson with the propagator in Eq.~2!.
Case b: The Qq̄ meson with the propagator in Eq.~3!.
Case c: The Q̄q meson with the propagator in Eq.~2!.
Case d: The Q̄q meson with the propagator in Eq.~3!.
In casesa andb, the heavy~static! quark propagator from

site (x,t) to site (x8,t1T) is simply

GQ~x,t;x8,t1T!5
1

2
~11g4!UQ~x,t,T!dx,x8 , ~A1!

whereUQ(x,t,T)5) i 50
T21U4(x,t1 i ) is the gauge link prod-

uct in the time direction. On the other hand, for casesc and
d, the heavy~static!-antiquark propagator from site (x,t) to
site (x8,t1T) is simply

GQ̄~x,t;x8,t1T!5
1

2
~12g4!UQ†~x,t,T!dx,x8 . ~A2!

The general form of a two-point correlation is construct
from a heavy-quark propagating from site (x1 ,t) to site
(x18 ,t1T) and a light-quark propagating from site (x2 ,t
1T) to site (x28 ,t) i.e.
2-13
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C~2,T!5Tr^G†GQ~x,t;x8,t1T!GGq~x,t1T;x8,t !&,
~A3!

whereG is the spin structure of the heavy-quark light-qua
vertices att and t1T. In this case, since theB meson is a
pseudoscalar, we haveG5g5. These definitions lead to th
four two-point correlation functions

C~2,T,a!5 (
d53,4

^UQ~x,t,T!cd* ~x,t1T!fd~x,t !&

~A4!

C~2,T,b!5 (
d51,2

^UQ~x,t,T!fd* ~x,t1T!cd~x,t !&

~A5!

C~2,T,c!5 (
d51,2

^U* Q~x,t,T!cd* ~x,t !fd~x,t1T!&

~A6!

C~2,T,d!5 (
d53,4

^U* Q~x,t,T!fd* ~x,t !cd~x,t1T!&,

~A7!

where d is the Dirac spin index. We see thatC(2,T,c)*
5C(2,T,b) and C(2,T,d)* 5C(2,T,a), so that the sum
leads to

C~2,T!52K ReFUQS (
e53,4

ce* ~x,t1T!fe~x,t !

1 (
d51,2

fd* ~x,t1T!cd~x,t ! D G L . ~A8!

2. Three-point correlation functions C„3…

The construction of the three-point correlation functio
C(3) follows that ofC(2) and they are depicted in Fig. 2

Consider that the probe is att50 and thatQ propagates
from (x,2t2) to (x,t1). Analogous to Eq.~A3!, the general
form of C(3)—when involving aQ—is then

CQ~3,2t2 ,t1 ,r !5Tr^G†GQ~x,2t2 ;x,t1!GGq~x,t1 ;x

1r ,0!Q~r !Gq8~x1r ,0;x,2t2!&. ~A9!

This combination of theGq andGq8 defined in Eqs.~2!, ~3!
ensures that only the local fieldf occurs at the probe pos
tion r . WhenQ(r )5g4, this expression reduces to

CQ~3,2t2 ,t1 ,r !5K F (
d51,2

UQcd12* ~x,t1!cd8~x,2t2!G
3F (

e51,2
fe~x1r ,0!fe128* ~x1r ,0!

2fe12~x1r ,0!fe8* ~x1r ,0!G L .

~A10!
01451
Care must be exercised here, sincefe(x1r ,0) arises from
Gq , whereasfe8* (x1r ,0) is fromGq8 , and so the two can-
not be combined. The last equation can now be written a

CQ~3,2t2 ,t1 ,r !5^@XR
q1 iXI

q#@YR
Q1 iYI

Q#&, ~A11!

where, suppressing color indices

XR
q5 (

e51,2
@fe~R!fe128 ~R!1fe~ I !fe128 ~ I !

7fe12~R!fe8~R!7fe12~ I !fe8~ I !#

XI
q5 (

e51,2
@fe~ I !fe128 ~R!2fe~R!fe128 ~ I !

6fe12~R!fe8~ I !7fe12~ I !fe8~R!#, ~A12!

where the upper signs are forQ(r )5g4 and the lower ones
for Q(r )51. Suppressing color and spin indices,

YR
Q5c8~R!U~R!c~R!1c8~ I !U~R!c~ I !2c8~ I !U~ I !c~R!

1c8~R!U~ I !c~ I !

YI
Q52c8~R!U~R!c~ I !1c8~ I !U~R!c~R!

1c8~ I !U~ I !c~ I !1c8~R!U~ I !c~R!. ~A13!

When involving aQ̄, the corresponding three-point corre
lation function is

C3
Q̄~2t2 ,t1 ,r !5Tr^GGQ̄~x,t1 ;x,2t2!G†Gq~x,2t2 ;x

1r ,0!Q~r !Gq8~x1r ,0,x;t1!&, ~A14!

which can be written in the notation of Eq.~A11! as

CQ̄~3,2t2 ,t1 ,r !5^@2XR
q1 iXI

q#@YR
Q2 iYI

Q#&. ~A15!

The overall three-point correlation function is then

C~3,2t2 ,t1 ,r !5CQ~3!7CQ̄~3!52^XR
qYR

Q2XI
qYI

Q&,

~A16!

where the negative sign enters forQ(r )5g4, since theq and
q̄ have opposite charges.
2-14
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