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Charge and matter radial distributions of heavy-light mesons calculated on a lattice
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For a heavy-light meson with a static heavy quark, we can explore the light quark distribution. The charge
and matter radial distributions of these heavy-light mesons are measured dr 241fttice at3=5.7 and a
hopping parameter corresponding to a light quark mass about that of the strange quark. Both distributions can
be well fitted up to 4 lattice spacingsr=£0.7 fm) with the exponential form/viz(r), where w;(r)
=Aexp(—r/r;). For the chargéc) and mattefm) distributionsr ;~0.32(2) fm andr,,~0.24(2) fm. We also
discuss the normalization of the total charge and matter integrated over all space, findi{ay dng00.41),

respectively.
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[. INTRODUCTION form of the differential equation, how to include relativistic

effects—some of which are tuned to ensure that the model

Lattice QCD has had considerable success in the undefeproduces the correct)(q) energies. The latter can be in
standing of the energies of few-quark systems. However, thgeveral partial waves,,,Py», P35, etc., and can be either
Spatial distributions of the quarks in these Systems have I’Qhe observed energies of, for example, Baneson or the
ceived much less attention. The reasons for this are twofoldesults of a lattice calculation. However, if spatial distribu-
First, unlike energies, these distributions are not directly obtjons are also knowa priori from, say, a lattice calculation,
servable, but arise only in integrated forms such as surhen the uncertainties in such potential models will be re-

rules, form factors, transition rates etc. Secondly, as will b%uced Another way that theQ(a) charge distribution could

seen later, their measurement on a lattice is more d|f_f|cul e of use is in the understanding of multiquark systems. In
and less accurate than that of the corresponding energies. Bwv-nucleon systemge.g. 3He,*He) it is found that the

spite of this, it is of interest to extract lattice estimates Ofnucleon—nucleon correlations are, at short distances, very

various spatial distributions and this is the aim of the present; ior to that in thetwo-nucleon system—uwith differences
study.

. . . grising at large distances due to the different binding energies
There have been earlier lattice measurements of radi 9 g 9 9

distributi ¥ hev differ f h t Ki T ]. This important observation can then be exploited in
Istributions. However, they differ from the present work in 45 of multinucleon systems, by assuming that the inter-
several ways. For example, in R¢L] the authors are inter-

din th lina b dth hich nucleon correlations are dominated by their two-nucleon
_estel In the cogp Ing etweeBi? mesforl;se and t erl, whic . counterparts. In the corresponding multiquark case it would
Involves a pseudovector coupling of theto a single quark.  pe of interest if a similar simplification were to arise. There-
In contrast, here it is the charge and matter distributions th

) . . re, as a first step in that direction, a knowledge of the
are studied and these involve vector and scalar coupllng%. K radial lation in the basicOA) .
Scalar coupling to single quarks was also studied in RefsiVO-quark radial correiaton in the astQ) case 1S
eeded—to be compared later with those in, say, @&

[2,3]. However, there only the scalar sum rule was evaluated, _ _ ) i
since that was primary a study of the dependence of thef (Q°q?) system. This probing of theQq) or (Q*q?)
meson mass on the quark masses. structure could be carried to a more fundamental level by
A knowledge of spatial distributions can be utilized in a measuring the form of the underlying color fields that lead to
variety of ways. For example, the charge distribution of thethe mtgrquark potential and the radial correlations. Sut_:h an
light quark (@) in a heavy-light meson@q) can be used to extension would be analogous to the study of these fields in

check possible potentiai models, where the distributions arthe (QQ) and Q°Q?) systems—see Reff].

calculated from wave functions generated by some differen- It should be added that the heavy-light syste@qj is the

tial equation containing an interquark potential In such  quark model equivalent to the hydrogen atoRe(). There-

models[4] there are several uncertainties—the fornVothe  fore, from a general point of view, it is of interest in any
discussions comparing the properties of two-body systems
constructed from two particles one of which is very much

*Email address: anthony.green@helsinki.fi heavier than the other. Also, the interactions in the two cases
TEmail address: jmkopone@rock.helsinki.fi have common features—the Coulomb potentiaf/r of the
*Email address: petrus@hip.fi hydrogen atom versus the one-gluon exchangér in the
$Email address: cmi@liv.ac.uk heavy-light meson.
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In Sec. Il the maximal variance reduction method, crucialVariance of the pseudofermionic fields is then reduced by
for extracting reliable results, is briefly discussed. In Sec. llinumerically solving the equation of motion inside each box.
the formalism is introduced for evaluating the two- andThis allows the variance of propagators from one box to the
three-point correlation functionS(2) andC(3). In Sec. IV other to be greatly reduced. However, in the case of a three-
variational methods for analyzing the lattice data are exjpoint correlation two propagators are needed and this is best
plained. In Sec. V the results are given and in Sec. VI soméreated by choosing one of the points to be on the boundary

conclusions are made. of the boxes while the other two are inside their own boxes.
Furthermore, the field at the boundary must be local to avoid
II. MAXIMUM VARIANCE REDUCTION METHOD the two propagators interfering with each other. This means

) that only the¢ fields can be used on the boundary and there
It has been demonstrated that light-quark propagators cafey couple to the charge or matter operator. For the points in

be constructed in an efficient way using the so-called maxiyhe poxes, the temporal distance from the boundary should
mum variance reductiofMVR) method. Since this has been pe approximately equal to give the propagators a similar de-
explained in detail elsewhere, for example in Réfl, the  gree of statistical variance.

emphasis here will be mainly on the differences that arise
when estimating on a lattice the correlation functions
C(2),C(3) needed for measuring spatial charge and matter
densities. In the MVR method the inverse of a positive defi- In this section an expression is given for evaluating the
nite matrix A is expressed in the form of a Monte Carlo two-point correlationC(2)—needed for extracting the basic

Ill. THE CORRELATION FUNCTIONS C(2) AND C(3)

integration Qq energies n,) and eigenfunctionsy(*). As will be dis-
1 1 cussed in more detail in Sec. IV B,(2) is expressed in the
Aqlz_f Do d’jeXF{ - —dJ*AdJ) , (1)  form of a matrixC;;(2)—with rank 3 found to be sufficient.

oz 2 Them, andv{* are then extracted from fitting the;; (2,T)

where the scalar field$ are pseudofermions located on lat- by the form

tice sitesi,j. For a given gauge configuration on this lattice, M

N independent samples of tlfefields can be constructed by > vi'exp(—m,T)vj. (4)
Monte Carlo techniques, resulting in a stochastic estimate of a=1

A;;' as an average of thedé samples i.eA;'=(g] ¢;).
The N samples of thep fields can be calculated separately

and stored for use in any problem involving light quarks with . o . —
the same gauge configzrgtions. glightd ues are identified with the masses of thg Swave ground

In QCD the matrix of interest is the Wilson-Dirac matrix and radial excited states—up to a common additive constant
Q=1-«M, which is not positive definite for those values of due to the self-energy of th@. This constant self-energy

the hopping parameter that are of interest. Therefore, we depends on the lattice formalism and hence only energy dif-
must deal withA=Q'Q, which is positive definite Sinclt'ifl ferences can be compared to possible experimental data such

contains only nearest neighbor interactioAs-with at most ~ as the spectrum d8; mesons that are basicalbs.
next-to-nearest neighbor interactions—is still sufficiently lo- ~ The techniques used to determi@i¢2) are then extended
cal for effective updating schemes to be implemented. In thi¢0 the corresponding matrix for the three-point correlation
case the |ight_quark propaga’[or from sitd¢o Sitej is ex- function CIJ(3) Aswill be discussed more fU”y in Sec.VC,

In practice, three eigenvalueM(=3) can be determined
along with their corresponding eigenvectors. These eigenval-

pressed as the desired radial correlation$”(r) are extracted by fitting
Cij(3,r) with the form
Gq=Gji=Q ' =((Qd* d))=(ui ¢). (2 uu
This is the key element in the following formalism. The 0;1 le viexd —myt; Ix*A(r)exd —mp(T—t) Jof,
Wilson-Dirac matrix also leads to an alternative form for the (5)

above light-quark propagator from sit¢o near sitg:
, , . . where them, andv{" have the values determined frad{2).
Gq=G;ji=7s((Q &1 ) v5= vs(¥; & ) ¥s- 3 Details of the derivation of the following formulas for

. . . . C(2) andC are given in the Appendix.
Later, it will be essential to use at some lattice sites operators( ) (3) g ppe

that arepurely local This then restricts us to using at such
sites only theg fields that are located on single lattice sites.
In contrast they; fields—defined a®);, ¢ —are not purely Given the above light-quark propagators, the two-point
local, since they contaig fields on next-to-nearest neighbor correlation function<(2) needed for extracting the energies
sites. of a heavy-light meson can be expressed in the four ways

In the above, the term “maximal variance reduction” shown in Fig. 1. These are all the same up to statistical
comes from the technique applied to reduce the statisticarrors, but their combination improves the overall measure-
noise in Eq.(2). The lattice is divided into two boxes (0 ment. In Figs. 1a) and(b), the heavy(statig quark propaga-
<t<T/2 and T/2<t<T) whose boundary is kept fixed. tor from site {,t) to site x’,t+T) is simply

A. Two-point correlation functions C(2)
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s R Y y5¢d ¥ ¢d LAA quark charge normalized tg and (i) ©(r)=1 which mea-
sures the matter distribution of the light quark.
As shown in the Appendix, the same techniques intro-
duced to evaluat€(2) can be extended t6(3) giving the

ol 3 ol 3 aY q QY q overall three-point correlation function as
. =2(XYZ—XIYR), (8)
AN AN A VR AN A )

where theX% and Y? can be expressed in terms ¢ and
a) b) c) d) YUy, respectively. In Eq(g) the appropriate sign enters for

FIG. 1. The four contributions to the two-point correlation func- ©(r) = 4, since theq andq have opposite charges.

tion C(2).
lon €(2) IV. ANALYSIS
1 The correlations of interest are essentially obtained from
eyl — Q , . L
Gl X, t+T) 2(1+7“)U OGET) B ©) the ratio (C(3,T))/(C(2,T)) by projecting out the ground

_— o . state expectation value. However, the latter is only achieved
Whe_reUQ(X,.t,T) =Ii_gU4(x,t+i) is the gauge link prod- in the limit T—¢2. In practice, on a given lattice at the maxi-
uct in the time direction. As shown in the Appendix this mum possible values dF, the signal to noise ratio becomes

leads to the expression large and effects from excited states are present. In order to
reduce this contamination, a set of wave functions is con-
C(2,T)=2< R{UQ( > P (G T) de(X 1) structed by_ fuzzing the original local wave function. These

e=34 wave functions generate a better hadron operator where the

(7)  original local form, they serve as a variational basis for ana-

Qq meson is created and destroyed. Then, together with the
> ' lyzing the data.

+ > ¢z§<x,t+T>¢d<x,t>)
d=1,2

whered ande are Dirac spin indices. )
A. The effect of fuzzing

B. Three-point correlation functions C(3) Fuzzing enters in two ways.

Firstly, the basic links containing the gauge field have two
fuzzings. In the standard notation of, for example Rél,
Fuzzl has 2 iterations and Fuzz 2 6 iterations. In both cases,
the factor multiplying the basic link is,= 2.5 i.e.,[A fuzzed
link] =f,- [Straight linkl + [Sum of 4 spatial U bends
The pseudofermion field) at a given lattice sita is
nsidered to have three forms:

(1) The basic form that is simply a function of the single
lattice siter.

(2) The field atr is an average of the fields on the neigh-
boring six lattice sitegi) i.e.

The construction of the three-point correlation functions
C(3) follows that of C(2) and they are depicted in Fig. 2.
Since a probe is now inserted at a distandmm the heavy
quark @), two light-quark propagators enter—one frdgn
to the probe and a second from the probe back)idrhe
purpose of the probe is to measure the charge or matter dig—o
tribution at a definite point. Therefore, only those light-
qguark propagators that involve the local basic fi¢ldtr can
be used, since the field contains contributions frong
fields at next-to-nearest neighbor sites and sadslocal
Later, when fuzzing is introduced similar restrictions will
enter. In this work two probes are studied) O (r)=1y,

which measures the charge distributicactually the light ¢>1(r)=§i: U(Fuzzly,ry) é(ry).
¥s \yd:2 (3) The field atr is an average of the fields on the six
lattice sites(j) that aretwo lattice spacings from i.e.
A
olr 9(1)e ¢2(r)=; U(Fuzz 21,r;) é(r)).
¢
e Therefore, only the basic field is local \—with ¢y=1
) and ¢y-» being increasingly non-local. This means that in
A A A the calculation of the above three-point correlation functions,
a) only the basice field should be used at—the position of

the probe insertion. There are now two reasons for {tis:
FIG. 2. The two contributions to the three-point correlation The field on the boundary at=0 must be local(2) The
function C(3). operator insertion must be local. This restriction does not
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occur elsewhere, so that thefields, which connect directly In the case wher€ is the above two-point correlation func-
to the heavy quark, can be the fuzzed forms constructed frojon C(2) andC in Eq. (9) is a perfect fit toC, then the

Qik¢N' This means that th? two- and three-point Cc’”’eI"’ltionoperation in Eq(11) would result inC being diagonal with
functions have the same sizeX3) as the overall correla- the diagonal elements simply being exmt,T). Of course
tion matrix, LL,LFy,LF2,FyFq,F1F;, andF,F,. in practice, the fit is never perfect and the off-diagonal ele-
o ments ofC are a measure of this goodness of fit. This will be
B. The variational method demonstrated later. However, as pointed out in R&¥. for
There are many ways of analyzing the above correlationsther correlation functions there is no reason ®rto be
in order to extract the quantities of interest i.e. energies andiagonal.
wave functions. Here a variational method described in Ref.
[9] is applied.
First, the two-point correlation data(2) are analyzed to V. RESULTS
give the energiesn(,) and eigenvectorsvj for the Qq sys-
tem. These are then used in analyzing the three-point corre-.
lation dataC(3) to give the charge and matter densities.
Consider the correlation functio€(2,T) as annxn
matrix—upto 3<3 in this case with the elements
LL,LFy, ... FyF,. Each elementC;;(2,T) is then fitted
with the form

The results are presented in two distinct parts. First, the
o-point correlation function is analyzed to give the ground
and excited state energies and eigenvectors rhg,m, in
Eq. (10) andu?,u? in Eq. (11). Secondly, these eigenvectors
are used to extract the charge and matter radial distributions
from the three-point correlation functions.
The actual pure gauge configuratidi2® in numbey and
M the pseudofermion fieldgp (24 per gauge configuratipn
cij(z,T)méij(z,T): E vf’exp(—maT)vj“, 9 were taken from the tabulation generated for the work of
a=1 Ref.[11]. These are for a £& 24 lattice with3=5.7 with
the Sheikholeslami-Wohlert improved clover action with
Whereml is the grOUnd state energy of the heavy—llght me'CSW: 1_57_C0rresponding to a lattice Spacing af

son. The statistically independent matrix element<C2)  ~0.17 fm—and a hopping parameter 0.14077. The latter
are then fitted by varying the’; andm, to minimize the  corresponds roughly to the strange quark mass. This can be
difference betweeit(2) andC(2). seen from Ref[13] where the same parameters in the light-

We illustrate the procedure for thex2 case, where the light system (q) predict a vector meson to pseudoscalar
C(2) can be expressed as the product of thre€22matri-  meson mass ratio corresponding to strange quarks. More de-
ces: tails can be found in Ref7].

In general, when we make fits to our lattice data with the
exp(—myT) 0 MIGRAD option of MINUIT, we minimize)(2 to achieve a rea-
0 exp —m,T) c, sonable value o_j(zlndof. The errors quoted on paramete_rs
are from they? increase when varying that parameter with
vl vEy all other parameters refitted. The systematic error on the fit-
wherec=| , (100  ted parameters comes mainly from the data set chésen
‘L YR pecially T,in) and we present results for different values of
. Tmin to explore this.
andc is the ”a"‘spgse of. In Ref. [9]'th'e rows ofc are In this study, we do not extrapolate the light quark mass to
called thev vectorsv;”. Once thec matrix is known, any 2 yhe physical case af andd quarks, but retain it at around the

X2 _correlation matrixC can be evaluat<_ad for the ground strange quark mass. We also use an infinite heavy quark
(excited state wave function corresponding to the extractedr_nass Thus our study pertains @s mesons wher® is a
eigenvaluem; (m,) by reversing the above procedure to : yp

give very heavy(so stati¢ quark. For this case the remaining
systematic errors come from the lack of sea-quark effects

— 1 = P and the finite lattice spacing used. Although we use a
C=(c’) "Cc = ie. Cop=ui'Cij(T)uy, (11 tadpole-improved fermion formalism which should reduce
lattice artifacts, it will be necessary to repeat our calculations
where theu;* are components of the vectors in Ref[9].  at smaller lattice spacing in order to extrapolate to the con-
Theseu vectors are the columns of tleg ! matrix and sat-  tinuum limit and so quantify this source of error. We are
isfy the condition using the quenched approximation in this study, and evalua-
tions with sea quark effects included will be needed to ex-

vi“ufz Oap - (12 plore the effects of this approximation on our results.

C(2)=CT<

For the 2<2 case ) ) ) )
A. Analysis of the two-point correlation function C(2)

ul=[v2,,—v?]/de(c), u’>=[—vt,, vi]/detc). Essentially thg energieEQ_, in lattice units, are extracted
(13)  from theC(2,T) in Eq. (7) using
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Here we consider four possibilities to check the depen-
dence of the final results on this fitting procedure:

Case 1. In Eq(9), the (NZiJ-(T) are defined in terms of 3
paths(i.e. i,j=1,2,3) and 3 exponentials.e. M =3) with
| a) Tmin=3. This includes the local and both Fuzzl and Fuzz 2
paths.

Case 2. The same as case 1 but with 2 paths and 2 expo-
nentials. This includes only the local and Fuzzl paths.

Cases 3,4 are the same as cases 1,2 butWwjth=4.

10, 5 10 Minimizing the difference betwee@(2,T) andC(2,T) in
T Eqg. (9) gives the parameters in Table I. These are surpris-
’ ' ingly good fits, when it is realized that the errors ©(2,T)
121 % FoF2 1 are, in most cases, much less than 1%. However, only case 3
1.1 gives x?/ngo1(2)<1 and so this is the one that will be used
10 ] in most of this study.
o9t 1 b In Fig. 3(c) the results fore[C,,] from Eq.L14) are
08l plotted for the two sets of diagonal matrix eleme@tg(2,T)
07t and C,,(2,T) for cases 3 and 4. As expectds],C,,(2,T)]
0.6t ~0.86(2) and E[C,y(2,T)]~1.245)—energies that are
05 consistent with the values afi; andm, in Table I. As a
2 check on the off-diagonal matrix eleme@;,(2,T), we
evaluate
1.5
= (Cif2T))
1.0 (C1a(2,T))
c) This is seen to be at the 1% level. The conclusion to be
0.5¢ 1 drawn from Fig. %c) is that C is, indeed, approximately
R diagonal withC,4(2,T) ~exp(—m,T)é,5. These results will
0o Iz MRS S Yoz S serve as a comparison when analyz®@,T,r) later.
. . . From Table I, the main result of this subsection—and the
2 4 6 .8 1o 12 one used in most of this study—is case 3 for the 33 fit

. using C(2) data withT=4. Case 4 is for the 2 2 fit with
FIG. 3. (a) The basid.L, F1F1, andF2F2 elements oC(2).  T=4. This is also used in some later analyses, but is consid-
(b) The values ofE(T) for LL, F1F1, andF2F2 separately(c)  gred to be inferior to case 3. Cases 1 and 2 are given to show

The combinations of ,F1F2 for cases 3solid) and 4(dashedlto 4t the inclusion of thd =3 data significantly worsens the
give E[C,,]. Also shown is the ratidR=(C,,(2,T))/{C1,(2,T)) fit.
defined in Eq(15).

B. Analysis of the three-point correlation function for
(14) sum rules

The charge and matter radial distributidhér,®) of the

In Fig. 3@) the basicC(2,T) are plotted for the three diag- light quark in theQq system are extracted using
onal matrix elements where the fields &@nepurely local (),

(i) all Fuzz1,(iii) all Fuzz 2, in the notation of Sec. IV A. FC(O.T.r)]= SO T.0)
They are all seen to be well determined with the errors being n (C2m)
significant only for Fuzz 2 withlf >10. In Fig. 3b) the re- . _
sultsE[C;;(2,T)] from Eq.(14) are plotted for the three sets Where ® =y, or 1. However, before showing these radial
of diagonal matrix elements with=L,F1F2. There it is distributions, it is of interest to first study the corresponding
seen that onlyE[Crr,(2,T)] shows a clean plateau that SUm rules

extends froml' =5 to 9 with a value about 0.88).

. To combine these results py a variational calculation us- 2 (C(30,T,r))

ing Eq. (9) two numbers are fixed: FSUMTC(0,T)]= r

(C(2M)

m as T—oo,

E[C(2T)]= —In[

(16)

(i) M—the number of energies being included. Here, this (C(2,T))

is taken to be the same as the number of paths for each

energy and results in the correlation matrices being square. _(C*'M30,T)) 17
(i) Tmin—the minimum value ofl used in the fit. o {Cc2m)y
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TABLE I. Values of the parametesm, andv{*, wherea~0.17 fm is the lattice spacing. Cases 1—4 fit
the two point correlationsC(2)].

am, Case 1 Case 2 Case 3 Case 4

viuf 3X3 Thin=3 2X2 Thin=3 3X3Tpin=4 2X2 Thin=4

am, 0.884910) 0.900%14) 0.872119) 0.883327)

am, 1.295363) 1.35510) 1.26313) 1.30720)

amyg 1.9910) 1.9430)

ot 0.516430) 0.557441) 0.484756) 0.514982)

vE, 1.589248) 1.676152) 1.51910) 1.58913)

Vs 0.865122) 0.840239)

v? 0.812361) —0.8226(74) 0.816@.6) —0.834(19)

v, 0.43522) —0.065(29) 0.64¢49) —0.373(57)

v, —0.393(18) —0.251(33)

vl —0.258(63) —0.28(22)

OEN 1.9332 2.21.4

v, —1.40(24) —1.13(81)

Ngata(2) 60 30 54 27

Nparam(2) 12 6 12 6

Ngof(2) 48 24 42 21

X2Ngor(2) 3.1 7.5 0.65 1.15

uﬁ 0.0421 —0.0480 —0.0608 —0.3294

ut, 0.3546 0.6126 0.3258 0.7361

ut, 0.4793 0.6364

u? 1.1135 —1.2482 1.1575 —1.4024

uz, —0.1432 0.4151 —-0.1025 0.4545

uz, —0.4016 —0.4825
where X, represents the sum over all spatial lattice sites at o <5§L21m(3,,-|—)>
time t=0—the time when the probe acts. The summation RYMC1(0,T)]= = . (18
can be easily carried out exactly on the lattice. For the charge (CH1"30,M)

distribution this sum rule shouldh the continuum limijtsim-
ply yield the charg_e of the light quark, .Wh.'Ch we have.cho.sen]_his is seen to be at the 10% level—an order of magnitude
to normalize to unity. For the matter distribution the situation o= ;
is less clear—see Reff2,3]. larger than_ t_he correspondinB[C5(2,T)] in Eq. (_15).
In Fig. 4@ we showFSU" C;;(y,,T)] for the three cases Therefore, it is seen that thg, sum rule calculated in the

i=L,FLF2. There it is seen that, at largethe sum rule for 2POVE Way has two undesirable fe:jturgs: _
i =L becomes 1.05(5) and so is consistent with unity. How- (1) The ground state sum rulg*>*"Cy;(y4,T)] is not
ever, the results far=F1,F2 appear to be somewhat greater €ONsistent with unity for largd, being more like 1.3().

than unity forT>5 converging to 1.25(5) and {4). When Only in the cqntinuum limit should the sum be unity. To
these results are combined using thevectors in Table | some extent this must be expected, since in the present non-
then—as seen in Fig. (B—the ground state surr’ls continuum situation the lattice vector current is not con-

— ; served. In principle this can be corrected in various ways.
F3U" C11(y4,T)] for both cases 3 and 4 are dominated by . ;
U nfortunately, at the present value B=5.7, perturbative
the FSU'" Cg1¢1(y4,T)]. Consequently, they are again dis- y P pt P

incl h : ith both 3 and 4 tendi expressions would exhibit poor convergence and so be unre-
tinctly greater than unity with both cases 3 and 4 tending tq;, 1o - Nonperturbative corrections are discussed in the re-
about 1.305). This seems unavoidable since, as seen fro

1 h Mtent review in Ref[10]. There an improved vector operator
Table I, theu vector components;; andug, are an order of 5 inroduced and calculations performed in the quenched

magnitude larger thani . In Fig. 4b) the sum rule for the  approximation at8=6.2 and 6.0. However, they find that,
first excited statd=""TC,4(y4,T)] is also shown. This ap- whereas thes=6.2 results are satisfactory, thoseGt 6.0
pears to be approaching unity at abdut7-8. However, are not—suggesting th&(a?) discretization errors are not
the signal is swamped by the error bars at larGer small at the larger lattice spacing. The situation would be
The correlationCi""(3) are not so well diagonalized as even worse at the value @=5.7 used here. Even so, it is
the C;;(2) were forced to be earlier. A measure of this isillustrative to see the results at the hightes, since they may
plotted in Fig. 4b) as indicate what could possibly be expected at loy@s. In
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2.0 ‘ ‘ In analogy to Eq(9) the sum rule data are fitted with the
expression
" Y C5U™M3,75, T)~C5 3,74, T)
M M
10/ =2 2 viex —myty]x*
a=1 p=1
os xexd —mg(T—ty) ol (21)
where thev{* are from Table |—the earlier result of minimiz-
ing the C;;(2)—but thex®? are treated as free parameters.
1.5 However, a restriction must be made on the valuet o$ed
in Eq. (21). From Table | it is seen thak,,;, must be at least
0 4 to ensure that?(2)/ny.(2) is comparable to unity. There-
’ b) fore, in C5"™(3) each of the two propagators should be at
least 4 Euclidean time steps, i.e., in EB1) we should have
0.5 t,=4 and (T—t;)=4. This means that only th&(3,T) data
with T,in(3)=8 should be included in any fitting procedure.
0.0 However, in the following a series df,;,(3) values, rang-
ing from 4 to 9, are used to see how the final results depend

on Tin(3). Therefore, in case 3, i.e.>33 with T, (3)
o =4 (8), this involves fitting 42(18) pieces of data with 6
FIG. 4. The y, sum rule: (a_1) cpntrlbutlonsLL, F1F1 and parameters and in case 4, i.e<2 with T,,i,(3)=4 (8), this
F2F2 separately(b) the combinations oL,F1F2 for cases 3  inyolves fitting 21(9) pieces of data with 3 parameters. In
(solid) and 4(dashegito giveF**[C,a(7.T)] defined in Eq(17)  Table II, the results foy?/ny,r are shown separately for the
andR**™in Eq. (18). fits to C(2) andC®U™3). There for case 3 it is seen that—as
; 2 2 ~
Ref. [10], when the expectation value of the renormalizedVIt X“(2)/Ndor(2)—the x*(3)/nyo(3) are also~1 pro-
vector current is expressed as vided T,in(3)=6. This result can be compared directly with
Fig. 4(b), since it is simply an alternative analysis under
=FY{(y4(x)), similar constraints. It is seen that the values
IRV =FV{y,(x) (19 imil i It i hat th | oft
_ _ _ =1.35(5) and x??~1 are indeed consistent with the
where(y,(x)) is the quantity evaluated in E¢L7), the au- asymptotic values oFSU™in Fig. 4(b). On the other hand,
thors find that=V~0.8. Similar reductions are found in Ref. X2 cannot be compared directly Witk C (74, T)] in
[1] for the axial vector operator. Of course, the above argus P . v 12074,
Eqg.(18). All that can be said there is that both analyses result
ment could be reversed to say that the present charge suiw nonzero and neaative values for?
rule measurement of 1.8%) gives a nonperturbative esti- | it Pt 9 this | .t int i said
mate ofF¥ as 0.773). Later, when individual radial contri- 4 nI??ha emf? d'o over<|:(:me a'g as fPO'g’ Itn cas S;
butions are extracted as in E(L6), this continuum effect ; all three off diagonal terms = are fixed at zero. -or a

. . 11 .
Id be i ted imatelv by th lizati nglven.Tmin(S), this decreaseg™ but at the expense of in-
could be incorporated approximately by the renormalizatio Creasing x2(3)/ngof(3). The outcome is that for

- F[Cou(v4,Ts0)] X*(3)/Ngor(3)<1 with x*?=0 and Tpy;n(3)=8 we getx*
FICual¥a TN ] === . (20 =1.293)—a number consistent with 1.@) from Fig. 4b).
FSCral 74, T)] However,x?? changes violently, even though the plot corre-

sponding to Fig. 4b) is very similar—with, in particular,

(2) The off-diagonal terms, as illustrated by ESUC (e )] ) i ) q
RSUM C,o(y4,T)] in Eq. (18), are not zero. However, zero is 22074, T)] again approaching unity and not zero as
TC1Aya,T)] a.(18 would be expected from the value faf? in Table Il. To

only necessary in the continuum limit, when neglecting pair X .
creation. Also, as will be shown in the next subsection,CheCk this last unexpected result, the analysis program was

where radial distributions are extracted, we find that aboutun using themodelresultsCi""(3,y,,T) instead of the lat-
half of the contributions to the sum rule lie inside-2. At tice dataC{""(3,y,,T). The plot corresponding to Fig/(t)
such small values of, lattice artifacts may well play a role now has for the excited staiésun[gzz(n,'r)]%o,o% for
to give a non-zero value fdR*"™ all values ofT — consistent with Table II. This difference for
So far the basic wave functiong’ have been determined, x?2 demonstrates the need to try to improy&3)/nq,«(3) at
from Eg. (9), via thev{" i.e. by considering only the two- smaller values off ,;»(3). It appears that the results for the
point correlationgC(2). In anattempt to overcome the two excited states are very dependent onvivectors, since they
above problems wittFSU" C(y,,T)], the analysis of the involve delicate cancellations. Of course, the main concern is
data is now carried out by fitting not onig(2) but also the consistency betweert! and FSU"Cy(1y,,T)] and this
some features of(3). emerges intact.
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TABLE II. Values of x*# for cases 3 and '3 In case 3 the 12 parameters describ@(@) are fixed and
only the 6x*# are varied to fitC(3). In case 3 only the 3x*“ are varied. The superscrijtimplies that the
number is fixed at this value. The entries denoted by a dash cannot be accurately determined.

Case 3 Case’'3
X2(2)Ingor(2) 0.65" 0.65*
Tmin(3) 4 6 8 4 6 8
X2(3)/Ingot(3) 1.20 0.72 0.26 4.2 2.4 0.68
xt 1.262) 1.332) 1.41(5) 1.121) 1.191) 1.293)
x12 —0.32(3) —0.44(7) —0.5(2) o* o* o*
x13 0.039) 0.0(3) 0(1) 0* o* 0*
x%? 0.657) 0.92) 0.99) 0.004) —0.3(1) —1.2(4)
x% 0.22) 0(1) 0(8) o* o* 0%
x33 0.2(9) 4(8) - —0.3(8) A7) -
Case 4 Case’4
X2(2)Ingot(2) 1.15 1.15
Tmin(3) 4 6 8 4 6 8
X2(3)/Ngoi(3) 1.23 0.78 0.21 3.4 2.0 0.58
xtt 1.242) 1.293) 1.367) 1.101) 1.172) 1.2603)
x12 —0.36(5) —0.45(11) —0.5(3) o 0* o*
x%? 0.6513 0.84) 1(2) -0.19(5) —0.6(2) —1.6(6)

In the above, the data fo€;;(2,T) and C?j“"t3,y4,T) yond T=8. No attempt will be made at this stage to extract
were fitted separately. Therefore, now a combined fit is madée asymptotic values giving the radial distributions.
using Egs.(9) and (21) i.e. for case 3 (3) with T,=4, The second procedure for analyzing the radial distribution
Tmin(3)=8, this involves fitting 54- 18 pieces of data for three-point correlation functions(3,0,T,r) is similar to the

C(2)+C(3) with 12+ 6 (3) parameters. However, this has a
completely negligible effect e.g. in case 3,i,=4,
Tmin(3)=8 the values of¢?(2)/Ng01(2).x%(3)/Ngor(3) and

¥2(2+3)/ngo(2+3) change from 0.647, 0.718, 0.673 to 0.08
0.652, 0.699, 0.669 andx'® from 1.3274249 to r=0
1.3274255). The conclusion is that for the sum rules there is 0.06f
no benefit in fine tuning the results by simultaneously fitting
C(2) andC(3). 0.04+ a)
The main result from this subsection is the value of the
ground state sum rule'’=1.29 (3) in Table Il for case 3 SR s S S
with T,in(3)=8. This particular value is preferred, since it 002 ——___ 2
involves the best fitcase 3 from Table | and also constrains Tt e e
the off-diagonal elements*” to be zero—as expected in the 0.00—; 6 a 10
continuum limit. T
X107
C. Analysis of the three-point correlation function a4t -
for the charge radial distributions
In Figs. 5a) and 3b) are shown, for/a=0,...,5, the ®
ratios 2r ) } 1 )
- (C(30=7,T.1)) oY R
F[C1i( s, T,r)]= = , (22) go-ent -3--1
(Cua(2,T)) 0 3
1 6 8 10
T

based on Eq(16) using thev vectors of case 3. These all
exhibit, to a certain extent, a plateau Asecomes large.

FIG. 5. The ratio{C(3,r))/{C(2)) for case 3(a) r= 0,1,2 and
However, forr/a>5 the error bars become very large be- (b) r= 4,5,6 in lattice unita~0.17 fm.
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TABLE lIl. The ground and first excited state charge densities x?2 for different values off i4(3). In
case 3 only the six*4(r) are varied—thes vectors being those determined earlier from fitti@¢2) and
shown in Table I. In case '3only the threex“*(r) are varied. The numbers in square brackets are the
x2(3)/ngo1(3). Theentries denoted by a dash have unreasonably lgf¢®)/ngy.+(3). Theinterquark dis-

tancer is in lattice units ofa~0.17 fm.

x Case 3 r=0 r=1 r=2 r=3 r=4 r=5
Tmin(3)=6 0.06272) 0.02141) 0.009068) 0.003286) 0.001126) 0.000316)
[0.37] [2.54] [2.37] [0.20] [0.40] [0.82]
Tmin(3)=7 0.06293) 0.02092) 0.0088210) 0.003269) 0.0012@9) 0.000218)
[0.27 [1.67] [1.49] [0.25] [0.34] [0.59
Tmin(3)=8 0.06335) 0.02042) 0.00842) 0.00331) 0.00121) 0.0001711)
[0.16] [1.38 [0.36] [0.33 [0.49 [0.68
Tmin(3)=9 0.06317) 0.020G4)  0.00812) 0.00332) 0.001G2) —0.0002(2)
[0.24] [1.48 [0.05] [0.48] [0.53 [0.39]
x! Case 3 r=0 r=1 r=2 r=3 r=4 r=5
Trmin(3)=7 - - 0.008566) 0.002874) 0.001005) 0.000185)
- - [2.09] [1.87] [0.94] [0.58]
Tmin(3)=8 - - 0.00841) 0.00291) 0.001G1) 0.000127)
- - [0.38] [1.08] [0.67] [0.81
Tmin(3)=9 - - 0.00821) 0.00291) 0.00091) 0.000G1)
- - [0.07] [0.80] [0.37] [0.33
x?2, Case 3 r=0 r=1 r=2 r=3 r=4 r=>5
Tmin(3)=6 0.1923)  0.0111) 0.00197) 0.00095) 0.00046) 0.00036)
Tmin(3)=8 0.191) 0.0104) 0.0013) 0.0012) 0.0003) 0.0012)
x?2 Case 3 r=0 r=1 r=2 r=3 r=4 r=5
Tmin(3)=7 - - —0.001(1) —0.0033(4) —0.0020(6) 0.00Q1)
one followed above but using the expression particular forr/a=1 the values ofy?(3)/ng.¢(3) are all
_ greater than unity. In this table it is also seen that the radial
Cij (3,74, T,r)~C;;(3,74,T,1) distribution of the ground state charge densify(r), is well
MM determined and is consistent with the plateaus in Fi¢m. 5
= > vexd —m,tyIxA(r) and (b). When thex'(r) are plotted on a semilogarithmic
a=1p=1 scale as in Fig. 6, the distribution fara<4 is approxi-
xexq—mB(T—tl)]v]ﬁ, 23) mately a straight line suggesting that(r)=A.exp(—r/ry),

wherew?(r) =x*(r). The functionw,(r) is then interpreted
as a radial wave function. However, the other diagonal ma-
trix element,x?(r), is much less well determined—as is
seen in the lower half of Table Ill. In fact, for some values of
r, it appears to be slightly negative. But the actual values are
very small and could well be consistent with zero. Only for
case 3 atr/a=0 is there a definite signal witx?%(0)
~0.19. This suggests that®)(r) is very sharply peaked
compared withk*(r). However, it must be remembered that
in case 3 the off-diagonal termx#(r) are not forced to be

To achieve ay2(2+3)/Ngof(2+3)~1 is now more dif- zero and so the interpretation gf%(r) is not clear. In case
ficult than with the earlierC(2),C'™3) fit, since the 3’ where the off-diagonal terme*”(r) are forced to be zero,
Cij(3,y4,T,r) have error bars that are smaller than the cor-no signal can be extractedrat 0. There is certainly no sign
responding sum rule correlations. For example, the most imef a node that would be expected of an excigdave.
portant correlationd=j=F1 have the value(2,T=4) Figure 6 also suggests that fofa=4 the functionw(r)
=0.0752(3) andC(3,T=8,r/a=2)=0.0000528(9) com- drops off faster than the above simple exponential. Such an
pared withC3'™(3,T=8)=0.029(1) i.e. the errors 08(2)  effect is expected at sufficiently largavhen the linear rising
are ~0.5%, those onC®'™(3) are ~5%, but those on confining potential becomes important. Thenraso the
C(3r) are only 2%. This is seen in Table Ill, where in wave function should have an dxp(r/r;)*?] asymptotic

analogous to Eq(21) for the sum rule but with all the
dependence being put into tk&?(r). Two types of fit are
made:

Thev vectors, obtained by minimizing th&(2), areused
in Eq. (23) and for each value the x*(r) are varied to
ensure a good fit toC;(3,y4,T,r) by the model form
Cij(3,y4,T,r).

A simultaneous fit ofC;;(2,T) andC;;(3,y,4,T,r) is made
usingC;;(2,T) andCij(3,y,,T.r) of Egs.(9) and(23).
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107 . , points. Ther/a=5 results can then be checked by perform-
ing simulations ak/a=3)y/a=4. The resulting data should
be more accurate since eachy() pair arises in 24 different
ways—not just 6 as for the on-axis points witk 0.

The actual parameters definimg(r) can be extracted in

a) a variety of ways depending oR,;,(3) and the range of
values used in the fit. But as seen in Table IV they appear to
be quite stable for cases 3 and Separately. For case /3,
~0.23(1) andr./a~2.1(1) and for case '3A.~0.26(1)
andr./a~1.9(1). Given these numbers, estimates of the

6 sum rule arel ;= [5drw?(r)=mAZr3. These are shown in

the last column of Table IV and are all 116 for case 3 and

1.51) for case 3. The corresponding numbers for the sum

rule obtained directly from the lattice and shown in Table |

are 1.3%5) and 1.2%5), respectively. This difference be-
tween the two methods is not surprising, since the integrand
in 1.=/5drw?(r) is maximum atr/a~2 and half of the
suml. lies inside this value of. Therefore, lattice artifacts,
present at small values of may play a role. These are ex-

pected to affect, more than the direct results of Table ll—a

point that can be checked by estimatixg away from axes

107 . . . e.g. not only at {1,00),(0,+1,0),(0,0,£1) but also at

0 2 4 6 (+=1,£1,0) etc.
In addition to fitting thex**~w?(r) with simply the two
FIG. 6. The radial distribution of the ground state cha(Gg parameter functionw,(r)=A.exp(—r/ry), attempts were
and matte(M) densitiesx''(r). (a) Cases 3Isolid) and 3 (dashedl  made with the three parameter functionv(r)

with Tryin(3)=8; (b) case 3 forTnin(3)=8 (solid) and 6(dashedd  =A exd —(r/ro)P). As seen in Table IV, this results in values

The interquark distancg) is in lattice unitsa~0.17 fm. of p that are somewhat greater than unity—as expected from

Fig. 6 where ther/a=5 point appears to drop below the
form. Unfortunately, forr/a>5 the errors on the data be- earlier simple exponential. This also has the effect of de-
come too large, so that the above observation rests congreasing the value dfc=f3°drwg(r) from the simple expo-
pletely on ther/a=5 data, which themselves are rather poor.nential value of7AZr:. However, since about 90% df,

Even so, there the errors are still sufficiently small to supportomes fromr values less than 5, this in practice can have

this. It is planned to extend the present calculation to off-axisonly a minor effect.

TABLE IV. The parametrization of the wave function ag(r)=A.exd —(r/r)P] for various values of
Tmin(3) and ranges af. Also given isl = wAﬁrg . Here only fits withy?/dof~1 are reported. The cases with
p=1* havep fixed. BothA. andr. are expressed in terms of lattice urdts-0.17 fm.

Case 3 r range Ac re p I
Tmin(3)=7 2-4 0.2547) 2.015) 1* 1.5214)
1-4 0.1995) 2.8714) 1.235) 1.52
Tmin(3)=8 1-4 0.22%3) 2.204) 1* 1.71(10)
2-4 0.23810) 2.108) 1* 1.6523)
1-4 0.20811) 2.5925) 1.139) 1.56
Tmin(3)=9 1-4 0.2244) 2.186) 1* 1.64(15)
1-4 0.20215) 2.66(37) 1.1614) 1.47
1-5 0.19612) 2.81(31) 1.2212) 141
Case 3
Tmin(3)=7 2-4 0.27%4) 1.84(2) 1* 1.476)
1-4 0.2495) 2.128) 1.083) 1.43
Tmin(3)=8 1-4 0.2572) 1.942) 1* 1.505)
2-4 0.2616) 1.91(4) 1* 1.4912)
1-4 0.2509) 2.0413 1.034) 1.47
Tmin(3)=9 1-4 0.2512) 1.963) 1* 1.497)
2-4 0.26010) 1.907) 1* 1.4620)
1-4 0.23712) 2.1921) 1.087) 141

014512-10



CHARGE AND MATTER RADIAL DISTRIBUTIONS CF . .. PHYSICAL REVIEW D 65014512

TABLE V. Values ofx“# in cases 3 and '3for the matterdistribution. Notation as in Table II.

Case 3 Case’3

x*(2)/ngo(2) 0.65 0.65"
Tmin(3) 4 6 8 4 6 8

X2(3)Ngoi(3) 0.40 0.45 0.35 0.72 0.43 0.29
x1t 0.563) 0.496) 0.3915) 0.482) 0.453) 0.357)
x1? —0.22(7) -0.1(2) —0.1(5) o) 0* 0*
xt3 -0.2(2) 0.@8) —1(5) o o* 0*

x%? 0.42) 0.4(5) 1(2) —0.11(9) 0.03) 0(1)
x% 0.34) 0(3) - 0* o* o*

x33 2(2) - - 22) - -

Assuming the simple exponential form, an estimate of thérom different hopping parameterg) and using the identity
mean-square charge radius(i€)=3r? in lattice units ofa
~0.17 fm. For cases 3 and 3his gives 0.383) and 0.321)
fm?, respectively.

The main results from this subsection are the ground state
radial correlationsx*(r) and their parametrization for
Tmin(3)=8 in Tables Il and IV. If the off-diagonal elements
x%A(r) are constrained to be zero, then only correlations fo
r=23,4,5 canbe extracted with a_reasonf_;\lﬂmdof_ How- uark masses, Ref$§3] and[7] give 0.348) and 0.316),
ever, these corr_elatlons are consistent with those_of case spectively—consistent with the present value of D.4
where the off-diagonal elements are not constrained. This hege jarger values are also consistent with the following
suggests that the valuesrat 0 and 1 for case 3 are, in fact, simple estimate—again using the above identity in ©&4).

similar to those for case’3 If the Qa-meson massam,;) is taken to be simply the sum
of the quark massesmg+am, and Kk 1=8+ 2amy, then

_d(aml)

11
X )
dx~ 1

(24)

wheream, is the ground state energy andthe hopping
arameter—see Ref2]. When them;’s correspond to the
cases where the light meson is of about one and two strange

D. Analysis of the three-point correlation function
for the matter radial distributions

1 d(amg+am) _

~ d(8+2am,) 0.5.

The previous two subsections have dealt with the charge (25)

radial distribution, where the operat®rin Eq.(22) is vy, for
probing theq charge. In this subsectidd =1, which probes  Another reason for expecting*’<1 also follows from a

the g matter. potential approach using the Dirac equation. If theis

In Table V the values of th&*# in cases 3 and '3are treated as a particle in a potential generated byQhnen its
given. Here it is seen that!! the matter sum rule for the wave function will be of the form f(,g), wheref (g) are the
ground state is more erratic than its charge counterpart ifarge (smal) components of the Dirac wave function. The
Tgble ll—a point cIearIy seen inlthe correqunding plpt i”charge of the:_|will then be simplyl c= fdr[f2(r)+g(r)],
Fig. 7. A reasonable estimate f&t" is 0.41). This value is  yhich by the normalization will be unity. However, when the
consistent with the corresponding estimates in R&kand charge operator ;) is replaced by the matter operator
[7] for 122 24 lattices. These were made by employing data(unity), the corresponding integral is nowy, = fdr[f2(r)
—g?(r)]. In the nonrelativistic limit c=1,, . But as relativ-
istic effects enter i.eg? increases from zero, thel, be-
comes less thah: i.e. less than unity. An indication of this is
seen in the lattice results in Table 10.3 in H&f, wherex*!

decreases from 0.28) to 0.115) as theq mass decreases
from about two to one strange quark masses. This also
shows—as expected—that the interquark potential is more
than one-gluon exchange-(@/r), since the latter results in
g/f=(1—y)/a, wherey= \/1— a’—a ratio that is indepen-
dent of the light quark mass—see, for example]. For «
=0.3 this givesg/f=0.15—a number that is much smaller
than the=0.75 suggested by the charge and matter sum rules
measured above on the lattice.

0.8

0.6r

0.4r

0.2r

0.0 10

T

FIG. 7. Matter sum rule

L,F1,F2 combinations.

with cases (3olid) and 4 (dashed

In Table VI the matter densities are given in analogy with
the charge densities of Table Ill. Comparison of these two
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TABLE VI. The matter densities with notation as in Table III.

x Case 3 r=0 r=1 r=2 r=3 r=4 r=5
T,in(3)=6 0.07583)  0.01991)  0.00621)  0.0014%8)  0.0004@8)  0.000047)
[0.20] [1.07] [0.83] [0.83] [0.23 [0.60]
Tmin(3)=8 0.07587) 0.01923) 0.00543) 0.00093) 0.00042) 0.00052)
[0.25] [0.04] [0.19] [0.94] [0.19] [0.06]
x', Case 3 r=0 r=1 r=2 r=3 r=4 r=5
T,..(3)=6 - - - 0.00118)  0.00034(4)  0.000035)
- - - [1.82] [0.24] [0.57]
T,.:.(3)=8 - 0.01962)  0.00462)  0.001G1) 0.000439) 0.00031)
- [1.24] [0.80] [0.77] [0.16] [0.16]

tables shows that the ground state matter distributionmesons were measured on a lattice. Here the emphasis is on
x(matter)=x.! decays faster than the corresponding groundhe charge and matter radial distributions. So far these distri-
state charge distribution(charge)=x:*. At r=0 the two are  butions have been extracted only for the ground state, with
comparable but, byr/a=4, x(matter) is only 25% of the extension to other partial waves—as in R&f—only
x(charge). This is also seen in Fig. 6. Now tHa=5 data now beginning to be studied. A further extension would be a
are even more uncertain than the earlier charge data. Thesfudy of the form of the underlying color fields that lead to
are, therefore, not quoted. these radial correlations. This would be analogous to the
Table VII shows the parametefs, andr, whenw,(r) is  gtudies in Refs[6] for the (QQ) and (Q2Q?) systems.
parametrized a®/(r) =Anexp(-r/ry). There itis seen that  The main result is in Fig. 6, where it is seen that both the
Ac, for the charge distribution, an#l,, are comparable, but oparge and matter radial distributions fall off more or less

that r,/a~1.55(5) compared with the charge range Ofex ; 2 :
N TN ponentially ag\"exd —2r/r;]. The amplitudeg\; are about
r./a=~2.0. This difference between andr, means that the the same withA,~0.26(1) andA,~0.241), whereas the

interpretation thatw(r) andwi,(r) are bothg wave func- charge range./a~1.9(1) is considerably longer than the

tions is not so direct, since in the most naive models one ... ranger,/a~1.4(1). This difference is reflected in
m : .

WO‘Il{Ir?eer)r:F;?r(l:wgggzs:f\x)nagr%r.mis subsection are thaf From the spatial sum rule, which is about 1(8Dfor the charge
P 11 ' . and 0.41) for the matter. The fact that the charge sum rule is
Table V, the matter sum rula** for the ground state is .
not unity, as would be expected from vector current conser-

0.4(1); (2) from Tables VI and VI the most realistic results vation, can be attributed to the finite spacing of the lattice. As

are for case 3with T,,,;,(3)=8. These show that the matter . . .
distribution wave function[w,(r)] has a significantly fehgl\j‘(’:?i(')rr‘]sRefs[l] and[10] this can easily lead to 10-20%

shorter rangg0.242) fm] than the corresponding charge _
It should be added that there are other definitionQaqf

[0.322) fm].

wave functions. Here the relative wave functipn(r)] is
assumed to be real with®(r) giving the charge density —
the quantity actually measured frodC(3,T))/(C(2,T)).

In this paper a first study has been made of the radiaRnother form can be extracted directly from a two-point cor-
structure of a heavy-light meson—the quark equivalent ofrelation function in which the operators at the sink and
the hydrogen atom. This can be considered as a partial esource are of spatial sizes, and r,, respectively. The
tension of Ref[7] in which only the energies of heavy-light ground state correlation can then be fitted with

VI. CONCLUSION

TABLE VII. The parametrization of the matter distribution wave functionvgg(r)=A,exd —r/rml.
Notation as in Table IV.

Case 3 r range Anm M'm I'm
Thmin(3)=6 2-4 0.332) 1.405) 0.9214)
Tmin(3)=8 0-4 0.27%1) 1.462) 0.753)
1-4 0.2718) 1.495) 0.779)
2-4 0.378) 1.24(16) 0.81(46)
Case 3 r range An Mm I'm
Tmin(3)=6 1-4 0.29®) 1.391) 0.722)
Tmin(3)=8 1-4 0.287) 1.393) 0.695)
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Wgs(r1)Wgs(ro)exp(—myT) to give wgs(r), which can be cussed in Refd2,3], for the matter probe disconnected con-

identified with the Bethe-Salpeter wavefunction—see Reflributions arise that are dependent on quenched versus un-

[7]. quenched configurations. The difference between the two
The above charge and matter radial densities are relategPuld highlight the effect of the quark condensate.

by a simple Fourier transform to the momentum space vector |Ne use of largep values and lattices to check the con-

and scalar form fact0|{sFU,S(q2)] of the B meson. Unfortu-  tinuum limit of the present results.

nately, the present densities are not accurate enough over aThe use of several light quark masses to enable an attempt

sufficiently large range of to perform this transform. How- 2 €xtrapolating to the realistic nonstrange light quark
ever, a simple model of these form factors is that they arénassr?s. bod hi k onlv the ch
dominated by the pole due to the lightest meson of nmass Other one body operators. In this wor only the charge
ie. they have a forme (g?+m?)~L. On the lattice with our (v4) and matter (1) probes have been studied. However,
-€. ey q : others are of interest—see, for example, R&f.where the

parameters and quark mass, it is found that the lightest VeCt(Hseudovector operatoty(,ys) is needed for th&* B cou-
and scalar meson masses aen,=0.815(5) andamg pling. °

=1.395), respectively—see Reff9,13]. The Fourier trans-
form of these pole terms is then a Yukawa formexp
(=mrn)/r, which—in principle—can now be compared di-
rectly with the charge and matter radial densities measured The authors acknowledge useful correspondence and dis-
here. However, it is only the asymptotic form that should becussions with David Richards and Gunnar Bali. They also
used in this comparison since that will be controlled by thewish to thank the Center for Scientific Computing in Espoo,
lightest particle mass. But from Fig. 6 it is seen that theFinland, for making available resources without which this
present data extend only up téa=5 (4) for the charge project could not have been carried out.
(mattey density, corresponding tonr=0.4 (0.6), respec-
tiVG'y, which is not Iarge. Furthermore, the charge density is APPENDIX: THE CORRELATION FUNCTIONS C(2)
already well described by a simple exponential uprta AND C(3)
=4 and so a comparably good fit over this range by a
Yukawa form is ruled out. As a compromise, since the charge This appendix gives details of the derivations of EG3.
density data are somewhat better than those for the matt&nd (8) for the two- and three-point correlation functions
density, the charge densities @ta=3 and 4 are used to C(2) andC(3).
extract estimates ofn, and the matter densities ata=2
and 3 for an estimate ahg. Case 3 leads tam,=0.7(1) 1. Two-point correlation functions C(2)
and amg=1.4(4)—thecorresponding numbers for case 3
being 0.81) and 1.11). Even though these estimates are
qualitatively consistent with the lattice results of Refs.
[13,9], it should be added that they are dependent on th
range ofr values used.
This paper should be considered only as the first step igurement. — ) )
Case a The Qg meson with the propagator in E(R).

measuring densities. Many extensions and refinements are ul _ _
possible: Case b The Qg meson with the propagator in E(B).

In the Qq system, the measurement of the Case cTheQq meson with the propagator in E(®).
P1/2,P312,D30,D5p0, etc., densities corresponding to the en- Case d The Qg meson with the propagator in E(R).
ergies extracted in Ref7]. For a given orbital angular mo- In casesa andb, the heavy(statig quark propagator from
mentum, do these correlations show the degeneracy praite (x,t) to site x’,t+T) is simply
dicted in Ref[14]?

Off-axis radial correlations. These would check not only
rotational invariance but also the radial correlation féa
=5, which could then be measured at, for exampla
=3yla=4 etc. This point is of particular interest, since in whereU®(x,t,T)=I1]_U4(x,t+i) is the gauge link prod-
Fig. 6 there is a hint that the correlation is lower than thatuct in the time direction. On the other hand, for casesd
obtained from a simple extrapolation. Such a lowering isd, the heavystatig-antiquark propagator from sitext) to
expected, when the linear confining potential begins to play aite (x',t+T) is simply
role.

The measurement of correlations in the baryonic and
(Q%g?) system. Are these similar to those in th@d)
case—as is the case when comparing correlations in few-
nucleon systems? The general form of a two-point correlation is constructed

The replacement of quenched by unquenched gauge coffom a heavy-quark propagating from site, (t) to site
figurations. This is not expected to have a significant effec{x;,t+T) and a light-quark propagating from sitex,(t
on the charge sum rule and correlations. However, as dis+T) to site x;,t) i.e.

ACKNOWLEDGMENTS

Given the light-quark propagators in Eq®) and(3), the
two-point correlation function€(2) can be expressed in the
four ways shown in Fig. 1. These are the same up to statis-
fical errors, but their combination improves the overall mea-

1
GQ(x,t;x’,t+T)=§(1+y4)UQ(x,t,T)5xyx,, (A1)

1
Go(X,t:x 1+ T)==(1— y)UM(x,t,T) 8 . (A2)
Q 2 ,
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C(2T) =TI Go(x,t;X' ,t+T) I Gy(x,t+T;x',1)),
(A3)

wherel is the spin structure of the heavy-quark light-quark

vertices att andt+T. In this case, since thB meson is a

pseudoscalar, we hadé= vys. These definitions lead to the

four two-point correlation functions

C(2,T,a)=d;34 (UR(x,t, T) s (X, t+T) pg(x,1))
' (A4)

C(2,T,b):d:212 (UR(x,t,T) % (X, t+T) thg(x,1))
' (A5)

C(2T.0)= >, (U*Qx,t, )¢ (x,t) pa(x,t+T))
d=1,2
' (A6)

C2T,d)= 2, (U*Q0xtT)¢h (1) gra(x,t+T)),
d=3,4
(A7)
where d is the Dirac spin index. We see thex(2,T,c)*

=C(2,T,b) and C(2,T,d)*=C(2,T,a), so that the sum
leads to

C(2T)= 2< R{ UQ( 234 PE (X T) de(X,1)

+d:212 ¢§(x,t+T)¢d(x,t)> > (A8)

2. Three-point correlation functions C(3)

PHYSICAL REVIEW B5 014512

Care must be exercised here, sintgx+r,0) arises from
Gy, whereasp* (x+r,0) is from G, and so the two can-
not be combined. The last equation can now be written as

COA3,~t,ty, 1) =([XZHIXPILYZ+iYPD), (ALD)

where, suppressing color indices

Xi= 30 [6eRIGL AR+ 1))

F der2(R) de(R)F e a(1) de(1)]

Xﬁ:glz[¢>e<|>¢>g+z<R>—¢e<R)¢g+z<l>
+ e 2a(RI ()T deia(NBL(R)],  (AL2)

where the upper signs are féx(r) =y, and the lower ones
for @(r)=1. Suppressing color and spin indices,

YR=¢ (RUR) $(R)+ 4" (NUR) (1) — ' (DU $(R)
+Y (R)UD) g(1)

Y?

— ¢ (RUR) () + 4" (DUR)H(R)

Y (HUM (D) + ¢ (RUMY(R). (A13)

When involving aQ, the corresponding three-point corre-

The construction of the three-point correlation functionslation function is

C(3) follows that ofC(2) and they are depicted in Fig. 2.

Consider that the probe is &0 and thatQ propagates
from (x,—t,) to (x,t;). Analogous to Eq(A3), the general
form of C(3)—when involving aQ—is then

C3,—1ty,t1,1N) =TT TGq(X, — t2;%,t) T Gy(X,t1;X
+1,000(r)Gg(x+r,0,x,—t5)). (A9)

This combination of thes, and G,; defined in Eqs(2), (3)

ensures that only the local field occurs at the probe posi-

tion r. When®(r) = vy,, this expression reduces to
CQ(31_t2 1t11r) = < |:d—2]_ 9 UQ¢§+2(thl) lzb(’](xv _t2):|

X

_212 be(X+T,0)pL% H(x+1,0)

— Peyo(X+r1,0) g*(x+r,0)}>_

(A10)

CS(—t,t1,1) =TI Gg(X,ty;X, —t) T TG4(x, — ;%

+1,000(r)Gy(x+r1,0%t1)), (A14)

which can be written in the notation of EGA11) as
CO3,~ty,ty, 1) =([~ XA+iIXFI[YR—iYQ]). (A15)
The overall three-point correlation function is then
C(3,~tp,1,1) = CO(3)  C(3) = 2(XAYR— XY D),
(A16)

where the negative sign enters fo(r) = y,, since theg and
g have opposite charges.
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