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Critical hopping parameter in O„a… improved lattice QCD

H. Panagopoulos* and Y. Proestos†
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We calculate the critical value of the hopping parameter,kc , in O(a) improved lattice QCD, to two loops
in perturbation theory. We employ the Sheikholeslami-Wohlert~clover! improved action for Wilson fermions.
The quantity which we study is a typical case of a vacuum expectation value resulting in an additive renor-
malization; as such, it is characterized by a power~linear! divergence in the lattice spacing, and its calculation
lies at the limits of applicability of perturbation theory. The dependence of our results on the number of colors
N, the number of fermionic flavors,Nf , and the clover parametercSW is shown explicitly. We compare our
results with nonperturbative evaluations ofkc coming from Monte Carlo simulations.
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I. INTRODUCTION

In this paper we calculate the critical value of the hopp
parameterkc in lattice QCD, to two loops in perturbatio
theory. We employ theO(a) improved Sheikholeslami
Wohlert @1# ~clover! action for Wilson fermions; this action
is widely used now in Monte Carlo simulations as a means
reducing finite lattice spacing effects, leading to a faster
proach to the continuum.

The Wilson fermionic action is a standard implementat
of fermions on the lattice. It circumvents the notorious do
bling problem by means of a higher derivative term, whi
removes unphysical propagator poles and has a vanis
classical continuum limit; at the same time, the action
strictly local, which is very advantageous for numeric
simulation. The price one pays for strict locality and abse
of doublers is, of course, well known: The higher derivati
term breaks chiral invariance explicitly. Thus, merely sett
the bare fermionic mass to zero is not sufficient to ens
chiral symmetry in the quantum continuum limit; quantu
corrections introduce an additive renormalization to the f
mionic mass, which must then be fine-tuned to have a v
ishing renormalized value. Consequently, the hopping
rameterk, which is very simply related to the fermion mas
must be appropriately shifted from its naive value, in orde
recover chiral invariance.

By dimensional power counting, the additive mass ren
malization is seen to be linearly divergent with the latti
spacing. This adverse feature of Wilson fermions, typica
vacuum expectation values of local objects, poses an a
tional problem to a perturbative treatment, aside from
usual issues related to lack of Borel summability. Indeed,
calculation serves as a check on the limits of applicability
perturbation theory, by comparison with non perturbative
sults coming from Monte Carlo simulations.

In the present work we will follow the procedure an
notation of Ref.@2#, in which kc was computed using th
Wilson fermionic action withoutO(a) improvement. The re-

*Email address: haris@ucy.ac.cy
†Present address: Department of Physics, Ohio State Unive

Columbus, OH 43210. Email address: yiannis@mps.ohio-state
0556-2821/2001/65~1!/014511~7!/$20.00 65 0145
f
-

-

ng
s
l
e

e

r-
n-
-

o

r-

f
di-
e
r
f
-

sults of Ref.@2# were recently confirmed in Ref.@3#, in which
a coordinate space method was used to achieve even gr
accuracy.

The critical fermionic mass and hopping parameter w
now depend not only on the number of colorsN and of
fermionic flavorsNf , but also on the free parametercSW
which appears in the clover action~see next section!; we will
keep this dependence explicit in our results.

In Sec. II we define the quantities which we set out
compute, and describe our calculation. In Sec. III we pres
our results and compare with Monte Carlo evaluations.
nally, in Sec. IV we obtain improved estimates coming fro
a tadpole resummation.

II. FORMULATION OF THE PROBLEM

Our starting point is the Wilson formulation of the QC
action on the lattice, with the addition of the clover~SW! @1#
fermion term. Its action reads, in standard notation,

SL5
1

g0
2 (

x,m,n
Tr@12Um,n~x!#

1(
f

(
x

~4r 1mB!c̄ f~x!c f~x!

2
1

2 (
f

(
x,m

@c̄ f~x!~r 2gm!Um~x!c f~x1m̂ !

1c̄ f~x1m̂ !~r 1gm!Um~x!†c f~x!#

1
i

4
cSW(

f
(

x,m,n
c̄ f~x!smnF̂mn~x!c f~x!, ~1!

where

F̂mn[
1

8
~Qmn2Qnm!,

Qmn5Um,n1Un,2m1U2m,2n1U2n,m . ~2!

Here Um,n(x) is the usual product of link variablesUm(x)
along the perimeter of a plaquette in them-n directions,

ty,
du
©2001 The American Physical Society11-1
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H. PANAGOPOULOS AND Y. PROESTOS PHYSICAL REVIEW D65 014511
originating atx; g0 denotes the bare coupling constant;r is
the Wilson parameter; f is a flavor index; smn

5( i /2)@gm ,gn#. Powers of the lattice spacinga have been
omitted and may be directly reinserted by dimensio
counting.

We use the standard covariant gauge-fixing term; in te
of the vector fieldQm(x)„Um(x)5exp@ig0Qm(x)#…, it reads

Sg f5l0(
m,n

(
x

Tr Dm
2Qm~x!Dn

2Qn~x!,

Dm
2Qn~x![Qn~x2m̂ !2Qn~x!. ~3!

Having to compute a gauge invariant quantity, we chose
work in the Feynman gauge,l051. Covariant gauge fixing
produces the following action for the ghost fieldsv and v̄:

Sgh52(
x

(
m

Tr @Dm
1v~x!#†$Dm

1v~x!

1 ig0@Qm~x!,v~x!#1 1
2 ig0@Qm~x!,Dm

1v~x!#

2 1
12 g0

2
†Qm~x!,@Qm~x!,Dm

1v~x!#‡1•••%,

Dm
1v~x![v~x1m̂ !2v~x!. ~4!

Finally the change of integration variables from links to ve
tor fields yields a Jacobian that can be rewritten as the u
measure termSm in the action:

Sm5
1

12
Ng0

2(
x

(
m

Tr Qm~x!Qm~x!1••• . ~5!

In Sgh andSm we have written out only terms relevant to o
computation. The full action is:S5SL1Sg f1Sgh1Sm .

The bare fermionic massmB must be set to zero for chira
invariance in the classical continuum limit. The value of t
parametercSW can be chosen arbitrarily; it is normally tune
in a way as to minimizeO(a) effects. Terms proportional to
r in the action, as well as the clover terms, break ch
invariance. They vanish in the classical continuum limit;
the quantum level, they induce nonvanishing, flav
independent corrections to the fermion masses. Nume
simulation algorithms usually employ the hopping parame

k[
1

2mBa18r
~6!

as an adjustable quantity. Its critical value, at which ch
symmetry is restored, is thus 1/8r classically, but gets shifted
by quantum effects.

The renormalized mass can be calculated in textb
fashion from the fermion self-energy. Denoting b
SL(p,mB ,g0) the truncated, one particle irreducible ferm
onic two-point function, we have for the fermionic propag
tor:

S~p!5@ ip”° 1m~p!2SL~p,mB ,g0!#21 ~7!
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where

p”° 5(
m

gm

1

a
sin~apm!, m~p!5mB1

2r

a (
m

sin2~apm/2!.

To restore the explicit breaking of chiral invariance, w
require that the renormalized mass vanish:

S21~0!50⇒mB5SL~0,mB ,g0!. ~8!

The above is a recursive equation formB , which can be
solved order by order in perturbation theory.

We write the loop expansion ofSL as:

SL~0,mB ,g0!5g0
2S (1)1g0

4S (2)1•••. ~9!

Two diagrams contribute toS (1), shown in Fig. 1. In these
diagrams, the fermion mass must be set to its tree le
value,mB→0.

The quantityS (2) receives contributions from a total of 2
diagrams, shown in Fig. 2. Genuine 2-loop diagrams m
again be evaluated atmB→0; in addition, one must include
to this order the 1-loop diagram containing anO(g0

2) mass
counterterm~diagram 23!.

The contribution of thei th diagram can be written in the
form

~N221!•(
j 50

4 S c1,i
( j )1

c2,i
( j )

N2
1

Nf

N
c3,i

( j )D cSW
j , ~10!

wherec1,i
( j ) ,c2,i

( j ) ,c3,i
( j ) are numerical constants. The dependen

on cSW is seen to be polynomial of degree 4, as can
verified by inspection of Fig. 2.

Certain sets of diagrams, corresponding to renormal
tion of loop propagators, must be evaluated together in or
to obtain an infrared-convergent result: These are diagr
71819110111, 12113, 14115116117118, 19120, 21
122123.

III. NUMERICAL RESULTS

Evaluating the two diagrams of Fig. 1, we find forS (1):

FIG. 1. One-loop diagrams contributing toSL. Wavy ~solid!
lines represent gluons~fermions!.
1-2
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S (1)5
N221

N
@20.154 933 390 231 060 21 ~diagram 1!

20.007 923 668 479 79~1!1cSW 0.043 483 033 882 05~10!

1cSW
2 0.018 095 768 781 42~1!] ~diagram 2!. ~11!

Here and below we setr to its usual value,r 51. One- and two-loop results pertaining tocSW50 are as in Ref.@2#, and can
be found with greater accuracy in Ref.@3#.

For cSW5” 0, only one-loop results exist so far in the literature; a recent presentation for the casecSW51 ~see Ref.@4# and
earlier references therein! is in perfect agreement with our Eq.~11!:

S (1)~N53,cSW51!520.270 075 349 5~2! ~Ref. @4#!

20.270 075 349 459 7~5! @ the present work, Eq.~11!#. ~12!
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It should be clear to the reader that such a high level
precision is hardly relevantper se, especially given the ex
pected deviation from nonperturbative results; neverthel
it serves as a testing ground for both accuracy and efficie
of our methods, in view of the more demanding higher lo
calculations. Further, high precision is called for in the co
text of the Schro¨dinger functional computation, to permit
stable extrapolation of various parameters to infinite latt
~see Ref.@4#!. Regarding efficiency, let us note that th
numerical integrations leading to Eq.~11! require a mere

FIG. 2. Two-loop diagrams contributing toSL. Wavy ~solid,
dotted! lines represent gluons~fermions, ghosts!. Crosses denote
vertices stemming from the measure part of the action; a solid c
is a fermion mass counterterm.
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;10 min of CPU time on a typical 1 GHz Pentium III pro
cessor.

We now turn to the much more cumbersome evaluation
the two-loop diagrams, which is the crux of our present co
putation. As in Ref.@2#, we use aMATHEMATICA package
which we have developed for symbolic manipulations in l
tice perturbation theory~see, e.g., Ref.@5#!. For the purposes
of the present work~and a related work on theb-function
@6#!, we have augmented the package to include the vert
of the clover action.

In Tables I, II, III, and IV we present the values of th
coefficientsck,i

(1) , ck,i
(2) , ck,i

(3) , ck,i
(4) , respectively. TheO(cSW

0)
coefficientsck,i

(0) are as in Ref.@2#, and have been listed in
Table V for completeness. Diagrams giving vanishing co
tributions to a given power ofcSW have been omitted from
the corresponding table.

The momentum integrations leading to the values of e
coefficient are performed numerically on lattices of varyi
sizeL<32, and then extrapolated to infinite lattice size usi
a broad spectrum of functional forms of the typ
( i , jei j (lnL)j/Li. The systematic error resulting from the e
trapolations has been estimated rather conservatively u
the procedure of Ref.@5#, and has been included in the table

One important consistency check can be performed
those diagrams which are separately IR divergent; taken
gether in groups, as listed at the end of Sec. II, they g
finite and very stable extrapolations for the coefficients
each power ofcSW. Several other consistency checks ste
from exact relations among various coefficients; to nam
few:

c2,4
(1)5b2

(1)~1/22b1
(0)!/4,

c2,4
(2)5b2

(2)/4,

c2,7
(0)52b1

(0)3/32, ~13!

c2,14
(1) 52b2

(1)/8,

c2,14
(2) 52b2

(2)/8.
le
1-3
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Here, bi
( j ) are the coefficients of thei th 1-loop diagram, multiplyingcSW

j , as displayed in Eq.~11!. Comparing with our
numerical values of Tables I–IV, we find agreement well within the error bars.

Leaving the choice of values forN, Nf , andcSW unspecified, our result takes the form:

S (2)5~N221!$@20.017 537~3! 11/N2 0.016 567~2! 1Nf /N 0.001 186 18~8!#

1@0.002 601~2! 21/N2 0.000 559 7~7! 2Nf /N 0.000 545 9~2!# cSW

1@20.000 155 6~3! 11/N2 0.002 622 6~2! 1Nf /N 0.001 365 2~1!# cSW
2

1@20.000 163 15~6! 11/N2 0.000 158 03~6! 2Nf /N 0.000 692 25~3!# cSW
3

1@20.000 017 219~2! 11/N2 0.000 042 829~3! 2Nf /N 0.000 198 100~7!# cSW
4%. ~14!

To make more direct contact with non-perturbative results, we evaluateS (2) at N53 andNf50,2, obtaining:

S (2)~N53,Nf50!5 20.125 57~3! 10.020 31~2! cSW 10.001 087~3! cSW
2

20.001 165~1! cSW
3 20.000 099 68~2! cSW

4,

S (2)~N53,Nf52!5 20.119 24~3! 10.017 40~2! cSW 10.008 368~3! cSW
2

20.004 857~1! cSW
3 20.001 156 2~1! cSW

4. ~15!

TABLE I. Coefficientsc1,i
(1) , c2,i

(1) , c3,i
(1) . r 51.

i c1,i
(1) c2,i

(1) c3,i
(1)

4 20.006 972 989 69~1! 0.007 119 622 70~1! 0
12113 0 0 20.000 055 40~1!

14115116117118 0.005 587~1! 20.005 435 6~3! 0
19120 0 0 20.000 490 5~2!

21122123 0.001 549 9~6! 20.001 549 9~6! 0
24 20.000 227 42~6! 0 0
25 0.001 471 5~3! 20.000 027 52~1! 0
26 0.000 943 9~2! 0 0
27 0 20.000 752 5~1! 0
28 0.000 248 87~3! 0.000 086 138~5! 0

TABLE II. Coefficientsc1,i
(2) , c2,i

(2) , c3,i
(2) . r 51.

i c1,i
(2) c2,i

(2) c3,i
(2)

4 20.004 869 170 62~1! 0.004 523 942 20~1! 0
6 0.001 753 8~2! 0 0
12113 0 0 0.000 894 9~1!

14115116117118 0.002 197 7~2! 20.002 262 0~2! 0
19120 0 0 0.000 470 3~1!

21122123 20.000 186 4~1! 0.000 186 4~1! 0
24 0.000 032 57~1! 0 0
25 20.000 228 29~1! 20.000 059 15~1! 0
26 0.000 608 75~1! 0 0
27 0 0.000 351 68~2! 0
28 0.000 535 39~5! 20.000 118 18~1! 0
014511-4
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Equations~11!, ~15! lead immediately to the 1- and 2-loo
results for the critical mass:mc

(1)5g0
2S (1), mc

(2)5g0
2S (1)

1g0
4S (2), and the corresponding hopping parameterkc

51/(2mca18r ).
A number of non-perturbative determinations ofkc exist

in the literature for particular values ofb52N/g0
2 and cSW

50, see e.g., Refs.@7,8# ~quenched case! and Refs.@9,10#
~unquenched,Nf52). We present these in Table VI, togeth
with the 1- and 2-loop results (kc

(1) , kc
(2)). Also included in

the table are the improved results obtained with the met
described in the following section.

IV. IMPROVED PERTURBATION THEORY

In order to obtain improved estimates from lattice pert
bation theory, one may perform a resummation to all ord
of the so-called ‘‘cactus’’ diagrams@11–13#. Briefly stated,
these are gauge-invariant tadpole diagrams which bec
disconnected if any one of their vertices is removed. T
original motivation of this procedure is the well known o
servation of ‘‘tadpole dominance’’ in lattice perturbatio
theory. In the following we adapt the calculation of Ref.@2#
to the clover action. We refer to Ref.@11# for definitions and
analytical results.

Since the contribution of standard tadpole diagrams is
gauge invariant, the class of gauge invariant diagrams we
considering needs further specification. By the Bak
Campbell-Hausdorff~BCH! formula, the product of link
variables along the perimeter of a plaquette can be writte

TABLE III. Coefficientsc1,i
(3) , c2,i

(3) , c3,i
(3) . r 51.

i c1,i
(3) c2,i

(3) c3,i
(3)

19120 0 0 20.000 692 25~3!

21122123 20.000 175 30~6! 0.000 175 30~6! 0

25 0.000 022 090~4! 0 0

26 20.000 023 954~3! 0 0

27 0 20.000 017 264~2! 0

28 0.000 014 014~3! 0 0
01451
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Ux,mn5eig0Ax,meig0Ax1m,ne2 ig0Ax1n,me2 ig0Ax,n

5exp$ ig0~Ax,m1Ax1m,n2Ax1n,m2Ax,n!1O~g0
2!%

5exp$ ig0Fx,mn
(1) 1 ig0

2Fx,mn
(2) 1O~g0

4!%. ~16!

The diagrams that we propose to resum to all orders are
cactus diagrams made of vertices containingFx,mn

(1) . Terms of
this type come from the pure gluon part of the lattice actio
These diagrams dress the transverse gluon propagatoPA

leading to an improved propagatorPA
(I ) , which is a multiple

of the bare transverse one:

PA
(I )5

PA

12w~g0!
, ~17!

where the factorw(g0) will depend ong0 andN, but not on
the momentum. The functionw(g0) can be extracted by an
appropriate algebraic equation that has been derived in
@11# and that can be easily solved numerically; forSU(3),
w(g0) satisfies

ue2u/3@u2/324u18#52g0
2 , u~g0![

g0
2

4@12w~g0!#
.

~18!

The vertices coming from the gluon part of the action, E
~1!, get also dressed using a procedure similar to the
leading to Eq.~17! @11#. Vertices coming from the Wilson
part of the fermionic action stay unchanged, since their d
nition contains no plaquettes on which to apply the line

TABLE IV. Coefficientsc1,i
(4) , c2,i

(4) , c3,i
(4) . r 51.

i c1,i
(4) c2,i

(4) c3,i
(4)

19120 0 0 20.000 198 10~1!

21122123 20.000 017 219~2! 0.000 017 219~2! 0

27 0 0.000 025 610~2! 0
TABLE V. Coefficientsc1,i
(0) , c2,i

(0) , c3,i
(0) . r 51.

i c1,i
(0) c2,i

(0) c3,i
(0)

3 0.002 000 362 950 707 492 20.003 000 544 426 061 237 5 0
4 0.000 409 213 61~1! 20.000 613 820 41~2! 0
6 20.000 048 889 1~8! 0.000 097 778~2! 0
71819110111 20.013 927~3! 0.014 525~2! 0
12113 0 0 0.000 792 63~8!

14115116117118 20.005 753~1! 0.005 832 3~7! 0
19120 0 0 0.000 393 556~7!

21122123 0.000 096 768~4! 20.000 096 768~4! 0
25 0.000 077 62~1! 20.000 155 24~3! 0
26 20.000 400 00~5! 0 0
27 0 20.000 006 522~1! 0
28 0.000 007 848 2~5! 20.000 015 696~1! 0
1-5
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TABLE VI. One- and two-loop results (kc
(1) , kc

(2)), along with their improved~dressed! counterparts, and
nonperturbative determinations. See references, shown in square brackets, for details on the nonper
definition of k and on error estimates.

Nf b cSW kc
(1) kc

(2) kc, dressed
(1) kc, dressed

(2) Simulation

0 5.70 1.568 0.1296 0.1332 0.1366 0.1366 0.1432 @8#

0 6.00 1.479 0.1301 0.1335 0.1362 0.1362 0.1392 @8#

0 6.00 1.769 0.127 49 0.130 61 0.133 72 0.133 19 0.135 25@8,7#
0 6.20 1.442 0.1303 0.1334 0.1358 0.1358 0.1379 @8#

0 6.20 1.614 0.128 78 0.131 82 0.134 39 0.134 14 0.135 82@8,7#
0 12.0 1.1637 0.128 766 0.129 622 0.129 807 0.129 845 0.129 909@7#

0 24.0 1.0730 0.127 019 0.127 229 0.127 243 0.127 253 0.127 258@7#

2 5.20 2.0171 0.12515 0.129 87 0.134 81 0.133 42 0.136 63@10,9#
2 2.26 1.9497 0.125 89 0.130 43 0.135 17 0.133 92 0.137 09@10,9#
2 2.29 1.9192 0.126 22 0.130 68 0.135 32 0.134 14 0.137 30@10,9#
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BCH formula; the 3- and 4-point vertices of the clover a
tion, on the other hand, acquire simply a factor of@1
2w(g0)# @12#.

One can apply the resummation of cactus diagrams to
calculation of additive and multiplicative renormalizations
lattice operators. Applied to a number of cases of inter
@11,12#, this procedure yields remarkable improveme
when compared with the available nonperturbative estima
As regards numerical comparison with other improvem
schemes~tadpole improvement, boosted perturbation theo
etc.! @14,15#, cactus resummation fares equally well on
the cases studied@13#.

One advantageous feature of cactus resummation, in c
parison to other schemes of improved perturbation theor
the possibility of systematically incorporating higher loo
diagrams. The present calculation exemplifies this feature
we will now show.

Dressing the 1-loop results is quite straightforward:
fermionic propagator stays unchanged, the gluon propag
gets multiplied by 1/@12w(g0)# and the dressing of the fer
mionic vertices amounts to a rescaling:cSW→cSW@1
2w(g0)#. The resulting values,kc, dressed

(1) , are shown in
Table VI. It is worth noting that these values already fa
better than the much more laborious undressed 2-loop
sults.

We now turn to dressing the 2-loop results. Here, o
must take care to avoid double counting: A part of diagra
4, 7 and 14 has already been included in dressing the 1-
result, and must be explicitly subtracted fromS (2) before
dressing. Fortunately, this part~we shall denote it bySsub

(2)) is
easy to identify, as it necessarily includes all of the 1/N2 part
in diagrams 7, 14, and the 1/N2 part of diagram 4 involving
a clover 5-point vertex. A simple exercise in contraction
SU(N) generators shows thatSsub

(2) is proportional to (2N2

23)(N221)/(3N2). There follows without difficulty that:

Ssub
(2)52~2N223!~N221!/~3N2!•@b2

(1)cSW/81c2,4
(2)cSW

2

1c2,7
(0)1c2,14

(0) 1c2,14
(1) cSW1c2,14

(2) cSW
2# ~19!
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@cf. Eq. ~13!#.
A potential complication is presented by gluon vertice

While the 3-gluon vertex dresses by a mere factor of@1
2w(g0)#, the dressed 4-gluon vertex contains a term wh
is not simply a multiple of its bare counterpart~see Appendix
C of Ref. @11#!. It is easy to check, however, that this ter
must simply be dropped, being precisely the one which
already been taken into account in dressing the 1-loop re
the remainder dresses in the same way as the 3-gluon ve
The very same situation prevails with the dressed 5-po
vertex of the clover action, as in diagram 4.

In conclusion, cactus resummation applied to the 2-lo
quantityS (2) leads to the following rather simple recipe:

mc, dressed
(2) 5S (1)

g0
2

12w~g0!
1~S (2)2Ssub

(2)!

3
g0

4

@12w~g0!#2U
cSW →cSW[12w(g0)]

. ~20!

@For the values ofb in Table VI, b55.20,5.26,5.29,
5.7,6.0,6.2,12.0,24.0, we obtain from Eq.~18!: 12w(g0)
50.697146, 0.701957, 0.704298, 0.732579, 0.7497
0.759969, 0.887765, 0.946087, respectively.#

Our results forkc, dressed
(2) , as obtained from Eq.~20!, are

listed in Table VI. Comparing with the Monte Carlo est
mates, dressed results show a definite improvement o
non-dressed values. It is interesting to note that 1-lo
dressed results already provide most of the improvem
except at very largeb values. At the same time, a sizeab
discrepancy still remains, as was expected from the s
multiplicative renormalizations, calculated to the same ord
are expected to be much closer to their exact values. A
case study of this kind, regarding theb function with clover
improvement, is now complete and will be presented el
where@6#.
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