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Critical hopping parameter in O(a) improved lattice QCD
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We calculate the critical value of the hopping parameter, in O(a) improved lattice QCD, to two loops
in perturbation theory. We employ the Sheikholeslami-Woh(edven improved action for Wilson fermions.
The quantity which we study is a typical case of a vacuum expectation value resulting in an additive renor-
malization; as such, it is characterized by a po{lieear divergence in the lattice spacing, and its calculation
lies at the limits of applicability of perturbation theory. The dependence of our results on the number of colors
N, the number of fermionic flavors\;, and the clover parameteg,, is shown explicitly. We compare our
results with nonperturbative evaluations «f coming from Monte Carlo simulations.
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[. INTRODUCTION sults of Ref[2] were recently confirmed in Rdf3], in which
a coordinate space method was used to achieve even greater
In this paper we calculate the critical value of the hoppingaccuracy.
parameterx, in lattice QCD, to two loops in perturbation The critical fermionic mass and hopping parameter will
theory. We employ theO(a) improved Sheikholeslami- now depend not only on the number of coldsand of
Wohlert[1] (cloven action for Wilson fermions; this action fermionic flavorsNs, but also on the free parameteg,,
is widely used now in Monte Carlo simulations as a means ofvhich appears in the clover acti¢see next sectionwe will
reducing finite lattice spacing effects, leading to a faster apkeep this dependence explicit in our results.
proach to the continuum. In Sec. Il we define the quantities which we set out to
The Wilson fermionic action is a standard implementationcompute, and describe our calculation. In Sec. Il we present

of fermions on the lattice. It circumvents the notorious dou-our results and compare with Monte Carlo evaluations. Fi-
bling problem by means of a higher derivative term, whichnally, in Sec. IV we obtain improved estimates coming from
removes unphysical propagator poles and has a vanishirgytadpole resummation.
classical continuum limit; at the same time, the action is
strictly local, which is very advantageous for numerical Il. FORMULATION OF THE PROBLEM
simulation. The price one pays for strict locality and absence ) o ] ]
of doublers is, of course, well known: The higher derivative ~Our starting point is the Wilson formulation of the QCD
term breaks chiral invariance explicitly. Thus, merely setting2ction on the lattice, with the addition of the clou&W) [1]
the bare fermionic mass to zero is not sufficient to ensurdermion term. Its action reads, in standard notation,
chiral symmetry in the quantum continuum limit; quantum 1
corrections introduce an additive renormalization to the fer- S.=— z T[1-U, (x)]

mionic mass, which must then be fine-tuned to have a van- do X v

ishing renormalized value. Consequently, the hopping pa-

rameterk, which is very simply related to the fermion mass, + 2 2 (4r + mB)%(x) e (X)
must be appropriately shifted from its naive value, in order to T X

recover chiral invariance.

By dimensional power counting, the additive mass renor-
malization is seen to be linearly divergent with the lattice
spacing. This adverse feature of Wilson fermions, typical of

N| =

Z ZM [s(X)(r = ¥,)U ,(X) (X + 1)

vacuum expectation values of local objects, poses an addi- (X ) (1 +y,)U (0 Te(X)]
tional problem to a perturbative treatment, aside from the i
usual issues related to lack of Borel summability. Indeed, our +oCow 2 ()0, F () (X), (1)
calculation serves as a check on the limits of applicability of 4 foxuw
perturbation theory, by comparison with non perturbative re-
sults coming from Monte Carlo simulations. where
In the present work we will follow the procedure and
notation of Ref.[2], in which x, was computed using the E o= 1(Q ~Q,.)
Wilson fermionic action withou©(a) improvement. The re- myo g TRy EvRe
Qu=U,,+U, _,+U_, +U_, .. 2
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originating atx; g, denotes the bare coupling constants ~ Where
the Wilson parameter;f is a flavor index; o,
=(i/2)[y,.v.,]. Powers of the lattice spacirg have been

omitted and may be directly reinserted by dimensionalp=> Esin(ap“), m(p)=mB+2—rz siné(ap®/2).
counting. Lz ra a4
We use the standard covariant gauge-fixing term; in terms

of the vector fieldQ,,(x) (U .(x) = exHigoQ,.(¥)]). it reads To restore the explicit breaking of chiral invariance, we

require that the renormalized mass vanish:

Ser=No> > TrA,Q,()A, Q,(x),
Mm,vo X

~ Sil(o)zosz:EL(O!mBrgO)' (8)
A, Q,(X)=Q,(X—u)=Q,(X). ()

Having to compute a gauge invariant quantity, we chose tdhe above is a recursive equation for;, which can be
work in the Feynman gauga,=1. Covariant gauge fixing solved order by order in perturbation theory.

= : : L ac.
produces the following action for the ghost fieldsand w: We write the loop expansion a- as:
sgh=2; % Tr[A; 0(x)] A} 0(x) 3L(0mg,00) =933 W +gs@+. ... 9)
. 1 N
+igo[ Qu(X), @(X) ]+ 21g0[ Q,u(X),A , @(X)] Two diagrams contribute t8 (), shown in Fig. 1. In these
_ﬁgg[QM(X),[QM(X)aA;w(X)]]+-"}, diagrams, the fermion mass must be set to its tree level

value,mg—0.
The quantity® ®) receives contributions from a total of 26
diagrams, shown in Fig. 2. Genuine 2-loop diagrams must

Finally the change of integration variables from links to vec—ag?r']r.] be devalttrjlateldl mB_C;.O; n addm(:n., one m“it include
tor fields yields a Jacobian that can be rewritten as the usu ¢ this order the 1-loop diagram containing @rigo) mass

measure ter in the action: countertern{gjiagram 23 th o . .
"B The contribution of the™" diagram can be written in the

A o(X)=w(X+ 1) = o(X). 4)

1 form
Sn=pNG2 2 TrQ()Qu(0+ . (8
M
) 4 . c(zj-) N¢ . .
In Sy, andS;, we have written out only terms relevant to our (N?=1)- > c(11|’+—2' +ch,i) Caw (10)
computation. The full action isS= S + Sy¢+ S+ Sy - =0 N

The bare fermionic massg must be set to zero for chiral
invariance in the classical continuum limit. The value of the 0 () () )
parametecg,, can be chosen arbitrarily; it is normally tuned WHerecij .cz/,cs; are numerical constants. The dependence
in a way as to minimize(a) effects. Terms proportional to ©N Csw IS seen to be polynomial of degree 4, as can be
r in the action, as well as the clover terms, break chiralverified by inspection of Fig. 2. . _
invariance. They vanish in the classical continuum limit; at ~ Certain sets of diagrams, corresponding to renormaliza-
the quantum level, they induce nonvanishing, flavor-ton of Ipop propagators, must be evaluated together in order
independent corrections to the fermion masses. Numericdp obtain an infrared-convergent result: These are diagrams
simulation algorithms usually employ the hopping parameteerzgig;loJrll* 12+13, 14+15+16+17+18, 19+20, 21

1

2mga+8r 1. NUMERICAL RESULTS

as an adeStab|e quantity. Its Critical Value, at Wh|Ch Chiral Eva|uating the two diagrams of F|g 1' we find mfl):
symmetry is restored, is thus t/8lassically, but gets shifted

by quantum effects.
The renormalized mass can be calculated in textbook
fashion from the fermion self-energy. Denoting by
>t(p,mg,go) the truncated, one particle irreducible fermi- m
onic two-point function, we have for the fermionic propaga-

tor: 1 2
K N FIG. 1. One-loop diagrams contributing B". Wavy (solid)
S(p)=[ip+m(p)—="(p,mg,go)] * (7)  lines represent gluon@ermions.
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N2—1

sM= [ —0.154 933390231 060 21 (diagram 1

—0.007 923668479 72)+cgy 0.043483033882Q30)
+cgy? 0.018 095 768 781 42)] (diagram 2. (11
Here and below we setto its usual valuer =1. One- and two-loop results pertainingdg,=0 are as in Ref2], and can
be found with greater accuracy in RE8].
For cqw# 0, only one-loop results exist so far in the literature; a recent presentation for theg@sé (see Ref[4] and
earlier references thergirs in perfect agreement with our E(L1):
SMW(N=3cqy=1)=—0.270075 349 &2) (Ref.[4])
—0.270075349459(5) [the presentwork, Eq11)]. (12

It should be clear to the reader that such a high level of~10 min of CPU time on a typical 1 GHz Pentium Il pro-
precision is hardly relevaner se especially given the ex- cessor.

pected deviation from nonperturbative results; nevertheless, We now turn to the much more cumbersome evaluation of
it serves as a testing ground for both accuracy and efficiencthe two-loop diagrams, which is the crux of our present com-
of our methods, in view of the more demanding higher loopputation. As in Ref[2], we use aMATHEMATICA package
calculations. Further, high precision is called for in the con-which we have developed for symbolic manipulations in lat-
text of the Schrdinger functional computation, to permit a tice perturbation theor{see, e.g., Ref5]). For the purposes
stable extrapolation of various parameters to infinite latticeof the present workand a related work on thg-function

(see Ref.[4]). Regarding efficiency, let us note that the [6]), we have augmented the package to include the vertices
numerical integrations leading to E¢ll) require a mere of the clover action.

In Tables I, Il, lll, and IV we present the values of the
coefficientsc{, ¢, (3, ci¥), respectively. Th®©(csn’)
coefficientsc(k?i) are as in Ref[2], and have been listed in
{} Table V for completeness. Diagrams giving vanishing con-

tributions to a given power ofg,, have been omitted from
the corresponding table.
The momentum integrations leading to the values of each

I
W
3 6 7 8
coefficient are performed numerically on lattices of varying
@ \v/ {} @ sizeL <32, and then extrapolated to infinite lattice size using
9

VARV
3

a broad spectrum of functional forms of the type
2 j&ij(InL)!/L". The systematic error resulting from the ex-

10 u 1 trapolations has been estimated rather conservatively using

13 14
the procedure of Ref5], and has been included in the tables.
One important consistency check can be performed on
FanY é% those diagrams which are separately IR divergent; taken to-

gether in groups, as listed at the end of Sec. Il, they give
s 16 17 " 0 20 finite and very stable extrapolations for the coefficients of
each power otgy. Several other consistency checks stem
from exact relations among various coefficients; to name a

D

few:
- cD=bSM(1/2—bi»)/4
21 2 23 24 25 2% 242 1 !
c@)=bPa,
SN oy
g c9)=—b{"3/32, (13
27 28
FIG. 2. Two-loop diagrams contributing t&“. Wavy (solid, 0(21{4:—b(21)/8,
dotted lines represent gluonéfermions, ghosis Crosses denote ’
vertices stemming from the measure part of the action; a solid circle @) )
is a fermion mass counterterm. C3 14~ —b37I8.
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TABLE I. Coefficientsc{y, c&¥), c{}). r=1.

i ofy cf) cf

4 —0.006 972989 64) 0.007 119622 7Q) 0

12+13 0 0 —0.000 055 40Q1)
14+15+16+17+18 0.005 5871) —0.005 435 63) 0

19+20 0 0 —0.000 490 52)
21+22+23 0.001 549 ®) —0.001 549 %) 0

24 —0.000 227 415) 0 0

25 0.0014718) —0.000 027 5p1) 0

26 0.000943 @) 0 0

27 0 —0.000 752 1) 0

28 0.000 248 8®B) 0.000 086 136) 0

Here,bi(j) are the coefficients of thith 1-loop diagram, multiplyingcsy/, as displayed in Eq(11). Comparing with our
numerical values of Tables I-1V, we find agreement well within the error bars.
Leaving the choice of values fdd, N¢, andcg,, unspecified, our result takes the form:

3()=(N2-1){[-0.017 5373) +1/N? 0.0165672)
+[0.0026012) —1/N? 0.000559 77)
+[—0.00015563)  +1/N? 0.002622 62)
+[—0.000163166)  +1/N? 0.000 158 086)
+[—0.00001721@) +1/N? 0.000 042 82@3)

+N;/N 0.001186188)]

—N;/N 0.00054592)] csw

+N¢/N 0.00136521)] cgn?

—N;/N 0.000692263)] cgn’

—N;/N 0.0001981007)] csw'}. (14)

To make more direct contact with non-perturbative results, we evalifdteat N=3 andN;=0,2, obtaining:

S@(N=3N;=0)= —0.125573) +0.020312) cgy +0.0010873) csn?
—0.00116%1) cg,®> —0.000099 682) con?,

S@(N=3N;=2)= —0.119243) +0.017402) cgy +0.0083683) csy’
—0.0048571) cg,® —0.00115621) csy/’. (15)

TABLE II. Coefficientsc{?, c¢§?, ¢{¥. r=1.

i cf? c? c?

4 —0.004 869 170 62) 0.004 523 942 2Q1) 0

6 0.001 753 &) 0 0

12+13 0 0 0.000 894@)
14+15+16+17+18 0.002 197 @) —0.002 262 ) 0

19+20 0 0 0.000 470@)
21+22+23 —0.000 186 41) 0.000 186 41) 0

24 0.000 032 5@) 0 0

25 —0.000 228 261) —0.000 059 161) 0

26 0.000 608 76L) 0 0

27 0 0.000 351 6@) 0

28 0.000 535 3®) —0.000 118 181) 0
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TABLE III. Coefficientsc{¥, ¢, ¢§. r=1. TABLE IV. Coefficientsc{}, c&?, c{P. r=1.
i cf? ct? ct? i cf? ct? ct?
19+20 0 0 —0.000 692 283) 19+20 0 0 —0.0001981Q1)
21422423 —0.000175306) 0.0001753() O 21422423 —0.000017 21@) 0.00001721@) O
25 0.00002209@) O 0 27 0 0.00002561@) 0
26 —0.00002395@) O 0
27 0 —0.00001726®) O ) . ) )

— alJoA igpA v 190A+ 1 ua— 190Ax 1

28 0.00001401®) 0 0 Uy o= €907 0@!90%c v 190%™ 1907,

=expligo(Arut Ack ™ Act v~ Ax) TO(G)}
Equations(11), (15) lead immediately to the 1- and 2-loop _ : (1) | :~20(2) 4
results for the critical massm{t=g2s®, m{@=g3s ") eXRiG0F 1y 1G0Fscin O(Go)}- (18
+g32(2), and the corresponding hopping parameter
=1/(2m.a+8r).

A number of non-perturbative determinations «f exist
in the literature for particular values (ﬁzZN/gS and cgy
=0, see e.g., Refd7,8] (quenched cagseand Refs[9,10]
(unquenched\;=2). We present these in Table VI, together
with the 1- and 2-loop results«t, «{?)). Also included in
the table are the improved results obtained with the method
described in the following section.

The diagrams that we propose to resum to all orders are the
cactus diagrams made of vertices contairﬁr@v. Terms of

this type come from the pure gluon part of the lattice action.
These diagrams dress the transverse gluon propagator
leading to an improved propagatBf’ , which is a multiple

of the bare transverse one:

Pa

M "~
P = 1 W(gy)”

17

IV. IMPROVED PERTURBATION THEORY .
where the factow(gy) will depend ongg andN, but not on

In order to obtain improved estimates from lattice pertur-the momentum. The functiow(g,) can be extracted by an
bation theory, one may perform a resummation to all ordergppropriate algebraic equation that has been derived in Ref.

of the so-called “cactus” diagramgl1-13. Briefly stated, [11] and that can be easily solved numerically; 80(3),
these are gauge-invariant tadpole diagrams which becomg(q) satisfies

disconnected if any one of their vertices is removed. The
original motivation of this procedure is the well known ob- 2
servation of “tadpole dominance” in lattice perturbation  e-uB[y/3—4yu+8]=2g?, u(go)E:L.

theory. In the following we adapt the calculation of R 4[1-w(go)]

to the clover action. We refer to Rédfl1] for definitions and (18
analytical results.

Since the contribution of standard tadpole diagrams is notThe vertices coming from the gluon part of the action, Eq.
gauge invariant, the class of gauge invariant diagrams we ar@d), get also dressed using a procedure similar to the one
considering needs further specification. By the Bakerdeading to Eq.(17) [11]. Vertices coming from the Wilson
Campbell-Hausdorff(BCH) formula, the product of link part of the fermionic action stay unchanged, since their defi-
variables along the perimeter of a plaguette can be written asition contains no plaquettes on which to apply the linear

TABLE V. Coefficientsc{}, ¢/, c{. r=1.

i cfy cfy cfy

3 0.002 000362950 707 492 —0.003 000544 4260612375 O

4 0.000409 213 61) —0.000 613820 4®) 0

6 —0.000 048 889 (B) 0.000097 77@) 0
7+8+9+10+11 —0.0139213) 0.014 52%2) 0

12+13 0 0 0.000 792 68)
14+15+16+17+18 —0.005 7581) 0.005 832 87) 0

19+20 0 0 0.000 393 558)
21+22+23 0.000 096 76@) —0.000 096 7681 0

25 0.000 077 6@) —0.000 155 243) 0

26 —0.000 400 0(b) 0 0

27 0 —0.000 006 52¢1) 0

28 0.000 007 848(3) —0.000 015 6961) 0
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TABLE VI. One- and two-loop results«{™ , (%)), along with their improveddressegicounterparts, and
nonperturbative determinations. See references, shown in square brackets, for details on the nonperturbative
definition of x and on error estimates.

N B Csw K(cl) K(cz) K((::,L)dressed K((:?)dressed Simulation

0 5.70 1.568 0.1296 0.1332 0.1366 0.1366 0.1432 [8]

0 6.00 1.479 0.1301 0.1335 0.1362 0.1362 0.1392 [8]

0 6.00 1.769 0.127 49 0.13061 0.13372 0.13319 0.135 25[8,7]
0 6.20 1.442 0.1303 0.1334 0.1358 0.1358 0.1379 [8]

0 6.20 1.614 0.128 78 0.13182 0.134 39 0.13414 0.13582[8,7]
0 12.0 1.1637 0.128 766 0.129622 0.129 807 0.129 845 0.129909]

0 24.0 1.0730 0.127 019 0.127 229 0.127 243 0.127 253 0.127 258]

2 5.20 2.0171 0.12515 0.12987 0.13481 0.13342 0.136 63[10,9|
2 2.26 1.9497 0.12589 0.13043 0.13517 0.13392 0.13709[10,9|
2 2.29 1.9192 0.126 22 0.13068 0.13532 0.13414 0.137 30[10,9|

BCH formula; the 3- and 4-point vertices of the clover ac-[cf. Eq. (13)].
tion, on the other hand, acquire simply a factor [df A potential complication is presented by gluon vertices.
—w(go)] [12]. While the 3-gluon vertex dresses by a mere factof bf
One can apply the resummation of cactus diagrams to the w(g,)], the dressed 4-gluon vertex contains a term which
calculation of additive and multiplicative renormalizations of js not simply a multiple of its bare counterpésee Appendix
lattice operators. Applied to a number of cases of interest of Ref.[11])). It is easy to check, however, that this term
[11,12, this procedure yields remarkable improvementsyyst simply be dropped, being precisely the one which has
when compared with the available nonperturbative eSt'mate%tIready been taken into account in dressing the 1-loop result;

As regards numerical comparison with other improvemente remainder dresses in the same way as the 3-gluon vertex.
schemegtadpole improvement, boosted perturbation theory,-l-he very same situation prevails with the dressed 5-point

etc) [14,15, cactus resummation fares equally well on a"vertex of the clover action, as in diagram 4.

the cases studied 3]. . In conclusion, cactus resummation applied to the 2-loop

: . _ ‘quantity>(?) leads to the following rather simple recipe:
parison to other schemes of improved perturbation theory, i yx g P P

the possibility of systematically incorporating higher loop

diagrams. The present calculation exemplifies this feature, as 2
we will now show. ) d__g(l)L +(3®-30)
Dressing the 1-loop results is quite straightforward: the o dresse 1-w(go) s

fermionic propagator stays unchanged, the gluon propagator 4

gets multiplied by 1/1—w(g,)] and the dressing of the fer- x$

mionic vertices amounts to a rescalin@gy— Cswl1 [1-w(go)]? Com—Conll—W(gy)]

—w(go)]. The resulting valuesx!) ccceq are shown in

Table VI. It is worth noting that these values already fare

better than the much more laborious undressed 2-loop reFor the values of 8 in Table VI, 8=5.20,5.26,5.29,

sults. 5.7,6.0,6.2,12.0,24.0, we obtain from E@.8): 1—w(g,)

We now turn to dressing the 2-loop results. Here, one-= 697146, 0.701957, 0.704298, 0.732579, 0.749775,

must take care to avoid double counting: A part of diagramsy 759969, 0.887765, 0.946087, respectively.

4,7 and 14 has already b.e(.an included in dress;r;g the 1-Ioop Our_ results forK(C?)dressed as ob'Fained from Eq(20), are .

result, and must be explicitly subtracted fmf_ﬁ b2efo_re listed in Table VI. Comparing with the Monte Carlo esti-

dressing. Fortunately, this pdite shall denote it b ) is  mates, dressed results show a definite improvement over

easy to identify, as it necessarily includes all of thepart  non-dressed values. It is interesting to note that 1-loop

in diagrams 7, 14, and theN? part of diagram 4 involving  dressed results already provide most of the improvement,

a clover 5-point vertex. A simple exercise in contraction Ofexcept at very larges values. At the same time, a sizeable

SU(N) generators shows that?) is proportional to (N  discrepancy still remains, as was expected from the start:

—3)(N?~1)/(3N?). There follows without difficulty that:  multiplicative renormalizations, calculated to the same order,
are expected to be much closer to their exact values. A first

3 2)=— (2N2-3)(N?—1)/(3N?) - [bSDcg/8+cSicsy?  case study of this kind, regarding tigefunction with clover
improvement, is now complete and will be presented else-
+ C(z(,)7) + (3(2(,)24+ C(Z:,L]).4CSW+ C(Z?:I)ACSWz] (19 where[6].

(20
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