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Chiral loops and ghost states in the quenched scalar propagator
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The scalar, isovector meson propagator is analyzed in quenched QCD, using the modified quenched approxi-
mation pole-shifting ansatz to study the chiral limit. In addition to the expected short-range exponential falloff
characteristic of a heavy scalar meson, the propagator also exhibits a longer-range, negative metric contribution
which becomes pronounced for smaller quark masses. We show that this is a quenched chiral loop effect
associated with the anomalous structure of ghgropagator in quenched QCD. Both the time dependence and
the quark mass dependence of this effect are well described by a chiral loop diagram correspondipg4o an
intermediate state, which is light and effectively of negative norm in the quenched approximation. The relevant
parameters of the effective Lagrangian describing the scalar sector of the quenched theory are determined.
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I. INTRODUCTION The problem of exceptional configurations, which had pre-
vented previous studies from probing the smaller quark mass
For the foreseeable future, the quenched approximatioregion ofm_ <350 MeV, was resolved by the pole-shifting
will continue to play an important role in the study of lattice ansatz of the modified quenched approximatibQA) [6].
QCD for both practical and theoretical reasons. The practical he QCL effect was observed in both the pseudoscalar mass
reasons are only too obvious, considering the orders-ofand decay constants at the level expected from a direct study
magnitude increase in computer resources required for conff the 7’ -hairpin mass insertion and the topological suscep-
parable full QCD simulations. But quenched QCD also pro_t!blhty. Th|§ establlshed_se\{eral independent and quantita-
vides a very instructive counterpoint to the full theory which fively consistent determinations of the quenct\ed chiral log
can yield useful insight into the effect of quark loops in CO€fficient parametes (or, equivalently, of they’ mass in-

I
determining hadron structure. This is particularly true in theS€TtionMmMo).
light-quark limit, where lattice results can be interpreted The spectroscopy of scalar mesons has long been one of

theoretically with the aid of an effective field theory corre- th? SI],uLkizr arleas of hadront phenllom?nology. T?e é’ve\u'
sponding to quenched chiral perturbation theory. established scalar mesons are typically al masses ot a 5ev or

The introduction of quenched chiral perturbation theorymore’ although there have been occasional, fleeting experi-

. mental indications of lower mass scalar resonances. In the
by Sharpe, Bernard, _and Goltelrm@h,z] e;tabllshed the flavor singlet sector, mixing with glueball states further com-
framework for analyzing the chiral behavior of quenched

CD. Thi K f d . h icul plicates the intepretation of experimental data. This is clearly
QCD. This work focuse a,lttentlon on the particular, f’“_]oma'an area where lattice QCD calculations can be expected to
lous role of the quencheg’ propagator. The physica})’ is  pjay a crucial role in the future. High-statistics quenched

approximately a flavor singlet and gets most of its mass frongygies will undoubtedly be an important part of this effort.
the axial anomaly via repeatedq annihilation. In the Naively, we might expect that the anomalous chiral behavior
guenched approximation, a single annihilation vertex can apinduced by the quenched approximation would be of little
pear if both sides of the “hairpin diagram” are attached toimportance for scalar-meson spectroscopy, since the meson
valence quark lines, but repeated annihilation cannot takenasses involved are all expected to be quite heavy and not
place without the closed quark loops of the unquenchegbarticularly sensitive to the details of chiral extrapolation.
theory. Instead of canceling the Goldstone pole in the vaHowever, as we show in this paper, a more careful theoreti-
lence quark(“connected”) diagram, the single annihilation cal analysis combined with a precise numerical study of the
diagram contributes a term to thg propagator which has a scalar, isovector meson propagator at very light-quark mass
doubleGoldstone pole and an overall sign opposite to that ofeveals perhaps the most striking quenched chiral loop effect
the valence diagram. Unlike full QCD wherg’ loops re-  yet observed.

main infrared finite in the chiral limit, in the quenched The chiral loop effect we discuss here is exhibited very
theory, the double Goldstone pole of the hairpin term pro<learly by comparing the scalar, isovector propagator for the
duces additional quenched chiral l06QCL) singularities heaviest- and lightest-quark masses studied. These are shown
which alter the chiral behavior of the theory. This QCL effectin Fig. 1. For the heaviest-quark mass the propagator is a
was first observed in lattice results as a deviation from lineapositive and rapidly falling exponential, as expected from
behavior of the squared pion mass as a function of quarkeavy scalar-meson intermediate states. The fit shown is a
mass|3,4]. Recently, the quenched chiral limit was exten-sum of two exponentials with the excited-stafg mass ex-
sively investigated in a high-statistics study @+5.7 [5].  tracted by comparing local-local, smeared-local, and
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FIG. 1. The scalar propagator for the heaviest=(1400) and explalns the fac_;t that_ this component has.a negative spectral
lightest- (x=.1428) quark masses studied. For heavy quarké_Ne'ght- The halrplr(smgle mass Insgrtlomlagram appears
(boxes$ the propagator is positive and exponentially falling. The in the " propagator with the opposite sign from that of the
(uppeb solid curve is a two-exponential fit. For light quarkss)  full propagator. In full QCD thes'-7 intermediate state
the propagator exhibits a negative quenched chiral loop effect. Thevould arise from three different types of quark-line dia-
lower solid curve is the prediction of one-loop chiral perturbationgrams: Fig. 2a) with a single vacuum loop going around the
theory for this term(See Sec. ). entire diagram: Fig. @) with a single hairpin vertex, and the

type of graphs in Fig. @) with one or more vacuum bubbles

. : ; .
smeared-smeared correlataiSee the discussion in Sec. JiI. Inserted into they” propagator. Of these three, only the hair-

By contrast, the scalar propagator for lighter quarks exhibitd'" P"agfa!“' Fig. Qb),_|s mcluded_ |n_the quenched approxi-

a qualitatively different behaviotThe lower curve in Fig. 1 mation. Since the single hairpin insertion has an overall
is the one-loop quenchedP T prediction for the contribution negative §|gr(corr_espond_lng t0 a positivg” mass shif, the

to the scalar propagator of thg - intermediate state only. SI9n Of this contribution is opposite to that which would be
See below and Sec. )JIThis unusual behavior has two quali- rgquwed by spectral positivity. The prominence of this nega-
tative features which point clearly to a specific theoreticalllV€ €M In our m.eas.ured propagator is a clear example of
interpretation:(1) The additional component becomes mucht.he unitarity violation induced by the quenched approxima-
more prominent for the lightest-quark masses, &2)dthe tion. (In the Bernard_—GoIterman s_calar ghost-quark for_mula—
sign of this component is negativee., opposite to that re- tion of quenched chiral perturbqtlon theq@), the negative
quired by positivity of the spectral functipnBoth of these sign of the scalar propagator arises from the dominance of a

properties suggest that the new component is an effect of tHiegative metric state consisting of a pair of ghost-quark me-

n'-7 intermediate state, which is light in the quenched ap_sons)
proximation. This contribution arises from the “hairpin

pion” diagram shown in Fig. @). This interpretation also ||, LATTICE RESULTS FOR THE SCALAR PROPAGATOR

In a recent study of quenched chiral logs and thee

‘/Ok propagatof5], the MQA pole-shifting ansatz was applied to

a set of quark propagators for an ensemble of 300 gauge
N configurations af3=5.7 on a 13x 24 lattice. The fermion
(a) action was clover-improved Wilson-Dirac wit@g,,=1.57.

Nine values of quark mass were used, corresponding to a

range of hopping parameters fror=.1400 to .1428. Va-
lence quark propagators were calculated from both local
v delta-function sources and from exponentially smeared

sources in a Coulomb gaugé-or further details, see Ref.

(b) [5].) These pole-shifted quark propagators were used to cal-
culate the scalar-meson propagators considered in this paper.
OO0 The pion masses obtained from this ensemble have values
M ranging fromm_a=0.245 to 0.603, and are listed in Table I.
e e — It is natural to expect that the scalgu correlator in QCD
(©) will be dominated by the coupling to the lightest scalar me-

son which is expected to have a mass larger than 1 GeV.
FIG. 2. Quark-line diagrams which contribute to thé-7 in- For the heaviest-quark masses studied here, this is in fact the
termediate state in the scalar isovector propagator. behavior observed for the quenched propagator. First, con-
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_FIG. 3. The scalar propagator for the heaviest quark.1400 FIG. 5. Scalar propagator fok=.1423(filled circles), .1425
with local-local (+'s), smeared-localempty boxes and smeared-  (x's), 1427 (filled squarel and .1428(open circles). Solid curves
smearedfilled boxes sources. are fits to the bubble-sum formula, E4.9).

th AS pointed out in the Introduction, the behavior of the
scalar propagator changes dramatically for the lighter-quark
mass values. The results for the scalar propagator for our

sider the scalar propagator for our heaviest-quark mass, wi
m,a=.603, corresponding ta=.1400.(From Ref.[5], we
have k.=0.14329 for clover-improved Wilson-Dirac fermi- . - :
ons) The measured values of the local-local, smeared-locaf,'ghtest'quark mass values are shown in Fig. 5, witha

and smeared-smeared propagators are shown in the log plﬁt245' 267, .307, and .342, correspondlng:dwalues of

in Fig. 3. As expected, the plot shows clear evidence of al428: -1427,.1425, and .1423 respectively. Here we have
massive scalar meson. For the smeared-local propagator, tRéotted the local-localyys correlators. Instead of exhibiting
time dependence is reasonably well describedfo2 by an  the behavior expected for scalar-meson states, these propa-
exponential fit with a mass dfl.a=1.252). The efective ~ gators are dominated by a significant negative contribution in
mass plot for the smeared-local propagator is shown in Fig. #he ranget=2 to t=7 which increases for lighter-quark
for k=.1400. For comparison, the effective mass for themasses. We interpret this behavior as a clear signal for the
local-local and smeared-smeared propagators is also plotte@égative metric contribution associated with thew inter-
Although the smearing function usedn exponential with Mmediate state discussed in the previous section.

exponent 0.5 in lattice unitsvas not tuned for this particular ~ The »'-m loop interpretation of the anomalous compo-
problem, it does a good job of removing excited-state connent of the scalar propagator is made more convincing by
tamination’ g|\/|ng a reasonab|y flat effective mass over sevnoting that the Ieading chiral behavior of this contribution is
eral time slices fromt=2 to t=6, and a nearly identical entirely determined by current algebra in terms of parameters
effective mass plot for smeared-local and smeared-smeardhich have already been measured with this ensemble in our

propagatorgindicating an absence of excited states in hoth Previous study of the pseudoscalar propagsgr The rel-
evant chiral loop diagram is shown in Fig. 6, with the cross

5 . . . . . denoting then’-haEpin mass insertiormg, and the open

circles representing/ys operator vertices. If we ignore form-
factor effects at these vertices, we can calculate sther
15} * . . contribution to theyy propagator in momentum space. The
% ropagator
n® g Ly Propa
[] * T TTL
5 _S e vy, _
S 1 A(p)= 2. © (1tha(X) h211(0)) 1)
05 | i
o s O
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FIG. 4. Effective mass plot fok=.1400 for local-local(*'s),
smeared-localempty boxes and smeared-smearéfilled boxes FIG. 6. One-loop quenched chiral perturbation theory graph
correlators. evaluated in Eq(2).
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is given in terms of the one-loop integi&(p), Note that the extra factor of2 arises from the two flavor
5 nature of the hairpin correlator. The slope paramegewas
A(p)~—Cg B(p), (2)  determined by our fits to the pseudoscalar correlators in Ref.
[5],
where
) ro=219912). (6)
B(p)= o . o @
P)= VT [(k+p)2+ mfr] (K?+ mi)Z' Thus, in this approximation the effect of thg -7 bubble,

Eq. (2), is completely predicted by chiral symmetry in terms
Here,Cg is the iy to 7’ -7 coupling.(In the next section we  Of the constant¢4) and(6), and the pion masses in Table I.
will discuss including the scalar-meson intermediate state! he result for the lightest-quark masg= .1428) is plotted
along with form-factor/unitarization effecjsThe pion mass @along with the measured propagator in Figldwer curve.
values for the hopping parameters used here have alreadyensidering that the plotted curve has adjustable param-
been reported in Ref5] and are listed here in Table I. The €ters it fits the size and shape of the propagator remarkably
hairpin insertion masen is also determined in Ref5]. For ~ Well in the time range from=3 tot=7. For times <3, the
clover-improved fermions witlS,,,= 1.57 the value found in Measured propagator deviates from the one-loop expression
the chiral limit (dropping a flavor factor of/3 included in in the positive direction, indicating that the spectral function

Table Il of that referendeis a}lso contains a heayy scalar meson. Thls shprt—range, posi-
tive metric exponential component dominates in the heavier-
me=.332). (4)  quark cases where the chiral loop effect becomes unimpor-

tant. The one-loop result also explains the pion mass
The quark mass dependencengf was found to be very mild dependence of the anomalous propagator component, as
(see Table Il of Ref[5]). Here, for simplicity, we will take it shown in Fig. 7, where we have plotted the value of the
to be a mass independent constant given by(#qThe only  scalar propagator at various time separations as a function of
other parameter needed to evaluate tfier bubble contri- m?2 . The solid curves are th®, Fourier transform ap=0 of
bution is the»'-m matrix elementCg of the scalar-density the one-bubble integr&p), with my andr, given by Eqs(4)
operator. In the quenched theory, this matrix element is reand (6). Again the agreement with the data is surprisingly
lated to therr-7r matrix element of the isoscalar quark den- good, considering the absence of any adjustable parameters.
sity using the soft-pion reduction of both matrix elements.The accurate description of both the time dependence and the
This latter matrix element determines th&. vs m, slope  pion mass dependence leaves little doubt that, for the

parameterr ,, in the chiral limit. lightest-quark masses, the scalar propagator over the range of
. times from about=3 to 7 is completely dominated by the
Co=V2(0| ¢y iho| ' )= (7t || =) = mi/mq=2ro. n'-m loop. Furthermore, this agreement shows that the soft

(5) pion theorem relating the scalar-density matrix elentgnto
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the corresponding pseudoscalar matrix element is well satiexcited-state mesonslhe chiral field matrixJ contains the
fied by the lattice results. This is somewhat surprisinggat pion and»’ degrees of freedom. Thg' mass term is given
=5.7, where one might have expected substantial chiraby the hairpin Lagrangian,

symmetry violation from finite lattice-spacing effects.

For short time separations and/or heavier-quark masses,
an accurate description of the scalar propagator requires
positive contributions from scalar-meson states along with
the negative »’-r component. In the next section, we We have not included interactions involving the couplihgs
present a derivation of the quenched scalar propagator baseddL g used in our previous analysis of higher order terms in
on a detailed chiral Lagrangian description which will be the sigma potential as they will have only small effects on
used to fit our data for all quark mass values. The correour analysis of the isovector scalar propagator.
sponding propagator fits are discussed in Sec. V. Scalar and pseudoscalar quark densities are represented
by meson operators in the effective field theory and can be
determined from the dependence of the chiral Lagrangian on
the spurion fieldy. Hence the isovector scalar-density opera-

According to the analysis of Bernard and Golterman, low-tor is given by
energy quenched QCD is described by an effective local field
theory with degrees of freedom corresponding to meson -

. . . Wz‘Pl:_lrofz(U"’UT)u
bound-states, including not only ordinagg mesons, but 2
alsq q_’q,qq’, and q'q’ mesons, Whe_req’ is a wrong- —2rof(WUa U+ UToyU) 9)
statistics ghost quark. Order by order in thé mass inser-
tion m3, the ghost-quark formalism is easily seen to bewith
equivalent to Sharpe’s formulation, which begins with a
U(3)X U(3) chiral Lagrangian combined with rules inferred x=x"= mf,:2r0mquark. (10
from the structure of quark-line diagrams in the quenched
theory. In this paper, as in our previous analyid$, we  Our previous fits to the pseudoscalar propagator determined
follow the latter approach, invoking a chiral Lagrangian hav-the following values for the chiral Lagrangian parameters,
ing a valence pion andy’ degrees of freedom. To describe

Lhairpin= — %mg(fZIS)[itrIn(UT) —itrin(U)]%. (8)

IIl. QUENCHED CHIRAL PERTURBATION THEORY

quenched QCD, the chiral Lagrangian is supplemented with f=0.106624),

rules which reflect the suppression of internal quark loops.

As a result, all normal pion loops are suppressed except for m,=0.332),

cactus diagrams involving the’ meson connected by single

insertions of the hairpin mass term. Using this procedure we ro=19912). (12)

obtained a consistent fit to our lattice data for the pseudo-

scalar valence and]’-hairpin propaga’[ors and determined To lowest Order, the local isovector scalar denSity may be
the relevant chiral Lagrangian parameters. We now exten@xpanded in terms of the piow,, and sigma fields,

this analysis to the isovector, scalar propagator. _

The appropriate effective field theory must now include a VoW = 2ro(mt n')—4\2rofy(ah). (12
multiplet of scalar mesons in addition to the pion and ) ) -
degrees of freedom. Using standard chiral Lagrangian mettft tree level, only the sigma propagator gives a positive
ods, the heavy scalar mesons are described by scalar fiel@@ntribution to the scalar propagator
transforming nonlinearly under chiral symmetry rotations.

o W\ — 2922
The resulting chiral Lagrangian is (VoW W, W) =325fSP,, (13
(2 2 1 where P, is the a; meson propagator. The'-7 term can
L£=—tr{gUaUT + —tr{yTU+ Uy} + >tr{DoDa} only contribute via a meson loop. However, thé propaga-
4 4 4 tor in the loop is thex’-hairpin propagator with a single
1 insertion of the hairpin masmg (see Fig. 2 Including only
— ngtr{o'o'}—l—gstr{o'\jU&UT&U\;UT} these terms, the scalar propagator is
+ttr{x " U o U+ x U o sUT} + Lo @) (VoW W Wy)=325f2P,+4r3By,. (14)

] ) ) o ] In the last term above, an extra factor of 2 arises from the
whereD is a chiral covariant derivativen the sigma mass, g flavor nature of the hairpin correlator. HeBg, is the
gs the strength of the chiral invariant coupling of sigma me-pajrpin bubble:

sons to pions, ané the strength of the corresponding chiral

symmetry breaking interactions. Here we denote the scalar 1 1 —m2
field by o. (Elsewhere, when referring to particle states, we Bpp=FT vT - — o2 s
use the conventional, andag to denote ground-state and k [(k+p)*+mZ] (k°+m7)
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and FT means the Fourier transform qm As discussed in
the Introduction, the negative sign of thg propagator in
loops is dictated by the quenching and implies that this me-
son loop makes a negative contribution to the scalar propa
gator. It should also be noted that thé propagator is more
infrared singular than the normal valence pion propagator.
This has a dramatic effect on the scalar propagator. In the
light-quark limit, the quenched theory predicts that large
negative chiral loop effects should dominate the scalar
propagator. Our lattice data give convincing evidence for
these effects.

A complete analysis of the scalar propagator must go be-
yond the lowest order terms given above. The chiral La-
grangian predicts couplings between the scalar meson an
7' -7 states as well ag’-7 rescattering interactions gener-

PHYSICAL REVIEW D65 014509

e S
-~ O
O O

ated by the symmetry breaking terms that give mass to the FIG. 8. Graphs which are included in the resummed scalar

pion. These higher order terms involwg -7 bubble dia-

propagator, Eq(19).

grams and can be resummed into a closed form. Since the

chiral invariant interactions between theand »'-7 states

cates that neither propagator has a significant excited-state

include derivative couplings, bubbles with derivative cou-component. On the other hand, the local-local propagator
plings at theon’ 7 vertex must, in principle, also be in- clearly has a significardg component, as seen in the effec-
cluded. These terms are less infrared singular than the nofive mass plot, Fig. 4.

derivative terms and are not expected to play a major role in It is straightforward to estimate tha; contribution by
explaining the large quenched effects seen in the data. In thesing the(essentially time-independenmatioAg /Agsto de-

following analysis, we will neglect such derivative coupling t
terms. The formulas and results given below are for the equa

guark mass case; generalizations to the unequal mass cas

are straightforward.

As is always the case in propagator studies, the presenc
of excited states in the spectral function complicates th
analysis. As we discussed in Sec. Il, in addition to the prop

gator for Iocal@:p operators, we have calculated propagator

with a smeared source at one or both ends. In our previous

analysis of the pseudoscalar chanfg], a full multistate

2l ne abov
s‘propagators gives excited-state parameters

ermine the excited-state componentAqf; .
|

e Asi

AL (D)= 32 As(D)~Cag exp—mggD). (16

e
umerically, the above procedure applied to the .1400
Cag =0.27530),

Mg =1.8610). (17)

fitting procedure was employed. Here we take a somewhat
simpler approach which is suggested by features of the datghe large mass obtained emphasizes that the excited-state
We model the spectral function in terms of three compo-contribution is only important at very short time separations.

nents:(1) the ' -7 state,(2) a ground-state scalar mesag
and (3) an excited-state scalar mesap . We perform an
analysis of the local-local propagator by first using informa-i

Similar results are obtained far=.1405 and .1410, with no
significant observed dependence on quark mass. With this

nformation, we can separate the excited-state component

tion from the smeared-local and smeared-smeared propagiem the local-local propagator:

tors to remove the excited-stag scalar-meson component
and then fitting to a formula obtained by resumming all re-
peated bubble graphs involving thge'-7 state and the
ground-statea, scalar meson, as depicted in Fig. 8. To esti-
mate and remove the contribution of the exciggdfrom the
local propagator, we consider first the case with the heavied
quark, k=.1400. Within statistics, all of the scalar propaga-t

AL (t)=Cor exp(—mgst) + A, (1), (18

whereA (t) includes contributions from the’ - state and

tom the ground-state scalar meson, and will be modeled by
he bubble sum depicted in Fig. 8. For the lighter-quark

tors for smeared and local sources exhibit the same timgasses, they’-7 state becomes important, and it is more
dependence beyont=3. In fact, the smeared-local and difficult to disentangle the, andaj contributions. In the

smeared-smeared propagators are equal, up to an overall fd

s to the local-local propagator described in the next sec-

tor, at all time slices, as evidenced by the effective mass pldion, we have neglected the quark mass dependence of the

in Fig. 4. For the heavier-quark mass values, tfier loop

excited-stat@g term and used the estim&te?) for all quark

is relatively unimportant, and the smeared and local propamasses.
gators can be analyzed in terms of a ground-state and By resumming the multiple-bubble and scalar propagator
excited-state scalar meson. The fact that the smeared-locgiaphs shown in Fig. 8, the full propagator may be written in

and smeared-smeared propagatars (t) and Agdt) are t

erms of the one-loop bubble functid(p) defined in Eq.

proportional and that both give flat effective mass plots indi-(2),
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A(p)=—4r2B™"+32r2(f— f(2m2/f2)B"") ~ TABLE Il Fit parameters for the scalar propagator, withy
fixed to values shown. The fit rangetis[1—6].
X (fg—fo(2m2/f2)B™MP,,, (19
B K mq fq mo x2ldof
wheref is the coupling of the scalar meson to t#e den- 1400 1.200 05682) 33622) 2 1/4
sity, B"®"(p) is the resummed multiple-bubble function, '1405 1.185 '057((12) '33325) 2'3/4
B(p) .1410 1.170 .05713) .33527) 2.3/4
BeN——————— (20) 1415 1.156 .05743) 33830 2.1/4
1+(2m7/f9)B .1420 1.142 .0578.4) 34633 2.3/4
. .1423 1.133 .05785) .35836) 3.0/4
andPy is the resummed, propagator, 1425 1128  .057@6)  .36043) 4.5/4
P;01: [)2+ m§+ 32(fsmi/f2)2Bren. (21) 1427 1.122 .0564.38) .33251) 6.4/4
.1428 1.119 .05520) .29864) 6.7/4

Note that the negative sign associated with the hairpin inser=
tion has been taken outside of the bubble function, i.e., the ] )
functionsB(p) andB'®"(p) are both positive. f|tt|_ng_ procedqres. I_n the first set of f|¢§abl_e ), we take the

We use the bubble functioB(p) defined for the lattice hairpin mass insertion parametag, to pe fixed at the value
version of the full chiral Lagrangian with the same lattice (11 and use the scalar propagator fits to extract the scalar-

spacing as the quark lattice. In EqR0),(21), the lattice ~MeSon Lagrangian parameteisandms. In the second set
of fits (Table 1), we letm, be a fit parameter and investigate

four-momentum is defined bp=2 sin(/2) as appropriate . .
for bosonic propagators. If we are to use the pion masses ip}ow well the scalar propagator data by itself determines the

Table I, which were determined from fitting tlespace pion value of the hairpin insertion.

: : : The fits which extract the scalar parameters, withheld
propagatorsi then Ehe p|on.masses used in lattice propagatqlr)%ed, are given in Table I. We see that the value of the
above are given byn.=2 sinh(n,/2).

; o _ ground-state scalar mass parameteris rather well deter-
This analysis includes all contributions to the scalarmined for the heaviest-quark masses, but becomes less accu-
propagator which can be computed by directm bubble 56 for Jighter masses, where thg-m state dominates. A

summation and mixing with the, scalar-meson state. We |inear fit to the scalar mass values in Table | gives a value of
use these expressions in our analysis of the lattice data on the

isovector, scalar propagator. m,=1.147) (22)
The quenched theory does introduce additional contribu- s

tions which cou_ld modlfy_the behavior of the bubble_ terms.iy the chiral limit. Using the charmonium scala

For example, pions can interact through double hairpin €X_118 GeV. this gives a scalar-meson mass of

change diagrams whose infrared behavior is doubly en—1_34(9) GeV. The scalar decay constdatin the chiral
hanced. Therefore, virtuaj’ processes do not decouple in limit is

the infrared limit as is normally expected for soft-pion inter-

actions but can generate long-range forces between mesons f.=.0573) (23)
in the quenched theory. Preliminary estimates of these effects . . ' o .
indicate they are negligible for the range of pion masses and In addition to extracting scalar parameters, it is interesting

lattice volume considered in this paper and they have no© carry out f'.ts to the scalar propagator with, as a fit
been included in our analysis. parameter. This procedure emphasizes the fact that the scalar

propagator data alone provides a fairly accurate estimate of
my which is independent of, and consistent with, the previ-
ous estimates in Ref5]. As we saw in the previous fits, the
scalar massng is well-determined for the heaviest quarks,
In Sec. Il we showed that the data for the scalar propagabut is poorly determined at the light-quark end. To obtain
tor for heavier-quark masses was dominated by the scalagtable fits withm, as a fit parameter, we fimg to be given
mesona, intermediate statéafter removing the excited} by a linear fit obtained from the three heaviest-quark values,
contribution, as discussed in that secjiowhile for light =~ Ms=1.106+1.143n,, where m, is the bare quark mass
masses, it is dominated by thg -7 intermediate state. To (k~*— k¢ ')/2 in lattice units. In this set of fitd is found to
get a consistent fit for all masses, we have found that thée approximately independent of quark mass and is well ap-
resummed formulg19) (Fig. 8 produces the most stable proximated by Eq(23) for all quark masses. The values of
results.(The simpler alternative of using the sum of a scalarthe ' mass parameten, obtained from these fits are given
meson pole plus the single-bubble function gives fits within Table Il and plotted in Fig. 9. A linear fit to this data gives
only slightly worsey?'s but the resulting fit parameteifg
andm, are less stable as a function of quark me&Hl.of the mMy=0.344) (24
fits discussed in this section are based on the fornil@a
with the parameters, andf fixed at their previously deter- in the chiral limit. This result, obtained from the scalar
mined values(11). We present the results of two different propagator data alone, is quite consistent with our previous

1

IV. GLOBAL FITS AND DETERMINATION OF CHIRAL
LAGRANGIAN PARAMETERS
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0.5 - - - - the propagator appears to have an additional positive contri-
bution fort=7. For example, we can obtain a good (fib
04| both the heavy and light mass data at a large tibyeadding
% % a small = propagator term to the fit model. However, the
= ﬂ (| % I ) % % origin of such a contribution is not presently understood
T 03 Tl L I 1 within our model.
8
g
EE,’ 02 r 1 V. DISCUSSION
We have presented convincing evidence that the quenched
0.1} 1 scalar, isovector meson propagator exhibits a prominent
“quenched chiral loop”(QCL) artifact at light-quark mass
0 , , , , which is properly interpreted as the effect of aft 7 inter-

0 0.02 0.04 0.06 0.08 0.1 mediate state. QCL effects that have been observed in other
guantities[5,4] have been rather subtle, involving relatively
FIG. 9. Results for the;’-hairpin mass insertion extracted from small deviations fr_om full QCD Chl!‘al behaVIO.r. By Comras.t’
fits to the scalar propa;;tor. TE]e solid line is the value obtaineéhe QCI.‘ effeqt dlscussed here .IS an unmistakable chiral
from direct analysis of the hairpin diagram in RE5] (after remov- power s_lngularlty, and in fact dominates the_scalar correlatpr
ing a \/3 flavor factor included in the definition afy, in that ref- for the Ilghte_st quark masses we haye StUdle(.j‘ The ne_ggtlve
erence. _spectra] weight of this contrlbu.tlon is a particularly vivid
illustration of the oft-stated truism that the quenched ap-
) o ) o proximation violates unitarity.
estimates which included direat -hairpin measurements, a = The results presented here also provide further evidence
topological susceptibility calculation, and QCL effects in the of the effectiveness of the pole-shifting ansatz of the modi-
pseudoscalar channig]. _ fied quenched approximation. It is only after pole shifting
One feature of the scalar propagator which appears to b@at we are able to study the lightest-quark masses for which
somewhat inconsistent with our theoretical model is the bethe n'-m state becomes obvious. It should be remarked,
havior at larger time separations=7. For the lightest however, that even for the heavier-quark masses, the QCL
quarks, we saw that the propagator was well described in thgffect is not negligible, and must be included in the fitting
regiont=3 to 6 by the one-loopy’'-7 bubble. However, fynction in order to draw correct conclusions about the
beyondt=6, the propagator appears to go to zéfi@m  scalar-meson mass. For example, fitting the scalar propagator
below) more rapidly than the theoretical curve predicted byat the heavier-quark masses with a simple exponential and
either the one-loop calculation or the bubble-sum formula, aggnoring the’ - contribution would lead to the erroneous
shown fork=.1427 in Flg 10. Ifitis a significant departure conclusion that the scalar meson becorhesvier as the
from the chiral symmetry prediction, it could be an indica- quark mass gets lighter. The resulting effect on the chiral
tion of strong - interactions near threshold. Such inter- extrapolation is at least as severe as typical QCL effects in
actions would normally be ruled out by soft-pion argumentsthe quenched light-hadron spectrum. For pion masses below
but may arise due either to explicit chiral symmetry breakingabout 400 MeV, they’- contribution becomes dominant,
of the Wilson-Dirac action or because of higher ordermaking the scalar-meson mass difficult to determine accu-
quenched effects. For the heaviest quarks, we also find thahtely. Nevertheless, by combining lattice calculations with
quenched chiral perturbation theory, more extensive studies
- - - - - - of scalar-meson spectroscopy in the quenched approximation
should be feasible. Finally, the prominence of the QCL effect
in the scalar valence propagator suggests that this propagator
be added to the list of standard bellweather quantisesh
| as topological susceptibilityy’ mass, and long-range static
—F—5—*% potentia) which are expected to be particularly sensitive to
the difference between quenched and full QCD gauge en-
sembles.
-0.005 1 i After completion of this work we learned of a paper by
DeGrand who has also observed a negative isovector scalar
correlator which he interperts as being due to zero modes of
the Dirac operatiofi7]. In the context of the instanton liquid
model [8] Schafer and Shuryak had made earlier observa-
tions of anomalous behavior of the isovector scalar propaga-
tor [9] using data from lattice calculations of Cktial.[10].
We have no direct comments on the instanton liquid model
FIG. 10. Comparison of scalar propagator for .1427 with the ~ analysis but prefer our interpertation in terms of quenched
bubble-sum formulg19) fitted to the intervat=1-6. chiral loops.
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