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Weakly coupled Gross-Neveu model with Wilson fermions
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The nature of the phase transition in the lattice Gross-Neveu model with Wilson fermions is investigated
using a new analytical technique. This involves a new type of weak coupling expansion which focuses on the
partition function zeros of the model. Its application to the single flavor Gross-Neveu model yields a phase
diagram whose structure is consistent with that predicted from a saddle point approach. The existence of an
Aoki phase is confirmed and its width in the weakly coupled region is determined. A parity transformation has
the effect of interchanging critical line segments while leaving the full critical curve intact.
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I. INTRODUCTION limit of an interactive theory in which a bare parameter
measures the coupling of the free theory to some interaction.

In continuum QCD, the conventional explanation for the gyen if M,=0, now, the Wilson term contributes to the hop-
smallness of the mass of pseudoscatamesons is the fol-  4ing parameter and there is no obvious chiral symmetry. The
lowing: QCD with Ny massless quark flavors has a global g estion arises — what is the status of the chiral phase tran-
chiral U(N;) X U(Ny) symm_etry, vv2h|ch, spontaneously bro- sition and theU (1) problem on the lattice?
ken, reduces @ (Ny) and yieldsNf Goldstone bosons. EX- - pegpite the lack of an obvious chiral symmetry, there ex-
plicit breaking of the original chiral symmetry by a small jgq 5 host of numerical and analytical evidence for the exis-
quark mass renders thels¢ Goldstone bosons massive with tgnce of massless pions in the lattice formulation of QCD.

a correspondingly small mass. To agree with nature, one ofpeqe are believed to exist on a critical likg(g). In the

these Golds_tone boso'?‘.he 7 particle in the caseN_f=2) literature, there are two explanations for the existence of the
has to acquire an additional mass. The explanation of thléritical line and the masslessness of the lattice pions.

was known as thel(1) pmb'e”.‘ in the continuum. Its r€SO°  The first of these was sometimes referred to as the con-
lution there comes from the axial anomaly, whereby the axial

. . ventional explanatiofi2]. Although there is no obvious chi-
symmetry corresponding to thé(1) subgroup oU(Ny) is . :
ei/(plicitlyrybroken rf)y a qgantum (ef?ect r%dufing tr(1ef21umberral symmetry at nonzen the conventional explanation sug-
of Goldstone bosons tN2— 1 ' gests that tuningc effects its recovery in some unknown

: : i . ._way. Now, with chiral symmetry recovered ai(g), the
Naive lattice regularization of such a fermionic theory is same arguments as in the continuum may be applied
hindered by the doubling problem, namely that a return to The second explanation was first forwarded in 1984 by

the continuum manifests too many fermionic degrees of freerki [3]. Here it is accepted that since there is no chiral

dom. This doubling problem is resolved by the usage of W”'symmetry in the lattice formulation of QCD, its spontaneous

son fer”?'O”S- However the extra Wilson term tha_t .remov.esbreaking cannot be responsible for the masslessness of pions.
the fermion doublers breaks chiral symmetry explicitly. Th'%)nstead there is an Ising-like second order parity breaking

effect can be tracc_ad back to t.he existence of the axi hase transition. In the single flavor case the order parameter
anomaly in the continuum. For this reason the staggered foi-

mat has often been the favored one for the study of modelfr Parity symmetry isyi ys i, the operator corresponding to
with chiral symmetry breakingl]. the singler meson. The parity symmetric phase is where its

The Wilson action for free fermions in terms of dimen- full €xpectation value vanishes. There is also a phase with
sionless fermionic fieldsy(n) defined at the sites of a long range order where this expectation value is honzero. At

d-dimensional lattice is the transition between these phases, a correlation lefigth
diverges. This correlation length is identified as the inverse
o) — 1 _ 1 _ of the pion mass, which, hence, becomes zero on the phase
Selvdl=5 ; Y(n)g(n)—3 n% [(n)(r=v,) boundary. Thus the pion is not a Goldstone boson in the

Wilson lattice formulation. Aoki also recovered the current
><zp(n+M)+E(n+M)(r+yM)¢//(n)], (1.1  @algebra relation be_twepn pion and_ quark ma#sg.~m,
~(k—k.)) by considering the effective meson theory as a
where scalar field theory in four dimensions with mean field like
R critical behavior. In the multiflavor case the parity symmetry
1/2«=aMy+dr=My+dr. (1.2 breaking is accompanied by a flavor symmetry breaking and,
) . . ) with it, Goldstone bosons in the form of the charged pions.
Here, « is the hopping parameters the Wilson parameter, The 5 remains massive according to Aoki’s analysis, and the
a is the lattice spacing any=aM, is a dimensionless U(1) problem on the lattice successfully resolN&dH].
fermion bare mass parameter. We ude2 and r=1 Two main features distinguish Aoki’'s QCD phase diagram
throughout. This free fermion model is the weak couplingfrom the conventional one. First, the existence of the phase
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transition in Aoki’s scenario is due to parity symmetry break- _ 935 _

ing as opposed to chiral symmetry breaking in the conven- Sgﬂm)=f de[ PO B+ M) h(x) = == () P(x))?

tional picture. The order parameteriysysys rather thanyy

[4]. Second, instead of a single critical line extending from B g_f, — . 5

the strongly coupled limig=o to k=1/2d in the weakly 2 W) ys(x))"

coupled limitg=0, Aoki’s picture involves the existence of

two such lines andin QCD) five critical points linked by ~where ys=i~'y;y, and ¢(x) is a 2 component fermion

four cusps in the weakly coupled zone. field. Note that we have allowed for two different four-
Aoki's QCD phase diagram is based on infinite-volumefermion couplings. This allows for some flexibility to tune in

analyses in the limits of strong and weak coupling and on ai" out the continuous chiral symmetry present in the con-

analogy to the Gross-Neveu model, which, except for confinuum action[19,2q. , ,

finement, has features similar to QCD. One of these features W& Use the following representation for the Dirac

is asymptotic freedom, so that in the Gross-Neveu model, a¥-Matrices in two dimensions:

(2.1

in QCD, the continuum limit is taken in the weakly coupled .

‘ ., . o 0 1 0 i
regime. Aoki’s scenario in the Gross-Neveu model again in- YI=2)= Y S , (2.2)
volves two critical lines spanning the full coupling range, 10 0

with three critical points at zero coupling, linked by two
cusps. This picture is based on saddle point metH@ds
There exists substantial evidence in support of this scenario 1 0
in the strongly coupled regim¢3-13. In the weakly ySZilylyZZ( ) (2.3
coupled regime, however, the evidence has been less clear 0 -1
cut[14,19 and this is the region where our attention is fo- Each term in the actiof2.1) is invariant under the continu-
cused. Recently, also, CreJtk6] has posed a question as to X
. . X o ous globalu (1) symmetry:

the size of the Aoki phase. This question is whether the Aoki
phase is “squeezed out” between the arms of the cusps at %) — ex(i X). (X)—exo —ia)d(x). (2.4
nonzero coupling or whether it only vanishes in the weak WOO—expia)p(x), g —exp—ia)g(x). (249
coupling limit[11,12. o . _ If, further, the fermion mas® vanishes, the actiof®.1) is

This sets the twofold motivation for this paper. First, aalso invariant under a discrete global chi transforma-
new type of weak coupling expansion is develogd8]. tion:

From it, the partition function zeros of Wilson fermionic

models can be extracted in a natural way. This weak cou- P(X)— ysth(X),  (X)— — P(X) ys. (2.5
pling technique is then applied to the Gross-Neveu model,

where the existence of an Aoki phase was first suggé8led This is the symmetry of the originéstandargl version of the
We confine our attention to the single flavor Gross-Neveunodel, in which the last term of Eq2.1) is absent(i.e.,
model and variants thereof. We also address the question &f=0). Finally, if the four Fermi couplings are tuned such
the “squeezing out” of the Aoki phase at weak coupling. thatg,=g;, the discrete chiral symmetry is promoted to a
This multiplicative approach to the single flavor Gross-continuous one: namely,

Neveu model shows that the width of the central Aoki cusp is ) — — )
O(g?) while the Aoki phase has not yet emerged at this order ~ #(X) = explifyg) (x),  $(X)— p(x)explifys).
from the left and right extremes. Furthermore, the parity

transformation interchanges the arms of the inner cusp,
ing the overall critical structure of the model intact.

so that the chirality operator is

(2.6

IeaVl=his cannot be spontaneously broken since there are no
Goldstone bosons in two dimensions due to the Mermin-
Wagner theoremi21]. Nonetheless, a topological long range
order of the Kosterlitz-Thouless type could exist in the

Il. THE GROSS-NEVEU MODEL model[22]. The Mermin-Wagner theorem refers only to con-

tinuous symmetries and does not preclude the spontaneous

X . breaking of a discrete symmetry in two dimensions. In the

Neveu model in the contmuu[_rl?] was to study_ a renormal- continuSm Gross-Neveuymodel,);he spontaneous breaking of

izable quantum field _theory involving dynamical spontane—,[he discreteys symmetry leads to dynamical fermion mass

ous symmetry breaking. Such models evolved from four

. . . . ‘generation. The mass term explicitly breaks chiral symmetry
dimensional four-Fermi models studied by Nambu and Jonazq is analogous to an external field in the Ising model, say.
Lasinio [18] and are essentially their two-dimensional  gosonizing the action gives, for the partition function,
equivalents. The Gross-Neveu model is, however, renormal-

izable and asymptotically free. It is a model of fermions only, (cnm) — s

which interact through a short range quartic interaction. We ZsN =f D¢DmDyDye >, (2.7
start with a generalized Gross-Neveu model, whose action,

in Euclidean continuum space, is given by where

The original motivation for the introduction of the Gross-
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szfddx P(X)(H+M)(x)+ i(ﬁz(x)-i- i772(x)
297 29°

+ () P(X) () + 7 (X) P(X)i ysp(X) ¢ (2.9

where ¢(x) and (x) are auxiliary boson fields. The chiral
transformations now represent rotations between these au

iliary fields.

lll. LATTICE REGULARIZATION
WITH WILSON FERMIONS

PHYSICAL REVIEW D55 014507

The fermionic part of the action can be expressed in terms
of momentum space variables as

Sl(:o)[%'ﬁ]"'s(mt)[ﬁbﬂﬂ%lﬂ]
11 _
=— = > WMW(q.p)y(p). (3.7
a* N“ a.p

KereMW)(q,p) are 2x2 matrices and
M™(q,p)=M©(q,p)+M"(q,p), (3.8

with

Lattice regularization of the bosonized Gross-Neveu

model, with Wilson fermions, leads to the action

S, . i, ] = SO, ]+ Sng [ b 7, 11, 4]
+ S(bosons£¢a ], (3.2

where[5]
o_ Lt s - 1o — .
S= o 3 () =5 3 (M (1=, e+ p)
n o
+g(n+ ) (1+y,) d(n)}, (3.2

S(im)=; ¢(n>$<n>¢(n>+§ 7(n) (n)i yspr(n),
(3.3

and

1 1
S(bosons)zg ; ¢2(n) + E 2 Wz(n)- (3.4
¢

m

The lattice sites are Iabelequz —N/2,...N/2—1, andN

is the number of sites in each of the two directions, which w
assume to be even. Appropriate tuning of the two coupling
g5 and g2 may allow recovery of chiral symmetry in the

continuum limit(see[20] for discussions
Lattice Fourier transforms are defined as

1V2a
f(n)=(m) 2 T(per,

(3.5
T(p)=a2>] f(ne "3
n
where
27 A
Pu=NaPr (3.6

and Wheref)M are integers or half integers depending on the
field type and the boundary conditions. We henceforth drop

the tilde on Fourier transformed field variables.

eéhat there is no hopping parameter dependendd .

M©(q,p)= 5, MO(p), (3.9

1 ) )
=34 ﬂ_% cospﬂa+|§ y,sinp |,

(3.10

and

. 1 .
MED(q.p)= =5 2 €I g(n) + m(n)iys].
n
(3.11
Integration over the Grassmann variables gives the full par-
tition function

Z= f DpDaDYDiy exp — SV)oc (detm (W)

°<<[Ip xa(p)>, (3.12

with \,(p) the eigenvalues of the fermion matrix and the
expectation values being taken over the bosonic fields. Note

In the free fermion case the partition function is simply
proportional to

detM@=T] \D(p), (3.13
ap
wherex(9)(p) are the eigenvalue solutions of
M©@(p)[N @)=\ O|\©), (3.14

Using the representatiof2.2) for the Dirac y matrices, the
solution to this problem is easily found to be

1
1 sinp,a+isinp,a
|x£?>(p>>=ﬁ (- —m——|. 319
\/Zl sirp,a
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symmetry undem;«< p, which is manifest in the infinite

‘{ \ volume limit. This is equivalent to a trivial rotation by/2 in

“ “ the p;-p, plane, followed by reflection through th® axis.

| ‘ Since this reflection is through the spatial axis, this transfor-

| 1 \ \ mation is, in fact, parity. l.e., apart from rotations in space
“.‘ I\ \ and time, the critical points are left unchanged under the

/AR U Y parity transformation.

wly/ \‘\ \ IV. ANEW WEAK COUPLING EXPANSION
\

W/ \ The usual weak coupling expansion of the full determi-
‘ nant for a general fermionic field theory is the Taylor expan-

12 K) sion of
FIG. 1. The phase diagram for the Gross-Neveu model in the detM ™ =detM (@ x def M@~ tMM))
weakly coupled regiory,=g,=g [to O(g?)] (dark line$ and a .
schematic representation of the expected Aoki phase diagligin =detM @exp trIn(1+ M@=\ (D)
curves. (4.7
1 2 2 This expansion is additive in nature and, from it, the ratio of
A = — cosp, a+ti(—1)¢ si a ull to free fermion determinants may be written,
O)(p) 5 P (—1) P2, full to free f det t b tt
K u=1 u=1
2 . 2 . .
(316 de™ | SMIM 1S MM
wherea=1,2. These eigenfunctions form a complete ortho- detM @ =1 A9 2= )\i(O))\J(O)
normal set. As is usual for Grassmann variables, we impose ,
antiperiodic boundary conditions in the temporal )(@lirec- 1 2N Mi(iint)MJ(J!m)

tion and periodic boundary conditions in the spatial)(éi-
rection. With these mixed boundary conditions the momenta

Py forthe Fourier transformed fermion fields take the integer, . o w0 indicesi and j stand for the combination of
or half-integer valuesp;=—N/2+1/2,...N/2—1/2 and  pjrac index and momentaa(p) which label fermionic

Po=—N/2,... N/2—1. Then, the eigenvalue8.16 in the matrix elements, so thatM{™=m{") . represents

free fermion case are either two-fold or four-fold degenerate()\flo)(p”M(int)(p,q)p\(ﬁo)(q»_ The traces in Eq/4.2) are, in

+§i,j:1W+ 4.2

the former being the case fif,=0 or —N/2. fact, the diagrams which contribute to the vacuum polariza-
In the free fermion case the Lee-Yang z€i®@3] are given tion tensor.
by A(9(p)=0. From Eq.(3.16), this is the case at Setting
2 _ /pg(int)
1 ti=(M;"), (4.3
—=79(p)= >, cosp,a—i(—1)*\/ >, sip,a. I !
2k @ u=1 " n=1 o (int)  (int)
(3.17) Sij =i = (Mi "M ;™) (4.4
The lowest zerogwith the smallest imaginary pajtsorre- tij=t;; :(Mi(ji“t)MJ(ii”t)>_sij , (4.5
spond to
R the ratio of the interactive and free partition functions may
p=(=(N/2—1/2),—N/2), (£1/2,—N/2), be written
(£(N/2-1/2),0), and (*=1/2,0), (3.18 (detM ") ) +2§2 (o1 2N2 G .
impacting onto the real axis at 2 —2,0,0, and 2, respec- detm (©) =0 2= ki(O)K,(O) '
tively, in theN—oo limit. These are precisely the three nadirs (4.6)

of the Aoki cusps in the Gross-Neveu modste Fig. 1

Note that the zeros in the upper half plane are given byrhis Taylor expansion is analytic in J2with poles at
a=1, while their complex conjugates correspondate2. =0 or /2= 7{®).
Note, further, that the zeros in E(B.17) are two- or four- The Wilson fermion matrixM ™) is a 2N? dimensional
fold degenerate in the momenta. l.e., these zeros are invasgquare matrix given by Eq$3.8—(3.11). Its determinant,
ant underp,— —p, . This transformation is just a rotation and the bosonic expectation value thereof, are therefore poly-
through an angler in the space-time plane. The lowest zerosnomials of degree I8 with corresponding number of zeros.
(3.18, which are responsible for the critical behavior of the As such, the latter may be writtelup to an irrelevant con-
free model, are actually two-fold degenerate. There is also atan}
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2N? Note that the expressiof#.9), like its additive counterpart,
(detMY =TT (12— 7, (470  (4.6), is analytic in 1/ with poles atn{®.
i=1 Expanding Eq(4.9) gives
wheren; represents;,(p) and are the Lee-Yang zeros of the w) N2 IN2 2N
interactive model. These are the quantities to be determined (detM™) 2 1 > S04 AjA,
at weak coupling. detm (@ (0) 2. 1 7 )\(0))\(0)
Writing (4.10
= — . (0) . .
Ai=mi—ni”, (4.8 Let {n} denote then™ degeneracy class in the free fermion
- - - case, so that thB,, eigenvalues\O= ... =\ are identi-
gives, now, a new type of weak coupling expansion for the ' n ny Np,
ratio of partition functions, which is “multiplicative” rather c¢al to )\go), say, withD,=2 or 4. Take the hopping param-
than additive in form, eter to be complex and arbitrarily close to a free fermion
N2 zero,
(detM W) B 12—,
TdetM©@ =1 | A©@ 12k= D+ €. (4.11)
N2 A The additive and multiplicative expressio6) and(4.10
= — ! (0)) (4.9  for the ratio of partition functions may now be expanded in
=1 1/2x— e L. Indeed, Eq(4.6) gives
|
( detm )y ,1 ) tnj
——=—¢€ ‘= thn € th.— —— 1+ O(€Y), (4.12
detM© 2 nje{n} i nie{n} & nie{f% e{n} 77( 771(0)_|_6 (
while Eq. (4.10 yields
detM(W) AniAn_ A A]
( O>:€_2 heli = 3 Mgt S o), (4.13
detM oAb 2 meln)  metnpieln) 70— {0+ e
Equating these two expansions@e?) gives
ApAn=— > ton, (4.14
nj.nje{nh.nj#n; ! n; .nje{n} !
while to O(e™ 1) it gives
A; tn-j
> Afl- > ——— —_—— th, (4.19
neint n|{ je{n} 77( ) 77](0)] nie{nhj ¢{n} 77(0) 77](0) niein} n;
|
having taken the—0 limit. Gross-Neveu case stands fgr,, g, or combinations
Let thereof) The O(e~ 1) equation to ordeg is
=t 4@ 3
=457+ +O(9?), (4.16 E ng}):_ 2 t(_l), (4.19
nje{n} nje{n}
ty =t + 0(g?), (4.17 _ , |
and its ordemg“ counterpart is
— (1) (2) 3
Ai=77+ 77+ 0(9%), (4.18 " " t%)ﬂ(;)t_(l)
wheret® and 7" are the ordeg contributions to the ex- niez{n} Iy~ _niez{n} t +ni6{n}’j${n} NONMOR
pectation values of the matrix elements and zero shifts and . (4.20

where t?), t{?) and 7*) are their orderg® equivalents.
(Here, g represents the strength of interaction and in theAlso, theO(e ?) equation,(4.14), is, now,
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2 in which (5{2))= 5. This recovers time independent per-
> (ﬂni(l))ZZ > R+ > ). turbati0n<th(<)ao>ry if P P
ne{n} nj,nje{nt " nje{n} '
(4.21
With relations (4.19—(4.21), the multiplicative expression 1 MM =M oM
(4.10 recovers Eq(4.6) to O(g?). Thus, equating thé(e®) 5=~ > > OENG) , (4.2
contributions to Eqs(4.12 and(4.13 yields no extra infor- Jeiny An A
mation.
The partition function zeros are “protocritical points” in h

the sense that they have the potential to become true criticf"€Mnce
points[24]. In the limit of infinite volume, the lowest zeros
impact on to the real hopping parameter axis precipitating {2 4 o2 _ () _ g2
the phase transition. The real parts of the lowest zeros are 5(2)_3 S iny T Sing ™ L, T Sy 4.28
therefore pseudocritical points in the statistical mechanics 24 Th 77510)_ 71,-(0) ' '

sense.

In the free case, the lowest zeros, and those responsible
for criticality, are two-fold degenerate. One expects criticalgjnajly, the full expression for the second order shift in an
behavior in the weakly coupled case to be governed by theigrstwhile two-fold degenerate zero is
equivalents there. The two equatiort4,19 and (4.21), al-
low full determination of the first order shifts to two-fold

degenerate zeros. Indeed, 2 1 2) 0 .(2)
nni = E(tnl +tn2 )

1 (24 (2 1 DD 4 (DD (2) _ (2)

7= S{—th) ) = )+ )2+ At b, L At sin) 4, Sin, S,
(4.22 2 j&Tn} 70— 7

(4.29

wheren;e{n} for i=1 or 2. The second order equation,
(4.20), in the two-fold degenerate case is

D) D) e () () V. THE ZEROS AND PHASE DIAGRAM
(ty Fto )G+t + g OF THE GROSS-NEVEU MODEL
2 1 277] Ing = "INy

, 0 0 : . . .
Jein} 7151 )~ 771( ) The interactive part of the fermion matr{8.11) may be

(423  gplit into

2 2)_ 2 2
W2 D= -t

To find the individual shifts, let

MM (q,p)=M{M(q,p)+M™(q,p), (5.2
,75121): MOEPIC) (4.249 ’

7]%22): 77512)_ 5 (4.25 where

Their averagey;'?, is determined directly from Eq(4.23. )
Removing the expectation values over the bosonic fields pj(int 1 i(p—g)na L
9 P e . M§(q,p)=— X e®D(n)=| | $(a-p),

converts the zeros to the shifts in the eigenvalues of the N< “n a

fermion matrix in the presence of a small perturbation, (5.2
M The problem of determining such shifts is simply
(two-fold degenerajetime independent perturbation theory.
Indeed, one finds, for example,

) 1 )
Mgm)(qvp):@ ; el(p_Q)naﬂ_(n)i s

1 . .
Ay = A LM MY 2

NNy naNo
=|Ng) ™a—P)ivs. (5.3
= V(MR — MR+ AMLE M)
int int int int
N 1 Mi(hnl)Mﬂ:J)JrMJ(:wnz)Mﬂ;) 52 One notes that the momentum dependency of the bosonic
25 )\gO)_)\j(O) (R field variables involves even integers, so the bosons have

periodic boundary conditions. The generic matrix elements
(4.26 required for the calculation of Eq&4.3), (4.4), and(4.5) are
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2 sinp,asing,a+i(sinp;asing,a—sinp,asing,a)

1 i ! a+f m
M (apy ) = ¢(p—a)| 1+(-1) . (5.4

N
\/E sirp,.a \/2 sirp,a
© o

2 sinp,asing,a+i(sinp;asing,a—sinp,asing;a)

12 4
N) m(p— Q)— 1-(—1)«*#
\/E sinzpﬂa\/z sirp,a
© w

(int)
M3 (ep)(pa) =

(5.9

In the (generalized Gross-Neveu case, the pure bosonicSo the two four-Fermi interactions in fact contribute the
action is given by Eq(3.4). The expectation values in mo- same amounts to the shifts in the zeros. In the thermody-
mentum space are th@ecall that(.) refers to pure bosonic namic limit these lowest zeros become the true critical points

expectation valugs of the theory and their determination amounts to determina-
tion of the phase diagram. l.e., the phase diagram is given to
(#(K))y=(m(k))=0, (5.60  orderg? by the limit
(d(k)¢(—k))=Na*2g3, (5.7
: - (0) (1) (2)
(m(k)m(—k))=NYa?2g? . (5.9 2%(0) th {7 (P)+ 75 (p)+ 7, (p)},  (5.14

The bosonic expectation values of the matrix elements re-

quired in the calculation of the shiftgh.22 and (4.29 are wherep is the momentum corresponding to the lowest zeros.

then The first order shift in Eq(5.12) gives the relative separation
t,=t, ,=0, (5.9  of the erstwhile two-fold degenerate zeros and vanishes in
P the infinite volume limit. The average shift is represented by
2g2 Eq. (5.13 and is second order. The shift in the corresponding
Sijzs(a,p)(ﬁ,q)_V! (5.10 critical point is
tii =t(a,p)8.0) hllim 72(£|p1l,p2) = — (g5 + gi)hllim c(N), (5.19
5 o > sinp,sing,
g¢+g‘rr atB p h
- " (—1) -1\ where
\/2 sirfp,, >, sirfq,
. " 1 1
(5.1 c(N)=— > ——F——. (5.1

N2 (B &l(an) 79(p)— nﬁ;o)(q)
From these equations, together with EGs22 and (4.29),
the ©(g) and©(g?) shifts for the erstwhile two-fold degen-

erate zerosy,(*|p1|,p,) (for p,=0 or —N/2), are, respec-
tively,

One finds, numerically, that the imaginary contribution to
this factor vanishes in the thermodynamic limit, meaning that
these zeros indeed impact on to the real hopping parameter
(2.7 axis. The real part of Eq5.16) becomes amN-independent
7M(*|py,pa) ==+ m, (5.12  constant whose actual value depends on the free zero from
N which it evolved. Indeed, Eq(5.16 approaches approxi-
2 mately 0.77 and-0.77 for (p;,p,)=(*+1/2,0) and(= (N
[Pal,p2) —1)/2,—N/2), respectively. These correspond to the right-
9<2ﬁ+gfr 1 most and Igftmost critical linetsee Fig. 1 A:IsoA, Eq.(5.16
= > o o (5.13 is approximately 0.2 and—0.2 for (pl,p2)=(f_f(N
N°  (Baye{(ap} 7,°(P)—75'(Q) —1)/2,0) and (£1/2,—N/2), respectively. These give the
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TABLE I. The critical points and the momentum indices of their corresponding partition function zeros in
the free and weakly interacting cases.

.. (t%(N—l),—N (r%,—ﬂ) 1 1
(P1,P2) 2 2 (=2(N-1),0) (£2,0)
1/2x4(0) -2 0 0 2
1/2x4(g) —-2+0.77@5+92) 0.2(g5+9%) -0.2(g5+9%) 2-0.77@5+9%)

two lines that generate the inner cusp. The situation is sunmander that transformation. Here, the zeros, and hence the
marized in Table | where the critical hopping parameters inpartition function, are invariant under parity. The phase
the free and interacting cases and the momentum indices sfructure is also unchanged by parity. However, parity even
the corresponding zeros are listed. and parity odd regions of the phase diagram are inter-

The actual phase diagram for weak coupling is pictured irchanged.
Fig. 1 forg,=g,=9 (dark lines. The lighter curves are a VI CONCLUSIONS
schematic representation of the expected full phase diagram. :

One sees the degeneracy of the central free fermion critical A new type of weak coupling expansion appropriate for
point is lifted and two critical lines emerge in the presence ofwilson fermionic lattice field theories has been developed.
weak bosonic coupling. These are the lines corresponding t©his expansion is multiplicative, but recovers the standard
the central cusp in Aoki's phase diagram. From E§|19,  additive expansion. Its multiplicative form allows the Lee-
the central cusp can only be made to vanish at this order, iNang zeros of the weakly coupled theory to be extracted in a
the unphysical situation of imaginary couplings. The Aokinatural way. These zeros are protocritical points, which, if
phase does not yet emerge@g?) from the left- and right-  they impact on to the real hopping parameter axis, precipitate
most free critical points. Tuning the couplingg andg,. so  a phase transition there.
as to remove the chiral symmetry present in the original ac- The expansion is applied to the single flavor lattice Gross-
tion does not qualitatively affect the phase structure. Neveu model to track the movement of zeros and thereby the
In the free case, the zeros and hence the critical points amitical points in the presence of bosonic field variables. This
invariant under momentum inversiop,— —p,, corre- model shares features with QCD, one of which is expected to
sponding to a rotation in space-time. While this degeneracye the existence of an Aoki phase.
is lifted at finite size in the interacting case, it is recovered in  Using the new weak coupling expansion, a phase diagram
the limit of infinite volume. In that limit, the free zeros and is obtained in the weakly coupled region which is consistent
critical points are also invariant under the parity transforma-with that of Aoki. The widths of the Aoki cusps are analyti-
tion py<>p,. This is no longer the case in the presence ofcally determined to second order in the couplings. The cen-
interactions. Indeed, the inner pair of critical lines are inter-tral cusp cannot be tuned away for real physical couplings.
changed under parity. The overall phase structure, howevethe lateral cusps do not yet emerge at this order. This is the
remains the same. answer to the question posed by Creutflifi] for the single
The situation is similar to the two-dimensional Pottsflavor Gross-Neveu model.
model. There, the partition function is invariant under a du-  Finally, while the full phase structure is unaltered by a
ality transformation which exchanges the high and low tem-parity transformation, such an operation has the effect of
perature phases. The critical point is that which is invarianexchanging the critical lines forming the inner Aoki cusp.
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