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Weakly coupled Gross-Neveu model with Wilson fermions

R. Kenna and J. C. Sexton
School of Mathematics, Trinity College, Dublin, Ireland
~Received 21 March 2001; published 3 December 2001!

The nature of the phase transition in the lattice Gross-Neveu model with Wilson fermions is investigated
using a new analytical technique. This involves a new type of weak coupling expansion which focuses on the
partition function zeros of the model. Its application to the single flavor Gross-Neveu model yields a phase
diagram whose structure is consistent with that predicted from a saddle point approach. The existence of an
Aoki phase is confirmed and its width in the weakly coupled region is determined. A parity transformation has
the effect of interchanging critical line segments while leaving the full critical curve intact.
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I. INTRODUCTION

In continuum QCD, the conventional explanation for t
smallness of the mass of pseudoscalarp mesons is the fol-
lowing: QCD with Nf massless quark flavors has a glob
chiral U(Nf)3U(Nf) symmetry, which, spontaneously bro
ken, reduces toU(Nf) and yieldsNf

2 Goldstone bosons. Ex
plicit breaking of the original chiral symmetry by a sma
quark mass renders theseNf

2 Goldstone bosons massive wi
a correspondingly small mass. To agree with nature, on
these Goldstone bosons~the h particle in the caseNf52)
has to acquire an additional mass. The explanation of
was known as theU(1) problem in the continuum. Its reso
lution there comes from the axial anomaly, whereby the a
symmetry corresponding to theU(1) subgroup ofU(Nf) is
explicitly broken by a quantum effect, reducing the numb
of Goldstone bosons toNf

221.
Naive lattice regularization of such a fermionic theory

hindered by the doubling problem, namely that a return
the continuum manifests too many fermionic degrees of fr
dom. This doubling problem is resolved by the usage of W
son fermions. However the extra Wilson term that remo
the fermion doublers breaks chiral symmetry explicitly. Th
effect can be traced back to the existence of the a
anomaly in the continuum. For this reason the staggered
mat has often been the favored one for the study of mo
with chiral symmetry breaking@1#.

The Wilson action for free fermions in terms of dime
sionless fermionic fieldsc(n) defined at the sitesn of a
d-dimensional lattice is

SF
(0)@c̄,c#5

1

2k (
n

c̄~n!c~n!2
1

2 (
n,m

@c̄~n!~r 2gm!

3c~n1m!1c̄~n1m!~r 1gm!c~n!#, ~1.1!

where

1/2k5aM01dr5M̂01dr. ~1.2!

Here,k is the hopping parameter,r is the Wilson parameter
a is the lattice spacing andM̂05aM0 is a dimensionless
fermion bare mass parameter. We used52 and r 51
throughout. This free fermion model is the weak coupli
0556-2821/2001/65~1!/014507~9!/$20.00 65 0145
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limit of an interactive theory in which a bare parameterg
measures the coupling of the free theory to some interact

Even if M̂050, now, the Wilson term contributes to the ho
ping parameter and there is no obvious chiral symmetry. T
question arises — what is the status of the chiral phase t
sition and theU(1) problem on the lattice?

Despite the lack of an obvious chiral symmetry, there e
ists a host of numerical and analytical evidence for the e
tence of massless pions in the lattice formulation of QC
These are believed to exist on a critical linekc(g). In the
literature, there are two explanations for the existence of
critical line and the masslessness of the lattice pions.

The first of these was sometimes referred to as the c
ventional explanation@2#. Although there is no obvious chi
ral symmetry at nonzeror, the conventional explanation sug
gests that tuningk effects its recovery in some unknow
way. Now, with chiral symmetry recovered atkc(g), the
same arguments as in the continuum may be applied.

The second explanation was first forwarded in 1984
Aoki @3#. Here it is accepted that since there is no chi
symmetry in the lattice formulation of QCD, its spontaneo
breaking cannot be responsible for the masslessness of p
Instead there is an Ising-like second order parity break
phase transition. In the single flavor case the order param
for parity symmetry isc̄ ig5c, the operator corresponding t
the singlep meson. The parity symmetric phase is where
full expectation value vanishes. There is also a phase w
long range order where this expectation value is nonzero
the transition between these phases, a correlation lengj
diverges. This correlation length is identified as the inve
of the pion mass, which, hence, becomes zero on the p
boundary. Thus the pion is not a Goldstone boson in
Wilson lattice formulation. Aoki also recovered the curre
algebra relation between pion and quark mass„mp

2 ;mq

;(k2kc)… by considering the effective meson theory as
scalar field theory in four dimensions with mean field lik
critical behavior. In the multiflavor case the parity symme
breaking is accompanied by a flavor symmetry breaking a
with it, Goldstone bosons in the form of the charged pio
Theh remains massive according to Aoki’s analysis, and
U(1) problem on the lattice successfully resolved@3,4#.

Two main features distinguish Aoki’s QCD phase diagra
from the conventional one. First, the existence of the ph
©2001 The American Physical Society07-1
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transition in Aoki’s scenario is due to parity symmetry brea
ing as opposed to chiral symmetry breaking in the conv

tional picture. The order parameter isc̄ ig5c rather thanc̄c
@4#. Second, instead of a single critical line extending fro
the strongly coupled limitg5` to k51/2d in the weakly
coupled limitg50, Aoki’s picture involves the existence o
two such lines and~in QCD! five critical points linked by
four cusps in the weakly coupled zone.

Aoki’s QCD phase diagram is based on infinite-volum
analyses in the limits of strong and weak coupling and on
analogy to the Gross-Neveu model, which, except for c
finement, has features similar to QCD. One of these feat
is asymptotic freedom, so that in the Gross-Neveu mode
in QCD, the continuum limit is taken in the weakly couple
regime. Aoki’s scenario in the Gross-Neveu model again
volves two critical lines spanning the full coupling rang
with three critical points at zero coupling, linked by tw
cusps. This picture is based on saddle point methods@3#.
There exists substantial evidence in support of this scen
in the strongly coupled regime@3–13#. In the weakly
coupled regime, however, the evidence has been less
cut @14,15# and this is the region where our attention is f
cused. Recently, also, Creutz@16# has posed a question as
the size of the Aoki phase. This question is whether the A
phase is ‘‘squeezed out’’ between the arms of the cusp
nonzero coupling or whether it only vanishes in the we
coupling limit @11,12#.

This sets the twofold motivation for this paper. First,
new type of weak coupling expansion is developed@13#.
From it, the partition function zeros of Wilson fermion
models can be extracted in a natural way. This weak c
pling technique is then applied to the Gross-Neveu mo
where the existence of an Aoki phase was first suggested@3#.
We confine our attention to the single flavor Gross-Nev
model and variants thereof. We also address the questio
the ‘‘squeezing out’’ of the Aoki phase at weak couplin
This multiplicative approach to the single flavor Gros
Neveu model shows that the width of the central Aoki cusp
O(g2) while the Aoki phase has not yet emerged at this or
from the left and right extremes. Furthermore, the pa
transformation interchanges the arms of the inner cusp, le
ing the overall critical structure of the model intact.

II. THE GROSS-NEVEU MODEL

The original motivation for the introduction of the Gros
Neveu model in the continuum@17# was to study a renormal
izable quantum field theory involving dynamical spontan
ous symmetry breaking. Such models evolved from fo
dimensional four-Fermi models studied by Nambu and Jo
Lasinio @18# and are essentially their two-dimension
equivalents. The Gross-Neveu model is, however, renorm
izable and asymptotically free. It is a model of fermions on
which interact through a short range quartic interaction.
start with a generalized Gross-Neveu model, whose act
in Euclidean continuum space, is given by
01450
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SGN
(cnm)5E d2xH c̄~x!~]”1M !c~x!2

gf
2

2
„c̄~x!c~x!…2

2
gp

2

2
„c̄~x!igSc~x!…2J , ~2.1!

where gS5 i 21g1g2 and c(x) is a 2 component fermion
field. Note that we have allowed for two different fou
fermion couplings. This allows for some flexibility to tune i
or out the continuous chiral symmetry present in the c
tinuum action@19,20#.

We use the following representation for the Dira
g-matrices in two dimensions:

g1
(d52)5S 0 1

1 0D , g2
(d52)5S 0 2 i

i 0 D , ~2.2!

so that the chirality operator is

gS5 i 21g1g25S 1 0

0 21D . ~2.3!

Each term in the action~2.1! is invariant under the continu
ous globalU(1) symmetry:

c~x!→exp~ ia!c~x!, c̄~x!→exp~2 ia!c̄~x!. ~2.4!

If, further, the fermion massM vanishes, the action~2.1! is
also invariant under a discrete global chiralZ2 transforma-
tion:

c~x!→gSc~x!, c̄~x!→2c̄~x!gS . ~2.5!

This is the symmetry of the original~standard! version of the
model, in which the last term of Eq.~2.1! is absent~i.e.,
gp50). Finally, if the four Fermi couplings are tuned suc
that gf5gp , the discrete chiral symmetry is promoted to
continuous one: namely,

c~x!→exp~ iugS!c~x!, c̄~x!→c̄~x!exp~ iugS!.
~2.6!

This cannot be spontaneously broken since there are
Goldstone bosons in two dimensions due to the Merm
Wagner theorem@21#. Nonetheless, a topological long rang
order of the Kosterlitz-Thouless type could exist in t
model@22#. The Mermin-Wagner theorem refers only to co
tinuous symmetries and does not preclude the spontan
breaking of a discrete symmetry in two dimensions. In t
continuum Gross-Neveu model, the spontaneous breakin
the discretegS symmetry leads to dynamical fermion ma
generation. The mass term explicitly breaks chiral symme
and is analogous to an external field in the Ising model, s

Bosonizing the action gives, for the partition function,

ZGN
(cnm)5E DfDpDc̄Dce2S, ~2.7!

where
7-2
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WEAKLY COUPLED GROSS-NEVEU MODEL WITH . . . PHYSICAL REVIEW D65 014507
S5E ddxH c̄~x!~]”1M !c~x!1
1

2gf
2

f2~x!1
1

2gp
2

p2~x!

1f~x!c̄~x!c~x!1p~x!c̄~x!igSc~x!J , ~2.8!

wheref(x) andp(x) are auxiliary boson fields. The chira
transformations now represent rotations between these
iliary fields.

III. LATTICE REGULARIZATION
WITH WILSON FERMIONS

Lattice regularization of the bosonized Gross-Nev
model, with Wilson fermions, leads to the action

SF
(W)@f,p,c̄,c#5SF

(0)@c̄,c#1S(int)@f,p,c̄,c#

1S(bosons)@f,p#, ~3.1!

where@5#

SF
(0)5

1

2k (
n

c̄~n!c~n!2
1

2 (
n,m

$c̄~n!~12gm!c~n1m̂ !

1c̄~n1m̂ !~11gm!c~n!%, ~3.2!

S(int)5(
n

f~n!c̄~n!c~n!1(
n

p~n!c̄~n!igSc~n!,

~3.3!

and

S(bosons)5
1

2gf
2 (

n
f2~n!1

1

2gp
2 (

n
p2~n!. ~3.4!

The lattice sites are labelednm52N/2, . . . ,N/221, andN
is the number of sites in each of the two directions, which
assume to be even. Appropriate tuning of the two coupli
gf

2 and gp
2 may allow recovery of chiral symmetry in th

continuum limit ~see@20# for discussions!.
Lattice Fourier transforms are defined as

f ~n!5S 1

NaD 2

(
p

f̃ ~p!eip•na,

~3.5!

f̃ ~p!5a2(
n

f ~n!e2 ip•na,

where

pm5
2p

Na
p̂m , ~3.6!

and wherep̂m are integers or half integers depending on
field type and the boundary conditions. We henceforth d
the tilde on Fourier transformed field variables.
01450
x-

u

e
s

e
p

The fermionic part of the action can be expressed in te
of momentum space variables as

SF
(0)@c̄,c#1S(int)@f,p,c̄,c#

5
1

a4

1

N2 (
q,p

c̄~q!M (W)~q,p!c~p!. ~3.7!

HereM (W)(q,p) are 232 matrices and

M (W)~q,p!5M (0)~q,p!1M (int)~q,p!, ~3.8!

with

M (0)~q,p!5dp,qM (0)~p!, ~3.9!

5dp,qF 1

2k
2(

m
cospma1 i(

m
gmsinpmaG ,

~3.10!

and

M (int)~q,p!5
1

N2 (
n

ei (p2q)na@f~n!1p~n!igS#.

~3.11!

Integration over the Grassmann variables gives the full p
tition function

Z5E DfDpDc̄Dc exp~2SF
(W)!}^detM (W)&

}K)
a,p

la~p!L , ~3.12!

with la(p) the eigenvalues of the fermion matrix and th
expectation values being taken over the bosonic fields. N
that there is no hopping parameter dependence inM (int).

In the free fermion case the partition function is simp
proportional to

detM (0)5)
a,p

la
(0)~p!, ~3.13!

wherela
(0)(p) are the eigenvalue solutions of

M (0)~p!ul (0)&5l (0)ul (0)&. ~3.14!

Using the representation~2.2! for the Diracg matrices, the
solution to this problem is easily found to be

ula
(0)~p!&5

1

A2 S 1

~21!a
sinp1a1 isinp2a

A(
m51

2

sin2pma
D , ~3.15!
7-3
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la
(0)~p!5

1

2k
2 (

m51

2

cospma1 i ~21!aA(
m51

2

sin2 pma,

~3.16!

wherea51,2. These eigenfunctions form a complete orth
normal set. As is usual for Grassmann variables, we imp
antiperiodic boundary conditions in the temporal (1-! direc-
tion and periodic boundary conditions in the spatial (2-! di-
rection. With these mixed boundary conditions the mome
p̂m for the Fourier transformed fermion fields take the integ
or half-integer valuesp̂152N/211/2, . . . ,N/221/2 and
p̂252N/2, . . . ,N/221. Then, the eigenvalues~3.16! in the
free fermion case are either two-fold or four-fold degenera
the former being the case ifp̂250 or 2N/2.

In the free fermion case the Lee-Yang zeros@23# are given
by la

(0)(p)50. From Eq.~3.16!, this is the case at

1

2k
5ha

(0)~p!5 (
m51

2

cospma2 i ~21!aA(
m51

2

sin2 pma.

~3.17!

The lowest zeros~with the smallest imaginary parts! corre-
spond to

p̂5„6~N/221/2!,2N/2…, ~61/2,2N/2!,

„6~N/221/2!,0…, and ~61/2,0!, ~3.18!

impacting onto the real axis at 1/2k522,0,0, and 2, respec
tively, in theN→` limit. These are precisely the three nad
of the Aoki cusps in the Gross-Neveu model~see Fig. 1!.

Note that the zeros in the upper half plane are given
a51, while their complex conjugates correspond toa52.
Note, further, that the zeros in Eq.~3.17! are two- or four-
fold degenerate in the momenta. I.e., these zeros are in
ant underpm→2pm . This transformation is just a rotatio
through an anglep in the space-time plane. The lowest zer
~3.18!, which are responsible for the critical behavior of t
free model, are actually two-fold degenerate. There is als

FIG. 1. The phase diagram for the Gross-Neveu model in
weakly coupled regiongf5gp5g @to O(g2)# ~dark lines! and a
schematic representation of the expected Aoki phase diagram~light
curves!.
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symmetry underp1↔p2 which is manifest in the infinite
volume limit. This is equivalent to a trivial rotation byp/2 in
the p1-p2 plane, followed by reflection through thep2 axis.
Since this reflection is through the spatial axis, this trans
mation is, in fact, parity. I.e., apart from rotations in spa
and time, the critical points are left unchanged under
parity transformation.

IV. A NEW WEAK COUPLING EXPANSION

The usual weak coupling expansion of the full determ
nant for a general fermionic field theory is the Taylor expa
sion of

detM (W)5detM (0)3det~M (0)21M (W)!

5detM (0)exp tr ln~11M (0)21M (int)!.
~4.1!

This expansion is additive in nature and, from it, the ratio
full to free fermion determinants may be written,

detM (W)

detM (0)
511(

i 51

2N2
Mii

(int)

l i
(0)

2
1

2 (
i , j 51

2N2
Mi j

(int)M ji
(int)

l i
(0)l j

(0)

1
1

2 (
i , j 51

2N2
Mii

(int)M j j
(int)

l i
(0)l j

(0)
1•••. ~4.2!

Here the indicesi and j stand for the combination o
Dirac index and momenta (a,p) which label fermionic
matrix elements, so thatMi j

(int)[M (ap)(bq)
(int) represents

^la
(0)(p)uM (int)(p,q)ulb

(0)(q)&. The traces in Eq.~4.2! are, in
fact, the diagrams which contribute to the vacuum polari
tion tensor.

Setting

t i5^Mii
(int)&, ~4.3!

si j 5sji 5^Mii
(int)M j j

(int)&, ~4.4!

t i j 5t j i 5^Mi j
(int)M ji

(int)&2si j , ~4.5!

the ratio of the interactive and free partition functions m
be written

^detM (W)&

detM (0)
511(

i 51

2N2

t i

l i
(0)

2
1

2 (
i , j 51

2N2

t i j

l i
(0)l j

(0)
1•••.

~4.6!

This Taylor expansion is analytic in 1/2k with poles atl i
(0)

50 or 1/2k5h i
(0) .

The Wilson fermion matrixM (W) is a 2N2 dimensional
square matrix given by Eqs.~3.8!–~3.11!. Its determinant,
and the bosonic expectation value thereof, are therefore p
nomials of degree 2N2 with corresponding number of zeros
As such, the latter may be written~up to an irrelevant con-
stant!

e

7-4
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^detM (W)&5)
i 51

2N2

~1/2k2h i !, ~4.7!

whereh i representsha(p) and are the Lee-Yang zeros of th
interactive model. These are the quantities to be determ
at weak coupling.

Writing

D i5h i2h i
(0), ~4.8!

gives, now, a new type of weak coupling expansion for
ratio of partition functions, which is ‘‘multiplicative’’ rather
than additive in form,

^detM (W)&

detM (0)
5)

i 51

2N2 S 1/2k2h i

l i
(0) D

5)
i 51

2N2 S 12
D i

1/2k2h i
(0)D . ~4.9!
an

th

01450
ed

e

Note that the expression~4.9!, like its additive counterpart
~4.6!, is analytic in 1/2k with poles ath i

(0) .
Expanding Eq.~4.9! gives

^detM (W)&

detM (0)
512(

i 51

2N2

D i

l i
(0)

1
1

2 (
i 51

2N2

(
j Þ i

2N2

D iD j

l i
(0)l j

(0)
1•••.

~4.10!

Let $n% denote thenth degeneracy class in the free fermio
case, so that theDn eigenvaluesln1

(0)5•••5lnDn

(0) are identi-

cal to ln
(0) , say, withDn52 or 4. Take the hopping param

eter to be complex and arbitrarily close to a free fermi
zero,

1/2k5hn
(0)1e. ~4.11!

The additive and multiplicative expressions~4.6! and ~4.10!
for the ratio of partition functions may now be expanded
e21. Indeed, Eq.~4.6! gives
^ detM (W)&

detM (0)
52e22

1

2 (
ni ,nj P$n%

tninj
1e21H (

niP{ n%
tni

2 (
niP{ n}, j ¹{ n}

tni j

hn
(0)2h j

(0)1e
J 1O~e0!, ~4.12!

while Eq. ~4.10! yields

^detM (W)&

detM (0)
5e22 (

ni ,nj P$n%,niÞnj

Dni
Dnj

2
1e21H 2 (

niP$n%
Dni

1 (
niP$n%, j ¹$n%

Dni
D j

hn
(0)2h j

(0)1e
J 1O~e0!. ~4.13!

Equating these two expansions toO(e22) gives

(
ni ,nj P$n%,niÞnj

Dni
Dnj

52 (
ni ,nj P$n}

tninj
, ~4.14!

while to O(e21) it gives

(
niP$n%

DniH 12 (
j ¹{ n}

D j

hn
(0)2h j

(0)J 5 (
niP$n%, j ¹$n%

tni j

hn
(0)2h j

(0)
2 (

niP$n%
tni

, ~4.15!
having taken thee→0 limit.
Let

t i5t i
(1)1t i

(2)1O~g3!, ~4.16!

t i j 5t i j
(2)1O~g3!, ~4.17!

D i5h i
(1)1h i

(2)1O~g3!, ~4.18!

where t i
(1) and h i

(1) are the orderg contributions to the ex-
pectation values of the matrix elements and zero shifts
where t i

(2) , t i j
(2) and h i

(2) are their orderg2 equivalents.
~Here, g represents the strength of interaction and in
d

e

Gross-Neveu case stands forgf , gp or combinations
thereof.! The O(e21) equation to orderg is

(
niP$n%

hni

(1)52 (
niP$n%

tni

(1) , ~4.19!

and its orderg2 counterpart is

(
niP$n%

hni

(2)52 (
niP$n%

tni

(2)1 (
niP$n%, j ¹$n%

tni j
(2)1tni

(1)t j
(1)

hn
(0)2h j

(0)
.

~4.20!

Also, theO(e22) equation,~4.14!, is, now,
7-5
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(
niP{ n%

~hni

(1)!25 (
ni ,nj P$n%

tninj

(2) 1S (
niP$n%

tni

(1)D 2

.

~4.21!

With relations ~4.19!–~4.21!, the multiplicative expression
~4.10! recovers Eq.~4.6! to O(g2). Thus, equating theO(e0)
contributions to Eqs.~4.12! and~4.13! yields no extra infor-
mation.

The partition function zeros are ‘‘protocritical points’’ i
the sense that they have the potential to become true cri
points @24#. In the limit of infinite volume, the lowest zero
impact on to the real hopping parameter axis precipitat
the phase transition. The real parts of the lowest zeros
therefore pseudocritical points in the statistical mechan
sense.

In the free case, the lowest zeros, and those respon
for criticality, are two-fold degenerate. One expects criti
behavior in the weakly coupled case to be governed by t
equivalents there. The two equations,~4.19! and ~4.21!, al-
low full determination of the first order shifts to two-fol
degenerate zeros. Indeed,

hni

(1)5
1

2
$2tn1

(1)2tn2

(1)6A~ tn1

(1)1tn2

(1)!214tn1n2

(2) %,

~4.22!

where niP$n% for i 51 or 2. The second order equatio
~4.20!, in the two-fold degenerate case is

hn1

(2)1hn2

(2)52tn1

(2)2tn2

(2)1 (
j ¹$n%

~ tn1

(1)1tn2

(1)!t j
(1)1t jn1

(2)1t jn2

(2)

hn
(0)2h j

(0)
.

~4.23!

To find the individual shifts, let

hn1

(2)5hn
(2)1d (2), ~4.24!

hn2

(2)5hn
(2)2d (2). ~4.25!

Their average,hn
(2) , is determined directly from Eq.~4.23!.

Removing the expectation values over the bosonic fie
converts the zeros to the shifts in the eigenvalues of
fermion matrix in the presence of a small perturbatio
M (int). The problem of determining such shifts is simp
~two-fold degenerate! time independent perturbation theor
Indeed, one finds, for example,

ln1
5ln

(0)2
1

2
$Mn1n1

(int) 1Mn2n2

(int)

6A~Mn1n1

(int) 2Mn1n1

(int) !214Mn1n2

(int) Mn2n1

(int) %

1
1

2 (
j ¹$n%

M jn1

(int)Mn1 j
(int)1M jn2

(int)Mn2 j
(int)

ln
(0)2l j

(0)
2d0

(2) ,

~4.26!
01450
al

g
re
s

le
l
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s
e
,

in which ^d0
(2)&5d (2). This recovers time independent pe

turbation theory if

d0
(2)52

1

2 (
j ¹$n%

M jn1

(int)Mn1 j
(int)2M jn2

(int)Mn2 j
(int)

ln
(0)2l j

(0)
, ~4.27!

whence

d (2)5
1

2 (
j ¹$n%

t jn1

(2)1sjn1

(2)2t jn2

(2)2sjn2

(2)

hn
(0)2h j

(0)
. ~4.28!

Finally, the full expression for the second order shift in
erstwhile two-fold degenerate zero is

hni

(2)52
1

2
~ tn1

(2)1tn2

(2)!

1
1

2 (
j ¹$n%

2~ t jni

(2)1sjni

(2)!1t j
(1)tn1

(1)1t j
(1)tn2

(1)2sjn1

(2)2sjn2

(2)

hn
(0)2h j

(0)
.

~4.29!

V. THE ZEROS AND PHASE DIAGRAM
OF THE GROSS-NEVEU MODEL

The interactive part of the fermion matrix~3.11! may be
split into

M (int)~q,p!5Mf
(int)~q,p!1Mp

(int)~q,p!, ~5.1!

where

Mf
(int)~q,p!5

1

N2 (
n

ei (p2q)naf~n!5S 1

NaD 2

f~q2p!,

~5.2!

Mp
(int)~q,p!5

1

N2 (
n

ei (p2q)nap~n!igS

5S 1

NaD 2

p~q2p!ig5 . ~5.3!

One notes that the momentum dependency of the bos
field variables involves even integers, so the bosons h
periodic boundary conditions. The generic matrix eleme
required for the calculation of Eqs.~4.3!, ~4.4!, and~4.5! are
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Mf
(int)

(ap)(bq)5S 1

Na
D 2

f~p2q!
1

2 S 11~21!a1b

(
m

sinpma sinqma1 i ~sinp1a sinq2a2sinp2a sinq1a!

A(
m

sin2pmaA(
m

sin2pma
D , ~5.4!

Mp
(int)

(ap)(bq)5S 1

Na
D 2

p~p2q!
i

2 S 12~21!a1b

(
m

sinpma sinqma1 i ~sinp1a sinq2a2sinp2a sinq1a!

A(
m

sin2pmaA(
m

sin2pma
D .

~5.5!
ic
-

r

-

he
dy-

ints
na-
n to

os.
n
s in
by
ing

to
hat
eter

from
-

ht-

e

In the ~generalized! Gross-Neveu case, the pure boson
action is given by Eq.~3.4!. The expectation values in mo
mentum space are thus~recall that^.& refers to pure bosonic
expectation values!

^f~k!&5^p~k!&50, ~5.6!

^f~k!f~2k!&5Nda2d2gf
2 , ~5.7!

^p~k!p~2k!&5Nda2d2gp
2 . ~5.8!

The bosonic expectation values of the matrix elements
quired in the calculation of the shifts~4.22! and ~4.29! are
then

t i[ta,p50, ~5.9!

si j [s(a,p)(b,q)5
2gf

2

N2
, ~5.10!

t i j [t (a,p)(b,q)

5
gf

2 1gp
2

N2 5 ~21!a1b

(
r

sinprsinqr

A(
m

sin2pm(
n

sin2qn

216 .

~5.11!

From these equations, together with Eqs.~4.22! and ~4.29!,
theO(g) andO(g2) shifts for the erstwhile two-fold degen
erate zeros,ha(6up1u,p2) ~for p̂250 or 2N/2), are, respec-
tively,

ha
(1)~6up1u,p2!56 i

A2Agf
2 1gp

2

N
, ~5.12!

ha
(2)~6up1u,p2!

52
gf

2 1gp
2

N2 (
(b,q)¹$(a,p)%

1

ha
(0)~p!2hb

(0)~q!
. ~5.13!
01450
e-

So the two four-Fermi interactions in fact contribute t
same amounts to the shifts in the zeros. In the thermo
namic limit these lowest zeros become the true critical po
of the theory and their determination amounts to determi
tion of the phase diagram. I.e., the phase diagram is give
orderg2 by the limit

1

2k~g!
5 lim

N→`
$ha

(0)~p!1ha
(1)~p!1ha

(2)~p!%, ~5.14!

wherep is the momentum corresponding to the lowest zer
The first order shift in Eq.~5.12! gives the relative separatio
of the erstwhile two-fold degenerate zeros and vanishe
the infinite volume limit. The average shift is represented
Eq. ~5.13! and is second order. The shift in the correspond
critical point is

lim
N→`

ha
(2)~6up1u,p2!52~gf

2 1gp
2 ! lim

N→`

c~N!, ~5.15!

where

c~N!5
1

N2 (
(b,q)¹$(a,p)%

1

ha
(0)~p!2hb

(0)~q!
. ~5.16!

One finds, numerically, that the imaginary contribution
this factor vanishes in the thermodynamic limit, meaning t
these zeros indeed impact on to the real hopping param
axis. The real part of Eq.~5.16! becomes anN-independent
constant whose actual value depends on the free zero
which it evolved. Indeed, Eq.~5.16! approaches approxi
mately 0.77 and20.77 for (p̂1 ,p̂2)5(61/2,0) and„6(N
21)/2,2N/2…, respectively. These correspond to the rig
most and leftmost critical lines~see Fig. 1!. Also, Eq.~5.16!
is approximately 0.2 and20.2 for (p̂1 ,p̂2)5„6(N
21)/2,0… and (61/2,2N/2), respectively. These give th
7-7
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TABLE I. The critical points and the momentum indices of their corresponding partition function zer
the free and weakly interacting cases.

( p̂1,p̂2) S6 1
2~N21!,2

N

2D S6 1
2,2

N

2D (6
1
2 (N21),0) (6 1

2 ,0)

1/2kc(0) 22 0 0 2

1/2kc(g) 2210.77(gf
2 1gp

2 ) 0.2(gf
2 1gp

2 ) 20.2(gf
2 1gp

2 ) 220.77(gf
2 1gp

2 )
um
i

s

i

ra
tic
o
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r,
k

ac
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i
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tts
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the
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e-
in a
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ss-
the

his
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en-
gs.
the

a
of
two lines that generate the inner cusp. The situation is s
marized in Table I where the critical hopping parameters
the free and interacting cases and the momentum indice
the corresponding zeros are listed.

The actual phase diagram for weak coupling is pictured
Fig. 1 for gf5gp5g ~dark lines!. The lighter curves are a
schematic representation of the expected full phase diag
One sees the degeneracy of the central free fermion cri
point is lifted and two critical lines emerge in the presence
weak bosonic coupling. These are the lines correspondin
the central cusp in Aoki’s phase diagram. From Eq.~5.15!,
the central cusp can only be made to vanish at this orde
the unphysical situation of imaginary couplings. The Ao
phase does not yet emerge toO(g2) from the left- and right-
most free critical points. Tuning the couplingsgf andgp so
as to remove the chiral symmetry present in the original
tion does not qualitatively affect the phase structure.

In the free case, the zeros and hence the critical points
invariant under momentum inversionpm→2pm , corre-
sponding to a rotation in space-time. While this degener
is lifted at finite size in the interacting case, it is recovered
the limit of infinite volume. In that limit, the free zeros an
critical points are also invariant under the parity transform
tion p1↔p2. This is no longer the case in the presence
interactions. Indeed, the inner pair of critical lines are int
changed under parity. The overall phase structure, howe
remains the same.

The situation is similar to the two-dimensional Po
model. There, the partition function is invariant under a d
ality transformation which exchanges the high and low te
perature phases. The critical point is that which is invari
01450
-
n
of

n

m.
al
f
to

in
i

-

re

y
n

-
f
-
er,

-
-
t

under that transformation. Here, the zeros, and hence
partition function, are invariant under parity. The pha
structure is also unchanged by parity. However, parity e
and parity odd regions of the phase diagram are in
changed.

VI. CONCLUSIONS

A new type of weak coupling expansion appropriate
Wilson fermionic lattice field theories has been develop
This expansion is multiplicative, but recovers the stand
additive expansion. Its multiplicative form allows the Le
Yang zeros of the weakly coupled theory to be extracted
natural way. These zeros are protocritical points, which
they impact on to the real hopping parameter axis, precipi
a phase transition there.

The expansion is applied to the single flavor lattice Gro
Neveu model to track the movement of zeros and thereby
critical points in the presence of bosonic field variables. T
model shares features with QCD, one of which is expecte
be the existence of an Aoki phase.

Using the new weak coupling expansion, a phase diag
is obtained in the weakly coupled region which is consist
with that of Aoki. The widths of the Aoki cusps are analyt
cally determined to second order in the couplings. The c
tral cusp cannot be tuned away for real physical couplin
The lateral cusps do not yet emerge at this order. This is
answer to the question posed by Creutz in@16# for the single
flavor Gross-Neveu model.

Finally, while the full phase structure is unaltered by
parity transformation, such an operation has the effect
exchanging the critical lines forming the inner Aoki cusp.
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